1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
87 	struct hnae3_handle *handle)
88 {
89 	if (!handle->client)
90 		return container_of(handle, struct hclgevf_dev, nic);
91 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
92 		return container_of(handle, struct hclgevf_dev, roce);
93 	else
94 		return container_of(handle, struct hclgevf_dev, nic);
95 }
96 
97 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
98 {
99 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
101 	struct hclgevf_desc desc;
102 	struct hclgevf_tqp *tqp;
103 	int status;
104 	int i;
105 
106 	for (i = 0; i < kinfo->num_tqps; i++) {
107 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
108 		hclgevf_cmd_setup_basic_desc(&desc,
109 					     HCLGEVF_OPC_QUERY_RX_STATUS,
110 					     true);
111 
112 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
113 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
114 		if (status) {
115 			dev_err(&hdev->pdev->dev,
116 				"Query tqp stat fail, status = %d,queue = %d\n",
117 				status,	i);
118 			return status;
119 		}
120 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
121 			le32_to_cpu(desc.data[1]);
122 
123 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
124 					     true);
125 
126 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
127 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
128 		if (status) {
129 			dev_err(&hdev->pdev->dev,
130 				"Query tqp stat fail, status = %d,queue = %d\n",
131 				status, i);
132 			return status;
133 		}
134 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
135 			le32_to_cpu(desc.data[1]);
136 	}
137 
138 	return 0;
139 }
140 
141 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
144 	struct hclgevf_tqp *tqp;
145 	u64 *buff = data;
146 	int i;
147 
148 	for (i = 0; i < kinfo->num_tqps; i++) {
149 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
150 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
151 	}
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
155 	}
156 
157 	return buff;
158 }
159 
160 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
161 {
162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
163 
164 	return kinfo->num_tqps * 2;
165 }
166 
167 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 	u8 *buff = data;
171 	int i = 0;
172 
173 	for (i = 0; i < kinfo->num_tqps; i++) {
174 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
175 						       struct hclgevf_tqp, q);
176 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
177 			 tqp->index);
178 		buff += ETH_GSTRING_LEN;
179 	}
180 
181 	for (i = 0; i < kinfo->num_tqps; i++) {
182 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 						       struct hclgevf_tqp, q);
184 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
185 			 tqp->index);
186 		buff += ETH_GSTRING_LEN;
187 	}
188 
189 	return buff;
190 }
191 
192 static void hclgevf_update_stats(struct hnae3_handle *handle,
193 				 struct net_device_stats *net_stats)
194 {
195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
196 	int status;
197 
198 	status = hclgevf_tqps_update_stats(handle);
199 	if (status)
200 		dev_err(&hdev->pdev->dev,
201 			"VF update of TQPS stats fail, status = %d.\n",
202 			status);
203 }
204 
205 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
206 {
207 	if (strset == ETH_SS_TEST)
208 		return -EOPNOTSUPP;
209 	else if (strset == ETH_SS_STATS)
210 		return hclgevf_tqps_get_sset_count(handle, strset);
211 
212 	return 0;
213 }
214 
215 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
216 				u8 *data)
217 {
218 	u8 *p = (char *)data;
219 
220 	if (strset == ETH_SS_STATS)
221 		p = hclgevf_tqps_get_strings(handle, p);
222 }
223 
224 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
225 {
226 	hclgevf_tqps_get_stats(handle, data);
227 }
228 
229 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
230 {
231 	u8 resp_msg;
232 	int status;
233 
234 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
235 				      true, &resp_msg, sizeof(u8));
236 	if (status) {
237 		dev_err(&hdev->pdev->dev,
238 			"VF request to get TC info from PF failed %d",
239 			status);
240 		return status;
241 	}
242 
243 	hdev->hw_tc_map = resp_msg;
244 
245 	return 0;
246 }
247 
248 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
249 {
250 	struct hnae3_handle *nic = &hdev->nic;
251 	u8 resp_msg;
252 	int ret;
253 
254 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
255 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
256 				   NULL, 0, true, &resp_msg, sizeof(u8));
257 	if (ret) {
258 		dev_err(&hdev->pdev->dev,
259 			"VF request to get port based vlan state failed %d",
260 			ret);
261 		return ret;
262 	}
263 
264 	nic->port_base_vlan_state = resp_msg;
265 
266 	return 0;
267 }
268 
269 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
270 {
271 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
272 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
273 	int status;
274 
275 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
276 				      true, resp_msg,
277 				      HCLGEVF_TQPS_RSS_INFO_LEN);
278 	if (status) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get tqp info from PF failed %d",
281 			status);
282 		return status;
283 	}
284 
285 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
286 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
287 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
288 
289 	return 0;
290 }
291 
292 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
293 {
294 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
295 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
296 	int ret;
297 
298 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
299 				   true, resp_msg,
300 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
301 	if (ret) {
302 		dev_err(&hdev->pdev->dev,
303 			"VF request to get tqp depth info from PF failed %d",
304 			ret);
305 		return ret;
306 	}
307 
308 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
309 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
310 
311 	return 0;
312 }
313 
314 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
315 {
316 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
317 	u8 msg_data[2], resp_data[2];
318 	u16 qid_in_pf = 0;
319 	int ret;
320 
321 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
322 
323 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
324 				   2, true, resp_data, 2);
325 	if (!ret)
326 		qid_in_pf = *(u16 *)resp_data;
327 
328 	return qid_in_pf;
329 }
330 
331 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
332 {
333 	u8 resp_msg[2];
334 	int ret;
335 
336 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
337 				   true, resp_msg, sizeof(resp_msg));
338 	if (ret) {
339 		dev_err(&hdev->pdev->dev,
340 			"VF request to get the pf port media type failed %d",
341 			ret);
342 		return ret;
343 	}
344 
345 	hdev->hw.mac.media_type = resp_msg[0];
346 	hdev->hw.mac.module_type = resp_msg[1];
347 
348 	return 0;
349 }
350 
351 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
352 {
353 	struct hclgevf_tqp *tqp;
354 	int i;
355 
356 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
357 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
358 	if (!hdev->htqp)
359 		return -ENOMEM;
360 
361 	tqp = hdev->htqp;
362 
363 	for (i = 0; i < hdev->num_tqps; i++) {
364 		tqp->dev = &hdev->pdev->dev;
365 		tqp->index = i;
366 
367 		tqp->q.ae_algo = &ae_algovf;
368 		tqp->q.buf_size = hdev->rx_buf_len;
369 		tqp->q.tx_desc_num = hdev->num_tx_desc;
370 		tqp->q.rx_desc_num = hdev->num_rx_desc;
371 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
372 			i * HCLGEVF_TQP_REG_SIZE;
373 
374 		tqp++;
375 	}
376 
377 	return 0;
378 }
379 
380 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
381 {
382 	struct hnae3_handle *nic = &hdev->nic;
383 	struct hnae3_knic_private_info *kinfo;
384 	u16 new_tqps = hdev->num_tqps;
385 	int i;
386 
387 	kinfo = &nic->kinfo;
388 	kinfo->num_tc = 0;
389 	kinfo->num_tx_desc = hdev->num_tx_desc;
390 	kinfo->num_rx_desc = hdev->num_rx_desc;
391 	kinfo->rx_buf_len = hdev->rx_buf_len;
392 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
393 		if (hdev->hw_tc_map & BIT(i))
394 			kinfo->num_tc++;
395 
396 	kinfo->rss_size
397 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
398 	new_tqps = kinfo->rss_size * kinfo->num_tc;
399 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
400 
401 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
402 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
403 	if (!kinfo->tqp)
404 		return -ENOMEM;
405 
406 	for (i = 0; i < kinfo->num_tqps; i++) {
407 		hdev->htqp[i].q.handle = &hdev->nic;
408 		hdev->htqp[i].q.tqp_index = i;
409 		kinfo->tqp[i] = &hdev->htqp[i].q;
410 	}
411 
412 	return 0;
413 }
414 
415 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
416 {
417 	int status;
418 	u8 resp_msg;
419 
420 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
421 				      0, false, &resp_msg, sizeof(u8));
422 	if (status)
423 		dev_err(&hdev->pdev->dev,
424 			"VF failed to fetch link status(%d) from PF", status);
425 }
426 
427 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
428 {
429 	struct hnae3_handle *rhandle = &hdev->roce;
430 	struct hnae3_handle *handle = &hdev->nic;
431 	struct hnae3_client *rclient;
432 	struct hnae3_client *client;
433 
434 	client = handle->client;
435 	rclient = hdev->roce_client;
436 
437 	link_state =
438 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
439 
440 	if (link_state != hdev->hw.mac.link) {
441 		client->ops->link_status_change(handle, !!link_state);
442 		if (rclient && rclient->ops->link_status_change)
443 			rclient->ops->link_status_change(rhandle, !!link_state);
444 		hdev->hw.mac.link = link_state;
445 	}
446 }
447 
448 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
449 {
450 #define HCLGEVF_ADVERTISING 0
451 #define HCLGEVF_SUPPORTED   1
452 	u8 send_msg;
453 	u8 resp_msg;
454 
455 	send_msg = HCLGEVF_ADVERTISING;
456 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
457 			     sizeof(u8), false, &resp_msg, sizeof(u8));
458 	send_msg = HCLGEVF_SUPPORTED;
459 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
460 			     sizeof(u8), false, &resp_msg, sizeof(u8));
461 }
462 
463 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
464 {
465 	struct hnae3_handle *nic = &hdev->nic;
466 	int ret;
467 
468 	nic->ae_algo = &ae_algovf;
469 	nic->pdev = hdev->pdev;
470 	nic->numa_node_mask = hdev->numa_node_mask;
471 	nic->flags |= HNAE3_SUPPORT_VF;
472 
473 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
474 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
475 			hdev->ae_dev->dev_type);
476 		return -EINVAL;
477 	}
478 
479 	ret = hclgevf_knic_setup(hdev);
480 	if (ret)
481 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
482 			ret);
483 	return ret;
484 }
485 
486 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
487 {
488 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
489 		dev_warn(&hdev->pdev->dev,
490 			 "vector(vector_id %d) has been freed.\n", vector_id);
491 		return;
492 	}
493 
494 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
495 	hdev->num_msi_left += 1;
496 	hdev->num_msi_used -= 1;
497 }
498 
499 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
500 			      struct hnae3_vector_info *vector_info)
501 {
502 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
503 	struct hnae3_vector_info *vector = vector_info;
504 	int alloc = 0;
505 	int i, j;
506 
507 	vector_num = min(hdev->num_msi_left, vector_num);
508 
509 	for (j = 0; j < vector_num; j++) {
510 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
511 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
512 				vector->vector = pci_irq_vector(hdev->pdev, i);
513 				vector->io_addr = hdev->hw.io_base +
514 					HCLGEVF_VECTOR_REG_BASE +
515 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
516 				hdev->vector_status[i] = 0;
517 				hdev->vector_irq[i] = vector->vector;
518 
519 				vector++;
520 				alloc++;
521 
522 				break;
523 			}
524 		}
525 	}
526 	hdev->num_msi_left -= alloc;
527 	hdev->num_msi_used += alloc;
528 
529 	return alloc;
530 }
531 
532 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
533 {
534 	int i;
535 
536 	for (i = 0; i < hdev->num_msi; i++)
537 		if (vector == hdev->vector_irq[i])
538 			return i;
539 
540 	return -EINVAL;
541 }
542 
543 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
544 				    const u8 hfunc, const u8 *key)
545 {
546 	struct hclgevf_rss_config_cmd *req;
547 	struct hclgevf_desc desc;
548 	int key_offset;
549 	int key_size;
550 	int ret;
551 
552 	req = (struct hclgevf_rss_config_cmd *)desc.data;
