1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/etherdevice.h> 5 #include <linux/iopoll.h> 6 #include <net/rtnetlink.h> 7 #include "hclgevf_cmd.h" 8 #include "hclgevf_main.h" 9 #include "hclge_mbx.h" 10 #include "hnae3.h" 11 #include "hclgevf_devlink.h" 12 #include "hclge_comm_rss.h" 13 14 #define HCLGEVF_NAME "hclgevf" 15 16 #define HCLGEVF_RESET_MAX_FAIL_CNT 5 17 18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev); 19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 20 unsigned long delay); 21 22 static struct hnae3_ae_algo ae_algovf; 23 24 static struct workqueue_struct *hclgevf_wq; 25 26 static const struct pci_device_id ae_algovf_pci_tbl[] = { 27 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, 28 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), 29 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 30 /* required last entry */ 31 {0, } 32 }; 33 34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); 35 36 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG, 37 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG, 38 HCLGE_COMM_NIC_CSQ_DEPTH_REG, 39 HCLGE_COMM_NIC_CSQ_TAIL_REG, 40 HCLGE_COMM_NIC_CSQ_HEAD_REG, 41 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG, 42 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG, 43 HCLGE_COMM_NIC_CRQ_DEPTH_REG, 44 HCLGE_COMM_NIC_CRQ_TAIL_REG, 45 HCLGE_COMM_NIC_CRQ_HEAD_REG, 46 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, 47 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG, 48 HCLGE_COMM_CMDQ_INTR_EN_REG, 49 HCLGE_COMM_CMDQ_INTR_GEN_REG}; 50 51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE, 52 HCLGEVF_RST_ING, 53 HCLGEVF_GRO_EN_REG}; 54 55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG, 56 HCLGEVF_RING_RX_ADDR_H_REG, 57 HCLGEVF_RING_RX_BD_NUM_REG, 58 HCLGEVF_RING_RX_BD_LENGTH_REG, 59 HCLGEVF_RING_RX_MERGE_EN_REG, 60 HCLGEVF_RING_RX_TAIL_REG, 61 HCLGEVF_RING_RX_HEAD_REG, 62 HCLGEVF_RING_RX_FBD_NUM_REG, 63 HCLGEVF_RING_RX_OFFSET_REG, 64 HCLGEVF_RING_RX_FBD_OFFSET_REG, 65 HCLGEVF_RING_RX_STASH_REG, 66 HCLGEVF_RING_RX_BD_ERR_REG, 67 HCLGEVF_RING_TX_ADDR_L_REG, 68 HCLGEVF_RING_TX_ADDR_H_REG, 69 HCLGEVF_RING_TX_BD_NUM_REG, 70 HCLGEVF_RING_TX_PRIORITY_REG, 71 HCLGEVF_RING_TX_TC_REG, 72 HCLGEVF_RING_TX_MERGE_EN_REG, 73 HCLGEVF_RING_TX_TAIL_REG, 74 HCLGEVF_RING_TX_HEAD_REG, 75 HCLGEVF_RING_TX_FBD_NUM_REG, 76 HCLGEVF_RING_TX_OFFSET_REG, 77 HCLGEVF_RING_TX_EBD_NUM_REG, 78 HCLGEVF_RING_TX_EBD_OFFSET_REG, 79 HCLGEVF_RING_TX_BD_ERR_REG, 80 HCLGEVF_RING_EN_REG}; 81 82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG, 83 HCLGEVF_TQP_INTR_GL0_REG, 84 HCLGEVF_TQP_INTR_GL1_REG, 85 HCLGEVF_TQP_INTR_GL2_REG, 86 HCLGEVF_TQP_INTR_RL_REG}; 87 88 /* hclgevf_cmd_send - send command to command queue 89 * @hw: pointer to the hw struct 90 * @desc: prefilled descriptor for describing the command 91 * @num : the number of descriptors to be sent 92 * 93 * This is the main send command for command queue, it 94 * sends the queue, cleans the queue, etc 95 */ 96 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num) 97 { 98 return hclge_comm_cmd_send(&hw->hw, desc, num); 99 } 100 101 void hclgevf_arq_init(struct hclgevf_dev *hdev) 102 { 103 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq; 104 105 spin_lock(&cmdq->crq.lock); 106 /* initialize the pointers of async rx queue of mailbox */ 107 hdev->arq.hdev = hdev; 108 hdev->arq.head = 0; 109 hdev->arq.tail = 0; 110 atomic_set(&hdev->arq.count, 0); 111 spin_unlock(&cmdq->crq.lock); 112 } 113 114 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle) 115 { 116 if (!handle->client) 117 return container_of(handle, struct hclgevf_dev, nic); 118 else if (handle->client->type == HNAE3_CLIENT_ROCE) 119 return container_of(handle, struct hclgevf_dev, roce); 120 else 121 return container_of(handle, struct hclgevf_dev, nic); 122 } 123 124 static void hclgevf_update_stats(struct hnae3_handle *handle, 125 struct net_device_stats *net_stats) 126 { 127 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 128 int status; 129 130 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 131 if (status) 132 dev_err(&hdev->pdev->dev, 133 "VF update of TQPS stats fail, status = %d.\n", 134 status); 135 } 136 137 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) 138 { 139 if (strset == ETH_SS_TEST) 140 return -EOPNOTSUPP; 141 else if (strset == ETH_SS_STATS) 142 return hclge_comm_tqps_get_sset_count(handle); 143 144 return 0; 145 } 146 147 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, 148 u8 *data) 149 { 150 u8 *p = (char *)data; 151 152 if (strset == ETH_SS_STATS) 153 p = hclge_comm_tqps_get_strings(handle, p); 154 } 155 156 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) 157 { 158 hclge_comm_tqps_get_stats(handle, data); 159 } 160 161 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code, 162 u8 subcode) 163 { 164 if (msg) { 165 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg)); 166 msg->code = code; 167 msg->subcode = subcode; 168 } 169 } 170 171 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev) 172 { 173 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 174 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE]; 175 struct hclge_basic_info *basic_info; 176 struct hclge_vf_to_pf_msg send_msg; 177 unsigned long caps; 178 int status; 179 180 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0); 181 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 182 sizeof(resp_msg)); 183 if (status) { 184 dev_err(&hdev->pdev->dev, 185 "failed to get basic info from pf, ret = %d", status); 186 return status; 187 } 188 189 basic_info = (struct hclge_basic_info *)resp_msg; 190 191 hdev->hw_tc_map = basic_info->hw_tc_map; 192 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version); 193 caps = le32_to_cpu(basic_info->pf_caps); 194 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps)) 195 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps); 196 197 return 0; 198 } 199 200 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev) 201 { 202 struct hnae3_handle *nic = &hdev->nic; 203 struct hclge_vf_to_pf_msg send_msg; 204 u8 resp_msg; 205 int ret; 206 207 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 208 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE); 209 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg, 210 sizeof(u8)); 211 if (ret) { 212 dev_err(&hdev->pdev->dev, 213 "VF request to get port based vlan state failed %d", 214 ret); 215 return ret; 216 } 217 218 nic->port_base_vlan_state = resp_msg; 219 220 return 0; 221 } 222 223 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev) 224 { 225 #define HCLGEVF_TQPS_RSS_INFO_LEN 6 226 227 struct hclge_mbx_vf_queue_info *queue_info; 228 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; 229 struct hclge_vf_to_pf_msg send_msg; 230 int status; 231 232 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0); 233 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 234 HCLGEVF_TQPS_RSS_INFO_LEN); 235 if (status) { 236 dev_err(&hdev->pdev->dev, 237 "VF request to get tqp info from PF failed %d", 238 status); 239 return status; 240 } 241 242 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg; 243 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps); 244 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size); 245 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len); 246 247 return 0; 248 } 249 250 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev) 251 { 252 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4 253 254 struct hclge_mbx_vf_queue_depth *queue_depth; 255 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN]; 256 struct hclge_vf_to_pf_msg send_msg; 257 int ret; 258 259 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0); 260 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 261 HCLGEVF_TQPS_DEPTH_INFO_LEN); 262 if (ret) { 263 dev_err(&hdev->pdev->dev, 264 "VF request to get tqp depth info from PF failed %d", 265 ret); 266 return ret; 267 } 268 269 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg; 270 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc); 271 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc); 272 273 return 0; 274 } 275 276 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id) 277 { 278 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 279 struct hclge_vf_to_pf_msg send_msg; 280 u16 qid_in_pf = 0; 281 u8 resp_data[2]; 282 int ret; 283 284 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0); 285 *(__le16 *)send_msg.data = cpu_to_le16(queue_id); 286 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data, 287 sizeof(resp_data)); 288 if (!ret) 289 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data); 290 291 return qid_in_pf; 292 } 293 294 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev) 295 { 296 struct hclge_vf_to_pf_msg send_msg; 297 u8 resp_msg[2]; 298 int ret; 299 300 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0); 301 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 302 sizeof(resp_msg)); 303 if (ret) { 304 dev_err(&hdev->pdev->dev, 305 "VF request to get the pf port media type failed %d", 306 ret); 307 return ret; 308 } 309 310 hdev->hw.mac.media_type = resp_msg[0]; 311 hdev->hw.mac.module_type = resp_msg[1]; 312 313 return 0; 314 } 315 316 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) 317 { 318 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 319 struct hclge_comm_tqp *tqp; 320 int i; 321 322 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 323 sizeof(struct hclge_comm_tqp), GFP_KERNEL); 324 if (!hdev->htqp) 325 return -ENOMEM; 326 327 tqp = hdev->htqp; 328 329 for (i = 0; i < hdev->num_tqps; i++) { 330 tqp->dev = &hdev->pdev->dev; 331 tqp->index = i; 332 333 tqp->q.ae_algo = &ae_algovf; 334 tqp->q.buf_size = hdev->rx_buf_len; 335 tqp->q.tx_desc_num = hdev->num_tx_desc; 336 tqp->q.rx_desc_num = hdev->num_rx_desc; 337 338 /* need an extended offset to configure queues >= 339 * HCLGEVF_TQP_MAX_SIZE_DEV_V2. 340 */ 341 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2) 342 tqp->q.io_base = hdev->hw.hw.io_base + 343 HCLGEVF_TQP_REG_OFFSET + 344 i * HCLGEVF_TQP_REG_SIZE; 345 else 346 tqp->q.io_base = hdev->hw.hw.io_base + 347 HCLGEVF_TQP_REG_OFFSET + 348 HCLGEVF_TQP_EXT_REG_OFFSET + 349 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) * 350 HCLGEVF_TQP_REG_SIZE; 351 352 /* when device supports tx push and has device memory, 353 * the queue can execute push mode or doorbell mode on 354 * device memory. 355 */ 356 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps)) 357 tqp->q.mem_base = hdev->hw.hw.mem_base + 358 HCLGEVF_TQP_MEM_OFFSET(hdev, i); 359 360 tqp++; 361 } 362 363 return 0; 364 } 365 366 static int hclgevf_knic_setup(struct hclgevf_dev *hdev) 367 { 368 struct hnae3_handle *nic = &hdev->nic; 369 struct hnae3_knic_private_info *kinfo; 370 u16 new_tqps = hdev->num_tqps; 371 unsigned int i; 372 u8 num_tc = 0; 373 374 kinfo = &nic->kinfo; 375 kinfo->num_tx_desc = hdev->num_tx_desc; 376 kinfo->num_rx_desc = hdev->num_rx_desc; 377 kinfo->rx_buf_len = hdev->rx_buf_len; 378 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++) 379 if (hdev->hw_tc_map & BIT(i)) 380 num_tc++; 381 382 num_tc = num_tc ? num_tc : 1; 383 kinfo->tc_info.num_tc = num_tc; 384 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc); 385 new_tqps = kinfo->rss_size * num_tc; 386 kinfo->num_tqps = min(new_tqps, hdev->num_tqps); 387 388 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, 389 sizeof(struct hnae3_queue *), GFP_KERNEL); 390 if (!kinfo->tqp) 391 return -ENOMEM; 392 393 for (i = 0; i < kinfo->num_tqps; i++) { 394 hdev->htqp[i].q.handle = &hdev->nic; 395 hdev->htqp[i].q.tqp_index = i; 396 kinfo->tqp[i] = &hdev->htqp[i].q; 397 } 398 399 /* after init the max rss_size and tqps, adjust the default tqp numbers 400 * and rss size with the actual vector numbers 401 */ 402 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps); 403 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc, 404 kinfo->rss_size); 405 406 return 0; 407 } 408 409 static void hclgevf_request_link_info(struct hclgevf_dev *hdev) 410 { 411 struct hclge_vf_to_pf_msg send_msg; 412 int status; 413 414 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0); 415 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 416 if (status) 417 dev_err(&hdev->pdev->dev, 418 "VF failed to fetch link status(%d) from PF", status); 419 } 420 421 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) 422 { 423 struct hnae3_handle *rhandle = &hdev->roce; 424 struct hnae3_handle *handle = &hdev->nic; 425 struct hnae3_client *rclient; 426 struct hnae3_client *client; 427 428 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state)) 429 return; 430 431 client = handle->client; 432 rclient = hdev->roce_client; 433 434 link_state = 435 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state; 436 if (link_state != hdev->hw.mac.link) { 437 hdev->hw.mac.link = link_state; 438 client->ops->link_status_change(handle, !!link_state); 439 if (rclient && rclient->ops->link_status_change) 440 rclient->ops->link_status_change(rhandle, !!link_state); 441 } 442 443 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state); 444 } 445 446 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev) 447 { 448 #define HCLGEVF_ADVERTISING 0 449 #define HCLGEVF_SUPPORTED 1 450 451 struct hclge_vf_to_pf_msg send_msg; 452 453 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0); 454 send_msg.data[0] = HCLGEVF_ADVERTISING; 455 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 456 send_msg.data[0] = HCLGEVF_SUPPORTED; 457 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 458 } 459 460 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) 461 { 462 struct hnae3_handle *nic = &hdev->nic; 463 int ret; 464 465 nic->ae_algo = &ae_algovf; 466 nic->pdev = hdev->pdev; 467 nic->numa_node_mask = hdev->numa_node_mask; 468 nic->flags |= HNAE3_SUPPORT_VF; 469 nic->kinfo.io_base = hdev->hw.hw.io_base; 470 471 ret = hclgevf_knic_setup(hdev); 472 if (ret) 473 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", 474 ret); 475 return ret; 476 } 477 478 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) 479 { 480 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { 481 dev_warn(&hdev->pdev->dev, 482 "vector(vector_id %d) has been freed.