1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
87 	struct hnae3_handle *handle)
88 {
89 	if (!handle->client)
90 		return container_of(handle, struct hclgevf_dev, nic);
91 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
92 		return container_of(handle, struct hclgevf_dev, roce);
93 	else
94 		return container_of(handle, struct hclgevf_dev, nic);
95 }
96 
97 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
98 {
99 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
101 	struct hclgevf_desc desc;
102 	struct hclgevf_tqp *tqp;
103 	int status;
104 	int i;
105 
106 	for (i = 0; i < kinfo->num_tqps; i++) {
107 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
108 		hclgevf_cmd_setup_basic_desc(&desc,
109 					     HCLGEVF_OPC_QUERY_RX_STATUS,
110 					     true);
111 
112 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
113 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
114 		if (status) {
115 			dev_err(&hdev->pdev->dev,
116 				"Query tqp stat fail, status = %d,queue = %d\n",
117 				status,	i);
118 			return status;
119 		}
120 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
121 			le32_to_cpu(desc.data[1]);
122 
123 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
124 					     true);
125 
126 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
127 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
128 		if (status) {
129 			dev_err(&hdev->pdev->dev,
130 				"Query tqp stat fail, status = %d,queue = %d\n",
131 				status, i);
132 			return status;
133 		}
134 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
135 			le32_to_cpu(desc.data[1]);
136 	}
137 
138 	return 0;
139 }
140 
141 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
144 	struct hclgevf_tqp *tqp;
145 	u64 *buff = data;
146 	int i;
147 
148 	for (i = 0; i < kinfo->num_tqps; i++) {
149 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
150 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
151 	}
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
155 	}
156 
157 	return buff;
158 }
159 
160 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
161 {
162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
163 
164 	return kinfo->num_tqps * 2;
165 }
166 
167 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 	u8 *buff = data;
171 	int i = 0;
172 
173 	for (i = 0; i < kinfo->num_tqps; i++) {
174 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
175 						       struct hclgevf_tqp, q);
176 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
177 			 tqp->index);
178 		buff += ETH_GSTRING_LEN;
179 	}
180 
181 	for (i = 0; i < kinfo->num_tqps; i++) {
182 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 						       struct hclgevf_tqp, q);
184 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
185 			 tqp->index);
186 		buff += ETH_GSTRING_LEN;
187 	}
188 
189 	return buff;
190 }
191 
192 static void hclgevf_update_stats(struct hnae3_handle *handle,
193 				 struct net_device_stats *net_stats)
194 {
195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
196 	int status;
197 
198 	status = hclgevf_tqps_update_stats(handle);
199 	if (status)
200 		dev_err(&hdev->pdev->dev,
201 			"VF update of TQPS stats fail, status = %d.\n",
202 			status);
203 }
204 
205 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
206 {
207 	if (strset == ETH_SS_TEST)
208 		return -EOPNOTSUPP;
209 	else if (strset == ETH_SS_STATS)
210 		return hclgevf_tqps_get_sset_count(handle, strset);
211 
212 	return 0;
213 }
214 
215 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
216 				u8 *data)
217 {
218 	u8 *p = (char *)data;
219 
220 	if (strset == ETH_SS_STATS)
221 		p = hclgevf_tqps_get_strings(handle, p);
222 }
223 
224 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
225 {
226 	hclgevf_tqps_get_stats(handle, data);
227 }
228 
229 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
230 {
231 	u8 resp_msg;
232 	int status;
233 
234 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
235 				      true, &resp_msg, sizeof(u8));
236 	if (status) {
237 		dev_err(&hdev->pdev->dev,
238 			"VF request to get TC info from PF failed %d",
239 			status);
240 		return status;
241 	}
242 
243 	hdev->hw_tc_map = resp_msg;
244 
245 	return 0;
246 }
247 
248 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
249 {
250 	struct hnae3_handle *nic = &hdev->nic;
251 	u8 resp_msg;
252 	int ret;
253 
254 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
255 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
256 				   NULL, 0, true, &resp_msg, sizeof(u8));
257 	if (ret) {
258 		dev_err(&hdev->pdev->dev,
259 			"VF request to get port based vlan state failed %d",
260 			ret);
261 		return ret;
262 	}
263 
264 	nic->port_base_vlan_state = resp_msg;
265 
266 	return 0;
267 }
268 
269 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
270 {
271 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
272 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
273 	int status;
274 
275 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
276 				      true, resp_msg,
277 				      HCLGEVF_TQPS_RSS_INFO_LEN);
278 	if (status) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get tqp info from PF failed %d",
281 			status);
282 		return status;
283 	}
284 
285 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
286 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
287 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
288 
289 	return 0;
290 }
291 
292 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
293 {
294 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
295 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
296 	int ret;
297 
298 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
299 				   true, resp_msg,
300 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
301 	if (ret) {
302 		dev_err(&hdev->pdev->dev,
303 			"VF request to get tqp depth info from PF failed %d",
304 			ret);
305 		return ret;
306 	}
307 
308 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
309 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
310 
311 	return 0;
312 }
313 
314 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
315 {
316 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
317 	u8 msg_data[2], resp_data[2];
318 	u16 qid_in_pf = 0;
319 	int ret;
320 
321 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
322 
323 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
324 				   2, true, resp_data, 2);
325 	if (!ret)
326 		qid_in_pf = *(u16 *)resp_data;
327 
328 	return qid_in_pf;
329 }
330 
331 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
332 {
333 	u8 resp_msg[2];
334 	int ret;
335 
336 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
337 				   true, resp_msg, sizeof(resp_msg));
338 	if (ret) {
339 		dev_err(&hdev->pdev->dev,
340 			"VF request to get the pf port media type failed %d",
341 			ret);
342 		return ret;
343 	}
344 
345 	hdev->hw.mac.media_type = resp_msg[0];
346 	hdev->hw.mac.module_type = resp_msg[1];
347 
348 	return 0;
349 }
350 
351 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
352 {
353 	struct hclgevf_tqp *tqp;
354 	int i;
355 
356 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
357 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
358 	if (!hdev->htqp)
359 		return -ENOMEM;
360 
361 	tqp = hdev->htqp;
362 
363 	for (i = 0; i < hdev->num_tqps; i++) {
364 		tqp->dev = &hdev->pdev->dev;
365 		tqp->index = i;
366 
367 		tqp->q.ae_algo = &ae_algovf;
368 		tqp->q.buf_size = hdev->rx_buf_len;
369 		tqp->q.tx_desc_num = hdev->num_tx_desc;
370 		tqp->q.rx_desc_num = hdev->num_rx_desc;
371 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
372 			i * HCLGEVF_TQP_REG_SIZE;
373 
374 		tqp++;
375 	}
376 
377 	return 0;
378 }
379 
380 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
381 {
382 	struct hnae3_handle *nic = &hdev->nic;
383 	struct hnae3_knic_private_info *kinfo;
384 	u16 new_tqps = hdev->num_tqps;
385 	int i;
386 
387 	kinfo = &nic->kinfo;
388 	kinfo->num_tc = 0;
389 	kinfo->num_tx_desc = hdev->num_tx_desc;
390 	kinfo->num_rx_desc = hdev->num_rx_desc;
391 	kinfo->rx_buf_len = hdev->rx_buf_len;
392 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
393 		if (hdev->hw_tc_map & BIT(i))
394 			kinfo->num_tc++;
395 
396 	kinfo->rss_size
397 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
398 	new_tqps = kinfo->rss_size * kinfo->num_tc;
399 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
400 
401 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
402 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
403 	if (!kinfo->tqp)
404 		return -ENOMEM;
405 
406 	for (i = 0; i < kinfo->num_tqps; i++) {
407 		hdev->htqp[i].q.handle = &hdev->nic;
408 		hdev->htqp[i].q.tqp_index = i;
409 		kinfo->tqp[i] = &hdev->htqp[i].q;
410 	}
411 
412 	return 0;
413 }
414 
415 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
416 {
417 	int status;
418 	u8 resp_msg;
419 
420 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
421 				      0, false, &resp_msg, sizeof(u8));
422 	if (status)
423 		dev_err(&hdev->pdev->dev,
424 			"VF failed to fetch link status(%d) from PF", status);
425 }
426 
427 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
428 {
429 	struct hnae3_handle *rhandle = &hdev->roce;
430 	struct hnae3_handle *handle = &hdev->nic;
431 	struct hnae3_client *rclient;
432 	struct hnae3_client *client;
433 
434 	client = handle->client;
435 	rclient = hdev->roce_client;
436 
437 	link_state =
438 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
439 
440 	if (link_state != hdev->hw.mac.link) {
441 		client->ops->link_status_change(handle, !!link_state);
442 		if (rclient && rclient->ops->link_status_change)
443 			rclient->ops->link_status_change(rhandle, !!link_state);
444 		hdev->hw.mac.link = link_state;
445 	}
446 }
447 
448 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
449 {
450 #define HCLGEVF_ADVERTISING 0
451 #define HCLGEVF_SUPPORTED   1
452 	u8 send_msg;
453 	u8 resp_msg;
454 
455 	send_msg = HCLGEVF_ADVERTISING;
456 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
457 			     sizeof(u8), false, &resp_msg, sizeof(u8));
458 	send_msg = HCLGEVF_SUPPORTED;
459 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
460 			     sizeof(u8), false, &resp_msg, sizeof(u8));
461 }
462 
463 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
464 {
465 	struct hnae3_handle *nic = &hdev->nic;
466 	int ret;
467 
468 	nic->ae_algo = &ae_algovf;
469 	nic->pdev = hdev->pdev;
470 	nic->numa_node_mask = hdev->numa_node_mask;
471 	nic->flags |= HNAE3_SUPPORT_VF;
472 
473 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
474 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
475 			hdev->ae_dev->dev_type);
476 		return -EINVAL;
477 	}
478 
479 	ret = hclgevf_knic_setup(hdev);
480 	if (ret)
481 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
482 			ret);
483 	return ret;
484 }
485 
486 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
487 {
488 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
489 		dev_warn(&hdev->pdev->dev,
490 			 "vector(vector_id %d) has been freed.\n", vector_id);
491 		return;
492 	}
493 
494 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
495 	hdev->num_msi_left += 1;
496 	hdev->num_msi_used -= 1;
497 }
498 
499 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
500 			      struct hnae3_vector_info *vector_info)
501 {
502 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
503 	struct hnae3_vector_info *vector = vector_info;
504 	int alloc = 0;
505 	int i, j;
506 
507 	vector_num = min(hdev->num_msi_left, vector_num);
508 
509 	for (j = 0; j < vector_num; j++) {
510 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
511 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
512 				vector->vector = pci_irq_vector(hdev->pdev, i);
513 				vector->io_addr = hdev->hw.io_base +
514 					HCLGEVF_VECTOR_REG_BASE +
515 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
516 				hdev->vector_status[i] = 0;
517 				hdev->vector_irq[i] = vector->vector;
518 
519 				vector++;
520 				alloc++;
521 
522 				break;
523 			}
524 		}
525 	}
526 	hdev->num_msi_left -= alloc;
527 	hdev->num_msi_used += alloc;
528 
529 	return alloc;
530 }
531 
532 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
533 {
534 	int i;
535 
536 	for (i = 0; i < hdev->num_msi; i++)
537 		if (vector == hdev->vector_irq[i])
538 			return i;
539 
540 	return -EINVAL;
541 }
542 
543 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
544 				    const u8 hfunc, const u8 *key)
545 {
546 	struct hclgevf_rss_config_cmd *req;
547 	struct hclgevf_desc desc;
548 	int key_offset;
549 	int key_size;
550 	int ret;
551 