553 
554 	for (key_offset = 0; key_offset < 3; key_offset++) {
555 		hclgevf_cmd_setup_basic_desc(&desc,
556 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
557 					     false);
558 
559 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
560 		req->hash_config |=
561 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
562 
563 		if (key_offset == 2)
564 			key_size =
565 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
566 		else
567 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
568 
569 		memcpy(req->hash_key,
570 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
571 
572 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
573 		if (ret) {
574 			dev_err(&hdev->pdev->dev,
575 				"Configure RSS config fail, status = %d\n",
576 				ret);
577 			return ret;
578 		}
579 	}
580 
581 	return 0;
582 }
583 
584 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
585 {
586 	return HCLGEVF_RSS_KEY_SIZE;
587 }
588 
589 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
590 {
591 	return HCLGEVF_RSS_IND_TBL_SIZE;
592 }
593 
594 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
595 {
596 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
597 	struct hclgevf_rss_indirection_table_cmd *req;
598 	struct hclgevf_desc desc;
599 	int status;
600 	int i, j;
601 
602 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
603 
604 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
605 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
606 					     false);
607 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
608 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
609 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
610 			req->rss_result[j] =
611 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
612 
613 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
614 		if (status) {
615 			dev_err(&hdev->pdev->dev,
616 				"VF failed(=%d) to set RSS indirection table\n",
617 				status);
618 			return status;
619 		}
620 	}
621 
622 	return 0;
623 }
624 
625 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
626 {
627 	struct hclgevf_rss_tc_mode_cmd *req;
628 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
629 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
630 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
631 	struct hclgevf_desc desc;
632 	u16 roundup_size;
633 	int status;
634 	int i;
635 
636 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
637 
638 	roundup_size = roundup_pow_of_two(rss_size);
639 	roundup_size = ilog2(roundup_size);
640 
641 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
642 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
643 		tc_size[i] = roundup_size;
644 		tc_offset[i] = rss_size * i;
645 	}
646 
647 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
648 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
649 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
650 			      (tc_valid[i] & 0x1));
651 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
652 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
653 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
654 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
655 	}
656 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
657 	if (status)
658 		dev_err(&hdev->pdev->dev,
659 			"VF failed(=%d) to set rss tc mode\n", status);
660 
661 	return status;
662 }
663 
664 /* for revision 0x20, vf shared the same rss config with pf */
665 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
666 {
667 #define HCLGEVF_RSS_MBX_RESP_LEN	8
668 
669 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
670 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
671 	u16 msg_num, hash_key_index;
672 	u8 index;
673 	int ret;
674 
675 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
676 			HCLGEVF_RSS_MBX_RESP_LEN;
677 	for (index = 0; index < msg_num; index++) {
678 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
679 					   &index, sizeof(index),
680 					   true, resp_msg,
681 					   HCLGEVF_RSS_MBX_RESP_LEN);
682 		if (ret) {
683 			dev_err(&hdev->pdev->dev,
684 				"VF get rss hash key from PF failed, ret=%d",
685 				ret);
686 			return ret;
687 		}
688 
689 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
690 		if (index == msg_num - 1)
691 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
692 			       &resp_msg[0],
693 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
694 		else
695 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
696 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
697 	}
698 
699 	return 0;
700 }
701 
702 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
703 			   u8 *hfunc)
704 {
705 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
706 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
707 	int i, ret;
708 
709 	if (handle->pdev->revision >= 0x21) {
710 		/* Get hash algorithm */
711 		if (hfunc) {
712 			switch (rss_cfg->hash_algo) {
713 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
714 				*hfunc = ETH_RSS_HASH_TOP;
715 				break;
716 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
717 				*hfunc = ETH_RSS_HASH_XOR;
718 				break;
719 			default:
720 				*hfunc = ETH_RSS_HASH_UNKNOWN;
721 				break;
722 			}
723 		}
724 
725 		/* Get the RSS Key required by the user */
726 		if (key)
727 			memcpy(key, rss_cfg->rss_hash_key,
728 			       HCLGEVF_RSS_KEY_SIZE);
729 	} else {
730 		if (hfunc)
731 			*hfunc = ETH_RSS_HASH_TOP;
732 		if (key) {
733 			ret = hclgevf_get_rss_hash_key(hdev);
734 			if (ret)
735 				return ret;
736 			memcpy(key, rss_cfg->rss_hash_key,
737 			       HCLGEVF_RSS_KEY_SIZE);
738 		}
739 	}
740 
741 	if (indir)
742 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
743 			indir[i] = rss_cfg->rss_indirection_tbl[i];
744 
745 	return 0;
746 }
747 
748 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
749 			   const  u8 *key, const  u8 hfunc)
750 {
751 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
752 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
753 	int ret, i;
754 
755 	if (handle->pdev->revision >= 0x21) {
756 		/* Set the RSS Hash Key if specififed by the user */
757 		if (key) {
758 			switch (hfunc) {
759 			case ETH_RSS_HASH_TOP:
760 				rss_cfg->hash_algo =
761 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
762 				break;
763 			case ETH_RSS_HASH_XOR:
764 				rss_cfg->hash_algo =
765 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
766 				break;
767 			case ETH_RSS_HASH_NO_CHANGE:
768 				break;
769 			default:
770 				return -EINVAL;
771 			}
772 
773 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
774 						       key);
775 			if (ret)
776 				return ret;
777 
778 			/* Update the shadow RSS key with user specified qids */
779 			memcpy(rss_cfg->rss_hash_key, key,
780 			       HCLGEVF_RSS_KEY_SIZE);
781 		}
782 	}
783 
784 	/* update the shadow RSS table with user specified qids */
785 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
786 		rss_cfg->rss_indirection_tbl[i] = indir[i];
787 
788 	/* update the hardware */
789 	return hclgevf_set_rss_indir_table(hdev);
790 }
791 
792 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
793 {
794 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
795 
796 	if (nfc->data & RXH_L4_B_2_3)
797 		hash_sets |= HCLGEVF_D_PORT_BIT;
798 	else
799 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
800 
801 	if (nfc->data & RXH_IP_SRC)
802 		hash_sets |= HCLGEVF_S_IP_BIT;
803 	else
804 		hash_sets &= ~HCLGEVF_S_IP_BIT;
805 
806 	if (nfc->data & RXH_IP_DST)
807 		hash_sets |= HCLGEVF_D_IP_BIT;
808 	else
809 		hash_sets &= ~HCLGEVF_D_IP_BIT;
810 
811 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
812 		hash_sets |= HCLGEVF_V_TAG_BIT;
813 
814 	return hash_sets;
815 }
816 
817 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
818 				 struct ethtool_rxnfc *nfc)
819 {
820 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
821 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
822 	struct hclgevf_rss_input_tuple_cmd *req;
823 	struct hclgevf_desc desc;
824 	u8 tuple_sets;
825 	int ret;
826 
827 	if (handle->pdev->revision == 0x20)
828 		return -EOPNOTSUPP;
829 
830 	if (nfc->data &
831 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
832 		return -EINVAL;
833 
834 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
835 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
836 
837 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
838 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
839 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
840 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
841 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
842 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
843 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
844 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
845 
846 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
847 	switch (nfc->flow_type) {
848 	case TCP_V4_FLOW:
849 		req->ipv4_tcp_en = tuple_sets;
850 		break;
851 	case TCP_V6_FLOW:
852 		req->ipv6_tcp_en = tuple_sets;
853 		break;
854 	case UDP_V4_FLOW:
855 		req->ipv4_udp_en = tuple_sets;
856 		break;
857 	case UDP_V6_FLOW:
858 		req->ipv6_udp_en = tuple_sets;
859 		break;
860 	case SCTP_V4_FLOW:
861 		req->ipv4_sctp_en = tuple_sets;
862 		break;
863 	case SCTP_V6_FLOW:
864 		if ((nfc->data & RXH_L4_B_0_1) ||
865 		    (nfc->data & RXH_L4_B_2_3))
866 			return -EINVAL;
867 
868 		req->ipv6_sctp_en = tuple_sets;
869 		break;
870 	case IPV4_FLOW:
871 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
872 		break;
873 	case IPV6_FLOW:
874 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
875 		break;
876 	default:
877 		return -EINVAL;
878 	}
879 
880 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
881 	if (ret) {
882 		dev_err(&hdev->pdev->dev,
883 			"Set rss tuple fail, status = %d\n", ret);
884 		return ret;
885 	}
886 
887 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
888 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
889 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
890 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
891 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
892 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
893 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
894 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
895 	return 0;
896 }
897 
898 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
899 				 struct ethtool_rxnfc *nfc)
900 {
901 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
902 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
903 	u8 tuple_sets;
904 
905 	if (handle->pdev->revision == 0x20)
906 		return -EOPNOTSUPP;
907 
908 	nfc->data = 0;
909 
910 	switch (nfc->flow_type) {
911 	case TCP_V4_FLOW:
912 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
913 		break;
914 	case UDP_V4_FLOW:
915 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
916 		break;
917 	case TCP_V6_FLOW:
918 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
919 		break;
920 	case UDP_V6_FLOW:
921 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
922 		break;
923 	case SCTP_V4_FLOW:
924 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
925 		break;
926 	case SCTP_V6_FLOW:
927 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
928 		break;
929 	case IPV4_FLOW:
930 	case IPV6_FLOW:
931 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
932 		break;
933 	default:
934 		return -EINVAL;
935 	}
936 
937 	if (!tuple_sets)
938 		return 0;
939 
940 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
941 		nfc->data |= RXH_L4_B_2_3;
942 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
943 		nfc->data |= RXH_L4_B_0_1;
944 	if (tuple_sets & HCLGEVF_D_IP_BIT)
945 		nfc->data |= RXH_IP_DST;
946 	if (tuple_sets & HCLGEVF_S_IP_BIT)
947 		nfc->data |= RXH_IP_SRC;
948 
949 	return 0;
950 }
951 
952 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
953 				       struct hclgevf_rss_cfg *rss_cfg)
954 {
955 	struct hclgevf_rss_input_tuple_cmd *req;
956 	struct hclgevf_desc desc;
957 	int ret;
958 
959 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
960 
961 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
962 
963 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
964 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
965 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
966 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
967 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
968 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
969 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
970 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