\n", vector_id); 483 return; 484 } 485 486 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; 487 hdev->num_msi_left += 1; 488 hdev->num_msi_used -= 1; 489 } 490 491 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, 492 struct hnae3_vector_info *vector_info) 493 { 494 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 495 struct hnae3_vector_info *vector = vector_info; 496 int alloc = 0; 497 int i, j; 498 499 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num); 500 vector_num = min(hdev->num_msi_left, vector_num); 501 502 for (j = 0; j < vector_num; j++) { 503 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { 504 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { 505 vector->vector = pci_irq_vector(hdev->pdev, i); 506 vector->io_addr = hdev->hw.hw.io_base + 507 HCLGEVF_VECTOR_REG_BASE + 508 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; 509 hdev->vector_status[i] = 0; 510 hdev->vector_irq[i] = vector->vector; 511 512 vector++; 513 alloc++; 514 515 break; 516 } 517 } 518 } 519 hdev->num_msi_left -= alloc; 520 hdev->num_msi_used += alloc; 521 522 return alloc; 523 } 524 525 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) 526 { 527 int i; 528 529 for (i = 0; i < hdev->num_msi; i++) 530 if (vector == hdev->vector_irq[i]) 531 return i; 532 533 return -EINVAL; 534 } 535 536 /* for revision 0x20, vf shared the same rss config with pf */ 537 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev) 538 { 539 #define HCLGEVF_RSS_MBX_RESP_LEN 8 540 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 541 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN]; 542 struct hclge_vf_to_pf_msg send_msg; 543 u16 msg_num, hash_key_index; 544 u8 index; 545 int ret; 546 547 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0); 548 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) / 549 HCLGEVF_RSS_MBX_RESP_LEN; 550 for (index = 0; index < msg_num; index++) { 551 send_msg.data[0] = index; 552 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 553 HCLGEVF_RSS_MBX_RESP_LEN); 554 if (ret) { 555 dev_err(&hdev->pdev->dev, 556 "VF get rss hash key from PF failed, ret=%d", 557 ret); 558 return ret; 559 } 560 561 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index; 562 if (index == msg_num - 1) 563 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 564 &resp_msg[0], 565 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index); 566 else 567 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 568 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN); 569 } 570 571 return 0; 572 } 573 574 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, 575 u8 *hfunc) 576 { 577 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 578 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 579 int ret; 580 581 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 582 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc); 583 } else { 584 if (hfunc) 585 *hfunc = ETH_RSS_HASH_TOP; 586 if (key) { 587 ret = hclgevf_get_rss_hash_key(hdev); 588 if (ret) 589 return ret; 590 memcpy(key, rss_cfg->rss_hash_key, 591 HCLGE_COMM_RSS_KEY_SIZE); 592 } 593 } 594 595 hclge_comm_get_rss_indir_tbl(rss_cfg, indir, 596 hdev->ae_dev->dev_specs.rss_ind_tbl_size); 597 598 return 0; 599 } 600 601 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, 602 const u8 *key, const u8 hfunc) 603 { 604 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 605 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 606 int ret, i; 607 608 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 609 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, 610 hfunc); 611 if (ret) 612 return ret; 613 } 614 615 /* update the shadow RSS table with user specified qids */ 616 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 617 rss_cfg->rss_indirection_tbl[i] = indir[i]; 618 619 /* update the hardware */ 620 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 621 rss_cfg->rss_indirection_tbl); 622 } 623 624 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle, 625 struct ethtool_rxnfc *nfc) 626 { 627 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 628 int ret; 629 630 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 631 return -EOPNOTSUPP; 632 633 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw, 634 &hdev->rss_cfg, nfc); 635 if (ret) 636 dev_err(&hdev->pdev->dev, 637 "failed to set rss tuple, ret = %d.\n", ret); 638 639 return ret; 640 } 641 642 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle, 643 struct ethtool_rxnfc *nfc) 644 { 645 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 646 u8 tuple_sets; 647 int ret; 648 649 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 650 return -EOPNOTSUPP; 651 652 nfc->data = 0; 653 654 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type, 655 &tuple_sets); 656 if (ret || !tuple_sets) 657 return ret; 658 659 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets); 660 661 return 0; 662 } 663 664 static int hclgevf_get_tc_size(struct hnae3_handle *handle) 665 { 666 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 667 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 668 669 return rss_cfg->rss_size; 670 } 671 672 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, 673 int vector_id, 674 struct hnae3_ring_chain_node *ring_chain) 675 { 676 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 677 struct hclge_vf_to_pf_msg send_msg; 678 struct hnae3_ring_chain_node *node; 679 int status; 680 int i = 0; 681 682 memset(&send_msg, 0, sizeof(send_msg)); 683 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR : 684 HCLGE_MBX_UNMAP_RING_TO_VECTOR; 685 send_msg.vector_id = vector_id; 686 687 for (node = ring_chain; node; node = node->next) { 688 send_msg.param[i].ring_type = 689 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); 690 691 send_msg.param[i].tqp_index = node->tqp_index; 692 send_msg.param[i].int_gl_index = 693 hnae3_get_field(node->int_gl_idx, 694 HNAE3_RING_GL_IDX_M, 695 HNAE3_RING_GL_IDX_S); 696 697 i++; 698 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) { 699 send_msg.ring_num = i; 700 701 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, 702 NULL, 0); 703 if (status) { 704 dev_err(&hdev->pdev->dev, 705 "Map TQP fail, status is %d.\n", 706 status); 707 return status; 708 } 709 i = 0; 710 } 711 } 712 713 return 0; 714 } 715 716 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, 717 struct hnae3_ring_chain_node *ring_chain) 718 { 719 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 720 int vector_id; 721 722 vector_id = hclgevf_get_vector_index(hdev, vector); 723 if (vector_id < 0) { 724 dev_err(&handle->pdev->dev, 725 "Get vector index fail. ret =%d\n", vector_id); 726 return vector_id; 727 } 728 729 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); 730 } 731 732 static int hclgevf_unmap_ring_from_vector( 733 struct hnae3_handle *handle, 734 int vector, 735 struct hnae3_ring_chain_node *ring_chain) 736 { 737 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 738 int ret, vector_id; 739 740 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 741 return 0; 742 743 vector_id = hclgevf_get_vector_index(hdev, vector); 744 if (vector_id < 0) { 745 dev_err(&handle->pdev->dev, 746 "Get vector index fail. ret =%d\n", vector_id); 747 return vector_id; 748 } 749 750 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); 751 if (ret) 752 dev_err(&handle->pdev->dev, 753 "Unmap ring from vector fail. vector=%d, ret =%d\n", 754 vector_id, 755 ret); 756 757 return ret; 758 } 759 760 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) 761 { 762 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 763 int vector_id; 764 765 vector_id = hclgevf_get_vector_index(hdev, vector); 766 if (vector_id < 0) { 767 dev_err(&handle->pdev->dev, 768 "hclgevf_put_vector get vector index fail. ret =%d\n", 769 vector_id); 770 return vector_id; 771 } 772 773 hclgevf_free_vector(hdev, vector_id); 774 775 return 0; 776 } 777 778 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, 779 bool en_uc_pmc, bool en_mc_pmc, 780 bool en_bc_pmc) 781 { 782 struct hnae3_handle *handle = &hdev->nic; 783 struct hclge_vf_to_pf_msg send_msg; 784 int ret; 785 786 memset(&send_msg, 0, sizeof(send_msg)); 787 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE; 788 send_msg.en_bc = en_bc_pmc ? 1 : 0; 789 send_msg.en_uc = en_uc_pmc ? 1 : 0; 790 send_msg.en_mc = en_mc_pmc ? 1 : 0; 791 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC, 792 &handle->priv_flags) ? 1 : 0; 793 794 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 795 if (ret) 796 dev_err(&hdev->pdev->dev, 797 "Set promisc mode fail, status is %d.\n", ret); 798 799 return ret; 800 } 801 802 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, 803 bool en_mc_pmc) 804 { 805 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 806 bool en_bc_pmc; 807 808 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2; 809 810 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc, 811 en_bc_pmc); 812 } 813 814 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle) 815 { 816 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 817 818 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 819 hclgevf_task_schedule(hdev, 0); 820 } 821 822 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev) 823 { 824 struct hnae3_handle *handle = &hdev->nic; 825 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE; 826 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE; 827 int ret; 828 829 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) { 830 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc); 831 if (!ret) 832 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 833 } 834 } 835 836 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id, 837 u16 stream_id, bool enable) 838 { 839 struct hclgevf_cfg_com_tqp_queue_cmd *req; 840 struct hclge_desc desc; 841 842 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; 843 844 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false); 845 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); 846 req->stream_id = cpu_to_le16(stream_id); 847 if (enable) 848 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B; 849 850 return hclgevf_cmd_send(&hdev->hw, &desc, 1); 851 } 852 853 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable) 854 { 855 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 856 int ret; 857 u16 i; 858 859 for (i = 0; i < handle->kinfo.num_tqps; i++) { 860 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable); 861 if (ret) 862 return ret; 863 } 864 865 return 0; 866 } 867 868 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p) 869 { 870 struct hclge_vf_to_pf_msg send_msg; 871 u8 host_mac[ETH_ALEN]; 872 int status; 873 874 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0); 875 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac, 876 ETH_ALEN); 877 if (status) { 878 dev_err(&hdev->pdev->dev, 879 "fail to get VF MAC from host %d", status); 880 return status; 881 } 882 883 ether_addr_copy(p, host_mac); 884 885 return 0; 886 } 887 888 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) 889 { 890 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 891 u8 host_mac_addr[ETH_ALEN]; 892 893 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr)) 894 return; 895 896 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr); 897 if (hdev->has_pf_mac) 898 ether_addr_copy(p, host_mac_addr); 899 else 900 ether_addr_copy(p, hdev->hw.mac.mac_addr); 901 } 902 903 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p, 904 bool is_first) 905 { 906 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 907 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; 908 struct hclge_vf_to_pf_msg send_msg; 909 u8 *new_mac_addr = (u8 *)p; 910 int status; 911 912 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0); 