552 	req = (struct hclgevf_rss_config_cmd *)desc.data;
553 
554 	for (key_offset = 0; key_offset < 3; key_offset++) {
555 		hclgevf_cmd_setup_basic_desc(&desc,
556 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
557 					     false);
558 
559 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
560 		req->hash_config |=
561 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
562 
563 		if (key_offset == 2)
564 			key_size =
565 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
566 		else
567 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
568 
569 		memcpy(req->hash_key,
570 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
571 
572 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
573 		if (ret) {
574 			dev_err(&hdev->pdev->dev,
575 				"Configure RSS config fail, status = %d\n",
576 				ret);
577 			return ret;
578 		}
579 	}
580 
581 	return 0;
582 }
583 
584 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
585 {
586 	return HCLGEVF_RSS_KEY_SIZE;
587 }
588 
589 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
590 {
591 	return HCLGEVF_RSS_IND_TBL_SIZE;
592 }
593 
594 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
595 {
596 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
597 	struct hclgevf_rss_indirection_table_cmd *req;
598 	struct hclgevf_desc desc;
599 	int status;
600 	int i, j;
601 
602 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
603 
604 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
605 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
606 					     false);
607 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
608 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
609 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
610 			req->rss_result[j] =
611 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
612 
613 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
614 		if (status) {
615 			dev_err(&hdev->pdev->dev,
616 				"VF failed(=%d) to set RSS indirection table\n",
617 				status);
618 			return status;
619 		}
620 	}
621 
622 	return 0;
623 }
624 
625 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
626 {
627 	struct hclgevf_rss_tc_mode_cmd *req;
628 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
629 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
630 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
631 	struct hclgevf_desc desc;
632 	u16 roundup_size;
633 	int status;
634 	int i;
635 
636 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
637 
638 	roundup_size = roundup_pow_of_two(rss_size);
639 	roundup_size = ilog2(roundup_size);
640 
641 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
642 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
643 		tc_size[i] = roundup_size;
644 		tc_offset[i] = rss_size * i;
645 	}
646 
647 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
648 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
649 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
650 			      (tc_valid[i] & 0x1));
651 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
652 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
653 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
654 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
655 	}
656 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
657 	if (status)
658 		dev_err(&hdev->pdev->dev,
659 			"VF failed(=%d) to set rss tc mode\n", status);
660 
661 	return status;
662 }
663 
664 /* for revision 0x20, vf shared the same rss config with pf */
665 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
666 {
667 #define HCLGEVF_RSS_MBX_RESP_LEN	8
668 
669 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
670 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
671 	u16 msg_num, hash_key_index;
672 	u8 index;
673 	int ret;
674 
675 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
676 			HCLGEVF_RSS_MBX_RESP_LEN;
677 	for (index = 0; index < msg_num; index++) {
678 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
679 					   &index, sizeof(index),
680 					   true, resp_msg,
681 					   HCLGEVF_RSS_MBX_RESP_LEN);
682 		if (ret) {
683 			dev_err(&hdev->pdev->dev,
684 				"VF get rss hash key from PF failed, ret=%d",
685 				ret);
686 			return ret;
687 		}
688 
689 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
690 		if (index == msg_num - 1)
691 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
692 			       &resp_msg[0],
693 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
694 		else
695 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
696 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
697 	}
698 
699 	return 0;
700 }
701 
702 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
703 			   u8 *hfunc)
704 {
705 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
706 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
707 	int i, ret;
708 
709 	if (handle->pdev->revision >= 0x21) {
710 		/* Get hash algorithm */
711 		if (hfunc) {
712 			switch (rss_cfg->hash_algo) {
713 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
714 				*hfunc = ETH_RSS_HASH_TOP;
715 				break;
716 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
717 				*hfunc = ETH_RSS_HASH_XOR;
718 				break;
719 			default:
720 				*hfunc = ETH_RSS_HASH_UNKNOWN;
721 				break;
722 			}
723 		}
724 
725 		/* Get the RSS Key required by the user */
726 		if (key)
727 			memcpy(key, rss_cfg->rss_hash_key,
728 			       HCLGEVF_RSS_KEY_SIZE);
729 	} else {
730 		if (hfunc)
731 			*hfunc = ETH_RSS_HASH_TOP;
732 		if (key) {
733 			ret = hclgevf_get_rss_hash_key(hdev);
734 			if (ret)
735 				return ret;
736 			memcpy(key, rss_cfg->rss_hash_key,
737 			       HCLGEVF_RSS_KEY_SIZE);
738 		}
739 	}
740 
741 	if (indir)
742 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
743 			indir[i] = rss_cfg->rss_indirection_tbl[i];
744 
745 	return 0;
746 }
747 
748 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
749 			   const  u8 *key, const  u8 hfunc)
750 {
751 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
752 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
753 	int ret, i;
754 
755 	if (handle->pdev->revision >= 0x21) {
756 		/* Set the RSS Hash Key if specififed by the user */
757 		if (key) {
758 			switch (hfunc) {
759 			case ETH_RSS_HASH_TOP:
760 				rss_cfg->hash_algo =
761 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
762 				break;
763 			case ETH_RSS_HASH_XOR:
764 				rss_cfg->hash_algo =
765 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
766 				break;
767 			case ETH_RSS_HASH_NO_CHANGE:
768 				break;
769 			default:
770 				return -EINVAL;
771 			}
772 
773 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
774 						       key);
775 			if (ret)
776 				return ret;
777 
778 			/* Update the shadow RSS key with user specified qids */
779 			memcpy(rss_cfg->rss_hash_key, key,
780 			       HCLGEVF_RSS_KEY_SIZE);
781 		}
782 	}
783 
784 	/* update the shadow RSS table with user specified qids */
785 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
786 		rss_cfg->rss_indirection_tbl[i] = indir[i];
787 
788 	/* update the hardware */
789 	return hclgevf_set_rss_indir_table(hdev);
790 }
791 
792 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
793 {
794 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
795 
796 	if (nfc->data & RXH_L4_B_2_3)
797 		hash_sets |= HCLGEVF_D_PORT_BIT;
798 	else
799 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
800 
801 	if (nfc->data & RXH_IP_SRC)
802 		hash_sets |= HCLGEVF_S_IP_BIT;
803 	else
804 		hash_sets &= ~HCLGEVF_S_IP_BIT;
805 
806 	if (nfc->data & RXH_IP_DST)
807 		hash_sets |= HCLGEVF_D_IP_BIT;
808 	else
809 		hash_sets &= ~HCLGEVF_D_IP_BIT;
810 
811 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
812 		hash_sets |= HCLGEVF_V_TAG_BIT;
813 
814 	return hash_sets;
815 }
816 
817 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
818 				 struct ethtool_rxnfc *nfc)
819 {
820 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
821 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
822 	struct hclgevf_rss_input_tuple_cmd *req;
823 	struct hclgevf_desc desc;
824 	u8 tuple_sets;
825 	int ret;
826 
827 	if (handle->pdev->revision == 0x20)
828 		return -EOPNOTSUPP;
829 
830 	if (nfc->data &
831 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
832 		return -EINVAL;
833 
834 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
835 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
836 
837 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
838 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
839 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
840 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
841 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
842 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
843 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
844 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
845 
846 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
847 	switch (nfc->flow_type) {
848 	case TCP_V4_FLOW:
849 		req->ipv4_tcp_en = tuple_sets;
850 		break;
851 	case TCP_V6_FLOW:
852 		req->ipv6_tcp_en = tuple_sets;
853 		break;
854 	case UDP_V4_FLOW:
855 		req->ipv4_udp_en = tuple_sets;
856 		break;
857 	case UDP_V6_FLOW:
858 		req->ipv6_udp_en = tuple_sets;
859 		break;
860 	case SCTP_V4_FLOW:
861 		req->ipv4_sctp_en = tuple_sets;
862 		break;
863 	case SCTP_V6_FLOW:
864 		if ((nfc->data & RXH_L4_B_0_1) ||
865 		    (nfc->data & RXH_L4_B_2_3))
866 			return -EINVAL;
867 
868 		req->ipv6_sctp_en = tuple_sets;
869 		break;
870 	case IPV4_FLOW:
871 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
872 		break;
873 	case IPV6_FLOW:
874 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
875 		break;
876 	default:
877 		return -EINVAL;
878 	}
879 
880 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
881 	if (ret) {
882 		dev_err(&hdev->pdev->dev,
883 			"Set rss tuple fail, status = %d\n", ret);
884 		return ret;
885 	}
886 
887 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
888 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
889 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
890 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
891 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
892 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
893 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
894 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
895 	return 0;
896 }
897 
898 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
899 				 struct ethtool_rxnfc *nfc)
900 {
901 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
902 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
903 	u8 tuple_sets;
904 
905 	if (handle->pdev->revision == 0x20)
906 		return -EOPNOTSUPP;
907 
908 	nfc->data = 0;
909 
910 	switch (nfc->flow_type) {
911 	case TCP_V4_FLOW:
912 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
913 		break;
914 	case UDP_V4_FLOW:
915 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
916 		break;
917 	case TCP_V6_FLOW:
918 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
919 		break;
920 	case UDP_V6_FLOW:
921 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
922 		break;
923 	case SCTP_V4_FLOW:
924 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
925 		break;
926 	case SCTP_V6_FLOW:
927 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
928 		break;
929 	case IPV4_FLOW:
930 	case IPV6_FLOW:
931 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
932 		break;
933 	default:
934 		return -EINVAL;
935 	}
936 
937 	if (!tuple_sets)
938 		return 0;
939 
940 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
941 		nfc->data |= RXH_L4_B_2_3;
942 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
943 		nfc->data |= RXH_L4_B_0_1;
944 	if (tuple_sets & HCLGEVF_D_IP_BIT)
945 		nfc->data |= RXH_IP_DST;
946 	if (tuple_sets & HCLGEVF_S_IP_BIT)
947 		nfc->data |= RXH_IP_SRC;
948 
949 	return 0;
950 }
951 
952 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
953 				       struct hclgevf_rss_cfg *rss_cfg)
954 {
955 	struct hclgevf_rss_input_tuple_cmd *req;
956 	struct hclgevf_desc desc;
957 	int ret;
958 
959 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
960 
961 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
962 
963 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
964 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
965 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
966 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
967 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
968 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
969 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
