1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 
13 #define HCLGEVF_NAME	"hclgevf"
14 
15 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
16 
17 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
18 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
19 				  unsigned long delay);
20 
21 static struct hnae3_ae_algo ae_algovf;
22 
23 static struct workqueue_struct *hclgevf_wq;
24 
25 static const struct pci_device_id ae_algovf_pci_tbl[] = {
26 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
27 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
28 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
29 	/* required last entry */
30 	{0, }
31 };
32 
33 static const u8 hclgevf_hash_key[] = {
34 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
35 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
36 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
37 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
38 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
39 };
40 
41 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
42 
43 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
44 					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
45 					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
46 					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
47 					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
48 					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
49 					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
50 					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
51 					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
52 					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
53 					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
54 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG,
55 					 HCLGE_COMM_CMDQ_INTR_EN_REG,
56 					 HCLGE_COMM_CMDQ_INTR_GEN_REG};
57 
58 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
59 					   HCLGEVF_RST_ING,
60 					   HCLGEVF_GRO_EN_REG};
61 
62 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
63 					 HCLGEVF_RING_RX_ADDR_H_REG,
64 					 HCLGEVF_RING_RX_BD_NUM_REG,
65 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
66 					 HCLGEVF_RING_RX_MERGE_EN_REG,
67 					 HCLGEVF_RING_RX_TAIL_REG,
68 					 HCLGEVF_RING_RX_HEAD_REG,
69 					 HCLGEVF_RING_RX_FBD_NUM_REG,
70 					 HCLGEVF_RING_RX_OFFSET_REG,
71 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
72 					 HCLGEVF_RING_RX_STASH_REG,
73 					 HCLGEVF_RING_RX_BD_ERR_REG,
74 					 HCLGEVF_RING_TX_ADDR_L_REG,
75 					 HCLGEVF_RING_TX_ADDR_H_REG,
76 					 HCLGEVF_RING_TX_BD_NUM_REG,
77 					 HCLGEVF_RING_TX_PRIORITY_REG,
78 					 HCLGEVF_RING_TX_TC_REG,
79 					 HCLGEVF_RING_TX_MERGE_EN_REG,
80 					 HCLGEVF_RING_TX_TAIL_REG,
81 					 HCLGEVF_RING_TX_HEAD_REG,
82 					 HCLGEVF_RING_TX_FBD_NUM_REG,
83 					 HCLGEVF_RING_TX_OFFSET_REG,
84 					 HCLGEVF_RING_TX_EBD_NUM_REG,
85 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
86 					 HCLGEVF_RING_TX_BD_ERR_REG,
87 					 HCLGEVF_RING_EN_REG};
88 
89 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
90 					     HCLGEVF_TQP_INTR_GL0_REG,
91 					     HCLGEVF_TQP_INTR_GL1_REG,
92 					     HCLGEVF_TQP_INTR_GL2_REG,
93 					     HCLGEVF_TQP_INTR_RL_REG};
94 
95 /* hclgevf_cmd_send - send command to command queue
96  * @hw: pointer to the hw struct
97  * @desc: prefilled descriptor for describing the command
98  * @num : the number of descriptors to be sent
99  *
100  * This is the main send command for command queue, it
101  * sends the queue, cleans the queue, etc
102  */
103 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
104 {
105 	return hclge_comm_cmd_send(&hw->hw, desc, num, false);
106 }
107 
108 void hclgevf_arq_init(struct hclgevf_dev *hdev)
109 {
110 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
111 
112 	spin_lock(&cmdq->crq.lock);
113 	/* initialize the pointers of async rx queue of mailbox */
114 	hdev->arq.hdev = hdev;
115 	hdev->arq.head = 0;
116 	hdev->arq.tail = 0;
117 	atomic_set(&hdev->arq.count, 0);
118 	spin_unlock(&cmdq->crq.lock);
119 }
120 
121 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
122 {
123 	if (!handle->client)
124 		return container_of(handle, struct hclgevf_dev, nic);
125 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
126 		return container_of(handle, struct hclgevf_dev, roce);
127 	else
128 		return container_of(handle, struct hclgevf_dev, nic);
129 }
130 
131 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
132 {
133 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
134 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
135 	struct hclge_desc desc;
136 	struct hclgevf_tqp *tqp;
137 	int status;
138 	int i;
139 
140 	for (i = 0; i < kinfo->num_tqps; i++) {
141 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
142 		hclgevf_cmd_setup_basic_desc(&desc,
143 					     HCLGEVF_OPC_QUERY_RX_STATUS,
144 					     true);
145 
146 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
147 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
148 		if (status) {
149 			dev_err(&hdev->pdev->dev,
150 				"Query tqp stat fail, status = %d,queue = %d\n",
151 				status,	i);
152 			return status;
153 		}
154 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
155 			le32_to_cpu(desc.data[1]);
156 
157 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
158 					     true);
159 
160 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
161 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
162 		if (status) {
163 			dev_err(&hdev->pdev->dev,
164 				"Query tqp stat fail, status = %d,queue = %d\n",
165 				status, i);
166 			return status;
167 		}
168 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
169 			le32_to_cpu(desc.data[1]);
170 	}
171 
172 	return 0;
173 }
174 
175 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
176 {
177 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
178 	struct hclgevf_tqp *tqp;
179 	u64 *buff = data;
180 	int i;
181 
182 	for (i = 0; i < kinfo->num_tqps; i++) {
183 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
184 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
185 	}
186 	for (i = 0; i < kinfo->num_tqps; i++) {
187 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
188 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
189 	}
190 
191 	return buff;
192 }
193 
194 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
195 {
196 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
197 
198 	return kinfo->num_tqps * 2;
199 }
200 
201 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
202 {
203 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
204 	u8 *buff = data;
205 	int i;
206 
207 	for (i = 0; i < kinfo->num_tqps; i++) {
208 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
209 						       struct hclgevf_tqp, q);
210 		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
211 			 tqp->index);
212 		buff += ETH_GSTRING_LEN;
213 	}
214 
215 	for (i = 0; i < kinfo->num_tqps; i++) {
216 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
217 						       struct hclgevf_tqp, q);
218 		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
219 			 tqp->index);
220 		buff += ETH_GSTRING_LEN;
221 	}
222 
223 	return buff;
224 }
225 
226 static void hclgevf_update_stats(struct hnae3_handle *handle,
227 				 struct net_device_stats *net_stats)
228 {
229 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
230 	int status;
231 
232 	status = hclgevf_tqps_update_stats(handle);
233 	if (status)
234 		dev_err(&hdev->pdev->dev,
235 			"VF update of TQPS stats fail, status = %d.\n",
236 			status);
237 }
238 
239 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
240 {
241 	if (strset == ETH_SS_TEST)
242 		return -EOPNOTSUPP;
243 	else if (strset == ETH_SS_STATS)
244 		return hclgevf_tqps_get_sset_count(handle, strset);
245 
246 	return 0;
247 }
248 
249 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
250 				u8 *data)
251 {
252 	u8 *p = (char *)data;
253 
254 	if (strset == ETH_SS_STATS)
255 		p = hclgevf_tqps_get_strings(handle, p);
256 }
257 
258 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
259 {
260 	hclgevf_tqps_get_stats(handle, data);
261 }
262 
263 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
264 				   u8 subcode)
265 {
266 	if (msg) {
267 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
268 		msg->code = code;
269 		msg->subcode = subcode;
270 	}
271 }
272 
273 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
274 {
275 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
276 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
277 	struct hclge_basic_info *basic_info;
278 	struct hclge_vf_to_pf_msg send_msg;
279 	unsigned long caps;
280 	int status;
281 
282 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
283 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
284 				      sizeof(resp_msg));
285 	if (status) {
286 		dev_err(&hdev->pdev->dev,
287 			"failed to get basic info from pf, ret = %d", status);
288 		return status;
289 	}
290 
291 	basic_info = (struct hclge_basic_info *)resp_msg;
292 
293 	hdev->hw_tc_map = basic_info->hw_tc_map;
294 	hdev->mbx_api_version = basic_info->mbx_api_version;
295 	caps = basic_info->pf_caps;
296 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
297 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
298 
299 	return 0;
300 }
301 
302 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
303 {
304 	struct hnae3_handle *nic = &hdev->nic;
305 	struct hclge_vf_to_pf_msg send_msg;
306 	u8 resp_msg;
307 	int ret;
308 
309 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
310 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
311 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
312 				   sizeof(u8));
313 	if (ret) {
314 		dev_err(&hdev->pdev->dev,
315 			"VF request to get port based vlan state failed %d",
316 			ret);
317 		return ret;
318 	}
319 
320 	nic->port_base_vlan_state = resp_msg;
321 
322 	return 0;
323 }
324 
325 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
326 {
327 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
328 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
329 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
330 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
331 
332 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
333 	struct hclge_vf_to_pf_msg send_msg;
334 	int status;
335 
336 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
337 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
338 				      HCLGEVF_TQPS_RSS_INFO_LEN);
339 	if (status) {
340 		dev_err(&hdev->pdev->dev,
341 			"VF request to get tqp info from PF failed %d",
342 			status);
343 		return status;
344 	}
345 
346 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
347 	       sizeof(u16));
348 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
349 	       sizeof(u16));
350 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
351 	       sizeof(u16));
352 
353 	return 0;
354 }
355 
356 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
357 {
358 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
359 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
360 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
361 
362 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
363 	struct hclge_vf_to_pf_msg send_msg;
364 	int ret;
365 
366 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
367 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
368 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
369 	if (ret) {
370 		dev_err(&hdev->pdev->dev,
371 			"VF request to get tqp depth info from PF failed %d",
372 			ret);
373 		return ret;
374 	}
375 
376 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
377 	       sizeof(u16));
378 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
379 	       sizeof(u16));
380 
381 	return 0;
382 }
383 
384 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
385 {
386 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
387 	struct hclge_vf_to_pf_msg send_msg;
388 	u16 qid_in_pf = 0;
389 	u8 resp_data[2];
390 	int ret;
391 
392 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
393 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
394 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
395 				   sizeof(resp_data));
396 	if (!ret)
397 		qid_in_pf = *(u16 *)resp_data;
398 
399 	return qid_in_pf;
400 }
401 
402 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
403 {
404 	struct hclge_vf_to_pf_msg send_msg;
405 	u8 resp_msg[2];
406 	int ret;
407 
408 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
409 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
410 				   sizeof(resp_msg));
411 	if (ret) {
412 		dev_err(&hdev->pdev->dev,
413 			"VF request to get the pf port media type failed %d",
414 			ret);
415 		return ret;
416 	}
417 
418 	hdev->hw.mac.media_type = resp_msg[0];
419 	hdev->hw.mac.module_type = resp_msg[1];
420 
421 	return 0;
422 }
423 
424 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
425 {
426 	struct hclgevf_tqp *tqp;
427 	int i;
428 
429 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
430 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
431 	if (!hdev->htqp)
432 		return -ENOMEM;
433 
434 	tqp = hdev->htqp;
435 
436 	for (i = 0; i < hdev->num_tqps; i++) {
437 		tqp->dev = &hdev->pdev->dev;
438 		tqp->index = i;
439 
440 		tqp->q.ae_algo = &ae_algovf;
441 		tqp->q.buf_size = hdev->rx_buf_len;
442 		tqp->q.tx_desc_num = hdev->num_tx_desc;
443 		tqp->q.rx_desc_num = hdev->num_rx_desc;
444 
445 		/* need an extended offset to configure queues >=
446 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
447 		 */
448 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
449 			tqp->q.io_base = hdev->hw.hw.io_base +
450 					 HCLGEVF_TQP_REG_OFFSET +
451 					 i * HCLGEVF_TQP_REG_SIZE;
452 		else
453 			tqp->q.io_base = hdev->hw.hw.io_base +
454 					 HCLGEVF_TQP_REG_OFFSET +
455 					 HCLGEVF_TQP_EXT_REG_OFFSET +
456 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
457 					 HCLGEVF_TQP_REG_SIZE;
458 
459 		tqp++;
460 	}
461 
462 	return 0;
463 }
464 
465 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
466 {
467 	struct hnae3_handle *nic = &hdev->nic;
468 	struct hnae3_knic_private_info *kinfo;
469 	u16 new_tqps = hdev->num_tqps;
470 	unsigned int i;
471 	u8 num_tc = 0;
472 
473 	kinfo = &nic->kinfo;
474 	kinfo->num_tx_desc = hdev->num_tx_desc;
475 	kinfo->num_rx_desc = hdev->num_rx_desc;
476 	kinfo->rx_buf_len = hdev->rx_buf_len;
477 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
478 		if (hdev->hw_tc_map & BIT(i))
479 			num_tc++;
480 
481 	num_tc = num_tc ? num_tc : 1;
482 	kinfo->tc_info.num_tc = num_tc;
483 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
484 	new_tqps = kinfo->rss_size * num_tc;
485 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
486 
487 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
488 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
489 	if (!kinfo->tqp)
490 		return -ENOMEM;
491 
492 	for (i = 0; i < kinfo->num_tqps; i++) {
493 		hdev->htqp[i].q.handle = &hdev->nic;
494 		hdev->htqp[i].q.tqp_index = i;
495 		kinfo->tqp[i] = &hdev->htqp[i].q;
496 	}
497 
498 	/* after init the max rss_size and tqps, adjust the default tqp numbers
499 	 * and rss size with the actual vector numbers
500 	 */
501 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
502 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
503 				kinfo->rss_size);
504 
505 	return 0;
506 }
507 
508 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
509 {
510 	struct hclge_vf_to_pf_msg send_msg;
511 	int status;
512 
513 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
514 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
515 	if (status)
516 		dev_err(&hdev->pdev->dev,
517 			"VF failed to fetch link status(%d) from PF", status);
518 }
519 
520 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
521 {
522 	struct hnae3_handle *rhandle = &hdev->roce;
523 	struct hnae3_handle *handle = &hdev->nic;
524 	struct hnae3_client *rclient;
525 	struct hnae3_client *client;
526 
527 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