913 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY; 914 ether_addr_copy(send_msg.data, new_mac_addr); 915 if (is_first && !hdev->has_pf_mac) 916 eth_zero_addr(&send_msg.data[ETH_ALEN]); 917 else 918 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr); 919 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 920 if (!status) 921 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); 922 923 return status; 924 } 925 926 static struct hclgevf_mac_addr_node * 927 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr) 928 { 929 struct hclgevf_mac_addr_node *mac_node, *tmp; 930 931 list_for_each_entry_safe(mac_node, tmp, list, node) 932 if (ether_addr_equal(mac_addr, mac_node->mac_addr)) 933 return mac_node; 934 935 return NULL; 936 } 937 938 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node, 939 enum HCLGEVF_MAC_NODE_STATE state) 940 { 941 switch (state) { 942 /* from set_rx_mode or tmp_add_list */ 943 case HCLGEVF_MAC_TO_ADD: 944 if (mac_node->state == HCLGEVF_MAC_TO_DEL) 945 mac_node->state = HCLGEVF_MAC_ACTIVE; 946 break; 947 /* only from set_rx_mode */ 948 case HCLGEVF_MAC_TO_DEL: 949 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 950 list_del(&mac_node->node); 951 kfree(mac_node); 952 } else { 953 mac_node->state = HCLGEVF_MAC_TO_DEL; 954 } 955 break; 956 /* only from tmp_add_list, the mac_node->state won't be 957 * HCLGEVF_MAC_ACTIVE 958 */ 959 case HCLGEVF_MAC_ACTIVE: 960 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 961 mac_node->state = HCLGEVF_MAC_ACTIVE; 962 break; 963 } 964 } 965 966 static int hclgevf_update_mac_list(struct hnae3_handle *handle, 967 enum HCLGEVF_MAC_NODE_STATE state, 968 enum HCLGEVF_MAC_ADDR_TYPE mac_type, 969 const unsigned char *addr) 970 { 971 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 972 struct hclgevf_mac_addr_node *mac_node; 973 struct list_head *list; 974 975 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 976 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 977 978 spin_lock_bh(&hdev->mac_table.mac_list_lock); 979 980 /* if the mac addr is already in the mac list, no need to add a new 981 * one into it, just check the mac addr state, convert it to a new 982 * state, or just remove it, or do nothing. 983 */ 984 mac_node = hclgevf_find_mac_node(list, addr); 985 if (mac_node) { 986 hclgevf_update_mac_node(mac_node, state); 987 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 988 return 0; 989 } 990 /* if this address is never added, unnecessary to delete */ 991 if (state == HCLGEVF_MAC_TO_DEL) { 992 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 993 return -ENOENT; 994 } 995 996 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); 997 if (!mac_node) { 998 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 999 return -ENOMEM; 1000 } 1001 1002 mac_node->state = state; 1003 ether_addr_copy(mac_node->mac_addr, addr); 1004 list_add_tail(&mac_node->node, list); 1005 1006 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1007 return 0; 1008 } 1009 1010 static int hclgevf_add_uc_addr(struct hnae3_handle *handle, 1011 const unsigned char *addr) 1012 { 1013 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1014 HCLGEVF_MAC_ADDR_UC, addr); 1015 } 1016 1017 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, 1018 const unsigned char *addr) 1019 { 1020 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1021 HCLGEVF_MAC_ADDR_UC, addr); 1022 } 1023 1024 static int hclgevf_add_mc_addr(struct hnae3_handle *handle, 1025 const unsigned char *addr) 1026 { 1027 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1028 HCLGEVF_MAC_ADDR_MC, addr); 1029 } 1030 1031 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, 1032 const unsigned char *addr) 1033 { 1034 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1035 HCLGEVF_MAC_ADDR_MC, addr); 1036 } 1037 1038 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev, 1039 struct hclgevf_mac_addr_node *mac_node, 1040 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1041 { 1042 struct hclge_vf_to_pf_msg send_msg; 1043 u8 code, subcode; 1044 1045 if (mac_type == HCLGEVF_MAC_ADDR_UC) { 1046 code = HCLGE_MBX_SET_UNICAST; 1047 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1048 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD; 1049 else 1050 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE; 1051 } else { 1052 code = HCLGE_MBX_SET_MULTICAST; 1053 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1054 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD; 1055 else 1056 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE; 1057 } 1058 1059 hclgevf_build_send_msg(&send_msg, code, subcode); 1060 ether_addr_copy(send_msg.data, mac_node->mac_addr); 1061 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1062 } 1063 1064 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev, 1065 struct list_head *list, 1066 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1067 { 1068 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 1069 struct hclgevf_mac_addr_node *mac_node, *tmp; 1070 int ret; 1071 1072 list_for_each_entry_safe(mac_node, tmp, list, node) { 1073 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type); 1074 if (ret) { 1075 hnae3_format_mac_addr(format_mac_addr, 1076 mac_node->mac_addr); 1077 dev_err(&hdev->pdev->dev, 1078 "failed to configure mac %s, state = %d, ret = %d\n", 1079 format_mac_addr, mac_node->state, ret); 1080 return; 1081 } 1082 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1083 mac_node->state = HCLGEVF_MAC_ACTIVE; 1084 } else { 1085 list_del(&mac_node->node); 1086 kfree(mac_node); 1087 } 1088 } 1089 } 1090 1091 static void hclgevf_sync_from_add_list(struct list_head *add_list, 1092 struct list_head *mac_list) 1093 { 1094 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1095 1096 list_for_each_entry_safe(mac_node, tmp, add_list, node) { 1097 /* if the mac address from tmp_add_list is not in the 1098 * uc/mc_mac_list, it means have received a TO_DEL request 1099 * during the time window of sending mac config request to PF 1100 * If mac_node state is ACTIVE, then change its state to TO_DEL, 1101 * then it will be removed at next time. If is TO_ADD, it means 1102 * send TO_ADD request failed, so just remove the mac node. 1103 */ 1104 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1105 if (new_node) { 1106 hclgevf_update_mac_node(new_node, mac_node->state); 1107 list_del(&mac_node->node); 1108 kfree(mac_node); 1109 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) { 1110 mac_node->state = HCLGEVF_MAC_TO_DEL; 1111 list_move_tail(&mac_node->node, mac_list); 1112 } else { 1113 list_del(&mac_node->node); 1114 kfree(mac_node); 1115 } 1116 } 1117 } 1118 1119 static void hclgevf_sync_from_del_list(struct list_head *del_list, 1120 struct list_head *mac_list) 1121 { 1122 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1123 1124 list_for_each_entry_safe(mac_node, tmp, del_list, node) { 1125 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1126 if (new_node) { 1127 /* If the mac addr is exist in the mac list, it means 1128 * received a new request TO_ADD during the time window 1129 * of sending mac addr configurrequest to PF, so just 1130 * change the mac state to ACTIVE. 1131 */ 1132 new_node->state = HCLGEVF_MAC_ACTIVE; 1133 list_del(&mac_node->node); 1134 kfree(mac_node); 1135 } else { 1136 list_move_tail(&mac_node->node, mac_list); 1137 } 1138 } 1139 } 1140 1141 static void hclgevf_clear_list(struct list_head *list) 1142 { 1143 struct hclgevf_mac_addr_node *mac_node, *tmp; 1144 1145 list_for_each_entry_safe(mac_node, tmp, list, node) { 1146 list_del(&mac_node->node); 1147 kfree(mac_node); 1148 } 1149 } 1150 1151 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev, 1152 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1153 { 1154 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1155 struct list_head tmp_add_list, tmp_del_list; 1156 struct list_head *list; 1157 1158 INIT_LIST_HEAD(&tmp_add_list); 1159 INIT_LIST_HEAD(&tmp_del_list); 1160 1161 /* move the mac addr to the tmp_add_list and tmp_del_list, then 1162 * we can add/delete these mac addr outside the spin lock 1163 */ 1164 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1165 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1166 1167 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1168 1169 list_for_each_entry_safe(mac_node, tmp, list, node) { 1170 switch (mac_node->state) { 1171 case HCLGEVF_MAC_TO_DEL: 1172 list_move_tail(&mac_node->node, &tmp_del_list); 1173 break; 1174 case HCLGEVF_MAC_TO_ADD: 1175 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 1176 if (!new_node) 1177 goto stop_traverse; 1178 1179 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); 1180 new_node->state = mac_node->state; 1181 list_add_tail(&new_node->node, &tmp_add_list); 1182 break; 1183 default: 1184 break; 1185 } 1186 } 1187 1188 stop_traverse: 1189 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1190 1191 /* delete first, in order to get max mac table space for adding */ 1192 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type); 1193 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type); 1194 1195 /* if some mac addresses were added/deleted fail, move back to the 1196 * mac_list, and retry at next time. 1197 */ 1198 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1199 1200 hclgevf_sync_from_del_list(&tmp_del_list, list); 1201 hclgevf_sync_from_add_list(&tmp_add_list, list); 1202 1203 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1204 } 1205 1206 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev) 1207 { 1208 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC); 1209 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC); 1210 } 1211 1212 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev) 1213 { 1214 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1215 1216 hclgevf_clear_list(&hdev->mac_table.uc_mac_list); 1217 hclgevf_clear_list(&hdev->mac_table.mc_mac_list); 1218 1219 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1220 } 1221 1222 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable) 1223 { 1224 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1225 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 1226 struct hclge_vf_to_pf_msg send_msg; 1227 1228 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 1229 return -EOPNOTSUPP; 1230 1231 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1232 HCLGE_MBX_ENABLE_VLAN_FILTER); 1233 send_msg.data[0] = enable ? 1 : 0; 1234 1235 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1236 } 1237 1238 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, 1239 __be16 proto, u16 vlan_id, 1240 bool is_kill) 1241 { 1242 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1243 struct hclge_mbx_vlan_filter *vlan_filter; 1244 struct hclge_vf_to_pf_msg send_msg; 1245 int ret; 1246 1247 if (vlan_id > HCLGEVF_MAX_VLAN_ID) 1248 return -EINVAL; 1249 1250 if (proto != htons(ETH_P_8021Q)) 1251 return -EPROTONOSUPPORT; 1252 1253 /* When device is resetting or reset failed, firmware is unable to 1254 * handle mailbox. Just record the vlan id, and remove it after 1255 * reset finished. 1256 */ 1257 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 1258 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) { 1259 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1260 return -EBUSY; 1261 } 1262 1263 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1264 HCLGE_MBX_VLAN_FILTER); 1265 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data; 1266 vlan_filter->is_kill = is_kill; 1267 vlan_filter->vlan_id = cpu_to_le16(vlan_id); 1268 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto)); 1269 1270 /* when remove hw vlan filter failed, record the vlan id, 1271 * and try to remove it from hw later, to be consistence 1272 * with stack. 1273 */ 1274 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1275 if (is_kill && ret) 1276 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1277 1278 return ret; 1279 } 1280 1281 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev) 1282 { 1283 #define HCLGEVF_MAX_SYNC_COUNT 60 1284 struct hnae3_handle *handle = &hdev->nic; 1285 int ret, sync_cnt = 0; 1286 u16 vlan_id; 1287 1288 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1289 while (vlan_id != VLAN_N_VID) { 1290 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q), 1291 vlan_id, true); 1292 if (ret) 1293 return; 1294 1295 clear_bit(vlan_id, hdev->vlan_del_fail_bmap); 1296 sync_cnt++; 1297 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT) 1298 return; 1299 1300 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1301 } 1302 } 1303 1304 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 1305 { 1306 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1307 struct hclge_vf_to_pf_msg send_msg; 1308 1309 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1310 HCLGE_MBX_VLAN_RX_OFF_CFG); 1311 send_msg.data[0] = enable ? 