970 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
971 
972 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
973 	if (ret)
974 		dev_err(&hdev->pdev->dev,
975 			"Configure rss input fail, status = %d\n", ret);
976 	return ret;
977 }
978 
979 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
980 {
981 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
982 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
983 
984 	return rss_cfg->rss_size;
985 }
986 
987 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
988 				       int vector_id,
989 				       struct hnae3_ring_chain_node *ring_chain)
990 {
991 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
992 	struct hnae3_ring_chain_node *node;
993 	struct hclge_mbx_vf_to_pf_cmd *req;
994 	struct hclgevf_desc desc;
995 	int i = 0;
996 	int status;
997 	u8 type;
998 
999 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1000 
1001 	for (node = ring_chain; node; node = node->next) {
1002 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1003 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1004 
1005 		if (i == 0) {
1006 			hclgevf_cmd_setup_basic_desc(&desc,
1007 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1008 						     false);
1009 			type = en ?
1010 				HCLGE_MBX_MAP_RING_TO_VECTOR :
1011 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1012 			req->msg[0] = type;
1013 			req->msg[1] = vector_id;
1014 		}
1015 
1016 		req->msg[idx_offset] =
1017 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1018 		req->msg[idx_offset + 1] = node->tqp_index;
1019 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1020 							   HNAE3_RING_GL_IDX_M,
1021 							   HNAE3_RING_GL_IDX_S);
1022 
1023 		i++;
1024 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1025 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1026 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1027 		    !node->next) {
1028 			req->msg[2] = i;
1029 
1030 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1031 			if (status) {
1032 				dev_err(&hdev->pdev->dev,
1033 					"Map TQP fail, status is %d.\n",
1034 					status);
1035 				return status;
1036 			}
1037 			i = 0;
1038 			hclgevf_cmd_setup_basic_desc(&desc,
1039 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1040 						     false);
1041 			req->msg[0] = type;
1042 			req->msg[1] = vector_id;
1043 		}
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1050 				      struct hnae3_ring_chain_node *ring_chain)
1051 {
1052 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1053 	int vector_id;
1054 
1055 	vector_id = hclgevf_get_vector_index(hdev, vector);
1056 	if (vector_id < 0) {
1057 		dev_err(&handle->pdev->dev,
1058 			"Get vector index fail. ret =%d\n", vector_id);
1059 		return vector_id;
1060 	}
1061 
1062 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1063 }
1064 
1065 static int hclgevf_unmap_ring_from_vector(
1066 				struct hnae3_handle *handle,
1067 				int vector,
1068 				struct hnae3_ring_chain_node *ring_chain)
1069 {
1070 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1071 	int ret, vector_id;
1072 
1073 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1074 		return 0;
1075 
1076 	vector_id = hclgevf_get_vector_index(hdev, vector);
1077 	if (vector_id < 0) {
1078 		dev_err(&handle->pdev->dev,
1079 			"Get vector index fail. ret =%d\n", vector_id);
1080 		return vector_id;
1081 	}
1082 
1083 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1084 	if (ret)
1085 		dev_err(&handle->pdev->dev,
1086 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1087 			vector_id,
1088 			ret);
1089 
1090 	return ret;
1091 }
1092 
1093 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1094 {
1095 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1096 	int vector_id;
1097 
1098 	vector_id = hclgevf_get_vector_index(hdev, vector);
1099 	if (vector_id < 0) {
1100 		dev_err(&handle->pdev->dev,
1101 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1102 			vector_id);
1103 		return vector_id;
1104 	}
1105 
1106 	hclgevf_free_vector(hdev, vector_id);
1107 
1108 	return 0;
1109 }
1110 
1111 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1112 					bool en_bc_pmc)
1113 {
1114 	struct hclge_mbx_vf_to_pf_cmd *req;
1115 	struct hclgevf_desc desc;
1116 	int ret;
1117 
1118 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1119 
1120 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1121 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1122 	req->msg[1] = en_bc_pmc ? 1 : 0;
1123 
1124 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1125 	if (ret)
1126 		dev_err(&hdev->pdev->dev,
1127 			"Set promisc mode fail, status is %d.\n", ret);
1128 
1129 	return ret;
1130 }
1131 
1132 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1133 {
1134 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1135 }
1136 
1137 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1138 			      int stream_id, bool enable)
1139 {
1140 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1141 	struct hclgevf_desc desc;
1142 	int status;
1143 
1144 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1145 
1146 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1147 				     false);
1148 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1149 	req->stream_id = cpu_to_le16(stream_id);
1150 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1151 
1152 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1153 	if (status)
1154 		dev_err(&hdev->pdev->dev,
1155 			"TQP enable fail, status =%d.\n", status);
1156 
1157 	return status;
1158 }
1159 
1160 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1161 {
1162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1163 	struct hclgevf_tqp *tqp;
1164 	int i;
1165 
1166 	for (i = 0; i < kinfo->num_tqps; i++) {
1167 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1168 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1169 	}
1170 }
1171 
1172 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1173 {
1174 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1175 
1176 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1177 }
1178 
1179 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1180 				bool is_first)
1181 {
1182 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1183 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1184 	u8 *new_mac_addr = (u8 *)p;
1185 	u8 msg_data[ETH_ALEN * 2];
1186 	u16 subcode;
1187 	int status;
1188 
1189 	ether_addr_copy(msg_data, new_mac_addr);
1190 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1191 
1192 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1193 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1194 
1195 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1196 				      subcode, msg_data, ETH_ALEN * 2,
1197 				      true, NULL, 0);
1198 	if (!status)
1199 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1200 
1201 	return status;
1202 }
1203 
1204 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1205 			       const unsigned char *addr)
1206 {
1207 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1208 
1209 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1210 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1211 				    addr, ETH_ALEN, false, NULL, 0);
1212 }
1213 
1214 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1215 			      const unsigned char *addr)
1216 {
1217 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1218 
1219 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1220 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1221 				    addr, ETH_ALEN, false, NULL, 0);
1222 }
1223 
1224 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1225 			       const unsigned char *addr)
1226 {
1227 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1228 
1229 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1230 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1231 				    addr, ETH_ALEN, false, NULL, 0);
1232 }
1233 
1234 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1235 			      const unsigned char *addr)
1236 {
1237 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1238 
1239 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1240 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1241 				    addr, ETH_ALEN, false, NULL, 0);
1242 }
1243 
1244 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1245 				   __be16 proto, u16 vlan_id,
1246 				   bool is_kill)
1247 {
1248 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1249 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1250 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1251 
1252 	if (vlan_id > 4095)
1253 		return -EINVAL;
1254 
1255 	if (proto != htons(ETH_P_8021Q))
1256 		return -EPROTONOSUPPORT;
1257 
1258 	msg_data[0] = is_kill;
1259 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1260 	memcpy(&msg_data[3], &proto, sizeof(proto));
1261 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1262 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1263 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1264 }
1265 
1266 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1267 {
1268 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1269 	u8 msg_data;
1270 
1271 	msg_data = enable ? 1 : 0;
1272 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1273 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1274 				    1, false, NULL, 0);
1275 }
1276 
1277 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1278 {
1279 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1280 	u8 msg_data[2];
1281 	int ret;
1282 
1283 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1284 
1285 	/* disable vf queue before send queue reset msg to PF */
1286 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1287 	if (ret)
1288 		return ret;
1289 
1290 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1291 				    2, true, NULL, 0);
1292 }
1293 
1294 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1295 {
1296 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1297 
1298 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1299 				    sizeof(new_mtu), true, NULL, 0);
1300 }
1301 
1302 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1303 				 enum hnae3_reset_notify_type type)
1304 {
1305 	struct hnae3_client *client = hdev->nic_client;
1306 	struct hnae3_handle *handle = &hdev->nic;
1307 	int ret;
1308 
1309 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1310 	    !client)
1311 		return 0;
1312 
1313 	if (!client->ops->reset_notify)
1314 		return -EOPNOTSUPP;
1315 
1316 	ret = client->ops->reset_notify(handle, type);
1317 	if (ret)
1318 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1319 			type, ret);
1320 
1321 	return ret;
1322 }
1323 
1324 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1325 {
1326 	struct hclgevf_dev *hdev = ae_dev->priv;
1327 
1328 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1329 }
1330 
1331 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1332 				    unsigned long delay_us,
1333 				    unsigned long wait_cnt)
1334 {
1335 	unsigned long cnt = 0;
1336 
1337 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1338 	       cnt++ < wait_cnt)
1339 		usleep_range(delay_us, delay_us * 2);
1340 
1341 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1342 		dev_err(&hdev->pdev->dev,
1343 			"flr wait timeout\n");
1344 		return -ETIMEDOUT;
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1351 {
1352 #define HCLGEVF_RESET_WAIT_US	20000
1353 #define HCLGEVF_RESET_WAIT_CNT	2000
1354 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1355 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1356 
1357 	u32 val;
1358 	int ret;
1359 
1360 	/* wait to check the hardware reset completion status */
1361 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1362 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1363 
1364 	if (hdev->reset_type == HNAE3_FLR_RESET)
1365 		return hclgevf_flr_poll_timeout(hdev,
1366 						HCLGEVF_RESET_WAIT_US,
1367 						HCLGEVF_RESET_WAIT_CNT);
1368 
1369 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1370 				 !(val & HCLGEVF_RST_ING_BITS),
1371 				 HCLGEVF_RESET_WAIT_US,
1372 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1373 
1374 	/* hardware completion status should be available by this time */
1375 	if (ret) {
1376 		dev_err(&hdev->pdev->dev,
1377 			"could'nt get reset done status from h/w, timeout!\n");
1378 		return ret;
1379 	}
1380 
1381 	/* we will wait a bit more to let reset of the stack to complete. This
1382 	 * might happen in case reset assertion was made by PF. Yes, this also
1383 	 * means we might end up waiting bit more even for VF reset.