971 
972 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
973 	if (ret)
974 		dev_err(&hdev->pdev->dev,
975 			"Configure rss input fail, status = %d\n", ret);
976 	return ret;
977 }
978 
979 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
980 {
981 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
982 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
983 
984 	return rss_cfg->rss_size;
985 }
986 
987 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
988 				       int vector_id,
989 				       struct hnae3_ring_chain_node *ring_chain)
990 {
991 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
992 	struct hnae3_ring_chain_node *node;
993 	struct hclge_mbx_vf_to_pf_cmd *req;
994 	struct hclgevf_desc desc;
995 	int i = 0;
996 	int status;
997 	u8 type;
998 
999 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1000 
1001 	for (node = ring_chain; node; node = node->next) {
1002 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1003 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1004 
1005 		if (i == 0) {
1006 			hclgevf_cmd_setup_basic_desc(&desc,
1007 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1008 						     false);
1009 			type = en ?
1010 				HCLGE_MBX_MAP_RING_TO_VECTOR :
1011 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1012 			req->msg[0] = type;
1013 			req->msg[1] = vector_id;
1014 		}
1015 
1016 		req->msg[idx_offset] =
1017 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1018 		req->msg[idx_offset + 1] = node->tqp_index;
1019 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1020 							   HNAE3_RING_GL_IDX_M,
1021 							   HNAE3_RING_GL_IDX_S);
1022 
1023 		i++;
1024 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1025 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1026 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1027 		    !node->next) {
1028 			req->msg[2] = i;
1029 
1030 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1031 			if (status) {
1032 				dev_err(&hdev->pdev->dev,
1033 					"Map TQP fail, status is %d.\n",
1034 					status);
1035 				return status;
1036 			}
1037 			i = 0;
1038 			hclgevf_cmd_setup_basic_desc(&desc,
1039 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1040 						     false);
1041 			req->msg[0] = type;
1042 			req->msg[1] = vector_id;
1043 		}
1044 	}
1045 
1046 	return 0;
1047 }
1048 
1049 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1050 				      struct hnae3_ring_chain_node *ring_chain)
1051 {
1052 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1053 	int vector_id;
1054 
1055 	vector_id = hclgevf_get_vector_index(hdev, vector);
1056 	if (vector_id < 0) {
1057 		dev_err(&handle->pdev->dev,
1058 			"Get vector index fail. ret =%d\n", vector_id);
1059 		return vector_id;
1060 	}
1061 
1062 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1063 }
1064 
1065 static int hclgevf_unmap_ring_from_vector(
1066 				struct hnae3_handle *handle,
1067 				int vector,
1068 				struct hnae3_ring_chain_node *ring_chain)
1069 {
1070 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1071 	int ret, vector_id;
1072 
1073 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1074 		return 0;
1075 
1076 	vector_id = hclgevf_get_vector_index(hdev, vector);
1077 	if (vector_id < 0) {
1078 		dev_err(&handle->pdev->dev,
1079 			"Get vector index fail. ret =%d\n", vector_id);
1080 		return vector_id;
1081 	}
1082 
1083 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1084 	if (ret)
1085 		dev_err(&handle->pdev->dev,
1086 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1087 			vector_id,
1088 			ret);
1089 
1090 	return ret;
1091 }
1092 
1093 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1094 {
1095 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1096 	int vector_id;
1097 
1098 	vector_id = hclgevf_get_vector_index(hdev, vector);
1099 	if (vector_id < 0) {
1100 		dev_err(&handle->pdev->dev,
1101 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1102 			vector_id);
1103 		return vector_id;
1104 	}
1105 
1106 	hclgevf_free_vector(hdev, vector_id);
1107 
1108 	return 0;
1109 }
1110 
1111 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1112 					bool en_bc_pmc)
1113 {
1114 	struct hclge_mbx_vf_to_pf_cmd *req;
1115 	struct hclgevf_desc desc;
1116 	int ret;
1117 
1118 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1119 
1120 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1121 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1122 	req->msg[1] = en_bc_pmc ? 1 : 0;
1123 
1124 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1125 	if (ret)
1126 		dev_err(&hdev->pdev->dev,
1127 			"Set promisc mode fail, status is %d.\n", ret);
1128 
1129 	return ret;
1130 }
1131 
1132 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1133 {
1134 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1135 }
1136 
1137 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1138 			      int stream_id, bool enable)
1139 {
1140 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1141 	struct hclgevf_desc desc;
1142 	int status;
1143 
1144 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1145 
1146 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1147 				     false);
1148 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1149 	req->stream_id = cpu_to_le16(stream_id);
1150 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1151 
1152 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1153 	if (status)
1154 		dev_err(&hdev->pdev->dev,
1155 			"TQP enable fail, status =%d.\n", status);
1156 
1157 	return status;
1158 }
1159 
1160 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1161 {
1162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1163 	struct hclgevf_tqp *tqp;
1164 	int i;
1165 
1166 	for (i = 0; i < kinfo->num_tqps; i++) {
1167 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1168 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1169 	}
1170 }
1171 
1172 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1173 {
1174 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1175 
1176 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1177 }
1178 
1179 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1180 				bool is_first)
1181 {
1182 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1183 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1184 	u8 *new_mac_addr = (u8 *)p;
1185 	u8 msg_data[ETH_ALEN * 2];
1186 	u16 subcode;
1187 	int status;
1188 
1189 	ether_addr_copy(msg_data, new_mac_addr);
1190 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1191 
1192 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1193 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1194 
1195 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1196 				      subcode, msg_data, ETH_ALEN * 2,
1197 				      true, NULL, 0);
1198 	if (!status)
1199 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1200 
1201 	return status;
1202 }
1203 
1204 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1205 			       const unsigned char *addr)
1206 {
1207 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1208 
1209 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1210 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1211 				    addr, ETH_ALEN, false, NULL, 0);
1212 }
1213 
1214 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1215 			      const unsigned char *addr)
1216 {
1217 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1218 
1219 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1220 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1221 				    addr, ETH_ALEN, false, NULL, 0);
1222 }
1223 
1224 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1225 			       const unsigned char *addr)
1226 {
1227 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1228 
1229 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1230 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1231 				    addr, ETH_ALEN, false, NULL, 0);
1232 }
1233 
1234 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1235 			      const unsigned char *addr)
1236 {
1237 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1238 
1239 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1240 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1241 				    addr, ETH_ALEN, false, NULL, 0);
1242 }
1243 
1244 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1245 				   __be16 proto, u16 vlan_id,
1246 				   bool is_kill)
1247 {
1248 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1249 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1250 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1251 
1252 	if (vlan_id > 4095)
1253 		return -EINVAL;
1254 
1255 	if (proto != htons(ETH_P_8021Q))
1256 		return -EPROTONOSUPPORT;
1257 
1258 	msg_data[0] = is_kill;
1259 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1260 	memcpy(&msg_data[3], &proto, sizeof(proto));
1261 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1262 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1263 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1264 }
1265 
1266 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1267 {
1268 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1269 	u8 msg_data;
1270 
1271 	msg_data = enable ? 1 : 0;
1272 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1273 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1274 				    1, false, NULL, 0);
1275 }
1276 
1277 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1278 {
1279 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1280 	u8 msg_data[2];
1281 	int ret;
1282 
1283 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1284 
1285 	/* disable vf queue before send queue reset msg to PF */
1286 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1287 	if (ret)
1288 		return ret;
1289 
1290 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1291 				    2, true, NULL, 0);
1292 }
1293 
1294 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1295 {
1296 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1297 
1298 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1299 				    sizeof(new_mtu), true, NULL, 0);
1300 }
1301 
1302 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1303 				 enum hnae3_reset_notify_type type)
1304 {
1305 	struct hnae3_client *client = hdev->nic_client;
1306 	struct hnae3_handle *handle = &hdev->nic;
1307 	int ret;
1308 
1309 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1310 	    !client)
1311 		return 0;
1312 
1313 	if (!client->ops->reset_notify)
1314 		return -EOPNOTSUPP;
1315 
1316 	ret = client->ops->reset_notify(handle, type);
1317 	if (ret)
1318 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1319 			type, ret);
1320 
1321 	return ret;
1322 }
1323 
1324 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1325 {
1326 	struct hclgevf_dev *hdev = ae_dev->priv;
1327 
1328 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1329 }
1330 
1331 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1332 				    unsigned long delay_us,
1333 				    unsigned long wait_cnt)
1334 {
1335 	unsigned long cnt = 0;
1336 
1337 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1338 	       cnt++ < wait_cnt)
1339 		usleep_range(delay_us, delay_us * 2);
1340 
1341 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1342 		dev_err(&hdev->pdev->dev,
1343 			"flr wait timeout\n");
1344 		return -ETIMEDOUT;
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1351 {
1352 #define HCLGEVF_RESET_WAIT_US	20000
1353 #define HCLGEVF_RESET_WAIT_CNT	2000
1354 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1355 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1356 
1357 	u32 val;
1358 	int ret;
1359 
1360 	/* wait to check the hardware reset completion status */
1361 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1362 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1363 
1364 	if (hdev->reset_type == HNAE3_FLR_RESET)
1365 		return hclgevf_flr_poll_timeout(hdev,
1366 						HCLGEVF_RESET_WAIT_US,
1367 						HCLGEVF_RESET_WAIT_CNT);
1368 
1369 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1370 				 !(val & HCLGEVF_RST_ING_BITS),
1371 				 HCLGEVF_RESET_WAIT_US,
1372 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1373 
1374 	/* hardware completion status should be available by this time */
1375 	if (ret) {
1376 		dev_err(&hdev->pdev->dev,
1377 			"could'nt get reset done status from h/w, timeout!\n");
1378 		return ret;
1379 	}
1380 
1381 	/* we will wait a bit more to let reset of the stack to complete. This
1382 	 * might happen in case reset assertion was made by PF. Yes, this also
1383 	 * means we might end up waiting bit more even for VF reset.