1 : 0; 1312 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1313 } 1314 1315 static int hclgevf_reset_tqp(struct hnae3_handle *handle) 1316 { 1317 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U 1318 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1319 struct hclge_vf_to_pf_msg send_msg; 1320 u8 return_status = 0; 1321 int ret; 1322 u16 i; 1323 1324 /* disable vf queue before send queue reset msg to PF */ 1325 ret = hclgevf_tqp_enable(handle, false); 1326 if (ret) { 1327 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n", 1328 ret); 1329 return ret; 1330 } 1331 1332 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1333 1334 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status, 1335 sizeof(return_status)); 1336 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE) 1337 return ret; 1338 1339 for (i = 1; i < handle->kinfo.num_tqps; i++) { 1340 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1341 *(__le16 *)send_msg.data = cpu_to_le16(i); 1342 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1343 if (ret) 1344 return ret; 1345 } 1346 1347 return 0; 1348 } 1349 1350 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu) 1351 { 1352 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1353 struct hclge_mbx_mtu_info *mtu_info; 1354 struct hclge_vf_to_pf_msg send_msg; 1355 1356 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0); 1357 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data; 1358 mtu_info->mtu = cpu_to_le32(new_mtu); 1359 1360 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1361 } 1362 1363 static int hclgevf_notify_client(struct hclgevf_dev *hdev, 1364 enum hnae3_reset_notify_type type) 1365 { 1366 struct hnae3_client *client = hdev->nic_client; 1367 struct hnae3_handle *handle = &hdev->nic; 1368 int ret; 1369 1370 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) || 1371 !client) 1372 return 0; 1373 1374 if (!client->ops->reset_notify) 1375 return -EOPNOTSUPP; 1376 1377 ret = client->ops->reset_notify(handle, type); 1378 if (ret) 1379 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", 1380 type, ret); 1381 1382 return ret; 1383 } 1384 1385 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev, 1386 enum hnae3_reset_notify_type type) 1387 { 1388 struct hnae3_client *client = hdev->roce_client; 1389 struct hnae3_handle *handle = &hdev->roce; 1390 int ret; 1391 1392 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client) 1393 return 0; 1394 1395 if (!client->ops->reset_notify) 1396 return -EOPNOTSUPP; 1397 1398 ret = client->ops->reset_notify(handle, type); 1399 if (ret) 1400 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", 1401 type, ret); 1402 return ret; 1403 } 1404 1405 static int hclgevf_reset_wait(struct hclgevf_dev *hdev) 1406 { 1407 #define HCLGEVF_RESET_WAIT_US 20000 1408 #define HCLGEVF_RESET_WAIT_CNT 2000 1409 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \ 1410 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT) 1411 1412 u32 val; 1413 int ret; 1414 1415 if (hdev->reset_type == HNAE3_VF_RESET) 1416 ret = readl_poll_timeout(hdev->hw.hw.io_base + 1417 HCLGEVF_VF_RST_ING, val, 1418 !(val & HCLGEVF_VF_RST_ING_BIT), 1419 HCLGEVF_RESET_WAIT_US, 1420 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1421 else 1422 ret = readl_poll_timeout(hdev->hw.hw.io_base + 1423 HCLGEVF_RST_ING, val, 1424 !(val & HCLGEVF_RST_ING_BITS), 1425 HCLGEVF_RESET_WAIT_US, 1426 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1427 1428 /* hardware completion status should be available by this time */ 1429 if (ret) { 1430 dev_err(&hdev->pdev->dev, 1431 "couldn't get reset done status from h/w, timeout!\n"); 1432 return ret; 1433 } 1434 1435 /* we will wait a bit more to let reset of the stack to complete. This 1436 * might happen in case reset assertion was made by PF. Yes, this also 1437 * means we might end up waiting bit more even for VF reset. 1438 */ 1439 msleep(5000); 1440 1441 return 0; 1442 } 1443 1444 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable) 1445 { 1446 u32 reg_val; 1447 1448 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG); 1449 if (enable) 1450 reg_val |= HCLGEVF_NIC_SW_RST_RDY; 1451 else 1452 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY; 1453 1454 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, 1455 reg_val); 1456 } 1457 1458 static int hclgevf_reset_stack(struct hclgevf_dev *hdev) 1459 { 1460 int ret; 1461 1462 /* uninitialize the nic client */ 1463 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 1464 if (ret) 1465 return ret; 1466 1467 /* re-initialize the hclge device */ 1468 ret = hclgevf_reset_hdev(hdev); 1469 if (ret) { 1470 dev_err(&hdev->pdev->dev, 1471 "hclge device re-init failed, VF is disabled!\n"); 1472 return ret; 1473 } 1474 1475 /* bring up the nic client again */ 1476 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); 1477 if (ret) 1478 return ret; 1479 1480 /* clear handshake status with IMP */ 1481 hclgevf_reset_handshake(hdev, false); 1482 1483 /* bring up the nic to enable TX/RX again */ 1484 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 1485 } 1486 1487 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev) 1488 { 1489 #define HCLGEVF_RESET_SYNC_TIME 100 1490 1491 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) { 1492 struct hclge_vf_to_pf_msg send_msg; 1493 int ret; 1494 1495 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0); 1496 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1497 if (ret) { 1498 dev_err(&hdev->pdev->dev, 1499 "failed to assert VF reset, ret = %d\n", ret); 1500 return ret; 1501 } 1502 hdev->rst_stats.vf_func_rst_cnt++; 1503 } 1504 1505 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 1506 /* inform hardware that preparatory work is done */ 1507 msleep(HCLGEVF_RESET_SYNC_TIME); 1508 hclgevf_reset_handshake(hdev, true); 1509 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n", 1510 hdev->reset_type); 1511 1512 return 0; 1513 } 1514 1515 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev) 1516 { 1517 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n", 1518 hdev->rst_stats.vf_func_rst_cnt); 1519 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n", 1520 hdev->rst_stats.flr_rst_cnt); 1521 dev_info(&hdev->pdev->dev, "VF reset count: %u\n", 1522 hdev->rst_stats.vf_rst_cnt); 1523 dev_info(&hdev->pdev->dev, "reset done count: %u\n", 1524 hdev->rst_stats.rst_done_cnt); 1525 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n", 1526 hdev->rst_stats.hw_rst_done_cnt); 1527 dev_info(&hdev->pdev->dev, "reset count: %u\n", 1528 hdev->rst_stats.rst_cnt); 1529 dev_info(&hdev->pdev->dev, "reset fail count: %u\n", 1530 hdev->rst_stats.rst_fail_cnt); 1531 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n", 1532 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE)); 1533 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n", 1534 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG)); 1535 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n", 1536 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG)); 1537 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n", 1538 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING)); 1539 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state); 1540 } 1541 1542 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev) 1543 { 1544 /* recover handshake status with IMP when reset fail */ 1545 hclgevf_reset_handshake(hdev, true); 1546 hdev->rst_stats.rst_fail_cnt++; 1547 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n", 1548 hdev->rst_stats.rst_fail_cnt); 1549 1550 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT) 1551 set_bit(hdev->reset_type, &hdev->reset_pending); 1552 1553 if (hclgevf_is_reset_pending(hdev)) { 1554 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1555 hclgevf_reset_task_schedule(hdev); 1556 } else { 1557 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1558 hclgevf_dump_rst_info(hdev); 1559 } 1560 } 1561 1562 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev) 1563 { 1564 int ret; 1565 1566 hdev->rst_stats.rst_cnt++; 1567 1568 /* perform reset of the stack & ae device for a client */ 1569 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); 1570 if (ret) 1571 return ret; 1572 1573 rtnl_lock(); 1574 /* bring down the nic to stop any ongoing TX/RX */ 1575 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 1576 rtnl_unlock(); 1577 if (ret) 1578 return ret; 1579 1580 return hclgevf_reset_prepare_wait(hdev); 1581 } 1582 1583 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev) 1584 { 1585 int ret; 1586 1587 hdev->rst_stats.hw_rst_done_cnt++; 1588 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); 1589 if (ret) 1590 return ret; 1591 1592 rtnl_lock(); 1593 /* now, re-initialize the nic client and ae device */ 1594 ret = hclgevf_reset_stack(hdev); 1595 rtnl_unlock(); 1596 if (ret) { 1597 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); 1598 return ret; 1599 } 1600 1601 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT); 1602 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1 1603 * times 1604 */ 1605 if (ret && 1606 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1) 1607 return ret; 1608 1609 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT); 1610 if (ret) 1611 return ret; 1612 1613 hdev->last_reset_time = jiffies; 1614 hdev->rst_stats.rst_done_cnt++; 1615 hdev->rst_stats.rst_fail_cnt = 0; 1616 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1617 1618 return 0; 1619 } 1620 1621 static void hclgevf_reset(struct hclgevf_dev *hdev) 1622 { 1623 if (hclgevf_reset_prepare(hdev)) 1624 goto err_reset; 1625 1626 /* check if VF could successfully fetch the hardware reset completion 1627 * status from the hardware 1628 */ 1629 if (hclgevf_reset_wait(hdev)) { 1630 /* can't do much in this situation, will disable VF */ 1631 dev_err(&hdev->pdev->dev, 1632 "failed to fetch H/W reset completion status\n"); 1633 goto err_reset; 1634 } 1635 1636 if (hclgevf_reset_rebuild(hdev)) 1637 goto err_reset; 1638 1639 return; 1640 1641 err_reset: 1642 hclgevf_reset_err_handle(hdev); 1643 } 1644 1645 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev, 1646 unsigned long *addr) 1647 { 1648 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; 1649 1650 /* return the highest priority reset level amongst all */ 1651 if (test_bit(HNAE3_VF_RESET, addr)) { 1652 rst_level = HNAE3_VF_RESET; 1653 clear_bit(HNAE3_VF_RESET, addr); 1654 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1655 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1656 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) { 1657 rst_level = HNAE3_VF_FULL_RESET; 1658 clear_bit(HNAE3_VF_FULL_RESET, addr); 1659 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1660 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) { 1661 rst_level = HNAE3_VF_PF_FUNC_RESET; 1662 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1663 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1664 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) { 1665 rst_level = HNAE3_VF_FUNC_RESET; 1666 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1667 } else if (test_bit(HNAE3_FLR_RESET, addr)) { 1668 rst_level = HNAE3_FLR_RESET; 1669 clear_bit(HNAE3_FLR_RESET, addr); 1670 } 1671 1672 return rst_level; 1673 } 1674 1675 static void hclgevf_reset_event(struct pci_dev *pdev, 1676 struct hnae3_handle *handle) 1677 { 1678 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 1679 struct hclgevf_dev *hdev = ae_dev->priv; 1680 1681 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); 1682 1683 if (hdev->default_reset_request) 1684 hdev->reset_level = 1685 hclgevf_get_reset_level(hdev, 1686 &hdev->default_reset_request); 1687 else 1688 hdev->reset_level = HNAE3_VF_FUNC_RESET; 1689 1690 /* reset of this VF requested */ 1691 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); 1692 hclgevf_reset_task_schedule(hdev); 1693 1694 hdev->last_reset_time = jiffies; 1695 } 1696 1697 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev, 1698 enum hnae3_reset_type rst_type) 1699 { 1700 struct hclgevf_dev *hdev = ae_dev->priv; 1701 1702 set_bit(rst_type, &hdev->default_reset_request); 1703 } 1704 1705 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) 1706 { 1707 writel(en ? 