1384 	 */
1385 	msleep(5000);
1386 
1387 	return 0;
1388 }
1389 
1390 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1391 {
1392 	int ret;
1393 
1394 	/* uninitialize the nic client */
1395 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1396 	if (ret)
1397 		return ret;
1398 
1399 	/* re-initialize the hclge device */
1400 	ret = hclgevf_reset_hdev(hdev);
1401 	if (ret) {
1402 		dev_err(&hdev->pdev->dev,
1403 			"hclge device re-init failed, VF is disabled!\n");
1404 		return ret;
1405 	}
1406 
1407 	/* bring up the nic client again */
1408 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1409 	if (ret)
1410 		return ret;
1411 
1412 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1413 }
1414 
1415 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1416 {
1417 #define HCLGEVF_RESET_SYNC_TIME 100
1418 
1419 	int ret = 0;
1420 
1421 	switch (hdev->reset_type) {
1422 	case HNAE3_VF_FUNC_RESET:
1423 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1424 					   0, true, NULL, sizeof(u8));
1425 		hdev->rst_stats.vf_func_rst_cnt++;
1426 		break;
1427 	case HNAE3_FLR_RESET:
1428 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1429 		hdev->rst_stats.flr_rst_cnt++;
1430 		break;
1431 	default:
1432 		break;
1433 	}
1434 
1435 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1436 	/* inform hardware that preparatory work is done */
1437 	msleep(HCLGEVF_RESET_SYNC_TIME);
1438 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1439 			  HCLGEVF_NIC_CMQ_ENABLE);
1440 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1441 		 hdev->reset_type, ret);
1442 
1443 	return ret;
1444 }
1445 
1446 static int hclgevf_reset(struct hclgevf_dev *hdev)
1447 {
1448 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1449 	int ret;
1450 
1451 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1452 	 * know if device is undergoing reset
1453 	 */
1454 	ae_dev->reset_type = hdev->reset_type;
1455 	hdev->rst_stats.rst_cnt++;
1456 	rtnl_lock();
1457 
1458 	/* bring down the nic to stop any ongoing TX/RX */
1459 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1460 	if (ret)
1461 		goto err_reset_lock;
1462 
1463 	rtnl_unlock();
1464 
1465 	ret = hclgevf_reset_prepare_wait(hdev);
1466 	if (ret)
1467 		goto err_reset;
1468 
1469 	/* check if VF could successfully fetch the hardware reset completion
1470 	 * status from the hardware
1471 	 */
1472 	ret = hclgevf_reset_wait(hdev);
1473 	if (ret) {
1474 		/* can't do much in this situation, will disable VF */
1475 		dev_err(&hdev->pdev->dev,
1476 			"VF failed(=%d) to fetch H/W reset completion status\n",
1477 			ret);
1478 		goto err_reset;
1479 	}
1480 
1481 	hdev->rst_stats.hw_rst_done_cnt++;
1482 
1483 	rtnl_lock();
1484 
1485 	/* now, re-initialize the nic client and ae device*/
1486 	ret = hclgevf_reset_stack(hdev);
1487 	if (ret) {
1488 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1489 		goto err_reset_lock;
1490 	}
1491 
1492 	/* bring up the nic to enable TX/RX again */
1493 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1494 	if (ret)
1495 		goto err_reset_lock;
1496 
1497 	rtnl_unlock();
1498 
1499 	hdev->last_reset_time = jiffies;
1500 	ae_dev->reset_type = HNAE3_NONE_RESET;
1501 	hdev->rst_stats.rst_done_cnt++;
1502 
1503 	return ret;
1504 err_reset_lock:
1505 	rtnl_unlock();
1506 err_reset:
1507 	/* When VF reset failed, only the higher level reset asserted by PF
1508 	 * can restore it, so re-initialize the command queue to receive
1509 	 * this higher reset event.
1510 	 */
1511 	hclgevf_cmd_init(hdev);
1512 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1513 	if (hclgevf_is_reset_pending(hdev))
1514 		hclgevf_reset_task_schedule(hdev);
1515 
1516 	return ret;
1517 }
1518 
1519 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1520 						     unsigned long *addr)
1521 {
1522 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1523 
1524 	/* return the highest priority reset level amongst all */
1525 	if (test_bit(HNAE3_VF_RESET, addr)) {
1526 		rst_level = HNAE3_VF_RESET;
1527 		clear_bit(HNAE3_VF_RESET, addr);
1528 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1529 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1530 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1531 		rst_level = HNAE3_VF_FULL_RESET;
1532 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1533 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1534 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1535 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1536 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1537 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1538 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1539 		rst_level = HNAE3_VF_FUNC_RESET;
1540 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1541 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1542 		rst_level = HNAE3_FLR_RESET;
1543 		clear_bit(HNAE3_FLR_RESET, addr);
1544 	}
1545 
1546 	return rst_level;
1547 }
1548 
1549 static void hclgevf_reset_event(struct pci_dev *pdev,
1550 				struct hnae3_handle *handle)
1551 {
1552 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1553 	struct hclgevf_dev *hdev = ae_dev->priv;
1554 
1555 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1556 
1557 	if (hdev->default_reset_request)
1558 		hdev->reset_level =
1559 			hclgevf_get_reset_level(hdev,
1560 						&hdev->default_reset_request);
1561 	else
1562 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1563 
1564 	/* reset of this VF requested */
1565 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1566 	hclgevf_reset_task_schedule(hdev);
1567 
1568 	hdev->last_reset_time = jiffies;
1569 }
1570 
1571 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1572 					  enum hnae3_reset_type rst_type)
1573 {
1574 	struct hclgevf_dev *hdev = ae_dev->priv;
1575 
1576 	set_bit(rst_type, &hdev->default_reset_request);
1577 }
1578 
1579 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1580 {
1581 #define HCLGEVF_FLR_WAIT_MS	100
1582 #define HCLGEVF_FLR_WAIT_CNT	50
1583 	struct hclgevf_dev *hdev = ae_dev->priv;
1584 	int cnt = 0;
1585 
1586 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1587 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1588 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1589 	hclgevf_reset_event(hdev->pdev, NULL);
1590 
1591 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1592 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1593 		msleep(HCLGEVF_FLR_WAIT_MS);
1594 
1595 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1596 		dev_err(&hdev->pdev->dev,
1597 			"flr wait down timeout: %d\n", cnt);
1598 }
1599 
1600 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1601 {
1602 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1603 
1604 	return hdev->fw_version;
1605 }
1606 
1607 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1608 {
1609 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1610 
1611 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1612 					    HCLGEVF_MISC_VECTOR_NUM);
1613 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1614 	/* vector status always valid for Vector 0 */
1615 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1616 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1617 
1618 	hdev->num_msi_left -= 1;
1619 	hdev->num_msi_used += 1;
1620 }
1621 
1622 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1623 {
1624 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) {
1625 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1626 		schedule_work(&hdev->rst_service_task);
1627 	}
1628 }
1629 
1630 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1631 {
1632 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1633 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1634 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1635 		schedule_work(&hdev->mbx_service_task);
1636 	}
1637 }
1638 
1639 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1640 {
1641 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1642 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1643 		schedule_work(&hdev->service_task);
1644 }
1645 
1646 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1647 {
1648 	/* if we have any pending mailbox event then schedule the mbx task */
1649 	if (hdev->mbx_event_pending)
1650 		hclgevf_mbx_task_schedule(hdev);
1651 
1652 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1653 		hclgevf_reset_task_schedule(hdev);
1654 }
1655 
1656 static void hclgevf_service_timer(struct timer_list *t)
1657 {
1658 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1659 
1660 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1661 
1662 	hdev->stats_timer++;
1663 	hclgevf_task_schedule(hdev);
1664 }
1665 
1666 static void hclgevf_reset_service_task(struct work_struct *work)
1667 {
1668 	struct hclgevf_dev *hdev =
1669 		container_of(work, struct hclgevf_dev, rst_service_task);
1670 	int ret;
1671 
1672 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1673 		return;
1674 
1675 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1676 
1677 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1678 			       &hdev->reset_state)) {
1679 		/* PF has initmated that it is about to reset the hardware.