528 		return;
529 
530 	client = handle->client;
531 	rclient = hdev->roce_client;
532 
533 	link_state =
534 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
535 	if (link_state != hdev->hw.mac.link) {
536 		hdev->hw.mac.link = link_state;
537 		client->ops->link_status_change(handle, !!link_state);
538 		if (rclient && rclient->ops->link_status_change)
539 			rclient->ops->link_status_change(rhandle, !!link_state);
540 	}
541 
542 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
543 }
544 
545 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
546 {
547 #define HCLGEVF_ADVERTISING	0
548 #define HCLGEVF_SUPPORTED	1
549 
550 	struct hclge_vf_to_pf_msg send_msg;
551 
552 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
553 	send_msg.data[0] = HCLGEVF_ADVERTISING;
554 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
555 	send_msg.data[0] = HCLGEVF_SUPPORTED;
556 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
557 }
558 
559 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
560 {
561 	struct hnae3_handle *nic = &hdev->nic;
562 	int ret;
563 
564 	nic->ae_algo = &ae_algovf;
565 	nic->pdev = hdev->pdev;
566 	nic->numa_node_mask = hdev->numa_node_mask;
567 	nic->flags |= HNAE3_SUPPORT_VF;
568 	nic->kinfo.io_base = hdev->hw.hw.io_base;
569 
570 	ret = hclgevf_knic_setup(hdev);
571 	if (ret)
572 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
573 			ret);
574 	return ret;
575 }
576 
577 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
578 {
579 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
580 		dev_warn(&hdev->pdev->dev,
581 			 "vector(vector_id %d) has been freed.\n", vector_id);
582 		return;
583 	}
584 
585 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
586 	hdev->num_msi_left += 1;
587 	hdev->num_msi_used -= 1;
588 }
589 
590 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
591 			      struct hnae3_vector_info *vector_info)
592 {
593 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
594 	struct hnae3_vector_info *vector = vector_info;
595 	int alloc = 0;
596 	int i, j;
597 
598 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
599 	vector_num = min(hdev->num_msi_left, vector_num);
600 
601 	for (j = 0; j < vector_num; j++) {
602 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
603 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
604 				vector->vector = pci_irq_vector(hdev->pdev, i);
605 				vector->io_addr = hdev->hw.hw.io_base +
606 					HCLGEVF_VECTOR_REG_BASE +
607 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
608 				hdev->vector_status[i] = 0;
609 				hdev->vector_irq[i] = vector->vector;
610 
611 				vector++;
612 				alloc++;
613 
614 				break;
615 			}
616 		}
617 	}
618 	hdev->num_msi_left -= alloc;
619 	hdev->num_msi_used += alloc;
620 
621 	return alloc;
622 }
623 
624 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
625 {
626 	int i;
627 
628 	for (i = 0; i < hdev->num_msi; i++)
629 		if (vector == hdev->vector_irq[i])
630 			return i;
631 
632 	return -EINVAL;
633 }
634 
635 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
636 				    const u8 hfunc, const u8 *key)
637 {
638 	struct hclgevf_rss_config_cmd *req;
639 	unsigned int key_offset = 0;
640 	struct hclge_desc desc;
641 	int key_counts;
642 	int key_size;
643 	int ret;
644 
645 	key_counts = HCLGEVF_RSS_KEY_SIZE;
646 	req = (struct hclgevf_rss_config_cmd *)desc.data;
647 
648 	while (key_counts) {
649 		hclgevf_cmd_setup_basic_desc(&desc,
650 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
651 					     false);
652 
653 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
654 		req->hash_config |=
655 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
656 
657 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
658 		memcpy(req->hash_key,
659 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
660 
661 		key_counts -= key_size;
662 		key_offset++;
663 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
664 		if (ret) {
665 			dev_err(&hdev->pdev->dev,
666 				"Configure RSS config fail, status = %d\n",
667 				ret);
668 			return ret;
669 		}
670 	}
671 
672 	return 0;
673 }
674 
675 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
676 {
677 	return HCLGEVF_RSS_KEY_SIZE;
678 }
679 
680 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
681 {
682 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
683 	struct hclgevf_rss_indirection_table_cmd *req;
684 	struct hclge_desc desc;
685 	int rss_cfg_tbl_num;
686 	int status;
687 	int i, j;
688 
689 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
690 	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
691 			  HCLGEVF_RSS_CFG_TBL_SIZE;
692 
693 	for (i = 0; i < rss_cfg_tbl_num; i++) {
694 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
695 					     false);
696 		req->start_table_index =
697 			cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
698 		req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
699 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
700 			req->rss_result[j] =
701 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
702 
703 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
704 		if (status) {
705 			dev_err(&hdev->pdev->dev,
706 				"VF failed(=%d) to set RSS indirection table\n",
707 				status);
708 			return status;
709 		}
710 	}
711 
712 	return 0;
713 }
714 
715 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
716 {
717 	struct hclgevf_rss_tc_mode_cmd *req;
718 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
719 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
720 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
721 	struct hclge_desc desc;
722 	u16 roundup_size;
723 	unsigned int i;
724 	int status;
725 
726 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
727 
728 	roundup_size = roundup_pow_of_two(rss_size);
729 	roundup_size = ilog2(roundup_size);
730 
731 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
732 		tc_valid[i] = 1;
733 		tc_size[i] = roundup_size;
734 		tc_offset[i] = (hdev->hw_tc_map & BIT(i)) ? rss_size * i : 0;
735 	}
736 
737 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
738 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
739 		u16 mode = 0;
740 
741 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
742 			      (tc_valid[i] & 0x1));
743 		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
744 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
745 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
746 			      tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
747 			      0x1);
748 		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
749 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
750 
751 		req->rss_tc_mode[i] = cpu_to_le16(mode);
752 	}
753 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
754 	if (status)
755 		dev_err(&hdev->pdev->dev,
756 			"VF failed(=%d) to set rss tc mode\n", status);
757 
758 	return status;
759 }
760 
761 /* for revision 0x20, vf shared the same rss config with pf */
762 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
763 {
764 #define HCLGEVF_RSS_MBX_RESP_LEN	8
765 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
766 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
767 	struct hclge_vf_to_pf_msg send_msg;
768 	u16 msg_num, hash_key_index;
769 	u8 index;
770 	int ret;
771 
772 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
773 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
774 			HCLGEVF_RSS_MBX_RESP_LEN;
775 	for (index = 0; index < msg_num; index++) {
776 		send_msg.data[0] = index;
777 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
778 					   HCLGEVF_RSS_MBX_RESP_LEN);
779 		if (ret) {
780 			dev_err(&hdev->pdev->dev,
781 				"VF get rss hash key from PF failed, ret=%d",
782 				ret);
783 			return ret;
784 		}
785 
786 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
787 		if (index == msg_num - 1)
788 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
789 			       &resp_msg[0],
790 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
791 		else
792 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
793 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
794 	}
795 
796 	return 0;
797 }
798 
799 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
800 			   u8 *hfunc)
801 {
802 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
803 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
804 	int i, ret;
805 
806 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
807 		/* Get hash algorithm */
808 		if (hfunc) {
809 			switch (rss_cfg->hash_algo) {
810 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
811 				*hfunc = ETH_RSS_HASH_TOP;
812 				break;
813 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
814 				*hfunc = ETH_RSS_HASH_XOR;
815 				break;
816 			default:
817 				*hfunc = ETH_RSS_HASH_UNKNOWN;
818 				break;
819 			}
820 		}
821 
822 		/* Get the RSS Key required by the user */
823 		if (key)
824 			memcpy(key, rss_cfg->rss_hash_key,
825 			       HCLGEVF_RSS_KEY_SIZE);
826 	} else {
827 		if (hfunc)
828 			*hfunc = ETH_RSS_HASH_TOP;
829 		if (key) {
830 			ret = hclgevf_get_rss_hash_key(hdev);
831 			if (ret)
832 				return ret;
833 			memcpy(key, rss_cfg->rss_hash_key,
834 			       HCLGEVF_RSS_KEY_SIZE);
835 		}
836 	}
837 
838 	if (indir)
839 		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
840 			indir[i] = rss_cfg->rss_indirection_tbl[i];
841 
842 	return 0;
843 }
844 
845 static int hclgevf_parse_rss_hfunc(struct hclgevf_dev *hdev, const u8 hfunc,
846 				   u8 *hash_algo)
847 {
848 	switch (hfunc) {
849 	case ETH_RSS_HASH_TOP:
850 		*hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
851 		return 0;
852 	case ETH_RSS_HASH_XOR:
853 		*hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
854 		return 0;
855 	case ETH_RSS_HASH_NO_CHANGE:
856 		*hash_algo = hdev->rss_cfg.hash_algo;
857 		return 0;
858 	default:
859 		return -EINVAL;
860 	}
861 }
862 
863 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
864 			   const u8 *key, const u8 hfunc)
865 {
866 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
867 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
868 	u8 hash_algo;
869 	int ret, i;
870 
871 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
872 		ret = hclgevf_parse_rss_hfunc(hdev, hfunc, &hash_algo);
873 		if (ret)
874 			return ret;
875 
876 		/* Set the RSS Hash Key if specififed by the user */
877 		if (key) {
878 			ret = hclgevf_set_rss_algo_key(hdev, hash_algo, key);
879 			if (ret) {
880 				dev_err(&hdev->pdev->dev,
881 					"invalid hfunc type %u\n", hfunc);
882 				return ret;
883 			}
884 
885 			/* Update the shadow RSS key with user specified qids */
886 			memcpy(rss_cfg->rss_hash_key, key,
887 			       HCLGEVF_RSS_KEY_SIZE);
888 		} else {
889 			ret = hclgevf_set_rss_algo_key(hdev, hash_algo,
890 						       rss_cfg->rss_hash_key);
891 			if (ret)
892 				return ret;
893 		}
894 		rss_cfg->hash_algo = hash_algo;
895 	}
896 
897 	/* update the shadow RSS table with user specified qids */
898 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
899 		rss_cfg->rss_indirection_tbl[i] = indir[i];
900 
901 	/* update the hardware */
902 	return hclgevf_set_rss_indir_table(hdev);
903 }
904 
905 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
906 {
907 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
908 
909 	if (nfc->data & RXH_L4_B_2_3)
910 		hash_sets |= HCLGEVF_D_PORT_BIT;
911 	else
912 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
913 
914 	if (nfc->data & RXH_IP_SRC)
915 		hash_sets |= HCLGEVF_S_IP_BIT;
916 	else
917 		hash_sets &= ~HCLGEVF_S_IP_BIT;
918 
919 	if (nfc->data & RXH_IP_DST)
920 		hash_sets |= HCLGEVF_D_IP_BIT;
921 	else
922 		hash_sets &= ~HCLGEVF_D_IP_BIT;
923 
924 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
925 		hash_sets |= HCLGEVF_V_TAG_BIT;
926 
927 	return hash_sets;
928 }
929 
930 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
931 				      struct ethtool_rxnfc *nfc,
932 				      struct hclgevf_rss_input_tuple_cmd *req)
933 {
934 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
935 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
936 	u8 tuple_sets;
937 
938 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
939 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
940 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
941 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
942 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
943 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
944 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
945 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
946 
947 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
948 	switch (nfc->flow_type) {
949 	case TCP_V4_FLOW:
950 		req->ipv4_tcp_en = tuple_sets;
951 		break;
952 	case TCP_V6_FLOW:
953 		req->ipv6_tcp_en = tuple_sets;
954 		break;
955 	case UDP_V4_FLOW:
956 		req->ipv4_udp_en = tuple_sets;
957 		break;
958 	case UDP_V6_FLOW:
959 		req->ipv6_udp_en = tuple_sets;
960 		break;
961 	case SCTP_V4_FLOW:
962 		req->ipv4_sctp_en = tuple_sets;
963 		break;
964 	case SCTP_V6_FLOW:
965 		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
966 		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
967 			return -EINVAL;
968 
969 		req->ipv6_sctp_en = tuple_sets;
970 		break;
971 	case IPV4_FLOW:
972 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
973 		break;
974 	case IPV6_FLOW:
975 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
976 		break;
977 	default:
978 		return -EINVAL;
979 	}
980 
981 	return 0;
982 }
983 
984 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
985 				 struct ethtool_rxnfc *nfc)
986 {
987 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
988 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
989 	struct hclgevf_rss_input_tuple_cmd *req;
990 	struct hclge_desc desc;
991 	int ret;
992 
993 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
994 		return -EOPNOTSUPP;
995 
996 	if (nfc->data &
997 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
998 		return -EINVAL;
999 
1000 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1001 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1002 
1003 	ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
1004 	if (ret) {
1005 		dev_err(&hdev->pdev->dev,
1006 			"failed to init rss tuple cmd, ret = %d\n", ret);
1007 		return ret;
1008 	}
1009 
1010 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1011 	if (ret) {
1012 		dev_err(&hdev->pdev->dev,
1013 			"Set rss tuple fail, status = %d\n", ret);
1014 		return ret;
1015 	}
1016 
1017 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
1018 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
1019 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
1020 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
1021 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
1022 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
1023 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
1024 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
1025 	return 0;
1026 }
1027 
1028 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
1029 					      int flow_type, u8 *tuple_sets)
1030 {
1031 	switch (flow_type) {
1032 	case TCP_V4_FLOW:
1033 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
1034 		break;
1035 	case UDP_V4_FLOW:
1036 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
1037 		break;
1038 	case TCP_V6_FLOW:
1039 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
1040 		break;
1041 	case UDP_V6_FLOW:
1042 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
1043 		break;
1044 	case SCTP_V4_FLOW:
1045 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
1046 		break;
1047 	case SCTP_V6_FLOW:
1048 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
1049 		break;
1050 	case IPV4_FLOW:
1051 	case IPV6_FLOW:
1052 		*tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
1053 		break;
1054 	default:
1055 		return -EINVAL;
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1062 {
1063 	u64 tuple_data = 0;
1064 
1065 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
1066 		tuple_data |= RXH_L4_B_2_3;
