1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/etherdevice.h> 5 #include <net/rtnetlink.h> 6 #include "hclgevf_cmd.h" 7 #include "hclgevf_main.h" 8 #include "hclge_mbx.h" 9 #include "hnae3.h" 10 11 #define HCLGEVF_NAME "hclgevf" 12 13 static int hclgevf_init_hdev(struct hclgevf_dev *hdev); 14 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev); 15 static struct hnae3_ae_algo ae_algovf; 16 17 static const struct pci_device_id ae_algovf_pci_tbl[] = { 18 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0}, 19 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0}, 20 /* required last entry */ 21 {0, } 22 }; 23 24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); 25 26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev( 27 struct hnae3_handle *handle) 28 { 29 return container_of(handle, struct hclgevf_dev, nic); 30 } 31 32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle) 33 { 34 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 35 struct hnae3_queue *queue; 36 struct hclgevf_desc desc; 37 struct hclgevf_tqp *tqp; 38 int status; 39 int i; 40 41 for (i = 0; i < hdev->num_tqps; i++) { 42 queue = handle->kinfo.tqp[i]; 43 tqp = container_of(queue, struct hclgevf_tqp, q); 44 hclgevf_cmd_setup_basic_desc(&desc, 45 HCLGEVF_OPC_QUERY_RX_STATUS, 46 true); 47 48 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); 49 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 50 if (status) { 51 dev_err(&hdev->pdev->dev, 52 "Query tqp stat fail, status = %d,queue = %d\n", 53 status, i); 54 return status; 55 } 56 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd += 57 le32_to_cpu(desc.data[1]); 58 59 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS, 60 true); 61 62 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); 63 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 64 if (status) { 65 dev_err(&hdev->pdev->dev, 66 "Query tqp stat fail, status = %d,queue = %d\n", 67 status, i); 68 return status; 69 } 70 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd += 71 le32_to_cpu(desc.data[1]); 72 } 73 74 return 0; 75 } 76 77 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data) 78 { 79 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 80 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 81 struct hclgevf_tqp *tqp; 82 u64 *buff = data; 83 int i; 84 85 for (i = 0; i < hdev->num_tqps; i++) { 86 tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q); 87 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd; 88 } 89 for (i = 0; i < kinfo->num_tqps; i++) { 90 tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q); 91 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd; 92 } 93 94 return buff; 95 } 96 97 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset) 98 { 99 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 100 101 return hdev->num_tqps * 2; 102 } 103 104 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data) 105 { 106 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 107 u8 *buff = data; 108 int i = 0; 109 110 for (i = 0; i < hdev->num_tqps; i++) { 111 struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i], 112 struct hclgevf_tqp, q); 113 snprintf(buff, ETH_GSTRING_LEN, "txq#%d_pktnum_rcd", 114 tqp->index); 115 buff += ETH_GSTRING_LEN; 116 } 117 118 for (i = 0; i < hdev->num_tqps; i++) { 119 struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i], 120 struct hclgevf_tqp, q); 121 snprintf(buff, ETH_GSTRING_LEN, "rxq#%d_pktnum_rcd", 122 tqp->index); 123 buff += ETH_GSTRING_LEN; 124 } 125 126 return buff; 127 } 128 129 static void hclgevf_update_stats(struct hnae3_handle *handle, 130 struct net_device_stats *net_stats) 131 { 132 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 133 int status; 134 135 status = hclgevf_tqps_update_stats(handle); 136 if (status) 137 dev_err(&hdev->pdev->dev, 138 "VF update of TQPS stats fail, status = %d.\n", 139 status); 140 } 141 142 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) 143 { 144 if (strset == ETH_SS_TEST) 145 return -EOPNOTSUPP; 146 else if (strset == ETH_SS_STATS) 147 return hclgevf_tqps_get_sset_count(handle, strset); 148 149 return 0; 150 } 151 152 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, 153 u8 *data) 154 { 155 u8 *p = (char *)data; 156 157 if (strset == ETH_SS_STATS) 158 p = hclgevf_tqps_get_strings(handle, p); 159 } 160 161 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) 162 { 163 hclgevf_tqps_get_stats(handle, data); 164 } 165 166 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev) 167 { 168 u8 resp_msg; 169 int status; 170 171 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0, 172 true, &resp_msg, sizeof(u8)); 173 if (status) { 174 dev_err(&hdev->pdev->dev, 175 "VF request to get TC info from PF failed %d", 176 status); 177 return status; 178 } 179 180 hdev->hw_tc_map = resp_msg; 181 182 return 0; 183 } 184 185 static int hclge_get_queue_info(struct hclgevf_dev *hdev) 186 { 187 #define HCLGEVF_TQPS_RSS_INFO_LEN 8 188 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; 189 int status; 190 191 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0, 192 true, resp_msg, 193 HCLGEVF_TQPS_RSS_INFO_LEN); 194 if (status) { 195 dev_err(&hdev->pdev->dev, 196 "VF request to get tqp info from PF failed %d", 197 status); 198 return status; 199 } 200 201 memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16)); 202 memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16)); 203 memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16)); 204 memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16)); 205 206 return 0; 207 } 208 209 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) 210 { 211 struct hclgevf_tqp *tqp; 212 int i; 213 214 /* if this is on going reset then we need to re-allocate the TPQs 215 * since we cannot assume we would get same number of TPQs back from PF 216 */ 217 if (hclgevf_dev_ongoing_reset(hdev)) 218 devm_kfree(&hdev->pdev->dev, hdev->htqp); 219 220 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 221 sizeof(struct hclgevf_tqp), GFP_KERNEL); 222 if (!hdev->htqp) 223 return -ENOMEM; 224 225 tqp = hdev->htqp; 226 227 for (i = 0; i < hdev->num_tqps; i++) { 228 tqp->dev = &hdev->pdev->dev; 229 tqp->index = i; 230 231 tqp->q.ae_algo = &ae_algovf; 232 tqp->q.buf_size = hdev->rx_buf_len; 233 tqp->q.desc_num = hdev->num_desc; 234 tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET + 235 i * HCLGEVF_TQP_REG_SIZE; 236 237 tqp++; 238 } 239 240 return 0; 241 } 242 243 static int hclgevf_knic_setup(struct hclgevf_dev *hdev) 244 { 245 struct hnae3_handle *nic = &hdev->nic; 246 struct hnae3_knic_private_info *kinfo; 247 u16 new_tqps = hdev->num_tqps; 248 int i; 249 250 kinfo = &nic->kinfo; 251 kinfo->num_tc = 0; 252 kinfo->num_desc = hdev->num_desc; 253 kinfo->rx_buf_len = hdev->rx_buf_len; 254 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) 255 if (hdev->hw_tc_map & BIT(i)) 256 kinfo->num_tc++; 257 258 kinfo->rss_size 259 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc); 260 new_tqps = kinfo->rss_size * kinfo->num_tc; 261 kinfo->num_tqps = min(new_tqps, hdev->num_tqps); 262 263 /* if this is on going reset then we need to re-allocate the hnae queues 264 * as well since number of TPQs from PF might have changed. 265 */ 266 if (hclgevf_dev_ongoing_reset(hdev)) 267 devm_kfree(&hdev->pdev->dev, kinfo->tqp); 268 269 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, 270 sizeof(struct hnae3_queue *), GFP_KERNEL); 271 if (!kinfo->tqp) 272 return -ENOMEM; 273 274 for (i = 0; i < kinfo->num_tqps; i++) { 275 hdev->htqp[i].q.handle = &hdev->nic; 276 hdev->htqp[i].q.tqp_index = i; 277 kinfo->tqp[i] = &hdev->htqp[i].q; 278 } 279 280 return 0; 281 } 282 283 static void hclgevf_request_link_info(struct hclgevf_dev *hdev) 284 { 285 int status; 286 u8 resp_msg; 287 288 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL, 289 0, false, &resp_msg, sizeof(u8)); 290 if (status) 291 dev_err(&hdev->pdev->dev, 292 "VF failed to fetch link status(%d) from PF", status); 293 } 294 295 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) 296 { 297 struct hnae3_handle *handle = &hdev->nic; 298 struct hnae3_client *client; 299 300 client = handle->client; 301 302 if (link_state != hdev->hw.mac.link) { 303 client->ops->link_status_change(handle, !!link_state); 304 hdev->hw.mac.link = link_state; 305 } 306 } 307 308 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) 309 { 310 struct hnae3_handle *nic = &hdev->nic; 311 int ret; 312 313 nic->ae_algo = &ae_algovf; 314 nic->pdev = hdev->pdev; 315 nic->numa_node_mask = hdev->numa_node_mask; 316 nic->flags |= HNAE3_SUPPORT_VF; 317 318 if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) { 319 dev_err(&hdev->pdev->dev, "unsupported device type %d\n", 320 hdev->ae_dev->dev_type); 321 return -EINVAL; 322 } 323 324 ret = hclgevf_knic_setup(hdev); 325 if (ret) 326 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", 327 ret); 328 return ret; 329 } 330 331 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) 332 { 333 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { 334 dev_warn(&hdev->pdev->dev, 335 "vector(vector_id %d) has been freed.