1384 	 */
1385 	msleep(5000);
1386 
1387 	return 0;
1388 }
1389 
1390 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1391 {
1392 	int ret;
1393 
1394 	/* uninitialize the nic client */
1395 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1396 	if (ret)
1397 		return ret;
1398 
1399 	/* re-initialize the hclge device */
1400 	ret = hclgevf_reset_hdev(hdev);
1401 	if (ret) {
1402 		dev_err(&hdev->pdev->dev,
1403 			"hclge device re-init failed, VF is disabled!\n");
1404 		return ret;
1405 	}
1406 
1407 	/* bring up the nic client again */
1408 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1409 	if (ret)
1410 		return ret;
1411 
1412 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1413 }
1414 
1415 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1416 {
1417 #define HCLGEVF_RESET_SYNC_TIME 100
1418 
1419 	int ret = 0;
1420 
1421 	switch (hdev->reset_type) {
1422 	case HNAE3_VF_FUNC_RESET:
1423 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1424 					   0, true, NULL, sizeof(u8));
1425 		hdev->rst_stats.vf_func_rst_cnt++;
1426 		break;
1427 	case HNAE3_FLR_RESET:
1428 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1429 		hdev->rst_stats.flr_rst_cnt++;
1430 		break;
1431 	default:
1432 		break;
1433 	}
1434 
1435 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1436 	/* inform hardware that preparatory work is done */
1437 	msleep(HCLGEVF_RESET_SYNC_TIME);
1438 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1439 			  HCLGEVF_NIC_CMQ_ENABLE);
1440 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1441 		 hdev->reset_type, ret);
1442 
1443 	return ret;
1444 }
1445 
1446 static int hclgevf_reset(struct hclgevf_dev *hdev)
1447 {
1448 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1449 	int ret;
1450 
1451 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1452 	 * know if device is undergoing reset
1453 	 */
1454 	ae_dev->reset_type = hdev->reset_type;
1455 	hdev->rst_stats.rst_cnt++;
1456 	rtnl_lock();
1457 
1458 	/* bring down the nic to stop any ongoing TX/RX */
1459 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1460 	if (ret)
1461 		goto err_reset_lock;
1462 
1463 	rtnl_unlock();
1464 
1465 	ret = hclgevf_reset_prepare_wait(hdev);
1466 	if (ret)
1467 		goto err_reset;
1468 
1469 	/* check if VF could successfully fetch the hardware reset completion
1470 	 * status from the hardware
1471 	 */
1472 	ret = hclgevf_reset_wait(hdev);
1473 	if (ret) {
1474 		/* can't do much in this situation, will disable VF */
1475 		dev_err(&hdev->pdev->dev,
1476 			"VF failed(=%d) to fetch H/W reset completion status\n",
1477 			ret);
1478 		goto err_reset;
1479 	}
1480 
1481 	hdev->rst_stats.hw_rst_done_cnt++;
1482 
1483 	rtnl_lock();
1484 
1485 	/* now, re-initialize the nic client and ae device*/
1486 	ret = hclgevf_reset_stack(hdev);
1487 	if (ret) {
1488 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1489 		goto err_reset_lock;
1490 	}
1491 
1492 	/* bring up the nic to enable TX/RX again */
1493 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1494 	if (ret)
1495 		goto err_reset_lock;
1496 
1497 	rtnl_unlock();
1498 
1499 	hdev->last_reset_time = jiffies;
1500 	ae_dev->reset_type = HNAE3_NONE_RESET;
1501 	hdev->rst_stats.rst_done_cnt++;
1502 
1503 	return ret;
1504 err_reset_lock:
1505 	rtnl_unlock();
1506 err_reset:
1507 	/* When VF reset failed, only the higher level reset asserted by PF
1508 	 * can restore it, so re-initialize the command queue to receive
1509 	 * this higher reset event.
1510 	 */
1511 	hclgevf_cmd_init(hdev);
1512 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1513 	if (hclgevf_is_reset_pending(hdev))
1514 		hclgevf_reset_task_schedule(hdev);
1515 
1516 	return ret;
1517 }
1518 
1519 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1520 						     unsigned long *addr)
1521 {
1522 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1523 
1524 	/* return the highest priority reset level amongst all */
1525 	if (test_bit(HNAE3_VF_RESET, addr)) {
1526 		rst_level = HNAE3_VF_RESET;
1527 		clear_bit(HNAE3_VF_RESET, addr);
1528 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1529 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1530 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1531 		rst_level = HNAE3_VF_FULL_RESET;
1532 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1533 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1534 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1535 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1536 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1537 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1538 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1539 		rst_level = HNAE3_VF_FUNC_RESET;
1540 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1541 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1542 		rst_level = HNAE3_FLR_RESET;
1543 		clear_bit(HNAE3_FLR_RESET, addr);
1544 	}
1545 
1546 	return rst_level;
1547 }
1548 
1549 static void hclgevf_reset_event(struct pci_dev *pdev,
1550 				struct hnae3_handle *handle)
1551 {
1552 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1553 	struct hclgevf_dev *hdev = ae_dev->priv;
1554 
1555 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1556 
1557 	if (hdev->default_reset_request)
1558 		hdev->reset_level =
1559 			hclgevf_get_reset_level(hdev,
1560 						&hdev->default_reset_request);
1561 	else
1562 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1563 
1564 	/* reset of this VF requested */
1565 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1566 	hclgevf_reset_task_schedule(hdev);
1567 
1568 	hdev->last_reset_time = jiffies;
1569 }
1570 
1571 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1572 					  enum hnae3_reset_type rst_type)
1573 {
1574 	struct hclgevf_dev *hdev = ae_dev->priv;
1575 
1576 	set_bit(rst_type, &hdev->default_reset_request);
1577 }
1578 
1579 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1580 {
1581 #define HCLGEVF_FLR_WAIT_MS	100
1582 #define HCLGEVF_FLR_WAIT_CNT	50
1583 	struct hclgevf_dev *hdev = ae_dev->priv;
1584 	int cnt = 0;
1585 
1586 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1587 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1588 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1589 	hclgevf_reset_event(hdev->pdev, NULL);
1590 
1591 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1592 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1593 		msleep(HCLGEVF_FLR_WAIT_MS);
1594 
1595 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1596 		dev_err(&hdev->pdev->dev,
1597 			"flr wait down timeout: %d\n", cnt);
1598 }
1599 
1600 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1601 {
1602 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1603 
1604 	return hdev->fw_version;
1605 }
1606 
1607 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1608 {
1609 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1610 
1611 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1612 					    HCLGEVF_MISC_VECTOR_NUM);
1613 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1614 	/* vector status always valid for Vector 0 */
1615 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1616 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1617 
1618 	hdev->num_msi_left -= 1;
1619 	hdev->num_msi_used += 1;
1620 }
1621 
1622 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1623 {
1624 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1625 	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1626 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1627 		schedule_work(&hdev->rst_service_task);
1628 	}
1629 }
1630 
1631 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1632 {
1633 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1634 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1635 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1636 		schedule_work(&hdev->mbx_service_task);
1637 	}
1638 }
1639 
1640 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1641 {
1642 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1643 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1644 		schedule_work(&hdev->service_task);
1645 }
1646 
1647 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1648 {
1649 	/* if we have any pending mailbox event then schedule the mbx task */
1650 	if (hdev->mbx_event_pending)
1651 		hclgevf_mbx_task_schedule(hdev);
1652 
1653 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1654 		hclgevf_reset_task_schedule(hdev);
1655 }
1656 
1657 static void hclgevf_service_timer(struct timer_list *t)
1658 {
1659 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1660 
1661 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1662 
1663 	hdev->stats_timer++;
1664 	hclgevf_task_schedule(hdev);
1665 }
1666 
1667 static void hclgevf_reset_service_task(struct work_struct *work)
1668 {
1669 	struct hclgevf_dev *hdev =
1670 		container_of(work, struct hclgevf_dev, rst_service_task);
1671 	int ret;
1672 
1673 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1674 		return;
1675 
1676 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1677 
1678 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1679 			       &hdev->reset_state)) {
1680 		/* PF has initmated that it is about to reset the hardware.