1680 		 * We now have to poll & check if harware has actually completed
1681 		 * the reset sequence. On hardware reset completion, VF needs to
1682 		 * reset the client and ae device.
1683 		 */
1684 		hdev->reset_attempts = 0;
1685 
1686 		hdev->last_reset_time = jiffies;
1687 		while ((hdev->reset_type =
1688 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1689 		       != HNAE3_NONE_RESET) {
1690 			ret = hclgevf_reset(hdev);
1691 			if (ret)
1692 				dev_err(&hdev->pdev->dev,
1693 					"VF stack reset failed %d.\n", ret);
1694 		}
1695 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1696 				      &hdev->reset_state)) {
1697 		/* we could be here when either of below happens:
1698 		 * 1. reset was initiated due to watchdog timeout due to
1699 		 *    a. IMP was earlier reset and our TX got choked down and
1700 		 *       which resulted in watchdog reacting and inducing VF
1701 		 *       reset. This also means our cmdq would be unreliable.
1702 		 *    b. problem in TX due to other lower layer(example link
1703 		 *       layer not functioning properly etc.)
1704 		 * 2. VF reset might have been initiated due to some config
1705 		 *    change.
1706 		 *
1707 		 * NOTE: Theres no clear way to detect above cases than to react
1708 		 * to the response of PF for this reset request. PF will ack the
1709 		 * 1b and 2. cases but we will not get any intimation about 1a
1710 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1711 		 * communication between PF and VF would be broken.
1712 		 */
1713 
1714 		/* if we are never geting into pending state it means either:
1715 		 * 1. PF is not receiving our request which could be due to IMP
1716 		 *    reset
1717 		 * 2. PF is screwed
1718 		 * We cannot do much for 2. but to check first we can try reset
1719 		 * our PCIe + stack and see if it alleviates the problem.
1720 		 */
1721 		if (hdev->reset_attempts > 3) {
1722 			/* prepare for full reset of stack + pcie interface */
1723 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1724 
1725 			/* "defer" schedule the reset task again */
1726 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1727 		} else {
1728 			hdev->reset_attempts++;
1729 
1730 			set_bit(hdev->reset_level, &hdev->reset_pending);
1731 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1732 		}
1733 		hclgevf_reset_task_schedule(hdev);
1734 	}
1735 
1736 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1737 }
1738 
1739 static void hclgevf_mailbox_service_task(struct work_struct *work)
1740 {
1741 	struct hclgevf_dev *hdev;
1742 
1743 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1744 
1745 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1746 		return;
1747 
1748 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1749 
1750 	hclgevf_mbx_async_handler(hdev);
1751 
1752 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1753 }
1754 
1755 static void hclgevf_keep_alive_timer(struct timer_list *t)
1756 {
1757 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1758 
1759 	schedule_work(&hdev->keep_alive_task);
1760 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1761 }
1762 
1763 static void hclgevf_keep_alive_task(struct work_struct *work)
1764 {
1765 	struct hclgevf_dev *hdev;
1766 	u8 respmsg;
1767 	int ret;
1768 
1769 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1770 
1771 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1772 		return;
1773 
1774 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1775 				   0, false, &respmsg, sizeof(u8));
1776 	if (ret)
1777 		dev_err(&hdev->pdev->dev,
1778 			"VF sends keep alive cmd failed(=%d)\n", ret);
1779 }
1780 
1781 static void hclgevf_service_task(struct work_struct *work)
1782 {
1783 	struct hnae3_handle *handle;
1784 	struct hclgevf_dev *hdev;
1785 
1786 	hdev = container_of(work, struct hclgevf_dev, service_task);
1787 	handle = &hdev->nic;
1788 
1789 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1790 		hclgevf_tqps_update_stats(handle);
1791 		hdev->stats_timer = 0;
1792 	}
1793 
1794 	/* request the link status from the PF. PF would be able to tell VF
1795 	 * about such updates in future so we might remove this later
1796 	 */
1797 	hclgevf_request_link_info(hdev);
1798 
1799 	hclgevf_update_link_mode(hdev);
1800 
1801 	hclgevf_deferred_task_schedule(hdev);
1802 
1803 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1804 }
1805 
1806 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1807 {
1808 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1809 }
1810 
1811 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1812 						      u32 *clearval)
1813 {
1814 	u32 cmdq_src_reg, rst_ing_reg;
1815 
1816 	/* fetch the events from their corresponding regs */
1817 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1818 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1819 
1820 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1821 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1822 		dev_info(&hdev->pdev->dev,
1823 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1824 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1825 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1826 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1827 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1828 		*clearval = cmdq_src_reg;
1829 		hdev->rst_stats.vf_rst_cnt++;
1830 		return HCLGEVF_VECTOR0_EVENT_RST;
1831 	}
1832 
1833 	/* check for vector0 mailbox(=CMDQ RX) event source */
1834 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1835 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1836 		*clearval = cmdq_src_reg;
1837 		return HCLGEVF_VECTOR0_EVENT_MBX;
1838 	}
1839 
1840 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1841 
1842 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1843 }
1844 
1845 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1846 {
1847 	writel(en ? 1 : 0, vector->addr);
1848 }
1849 
1850 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1851 {
1852 	enum hclgevf_evt_cause event_cause;
1853 	struct hclgevf_dev *hdev = data;
1854 	u32 clearval;
1855 
1856 	hclgevf_enable_vector(&hdev->misc_vector, false);
1857 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1858 
1859 	switch (event_cause) {
1860 	case HCLGEVF_VECTOR0_EVENT_RST:
1861 		hclgevf_reset_task_schedule(hdev);
1862 		break;
1863 	case HCLGEVF_VECTOR0_EVENT_MBX:
1864 		hclgevf_mbx_handler(hdev);
1865 		break;
1866 	default:
1867 		break;
1868 	}
1869 
1870 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1871 		hclgevf_clear_event_cause(hdev, clearval);
1872 		hclgevf_enable_vector(&hdev->misc_vector, true);
1873 	}
1874 
1875 	return IRQ_HANDLED;
1876 }
1877 
1878 static int hclgevf_configure(struct hclgevf_dev *hdev)
1879 {
1880 	int ret;
1881 
1882 	/* get current port based vlan state from PF */
1883 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1884 	if (ret)
1885 		return ret;
1886 
1887 	/* get queue configuration from PF */
1888 	ret = hclgevf_get_queue_info(hdev);
1889 	if (ret)
1890 		return ret;
1891 
1892 	/* get queue depth info from PF */
1893 	ret = hclgevf_get_queue_depth(hdev);
1894 	if (ret)
1895 		return ret;
1896 
1897 	ret = hclgevf_get_pf_media_type(hdev);
1898 	if (ret)
1899 		return ret;
1900 
1901 	/* get tc configuration from PF */
1902 	return hclgevf_get_tc_info(hdev);
1903 }
1904 
1905 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1906 {
1907 	struct pci_dev *pdev = ae_dev->pdev;
1908 	struct hclgevf_dev *hdev;
1909 
1910 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1911 	if (!hdev)
1912 		return -ENOMEM;
1913 
1914 	hdev->pdev = pdev;
1915 	hdev->ae_dev = ae_dev;
1916 	ae_dev->priv = hdev;
1917 
1918 	return 0;
1919 }
1920 
1921 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1922 {
1923 	struct hnae3_handle *roce = &hdev->roce;
1924 	struct hnae3_handle *nic = &hdev->nic;
1925 
1926 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1927 
1928 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1929 	    hdev->num_msi_left == 0)
1930 		return -EINVAL;
1931 
1932 	roce->rinfo.base_vector = hdev->roce_base_vector;
1933 
1934 	roce->rinfo.netdev = nic->kinfo.netdev;
1935 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1936 
1937 	roce->pdev = nic->pdev;
1938 	roce->ae_algo = nic->ae_algo;
1939 	roce->numa_node_mask = nic->numa_node_mask;
1940 
1941 	return 0;
1942 }
1943 
1944 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1945 {
1946 	struct hclgevf_cfg_gro_status_cmd *req;
1947 	struct hclgevf_desc desc;
1948 	int ret;
1949 
1950 	if (!hnae3_dev_gro_supported(hdev))
1951 		return 0;
1952 
1953 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1954 				     false);
1955 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1956 
1957 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1958 
1959 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1960 	if (ret)
1961 		dev_err(&hdev->pdev->dev,
1962 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1963 
1964 	return ret;
1965 }
1966 
1967 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1968 {
1969 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1970 	int i, ret;
1971 
1972 	rss_cfg->rss_size = hdev->rss_size_max;
1973 
1974 	if (hdev->pdev->revision >= 0x21) {
1975 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1976 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1977 		       HCLGEVF_RSS_KEY_SIZE);
1978 
1979 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1980 					       rss_cfg->rss_hash_key);
1981 		if (ret)
1982 			return ret;
1983 
1984 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1985 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1986 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1987 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1988 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1989 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1990 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1991 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1992 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1993 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1994 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1995 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1996 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1997 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1998 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1999 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2000 