\n", vector_id); 336 return; 337 } 338 339 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; 340 hdev->num_msi_left += 1; 341 hdev->num_msi_used -= 1; 342 } 343 344 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, 345 struct hnae3_vector_info *vector_info) 346 { 347 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 348 struct hnae3_vector_info *vector = vector_info; 349 int alloc = 0; 350 int i, j; 351 352 vector_num = min(hdev->num_msi_left, vector_num); 353 354 for (j = 0; j < vector_num; j++) { 355 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { 356 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { 357 vector->vector = pci_irq_vector(hdev->pdev, i); 358 vector->io_addr = hdev->hw.io_base + 359 HCLGEVF_VECTOR_REG_BASE + 360 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; 361 hdev->vector_status[i] = 0; 362 hdev->vector_irq[i] = vector->vector; 363 364 vector++; 365 alloc++; 366 367 break; 368 } 369 } 370 } 371 hdev->num_msi_left -= alloc; 372 hdev->num_msi_used += alloc; 373 374 return alloc; 375 } 376 377 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) 378 { 379 int i; 380 381 for (i = 0; i < hdev->num_msi; i++) 382 if (vector == hdev->vector_irq[i]) 383 return i; 384 385 return -EINVAL; 386 } 387 388 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle) 389 { 390 return HCLGEVF_RSS_KEY_SIZE; 391 } 392 393 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle) 394 { 395 return HCLGEVF_RSS_IND_TBL_SIZE; 396 } 397 398 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev) 399 { 400 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl; 401 struct hclgevf_rss_indirection_table_cmd *req; 402 struct hclgevf_desc desc; 403 int status; 404 int i, j; 405 406 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data; 407 408 for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) { 409 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE, 410 false); 411 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE; 412 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK; 413 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++) 414 req->rss_result[j] = 415 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j]; 416 417 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 418 if (status) { 419 dev_err(&hdev->pdev->dev, 420 "VF failed(=%d) to set RSS indirection table\n", 421 status); 422 return status; 423 } 424 } 425 426 return 0; 427 } 428 429 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size) 430 { 431 struct hclgevf_rss_tc_mode_cmd *req; 432 u16 tc_offset[HCLGEVF_MAX_TC_NUM]; 433 u16 tc_valid[HCLGEVF_MAX_TC_NUM]; 434 u16 tc_size[HCLGEVF_MAX_TC_NUM]; 435 struct hclgevf_desc desc; 436 u16 roundup_size; 437 int status; 438 int i; 439 440 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data; 441 442 roundup_size = roundup_pow_of_two(rss_size); 443 roundup_size = ilog2(roundup_size); 444 445 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { 446 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i)); 447 tc_size[i] = roundup_size; 448 tc_offset[i] = rss_size * i; 449 } 450 451 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false); 452 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { 453 hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B, 454 (tc_valid[i] & 0x1)); 455 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M, 456 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]); 457 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M, 458 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]); 459 } 460 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 461 if (status) 462 dev_err(&hdev->pdev->dev, 463 "VF failed(=%d) to set rss tc mode\n", status); 464 465 return status; 466 } 467 468 static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash, 469 u8 *key) 470 { 471 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 472 struct hclgevf_rss_config_cmd *req; 473 int lkup_times = key ? 3 : 1; 474 struct hclgevf_desc desc; 475 int key_offset; 476 int key_size; 477 int status; 478 479 req = (struct hclgevf_rss_config_cmd *)desc.data; 480 lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0); 481 482 for (key_offset = 0; key_offset < lkup_times; key_offset++) { 483 hclgevf_cmd_setup_basic_desc(&desc, 484 HCLGEVF_OPC_RSS_GENERIC_CONFIG, 485 true); 486 req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET); 487 488 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 489 if (status) { 490 dev_err(&hdev->pdev->dev, 491 "failed to get hardware RSS cfg, status = %d\n", 492 status); 493 return status; 494 } 495 496 if (key_offset == 2) 497 key_size = 498 HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2; 499 else 500 key_size = HCLGEVF_RSS_HASH_KEY_NUM; 501 502 if (key) 503 memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, 504 req->hash_key, 505 key_size); 506 } 507 508 if (hash) { 509 if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ) 510 *hash = ETH_RSS_HASH_TOP; 511 else 512 *hash = ETH_RSS_HASH_UNKNOWN; 513 } 514 515 return 0; 516 } 517 518 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, 519 u8 *hfunc) 520 { 521 