1681 		 * We now have to poll & check if harware has actually completed
1682 		 * the reset sequence. On hardware reset completion, VF needs to
1683 		 * reset the client and ae device.
1684 		 */
1685 		hdev->reset_attempts = 0;
1686 
1687 		hdev->last_reset_time = jiffies;
1688 		while ((hdev->reset_type =
1689 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1690 		       != HNAE3_NONE_RESET) {
1691 			ret = hclgevf_reset(hdev);
1692 			if (ret)
1693 				dev_err(&hdev->pdev->dev,
1694 					"VF stack reset failed %d.\n", ret);
1695 		}
1696 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1697 				      &hdev->reset_state)) {
1698 		/* we could be here when either of below happens:
1699 		 * 1. reset was initiated due to watchdog timeout due to
1700 		 *    a. IMP was earlier reset and our TX got choked down and
1701 		 *       which resulted in watchdog reacting and inducing VF
1702 		 *       reset. This also means our cmdq would be unreliable.
1703 		 *    b. problem in TX due to other lower layer(example link
1704 		 *       layer not functioning properly etc.)
1705 		 * 2. VF reset might have been initiated due to some config
1706 		 *    change.
1707 		 *
1708 		 * NOTE: Theres no clear way to detect above cases than to react
1709 		 * to the response of PF for this reset request. PF will ack the
1710 		 * 1b and 2. cases but we will not get any intimation about 1a
1711 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1712 		 * communication between PF and VF would be broken.
1713 		 */
1714 
1715 		/* if we are never geting into pending state it means either:
1716 		 * 1. PF is not receiving our request which could be due to IMP
1717 		 *    reset
1718 		 * 2. PF is screwed
1719 		 * We cannot do much for 2. but to check first we can try reset
1720 		 * our PCIe + stack and see if it alleviates the problem.
1721 		 */
1722 		if (hdev->reset_attempts > 3) {
1723 			/* prepare for full reset of stack + pcie interface */
1724 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1725 
1726 			/* "defer" schedule the reset task again */
1727 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1728 		} else {
1729 			hdev->reset_attempts++;
1730 
1731 			set_bit(hdev->reset_level, &hdev->reset_pending);
1732 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1733 		}
1734 		hclgevf_reset_task_schedule(hdev);
1735 	}
1736 
1737 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1738 }
1739 
1740 static void hclgevf_mailbox_service_task(struct work_struct *work)
1741 {
1742 	struct hclgevf_dev *hdev;
1743 
1744 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1745 
1746 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1747 		return;
1748 
1749 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1750 
1751 	hclgevf_mbx_async_handler(hdev);
1752 
1753 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1754 }
1755 
1756 static void hclgevf_keep_alive_timer(struct timer_list *t)
1757 {
1758 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1759 
1760 	schedule_work(&hdev->keep_alive_task);
1761 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1762 }
1763 
1764 static void hclgevf_keep_alive_task(struct work_struct *work)
1765 {
1766 	struct hclgevf_dev *hdev;
1767 	u8 respmsg;
1768 	int ret;
1769 
1770 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1771 
1772 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1773 		return;
1774 
1775 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1776 				   0, false, &respmsg, sizeof(u8));
1777 	if (ret)
1778 		dev_err(&hdev->pdev->dev,
1779 			"VF sends keep alive cmd failed(=%d)\n", ret);
1780 }
1781 
1782 static void hclgevf_service_task(struct work_struct *work)
1783 {
1784 	struct hnae3_handle *handle;
1785 	struct hclgevf_dev *hdev;
1786 
1787 	hdev = container_of(work, struct hclgevf_dev, service_task);
1788 	handle = &hdev->nic;
1789 
1790 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1791 		hclgevf_tqps_update_stats(handle);
1792 		hdev->stats_timer = 0;
1793 	}
1794 
1795 	/* request the link status from the PF. PF would be able to tell VF
1796 	 * about such updates in future so we might remove this later
1797 	 */
1798 	hclgevf_request_link_info(hdev);
1799 
1800 	hclgevf_update_link_mode(hdev);
1801 
1802 	hclgevf_deferred_task_schedule(hdev);
1803 
1804 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1805 }
1806 
1807 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1808 {
1809 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1810 }
1811 
1812 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1813 						      u32 *clearval)
1814 {
1815 	u32 cmdq_src_reg, rst_ing_reg;
1816 
1817 	/* fetch the events from their corresponding regs */
1818 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1819 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1820 
1821 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1822 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1823 		dev_info(&hdev->pdev->dev,
1824 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1825 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1826 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1827 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1828 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1829 		*clearval = cmdq_src_reg;
1830 		hdev->rst_stats.vf_rst_cnt++;
1831 		return HCLGEVF_VECTOR0_EVENT_RST;
1832 	}
1833 
1834 	/* check for vector0 mailbox(=CMDQ RX) event source */
1835 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1836 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1837 		*clearval = cmdq_src_reg;
1838 		return HCLGEVF_VECTOR0_EVENT_MBX;
1839 	}
1840 
1841 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1842 
1843 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1844 }
1845 
1846 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1847 {
1848 	writel(en ? 1 : 0, vector->addr);
1849 }
1850 
1851 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1852 {
1853 	enum hclgevf_evt_cause event_cause;
1854 	struct hclgevf_dev *hdev = data;
1855 	u32 clearval;
1856 
1857 	hclgevf_enable_vector(&hdev->misc_vector, false);
1858 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1859 
1860 	switch (event_cause) {
1861 	case HCLGEVF_VECTOR0_EVENT_RST:
1862 		hclgevf_reset_task_schedule(hdev);
1863 		break;
1864 	case HCLGEVF_VECTOR0_EVENT_MBX:
1865 		hclgevf_mbx_handler(hdev);
1866 		break;
1867 	default:
1868 		break;
1869 	}
1870 
1871 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1872 		hclgevf_clear_event_cause(hdev, clearval);
1873 		hclgevf_enable_vector(&hdev->misc_vector, true);
1874 	}
1875 
1876 	return IRQ_HANDLED;
1877 }
1878 
1879 static int hclgevf_configure(struct hclgevf_dev *hdev)
1880 {
1881 	int ret;
1882 
1883 	/* get current port based vlan state from PF */
1884 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1885 	if (ret)
1886 		return ret;
1887 
1888 	/* get queue configuration from PF */
1889 	ret = hclgevf_get_queue_info(hdev);
1890 	if (ret)
1891 		return ret;
1892 
1893 	/* get queue depth info from PF */
1894 	ret = hclgevf_get_queue_depth(hdev);
1895 	if (ret)
1896 		return ret;
1897 
1898 	ret = hclgevf_get_pf_media_type(hdev);
1899 	if (ret)
1900 		return ret;
1901 
1902 	/* get tc configuration from PF */
1903 	return hclgevf_get_tc_info(hdev);
1904 }
1905 
1906 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1907 {
1908 	struct pci_dev *pdev = ae_dev->pdev;
1909 	struct hclgevf_dev *hdev;
1910 
1911 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1912 	if (!hdev)
1913 		return -ENOMEM;
1914 
1915 	hdev->pdev = pdev;
1916 	hdev->ae_dev = ae_dev;
1917 	ae_dev->priv = hdev;
1918 
1919 	return 0;
1920 }
1921 
1922 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1923 {
1924 	struct hnae3_handle *roce = &hdev->roce;
1925 	struct hnae3_handle *nic = &hdev->nic;
1926 
1927 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1928 
1929 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1930 	    hdev->num_msi_left == 0)
1931 		return -EINVAL;
1932 
1933 	roce->rinfo.base_vector = hdev->roce_base_vector;
1934 
1935 	roce->rinfo.netdev = nic->kinfo.netdev;
1936 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1937 
1938 	roce->pdev = nic->pdev;
1939 	roce->ae_algo = nic->ae_algo;
1940 	roce->numa_node_mask = nic->numa_node_mask;
1941 
1942 	return 0;
1943 }
1944 
1945 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1946 {
1947 	struct hclgevf_cfg_gro_status_cmd *req;
1948 	struct hclgevf_desc desc;
1949 	int ret;
1950 
1951 	if (!hnae3_dev_gro_supported(hdev))
1952 		return 0;
1953 
1954 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1955 				     false);
1956 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1957 
1958 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1959 
1960 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1961 	if (ret)
1962 		dev_err(&hdev->pdev->dev,
1963 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1964 
1965 	return ret;
1966 }
1967 
1968 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1969 {
1970 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1971 	int i, ret;
1972 
1973 	rss_cfg->rss_size = hdev->rss_size_max;
1974 
1975 	if (hdev->pdev->revision >= 0x21) {
1976 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1977 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1978 		       HCLGEVF_RSS_KEY_SIZE);
1979 
1980 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1981 					       rss_cfg->rss_hash_key);
1982 		if (ret)
1983 			return ret;
1984 
1985 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1986 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1987 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1988 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1989 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1990 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1991 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1992 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1993 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1994 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1995 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1996 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1997 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1998 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1999 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2000 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2001 