1 : 0, vector->addr); 1708 } 1709 1710 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev, 1711 enum hnae3_reset_type rst_type) 1712 { 1713 #define HCLGEVF_RESET_RETRY_WAIT_MS 500 1714 #define HCLGEVF_RESET_RETRY_CNT 5 1715 1716 struct hclgevf_dev *hdev = ae_dev->priv; 1717 int retry_cnt = 0; 1718 int ret; 1719 1720 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) { 1721 down(&hdev->reset_sem); 1722 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1723 hdev->reset_type = rst_type; 1724 ret = hclgevf_reset_prepare(hdev); 1725 if (!ret && !hdev->reset_pending) 1726 break; 1727 1728 dev_err(&hdev->pdev->dev, 1729 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n", 1730 ret, hdev->reset_pending, retry_cnt); 1731 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1732 up(&hdev->reset_sem); 1733 msleep(HCLGEVF_RESET_RETRY_WAIT_MS); 1734 } 1735 1736 /* disable misc vector before reset done */ 1737 hclgevf_enable_vector(&hdev->misc_vector, false); 1738 1739 if (hdev->reset_type == HNAE3_FLR_RESET) 1740 hdev->rst_stats.flr_rst_cnt++; 1741 } 1742 1743 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev) 1744 { 1745 struct hclgevf_dev *hdev = ae_dev->priv; 1746 int ret; 1747 1748 hclgevf_enable_vector(&hdev->misc_vector, true); 1749 1750 ret = hclgevf_reset_rebuild(hdev); 1751 if (ret) 1752 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", 1753 ret); 1754 1755 hdev->reset_type = HNAE3_NONE_RESET; 1756 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1757 up(&hdev->reset_sem); 1758 } 1759 1760 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) 1761 { 1762 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1763 1764 return hdev->fw_version; 1765 } 1766 1767 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) 1768 { 1769 struct hclgevf_misc_vector *vector = &hdev->misc_vector; 1770 1771 vector->vector_irq = pci_irq_vector(hdev->pdev, 1772 HCLGEVF_MISC_VECTOR_NUM); 1773 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; 1774 /* vector status always valid for Vector 0 */ 1775 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; 1776 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; 1777 1778 hdev->num_msi_left -= 1; 1779 hdev->num_msi_used += 1; 1780 } 1781 1782 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) 1783 { 1784 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1785 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) && 1786 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, 1787 &hdev->state)) 1788 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 1789 } 1790 1791 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) 1792 { 1793 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1794 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, 1795 &hdev->state)) 1796 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 1797 } 1798 1799 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 1800 unsigned long delay) 1801 { 1802 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1803 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 1804 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay); 1805 } 1806 1807 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev) 1808 { 1809 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3 1810 1811 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) 1812 return; 1813 1814 down(&hdev->reset_sem); 1815 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1816 1817 if (test_and_clear_bit(HCLGEVF_RESET_PENDING, 1818 &hdev->reset_state)) { 1819 /* PF has intimated that it is about to reset the hardware. 1820 * We now have to poll & check if hardware has actually 1821 * completed the reset sequence. On hardware reset completion, 1822 * VF needs to reset the client and ae device. 1823 */ 1824 hdev->reset_attempts = 0; 1825 1826 hdev->last_reset_time = jiffies; 1827 hdev->reset_type = 1828 hclgevf_get_reset_level(hdev, &hdev->reset_pending); 1829 if (hdev->reset_type != HNAE3_NONE_RESET) 1830 hclgevf_reset(hdev); 1831 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, 1832 &hdev->reset_state)) { 1833 /* we could be here when either of below happens: 1834 * 1. reset was initiated due to watchdog timeout caused by 1835 * a. IMP was earlier reset and our TX got choked down and 1836 * which resulted in watchdog reacting and inducing VF 1837 * reset. This also means our cmdq would be unreliable. 1838 * b. problem in TX due to other lower layer(example link 1839 * layer not functioning properly etc.) 1840 * 2. VF reset might have been initiated due to some config 1841 * change. 1842 * 1843 * NOTE: Theres no clear way to detect above cases than to react 1844 * to the response of PF for this reset request. PF will ack the 1845 * 1b and 2. cases but we will not get any intimation about 1a 1846 * from PF as cmdq would be in unreliable state i.e. mailbox 1847 * communication between PF and VF would be broken. 1848 * 1849 * if we are never geting into pending state it means either: 1850 * 1. PF is not receiving our request which could be due to IMP 1851 * reset 1852 * 2. PF is screwed 1853 * We cannot do much for 2. but to check first we can try reset 1854 * our PCIe + stack and see if it alleviates the problem. 1855 */ 1856 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) { 1857 /* prepare for full reset of stack + pcie interface */ 1858 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending); 1859 1860 /* "defer" schedule the reset task again */ 1861 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1862 } else { 1863 hdev->reset_attempts++; 1864 1865 set_bit(hdev->reset_level, &hdev->reset_pending); 1866 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1867 } 1868 hclgevf_reset_task_schedule(hdev); 1869 } 1870 1871 hdev->reset_type = HNAE3_NONE_RESET; 1872 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1873 up(&hdev->reset_sem); 1874 } 1875 1876 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev) 1877 { 1878 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state)) 1879 return; 1880 1881 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) 1882 return; 1883 1884 hclgevf_mbx_async_handler(hdev); 1885 1886 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 1887 } 1888 1889 static void hclgevf_keep_alive(struct hclgevf_dev *hdev) 1890 { 1891 struct hclge_vf_to_pf_msg send_msg; 1892 int ret; 1893 1894 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state)) 1895 return; 1896 1897 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0); 1898 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1899 if (ret) 1900 dev_err(&hdev->pdev->dev, 1901 "VF sends keep alive cmd failed(=%d)\n", ret); 1902 } 1903 1904 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev) 1905 { 1906 unsigned long delta = round_jiffies_relative(HZ); 1907 struct hnae3_handle *handle = &hdev->nic; 1908 1909 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 1910 return; 1911 1912 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { 1913 delta = jiffies - hdev->last_serv_processed; 1914 1915 if (delta < round_jiffies_relative(HZ)) { 1916 delta = round_jiffies_relative(HZ) - delta; 1917 goto out; 1918 } 1919 } 1920 1921 hdev->serv_processed_cnt++; 1922 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL)) 1923 hclgevf_keep_alive(hdev); 1924 1925 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) { 1926 hdev->last_serv_processed = jiffies; 1927 goto out; 1928 } 1929 1930 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL)) 1931 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 1932 1933 /* VF does not need to request link status when this bit is set, because 1934 * PF will push its link status to VFs when link status changed. 1935 */ 1936 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state)) 1937 hclgevf_request_link_info(hdev); 1938 1939 hclgevf_update_link_mode(hdev); 1940 1941 hclgevf_sync_vlan_filter(hdev); 1942 1943 hclgevf_sync_mac_table(hdev); 1944 1945 hclgevf_sync_promisc_mode(hdev); 1946 1947 hdev->last_serv_processed = jiffies; 1948 1949 out: 1950 hclgevf_task_schedule(hdev, delta); 1951 } 1952 1953 static void hclgevf_service_task(struct work_struct *work) 1954 { 1955 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev, 1956 service_task.work); 1957 1958 hclgevf_reset_service_task(hdev); 1959 hclgevf_mailbox_service_task(hdev); 1960 hclgevf_periodic_service_task(hdev); 1961 1962 /* Handle reset and mbx again in case periodical task delays the 1963 * handling by calling hclgevf_task_schedule() in 1964 * hclgevf_periodic_service_task() 1965 */ 1966 hclgevf_reset_service_task(hdev); 1967 hclgevf_mailbox_service_task(hdev); 1968 } 1969 1970 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) 1971 { 1972 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr); 1973 } 1974 1975 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev, 1976 u32 *clearval) 1977 { 1978 u32 val, cmdq_stat_reg, rst_ing_reg; 1979 1980 /* fetch the events from their corresponding regs */ 1981 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw, 1982 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG); 1983 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) { 1984 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 1985 dev_info(&hdev->pdev->dev, 1986 "receive reset interrupt 0x%x!\n", rst_ing_reg); 1987 set_bit(HNAE3_VF_RESET, &hdev->reset_pending); 1988 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1989 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 1990 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B); 1991 hdev->rst_stats.vf_rst_cnt++; 1992 /* set up VF hardware reset status, its PF will clear 1993 * this status when PF has initialized done. 1994 */ 1995 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING); 1996 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING, 1997 val | HCLGEVF_VF_RST_ING_BIT); 1998 return HCLGEVF_VECTOR0_EVENT_RST; 1999 } 2000 2001 /* check for vector0 mailbox(=CMDQ RX) event source */ 2002 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) { 2003 /* for revision 0x21, clearing interrupt is writing bit 0 2004 * to the clear register, writing bit 1 means to keep the 2005 * old value. 2006 * for revision 0x20, the clear register is a read & write 2007 * register, so we should just write 0 to the bit we are 2008 * handling, and keep other bits as cmdq_stat_reg. 2009 */ 2010 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) 2011 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2012 else 2013 *clearval = cmdq_stat_reg & 2014 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2015 2016 return HCLGEVF_VECTOR0_EVENT_MBX; 2017 } 2018 2019 /* print other vector0 event source */ 2020 dev_info(&hdev->pdev->dev, 2021 "vector 0 interrupt from unknown source, cmdq_src = %#x\n", 2022 cmdq_stat_reg); 2023 2024 return HCLGEVF_VECTOR0_EVENT_OTHER; 2025 } 2026 2027 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) 2028 { 2029 enum hclgevf_evt_cause event_cause; 2030 struct hclgevf_dev *hdev = data; 2031 u32 clearval; 2032 2033 hclgevf_enable_vector(&hdev->misc_vector, false); 2034 event_cause = hclgevf_check_evt_cause(hdev, &clearval); 2035 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) 2036 hclgevf_clear_event_cause(hdev, clearval); 2037 2038 switch (event_cause) { 2039 case HCLGEVF_VECTOR0_EVENT_RST: 2040 hclgevf_reset_task_schedule(hdev); 2041 break; 2042 case HCLGEVF_VECTOR0_EVENT_MBX: 2043 hclgevf_mbx_handler(hdev); 2044 break; 2045 default: 2046 break; 2047 } 2048 2049 hclgevf_enable_vector(&hdev->misc_vector, true); 2050 2051 return IRQ_HANDLED; 2052 } 2053 2054 static int hclgevf_configure(struct hclgevf_dev *hdev) 2055 { 2056 int ret; 2057 2058 hdev->gro_en = true; 2059 2060 ret = hclgevf_get_basic_info(hdev); 2061 if (ret) 2062 return ret; 2063 2064 /* get current port based vlan state from PF */ 2065 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2066 if (ret) 2067 return ret; 2068 2069 /* get queue configuration from PF */ 2070 ret = hclgevf_get_queue_info(hdev); 2071 if (ret) 2072 return ret; 2073 2074 /* get queue depth info from PF */ 2075 ret = hclgevf_get_queue_depth(hdev); 2076 if (ret) 2077 return ret; 2078 2079 return hclgevf_get_pf_media_type(hdev); 2080 } 2081 2082 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) 2083 { 2084 struct pci_dev *pdev = ae_dev->pdev; 2085 struct hclgevf_dev *hdev; 2086 2087 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 2088 if (!hdev) 2089 return -ENOMEM; 2090 2091 hdev->pdev = pdev; 2092 hdev->ae_dev = ae_dev; 2093 ae_dev->priv = hdev; 2094 2095 return 0; 2096 } 2097 2098 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) 2099 { 2100 struct hnae3_handle *roce = &hdev->roce; 2101 struct hnae3_handle *nic = &hdev->nic; 2102 2103 roce->rinfo.num_vectors = hdev->num_roce_msix; 2104 2105 if (hdev->num_msi_left < roce->rinfo.num_vectors || 2106 hdev->num_msi_left == 0) 2107 return -EINVAL; 2108 2109 roce->rinfo.base_vector = hdev->roce_base_msix_offset; 2110 2111 roce->rinfo.netdev = nic->kinfo.netdev; 2112 roce->rinfo.roce_io_base = hdev->hw.hw.io_base; 2113 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base; 2114 2115 roce->pdev = nic->pdev; 2116 roce->ae_algo = nic->ae_algo; 2117 roce->numa_node_mask = nic->numa_node_mask; 2118 2119 return 0; 2120 } 2121 2122 static int hclgevf_config_gro(struct hclgevf_dev *hdev) 2123 { 2124 struct hclgevf_cfg_gro_status_cmd *req; 2125 struct hclge_desc desc; 2126 int ret; 2127 2128 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev)) 2129 return 0; 2130 2131 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, 2132 false); 2133 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data; 2134 2135 req->gro_en = hdev->gro_en ? 1 : 0; 2136 2137 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2138 if (ret) 2139 dev_err(&hdev->pdev->dev, 2140 "VF GRO hardware config cmd failed, ret = %d.