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 522 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 523 int i; 524 525 if (indir) 526 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 527 indir[i] = rss_cfg->rss_indirection_tbl[i]; 528 529 return hclgevf_get_rss_hw_cfg(handle, hfunc, key); 530 } 531 532 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, 533 const u8 *key, const u8 hfunc) 534 { 535 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 536 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 537 int i; 538 539 /* update the shadow RSS table with user specified qids */ 540 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 541 rss_cfg->rss_indirection_tbl[i] = indir[i]; 542 543 /* update the hardware */ 544 return hclgevf_set_rss_indir_table(hdev); 545 } 546 547 static int hclgevf_get_tc_size(struct hnae3_handle *handle) 548 { 549 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 550 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 551 552 return rss_cfg->rss_size; 553 } 554 555 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, 556 int vector_id, 557 struct hnae3_ring_chain_node *ring_chain) 558 { 559 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 560 struct hnae3_ring_chain_node *node; 561 struct hclge_mbx_vf_to_pf_cmd *req; 562 struct hclgevf_desc desc; 563 int i = 0; 564 int status; 565 u8 type; 566 567 req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data; 568 569 for (node = ring_chain; node; node = node->next) { 570 int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM + 571 HCLGE_MBX_RING_NODE_VARIABLE_NUM * i; 572 573 if (i == 0) { 574 hclgevf_cmd_setup_basic_desc(&desc, 575 HCLGEVF_OPC_MBX_VF_TO_PF, 576 false); 577 type = en ? 578 HCLGE_MBX_MAP_RING_TO_VECTOR : 579 HCLGE_MBX_UNMAP_RING_TO_VECTOR; 580 req->msg[0] = type; 581 req->msg[1] = vector_id; 582 } 583 584 req->msg[idx_offset] = 585 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); 586 req->msg[idx_offset + 1] = node->tqp_index; 587 req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx, 588 HNAE3_RING_GL_IDX_M, 589 HNAE3_RING_GL_IDX_S); 590 591 i++; 592 if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM - 593 HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) / 594 HCLGE_MBX_RING_NODE_VARIABLE_NUM) || 595 !node->next) { 596 req->msg[2] = i; 597 598 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 599 if (status) { 600 dev_err(&hdev->pdev->dev, 601 "Map TQP fail, status is %d.\n", 602 status); 603 return status; 604 } 605 i = 0; 606 hclgevf_cmd_setup_basic_desc(&desc, 607 HCLGEVF_OPC_MBX_VF_TO_PF, 608 false); 609 req->msg[0] = type; 610 req->msg[1] = vector_id; 611 } 612 } 613 614 return 0; 615 } 616 617 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, 618 struct hnae3_ring_chain_node *ring_chain) 619 { 620 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 621 int vector_id; 622 623 vector_id = hclgevf_get_vector_index(hdev, vector); 624 if (vector_id < 0) { 625 dev_err(&handle->pdev->dev, 626 "Get vector index fail. ret =%d\n", vector_id); 627 return vector_id; 628 } 629 630 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); 631 } 632 633 static int hclgevf_unmap_ring_from_vector( 634 struct hnae3_handle *handle, 635 int vector, 636 struct hnae3_ring_chain_node *ring_chain) 637 { 638 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 639 int ret, vector_id; 640 641 vector_id = hclgevf_get_vector_index(hdev, vector); 642 if (vector_id < 0) { 643 dev_err(&handle->pdev->dev, 644 "Get vector index fail. ret =%d\n", vector_id); 645 return vector_id; 646 } 647 648 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); 649 if (ret) 650 dev_err(&handle->pdev->dev, 651 "Unmap ring from vector fail. vector=%d, ret =%d\n", 652 vector_id, 653 ret); 654 655 return ret; 656 } 657 658 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) 659 { 660 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 661 int vector_id; 662 663 vector_id = hclgevf_get_vector_index(hdev, vector); 664 if (vector_id < 0) { 665 dev_err(&handle->pdev->dev, 666 "hclgevf_put_vector get vector index fail. ret =%d\n", 667 vector_id); 668 return vector_id; 669 } 670 671 hclgevf_free_vector(hdev, vector_id); 672 673 return 0; 674 } 675 676 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, 677 bool en_uc_pmc, bool en_mc_pmc) 678 { 679 struct hclge_mbx_vf_to_pf_cmd *req; 680 struct hclgevf_desc desc; 681 int status; 682 683 req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data; 684 685 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false); 686 req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE; 687 req->msg[1] = en_uc_pmc ? 1 : 0; 688 req->msg[2] = en_mc_pmc ? 