1067 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
1068 		tuple_data |= RXH_L4_B_0_1;
1069 	if (tuple_sets & HCLGEVF_D_IP_BIT)
1070 		tuple_data |= RXH_IP_DST;
1071 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1072 		tuple_data |= RXH_IP_SRC;
1073 
1074 	return tuple_data;
1075 }
1076 
1077 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1078 				 struct ethtool_rxnfc *nfc)
1079 {
1080 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1081 	u8 tuple_sets;
1082 	int ret;
1083 
1084 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1085 		return -EOPNOTSUPP;
1086 
1087 	nfc->data = 0;
1088 
1089 	ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1090 						 &tuple_sets);
1091 	if (ret || !tuple_sets)
1092 		return ret;
1093 
1094 	nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1095 
1096 	return 0;
1097 }
1098 
1099 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1100 				       struct hclgevf_rss_cfg *rss_cfg)
1101 {
1102 	struct hclgevf_rss_input_tuple_cmd *req;
1103 	struct hclge_desc desc;
1104 	int ret;
1105 
1106 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1107 
1108 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1109 
1110 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1111 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1112 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1113 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1114 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1115 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1116 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1117 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1118 
1119 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1120 	if (ret)
1121 		dev_err(&hdev->pdev->dev,
1122 			"Configure rss input fail, status = %d\n", ret);
1123 	return ret;
1124 }
1125 
1126 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1127 {
1128 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1129 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1130 
1131 	return rss_cfg->rss_size;
1132 }
1133 
1134 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1135 				       int vector_id,
1136 				       struct hnae3_ring_chain_node *ring_chain)
1137 {
1138 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1139 	struct hclge_vf_to_pf_msg send_msg;
1140 	struct hnae3_ring_chain_node *node;
1141 	int status;
1142 	int i = 0;
1143 
1144 	memset(&send_msg, 0, sizeof(send_msg));
1145 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1146 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1147 	send_msg.vector_id = vector_id;
1148 
1149 	for (node = ring_chain; node; node = node->next) {
1150 		send_msg.param[i].ring_type =
1151 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1152 
1153 		send_msg.param[i].tqp_index = node->tqp_index;
1154 		send_msg.param[i].int_gl_index =
1155 					hnae3_get_field(node->int_gl_idx,
1156 							HNAE3_RING_GL_IDX_M,
1157 							HNAE3_RING_GL_IDX_S);
1158 
1159 		i++;
1160 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1161 			send_msg.ring_num = i;
1162 
1163 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1164 						      NULL, 0);
1165 			if (status) {
1166 				dev_err(&hdev->pdev->dev,
1167 					"Map TQP fail, status is %d.\n",
1168 					status);
1169 				return status;
1170 			}
1171 			i = 0;
1172 		}
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1179 				      struct hnae3_ring_chain_node *ring_chain)
1180 {
1181 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1182 	int vector_id;
1183 
1184 	vector_id = hclgevf_get_vector_index(hdev, vector);
1185 	if (vector_id < 0) {
1186 		dev_err(&handle->pdev->dev,
1187 			"Get vector index fail. ret =%d\n", vector_id);
1188 		return vector_id;
1189 	}
1190 
1191 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1192 }
1193 
1194 static int hclgevf_unmap_ring_from_vector(
1195 				struct hnae3_handle *handle,
1196 				int vector,
1197 				struct hnae3_ring_chain_node *ring_chain)
1198 {
1199 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1200 	int ret, vector_id;
1201 
1202 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1203 		return 0;
1204 
1205 	vector_id = hclgevf_get_vector_index(hdev, vector);
1206 	if (vector_id < 0) {
1207 		dev_err(&handle->pdev->dev,
1208 			"Get vector index fail. ret =%d\n", vector_id);
1209 		return vector_id;
1210 	}
1211 
1212 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1213 	if (ret)
1214 		dev_err(&handle->pdev->dev,
1215 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1216 			vector_id,
1217 			ret);
1218 
1219 	return ret;
1220 }
1221 
1222 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1223 {
1224 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1225 	int vector_id;
1226 
1227 	vector_id = hclgevf_get_vector_index(hdev, vector);
1228 	if (vector_id < 0) {
1229 		dev_err(&handle->pdev->dev,
1230 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1231 			vector_id);
1232 		return vector_id;
1233 	}
1234 
1235 	hclgevf_free_vector(hdev, vector_id);
1236 
1237 	return 0;
1238 }
1239 
1240 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1241 					bool en_uc_pmc, bool en_mc_pmc,
1242 					bool en_bc_pmc)
1243 {
1244 	struct hnae3_handle *handle = &hdev->nic;
1245 	struct hclge_vf_to_pf_msg send_msg;
1246 	int ret;
1247 
1248 	memset(&send_msg, 0, sizeof(send_msg));
1249 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1250 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1251 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1252 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1253 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1254 					     &handle->priv_flags) ? 1 : 0;
1255 
1256 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1257 	if (ret)
1258 		dev_err(&hdev->pdev->dev,
1259 			"Set promisc mode fail, status is %d.\n", ret);
1260 
1261 	return ret;
1262 }
1263 
1264 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1265 				    bool en_mc_pmc)
1266 {
1267 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1268 	bool en_bc_pmc;
1269 
1270 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1271 
1272 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1273 					    en_bc_pmc);
1274 }
1275 
1276 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1277 {
1278 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1279 
1280 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1281 	hclgevf_task_schedule(hdev, 0);
1282 }
1283 
1284 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1285 {
1286 	struct hnae3_handle *handle = &hdev->nic;
1287 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1288 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1289 	int ret;
1290 
1291 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1292 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1293 		if (!ret)
1294 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1295 	}
1296 }
1297 
1298 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
1299 				       u16 stream_id, bool enable)
1300 {
1301 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1302 	struct hclge_desc desc;
1303 
1304 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1305 
1306 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1307 				     false);
1308 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1309 	req->stream_id = cpu_to_le16(stream_id);
1310 	if (enable)
1311 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1312 
1313 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
1314 }
1315 
1316 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
1317 {
1318 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1319 	int ret;
1320 	u16 i;
1321 
1322 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
1323 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
1324 		if (ret)
1325 			return ret;
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1332 {
1333 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1334 	struct hclgevf_tqp *tqp;
1335 	int i;
1336 
1337 	for (i = 0; i < kinfo->num_tqps; i++) {
1338 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1339 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1340 	}
1341 }
1342 
1343 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1344 {
1345 	struct hclge_vf_to_pf_msg send_msg;
1346 	u8 host_mac[ETH_ALEN];
1347 	int status;
1348 
1349 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1350 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1351 				      ETH_ALEN);
1352 	if (status) {
1353 		dev_err(&hdev->pdev->dev,
1354 			"fail to get VF MAC from host %d", status);
1355 		return status;
1356 	}
1357 
1358 	ether_addr_copy(p, host_mac);
1359 
1360 	return 0;
1361 }
1362 
1363 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1364 {
1365 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1366 	u8 host_mac_addr[ETH_ALEN];
1367 
1368 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1369 		return;
1370 
1371 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1372 	if (hdev->has_pf_mac)
1373 		ether_addr_copy(p, host_mac_addr);
1374 	else
1375 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1376 }
1377 
1378 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
1379 				bool is_first)
1380 {
1381 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1382 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1383 	struct hclge_vf_to_pf_msg send_msg;
1384 	u8 *new_mac_addr = (u8 *)p;
1385 	int status;
1386 
1387 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1388 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1389 	ether_addr_copy(send_msg.data, new_mac_addr);
1390 	if (is_first && !hdev->has_pf_mac)
1391 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1392 	else
1393 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1394 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1395 	if (!status)
1396 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1397 
1398 	return status;
1399 }
1400 
1401 static struct hclgevf_mac_addr_node *
1402 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1403 {
1404 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1405 
1406 	list_for_each_entry_safe(mac_node, tmp, list, node)
1407 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1408 			return mac_node;
1409 
1410 	return NULL;
1411 }
1412 
1413 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1414 				    enum HCLGEVF_MAC_NODE_STATE state)
1415 {
1416 	switch (state) {
1417 	/* from set_rx_mode or tmp_add_list */
1418 	case HCLGEVF_MAC_TO_ADD:
1419 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1420 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1421 		break;
1422 	/* only from set_rx_mode */
1423 	case HCLGEVF_MAC_TO_DEL:
1424 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1425 			list_del(&mac_node->node);
1426 			kfree(mac_node);
1427 		} else {
1428 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1429 		}
1430 		break;
1431 	/* only from tmp_add_list, the mac_node->state won't be
1432 	 * HCLGEVF_MAC_ACTIVE
1433 	 */
1434 	case HCLGEVF_MAC_ACTIVE:
1435 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1436 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1437 		break;
1438 	}
1439 }
1440 
1441 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1442 				   enum HCLGEVF_MAC_NODE_STATE state,
1443 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1444 				   const unsigned char *addr)
1445 {
1446 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1447 	struct hclgevf_mac_addr_node *mac_node;
1448 	struct list_head *list;
1449 
1450 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1451 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1452 
1453 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1454 
1455 	/* if the mac addr is already in the mac list, no need to add a new
1456 	 * one into it, just check the mac addr state, convert it to a new
1457 	 * new state, or just remove it, or do nothing.
1458 	 */
1459 	mac_node = hclgevf_find_mac_node(list, addr);
1460 	if (mac_node) {
1461 		hclgevf_update_mac_node(mac_node, state);
1462 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1463 		return 0;
1464 	}
1465 	/* if this address is never added, unnecessary to delete */
1466 	if (state == HCLGEVF_MAC_TO_DEL) {
1467 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1468 		return -ENOENT;
1469 	}
1470 
1471 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1472 	if (!mac_node) {
1473 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1474 		return -ENOMEM;
1475 	}
1476 
1477 	mac_node->state = state;
1478 	ether_addr_copy(mac_node->mac_addr, addr);
1479 	list_add_tail(&mac_node->node, list);
1480 
1481 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1482 	return 0;
1483 }
1484 
1485 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1486 			       const unsigned char *addr)
1487 {
1488 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1489 				       HCLGEVF_MAC_ADDR_UC, addr);
1490 }
1491 
1492 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1493 			      const unsigned char *addr)
1494 {
1495 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1496 				       HCLGEVF_MAC_ADDR_UC, addr);
1497 }
1498 
1499 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1500 			       const unsigned char *addr)
1501 {
1502 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1503 				       HCLGEVF_MAC_ADDR_MC, addr);
1504 }
1505 
1506 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1507 			      const unsigned char *addr)
1508 {
1509 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1510 				       HCLGEVF_MAC_ADDR_MC, addr);
1511 }
1512 
1513 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1514 				    struct hclgevf_mac_addr_node *mac_node,
1515 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1516 {
1517 	struct hclge_vf_to_pf_msg send_msg;
1518 	u8 code, subcode;
1519 
1520 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1521 		code = HCLGE_MBX_SET_UNICAST;
1522 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1523 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1524 		else
1525 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1526 	} else {
1527 		code = HCLGE_MBX_SET_MULTICAST;
1528 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1529 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1530 		else
1531 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1532 	}
1533 
1534 	hclgevf_build_send_msg(&send_msg, code, subcode);
1535 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1536 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1537 }
1538 
1539 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1540 				    struct list_head *list,
1541 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1542 {
1543 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1544 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1545 	int ret;
1546 
1547 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1548 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1549 		if  (ret) {
1550 			hnae3_format_mac_addr(format_mac_addr,
1551 					      mac_node->mac_addr);
1552 			dev_err(&hdev->pdev->dev,
1553 				"failed to configure mac %s, state = %d, ret = %d\n",
1554 				format_mac_addr, mac_node->state, ret);
1555 			return;
1556 		}
1557 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1558 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1559 		} else {
1560 			list_del(&mac_node->node);
1561 			kfree(mac_node);
1562 		}
1563 	}
1564 }
1565 
1566 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1567 				       struct list_head *mac_list)
1568 {
1569 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1570 
1571 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1572 		/* if the mac address from tmp_add_list is not in the
1573 		 * uc/mc_mac_list, it means have received a TO_DEL request
1574 		 * during the time window of sending mac config request to PF
1575 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1576 		 * then it will be removed at next time. If is TO_ADD, it means
1577 		 * send TO_ADD request failed, so just remove the mac node.