\n", ret); 2141 2142 return ret; 2143 } 2144 2145 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) 2146 { 2147 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 2148 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM]; 2149 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM]; 2150 u16 tc_size[HCLGE_COMM_MAX_TC_NUM]; 2151 int ret; 2152 2153 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 2154 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, 2155 rss_cfg->rss_algo, 2156 rss_cfg->rss_hash_key); 2157 if (ret) 2158 return ret; 2159 2160 ret = hclge_comm_set_rss_input_tuple(&hdev->nic, &hdev->hw.hw, 2161 false, rss_cfg); 2162 if (ret) 2163 return ret; 2164 } 2165 2166 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 2167 rss_cfg->rss_indirection_tbl); 2168 if (ret) 2169 return ret; 2170 2171 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map, 2172 tc_offset, tc_valid, tc_size); 2173 2174 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, 2175 tc_valid, tc_size); 2176 } 2177 2178 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) 2179 { 2180 struct hnae3_handle *nic = &hdev->nic; 2181 int ret; 2182 2183 ret = hclgevf_en_hw_strip_rxvtag(nic, true); 2184 if (ret) { 2185 dev_err(&hdev->pdev->dev, 2186 "failed to enable rx vlan offload, ret = %d\n", ret); 2187 return ret; 2188 } 2189 2190 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, 2191 false); 2192 } 2193 2194 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev) 2195 { 2196 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000 2197 2198 unsigned long last = hdev->serv_processed_cnt; 2199 int i = 0; 2200 2201 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) && 2202 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT && 2203 last == hdev->serv_processed_cnt) 2204 usleep_range(1, 1); 2205 } 2206 2207 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable) 2208 { 2209 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2210 2211 if (enable) { 2212 hclgevf_task_schedule(hdev, 0); 2213 } else { 2214 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2215 2216 /* flush memory to make sure DOWN is seen by service task */ 2217 smp_mb__before_atomic(); 2218 hclgevf_flush_link_update(hdev); 2219 } 2220 } 2221 2222 static int hclgevf_ae_start(struct hnae3_handle *handle) 2223 { 2224 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2225 2226 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2227 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state); 2228 2229 hclge_comm_reset_tqp_stats(handle); 2230 2231 hclgevf_request_link_info(hdev); 2232 2233 hclgevf_update_link_mode(hdev); 2234 2235 return 0; 2236 } 2237 2238 static void hclgevf_ae_stop(struct hnae3_handle *handle) 2239 { 2240 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2241 2242 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2243 2244 if (hdev->reset_type != HNAE3_VF_RESET) 2245 hclgevf_reset_tqp(handle); 2246 2247 hclge_comm_reset_tqp_stats(handle); 2248 hclgevf_update_link_status(hdev, 0); 2249 } 2250 2251 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive) 2252 { 2253 #define HCLGEVF_STATE_ALIVE 1 2254 #define HCLGEVF_STATE_NOT_ALIVE 0 2255 2256 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2257 struct hclge_vf_to_pf_msg send_msg; 2258 2259 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0); 2260 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE : 2261 HCLGEVF_STATE_NOT_ALIVE; 2262 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2263 } 2264 2265 static int hclgevf_client_start(struct hnae3_handle *handle) 2266 { 2267 return hclgevf_set_alive(handle, true); 2268 } 2269 2270 static void hclgevf_client_stop(struct hnae3_handle *handle) 2271 { 2272 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2273 int ret; 2274 2275 ret = hclgevf_set_alive(handle, false); 2276 if (ret) 2277 dev_warn(&hdev->pdev->dev, 2278 "%s failed %d\n", __func__, ret); 2279 } 2280 2281 static void hclgevf_state_init(struct hclgevf_dev *hdev) 2282 { 2283 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 2284 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2285 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 2286 2287 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task); 2288 2289 mutex_init(&hdev->mbx_resp.mbx_mutex); 2290 sema_init(&hdev->reset_sem, 1); 2291 2292 spin_lock_init(&hdev->mac_table.mac_list_lock); 2293 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list); 2294 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list); 2295 2296 /* bring the device down */ 2297 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2298 } 2299 2300 static void hclgevf_state_uninit(struct hclgevf_dev *hdev) 2301 { 2302 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2303 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state); 2304 2305 if (hdev->service_task.work.func) 2306 cancel_delayed_work_sync(&hdev->service_task); 2307 2308 mutex_destroy(&hdev->mbx_resp.mbx_mutex); 2309 } 2310 2311 static int hclgevf_init_msi(struct hclgevf_dev *hdev) 2312 { 2313 struct pci_dev *pdev = hdev->pdev; 2314 int vectors; 2315 int i; 2316 2317 if (hnae3_dev_roce_supported(hdev)) 2318 vectors = pci_alloc_irq_vectors(pdev, 2319 hdev->roce_base_msix_offset + 1, 2320 hdev->num_msi, 2321 PCI_IRQ_MSIX); 2322 else 2323 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, 2324 hdev->num_msi, 2325 PCI_IRQ_MSI | PCI_IRQ_MSIX); 2326 2327 if (vectors < 0) { 2328 dev_err(&pdev->dev, 2329 "failed(%d) to allocate MSI/MSI-X vectors\n", 2330 vectors); 2331 return vectors; 2332 } 2333 if (vectors < hdev->num_msi) 2334 dev_warn(&hdev->pdev->dev, 2335 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", 2336 hdev->num_msi, vectors); 2337 2338 hdev->num_msi = vectors; 2339 hdev->num_msi_left = vectors; 2340 2341 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 2342 sizeof(u16), GFP_KERNEL); 2343 if (!hdev->vector_status) { 2344 pci_free_irq_vectors(pdev); 2345 return -ENOMEM; 2346 } 2347 2348 for (i = 0; i < hdev->num_msi; i++) 2349 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; 2350 2351 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 2352 sizeof(int), GFP_KERNEL); 2353 if (!hdev->vector_irq) { 2354 devm_kfree(&pdev->dev, hdev->vector_status); 2355 pci_free_irq_vectors(pdev); 2356 return -ENOMEM; 2357 } 2358 2359 return 0; 2360 } 2361 2362 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) 2363 { 2364 struct pci_dev *pdev = hdev->pdev; 2365 2366 devm_kfree(&pdev->dev, hdev->vector_status); 2367 devm_kfree(&pdev->dev, hdev->vector_irq); 2368 pci_free_irq_vectors(pdev); 2369 } 2370 2371 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) 2372 { 2373 int ret; 2374 2375 hclgevf_get_misc_vector(hdev); 2376 2377 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", 2378 HCLGEVF_NAME, pci_name(hdev->pdev)); 2379 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 2380 0, hdev->misc_vector.name, hdev); 2381 if (ret) { 2382 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", 2383 hdev->misc_vector.vector_irq); 2384 return ret; 2385 } 2386 2387 hclgevf_clear_event_cause(hdev, 0); 2388 2389 /* enable misc. vector(vector 0) */ 2390 hclgevf_enable_vector(&hdev->misc_vector, true); 2391 2392 return ret; 2393 } 2394 2395 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) 2396 { 2397 /* disable misc vector(vector 0) */ 2398 hclgevf_enable_vector(&hdev->misc_vector, false); 2399 synchronize_irq(hdev->misc_vector.vector_irq); 2400 free_irq(hdev->misc_vector.vector_irq, hdev); 2401 hclgevf_free_vector(hdev, 0); 2402 } 2403 2404 static void hclgevf_info_show(struct hclgevf_dev *hdev) 2405 { 2406 struct device *dev = &hdev->pdev->dev; 2407 2408 dev_info(dev, "VF info begin:\n"); 2409 2410 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); 2411 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); 2412 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); 2413 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); 2414 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); 2415 dev_info(dev, "PF media type of this VF: %u\n", 2416 hdev->hw.mac.media_type); 2417 2418 dev_info(dev, "VF info end.\n"); 2419 } 2420 2421 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, 2422 struct hnae3_client *client) 2423 { 2424 struct hclgevf_dev *hdev = ae_dev->priv; 2425 int rst_cnt = hdev->rst_stats.rst_cnt; 2426 int ret; 2427 2428 ret = client->ops->init_instance(&hdev->nic); 2429 if (ret) 2430 return ret; 2431 2432 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2433 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 2434 rst_cnt != hdev->rst_stats.rst_cnt) { 2435 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2436 2437 client->ops->uninit_instance(&hdev->nic, 0); 2438 return -EBUSY; 2439 } 2440 2441 hnae3_set_client_init_flag(client, ae_dev, 1); 2442 2443 if (netif_msg_drv(&hdev->nic)) 2444 hclgevf_info_show(hdev); 2445 2446 return 0; 2447 } 2448 2449 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, 2450 struct hnae3_client *client) 2451 { 2452 struct hclgevf_dev *hdev = ae_dev->priv; 2453 int ret; 2454 2455 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || 2456 !hdev->nic_client) 2457 return 0; 2458 2459 ret = hclgevf_init_roce_base_info(hdev); 2460 if (ret) 2461 return ret; 2462 2463 ret = client->ops->init_instance(&hdev->roce); 2464 if (ret) 2465 return ret; 2466 2467 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2468 hnae3_set_client_init_flag(client, ae_dev, 1); 2469 2470 return 0; 2471 } 2472 2473 static int hclgevf_init_client_instance(struct hnae3_client *client, 2474 struct hnae3_ae_dev *ae_dev) 2475 { 2476 struct hclgevf_dev *hdev = ae_dev->priv; 2477 int ret; 2478 2479 switch (client->type) { 2480 case HNAE3_CLIENT_KNIC: 2481 hdev->nic_client = client; 2482 hdev->nic.client = client; 2483 2484 ret = hclgevf_init_nic_client_instance(ae_dev, client); 2485 if (ret) 2486 goto clear_nic; 2487 2488 ret = hclgevf_init_roce_client_instance(ae_dev, 2489 hdev->roce_client); 2490 if (ret) 2491 goto clear_roce; 2492 2493 break; 2494 case HNAE3_CLIENT_ROCE: 2495 if (hnae3_dev_roce_supported(hdev)) { 2496 hdev->roce_client = client; 2497 hdev->roce.client = client; 2498 } 2499 2500 ret = hclgevf_init_roce_client_instance(ae_dev, client); 2501 if (ret) 2502 goto clear_roce; 2503 2504 break; 2505 default: 2506 return -EINVAL; 2507 } 2508 2509 return 0; 2510 2511 clear_nic: 2512 hdev->nic_client = NULL; 2513 hdev->nic.client = NULL; 2514 return ret; 2515 clear_roce: 2516 hdev->roce_client = NULL; 2517 hdev->roce.client = NULL; 2518 return ret; 2519 } 2520 2521 static void hclgevf_uninit_client_instance(struct hnae3_client *client, 2522 struct hnae3_ae_dev *ae_dev) 2523 { 2524 struct hclgevf_dev *hdev = ae_dev->priv; 2525 2526 /* un-init roce, if it exists */ 2527 if (hdev->roce_client) { 2528 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 2529 msleep(HCLGEVF_WAIT_RESET_DONE); 2530 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2531 2532 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); 2533 hdev->roce_client = NULL; 2534 hdev->roce.client = NULL; 2535 } 2536 2537 /* un-init nic/unic, if this was not called by roce client */ 2538 if (client->ops->uninit_instance && hdev->nic_client && 2539 client->type != HNAE3_CLIENT_ROCE) { 2540 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 2541 msleep(HCLGEVF_WAIT_RESET_DONE); 2542 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2543 2544 client->ops->uninit_instance(&hdev->nic, 0); 2545 hdev->nic_client = NULL; 2546 hdev->nic.client = NULL; 2547 } 2548 } 2549 2550 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev) 2551 { 2552 struct pci_dev *pdev = hdev->pdev; 2553 struct hclgevf_hw *hw = &hdev->hw; 2554 2555 /* for device does not have device memory, return directly */ 2556 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR))) 2557 return 0; 2558 2559 hw->hw.mem_base = 2560 devm_ioremap_wc(&pdev->dev, 2561 pci_resource_start(pdev, HCLGEVF_MEM_BAR), 2562 pci_resource_len(pdev, HCLGEVF_MEM_BAR)); 2563 if (!hw->hw.mem_base) { 2564 dev_err(&pdev->dev, "failed to map device memory\n"); 2565 return -EFAULT; 2566 } 2567 2568 return 0; 2569 } 2570 2571 static int hclgevf_pci_init(struct hclgevf_dev *hdev) 2572 { 2573 struct pci_dev *pdev = hdev->pdev; 2574 struct hclgevf_hw *hw; 2575 int ret; 2576 2577 ret = pci_enable_device(pdev); 2578 if (ret) { 2579 dev_err(&pdev->dev, "failed to enable PCI device\n"); 2580 return ret; 2581 } 2582 2583 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2584 if (ret) { 2585 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); 2586 goto err_disable_device; 2587 } 2588 2589 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); 2590 if (ret) { 2591 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 2592 goto err_disable_device; 2593 } 2594 2595 pci_set_master(pdev); 2596 hw = &hdev->hw; 2597 hw->hw.io_base = pci_iomap(pdev, 2, 0); 2598 if (!hw->hw.io_base) { 2599 dev_err(&pdev->dev, "can't map configuration register space\n"); 2600 ret = -ENOMEM; 2601 goto err_clr_master; 2602 } 2603 2604 ret = hclgevf_dev_mem_map(hdev); 2605 if (ret) 2606 goto err_unmap_io_base; 2607 2608 return 0; 2609 2610 err_unmap_io_base: 2611 pci_iounmap(pdev, hdev->hw.hw.io_base); 2612 err_clr_master: 2613 pci_clear_master(pdev); 2614 pci_release_regions(pdev); 2615 err_disable_device: 2616 pci_disable_device(pdev); 2617 2618 return ret; 2619 } 2620 2621 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) 2622 { 2623 struct pci_dev *pdev = hdev->pdev; 2624 2625 if (hdev->hw.hw.mem_base) 2626 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base); 2627 2628 pci_iounmap(pdev, hdev->hw.hw.io_base); 2629 pci_clear_master(pdev); 2630 pci_release_regions(pdev); 2631 pci_disable_device(pdev); 2632 } 2633 2634 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev) 2635 { 2636 struct hclgevf_query_res_cmd *req; 2637 struct hclge_desc desc; 2638 int ret; 2639 2640 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true); 2641 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2642 if (ret) { 2643 dev_err(&hdev->pdev->dev, 2644 "query vf resource failed, ret = %d.