1 : 0; 689 690 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 691 if (status) 692 dev_err(&hdev->pdev->dev, 693 "Set promisc mode fail, status is %d.\n", status); 694 695 return status; 696 } 697 698 static void hclgevf_set_promisc_mode(struct hnae3_handle *handle, 699 bool en_uc_pmc, bool en_mc_pmc) 700 { 701 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 702 703 hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc); 704 } 705 706 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id, 707 int stream_id, bool enable) 708 { 709 struct hclgevf_cfg_com_tqp_queue_cmd *req; 710 struct hclgevf_desc desc; 711 int status; 712 713 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; 714 715 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE, 716 false); 717 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); 718 req->stream_id = cpu_to_le16(stream_id); 719 req->enable |= enable << HCLGEVF_TQP_ENABLE_B; 720 721 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 722 if (status) 723 dev_err(&hdev->pdev->dev, 724 "TQP enable fail, status =%d.\n", status); 725 726 return status; 727 } 728 729 static int hclgevf_get_queue_id(struct hnae3_queue *queue) 730 { 731 struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q); 732 733 return tqp->index; 734 } 735 736 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle) 737 { 738 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 739 struct hnae3_queue *queue; 740 struct hclgevf_tqp *tqp; 741 int i; 742 743 for (i = 0; i < hdev->num_tqps; i++) { 744 queue = handle->kinfo.tqp[i]; 745 tqp = container_of(queue, struct hclgevf_tqp, q); 746 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats)); 747 } 748 } 749 750 static int hclgevf_cfg_func_mta_type(struct hclgevf_dev *hdev) 751 { 752 u8 resp_msg = HCLGEVF_MTA_TYPE_SEL_MAX; 753 int ret; 754 755 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, 756 HCLGE_MBX_MAC_VLAN_MTA_TYPE_READ, 757 NULL, 0, true, &resp_msg, sizeof(u8)); 758 759 if (ret) { 760 dev_err(&hdev->pdev->dev, 761 "Read mta type fail, ret=%d.\n", ret); 762 return ret; 763 } 764 765 if (resp_msg > HCLGEVF_MTA_TYPE_SEL_MAX) { 766 dev_err(&hdev->pdev->dev, 767 "Read mta type invalid, resp=%d.\n", resp_msg); 768 return -EINVAL; 769 } 770 771 hdev->mta_mac_sel_type = resp_msg; 772 773 return 0; 774 } 775 776 static u16 hclgevf_get_mac_addr_to_mta_index(struct hclgevf_dev *hdev, 777 const u8 *addr) 778 { 779 u32 rsh = HCLGEVF_MTA_TYPE_SEL_MAX - hdev->mta_mac_sel_type; 780 u16 high_val = addr[1] | (addr[0] << 8); 781 782 return (high_val >> rsh) & 0xfff; 783 } 784 785 static int hclgevf_do_update_mta_status(struct hclgevf_dev *hdev, 786 unsigned long *status) 787 { 788 #define HCLGEVF_MTA_STATUS_MSG_SIZE 13 789 #define HCLGEVF_MTA_STATUS_MSG_BITS \ 790 (HCLGEVF_MTA_STATUS_MSG_SIZE * BITS_PER_BYTE) 791 #define HCLGEVF_MTA_STATUS_MSG_END_BITS \ 792 (HCLGEVF_MTA_TBL_SIZE % HCLGEVF_MTA_STATUS_MSG_BITS) 793 u16 tbl_cnt; 794 u16 tbl_idx; 795 u8 msg_cnt; 796 u8 msg_idx; 797 int ret; 798 799 msg_cnt = DIV_ROUND_UP(HCLGEVF_MTA_TBL_SIZE, 800 HCLGEVF_MTA_STATUS_MSG_BITS); 801 tbl_idx = 0; 802 msg_idx = 0; 803 while (msg_cnt--) { 804 u8 msg[HCLGEVF_MTA_STATUS_MSG_SIZE + 1]; 805 u8 *p = &msg[1]; 806 u8 msg_ofs; 807 u8 msg_bit; 808 809 memset(msg, 0, sizeof(msg)); 810 811 /* set index field */ 812 msg[0] = 0x7F & msg_idx; 813 814 /* set end flag field */ 815 if (msg_cnt == 0) { 816 msg[0] |= 0x80; 817 tbl_cnt = HCLGEVF_MTA_STATUS_MSG_END_BITS; 818 } else { 819 tbl_cnt = HCLGEVF_MTA_STATUS_MSG_BITS; 820 } 821 822 /* set status field */ 823 msg_ofs = 0; 824 msg_bit = 0; 825 while (tbl_cnt--) { 826 if (test_bit(tbl_idx, status)) 827 p[msg_ofs] |= BIT(msg_bit); 828 829 tbl_idx++; 830 831 msg_bit++; 832 if (msg_bit == BITS_PER_BYTE) { 833 msg_bit = 0; 834 msg_ofs++; 835 } 836 } 837 838 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, 839 HCLGE_MBX_MAC_VLAN_MTA_STATUS_UPDATE, 840 msg, sizeof(msg), false, NULL, 0); 841 if (ret) 842 break; 843 844 msg_idx++; 845 } 846 847 return ret; 848 } 849 850 static int hclgevf_update_mta_status(struct hnae3_handle *handle) 851 { 852 unsigned long mta_status[BITS_TO_LONGS(HCLGEVF_MTA_TBL_SIZE)]; 853 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 854 struct net_device *netdev = hdev->nic.kinfo.netdev; 855 struct netdev_hw_addr *ha; 856 u16 tbl_idx; 857 858 /* clear status */ 859 memset(mta_status, 0, sizeof(mta_status)); 860 861 /* update status from mc addr list */ 862 netdev_for_each_mc_addr(ha, netdev) { 863 tbl_idx = hclgevf_get_mac_addr_to_mta_index(hdev, ha->addr); 864 set_bit(tbl_idx, mta_status); 865 } 866 867 return hclgevf_do_update_mta_status(hdev, mta_status); 868 } 869 870 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) 871 { 872 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 873 874 