1578 		 */
1579 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1580 		if (new_node) {
1581 			hclgevf_update_mac_node(new_node, mac_node->state);
1582 			list_del(&mac_node->node);
1583 			kfree(mac_node);
1584 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1585 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1586 			list_move_tail(&mac_node->node, mac_list);
1587 		} else {
1588 			list_del(&mac_node->node);
1589 			kfree(mac_node);
1590 		}
1591 	}
1592 }
1593 
1594 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1595 				       struct list_head *mac_list)
1596 {
1597 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1598 
1599 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1600 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1601 		if (new_node) {
1602 			/* If the mac addr is exist in the mac list, it means
1603 			 * received a new request TO_ADD during the time window
1604 			 * of sending mac addr configurrequest to PF, so just
1605 			 * change the mac state to ACTIVE.
1606 			 */
1607 			new_node->state = HCLGEVF_MAC_ACTIVE;
1608 			list_del(&mac_node->node);
1609 			kfree(mac_node);
1610 		} else {
1611 			list_move_tail(&mac_node->node, mac_list);
1612 		}
1613 	}
1614 }
1615 
1616 static void hclgevf_clear_list(struct list_head *list)
1617 {
1618 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1619 
1620 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1621 		list_del(&mac_node->node);
1622 		kfree(mac_node);
1623 	}
1624 }
1625 
1626 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1627 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1628 {
1629 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1630 	struct list_head tmp_add_list, tmp_del_list;
1631 	struct list_head *list;
1632 
1633 	INIT_LIST_HEAD(&tmp_add_list);
1634 	INIT_LIST_HEAD(&tmp_del_list);
1635 
1636 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1637 	 * we can add/delete these mac addr outside the spin lock
1638 	 */
1639 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1640 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1641 
1642 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1643 
1644 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1645 		switch (mac_node->state) {
1646 		case HCLGEVF_MAC_TO_DEL:
1647 			list_move_tail(&mac_node->node, &tmp_del_list);
1648 			break;
1649 		case HCLGEVF_MAC_TO_ADD:
1650 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1651 			if (!new_node)
1652 				goto stop_traverse;
1653 
1654 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1655 			new_node->state = mac_node->state;
1656 			list_add_tail(&new_node->node, &tmp_add_list);
1657 			break;
1658 		default:
1659 			break;
1660 		}
1661 	}
1662 
1663 stop_traverse:
1664 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1665 
1666 	/* delete first, in order to get max mac table space for adding */
1667 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1668 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1669 
1670 	/* if some mac addresses were added/deleted fail, move back to the
1671 	 * mac_list, and retry at next time.
1672 	 */
1673 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1674 
1675 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1676 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1677 
1678 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1679 }
1680 
1681 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1682 {
1683 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1684 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1685 }
1686 
1687 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1688 {
1689 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1690 
1691 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1692 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1693 
1694 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1695 }
1696 
1697 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1698 {
1699 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1700 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1701 	struct hclge_vf_to_pf_msg send_msg;
1702 
1703 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1704 		return -EOPNOTSUPP;
1705 
1706 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1707 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1708 	send_msg.data[0] = enable ? 1 : 0;
1709 
1710 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1711 }
1712 
1713 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1714 				   __be16 proto, u16 vlan_id,
1715 				   bool is_kill)
1716 {
1717 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1718 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1719 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1720 
1721 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1722 	struct hclge_vf_to_pf_msg send_msg;
1723 	int ret;
1724 
1725 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1726 		return -EINVAL;
1727 
1728 	if (proto != htons(ETH_P_8021Q))
1729 		return -EPROTONOSUPPORT;
1730 
1731 	/* When device is resetting or reset failed, firmware is unable to
1732 	 * handle mailbox. Just record the vlan id, and remove it after
1733 	 * reset finished.
1734 	 */
1735 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1736 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1737 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1738 		return -EBUSY;
1739 	}
1740 
1741 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1742 			       HCLGE_MBX_VLAN_FILTER);
1743 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1744 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1745 	       sizeof(vlan_id));
1746 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1747 	       sizeof(proto));
1748 	/* when remove hw vlan filter failed, record the vlan id,
1749 	 * and try to remove it from hw later, to be consistence
1750 	 * with stack.
1751 	 */
1752 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1753 	if (is_kill && ret)
1754 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1755 
1756 	return ret;
1757 }
1758 
1759 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1760 {
1761 #define HCLGEVF_MAX_SYNC_COUNT	60
1762 	struct hnae3_handle *handle = &hdev->nic;
1763 	int ret, sync_cnt = 0;
1764 	u16 vlan_id;
1765 
1766 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1767 	while (vlan_id != VLAN_N_VID) {
1768 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1769 					      vlan_id, true);
1770 		if (ret)
1771 			return;
1772 
1773 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1774 		sync_cnt++;
1775 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1776 			return;
1777 
1778 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1779 	}
1780 }
1781 
1782 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1783 {
1784 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1785 	struct hclge_vf_to_pf_msg send_msg;
1786 
1787 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1788 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1789 	send_msg.data[0] = enable ? 1 : 0;
1790 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1791 }
1792 
1793 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1794 {
1795 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1796 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1797 	struct hclge_vf_to_pf_msg send_msg;
1798 	u8 return_status = 0;
1799 	int ret;
1800 	u16 i;
1801 
1802 	/* disable vf queue before send queue reset msg to PF */
1803 	ret = hclgevf_tqp_enable(handle, false);
1804 	if (ret) {
1805 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1806 			ret);
1807 		return ret;
1808 	}
1809 
1810 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1811 
1812 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1813 				   sizeof(return_status));
1814 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1815 		return ret;
1816 
1817 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1818 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1819 		memcpy(send_msg.data, &i, sizeof(i));
1820 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1821 		if (ret)
1822 			return ret;
1823 	}
1824 
1825 	return 0;
1826 }
1827 
1828 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1829 {
1830 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1831 	struct hclge_vf_to_pf_msg send_msg;
1832 
1833 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1834 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1835 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1836 }
1837 
1838 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1839 				 enum hnae3_reset_notify_type type)
1840 {
1841 	struct hnae3_client *client = hdev->nic_client;
1842 	struct hnae3_handle *handle = &hdev->nic;
1843 	int ret;
1844 
1845 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1846 	    !client)
1847 		return 0;
1848 
1849 	if (!client->ops->reset_notify)
1850 		return -EOPNOTSUPP;
1851 
1852 	ret = client->ops->reset_notify(handle, type);
1853 	if (ret)
1854 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1855 			type, ret);
1856 
1857 	return ret;
1858 }
1859 
1860 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1861 				      enum hnae3_reset_notify_type type)
1862 {
1863 	struct hnae3_client *client = hdev->roce_client;
1864 	struct hnae3_handle *handle = &hdev->roce;
1865 	int ret;
1866 
1867 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1868 		return 0;
1869 
1870 	if (!client->ops->reset_notify)
1871 		return -EOPNOTSUPP;
1872 
1873 	ret = client->ops->reset_notify(handle, type);
1874 	if (ret)
1875 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1876 			type, ret);
1877 	return ret;
1878 }
1879 
1880 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1881 {
1882 #define HCLGEVF_RESET_WAIT_US	20000
1883 #define HCLGEVF_RESET_WAIT_CNT	2000
1884 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1885 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1886 
1887 	u32 val;
1888 	int ret;
1889 
1890 	if (hdev->reset_type == HNAE3_VF_RESET)
1891 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1892 					 HCLGEVF_VF_RST_ING, val,
1893 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1894 					 HCLGEVF_RESET_WAIT_US,
1895 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1896 	else
1897 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1898 					 HCLGEVF_RST_ING, val,
1899 					 !(val & HCLGEVF_RST_ING_BITS),
1900 					 HCLGEVF_RESET_WAIT_US,
1901 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1902 
1903 	/* hardware completion status should be available by this time */
1904 	if (ret) {
1905 		dev_err(&hdev->pdev->dev,
1906 			"couldn't get reset done status from h/w, timeout!\n");
1907 		return ret;
1908 	}
1909 
1910 	/* we will wait a bit more to let reset of the stack to complete. This
1911 	 * might happen in case reset assertion was made by PF. Yes, this also
1912 	 * means we might end up waiting bit more even for VF reset.
1913 	 */
1914 	msleep(5000);
1915 
1916 	return 0;
1917 }
1918 
1919 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1920 {
1921 	u32 reg_val;
1922 
1923 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1924 	if (enable)
1925 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1926 	else
1927 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1928 
1929 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1930 			  reg_val);
1931 }
1932 
1933 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1934 {
1935 	int ret;
1936 
1937 	/* uninitialize the nic client */
1938 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1939 	if (ret)
1940 		return ret;
1941 
1942 	/* re-initialize the hclge device */
1943 	ret = hclgevf_reset_hdev(hdev);
1944 	if (ret) {
1945 		dev_err(&hdev->pdev->dev,
1946 			"hclge device re-init failed, VF is disabled!\n");
1947 		return ret;
1948 	}
1949 
1950 	/* bring up the nic client again */
1951 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1952 	if (ret)
1953 		return ret;
1954 
1955 	/* clear handshake status with IMP */
1956 	hclgevf_reset_handshake(hdev, false);
1957 
1958 	/* bring up the nic to enable TX/RX again */
1959 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1960 }
1961 
1962 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1963 {
1964 #define HCLGEVF_RESET_SYNC_TIME 100
1965 
1966 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1967 		struct hclge_vf_to_pf_msg send_msg;
1968 		int ret;
1969 
1970 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1971 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1972 		if (ret) {
1973 			dev_err(&hdev->pdev->dev,
1974 				"failed to assert VF reset, ret = %d\n", ret);
1975 			return ret;
1976 		}
1977 		hdev->rst_stats.vf_func_rst_cnt++;
1978 	}
1979 
1980 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1981 	/* inform hardware that preparatory work is done */
1982 	msleep(HCLGEVF_RESET_SYNC_TIME);
1983 	hclgevf_reset_handshake(hdev, true);
1984 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1985 		 hdev->reset_type);
1986 
1987 	return 0;
1988 }
1989 
1990 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1991 {
1992 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1993 		 hdev->rst_stats.vf_func_rst_cnt);
1994 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1995 		 hdev->rst_stats.flr_rst_cnt);
1996 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1997 		 hdev->rst_stats.vf_rst_cnt);
1998 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1999 		 hdev->rst_stats.rst_done_cnt);
2000 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
2001 		 hdev->rst_stats.hw_rst_done_cnt);
2002 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
2003 		 hdev->rst_stats.rst_cnt);
2004 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
2005 		 hdev->rst_stats.rst_fail_cnt);
2006 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
2007 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
2008 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
2009 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
2010 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
2011 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
2012 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
2013 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
2014 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
2015 }
2016 
2017 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
2018 {
2019 	/* recover handshake status with IMP when reset fail */
2020 	hclgevf_reset_handshake(hdev, true);
2021 	hdev->rst_stats.rst_fail_cnt++;
2022 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
2023 		hdev->rst_stats.rst_fail_cnt);
2024 
2025 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
2026 		set_bit(hdev->reset_type, &hdev->reset_pending);
2027 
2028 	if (hclgevf_is_reset_pending(hdev)) {
2029 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2030 		hclgevf_reset_task_schedule(hdev);
2031 	} else {
2032 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2033 		hclgevf_dump_rst_info(hdev);