\n", ret); 2645 return ret; 2646 } 2647 2648 req = (struct hclgevf_query_res_cmd *)desc.data; 2649 2650 if (hnae3_dev_roce_supported(hdev)) { 2651 hdev->roce_base_msix_offset = 2652 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee), 2653 HCLGEVF_MSIX_OFT_ROCEE_M, 2654 HCLGEVF_MSIX_OFT_ROCEE_S); 2655 hdev->num_roce_msix = 2656 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2657 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2658 2659 /* nic's msix numbers is always equals to the roce's. */ 2660 hdev->num_nic_msix = hdev->num_roce_msix; 2661 2662 /* VF should have NIC vectors and Roce vectors, NIC vectors 2663 * are queued before Roce vectors. The offset is fixed to 64. 2664 */ 2665 hdev->num_msi = hdev->num_roce_msix + 2666 hdev->roce_base_msix_offset; 2667 } else { 2668 hdev->num_msi = 2669 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2670 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2671 2672 hdev->num_nic_msix = hdev->num_msi; 2673 } 2674 2675 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) { 2676 dev_err(&hdev->pdev->dev, 2677 "Just %u msi resources, not enough for vf(min:2).\n", 2678 hdev->num_nic_msix); 2679 return -EINVAL; 2680 } 2681 2682 return 0; 2683 } 2684 2685 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev) 2686 { 2687 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U 2688 2689 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2690 2691 ae_dev->dev_specs.max_non_tso_bd_num = 2692 HCLGEVF_MAX_NON_TSO_BD_NUM; 2693 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 2694 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 2695 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 2696 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME; 2697 } 2698 2699 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev, 2700 struct hclge_desc *desc) 2701 { 2702 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2703 struct hclgevf_dev_specs_0_cmd *req0; 2704 struct hclgevf_dev_specs_1_cmd *req1; 2705 2706 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data; 2707 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data; 2708 2709 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num; 2710 ae_dev->dev_specs.rss_ind_tbl_size = 2711 le16_to_cpu(req0->rss_ind_tbl_size); 2712 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max); 2713 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size); 2714 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl); 2715 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size); 2716 } 2717 2718 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev) 2719 { 2720 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs; 2721 2722 if (!dev_specs->max_non_tso_bd_num) 2723 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM; 2724 if (!dev_specs->rss_ind_tbl_size) 2725 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 2726 if (!dev_specs->rss_key_size) 2727 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 2728 if (!dev_specs->max_int_gl) 2729 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 2730 if (!dev_specs->max_frm_size) 2731 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME; 2732 } 2733 2734 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev) 2735 { 2736 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM]; 2737 int ret; 2738 int i; 2739 2740 /* set default specifications as devices lower than version V3 do not 2741 * support querying specifications from firmware. 2742 */ 2743 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 2744 hclgevf_set_default_dev_specs(hdev); 2745 return 0; 2746 } 2747 2748 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) { 2749 hclgevf_cmd_setup_basic_desc(&desc[i], 2750 HCLGE_OPC_QUERY_DEV_SPECS, true); 2751 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2752 } 2753 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true); 2754 2755 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM); 2756 if (ret) 2757 return ret; 2758 2759 hclgevf_parse_dev_specs(hdev, desc); 2760 hclgevf_check_dev_specs(hdev); 2761 2762 return 0; 2763 } 2764 2765 static int hclgevf_pci_reset(struct hclgevf_dev *hdev) 2766 { 2767 struct pci_dev *pdev = hdev->pdev; 2768 int ret = 0; 2769 2770 if (hdev->reset_type == HNAE3_VF_FULL_RESET && 2771 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2772 hclgevf_misc_irq_uninit(hdev); 2773 hclgevf_uninit_msi(hdev); 2774 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2775 } 2776 2777 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2778 pci_set_master(pdev); 2779 ret = hclgevf_init_msi(hdev); 2780 if (ret) { 2781 dev_err(&pdev->dev, 2782 "failed(%d) to init MSI/MSI-X\n", ret); 2783 return ret; 2784 } 2785 2786 ret = hclgevf_misc_irq_init(hdev); 2787 if (ret) { 2788 hclgevf_uninit_msi(hdev); 2789 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", 2790 ret); 2791 return ret; 2792 } 2793 2794 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2795 } 2796 2797 return ret; 2798 } 2799 2800 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev) 2801 { 2802 struct hclge_vf_to_pf_msg send_msg; 2803 2804 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL, 2805 HCLGE_MBX_VPORT_LIST_CLEAR); 2806 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2807 } 2808 2809 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev) 2810 { 2811 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 2812 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1); 2813 } 2814 2815 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev) 2816 { 2817 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 2818 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0); 2819 } 2820 2821 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev) 2822 { 2823 struct pci_dev *pdev = hdev->pdev; 2824 int ret; 2825 2826 ret = hclgevf_pci_reset(hdev); 2827 if (ret) { 2828 dev_err(&pdev->dev, "pci reset failed %d\n", ret); 2829 return ret; 2830 } 2831 2832 hclgevf_arq_init(hdev); 2833 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, 2834 &hdev->fw_version, false, 2835 hdev->reset_pending); 2836 if (ret) { 2837 dev_err(&pdev->dev, "cmd failed %d\n", ret); 2838 return ret; 2839 } 2840 2841 ret = hclgevf_rss_init_hw(hdev); 2842 if (ret) { 2843 dev_err(&hdev->pdev->dev, 2844 "failed(%d) to initialize RSS\n", ret); 2845 return ret; 2846 } 2847 2848 ret = hclgevf_config_gro(hdev); 2849 if (ret) 2850 return ret; 2851 2852 ret = hclgevf_init_vlan_config(hdev); 2853 if (ret) { 2854 dev_err(&hdev->pdev->dev, 2855 "failed(%d) to initialize VLAN config\n", ret); 2856 return ret; 2857 } 2858 2859 /* get current port based vlan state from PF */ 2860 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2861 if (ret) 2862 return ret; 2863 2864 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 2865 2866 hclgevf_init_rxd_adv_layout(hdev); 2867 2868 dev_info(&hdev->pdev->dev, "Reset done\n"); 2869 2870 return 0; 2871 } 2872 2873 static int hclgevf_init_hdev(struct hclgevf_dev *hdev) 2874 { 2875 struct pci_dev *pdev = hdev->pdev; 2876 int ret; 2877 2878 ret = hclgevf_pci_init(hdev); 2879 if (ret) 2880 return ret; 2881 2882 ret = hclgevf_devlink_init(hdev); 2883 if (ret) 2884 goto err_devlink_init; 2885 2886 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw); 2887 if (ret) 2888 goto err_cmd_queue_init; 2889 2890 hclgevf_arq_init(hdev); 2891 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, 2892 &hdev->fw_version, false, 2893 hdev->reset_pending); 2894 if (ret) 2895 goto err_cmd_init; 2896 2897 /* Get vf resource */ 2898 ret = hclgevf_query_vf_resource(hdev); 2899 if (ret) 2900 goto err_cmd_init; 2901 2902 ret = hclgevf_query_dev_specs(hdev); 2903 if (ret) { 2904 dev_err(&pdev->dev, 2905 "failed to query dev specifications, ret = %d\n", ret); 2906 goto err_cmd_init; 2907 } 2908 2909 ret = hclgevf_init_msi(hdev); 2910 if (ret) { 2911 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); 2912 goto err_cmd_init; 2913 } 2914 2915 hclgevf_state_init(hdev); 2916 hdev->reset_level = HNAE3_VF_FUNC_RESET; 2917 hdev->reset_type = HNAE3_NONE_RESET; 2918 2919 ret = hclgevf_misc_irq_init(hdev); 2920 if (ret) 2921 goto err_misc_irq_init; 2922 2923 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2924 2925 ret = hclgevf_configure(hdev); 2926 if (ret) { 2927 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); 2928 goto err_config; 2929 } 2930 2931 ret = hclgevf_alloc_tqps(hdev); 2932 if (ret) { 2933 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); 2934 goto err_config; 2935 } 2936 2937 ret = hclgevf_set_handle_info(hdev); 2938 if (ret) 2939 goto err_config; 2940 2941 ret = hclgevf_config_gro(hdev); 2942 if (ret) 2943 goto err_config; 2944 2945 /* Initialize RSS for this VF */ 2946 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev, 2947 &hdev->rss_cfg); 2948 if (ret) { 2949 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret); 2950 goto err_config; 2951 } 2952 2953 ret = hclgevf_rss_init_hw(hdev); 2954 if (ret) { 2955 dev_err(&hdev->pdev->dev, 2956 "failed(%d) to initialize RSS\n", ret); 2957 goto err_config; 2958 } 2959 2960 /* ensure vf tbl list as empty before init */ 2961 ret = hclgevf_clear_vport_list(hdev); 2962 if (ret) { 2963 dev_err(&pdev->dev, 2964 "failed to clear tbl list configuration, ret = %d.\n", 2965 ret); 2966 goto err_config; 2967 } 2968 2969 ret = hclgevf_init_vlan_config(hdev); 2970 if (ret) { 2971 dev_err(&hdev->pdev->dev, 2972 "failed(%d) to initialize VLAN config\n", ret); 2973 goto err_config; 2974 } 2975 2976 hclgevf_init_rxd_adv_layout(hdev); 2977 2978 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state); 2979 2980 hdev->last_reset_time = jiffies; 2981 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n", 2982 HCLGEVF_DRIVER_NAME); 2983 2984 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ)); 2985 2986 return 0; 2987 2988 err_config: 2989 hclgevf_misc_irq_uninit(hdev); 2990 err_misc_irq_init: 2991 hclgevf_state_uninit(hdev); 2992 hclgevf_uninit_msi(hdev); 2993 err_cmd_init: 2994 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 2995 err_cmd_queue_init: 2996 hclgevf_devlink_uninit(hdev); 2997 err_devlink_init: 2998 hclgevf_pci_uninit(hdev); 2999 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3000 return ret; 3001 } 3002 3003 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) 3004 { 3005 struct hclge_vf_to_pf_msg send_msg; 3006 3007 hclgevf_state_uninit(hdev); 3008 hclgevf_uninit_rxd_adv_layout(hdev); 3009 3010 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0); 3011 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3012 3013 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3014 hclgevf_misc_irq_uninit(hdev); 3015 hclgevf_uninit_msi(hdev); 3016 } 3017 3018 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 3019 hclgevf_devlink_uninit(hdev); 3020 hclgevf_pci_uninit(hdev); 3021 hclgevf_uninit_mac_list(hdev); 3022 } 3023 3024 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) 3025 { 3026 struct pci_dev *pdev = ae_dev->pdev; 3027 int ret; 3028 3029 ret = hclgevf_alloc_hdev(ae_dev); 3030 if (ret) { 3031 dev_err(&pdev->dev, "hclge device allocation failed\n"); 3032 return ret; 3033 } 3034 3035 ret = hclgevf_init_hdev(ae_dev->priv); 3036 if (ret) { 3037 dev_err(&pdev->dev, "hclge device initialization failed\n"); 3038 return ret; 3039 } 3040 3041 return 0; 3042 } 3043 3044 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 3045 { 3046 struct hclgevf_dev *hdev = ae_dev->priv; 3047 3048 hclgevf_uninit_hdev(hdev); 3049 ae_dev->priv = NULL; 3050 } 3051 3052 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) 3053 { 3054 struct hnae3_handle *nic = &hdev->nic; 3055 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 3056 3057 return min_t(u32, hdev->rss_size_max, 3058 hdev->num_tqps / kinfo->tc_info.num_tc); 3059 } 3060 3061 /** 3062 * hclgevf_get_channels - Get the current channels enabled and max supported. 