ether_addr_copy(p, hdev->hw.mac.mac_addr); 875 } 876 877 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p, 878 bool is_first) 879 { 880 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 881 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; 882 u8 *new_mac_addr = (u8 *)p; 883 u8 msg_data[ETH_ALEN * 2]; 884 u16 subcode; 885 int status; 886 887 ether_addr_copy(msg_data, new_mac_addr); 888 ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr); 889 890 subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD : 891 HCLGE_MBX_MAC_VLAN_UC_MODIFY; 892 893 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST, 894 subcode, msg_data, ETH_ALEN * 2, 895 true, NULL, 0); 896 if (!status) 897 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); 898 899 return status; 900 } 901 902 static int hclgevf_add_uc_addr(struct hnae3_handle *handle, 903 const unsigned char *addr) 904 { 905 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 906 907 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST, 908 HCLGE_MBX_MAC_VLAN_UC_ADD, 909 addr, ETH_ALEN, false, NULL, 0); 910 } 911 912 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, 913 const unsigned char *addr) 914 { 915 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 916 917 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST, 918 HCLGE_MBX_MAC_VLAN_UC_REMOVE, 919 addr, ETH_ALEN, false, NULL, 0); 920 } 921 922 static int hclgevf_add_mc_addr(struct hnae3_handle *handle, 923 const unsigned char *addr) 924 { 925 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 926 927 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, 928 HCLGE_MBX_MAC_VLAN_MC_ADD, 929 addr, ETH_ALEN, false, NULL, 0); 930 } 931 932 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, 933 const unsigned char *addr) 934 { 935 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 936 937 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST, 938 HCLGE_MBX_MAC_VLAN_MC_REMOVE, 939 addr, ETH_ALEN, false, NULL, 0); 940 } 941 942 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, 943 __be16 proto, u16 vlan_id, 944 bool is_kill) 945 { 946 #define HCLGEVF_VLAN_MBX_MSG_LEN 5 947 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 948 u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN]; 949 950 if (vlan_id > 4095) 951 return -EINVAL; 952 953 if (proto != htons(ETH_P_8021Q)) 954 return -EPROTONOSUPPORT; 955 956 msg_data[0] = is_kill; 957 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id)); 958 memcpy(&msg_data[3], &proto, sizeof(proto)); 959 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN, 960 HCLGE_MBX_VLAN_FILTER, msg_data, 961 HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0); 962 } 963 964 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 965 { 966 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 967 u8 msg_data; 968 969 msg_data = enable ? 1 : 0; 970 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN, 971 HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data, 972 1, false, NULL, 0); 973 } 974 975 static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id) 976 { 977 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 978 u8 msg_data[2]; 979 int ret; 980 981 memcpy(&msg_data[0], &queue_id, sizeof(queue_id)); 982 983 /* disable vf queue before send queue reset msg to PF */ 984 ret = hclgevf_tqp_enable(hdev, queue_id, 0, false); 985 if (ret) 986 return; 987 988 hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data, 989 2, true, NULL, 0); 990 } 991 992 static int hclgevf_notify_client(struct hclgevf_dev *hdev, 993 enum hnae3_reset_notify_type type) 994 { 995 struct hnae3_client *client = hdev->nic_client; 996 struct hnae3_handle *handle = &hdev->nic; 997 998 if (!client->ops->reset_notify) 999 return -EOPNOTSUPP; 1000 1001 return client->ops->reset_notify(handle, type); 1002 } 1003 1004 static int hclgevf_reset_wait(struct hclgevf_dev *hdev) 1005 { 1006 #define HCLGEVF_RESET_WAIT_MS 500 1007 #define HCLGEVF_RESET_WAIT_CNT 20 1008 u32 val, cnt = 0; 1009 1010 /* wait to check the hardware reset completion status */ 1011 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING); 1012 while (hnae3_get_bit(val, HCLGEVF_FUN_RST_ING_B) && 1013 (cnt < HCLGEVF_RESET_WAIT_CNT)) { 1014 msleep(HCLGEVF_RESET_WAIT_MS); 1015 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING); 1016 cnt++; 1017 } 1018 1019 /* hardware completion status should be available by this time */ 1020 if (cnt >= HCLGEVF_RESET_WAIT_CNT) { 1021 dev_warn(&hdev->pdev->dev, 1022 "could'nt get reset done status from h/w, timeout!\n"); 1023 return -EBUSY; 1024 } 1025 1026 /* we will wait a bit more to let reset of the stack to complete. This 1027 * might happen in case reset assertion was made by PF. Yes, this also 1028 * means we might end up waiting bit more even for VF reset. 