2034 	}
2035 }
2036 
2037 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
2038 {
2039 	int ret;
2040 
2041 	hdev->rst_stats.rst_cnt++;
2042 
2043 	/* perform reset of the stack & ae device for a client */
2044 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
2045 	if (ret)
2046 		return ret;
2047 
2048 	rtnl_lock();
2049 	/* bring down the nic to stop any ongoing TX/RX */
2050 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2051 	rtnl_unlock();
2052 	if (ret)
2053 		return ret;
2054 
2055 	return hclgevf_reset_prepare_wait(hdev);
2056 }
2057 
2058 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
2059 {
2060 	int ret;
2061 
2062 	hdev->rst_stats.hw_rst_done_cnt++;
2063 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
2064 	if (ret)
2065 		return ret;
2066 
2067 	rtnl_lock();
2068 	/* now, re-initialize the nic client and ae device */
2069 	ret = hclgevf_reset_stack(hdev);
2070 	rtnl_unlock();
2071 	if (ret) {
2072 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2073 		return ret;
2074 	}
2075 
2076 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
2077 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
2078 	 * times
2079 	 */
2080 	if (ret &&
2081 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
2082 		return ret;
2083 
2084 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
2085 	if (ret)
2086 		return ret;
2087 
2088 	hdev->last_reset_time = jiffies;
2089 	hdev->rst_stats.rst_done_cnt++;
2090 	hdev->rst_stats.rst_fail_cnt = 0;
2091 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2092 
2093 	return 0;
2094 }
2095 
2096 static void hclgevf_reset(struct hclgevf_dev *hdev)
2097 {
2098 	if (hclgevf_reset_prepare(hdev))
2099 		goto err_reset;
2100 
2101 	/* check if VF could successfully fetch the hardware reset completion
2102 	 * status from the hardware
2103 	 */
2104 	if (hclgevf_reset_wait(hdev)) {
2105 		/* can't do much in this situation, will disable VF */
2106 		dev_err(&hdev->pdev->dev,
2107 			"failed to fetch H/W reset completion status\n");
2108 		goto err_reset;
2109 	}
2110 
2111 	if (hclgevf_reset_rebuild(hdev))
2112 		goto err_reset;
2113 
2114 	return;
2115 
2116 err_reset:
2117 	hclgevf_reset_err_handle(hdev);
2118 }
2119 
2120 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2121 						     unsigned long *addr)
2122 {
2123 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2124 
2125 	/* return the highest priority reset level amongst all */
2126 	if (test_bit(HNAE3_VF_RESET, addr)) {
2127 		rst_level = HNAE3_VF_RESET;
2128 		clear_bit(HNAE3_VF_RESET, addr);
2129 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2130 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2131 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2132 		rst_level = HNAE3_VF_FULL_RESET;
2133 		clear_bit(HNAE3_VF_FULL_RESET, addr);
2134 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2135 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2136 		rst_level = HNAE3_VF_PF_FUNC_RESET;
2137 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2138 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2139 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2140 		rst_level = HNAE3_VF_FUNC_RESET;
2141 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2142 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2143 		rst_level = HNAE3_FLR_RESET;
2144 		clear_bit(HNAE3_FLR_RESET, addr);
2145 	}
2146 
2147 	return rst_level;
2148 }
2149 
2150 static void hclgevf_reset_event(struct pci_dev *pdev,
2151 				struct hnae3_handle *handle)
2152 {
2153 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2154 	struct hclgevf_dev *hdev = ae_dev->priv;
2155 
2156 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2157 
2158 	if (hdev->default_reset_request)
2159 		hdev->reset_level =
2160 			hclgevf_get_reset_level(hdev,
2161 						&hdev->default_reset_request);
2162 	else
2163 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2164 
2165 	/* reset of this VF requested */
2166 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2167 	hclgevf_reset_task_schedule(hdev);
2168 
2169 	hdev->last_reset_time = jiffies;
2170 }
2171 
2172 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2173 					  enum hnae3_reset_type rst_type)
2174 {
2175 	struct hclgevf_dev *hdev = ae_dev->priv;
2176 
2177 	set_bit(rst_type, &hdev->default_reset_request);
2178 }
2179 
2180 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2181 {
2182 	writel(en ? 1 : 0, vector->addr);
2183 }
2184 
2185 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
2186 					  enum hnae3_reset_type rst_type)
2187 {
2188 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
2189 #define HCLGEVF_RESET_RETRY_CNT		5
2190 
2191 	struct hclgevf_dev *hdev = ae_dev->priv;
2192 	int retry_cnt = 0;
2193 	int ret;
2194 
2195 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
2196 		down(&hdev->reset_sem);
2197 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2198 		hdev->reset_type = rst_type;
2199 		ret = hclgevf_reset_prepare(hdev);
2200 		if (!ret && !hdev->reset_pending)
2201 			break;
2202 
2203 		dev_err(&hdev->pdev->dev,
2204 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
2205 			ret, hdev->reset_pending, retry_cnt);
2206 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2207 		up(&hdev->reset_sem);
2208 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
2209 	}
2210 
2211 	/* disable misc vector before reset done */
2212 	hclgevf_enable_vector(&hdev->misc_vector, false);
2213 
2214 	if (hdev->reset_type == HNAE3_FLR_RESET)
2215 		hdev->rst_stats.flr_rst_cnt++;
2216 }
2217 
2218 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
2219 {
2220 	struct hclgevf_dev *hdev = ae_dev->priv;
2221 	int ret;
2222 
2223 	hclgevf_enable_vector(&hdev->misc_vector, true);
2224 
2225 	ret = hclgevf_reset_rebuild(hdev);
2226 	if (ret)
2227 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2228 			 ret);
2229 
2230 	hdev->reset_type = HNAE3_NONE_RESET;
2231 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2232 	up(&hdev->reset_sem);
2233 }
2234 
2235 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2236 {
2237 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2238 
2239 	return hdev->fw_version;
2240 }
2241 
2242 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2243 {
2244 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2245 
2246 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2247 					    HCLGEVF_MISC_VECTOR_NUM);
2248 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2249 	/* vector status always valid for Vector 0 */
2250 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2251 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2252 
2253 	hdev->num_msi_left -= 1;
2254 	hdev->num_msi_used += 1;
2255 }
2256 
2257 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2258 {
2259 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2260 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
2261 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2262 			      &hdev->state))
2263 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2264 }
2265 
2266 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2267 {
2268 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2269 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2270 			      &hdev->state))
2271 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2272 }
2273 
2274 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2275 				  unsigned long delay)
2276 {
2277 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2278 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2279 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2280 }
2281 
2282 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2283 {
2284 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2285 
2286 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2287 		return;
2288 
2289 	down(&hdev->reset_sem);
2290 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2291 
2292 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2293 			       &hdev->reset_state)) {
2294 		/* PF has intimated that it is about to reset the hardware.
2295 		 * We now have to poll & check if hardware has actually
2296 		 * completed the reset sequence. On hardware reset completion,
2297 		 * VF needs to reset the client and ae device.
2298 		 */
2299 		hdev->reset_attempts = 0;
2300 
2301 		hdev->last_reset_time = jiffies;
2302 		hdev->reset_type =
2303 			hclgevf_get_reset_level(hdev, &hdev->reset_pending);
2304 		if (hdev->reset_type != HNAE3_NONE_RESET)
2305 			hclgevf_reset(hdev);
2306 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2307 				      &hdev->reset_state)) {
2308 		/* we could be here when either of below happens:
2309 		 * 1. reset was initiated due to watchdog timeout caused by
2310 		 *    a. IMP was earlier reset and our TX got choked down and
2311 		 *       which resulted in watchdog reacting and inducing VF
2312 		 *       reset. This also means our cmdq would be unreliable.
2313 		 *    b. problem in TX due to other lower layer(example link
2314 		 *       layer not functioning properly etc.)
2315 		 * 2. VF reset might have been initiated due to some config
2316 		 *    change.
2317 		 *
2318 		 * NOTE: Theres no clear way to detect above cases than to react
2319 		 * to the response of PF for this reset request. PF will ack the
2320 		 * 1b and 2. cases but we will not get any intimation about 1a
2321 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2322 		 * communication between PF and VF would be broken.
2323 		 *
2324 		 * if we are never geting into pending state it means either:
2325 		 * 1. PF is not receiving our request which could be due to IMP
2326 		 *    reset
2327 		 * 2. PF is screwed
2328 		 * We cannot do much for 2. but to check first we can try reset
2329 		 * our PCIe + stack and see if it alleviates the problem.
2330 		 */
2331 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2332 			/* prepare for full reset of stack + pcie interface */
2333 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2334 
2335 			/* "defer" schedule the reset task again */
2336 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2337 		} else {
2338 			hdev->reset_attempts++;
2339 
2340 			set_bit(hdev->reset_level, &hdev->reset_pending);
2341 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2342 		}
2343 		hclgevf_reset_task_schedule(hdev);
2344 	}
2345 
2346 	hdev->reset_type = HNAE3_NONE_RESET;
2347 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2348 	up(&hdev->reset_sem);
2349 }
2350 
2351 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2352 {
2353 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2354 		return;
2355 
2356 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2357 		return;
2358 
2359 	hclgevf_mbx_async_handler(hdev);
2360 
2361 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2362 }
2363 
2364 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2365 {
2366 	struct hclge_vf_to_pf_msg send_msg;
2367 	int ret;
2368 
2369 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
2370 		return;
2371 
2372 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2373 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2374 	if (ret)
2375 		dev_err(&hdev->pdev->dev,
2376 			"VF sends keep alive cmd failed(=%d)\n", ret);
2377 }
2378 
2379 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2380 {
2381 	unsigned long delta = round_jiffies_relative(HZ);
2382 	struct hnae3_handle *handle = &hdev->nic;
2383 
2384 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2385 		return;
2386 
2387 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2388 		delta = jiffies - hdev->last_serv_processed;
2389 
2390 		if (delta < round_jiffies_relative(HZ)) {
2391 			delta = round_jiffies_relative(HZ) - delta;
2392 			goto out;
2393 		}
2394 	}
2395 
2396 	hdev->serv_processed_cnt++;
2397 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2398 		hclgevf_keep_alive(hdev);
2399 
2400 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2401 		hdev->last_serv_processed = jiffies;
2402 		goto out;
2403 	}
2404 
2405 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2406 		hclgevf_tqps_update_stats(handle);
2407 
2408 	/* VF does not need to request link status when this bit is set, because
2409 	 * PF will push its link status to VFs when link status changed.
2410 	 */
2411 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
2412 		hclgevf_request_link_info(hdev);
2413 
2414 	hclgevf_update_link_mode(hdev);
2415 
2416 	hclgevf_sync_vlan_filter(hdev);
2417 
2418 	hclgevf_sync_mac_table(hdev);
2419 
2420 	hclgevf_sync_promisc_mode(hdev);
2421 
2422 	hdev->last_serv_processed = jiffies;
2423 
2424 out:
2425 	hclgevf_task_schedule(hdev, delta);
2426 }
2427 
2428 static void hclgevf_service_task(struct work_struct *work)
2429 {
2430 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2431 						service_task.work);
2432 
2433 	hclgevf_reset_service_task(hdev);
2434 	hclgevf_mailbox_service_task(hdev);
2435 	hclgevf_periodic_service_task(hdev);
2436 
2437 	/* Handle reset and mbx again in case periodical task delays the
2438 	 * handling by calling hclgevf_task_schedule() in
2439 	 * hclgevf_periodic_service_task()
2440 	 */
2441 	hclgevf_reset_service_task(hdev);
2442 	hclgevf_mailbox_service_task(hdev);
2443 }
2444 
2445 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2446 {
2447 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
2448 }
2449 
2450 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2451 						      u32 *clearval)
2452 {
2453 	u32 val, cmdq_stat_reg, rst_ing_reg;
2454 
2455 	/* fetch the events from their corresponding regs */
2456 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2457 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
2458 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2459 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2460 		dev_info(&hdev->pdev->dev,
2461 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2462 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2463 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2464 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
2465 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2466 		hdev->rst_stats.vf_rst_cnt++;
2467 		/* set up VF hardware reset status, its PF will clear
2468 		 * this status when PF has initialized done.
2469 		 */
2470 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2471 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2472 				  val | HCLGEVF_VF_RST_ING_BIT);
2473 		return HCLGEVF_VECTOR0_EVENT_RST;
2474 	}
2475 
2476 	/* check for vector0 mailbox(=CMDQ RX) event source */
2477 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2478 		/* for revision 0x21, clearing interrupt is writing bit 0
2479 		 * to the clear register, writing bit 1 means to keep the
2480 		 * old value.
2481 		 * for revision 0x20, the clear register is a read & write
2482 		 * register, so we should just write 0 to the bit we are
2483 		 * handling, and keep other bits as cmdq_stat_reg.