2001 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2002 		if (ret)
2003 			return ret;
2004 
2005 	}
2006 
2007 	/* Initialize RSS indirect table for each vport */
2008 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2009 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
2010 
2011 	ret = hclgevf_set_rss_indir_table(hdev);
2012 	if (ret)
2013 		return ret;
2014 
2015 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
2016 }
2017 
2018 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2019 {
2020 	/* other vlan config(like, VLAN TX/RX offload) would also be added
2021 	 * here later
2022 	 */
2023 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2024 				       false);
2025 }
2026 
2027 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2028 {
2029 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2030 
2031 	if (enable) {
2032 		mod_timer(&hdev->service_timer, jiffies + HZ);
2033 	} else {
2034 		del_timer_sync(&hdev->service_timer);
2035 		cancel_work_sync(&hdev->service_task);
2036 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2037 	}
2038 }
2039 
2040 static int hclgevf_ae_start(struct hnae3_handle *handle)
2041 {
2042 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2043 
2044 	/* reset tqp stats */
2045 	hclgevf_reset_tqp_stats(handle);
2046 
2047 	hclgevf_request_link_info(hdev);
2048 
2049 	hclgevf_update_link_mode(hdev);
2050 
2051 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2052 
2053 	return 0;
2054 }
2055 
2056 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2057 {
2058 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2059 	int i;
2060 
2061 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2062 
2063 	if (hdev->reset_type != HNAE3_VF_RESET)
2064 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2065 			if (hclgevf_reset_tqp(handle, i))
2066 				break;
2067 
2068 	/* reset tqp stats */
2069 	hclgevf_reset_tqp_stats(handle);
2070 	hclgevf_update_link_status(hdev, 0);
2071 }
2072 
2073 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2074 {
2075 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2076 	u8 msg_data;
2077 
2078 	msg_data = alive ? 1 : 0;
2079 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2080 				    0, &msg_data, 1, false, NULL, 0);
2081 }
2082 
2083 static int hclgevf_client_start(struct hnae3_handle *handle)
2084 {
2085 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2086 	int ret;
2087 
2088 	ret = hclgevf_set_alive(handle, true);
2089 	if (ret)
2090 		return ret;
2091 
2092 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
2093 
2094 	return 0;
2095 }
2096 
2097 static void hclgevf_client_stop(struct hnae3_handle *handle)
2098 {
2099 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2100 	int ret;
2101 
2102 	ret = hclgevf_set_alive(handle, false);
2103 	if (ret)
2104 		dev_warn(&hdev->pdev->dev,
2105 			 "%s failed %d\n", __func__, ret);
2106 
2107 	del_timer_sync(&hdev->keep_alive_timer);
2108 	cancel_work_sync(&hdev->keep_alive_task);
2109 }
2110 
2111 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2112 {
2113 	/* setup tasks for the MBX */
2114 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2115 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2116 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2117 
2118 	/* setup tasks for service timer */
2119 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2120 
2121 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2122 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2123 
2124 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2125 
2126 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2127 
2128 	/* bring the device down */
2129 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2130 }
2131 
2132 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2133 {
2134 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2135 
2136 	if (hdev->keep_alive_timer.function)
2137 		del_timer_sync(&hdev->keep_alive_timer);
2138 	if (hdev->keep_alive_task.func)
2139 		cancel_work_sync(&hdev->keep_alive_task);
2140 	if (hdev->service_timer.function)
2141 		del_timer_sync(&hdev->service_timer);
2142 	if (hdev->service_task.func)
2143 		cancel_work_sync(&hdev->service_task);
2144 	if (hdev->mbx_service_task.func)
2145 		cancel_work_sync(&hdev->mbx_service_task);
2146 	if (hdev->rst_service_task.func)
2147 		cancel_work_sync(&hdev->rst_service_task);
2148 
2149 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2150 }
2151 
2152 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2153 {
2154 	struct pci_dev *pdev = hdev->pdev;
2155 	int vectors;
2156 	int i;
2157 
2158 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2159 		vectors = pci_alloc_irq_vectors(pdev,
2160 						hdev->roce_base_msix_offset + 1,
2161 						hdev->num_msi,
2162 						PCI_IRQ_MSIX);
2163 	else
2164 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2165 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2166 
2167 	if (vectors < 0) {
2168 		dev_err(&pdev->dev,
2169 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2170 			vectors);
2171 		return vectors;
2172 	}
2173 	if (vectors < hdev->num_msi)
2174 		dev_warn(&hdev->pdev->dev,
2175 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2176 			 hdev->num_msi, vectors);
2177 
2178 	hdev->num_msi = vectors;
2179 	hdev->num_msi_left = vectors;
2180 	hdev->base_msi_vector = pdev->irq;
2181 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2182 
2183 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2184 					   sizeof(u16), GFP_KERNEL);
2185 	if (!hdev->vector_status) {
2186 		pci_free_irq_vectors(pdev);
2187 		return -ENOMEM;
2188 	}
2189 
2190 	for (i = 0; i < hdev->num_msi; i++)
2191 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2192 
2193 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2194 					sizeof(int), GFP_KERNEL);
2195 	if (!hdev->vector_irq) {
2196 		devm_kfree(&pdev->dev, hdev->vector_status);
2197 		pci_free_irq_vectors(pdev);
2198 		return -ENOMEM;
2199 	}
2200 
2201 	return 0;
2202 }
2203 
2204 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2205 {
2206 	struct pci_dev *pdev = hdev->pdev;
2207 
2208 	devm_kfree(&pdev->dev, hdev->vector_status);
2209 	devm_kfree(&pdev->dev, hdev->vector_irq);
2210 	pci_free_irq_vectors(pdev);
2211 }
2212 
2213 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2214 {
2215 	int ret = 0;
2216 
2217 	hclgevf_get_misc_vector(hdev);
2218 
2219 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2220 			  0, "hclgevf_cmd", hdev);
2221 	if (ret) {
2222 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2223 			hdev->misc_vector.vector_irq);
2224 		return ret;
2225 	}
2226 
2227 	hclgevf_clear_event_cause(hdev, 0);
2228 
2229 	/* enable misc. vector(vector 0) */
2230 	hclgevf_enable_vector(&hdev->misc_vector, true);
2231 
2232 	return ret;
2233 }
2234 
2235 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2236 {
2237 	/* disable misc vector(vector 0) */
2238 	hclgevf_enable_vector(&hdev->misc_vector, false);
2239 	synchronize_irq(hdev->misc_vector.vector_irq);
2240 	free_irq(hdev->misc_vector.vector_irq, hdev);
2241 	hclgevf_free_vector(hdev, 0);
2242 }
2243 
2244 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2245 {
2246 	struct device *dev = &hdev->pdev->dev;
2247 
2248 	dev_info(dev, "VF info begin:\n");
2249 
2250 	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2251 	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2252 	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2253 	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2254 	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2255 	dev_info(dev, "PF media type of this VF: %d\n",
2256 		 hdev->hw.mac.media_type);
2257 
2258 	dev_info(dev, "VF info end.\n");
2259 }
2260 
2261 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2262 					    struct hnae3_client *client)
2263 {
2264 	struct hclgevf_dev *hdev = ae_dev->priv;
2265 	int ret;
2266 
2267 	ret = client->ops->init_instance(&hdev->nic);
2268 	if (ret)
2269 		return ret;
2270 
2271 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2272 	hnae3_set_client_init_flag(client, ae_dev, 1);
2273 
2274 	if (netif_msg_drv(&hdev->nic))
2275 		hclgevf_info_show(hdev);
2276 
2277 	return 0;
2278 }
2279 
2280 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2281 					     struct hnae3_client *client)
2282 {
2283 	struct hclgevf_dev *hdev = ae_dev->priv;
2284 	int ret;
2285 
2286 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2287 	    !hdev->nic_client)
2288 		return 0;
2289 
2290 	ret = hclgevf_init_roce_base_info(hdev);
2291 	if (ret)
2292 		return ret;
2293 
2294 	ret = client->ops->init_instance(&hdev->roce);
2295 	if (ret)
2296 		return ret;
2297 
2298 	hnae3_set_client_init_flag(client, ae_dev, 1);
2299 
2300 	return 0;
2301 }
2302 
2303 static int hclgevf_init_client_instance(struct hnae3_client *client,
2304 					struct hnae3_ae_dev *ae_dev)
2305 {
2306 	struct hclgevf_dev *hdev = ae_dev->priv;
2307 	int ret;
2308 
2309 	switch (client->type) {
2310 	case HNAE3_CLIENT_KNIC:
2311 		hdev->nic_client = client;
2312 		hdev->nic.client = client;
2313 
2314 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2315 		if (ret)
2316 			goto clear_nic;
2317 
2318 		ret = hclgevf_init_roce_client_instance(ae_dev,
2319 							hdev->roce_client);
2320 		if (ret)
2321 			goto clear_roce;
2322 
2323 		break;
2324 	case HNAE3_CLIENT_UNIC:
2325 		hdev->nic_client = client;
2326 		hdev->nic.client = client;
2327 
2328 		ret = client->ops->init_instance(&hdev->nic);
2329 		if (ret)
2330 			goto clear_nic;
2331 
2332 		hnae3_set_client_init_flag(client, ae_dev, 1);
2333 		break;
2334 	case HNAE3_CLIENT_ROCE:
2335 		if (hnae3_dev_roce_supported(hdev)) {
2336 			hdev->roce_client = client;
2337 			hdev->roce.client = client;
2338 		}
2339 
2340 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2341 		if (ret)