1029 */ 1030 msleep(5000); 1031 1032 return 0; 1033 } 1034 1035 static int hclgevf_reset_stack(struct hclgevf_dev *hdev) 1036 { 1037 int ret; 1038 1039 /* uninitialize the nic client */ 1040 hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 1041 1042 /* re-initialize the hclge device */ 1043 ret = hclgevf_init_hdev(hdev); 1044 if (ret) { 1045 dev_err(&hdev->pdev->dev, 1046 "hclge device re-init failed, VF is disabled!\n"); 1047 return ret; 1048 } 1049 1050 /* bring up the nic client again */ 1051 hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); 1052 1053 return 0; 1054 } 1055 1056 static int hclgevf_reset(struct hclgevf_dev *hdev) 1057 { 1058 int ret; 1059 1060 rtnl_lock(); 1061 1062 /* bring down the nic to stop any ongoing TX/RX */ 1063 hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 1064 1065 /* check if VF could successfully fetch the hardware reset completion 1066 * status from the hardware 1067 */ 1068 ret = hclgevf_reset_wait(hdev); 1069 if (ret) { 1070 /* can't do much in this situation, will disable VF */ 1071 dev_err(&hdev->pdev->dev, 1072 "VF failed(=%d) to fetch H/W reset completion status\n", 1073 ret); 1074 1075 dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n"); 1076 hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 1077 1078 rtnl_unlock(); 1079 return ret; 1080 } 1081 1082 /* now, re-initialize the nic client and ae device*/ 1083 ret = hclgevf_reset_stack(hdev); 1084 if (ret) 1085 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); 1086 1087 /* bring up the nic to enable TX/RX again */ 1088 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 1089 1090 rtnl_unlock(); 1091 1092 return ret; 1093 } 1094 1095 static int hclgevf_do_reset(struct hclgevf_dev *hdev) 1096 { 1097 int status; 1098 u8 respmsg; 1099 1100 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL, 1101 0, false, &respmsg, sizeof(u8)); 1102 if (status) 1103 dev_err(&hdev->pdev->dev, 1104 "VF reset request to PF failed(=%d)\n", status); 1105 1106 return status; 1107 } 1108 1109 static void hclgevf_reset_event(struct hnae3_handle *handle) 1110 { 1111 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1112 1113 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); 1114 1115 handle->reset_level = HNAE3_VF_RESET; 1116 1117 /* reset of this VF requested */ 1118 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); 1119 hclgevf_reset_task_schedule(hdev); 1120 1121 handle->last_reset_time = jiffies; 1122 } 1123 1124 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) 1125 { 1126 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1127 1128 return hdev->fw_version; 1129 } 1130 1131 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) 1132 { 1133 struct hclgevf_misc_vector *vector = &hdev->misc_vector; 1134 1135 vector->vector_irq = pci_irq_vector(hdev->pdev, 1136 HCLGEVF_MISC_VECTOR_NUM); 1137 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; 1138 /* vector status always valid for Vector 0 */ 1139 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; 1140 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; 1141 1142 hdev->num_msi_left -= 1; 1143 hdev->num_msi_used += 1; 1144 } 1145 1146 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) 1147 { 1148 if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) && 1149 !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) { 1150 set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state); 1151 schedule_work(&hdev->rst_service_task); 1152 } 1153 } 1154 1155 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) 1156 { 1157 if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) && 1158 !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) { 1159 set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 1160 schedule_work(&hdev->mbx_service_task); 1161 } 1162 } 1163 1164 static void hclgevf_task_schedule(struct hclgevf_dev *hdev) 1165 { 1166 if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state) && 1167 !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state)) 1168 schedule_work(&hdev->service_task); 1169 } 1170 1171 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev) 1172 { 1173 /* if we have any pending mailbox event then schedule the mbx task */ 1174 if (hdev->mbx_event_pending) 1175 hclgevf_mbx_task_schedule(hdev); 1176 1177 if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state)) 1178 hclgevf_reset_task_schedule(hdev); 1179 } 1180 1181 static void hclgevf_service_timer(struct timer_list *t) 1182 { 1183 struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer); 1184 1185 mod_timer(&hdev->service_timer, jiffies + 5 * HZ); 1186 1187 hclgevf_task_schedule(hdev); 1188 } 1189 1190 static void hclgevf_reset_service_task(struct work_struct *work) 1191 { 1192 struct hclgevf_dev *hdev = 1193 container_of(work, struct hclgevf_dev, rst_service_task); 1194 int ret; 1195 1196 if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 1197 return; 1198 1199 clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state); 1200 1201 if (test_and_clear_bit(HCLGEVF_RESET_PENDING, 1202 &hdev->reset_state)) { 1203 /* PF has initmated that it is about to reset the hardware. 