3063 * @handle: hardware information for network interface 3064 * @ch: ethtool channels structure 3065 * 3066 * We don't support separate tx and rx queues as channels. The other count 3067 * represents how many queues are being used for control. max_combined counts 3068 * how many queue pairs we can support. They may not be mapped 1 to 1 with 3069 * q_vectors since we support a lot more queue pairs than q_vectors. 3070 **/ 3071 static void hclgevf_get_channels(struct hnae3_handle *handle, 3072 struct ethtool_channels *ch) 3073 { 3074 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3075 3076 ch->max_combined = hclgevf_get_max_channels(hdev); 3077 ch->other_count = 0; 3078 ch->max_other = 0; 3079 ch->combined_count = handle->kinfo.rss_size; 3080 } 3081 3082 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, 3083 u16 *alloc_tqps, u16 *max_rss_size) 3084 { 3085 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3086 3087 *alloc_tqps = hdev->num_tqps; 3088 *max_rss_size = hdev->rss_size_max; 3089 } 3090 3091 static void hclgevf_update_rss_size(struct hnae3_handle *handle, 3092 u32 new_tqps_num) 3093 { 3094 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3095 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3096 u16 max_rss_size; 3097 3098 kinfo->req_rss_size = new_tqps_num; 3099 3100 max_rss_size = min_t(u16, hdev->rss_size_max, 3101 hdev->num_tqps / kinfo->tc_info.num_tc); 3102 3103 /* Use the user's configuration when it is not larger than 3104 * max_rss_size, otherwise, use the maximum specification value. 3105 */ 3106 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size && 3107 kinfo->req_rss_size <= max_rss_size) 3108 kinfo->rss_size = kinfo->req_rss_size; 3109 else if (kinfo->rss_size > max_rss_size || 3110 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size)) 3111 kinfo->rss_size = max_rss_size; 3112 3113 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size; 3114 } 3115 3116 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, 3117 bool rxfh_configured) 3118 { 3119 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3120 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3121 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM]; 3122 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM]; 3123 u16 tc_size[HCLGE_COMM_MAX_TC_NUM]; 3124 u16 cur_rss_size = kinfo->rss_size; 3125 u16 cur_tqps = kinfo->num_tqps; 3126 u32 *rss_indir; 3127 unsigned int i; 3128 int ret; 3129 3130 hclgevf_update_rss_size(handle, new_tqps_num); 3131 3132 hclge_comm_get_rss_tc_info(cur_rss_size, hdev->hw_tc_map, 3133 tc_offset, tc_valid, tc_size); 3134 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, 3135 tc_valid, tc_size); 3136 if (ret) 3137 return ret; 3138 3139 /* RSS indirection table has been configured by user */ 3140 if (rxfh_configured) 3141 goto out; 3142 3143 /* Reinitializes the rss indirect table according to the new RSS size */ 3144 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size, 3145 sizeof(u32), GFP_KERNEL); 3146 if (!rss_indir) 3147 return -ENOMEM; 3148 3149 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 3150 rss_indir[i] = i % kinfo->rss_size; 3151 3152 hdev->rss_cfg.rss_size = kinfo->rss_size; 3153 3154 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0); 3155 if (ret) 3156 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", 3157 ret); 3158 3159 kfree(rss_indir); 3160 3161 out: 3162 if (!ret) 3163 dev_info(&hdev->pdev->dev, 3164 "Channels changed, rss_size from %u to %u, tqps from %u to %u", 3165 cur_rss_size, kinfo->rss_size, 3166 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc); 3167 3168 return ret; 3169 } 3170 3171 static int hclgevf_get_status(struct hnae3_handle *handle) 3172 { 3173 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3174 3175 return hdev->hw.mac.link; 3176 } 3177 3178 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, 3179 u8 *auto_neg, u32 *speed, 3180 u8 *duplex, u32 *lane_num) 3181 { 3182 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3183 3184 if (speed) 3185 *speed = hdev->hw.mac.speed; 3186 if (duplex) 3187 *duplex = hdev->hw.mac.duplex; 3188 if (auto_neg) 3189 *auto_neg = AUTONEG_DISABLE; 3190 } 3191 3192 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, 3193 u8 duplex) 3194 { 3195 hdev->hw.mac.speed = speed; 3196 hdev->hw.mac.duplex = duplex; 3197 } 3198 3199 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable) 3200 { 3201 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3202 bool gro_en_old = hdev->gro_en; 3203 int ret; 3204 3205 hdev->gro_en = enable; 3206 ret = hclgevf_config_gro(hdev); 3207 if (ret) 3208 hdev->gro_en = gro_en_old; 3209 3210 return ret; 3211 } 3212 3213 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type, 3214 u8 *module_type) 3215 { 3216 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3217 3218 if (media_type) 3219 *media_type = hdev->hw.mac.media_type; 3220 3221 if (module_type) 3222 *module_type = hdev->hw.mac.module_type; 3223 } 3224 3225 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle) 3226 { 3227 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3228 3229 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 3230 } 3231 3232 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle) 3233 { 3234 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3235 3236 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 3237 } 3238 3239 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle) 3240 { 3241 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3242 3243 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 3244 } 3245 3246 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle) 3247 { 3248 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3249 3250 return hdev->rst_stats.hw_rst_done_cnt; 3251 } 3252 3253 static void hclgevf_get_link_mode(struct hnae3_handle *handle, 3254 unsigned long *supported, 3255 unsigned long *advertising) 3256 { 3257 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3258 3259 *supported = hdev->hw.mac.supported; 3260 *advertising = hdev->hw.mac.advertising; 3261 } 3262 3263 #define MAX_SEPARATE_NUM 4 3264 #define SEPARATOR_VALUE 0xFDFCFBFA 3265 #define REG_NUM_PER_LINE 4 3266 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32)) 3267 3268 static int hclgevf_get_regs_len(struct hnae3_handle *handle) 3269 { 3270 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines; 3271 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3272 3273 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1; 3274 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1; 3275 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1; 3276 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1; 3277 3278 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps + 3279 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE; 3280 } 3281 3282 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version, 3283 void *data) 3284 { 3285 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3286 int i, j, reg_um, separator_num; 3287 u32 *reg = data; 3288 3289 *version = hdev->fw_version; 3290 3291 /* fetching per-VF registers values from VF PCIe register space */ 3292 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32); 3293 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3294 for (i = 0; i < reg_um; i++) 3295 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]); 3296 for (i = 0; i < separator_num; i++) 3297 *reg++ = SEPARATOR_VALUE; 3298 3299 reg_um = sizeof(common_reg_addr_list) / sizeof(u32); 3300 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3301 for (i = 0; i < reg_um; i++) 3302 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]); 3303 for (i = 0; i < separator_num; i++) 3304 *reg++ = SEPARATOR_VALUE; 3305 3306 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32); 3307 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3308 for (j = 0; j < hdev->num_tqps; j++) { 3309 for (i = 0; i < reg_um; i++) 3310 *reg++ = hclgevf_read_dev(&hdev->hw, 3311 ring_reg_addr_list[i] + 3312 HCLGEVF_TQP_REG_SIZE * j); 3313 for (i = 0; i < separator_num; i++) 3314 *reg++ = SEPARATOR_VALUE; 3315 } 3316 3317 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32); 3318 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3319 for (j = 0; j < hdev->num_msi_used - 1; j++) { 3320 for (i = 0; i < reg_um; i++) 3321 *reg++ = hclgevf_read_dev(&hdev->hw, 3322 tqp_intr_reg_addr_list[i] + 3323 4 * j); 3324 for (i = 0; i < separator_num; i++) 3325 *reg++ = SEPARATOR_VALUE; 3326 } 3327 } 3328 3329 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state, 3330 struct hclge_mbx_port_base_vlan *port_base_vlan) 3331 { 3332 struct hnae3_handle *nic = &hdev->nic; 3333 struct hclge_vf_to_pf_msg send_msg; 3334 int ret; 3335 3336 rtnl_lock(); 3337 3338 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 3339 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) { 3340 dev_warn(&hdev->pdev->dev, 3341 "is resetting when updating port based vlan info\n"); 3342 rtnl_unlock(); 3343 return; 3344 } 3345 3346 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 3347 if (ret) { 3348 rtnl_unlock(); 3349 return; 3350 } 3351 3352 /* send msg to PF and wait update port based vlan info */ 3353 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 3354 HCLGE_MBX_PORT_BASE_VLAN_CFG); 3355 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan)); 3356 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3357 if (!ret) { 3358 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) 3359 nic->port_base_vlan_state = state; 3360 else 3361 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; 3362 } 3363 3364 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 3365 rtnl_unlock(); 3366 } 3367 3368 static const struct hnae3_ae_ops hclgevf_ops = { 3369 .init_ae_dev = hclgevf_init_ae_dev, 3370 .uninit_ae_dev = hclgevf_uninit_ae_dev, 3371 .reset_prepare = hclgevf_reset_prepare_general, 3372 .reset_done = hclgevf_reset_done, 3373 .init_client_instance = hclgevf_init_client_instance, 3374 .uninit_client_instance = hclgevf_uninit_client_instance, 3375 .start = hclgevf_ae_start, 3376 .stop = hclgevf_ae_stop, 3377 .client_start = hclgevf_client_start, 3378 .client_stop = hclgevf_client_stop, 3379 .map_ring_to_vector = hclgevf_map_ring_to_vector, 3380 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, 3381 .get_vector = hclgevf_get_vector, 3382 .put_vector = hclgevf_put_vector, 3383 .reset_queue = hclgevf_reset_tqp, 3384 .get_mac_addr = hclgevf_get_mac_addr, 3385 .set_mac_addr = hclgevf_set_mac_addr, 3386 .add_uc_addr = hclgevf_add_uc_addr, 3387 .rm_uc_addr = hclgevf_rm_uc_addr, 3388 .add_mc_addr = hclgevf_add_mc_addr, 3389 .rm_mc_addr = hclgevf_rm_mc_addr, 3390 .get_stats = hclgevf_get_stats, 3391 .update_stats = hclgevf_update_stats, 3392 .get_strings = hclgevf_get_strings, 3393 .get_sset_count = hclgevf_get_sset_count, 3394 .get_rss_key_size = hclge_comm_get_rss_key_size, 3395 .get_rss = hclgevf_get_rss, 3396 .set_rss = hclgevf_set_rss, 3397 .get_rss_tuple = hclgevf_get_rss_tuple, 3398 .set_rss_tuple = hclgevf_set_rss_tuple, 3399 .get_tc_size = hclgevf_get_tc_size, 3400 .get_fw_version = hclgevf_get_fw_version, 3401 .set_vlan_filter = hclgevf_set_vlan_filter, 3402 .enable_vlan_filter = hclgevf_enable_vlan_filter, 3403 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, 3404 .reset_event = hclgevf_reset_event, 3405 .set_default_reset_request = hclgevf_set_def_reset_request, 3406 .set_channels = hclgevf_set_channels, 3407 .get_channels = hclgevf_get_channels, 3408 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, 3409 .get_regs_len = hclgevf_get_regs_len, 3410 .get_regs = hclgevf_get_regs, 3411 .get_status = hclgevf_get_status, 3412 .get_ksettings_an_result = hclgevf_get_ksettings_an_result, 3413 .get_media_type = hclgevf_get_media_type, 3414 .get_hw_reset_stat = hclgevf_get_hw_reset_stat, 3415 .ae_dev_resetting = hclgevf_ae_dev_resetting, 3416 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt, 3417 .set_gro_en = hclgevf_gro_en, 3418 .set_mtu = hclgevf_set_mtu, 3419 .get_global_queue_id = hclgevf_get_qid_global, 3420 .set_timer_task = hclgevf_set_timer_task, 3421 .get_link_mode = hclgevf_get_link_mode, 3422 .set_promisc_mode = hclgevf_set_promisc_mode, 3423 .request_update_promisc_mode = hclgevf_request_update_promisc_mode, 3424 .get_cmdq_stat = hclgevf_get_cmdq_stat, 3425 }; 3426 3427 static struct hnae3_ae_algo ae_algovf = { 3428 .ops = &hclgevf_ops, 3429 .pdev_id_table = ae_algovf_pci_tbl, 3430 }; 3431 3432 static int __init hclgevf_init(void) 3433 { 3434 pr_info("%s is initializing\n", HCLGEVF_NAME); 3435 3436 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME); 3437 if (!hclgevf_wq) { 3438 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME); 3439 return -ENOMEM; 3440 } 3441 3442 hnae3_register_ae_algo(&ae_algovf); 3443 3444 return 0; 3445 } 3446 3447 static void __exit hclgevf_exit(void) 3448 { 3449 hnae3_unregister_ae_algo(&ae_algovf); 3450 destroy_workqueue(hclgevf_wq); 3451 } 3452 module_init(hclgevf_init); 3453 module_exit(hclgevf_exit); 3454 3455 MODULE_LICENSE("GPL"); 3456 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 3457 MODULE_DESCRIPTION("HCLGEVF Driver"); 3458 MODULE_VERSION(HCLGEVF_MOD_VERSION); 3459