2484 		 */
2485 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2486 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2487 		else
2488 			*clearval = cmdq_stat_reg &
2489 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2490 
2491 		return HCLGEVF_VECTOR0_EVENT_MBX;
2492 	}
2493 
2494 	/* print other vector0 event source */
2495 	dev_info(&hdev->pdev->dev,
2496 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2497 		 cmdq_stat_reg);
2498 
2499 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2500 }
2501 
2502 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2503 {
2504 	enum hclgevf_evt_cause event_cause;
2505 	struct hclgevf_dev *hdev = data;
2506 	u32 clearval;
2507 
2508 	hclgevf_enable_vector(&hdev->misc_vector, false);
2509 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2510 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2511 		hclgevf_clear_event_cause(hdev, clearval);
2512 
2513 	switch (event_cause) {
2514 	case HCLGEVF_VECTOR0_EVENT_RST:
2515 		hclgevf_reset_task_schedule(hdev);
2516 		break;
2517 	case HCLGEVF_VECTOR0_EVENT_MBX:
2518 		hclgevf_mbx_handler(hdev);
2519 		break;
2520 	default:
2521 		break;
2522 	}
2523 
2524 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2525 		hclgevf_enable_vector(&hdev->misc_vector, true);
2526 
2527 	return IRQ_HANDLED;
2528 }
2529 
2530 static int hclgevf_configure(struct hclgevf_dev *hdev)
2531 {
2532 	int ret;
2533 
2534 	hdev->gro_en = true;
2535 
2536 	ret = hclgevf_get_basic_info(hdev);
2537 	if (ret)
2538 		return ret;
2539 
2540 	/* get current port based vlan state from PF */
2541 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2542 	if (ret)
2543 		return ret;
2544 
2545 	/* get queue configuration from PF */
2546 	ret = hclgevf_get_queue_info(hdev);
2547 	if (ret)
2548 		return ret;
2549 
2550 	/* get queue depth info from PF */
2551 	ret = hclgevf_get_queue_depth(hdev);
2552 	if (ret)
2553 		return ret;
2554 
2555 	return hclgevf_get_pf_media_type(hdev);
2556 }
2557 
2558 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2559 {
2560 	struct pci_dev *pdev = ae_dev->pdev;
2561 	struct hclgevf_dev *hdev;
2562 
2563 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2564 	if (!hdev)
2565 		return -ENOMEM;
2566 
2567 	hdev->pdev = pdev;
2568 	hdev->ae_dev = ae_dev;
2569 	ae_dev->priv = hdev;
2570 
2571 	return 0;
2572 }
2573 
2574 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2575 {
2576 	struct hnae3_handle *roce = &hdev->roce;
2577 	struct hnae3_handle *nic = &hdev->nic;
2578 
2579 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2580 
2581 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2582 	    hdev->num_msi_left == 0)
2583 		return -EINVAL;
2584 
2585 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2586 
2587 	roce->rinfo.netdev = nic->kinfo.netdev;
2588 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2589 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2590 
2591 	roce->pdev = nic->pdev;
2592 	roce->ae_algo = nic->ae_algo;
2593 	roce->numa_node_mask = nic->numa_node_mask;
2594 
2595 	return 0;
2596 }
2597 
2598 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2599 {
2600 	struct hclgevf_cfg_gro_status_cmd *req;
2601 	struct hclge_desc desc;
2602 	int ret;
2603 
2604 	if (!hnae3_dev_gro_supported(hdev))
2605 		return 0;
2606 
2607 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2608 				     false);
2609 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2610 
2611 	req->gro_en = hdev->gro_en ? 1 : 0;
2612 
2613 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2614 	if (ret)
2615 		dev_err(&hdev->pdev->dev,
2616 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2617 
2618 	return ret;
2619 }
2620 
2621 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2622 {
2623 	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2624 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2625 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2626 	u32 i;
2627 
2628 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2629 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2630 	tuple_sets = &rss_cfg->rss_tuple_sets;
2631 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2632 		u8 *rss_ind_tbl;
2633 
2634 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2635 
2636 		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2637 					   sizeof(*rss_ind_tbl), GFP_KERNEL);
2638 		if (!rss_ind_tbl)
2639 			return -ENOMEM;
2640 
2641 		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2642 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2643 		       HCLGEVF_RSS_KEY_SIZE);
2644 
2645 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2646 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2647 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2648 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2649 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2650 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2651 		tuple_sets->ipv6_sctp_en =
2652 			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2653 					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2654 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2655 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2656 	}
2657 
2658 	/* Initialize RSS indirect table */
2659 	for (i = 0; i < rss_ind_tbl_size; i++)
2660 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2661 
2662 	return 0;
2663 }
2664 
2665 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2666 {
2667 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2668 	int ret;
2669 
2670 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2671 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2672 					       rss_cfg->rss_hash_key);
2673 		if (ret)
2674 			return ret;
2675 
2676 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2677 		if (ret)
2678 			return ret;
2679 	}
2680 
2681 	ret = hclgevf_set_rss_indir_table(hdev);
2682 	if (ret)
2683 		return ret;
2684 
2685 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2686 }
2687 
2688 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2689 {
2690 	struct hnae3_handle *nic = &hdev->nic;
2691 	int ret;
2692 
2693 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2694 	if (ret) {
2695 		dev_err(&hdev->pdev->dev,
2696 			"failed to enable rx vlan offload, ret = %d\n", ret);
2697 		return ret;
2698 	}
2699 
2700 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2701 				       false);
2702 }
2703 
2704 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2705 {
2706 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2707 
2708 	unsigned long last = hdev->serv_processed_cnt;
2709 	int i = 0;
2710 
2711 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2712 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2713 	       last == hdev->serv_processed_cnt)
2714 		usleep_range(1, 1);
2715 }
2716 
2717 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2718 {
2719 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2720 
2721 	if (enable) {
2722 		hclgevf_task_schedule(hdev, 0);
2723 	} else {
2724 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2725 
2726 		/* flush memory to make sure DOWN is seen by service task */
2727 		smp_mb__before_atomic();
2728 		hclgevf_flush_link_update(hdev);
2729 	}
2730 }
2731 
2732 static int hclgevf_ae_start(struct hnae3_handle *handle)
2733 {
2734 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2735 
2736 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2737 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2738 
2739 	hclgevf_reset_tqp_stats(handle);
2740 
2741 	hclgevf_request_link_info(hdev);
2742 
2743 	hclgevf_update_link_mode(hdev);
2744 
2745 	return 0;
2746 }
2747 
2748 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2749 {
2750 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2751 
2752 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2753 
2754 	if (hdev->reset_type != HNAE3_VF_RESET)
2755 		hclgevf_reset_tqp(handle);
2756 
2757 	hclgevf_reset_tqp_stats(handle);
2758 	hclgevf_update_link_status(hdev, 0);
2759 }
2760 
2761 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2762 {
2763 #define HCLGEVF_STATE_ALIVE	1
2764 #define HCLGEVF_STATE_NOT_ALIVE	0
2765 
2766 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2767 	struct hclge_vf_to_pf_msg send_msg;
2768 
2769 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2770 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2771 				HCLGEVF_STATE_NOT_ALIVE;
2772 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2773 }
2774 
2775 static int hclgevf_client_start(struct hnae3_handle *handle)
2776 {
2777 	return hclgevf_set_alive(handle, true);
2778 }
2779 
2780 static void hclgevf_client_stop(struct hnae3_handle *handle)
2781 {
2782 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2783 	int ret;
2784 
2785 	ret = hclgevf_set_alive(handle, false);
2786 	if (ret)
2787 		dev_warn(&hdev->pdev->dev,
2788 			 "%s failed %d\n", __func__, ret);
2789 }
2790 
2791 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2792 {
2793 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2794 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2795 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2796 
2797 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2798 
2799 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2800 	sema_init(&hdev->reset_sem, 1);
2801 
2802 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2803 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2804 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2805 
2806 	/* bring the device down */
2807 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2808 }
2809 
2810 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2811 {
2812 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2813 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2814 
2815 	if (hdev->service_task.work.func)
2816 		cancel_delayed_work_sync(&hdev->service_task);
2817 
2818 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2819 }
2820 
2821 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2822 {
2823 	struct pci_dev *pdev = hdev->pdev;
2824 	int vectors;
2825 	int i;
2826 
2827 	if (hnae3_dev_roce_supported(hdev))
2828 		vectors = pci_alloc_irq_vectors(pdev,
2829 						hdev->roce_base_msix_offset + 1,
2830 						hdev->num_msi,
2831 						PCI_IRQ_MSIX);
2832 	else
2833 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2834 						hdev->num_msi,
2835 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2836 
2837 	if (vectors < 0) {
2838 		dev_err(&pdev->dev,
2839 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2840 			vectors);
2841 		return vectors;
2842 	}
2843 	if (vectors < hdev->num_msi)
2844 		dev_warn(&hdev->pdev->dev,
2845 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2846 			 hdev->num_msi, vectors);
2847 
2848 	hdev->num_msi = vectors;
2849 	hdev->num_msi_left = vectors;
2850 
2851 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2852 					   sizeof(u16), GFP_KERNEL);
2853 	if (!hdev->vector_status) {
2854 		pci_free_irq_vectors(pdev);
2855 		return -ENOMEM;
2856 	}
2857 
2858 	for (i = 0; i < hdev->num_msi; i++)
2859 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2860 
2861 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2862 					sizeof(int), GFP_KERNEL);
2863 	if (!hdev->vector_irq) {
2864 		devm_kfree(&pdev->dev, hdev->vector_status);
2865 		pci_free_irq_vectors(pdev);
2866 		return -ENOMEM;
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2873 {
2874 	struct pci_dev *pdev = hdev->pdev;
2875 
2876 	devm_kfree(&pdev->dev, hdev->vector_status);
2877 	devm_kfree(&pdev->dev, hdev->vector_irq);
2878 	pci_free_irq_vectors(pdev);
2879 }
2880 
2881 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2882 {
2883 	int ret;
2884 
2885 	hclgevf_get_misc_vector(hdev);
2886 
2887 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2888 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2889 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2890 			  0, hdev->misc_vector.name, hdev);
2891 	if (ret) {
2892 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2893 			hdev->misc_vector.vector_irq);
2894 		return ret;
2895 	}
2896 
2897 	hclgevf_clear_event_cause(hdev, 0);
2898 
2899 	/* enable misc. vector(vector 0) */
2900 	hclgevf_enable_vector(&hdev->misc_vector, true);
2901 
2902 	return ret;
2903 }
2904 
2905 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2906 {
2907 	/* disable misc vector(vector 0) */
2908 	hclgevf_enable_vector(&hdev->misc_vector, false);
2909 	synchronize_irq(hdev->misc_vector.vector_irq);
2910 	free_irq(hdev->misc_vector.vector_irq, hdev);
2911 	hclgevf_free_vector(hdev, 0);
2912 }
2913 
2914 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2915 {
2916 	struct device *dev = &hdev->pdev->dev;
2917 
2918 	dev_info(dev, "VF info begin:\n");
2919 
2920 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2921 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2922 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2923 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2924 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2925 	dev_info(dev, "PF media type of this VF: %u\n",
2926 		 hdev->hw.mac.media_type);
2927 
2928 	dev_info(dev, "VF info end.\n");
2929 }
2930 
2931 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2932 					    struct hnae3_client *client)
2933 {
2934 	struct hclgevf_dev *hdev = ae_dev->priv;
2935 	int rst_cnt = hdev->rst_stats.rst_cnt;
2936 	int ret;
2937 
2938 	ret = client->ops->init_instance(&hdev->nic);
2939 	if (ret)
2940 		return ret;
2941 
2942 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2943 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2944 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2945 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2946 
2947 		client->ops->uninit_instance(&hdev->nic, 0);
2948 		return -EBUSY;
2949 	}
2950 
2951 	hnae3_set_client_init_flag(client, ae_dev, 1);
2952 
2953 	if (netif_msg_drv(&hdev->nic))
2954 		hclgevf_info_show(hdev);
2955 
2956 	return 0;
2957 }
2958 
2959 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2960 					     struct hnae3_client *client)
2961 {
2962 	struct hclgevf_dev *hdev = ae_dev->priv;
2963 	int ret;
2964 
2965 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2966 	    !hdev->nic_client)
2967 		return 0;
2968 
2969 	ret = hclgevf_init_roce_base_info(hdev);
2970 	if (ret)
2971 		return ret;
2972 
2973 	ret = client->ops->init_instance(&hdev->roce);
2974 	if (ret)
2975 		return ret;
2976 
2977 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2978 	hnae3_set_client_init_flag(client, ae_dev, 1);
2979 
2980 	return 0;
2981 }
2982 
2983 static int hclgevf_init_client_instance(struct hnae3_client *client,
2984 					struct hnae3_ae_dev *ae_dev)
2985 {
2986 	struct hclgevf_dev *hdev = ae_dev->priv;
2987 	int ret;
2988 
2989 	switch (client->type) {
2990 	case HNAE3_CLIENT_KNIC:
2991 		hdev->nic_client = client;
2992 		hdev->nic.client = client;
2993 
2994 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2995 		if (ret)
2996 			goto clear_nic;
2997 
2998 		ret = hclgevf_init_roce_client_instance(ae_dev,
2999 							hdev->roce_client);
3000 		if (ret)
3001 			goto clear_roce;
3002 
3003 		break;
3004 	case HNAE3_CLIENT_ROCE:
3005 		if (hnae3_dev_roce_supported(hdev)) {
3006 			hdev->roce_client = client;
3007 			hdev->roce.client = client;
3008 		}
3009 
3010 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
3011 		if (ret)
3012 			goto clear_roce;
3013 
3014 		break;
3015 	default:
3016 		return -EINVAL;
3017 	}
3018 
3019 	return 0;
3020 
3021 clear_nic:
3022 	hdev->nic_client = NULL;
3023 	hdev->nic.client = NULL;
3024 	return ret;
3025 clear_roce:
3026 	hdev->roce_client = NULL;