2342 			goto clear_roce;
2343 
2344 		break;
2345 	default:
2346 		return -EINVAL;
2347 	}
2348 
2349 	return 0;
2350 
2351 clear_nic:
2352 	hdev->nic_client = NULL;
2353 	hdev->nic.client = NULL;
2354 	return ret;
2355 clear_roce:
2356 	hdev->roce_client = NULL;
2357 	hdev->roce.client = NULL;
2358 	return ret;
2359 }
2360 
2361 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2362 					   struct hnae3_ae_dev *ae_dev)
2363 {
2364 	struct hclgevf_dev *hdev = ae_dev->priv;
2365 
2366 	/* un-init roce, if it exists */
2367 	if (hdev->roce_client) {
2368 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2369 		hdev->roce_client = NULL;
2370 		hdev->roce.client = NULL;
2371 	}
2372 
2373 	/* un-init nic/unic, if this was not called by roce client */
2374 	if (client->ops->uninit_instance && hdev->nic_client &&
2375 	    client->type != HNAE3_CLIENT_ROCE) {
2376 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2377 
2378 		client->ops->uninit_instance(&hdev->nic, 0);
2379 		hdev->nic_client = NULL;
2380 		hdev->nic.client = NULL;
2381 	}
2382 }
2383 
2384 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2385 {
2386 	struct pci_dev *pdev = hdev->pdev;
2387 	struct hclgevf_hw *hw;
2388 	int ret;
2389 
2390 	ret = pci_enable_device(pdev);
2391 	if (ret) {
2392 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2393 		return ret;
2394 	}
2395 
2396 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2397 	if (ret) {
2398 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2399 		goto err_disable_device;
2400 	}
2401 
2402 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2403 	if (ret) {
2404 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2405 		goto err_disable_device;
2406 	}
2407 
2408 	pci_set_master(pdev);
2409 	hw = &hdev->hw;
2410 	hw->hdev = hdev;
2411 	hw->io_base = pci_iomap(pdev, 2, 0);
2412 	if (!hw->io_base) {
2413 		dev_err(&pdev->dev, "can't map configuration register space\n");
2414 		ret = -ENOMEM;
2415 		goto err_clr_master;
2416 	}
2417 
2418 	return 0;
2419 
2420 err_clr_master:
2421 	pci_clear_master(pdev);
2422 	pci_release_regions(pdev);
2423 err_disable_device:
2424 	pci_disable_device(pdev);
2425 
2426 	return ret;
2427 }
2428 
2429 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2430 {
2431 	struct pci_dev *pdev = hdev->pdev;
2432 
2433 	pci_iounmap(pdev, hdev->hw.io_base);
2434 	pci_clear_master(pdev);
2435 	pci_release_regions(pdev);
2436 	pci_disable_device(pdev);
2437 }
2438 
2439 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2440 {
2441 	struct hclgevf_query_res_cmd *req;
2442 	struct hclgevf_desc desc;
2443 	int ret;
2444 
2445 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2446 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2447 	if (ret) {
2448 		dev_err(&hdev->pdev->dev,
2449 			"query vf resource failed, ret = %d.\n", ret);
2450 		return ret;
2451 	}
2452 
2453 	req = (struct hclgevf_query_res_cmd *)desc.data;
2454 
2455 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2456 		hdev->roce_base_msix_offset =
2457 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2458 				HCLGEVF_MSIX_OFT_ROCEE_M,
2459 				HCLGEVF_MSIX_OFT_ROCEE_S);
2460 		hdev->num_roce_msix =
2461 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2462 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2463 
2464 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2465 		 * are queued before Roce vectors. The offset is fixed to 64.
2466 		 */
2467 		hdev->num_msi = hdev->num_roce_msix +
2468 				hdev->roce_base_msix_offset;
2469 	} else {
2470 		hdev->num_msi =
2471 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2472 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2473 	}
2474 
2475 	return 0;
2476 }
2477 
2478 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2479 {
2480 	struct pci_dev *pdev = hdev->pdev;
2481 	int ret = 0;
2482 
2483 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2484 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2485 		hclgevf_misc_irq_uninit(hdev);
2486 		hclgevf_uninit_msi(hdev);
2487 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2488 	}
2489 
2490 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2491 		pci_set_master(pdev);
2492 		ret = hclgevf_init_msi(hdev);
2493 		if (ret) {
2494 			dev_err(&pdev->dev,
2495 				"failed(%d) to init MSI/MSI-X\n", ret);
2496 			return ret;
2497 		}
2498 
2499 		ret = hclgevf_misc_irq_init(hdev);
2500 		if (ret) {
2501 			hclgevf_uninit_msi(hdev);
2502 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2503 				ret);
2504 			return ret;
2505 		}
2506 
2507 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2508 	}
2509 
2510 	return ret;
2511 }
2512 
2513 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2514 {
2515 	struct pci_dev *pdev = hdev->pdev;
2516 	int ret;
2517 
2518 	ret = hclgevf_pci_reset(hdev);
2519 	if (ret) {
2520 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2521 		return ret;
2522 	}
2523 
2524 	ret = hclgevf_cmd_init(hdev);
2525 	if (ret) {
2526 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2527 		return ret;
2528 	}
2529 
2530 	ret = hclgevf_rss_init_hw(hdev);
2531 	if (ret) {
2532 		dev_err(&hdev->pdev->dev,
2533 			"failed(%d) to initialize RSS\n", ret);
2534 		return ret;
2535 	}
2536 
2537 	ret = hclgevf_config_gro(hdev, true);
2538 	if (ret)
2539 		return ret;
2540 
2541 	ret = hclgevf_init_vlan_config(hdev);
2542 	if (ret) {
2543 		dev_err(&hdev->pdev->dev,
2544 			"failed(%d) to initialize VLAN config\n", ret);
2545 		return ret;
2546 	}
2547 
2548 	dev_info(&hdev->pdev->dev, "Reset done\n");
2549 
2550 	return 0;
2551 }
2552 
2553 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2554 {
2555 	struct pci_dev *pdev = hdev->pdev;
2556 	int ret;
2557 
2558 	ret = hclgevf_pci_init(hdev);
2559 	if (ret) {
2560 		dev_err(&pdev->dev, "PCI initialization failed\n");
2561 		return ret;
2562 	}
2563 
2564 	ret = hclgevf_cmd_queue_init(hdev);
2565 	if (ret) {
2566 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2567 		goto err_cmd_queue_init;
2568 	}
2569 
2570 	ret = hclgevf_cmd_init(hdev);
2571 	if (ret)
2572 		goto err_cmd_init;
2573 
2574 	/* Get vf resource */
2575 	ret = hclgevf_query_vf_resource(hdev);
2576 	if (ret) {
2577 		dev_err(&hdev->pdev->dev,
2578 			"Query vf status error, ret = %d.\n", ret);
2579 		goto err_cmd_init;
2580 	}
2581 
2582 	ret = hclgevf_init_msi(hdev);
2583 	if (ret) {
2584 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2585 		goto err_cmd_init;
2586 	}
2587 
2588 	hclgevf_state_init(hdev);
2589 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2590 
2591 	ret = hclgevf_misc_irq_init(hdev);
2592 	if (ret) {
2593 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2594 			ret);
2595 		goto err_misc_irq_init;
2596 	}
2597 
2598 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2599 
2600 	ret = hclgevf_configure(hdev);
2601 	if (ret) {
2602 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2603 		goto err_config;
2604 	}
2605 
2606 	ret = hclgevf_alloc_tqps(hdev);
2607 	if (ret) {
2608 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2609 		goto err_config;
2610 	}
2611 
2612 	ret = hclgevf_set_handle_info(hdev);
2613 	if (ret) {
2614 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2615 		goto err_config;
2616 	}
2617 
2618 	ret = hclgevf_config_gro(hdev, true);
2619 	if (ret)
2620 		goto err_config;
2621 
2622 	/* vf is not allowed to enable unicast/multicast promisc mode.
2623 	 * For revision 0x20, default to disable broadcast promisc mode,
2624 	 * firmware makes sure broadcast packets can be accepted.
2625 	 * For revision 0x21, default to enable broadcast promisc mode.
2626 	 */
2627 	ret = hclgevf_set_promisc_mode(hdev, true);
2628 	if (ret)
2629 		goto err_config;
2630 
2631 	/* Initialize RSS for this VF */
2632 	ret = hclgevf_rss_init_hw(hdev);
2633 	if (ret) {
2634 		dev_err(&hdev->pdev->dev,
2635 			"failed(%d) to initialize RSS\n", ret);
2636 		goto err_config;
2637 	}
2638 
2639 	ret = hclgevf_init_vlan_config(hdev);
2640 	if (ret) {
2641 		dev_err(&hdev->pdev->dev,
2642 			"failed(%d) to initialize VLAN config\n", ret);
2643 		goto err_config;
2644 	}
2645 
2646 	hdev->last_reset_time = jiffies;
2647 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2648 
2649 	return 0;
2650 
2651 err_config:
2652 	hclgevf_misc_irq_uninit(hdev);
2653 err_misc_irq_init:
2654 	hclgevf_state_uninit(hdev);
2655 	hclgevf_uninit_msi(hdev);
2656 err_cmd_init:
2657 	hclgevf_cmd_uninit(hdev);
2658 err_cmd_queue_init:
2659 	hclgevf_pci_uninit(hdev);
2660 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2661 	return ret;
2662 }
2663 
2664 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2665 {
2666 	hclgevf_state_uninit(hdev);
2667 
2668 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2669 		hclgevf_misc_irq_uninit(hdev);
2670 		hclgevf_uninit_msi(hdev);
2671 	}
2672 
2673 	hclgevf_pci_uninit(hdev);
2674 	hclgevf_cmd_uninit(hdev);
2675 }
2676 
2677 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2678 {
2679 	struct pci_dev *pdev = ae_dev->pdev;
2680 	struct hclgevf_dev *hdev;
2681 	int ret;
2682 
2683 	ret = hclgevf_alloc_hdev(ae_dev);
2684 	if (ret) {
2685 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2686 		return ret;
2687 	}
2688 
2689 	ret = hclgevf_init_hdev(ae_dev->priv);
2690 	if (ret) {
2691 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2692 		return ret;
2693 	}
2694 
2695 	hdev = ae_dev->priv;
2696 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2697 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2698 
2699 	return 0;
2700 }
2701 
2702 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2703 {
2704 	struct hclgevf_dev *hdev = ae_dev->priv;
2705 
2706 	hclgevf_uninit_hdev(hdev);
2707 	ae_dev->priv = NULL;
2708 }
2709 
2710 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2711 {
2712 	struct hnae3_handle *nic = &hdev->nic;
2713 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2714 
2715 	return min_t(u32, hdev->rss_size_max,
2716 		     hdev->num_tqps / kinfo->num_tc);
2717 }
2718 
2719 /**
2720  * hclgevf_get_channels - Get the current channels enabled and max supported.