2002 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2003 		if (ret)
2004 			return ret;
2005 
2006 	}
2007 
2008 	/* Initialize RSS indirect table for each vport */
2009 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2010 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
2011 
2012 	ret = hclgevf_set_rss_indir_table(hdev);
2013 	if (ret)
2014 		return ret;
2015 
2016 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
2017 }
2018 
2019 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2020 {
2021 	/* other vlan config(like, VLAN TX/RX offload) would also be added
2022 	 * here later
2023 	 */
2024 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2025 				       false);
2026 }
2027 
2028 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2029 {
2030 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2031 
2032 	if (enable) {
2033 		mod_timer(&hdev->service_timer, jiffies + HZ);
2034 	} else {
2035 		del_timer_sync(&hdev->service_timer);
2036 		cancel_work_sync(&hdev->service_task);
2037 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2038 	}
2039 }
2040 
2041 static int hclgevf_ae_start(struct hnae3_handle *handle)
2042 {
2043 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2044 
2045 	/* reset tqp stats */
2046 	hclgevf_reset_tqp_stats(handle);
2047 
2048 	hclgevf_request_link_info(hdev);
2049 
2050 	hclgevf_update_link_mode(hdev);
2051 
2052 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2053 
2054 	return 0;
2055 }
2056 
2057 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2058 {
2059 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2060 	int i;
2061 
2062 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2063 
2064 	if (hdev->reset_type != HNAE3_VF_RESET)
2065 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2066 			if (hclgevf_reset_tqp(handle, i))
2067 				break;
2068 
2069 	/* reset tqp stats */
2070 	hclgevf_reset_tqp_stats(handle);
2071 	hclgevf_update_link_status(hdev, 0);
2072 }
2073 
2074 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2075 {
2076 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2077 	u8 msg_data;
2078 
2079 	msg_data = alive ? 1 : 0;
2080 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2081 				    0, &msg_data, 1, false, NULL, 0);
2082 }
2083 
2084 static int hclgevf_client_start(struct hnae3_handle *handle)
2085 {
2086 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2087 	int ret;
2088 
2089 	ret = hclgevf_set_alive(handle, true);
2090 	if (ret)
2091 		return ret;
2092 
2093 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
2094 
2095 	return 0;
2096 }
2097 
2098 static void hclgevf_client_stop(struct hnae3_handle *handle)
2099 {
2100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2101 	int ret;
2102 
2103 	ret = hclgevf_set_alive(handle, false);
2104 	if (ret)
2105 		dev_warn(&hdev->pdev->dev,
2106 			 "%s failed %d\n", __func__, ret);
2107 
2108 	del_timer_sync(&hdev->keep_alive_timer);
2109 	cancel_work_sync(&hdev->keep_alive_task);
2110 }
2111 
2112 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2113 {
2114 	/* setup tasks for the MBX */
2115 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2116 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2117 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2118 
2119 	/* setup tasks for service timer */
2120 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2121 
2122 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2123 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2124 
2125 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2126 
2127 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2128 
2129 	/* bring the device down */
2130 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2131 }
2132 
2133 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2134 {
2135 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2136 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2137 
2138 	if (hdev->keep_alive_timer.function)
2139 		del_timer_sync(&hdev->keep_alive_timer);
2140 	if (hdev->keep_alive_task.func)
2141 		cancel_work_sync(&hdev->keep_alive_task);
2142 	if (hdev->service_timer.function)
2143 		del_timer_sync(&hdev->service_timer);
2144 	if (hdev->service_task.func)
2145 		cancel_work_sync(&hdev->service_task);
2146 	if (hdev->mbx_service_task.func)
2147 		cancel_work_sync(&hdev->mbx_service_task);
2148 	if (hdev->rst_service_task.func)
2149 		cancel_work_sync(&hdev->rst_service_task);
2150 
2151 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2152 }
2153 
2154 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2155 {
2156 	struct pci_dev *pdev = hdev->pdev;
2157 	int vectors;
2158 	int i;
2159 
2160 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2161 		vectors = pci_alloc_irq_vectors(pdev,
2162 						hdev->roce_base_msix_offset + 1,
2163 						hdev->num_msi,
2164 						PCI_IRQ_MSIX);
2165 	else
2166 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2167 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2168 
2169 	if (vectors < 0) {
2170 		dev_err(&pdev->dev,
2171 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2172 			vectors);
2173 		return vectors;
2174 	}
2175 	if (vectors < hdev->num_msi)
2176 		dev_warn(&hdev->pdev->dev,
2177 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2178 			 hdev->num_msi, vectors);
2179 
2180 	hdev->num_msi = vectors;
2181 	hdev->num_msi_left = vectors;
2182 	hdev->base_msi_vector = pdev->irq;
2183 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2184 
2185 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2186 					   sizeof(u16), GFP_KERNEL);
2187 	if (!hdev->vector_status) {
2188 		pci_free_irq_vectors(pdev);
2189 		return -ENOMEM;
2190 	}
2191 
2192 	for (i = 0; i < hdev->num_msi; i++)
2193 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2194 
2195 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2196 					sizeof(int), GFP_KERNEL);
2197 	if (!hdev->vector_irq) {
2198 		devm_kfree(&pdev->dev, hdev->vector_status);
2199 		pci_free_irq_vectors(pdev);
2200 		return -ENOMEM;
2201 	}
2202 
2203 	return 0;
2204 }
2205 
2206 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2207 {
2208 	struct pci_dev *pdev = hdev->pdev;
2209 
2210 	devm_kfree(&pdev->dev, hdev->vector_status);
2211 	devm_kfree(&pdev->dev, hdev->vector_irq);
2212 	pci_free_irq_vectors(pdev);
2213 }
2214 
2215 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2216 {
2217 	int ret = 0;
2218 
2219 	hclgevf_get_misc_vector(hdev);
2220 
2221 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2222 			  0, "hclgevf_cmd", hdev);
2223 	if (ret) {
2224 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2225 			hdev->misc_vector.vector_irq);
2226 		return ret;
2227 	}
2228 
2229 	hclgevf_clear_event_cause(hdev, 0);
2230 
2231 	/* enable misc. vector(vector 0) */
2232 	hclgevf_enable_vector(&hdev->misc_vector, true);
2233 
2234 	return ret;
2235 }
2236 
2237 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2238 {
2239 	/* disable misc vector(vector 0) */
2240 	hclgevf_enable_vector(&hdev->misc_vector, false);
2241 	synchronize_irq(hdev->misc_vector.vector_irq);
2242 	free_irq(hdev->misc_vector.vector_irq, hdev);
2243 	hclgevf_free_vector(hdev, 0);
2244 }
2245 
2246 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2247 {
2248 	struct device *dev = &hdev->pdev->dev;
2249 
2250 	dev_info(dev, "VF info begin:\n");
2251 
2252 	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2253 	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2254 	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2255 	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2256 	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2257 	dev_info(dev, "PF media type of this VF: %d\n",
2258 		 hdev->hw.mac.media_type);
2259 
2260 	dev_info(dev, "VF info end.\n");
2261 }
2262 
2263 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2264 					    struct hnae3_client *client)
2265 {
2266 	struct hclgevf_dev *hdev = ae_dev->priv;
2267 	int ret;
2268 
2269 	ret = client->ops->init_instance(&hdev->nic);
2270 	if (ret)
2271 		return ret;
2272 
2273 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2274 	hnae3_set_client_init_flag(client, ae_dev, 1);
2275 
2276 	if (netif_msg_drv(&hdev->nic))
2277 		hclgevf_info_show(hdev);
2278 
2279 	return 0;
2280 }
2281 
2282 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2283 					     struct hnae3_client *client)
2284 {
2285 	struct hclgevf_dev *hdev = ae_dev->priv;
2286 	int ret;
2287 
2288 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2289 	    !hdev->nic_client)
2290 		return 0;
2291 
2292 	ret = hclgevf_init_roce_base_info(hdev);
2293 	if (ret)
2294 		return ret;
2295 
2296 	ret = client->ops->init_instance(&hdev->roce);
2297 	if (ret)
2298 		return ret;
2299 
2300 	hnae3_set_client_init_flag(client, ae_dev, 1);
2301 
2302 	return 0;
2303 }
2304 
2305 static int hclgevf_init_client_instance(struct hnae3_client *client,
2306 					struct hnae3_ae_dev *ae_dev)
2307 {
2308 	struct hclgevf_dev *hdev = ae_dev->priv;
2309 	int ret;
2310 
2311 	switch (client->type) {
2312 	case HNAE3_CLIENT_KNIC:
2313 		hdev->nic_client = client;
2314 		hdev->nic.client = client;
2315 
2316 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2317 		if (ret)
2318 			goto clear_nic;
2319 
2320 		ret = hclgevf_init_roce_client_instance(ae_dev,
2321 							hdev->roce_client);
2322 		if (ret)
2323 			goto clear_roce;
2324 
2325 		break;
2326 	case HNAE3_CLIENT_UNIC:
2327 		hdev->nic_client = client;
2328 		hdev->nic.client = client;
2329 
2330 		ret = client->ops->init_instance(&hdev->nic);
2331 		if (ret)
2332 			goto clear_nic;
2333 
2334 		hnae3_set_client_init_flag(client, ae_dev, 1);
2335 		break;
2336 	case HNAE3_CLIENT_ROCE:
2337 		if (hnae3_dev_roce_supported(hdev)) {
2338 			hdev->roce_client = client;
2339 			hdev->roce.client = client;
2340 		}
2341 