3027 	hdev->roce.client = NULL;
3028 	return ret;
3029 }
3030 
3031 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
3032 					   struct hnae3_ae_dev *ae_dev)
3033 {
3034 	struct hclgevf_dev *hdev = ae_dev->priv;
3035 
3036 	/* un-init roce, if it exists */
3037 	if (hdev->roce_client) {
3038 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
3039 			msleep(HCLGEVF_WAIT_RESET_DONE);
3040 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
3041 
3042 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
3043 		hdev->roce_client = NULL;
3044 		hdev->roce.client = NULL;
3045 	}
3046 
3047 	/* un-init nic/unic, if this was not called by roce client */
3048 	if (client->ops->uninit_instance && hdev->nic_client &&
3049 	    client->type != HNAE3_CLIENT_ROCE) {
3050 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
3051 			msleep(HCLGEVF_WAIT_RESET_DONE);
3052 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
3053 
3054 		client->ops->uninit_instance(&hdev->nic, 0);
3055 		hdev->nic_client = NULL;
3056 		hdev->nic.client = NULL;
3057 	}
3058 }
3059 
3060 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
3061 {
3062 #define HCLGEVF_MEM_BAR		4
3063 
3064 	struct pci_dev *pdev = hdev->pdev;
3065 	struct hclgevf_hw *hw = &hdev->hw;
3066 
3067 	/* for device does not have device memory, return directly */
3068 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
3069 		return 0;
3070 
3071 	hw->hw.mem_base =
3072 		devm_ioremap_wc(&pdev->dev,
3073 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
3074 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
3075 	if (!hw->hw.mem_base) {
3076 		dev_err(&pdev->dev, "failed to map device memory\n");
3077 		return -EFAULT;
3078 	}
3079 
3080 	return 0;
3081 }
3082 
3083 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
3084 {
3085 	struct pci_dev *pdev = hdev->pdev;
3086 	struct hclgevf_hw *hw;
3087 	int ret;
3088 
3089 	ret = pci_enable_device(pdev);
3090 	if (ret) {
3091 		dev_err(&pdev->dev, "failed to enable PCI device\n");
3092 		return ret;
3093 	}
3094 
3095 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3096 	if (ret) {
3097 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
3098 		goto err_disable_device;
3099 	}
3100 
3101 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
3102 	if (ret) {
3103 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
3104 		goto err_disable_device;
3105 	}
3106 
3107 	pci_set_master(pdev);
3108 	hw = &hdev->hw;
3109 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
3110 	if (!hw->hw.io_base) {
3111 		dev_err(&pdev->dev, "can't map configuration register space\n");
3112 		ret = -ENOMEM;
3113 		goto err_clr_master;
3114 	}
3115 
3116 	ret = hclgevf_dev_mem_map(hdev);
3117 	if (ret)
3118 		goto err_unmap_io_base;
3119 
3120 	return 0;
3121 
3122 err_unmap_io_base:
3123 	pci_iounmap(pdev, hdev->hw.hw.io_base);
3124 err_clr_master:
3125 	pci_clear_master(pdev);
3126 	pci_release_regions(pdev);
3127 err_disable_device:
3128 	pci_disable_device(pdev);
3129 
3130 	return ret;
3131 }
3132 
3133 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3134 {
3135 	struct pci_dev *pdev = hdev->pdev;
3136 
3137 	if (hdev->hw.hw.mem_base)
3138 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
3139 
3140 	pci_iounmap(pdev, hdev->hw.hw.io_base);
3141 	pci_clear_master(pdev);
3142 	pci_release_regions(pdev);
3143 	pci_disable_device(pdev);
3144 }
3145 
3146 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3147 {
3148 	struct hclgevf_query_res_cmd *req;
3149 	struct hclge_desc desc;
3150 	int ret;
3151 
3152 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3153 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3154 	if (ret) {
3155 		dev_err(&hdev->pdev->dev,
3156 			"query vf resource failed, ret = %d.\n", ret);
3157 		return ret;
3158 	}
3159 
3160 	req = (struct hclgevf_query_res_cmd *)desc.data;
3161 
3162 	if (hnae3_dev_roce_supported(hdev)) {
3163 		hdev->roce_base_msix_offset =
3164 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3165 				HCLGEVF_MSIX_OFT_ROCEE_M,
3166 				HCLGEVF_MSIX_OFT_ROCEE_S);
3167 		hdev->num_roce_msix =
3168 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3169 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3170 
3171 		/* nic's msix numbers is always equals to the roce's. */
3172 		hdev->num_nic_msix = hdev->num_roce_msix;
3173 
3174 		/* VF should have NIC vectors and Roce vectors, NIC vectors
3175 		 * are queued before Roce vectors. The offset is fixed to 64.
3176 		 */
3177 		hdev->num_msi = hdev->num_roce_msix +
3178 				hdev->roce_base_msix_offset;
3179 	} else {
3180 		hdev->num_msi =
3181 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3182 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3183 
3184 		hdev->num_nic_msix = hdev->num_msi;
3185 	}
3186 
3187 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3188 		dev_err(&hdev->pdev->dev,
3189 			"Just %u msi resources, not enough for vf(min:2).\n",
3190 			hdev->num_nic_msix);
3191 		return -EINVAL;
3192 	}
3193 
3194 	return 0;
3195 }
3196 
3197 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3198 {
3199 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3200 
3201 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3202 
3203 	ae_dev->dev_specs.max_non_tso_bd_num =
3204 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3205 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3206 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3207 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3208 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3209 }
3210 
3211 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3212 				    struct hclge_desc *desc)
3213 {
3214 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3215 	struct hclgevf_dev_specs_0_cmd *req0;
3216 	struct hclgevf_dev_specs_1_cmd *req1;
3217 
3218 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3219 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3220 
3221 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3222 	ae_dev->dev_specs.rss_ind_tbl_size =
3223 					le16_to_cpu(req0->rss_ind_tbl_size);
3224 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3225 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3226 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3227 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3228 }
3229 
3230 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3231 {
3232 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3233 
3234 	if (!dev_specs->max_non_tso_bd_num)
3235 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3236 	if (!dev_specs->rss_ind_tbl_size)
3237 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3238 	if (!dev_specs->rss_key_size)
3239 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3240 	if (!dev_specs->max_int_gl)
3241 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3242 	if (!dev_specs->max_frm_size)
3243 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3244 }
3245 
3246 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3247 {
3248 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3249 	int ret;
3250 	int i;
3251 
3252 	/* set default specifications as devices lower than version V3 do not
3253 	 * support querying specifications from firmware.
3254 	 */
3255 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3256 		hclgevf_set_default_dev_specs(hdev);
3257 		return 0;
3258 	}
3259 
3260 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3261 		hclgevf_cmd_setup_basic_desc(&desc[i],
3262 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3263 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
3264 	}
3265 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3266 				     true);
3267 
3268 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3269 	if (ret)
3270 		return ret;
3271 
3272 	hclgevf_parse_dev_specs(hdev, desc);
3273 	hclgevf_check_dev_specs(hdev);
3274 
3275 	return 0;
3276 }
3277 
3278 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3279 {
3280 	struct pci_dev *pdev = hdev->pdev;
3281 	int ret = 0;
3282 
3283 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3284 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3285 		hclgevf_misc_irq_uninit(hdev);
3286 		hclgevf_uninit_msi(hdev);
3287 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3288 	}
3289 
3290 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3291 		pci_set_master(pdev);
3292 		ret = hclgevf_init_msi(hdev);
3293 		if (ret) {
3294 			dev_err(&pdev->dev,
3295 				"failed(%d) to init MSI/MSI-X\n", ret);
3296 			return ret;
3297 		}
3298 
3299 		ret = hclgevf_misc_irq_init(hdev);
3300 		if (ret) {
3301 			hclgevf_uninit_msi(hdev);
3302 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3303 				ret);
3304 			return ret;
3305 		}
3306 
3307 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3308 	}
3309 
3310 	return ret;
3311 }
3312 
3313 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3314 {
3315 	struct hclge_vf_to_pf_msg send_msg;
3316 
3317 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3318 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3319 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3320 }
3321 
3322 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
3323 {
3324 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3325 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
3326 }
3327 
3328 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
3329 {
3330 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3331 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
3332 }
3333 
3334 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3335 {
3336 	struct pci_dev *pdev = hdev->pdev;
3337 	int ret;
3338 
3339 	ret = hclgevf_pci_reset(hdev);
3340 	if (ret) {
3341 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3342 		return ret;
3343 	}
3344 
3345 	hclgevf_arq_init(hdev);
3346 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
3347 				  &hdev->fw_version, false,
3348 				  hdev->reset_pending);
3349 	if (ret) {
3350 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3351 		return ret;
3352 	}
3353 
3354 	ret = hclgevf_rss_init_hw(hdev);
3355 	if (ret) {
3356 		dev_err(&hdev->pdev->dev,
3357 			"failed(%d) to initialize RSS\n", ret);
3358 		return ret;
3359 	}
3360 
3361 	ret = hclgevf_config_gro(hdev);
3362 	if (ret)
3363 		return ret;
3364 
3365 	ret = hclgevf_init_vlan_config(hdev);
3366 	if (ret) {
3367 		dev_err(&hdev->pdev->dev,
3368 			"failed(%d) to initialize VLAN config\n", ret);
3369 		return ret;
3370 	}
3371 
3372 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3373 
3374 	hclgevf_init_rxd_adv_layout(hdev);
3375 
3376 	dev_info(&hdev->pdev->dev, "Reset done\n");
3377 
3378 	return 0;
3379 }
3380 
3381 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3382 {
3383 	struct pci_dev *pdev = hdev->pdev;
3384 	int ret;
3385 
3386 	ret = hclgevf_pci_init(hdev);
3387 	if (ret)
3388 		return ret;
3389 
3390 	ret = hclgevf_devlink_init(hdev);
3391 	if (ret)
3392 		goto err_devlink_init;
3393 
3394 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
3395 	if (ret)
3396 		goto err_cmd_queue_init;
3397 
3398 	hclgevf_arq_init(hdev);
3399 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
3400 				  &hdev->fw_version, false,
3401 				  hdev->reset_pending);
3402 	if (ret)
3403 		goto err_cmd_init;
3404 
3405 	/* Get vf resource */
3406 	ret = hclgevf_query_vf_resource(hdev);
3407 	if (ret)
3408 		goto err_cmd_init;
3409 
3410 	ret = hclgevf_query_dev_specs(hdev);
3411 	if (ret) {
3412 		dev_err(&pdev->dev,
3413 			"failed to query dev specifications, ret = %d\n", ret);
3414 		goto err_cmd_init;
3415 	}
3416 
3417 	ret = hclgevf_init_msi(hdev);
3418 	if (ret) {
3419 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3420 		goto err_cmd_init;
3421 	}
3422 
3423 	hclgevf_state_init(hdev);
3424 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3425 	hdev->reset_type = HNAE3_NONE_RESET;
3426 
3427 	ret = hclgevf_misc_irq_init(hdev);
3428 	if (ret)
3429 		goto err_misc_irq_init;
3430 
3431 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3432 
3433 	ret = hclgevf_configure(hdev);
3434 	if (ret) {
3435 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3436 		goto err_config;
3437 	}
3438 
3439 	ret = hclgevf_alloc_tqps(hdev);
3440 	if (ret) {
3441 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3442 		goto err_config;
3443 	}
3444 
3445 	ret = hclgevf_set_handle_info(hdev);
3446 	if (ret)
3447 		goto err_config;
3448 
3449 	ret = hclgevf_config_gro(hdev);
3450 	if (ret)
3451 		goto err_config;
3452 
3453 	/* Initialize RSS for this VF */
3454 	ret = hclgevf_rss_init_cfg(hdev);
3455 	if (ret) {
3456 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3457 		goto err_config;
3458 	}
3459 
3460 	ret = hclgevf_rss_init_hw(hdev);
3461 	if (ret) {
3462 		dev_err(&hdev->pdev->dev,
3463 			"failed(%d) to initialize RSS\n", ret);
3464 		goto err_config;
3465 	}
3466 
3467 	/* ensure vf tbl list as empty before init*/
3468 	ret = hclgevf_clear_vport_list(hdev);
3469 	if (ret) {
3470 		dev_err(&pdev->dev,
3471 			"failed to clear tbl list configuration, ret = %d.\n",
3472 			ret);
3473 		goto err_config;
3474 	}
3475 
3476 	ret = hclgevf_init_vlan_config(hdev);
3477 	if (ret) {
3478 		dev_err(&hdev->pdev->dev,
3479 			"failed(%d) to initialize VLAN config\n", ret);
3480 		goto err_config;
3481 	}
3482 
3483 	hclgevf_init_rxd_adv_layout(hdev);
3484 
3485 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
3486 
3487 	hdev->last_reset_time = jiffies;
3488 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3489 		 HCLGEVF_DRIVER_NAME);
3490 
3491 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3492 
3493 	return 0;
3494 
3495 err_config:
3496 	hclgevf_misc_irq_uninit(hdev);
3497 err_misc_irq_init:
3498 	hclgevf_state_uninit(hdev);
3499 	hclgevf_uninit_msi(hdev);
3500 err_cmd_init:
3501 	hclge_comm_cmd_uninit(hdev->ae_dev, false, &hdev->hw.hw);
3502 err_cmd_queue_init:
3503 	hclgevf_devlink_uninit(hdev);
3504 err_devlink_init:
3505 	hclgevf_pci_uninit(hdev);
3506 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3507 	return ret;
3508 }
3509 
3510 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3511 {
3512 	struct hclge_vf_to_pf_msg send_msg;
3513 
3514 	hclgevf_state_uninit(hdev);
3515 	hclgevf_uninit_rxd_adv_layout(hdev);
3516 
3517 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3518 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3519 
3520 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3521 		hclgevf_misc_irq_uninit(hdev);
3522 		hclgevf_uninit_msi(hdev);
3523 	}
3524 
3525 	hclge_comm_cmd_uninit(hdev->ae_dev, false, &hdev->hw.hw);
3526 	hclgevf_devlink_uninit(hdev);
3527 	hclgevf_pci_uninit(hdev);
3528 	hclgevf_uninit_mac_list(hdev);
3529 }
3530 
3531 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3532 {
3533 	struct pci_dev *pdev = ae_dev->pdev;
3534 	int ret;
3535 
3536 	ret = hclgevf_alloc_hdev(ae_dev);
3537 	if (ret) {
3538 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3539 		return ret;
3540 	}
3541 
3542 	ret = hclgevf_init_hdev(ae_dev->priv);
3543 	if (ret) {
3544 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3545 		return ret;
3546 	}
3547 
3548 	return 0;
3549 }
3550 
3551 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3552 {
3553 	struct hclgevf_dev *hdev = ae_dev->priv;
3554 
3555 	hclgevf_uninit_hdev(hdev);
3556 	ae_dev->priv = NULL;
3557 }
3558 
3559 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3560 {
3561 	struct hnae3_handle *nic = &hdev->nic;
3562 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3563 
3564 	return min_t(u32, hdev->rss_size_max,
3565 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3566 }
3567 
3568 /**
3569  * hclgevf_get_channels - Get the current channels enabled and max supported.