2721  * @handle: hardware information for network interface
2722  * @ch: ethtool channels structure
2723  *
2724  * We don't support separate tx and rx queues as channels. The other count
2725  * represents how many queues are being used for control. max_combined counts
2726  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2727  * q_vectors since we support a lot more queue pairs than q_vectors.
2728  **/
2729 static void hclgevf_get_channels(struct hnae3_handle *handle,
2730 				 struct ethtool_channels *ch)
2731 {
2732 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2733 
2734 	ch->max_combined = hclgevf_get_max_channels(hdev);
2735 	ch->other_count = 0;
2736 	ch->max_other = 0;
2737 	ch->combined_count = handle->kinfo.rss_size;
2738 }
2739 
2740 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2741 					  u16 *alloc_tqps, u16 *max_rss_size)
2742 {
2743 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2744 
2745 	*alloc_tqps = hdev->num_tqps;
2746 	*max_rss_size = hdev->rss_size_max;
2747 }
2748 
2749 static int hclgevf_get_status(struct hnae3_handle *handle)
2750 {
2751 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2752 
2753 	return hdev->hw.mac.link;
2754 }
2755 
2756 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2757 					    u8 *auto_neg, u32 *speed,
2758 					    u8 *duplex)
2759 {
2760 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2761 
2762 	if (speed)
2763 		*speed = hdev->hw.mac.speed;
2764 	if (duplex)
2765 		*duplex = hdev->hw.mac.duplex;
2766 	if (auto_neg)
2767 		*auto_neg = AUTONEG_DISABLE;
2768 }
2769 
2770 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2771 				 u8 duplex)
2772 {
2773 	hdev->hw.mac.speed = speed;
2774 	hdev->hw.mac.duplex = duplex;
2775 }
2776 
2777 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2778 {
2779 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2780 
2781 	return hclgevf_config_gro(hdev, enable);
2782 }
2783 
2784 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2785 				   u8 *module_type)
2786 {
2787 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2788 
2789 	if (media_type)
2790 		*media_type = hdev->hw.mac.media_type;
2791 
2792 	if (module_type)
2793 		*module_type = hdev->hw.mac.module_type;
2794 }
2795 
2796 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2797 {
2798 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2799 
2800 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2801 }
2802 
2803 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2804 {
2805 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2806 
2807 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2808 }
2809 
2810 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2811 {
2812 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2813 
2814 	return hdev->rst_stats.hw_rst_done_cnt;
2815 }
2816 
2817 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2818 				  unsigned long *supported,
2819 				  unsigned long *advertising)
2820 {
2821 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2822 
2823 	*supported = hdev->hw.mac.supported;
2824 	*advertising = hdev->hw.mac.advertising;
2825 }
2826 
2827 #define MAX_SEPARATE_NUM	4
2828 #define SEPARATOR_VALUE		0xFFFFFFFF
2829 #define REG_NUM_PER_LINE	4
2830 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2831 
2832 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2833 {
2834 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2835 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2836 
2837 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2838 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2839 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2840 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2841 
2842 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2843 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2844 }
2845 
2846 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2847 			     void *data)
2848 {
2849 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2850 	int i, j, reg_um, separator_num;
2851 	u32 *reg = data;
2852 
2853 	*version = hdev->fw_version;
2854 
2855 	/* fetching per-VF registers values from VF PCIe register space */
2856 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2857 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2858 	for (i = 0; i < reg_um; i++)
2859 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2860 	for (i = 0; i < separator_num; i++)
2861 		*reg++ = SEPARATOR_VALUE;
2862 
2863 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2864 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2865 	for (i = 0; i < reg_um; i++)
2866 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2867 	for (i = 0; i < separator_num; i++)
2868 		*reg++ = SEPARATOR_VALUE;
2869 
2870 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2871 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2872 	for (j = 0; j < hdev->num_tqps; j++) {
2873 		for (i = 0; i < reg_um; i++)
2874 			*reg++ = hclgevf_read_dev(&hdev->hw,
2875 						  ring_reg_addr_list[i] +
2876 						  0x200 * j);
2877 		for (i = 0; i < separator_num; i++)
2878 			*reg++ = SEPARATOR_VALUE;
2879 	}
2880 
2881 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2882 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2883 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2884 		for (i = 0; i < reg_um; i++)
2885 			*reg++ = hclgevf_read_dev(&hdev->hw,
2886 						  tqp_intr_reg_addr_list[i] +
2887 						  4 * j);
2888 		for (i = 0; i < separator_num; i++)
2889 			*reg++ = SEPARATOR_VALUE;
2890 	}
2891 }
2892 
2893 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
2894 					u8 *port_base_vlan_info, u8 data_size)
2895 {
2896 	struct hnae3_handle *nic = &hdev->nic;
2897 
2898 	rtnl_lock();
2899 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2900 	rtnl_unlock();
2901 
2902 	/* send msg to PF and wait update port based vlan info */
2903 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
2904 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
2905 			     port_base_vlan_info, data_size,
2906 			     false, NULL, 0);
2907 
2908 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
2909 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
2910 	else
2911 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
2912 
2913 	rtnl_lock();
2914 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
2915 	rtnl_unlock();
2916 }
2917 
2918 static const struct hnae3_ae_ops hclgevf_ops = {
2919 	.init_ae_dev = hclgevf_init_ae_dev,
2920 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2921 	.flr_prepare = hclgevf_flr_prepare,
2922 	.flr_done = hclgevf_flr_done,
2923 	.init_client_instance = hclgevf_init_client_instance,
2924 	.uninit_client_instance = hclgevf_uninit_client_instance,
2925 	.start = hclgevf_ae_start,
2926 	.stop = hclgevf_ae_stop,
2927 	.client_start = hclgevf_client_start,
2928 	.client_stop = hclgevf_client_stop,
2929 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2930 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2931 	.get_vector = hclgevf_get_vector,
2932 	.put_vector = hclgevf_put_vector,
2933 	.reset_queue = hclgevf_reset_tqp,
2934 	.get_mac_addr = hclgevf_get_mac_addr,
2935 	.set_mac_addr = hclgevf_set_mac_addr,
2936 	.add_uc_addr = hclgevf_add_uc_addr,
2937 	.rm_uc_addr = hclgevf_rm_uc_addr,
2938 	.add_mc_addr = hclgevf_add_mc_addr,
2939 	.rm_mc_addr = hclgevf_rm_mc_addr,
2940 	.get_stats = hclgevf_get_stats,
2941 	.update_stats = hclgevf_update_stats,
2942 	.get_strings = hclgevf_get_strings,
2943 	.get_sset_count = hclgevf_get_sset_count,
2944 	.get_rss_key_size = hclgevf_get_rss_key_size,
2945 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2946 	.get_rss = hclgevf_get_rss,
2947 	.set_rss = hclgevf_set_rss,
2948 	.get_rss_tuple = hclgevf_get_rss_tuple,
2949 	.set_rss_tuple = hclgevf_set_rss_tuple,
2950 	.get_tc_size = hclgevf_get_tc_size,
2951 	.get_fw_version = hclgevf_get_fw_version,
2952 	.set_vlan_filter = hclgevf_set_vlan_filter,
2953 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2954 	.reset_event = hclgevf_reset_event,
2955 	.set_default_reset_request = hclgevf_set_def_reset_request,
2956 	.get_channels = hclgevf_get_channels,
2957 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2958 	.get_regs_len = hclgevf_get_regs_len,
2959 	.get_regs = hclgevf_get_regs,
2960 	.get_status = hclgevf_get_status,
2961 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2962 	.get_media_type = hclgevf_get_media_type,
2963 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2964 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2965 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2966 	.set_gro_en = hclgevf_gro_en,
2967 	.set_mtu = hclgevf_set_mtu,
2968 	.get_global_queue_id = hclgevf_get_qid_global,
2969 	.set_timer_task = hclgevf_set_timer_task,
2970 	.get_link_mode = hclgevf_get_link_mode,
2971 };
2972 
2973 static struct hnae3_ae_algo ae_algovf = {
2974 	.ops = &hclgevf_ops,
2975 	.pdev_id_table = ae_algovf_pci_tbl,
2976 };
2977 
2978 static int hclgevf_init(void)
2979 {
2980 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2981 
2982 	hnae3_register_ae_algo(&ae_algovf);
2983 
2984 	return 0;
2985 }
2986 
2987 static void hclgevf_exit(void)
2988 {
2989 	hnae3_unregister_ae_algo(&ae_algovf);
2990 }
2991 module_init(hclgevf_init);
2992 module_exit(hclgevf_exit);
2993 
2994 MODULE_LICENSE("GPL");
2995 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2996 MODULE_DESCRIPTION("HCLGEVF Driver");
2997 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2998