2342 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2343 		if (ret)
2344 			goto clear_roce;
2345 
2346 		break;
2347 	default:
2348 		return -EINVAL;
2349 	}
2350 
2351 	return 0;
2352 
2353 clear_nic:
2354 	hdev->nic_client = NULL;
2355 	hdev->nic.client = NULL;
2356 	return ret;
2357 clear_roce:
2358 	hdev->roce_client = NULL;
2359 	hdev->roce.client = NULL;
2360 	return ret;
2361 }
2362 
2363 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2364 					   struct hnae3_ae_dev *ae_dev)
2365 {
2366 	struct hclgevf_dev *hdev = ae_dev->priv;
2367 
2368 	/* un-init roce, if it exists */
2369 	if (hdev->roce_client) {
2370 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2371 		hdev->roce_client = NULL;
2372 		hdev->roce.client = NULL;
2373 	}
2374 
2375 	/* un-init nic/unic, if this was not called by roce client */
2376 	if (client->ops->uninit_instance && hdev->nic_client &&
2377 	    client->type != HNAE3_CLIENT_ROCE) {
2378 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2379 
2380 		client->ops->uninit_instance(&hdev->nic, 0);
2381 		hdev->nic_client = NULL;
2382 		hdev->nic.client = NULL;
2383 	}
2384 }
2385 
2386 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2387 {
2388 	struct pci_dev *pdev = hdev->pdev;
2389 	struct hclgevf_hw *hw;
2390 	int ret;
2391 
2392 	ret = pci_enable_device(pdev);
2393 	if (ret) {
2394 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2395 		return ret;
2396 	}
2397 
2398 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2399 	if (ret) {
2400 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2401 		goto err_disable_device;
2402 	}
2403 
2404 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2405 	if (ret) {
2406 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2407 		goto err_disable_device;
2408 	}
2409 
2410 	pci_set_master(pdev);
2411 	hw = &hdev->hw;
2412 	hw->hdev = hdev;
2413 	hw->io_base = pci_iomap(pdev, 2, 0);
2414 	if (!hw->io_base) {
2415 		dev_err(&pdev->dev, "can't map configuration register space\n");
2416 		ret = -ENOMEM;
2417 		goto err_clr_master;
2418 	}
2419 
2420 	return 0;
2421 
2422 err_clr_master:
2423 	pci_clear_master(pdev);
2424 	pci_release_regions(pdev);
2425 err_disable_device:
2426 	pci_disable_device(pdev);
2427 
2428 	return ret;
2429 }
2430 
2431 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2432 {
2433 	struct pci_dev *pdev = hdev->pdev;
2434 
2435 	pci_iounmap(pdev, hdev->hw.io_base);
2436 	pci_clear_master(pdev);
2437 	pci_release_regions(pdev);
2438 	pci_disable_device(pdev);
2439 }
2440 
2441 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2442 {
2443 	struct hclgevf_query_res_cmd *req;
2444 	struct hclgevf_desc desc;
2445 	int ret;
2446 
2447 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2448 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2449 	if (ret) {
2450 		dev_err(&hdev->pdev->dev,
2451 			"query vf resource failed, ret = %d.\n", ret);
2452 		return ret;
2453 	}
2454 
2455 	req = (struct hclgevf_query_res_cmd *)desc.data;
2456 
2457 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2458 		hdev->roce_base_msix_offset =
2459 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2460 				HCLGEVF_MSIX_OFT_ROCEE_M,
2461 				HCLGEVF_MSIX_OFT_ROCEE_S);
2462 		hdev->num_roce_msix =
2463 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2464 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2465 
2466 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2467 		 * are queued before Roce vectors. The offset is fixed to 64.
2468 		 */
2469 		hdev->num_msi = hdev->num_roce_msix +
2470 				hdev->roce_base_msix_offset;
2471 	} else {
2472 		hdev->num_msi =
2473 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2474 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2475 	}
2476 
2477 	return 0;
2478 }
2479 
2480 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2481 {
2482 	struct pci_dev *pdev = hdev->pdev;
2483 	int ret = 0;
2484 
2485 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2486 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2487 		hclgevf_misc_irq_uninit(hdev);
2488 		hclgevf_uninit_msi(hdev);
2489 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2490 	}
2491 
2492 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2493 		pci_set_master(pdev);
2494 		ret = hclgevf_init_msi(hdev);
2495 		if (ret) {
2496 			dev_err(&pdev->dev,
2497 				"failed(%d) to init MSI/MSI-X\n", ret);
2498 			return ret;
2499 		}
2500 
2501 		ret = hclgevf_misc_irq_init(hdev);
2502 		if (ret) {
2503 			hclgevf_uninit_msi(hdev);
2504 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2505 				ret);
2506 			return ret;
2507 		}
2508 
2509 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2510 	}
2511 
2512 	return ret;
2513 }
2514 
2515 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2516 {
2517 	struct pci_dev *pdev = hdev->pdev;
2518 	int ret;
2519 
2520 	ret = hclgevf_pci_reset(hdev);
2521 	if (ret) {
2522 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2523 		return ret;
2524 	}
2525 
2526 	ret = hclgevf_cmd_init(hdev);
2527 	if (ret) {
2528 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2529 		return ret;
2530 	}
2531 
2532 	ret = hclgevf_rss_init_hw(hdev);
2533 	if (ret) {
2534 		dev_err(&hdev->pdev->dev,
2535 			"failed(%d) to initialize RSS\n", ret);
2536 		return ret;
2537 	}
2538 
2539 	ret = hclgevf_config_gro(hdev, true);
2540 	if (ret)
2541 		return ret;
2542 
2543 	ret = hclgevf_init_vlan_config(hdev);
2544 	if (ret) {
2545 		dev_err(&hdev->pdev->dev,
2546 			"failed(%d) to initialize VLAN config\n", ret);
2547 		return ret;
2548 	}
2549 
2550 	dev_info(&hdev->pdev->dev, "Reset done\n");
2551 
2552 	return 0;
2553 }
2554 
2555 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2556 {
2557 	struct pci_dev *pdev = hdev->pdev;
2558 	int ret;
2559 
2560 	ret = hclgevf_pci_init(hdev);
2561 	if (ret) {
2562 		dev_err(&pdev->dev, "PCI initialization failed\n");
2563 		return ret;
2564 	}
2565 
2566 	ret = hclgevf_cmd_queue_init(hdev);
2567 	if (ret) {
2568 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2569 		goto err_cmd_queue_init;
2570 	}
2571 
2572 	ret = hclgevf_cmd_init(hdev);
2573 	if (ret)
2574 		goto err_cmd_init;
2575 
2576 	/* Get vf resource */
2577 	ret = hclgevf_query_vf_resource(hdev);
2578 	if (ret) {
2579 		dev_err(&hdev->pdev->dev,
2580 			"Query vf status error, ret = %d.\n", ret);
2581 		goto err_cmd_init;
2582 	}
2583 
2584 	ret = hclgevf_init_msi(hdev);
2585 	if (ret) {
2586 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2587 		goto err_cmd_init;
2588 	}
2589 
2590 	hclgevf_state_init(hdev);
2591 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2592 
2593 	ret = hclgevf_misc_irq_init(hdev);
2594 	if (ret) {
2595 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2596 			ret);
2597 		goto err_misc_irq_init;
2598 	}
2599 
2600 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2601 
2602 	ret = hclgevf_configure(hdev);
2603 	if (ret) {
2604 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2605 		goto err_config;
2606 	}
2607 
2608 	ret = hclgevf_alloc_tqps(hdev);
2609 	if (ret) {
2610 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2611 		goto err_config;
2612 	}
2613 
2614 	ret = hclgevf_set_handle_info(hdev);
2615 	if (ret) {
2616 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2617 		goto err_config;
2618 	}
2619 
2620 	ret = hclgevf_config_gro(hdev, true);
2621 	if (ret)
2622 		goto err_config;
2623 
2624 	/* vf is not allowed to enable unicast/multicast promisc mode.
2625 	 * For revision 0x20, default to disable broadcast promisc mode,
2626 	 * firmware makes sure broadcast packets can be accepted.
2627 	 * For revision 0x21, default to enable broadcast promisc mode.
2628 	 */
2629 	ret = hclgevf_set_promisc_mode(hdev, true);
2630 	if (ret)
2631 		goto err_config;
2632 
2633 	/* Initialize RSS for this VF */
2634 	ret = hclgevf_rss_init_hw(hdev);
2635 	if (ret) {
2636 		dev_err(&hdev->pdev->dev,
2637 			"failed(%d) to initialize RSS\n", ret);
2638 		goto err_config;
2639 	}
2640 
2641 	ret = hclgevf_init_vlan_config(hdev);
2642 	if (ret) {
2643 		dev_err(&hdev->pdev->dev,
2644 			"failed(%d) to initialize VLAN config\n", ret);
2645 		goto err_config;
2646 	}
2647 
2648 	hdev->last_reset_time = jiffies;
2649 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2650 
2651 	return 0;
2652 
2653 err_config:
2654 	hclgevf_misc_irq_uninit(hdev);
2655 err_misc_irq_init:
2656 	hclgevf_state_uninit(hdev);
2657 	hclgevf_uninit_msi(hdev);
2658 err_cmd_init:
2659 	hclgevf_cmd_uninit(hdev);
2660 err_cmd_queue_init:
2661 	hclgevf_pci_uninit(hdev);
2662 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2663 	return ret;
2664 }
2665 
2666 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2667 {
2668 	hclgevf_state_uninit(hdev);
2669 
2670 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2671 		hclgevf_misc_irq_uninit(hdev);
2672 		hclgevf_uninit_msi(hdev);
2673 	}
2674 
2675 	hclgevf_pci_uninit(hdev);
2676 	hclgevf_cmd_uninit(hdev);
2677 }
2678 
2679 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2680 {
2681 	struct pci_dev *pdev = ae_dev->pdev;
2682 	struct hclgevf_dev *hdev;
2683 	int ret;
2684 
2685 	ret = hclgevf_alloc_hdev(ae_dev);
2686 	if (ret) {
2687 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2688 		return ret;
2689 	}
2690 
2691 	ret = hclgevf_init_hdev(ae_dev->priv);
2692 	if (ret) {
2693 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2694 		return ret;
2695 	}
2696 
2697 	hdev = ae_dev->priv;
2698 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2699 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2700 
2701 	return 0;
2702 }
2703 
2704 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2705 {
2706 	struct hclgevf_dev *hdev = ae_dev->priv;
2707 
2708 	hclgevf_uninit_hdev(hdev);
2709 	ae_dev->priv = NULL;
2710 }
2711 
2712 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2713 {
2714 	struct hnae3_handle *nic = &hdev->nic;
2715 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2716 
2717 	return min_t(u32, hdev->rss_size_max,
2718 		     hdev->num_tqps / kinfo->num_tc);
2719 }
2720 
2721 /**
2722  * hclgevf_get_channels - Get the current channels enabled and max supported.