3570  * @handle: hardware information for network interface
3571  * @ch: ethtool channels structure
3572  *
3573  * We don't support separate tx and rx queues as channels. The other count
3574  * represents how many queues are being used for control. max_combined counts
3575  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3576  * q_vectors since we support a lot more queue pairs than q_vectors.
3577  **/
3578 static void hclgevf_get_channels(struct hnae3_handle *handle,
3579 				 struct ethtool_channels *ch)
3580 {
3581 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3582 
3583 	ch->max_combined = hclgevf_get_max_channels(hdev);
3584 	ch->other_count = 0;
3585 	ch->max_other = 0;
3586 	ch->combined_count = handle->kinfo.rss_size;
3587 }
3588 
3589 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3590 					  u16 *alloc_tqps, u16 *max_rss_size)
3591 {
3592 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3593 
3594 	*alloc_tqps = hdev->num_tqps;
3595 	*max_rss_size = hdev->rss_size_max;
3596 }
3597 
3598 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3599 				    u32 new_tqps_num)
3600 {
3601 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3602 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3603 	u16 max_rss_size;
3604 
3605 	kinfo->req_rss_size = new_tqps_num;
3606 
3607 	max_rss_size = min_t(u16, hdev->rss_size_max,
3608 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3609 
3610 	/* Use the user's configuration when it is not larger than
3611 	 * max_rss_size, otherwise, use the maximum specification value.
3612 	 */
3613 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3614 	    kinfo->req_rss_size <= max_rss_size)
3615 		kinfo->rss_size = kinfo->req_rss_size;
3616 	else if (kinfo->rss_size > max_rss_size ||
3617 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3618 		kinfo->rss_size = max_rss_size;
3619 
3620 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3621 }
3622 
3623 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3624 				bool rxfh_configured)
3625 {
3626 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3627 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3628 	u16 cur_rss_size = kinfo->rss_size;
3629 	u16 cur_tqps = kinfo->num_tqps;
3630 	u32 *rss_indir;
3631 	unsigned int i;
3632 	int ret;
3633 
3634 	hclgevf_update_rss_size(handle, new_tqps_num);
3635 
3636 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3637 	if (ret)
3638 		return ret;
3639 
3640 	/* RSS indirection table has been configured by user */
3641 	if (rxfh_configured)
3642 		goto out;
3643 
3644 	/* Reinitializes the rss indirect table according to the new RSS size */
3645 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3646 			    sizeof(u32), GFP_KERNEL);
3647 	if (!rss_indir)
3648 		return -ENOMEM;
3649 
3650 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3651 		rss_indir[i] = i % kinfo->rss_size;
3652 
3653 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3654 
3655 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3656 	if (ret)
3657 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3658 			ret);
3659 
3660 	kfree(rss_indir);
3661 
3662 out:
3663 	if (!ret)
3664 		dev_info(&hdev->pdev->dev,
3665 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3666 			 cur_rss_size, kinfo->rss_size,
3667 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3668 
3669 	return ret;
3670 }
3671 
3672 static int hclgevf_get_status(struct hnae3_handle *handle)
3673 {
3674 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3675 
3676 	return hdev->hw.mac.link;
3677 }
3678 
3679 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3680 					    u8 *auto_neg, u32 *speed,
3681 					    u8 *duplex)
3682 {
3683 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3684 
3685 	if (speed)
3686 		*speed = hdev->hw.mac.speed;
3687 	if (duplex)
3688 		*duplex = hdev->hw.mac.duplex;
3689 	if (auto_neg)
3690 		*auto_neg = AUTONEG_DISABLE;
3691 }
3692 
3693 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3694 				 u8 duplex)
3695 {
3696 	hdev->hw.mac.speed = speed;
3697 	hdev->hw.mac.duplex = duplex;
3698 }
3699 
3700 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3701 {
3702 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3703 	bool gro_en_old = hdev->gro_en;
3704 	int ret;
3705 
3706 	hdev->gro_en = enable;
3707 	ret = hclgevf_config_gro(hdev);
3708 	if (ret)
3709 		hdev->gro_en = gro_en_old;
3710 
3711 	return ret;
3712 }
3713 
3714 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3715 				   u8 *module_type)
3716 {
3717 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3718 
3719 	if (media_type)
3720 		*media_type = hdev->hw.mac.media_type;
3721 
3722 	if (module_type)
3723 		*module_type = hdev->hw.mac.module_type;
3724 }
3725 
3726 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3727 {
3728 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3729 
3730 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3731 }
3732 
3733 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3734 {
3735 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3736 
3737 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3738 }
3739 
3740 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3741 {
3742 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3743 
3744 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3745 }
3746 
3747 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3748 {
3749 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3750 
3751 	return hdev->rst_stats.hw_rst_done_cnt;
3752 }
3753 
3754 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3755 				  unsigned long *supported,
3756 				  unsigned long *advertising)
3757 {
3758 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3759 
3760 	*supported = hdev->hw.mac.supported;
3761 	*advertising = hdev->hw.mac.advertising;
3762 }
3763 
3764 #define MAX_SEPARATE_NUM	4
3765 #define SEPARATOR_VALUE		0xFDFCFBFA
3766 #define REG_NUM_PER_LINE	4
3767 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3768 
3769 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3770 {
3771 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3772 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3773 
3774 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3775 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3776 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3777 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3778 
3779 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3780 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3781 }
3782 
3783 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3784 			     void *data)
3785 {
3786 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3787 	int i, j, reg_um, separator_num;
3788 	u32 *reg = data;
3789 
3790 	*version = hdev->fw_version;
3791 
3792 	/* fetching per-VF registers values from VF PCIe register space */
3793 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3794 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3795 	for (i = 0; i < reg_um; i++)
3796 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3797 	for (i = 0; i < separator_num; i++)
3798 		*reg++ = SEPARATOR_VALUE;
3799 
3800 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3801 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3802 	for (i = 0; i < reg_um; i++)
3803 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3804 	for (i = 0; i < separator_num; i++)
3805 		*reg++ = SEPARATOR_VALUE;
3806 
3807 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3808 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3809 	for (j = 0; j < hdev->num_tqps; j++) {
3810 		for (i = 0; i < reg_um; i++)
3811 			*reg++ = hclgevf_read_dev(&hdev->hw,
3812 						  ring_reg_addr_list[i] +
3813 						  0x200 * j);
3814 		for (i = 0; i < separator_num; i++)
3815 			*reg++ = SEPARATOR_VALUE;
3816 	}
3817 
3818 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3819 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3820 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3821 		for (i = 0; i < reg_um; i++)
3822 			*reg++ = hclgevf_read_dev(&hdev->hw,
3823 						  tqp_intr_reg_addr_list[i] +
3824 						  4 * j);
3825 		for (i = 0; i < separator_num; i++)
3826 			*reg++ = SEPARATOR_VALUE;
3827 	}
3828 }
3829 
3830 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3831 					u8 *port_base_vlan_info, u8 data_size)
3832 {
3833 	struct hnae3_handle *nic = &hdev->nic;
3834 	struct hclge_vf_to_pf_msg send_msg;
3835 	int ret;
3836 
3837 	rtnl_lock();
3838 
3839 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3840 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3841 		dev_warn(&hdev->pdev->dev,
3842 			 "is resetting when updating port based vlan info\n");
3843 		rtnl_unlock();
3844 		return;
3845 	}
3846 
3847 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3848 	if (ret) {
3849 		rtnl_unlock();
3850 		return;
3851 	}
3852 
3853 	/* send msg to PF and wait update port based vlan info */
3854 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3855 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3856 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3857 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3858 	if (!ret) {
3859 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3860 			nic->port_base_vlan_state = state;
3861 		else
3862 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3863 	}
3864 
3865 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3866 	rtnl_unlock();
3867 }
3868 
3869 static const struct hnae3_ae_ops hclgevf_ops = {
3870 	.init_ae_dev = hclgevf_init_ae_dev,
3871 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3872 	.reset_prepare = hclgevf_reset_prepare_general,
3873 	.reset_done = hclgevf_reset_done,
3874 	.init_client_instance = hclgevf_init_client_instance,
3875 	.uninit_client_instance = hclgevf_uninit_client_instance,
3876 	.start = hclgevf_ae_start,
3877 	.stop = hclgevf_ae_stop,
3878 	.client_start = hclgevf_client_start,
3879 	.client_stop = hclgevf_client_stop,
3880 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3881 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3882 	.get_vector = hclgevf_get_vector,
3883 	.put_vector = hclgevf_put_vector,
3884 	.reset_queue = hclgevf_reset_tqp,
3885 	.get_mac_addr = hclgevf_get_mac_addr,
3886 	.set_mac_addr = hclgevf_set_mac_addr,
3887 	.add_uc_addr = hclgevf_add_uc_addr,
3888 	.rm_uc_addr = hclgevf_rm_uc_addr,
3889 	.add_mc_addr = hclgevf_add_mc_addr,
3890 	.rm_mc_addr = hclgevf_rm_mc_addr,
3891 	.get_stats = hclgevf_get_stats,
3892 	.update_stats = hclgevf_update_stats,
3893 	.get_strings = hclgevf_get_strings,
3894 	.get_sset_count = hclgevf_get_sset_count,
3895 	.get_rss_key_size = hclgevf_get_rss_key_size,
3896 	.get_rss = hclgevf_get_rss,
3897 	.set_rss = hclgevf_set_rss,
3898 	.get_rss_tuple = hclgevf_get_rss_tuple,
3899 	.set_rss_tuple = hclgevf_set_rss_tuple,
3900 	.get_tc_size = hclgevf_get_tc_size,
3901 	.get_fw_version = hclgevf_get_fw_version,
3902 	.set_vlan_filter = hclgevf_set_vlan_filter,
3903 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3904 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3905 	.reset_event = hclgevf_reset_event,
3906 	.set_default_reset_request = hclgevf_set_def_reset_request,
3907 	.set_channels = hclgevf_set_channels,
3908 	.get_channels = hclgevf_get_channels,
3909 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3910 	.get_regs_len = hclgevf_get_regs_len,
3911 	.get_regs = hclgevf_get_regs,
3912 	.get_status = hclgevf_get_status,
3913 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3914 	.get_media_type = hclgevf_get_media_type,
3915 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3916 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3917 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3918 	.set_gro_en = hclgevf_gro_en,
3919 	.set_mtu = hclgevf_set_mtu,
3920 	.get_global_queue_id = hclgevf_get_qid_global,
3921 	.set_timer_task = hclgevf_set_timer_task,
3922 	.get_link_mode = hclgevf_get_link_mode,
3923 	.set_promisc_mode = hclgevf_set_promisc_mode,
3924 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3925 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3926 };
3927 
3928 static struct hnae3_ae_algo ae_algovf = {
3929 	.ops = &hclgevf_ops,
3930 	.pdev_id_table = ae_algovf_pci_tbl,
3931 };
3932 
3933 static int hclgevf_init(void)
3934 {
3935 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3936 
3937 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3938 	if (!hclgevf_wq) {
3939 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3940 		return -ENOMEM;
3941 	}
3942 
3943 	hnae3_register_ae_algo(&ae_algovf);
3944 
3945 	return 0;
3946 }
3947 
3948 static void hclgevf_exit(void)
3949 {
3950 	hnae3_unregister_ae_algo(&ae_algovf);
3951 	destroy_workqueue(hclgevf_wq);
3952 }
3953 module_init(hclgevf_init);
3954 module_exit(hclgevf_exit);
3955 
3956 MODULE_LICENSE("GPL");
3957 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3958 MODULE_DESCRIPTION("HCLGEVF Driver");
3959 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3960