2723  * @handle: hardware information for network interface
2724  * @ch: ethtool channels structure
2725  *
2726  * We don't support separate tx and rx queues as channels. The other count
2727  * represents how many queues are being used for control. max_combined counts
2728  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2729  * q_vectors since we support a lot more queue pairs than q_vectors.
2730  **/
2731 static void hclgevf_get_channels(struct hnae3_handle *handle,
2732 				 struct ethtool_channels *ch)
2733 {
2734 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2735 
2736 	ch->max_combined = hclgevf_get_max_channels(hdev);
2737 	ch->other_count = 0;
2738 	ch->max_other = 0;
2739 	ch->combined_count = handle->kinfo.rss_size;
2740 }
2741 
2742 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2743 					  u16 *alloc_tqps, u16 *max_rss_size)
2744 {
2745 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2746 
2747 	*alloc_tqps = hdev->num_tqps;
2748 	*max_rss_size = hdev->rss_size_max;
2749 }
2750 
2751 static int hclgevf_get_status(struct hnae3_handle *handle)
2752 {
2753 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2754 
2755 	return hdev->hw.mac.link;
2756 }
2757 
2758 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2759 					    u8 *auto_neg, u32 *speed,
2760 					    u8 *duplex)
2761 {
2762 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2763 
2764 	if (speed)
2765 		*speed = hdev->hw.mac.speed;
2766 	if (duplex)
2767 		*duplex = hdev->hw.mac.duplex;
2768 	if (auto_neg)
2769 		*auto_neg = AUTONEG_DISABLE;
2770 }
2771 
2772 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2773 				 u8 duplex)
2774 {
2775 	hdev->hw.mac.speed = speed;
2776 	hdev->hw.mac.duplex = duplex;
2777 }
2778 
2779 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2780 {
2781 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2782 
2783 	return hclgevf_config_gro(hdev, enable);
2784 }
2785 
2786 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2787 				   u8 *module_type)
2788 {
2789 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2790 
2791 	if (media_type)
2792 		*media_type = hdev->hw.mac.media_type;
2793 
2794 	if (module_type)
2795 		*module_type = hdev->hw.mac.module_type;
2796 }
2797 
2798 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2799 {
2800 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2801 
2802 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2803 }
2804 
2805 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2806 {
2807 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2808 
2809 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2810 }
2811 
2812 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2813 {
2814 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2815 
2816 	return hdev->rst_stats.hw_rst_done_cnt;
2817 }
2818 
2819 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2820 				  unsigned long *supported,
2821 				  unsigned long *advertising)
2822 {
2823 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2824 
2825 	*supported = hdev->hw.mac.supported;
2826 	*advertising = hdev->hw.mac.advertising;
2827 }
2828 
2829 #define MAX_SEPARATE_NUM	4
2830 #define SEPARATOR_VALUE		0xFFFFFFFF
2831 #define REG_NUM_PER_LINE	4
2832 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2833 
2834 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2835 {
2836 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2837 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2838 
2839 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2840 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2841 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2842 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2843 
2844 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2845 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2846 }
2847 
2848 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2849 			     void *data)
2850 {
2851 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2852 	int i, j, reg_um, separator_num;
2853 	u32 *reg = data;
2854 
2855 	*version = hdev->fw_version;
2856 
2857 	/* fetching per-VF registers values from VF PCIe register space */
2858 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2859 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2860 	for (i = 0; i < reg_um; i++)
2861 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2862 	for (i = 0; i < separator_num; i++)
2863 		*reg++ = SEPARATOR_VALUE;
2864 
2865 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2866 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2867 	for (i = 0; i < reg_um; i++)
2868 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2869 	for (i = 0; i < separator_num; i++)
2870 		*reg++ = SEPARATOR_VALUE;
2871 
2872 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2873 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2874 	for (j = 0; j < hdev->num_tqps; j++) {
2875 		for (i = 0; i < reg_um; i++)
2876 			*reg++ = hclgevf_read_dev(&hdev->hw,
2877 						  ring_reg_addr_list[i] +
2878 						  0x200 * j);
2879 		for (i = 0; i < separator_num; i++)
2880 			*reg++ = SEPARATOR_VALUE;
2881 	}
2882 
2883 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2884 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2885 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2886 		for (i = 0; i < reg_um; i++)
2887 			*reg++ = hclgevf_read_dev(&hdev->hw,
2888 						  tqp_intr_reg_addr_list[i] +
2889 						  4 * j);
2890 		for (i = 0; i < separator_num; i++)
2891 			*reg++ = SEPARATOR_VALUE;
2892 	}
2893 }
2894 
2895 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
2896 					u8 *port_base_vlan_info, u8 data_size)
2897 {
2898 	struct hnae3_handle *nic = &hdev->nic;
2899 
2900 	rtnl_lock();
2901 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2902 	rtnl_unlock();
2903 
2904 	/* send msg to PF and wait update port based vlan info */
2905 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
2906 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
2907 			     port_base_vlan_info, data_size,
2908 			     false, NULL, 0);
2909 
2910 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
2911 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
2912 	else
2913 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
2914 
2915 	rtnl_lock();
2916 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
2917 	rtnl_unlock();
2918 }
2919 
2920 static const struct hnae3_ae_ops hclgevf_ops = {
2921 	.init_ae_dev = hclgevf_init_ae_dev,
2922 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2923 	.flr_prepare = hclgevf_flr_prepare,
2924 	.flr_done = hclgevf_flr_done,
2925 	.init_client_instance = hclgevf_init_client_instance,
2926 	.uninit_client_instance = hclgevf_uninit_client_instance,
2927 	.start = hclgevf_ae_start,
2928 	.stop = hclgevf_ae_stop,
2929 	.client_start = hclgevf_client_start,
2930 	.client_stop = hclgevf_client_stop,
2931 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2932 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2933 	.get_vector = hclgevf_get_vector,
2934 	.put_vector = hclgevf_put_vector,
2935 	.reset_queue = hclgevf_reset_tqp,
2936 	.get_mac_addr = hclgevf_get_mac_addr,
2937 	.set_mac_addr = hclgevf_set_mac_addr,
2938 	.add_uc_addr = hclgevf_add_uc_addr,
2939 	.rm_uc_addr = hclgevf_rm_uc_addr,
2940 	.add_mc_addr = hclgevf_add_mc_addr,
2941 	.rm_mc_addr = hclgevf_rm_mc_addr,
2942 	.get_stats = hclgevf_get_stats,
2943 	.update_stats = hclgevf_update_stats,
2944 	.get_strings = hclgevf_get_strings,
2945 	.get_sset_count = hclgevf_get_sset_count,
2946 	.get_rss_key_size = hclgevf_get_rss_key_size,
2947 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2948 	.get_rss = hclgevf_get_rss,
2949 	.set_rss = hclgevf_set_rss,
2950 	.get_rss_tuple = hclgevf_get_rss_tuple,
2951 	.set_rss_tuple = hclgevf_set_rss_tuple,
2952 	.get_tc_size = hclgevf_get_tc_size,
2953 	.get_fw_version = hclgevf_get_fw_version,
2954 	.set_vlan_filter = hclgevf_set_vlan_filter,
2955 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2956 	.reset_event = hclgevf_reset_event,
2957 	.set_default_reset_request = hclgevf_set_def_reset_request,
2958 	.get_channels = hclgevf_get_channels,
2959 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2960 	.get_regs_len = hclgevf_get_regs_len,
2961 	.get_regs = hclgevf_get_regs,
2962 	.get_status = hclgevf_get_status,
2963 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2964 	.get_media_type = hclgevf_get_media_type,
2965 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2966 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2967 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2968 	.set_gro_en = hclgevf_gro_en,
2969 	.set_mtu = hclgevf_set_mtu,
2970 	.get_global_queue_id = hclgevf_get_qid_global,
2971 	.set_timer_task = hclgevf_set_timer_task,
2972 	.get_link_mode = hclgevf_get_link_mode,
2973 };
2974 
2975 static struct hnae3_ae_algo ae_algovf = {
2976 	.ops = &hclgevf_ops,
2977 	.pdev_id_table = ae_algovf_pci_tbl,
2978 };
2979 
2980 static int hclgevf_init(void)
2981 {
2982 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2983 
2984 	hnae3_register_ae_algo(&ae_algovf);
2985 
2986 	return 0;
2987 }
2988 
2989 static void hclgevf_exit(void)
2990 {
2991 	hnae3_unregister_ae_algo(&ae_algovf);
2992 }
2993 module_init(hclgevf_init);
2994 module_exit(hclgevf_exit);
2995 
2996 MODULE_LICENSE("GPL");
2997 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2998 MODULE_DESCRIPTION("HCLGEVF Driver");
2999 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3000