1204 * We now have to poll & check if harware has actually completed 1205 * the reset sequence. On hardware reset completion, VF needs to 1206 * reset the client and ae device. 1207 */ 1208 hdev->reset_attempts = 0; 1209 1210 ret = hclgevf_reset(hdev); 1211 if (ret) 1212 dev_err(&hdev->pdev->dev, "VF stack reset failed.\n"); 1213 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, 1214 &hdev->reset_state)) { 1215 /* we could be here when either of below happens: 1216 * 1. reset was initiated due to watchdog timeout due to 1217 * a. IMP was earlier reset and our TX got choked down and 1218 * which resulted in watchdog reacting and inducing VF 1219 * reset. This also means our cmdq would be unreliable. 1220 * b. problem in TX due to other lower layer(example link 1221 * layer not functioning properly etc.) 1222 * 2. VF reset might have been initiated due to some config 1223 * change. 1224 * 1225 * NOTE: Theres no clear way to detect above cases than to react 1226 * to the response of PF for this reset request. PF will ack the 1227 * 1b and 2. cases but we will not get any intimation about 1a 1228 * from PF as cmdq would be in unreliable state i.e. mailbox 1229 * communication between PF and VF would be broken. 1230 */ 1231 1232 /* if we are never geting into pending state it means either: 1233 * 1. PF is not receiving our request which could be due to IMP 1234 * reset 1235 * 2. PF is screwed 1236 * We cannot do much for 2. but to check first we can try reset 1237 * our PCIe + stack and see if it alleviates the problem. 1238 */ 1239 if (hdev->reset_attempts > 3) { 1240 /* prepare for full reset of stack + pcie interface */ 1241 hdev->nic.reset_level = HNAE3_VF_FULL_RESET; 1242 1243 /* "defer" schedule the reset task again */ 1244 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1245 } else { 1246 hdev->reset_attempts++; 1247 1248 /* request PF for resetting this VF via mailbox */ 1249 ret = hclgevf_do_reset(hdev); 1250 if (ret) 1251 dev_warn(&hdev->pdev->dev, 1252 "VF rst fail, stack will call\n"); 1253 } 1254 } 1255 1256 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1257 } 1258 1259 static void hclgevf_mailbox_service_task(struct work_struct *work) 1260 { 1261 struct hclgevf_dev *hdev; 1262 1263 hdev = container_of(work, struct hclgevf_dev, mbx_service_task); 1264 1265 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) 1266 return; 1267 1268 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 1269 1270 hclgevf_mbx_async_handler(hdev); 1271 1272 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 1273 } 1274 1275 static void hclgevf_service_task(struct work_struct *work) 1276 { 1277 struct hclgevf_dev *hdev; 1278 1279 hdev = container_of(work, struct hclgevf_dev, service_task); 1280 1281 /* request the link status from the PF. PF would be able to tell VF 1282 * about such updates in future so we might remove this later 1283 */ 1284 hclgevf_request_link_info(hdev); 1285 1286 hclgevf_deferred_task_schedule(hdev); 1287 1288 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state); 1289 } 1290 1291 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) 1292 { 1293 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr); 1294 } 1295 1296 static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval) 1297 { 1298 u32 cmdq_src_reg; 1299 1300 /* fetch the events from their corresponding regs */ 1301 cmdq_src_reg = hclgevf_read_dev(&hdev->hw, 1302 HCLGEVF_VECTOR0_CMDQ_SRC_REG); 1303 1304 /* check for vector0 mailbox(=CMDQ RX) event source */ 1305 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) { 1306 cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 1307 *clearval = cmdq_src_reg; 1308 return true; 1309 } 1310 1311 dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n"); 1312 1313 return false; 1314 } 1315 1316 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) 1317 { 1318 writel(en ? 1 : 0, vector->addr); 1319 } 1320 1321 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) 1322 { 1323 struct hclgevf_dev *hdev = data; 1324 u32 clearval; 1325 1326 hclgevf_enable_vector(&hdev->misc_vector, false); 1327 if (!hclgevf_check_event_cause(hdev, &clearval)) 1328 goto skip_sched; 1329 1330 hclgevf_mbx_handler(hdev); 1331 1332 hclgevf_clear_event_cause(hdev, clearval); 1333 1334 skip_sched: 1335 hclgevf_enable_vector(&hdev->misc_vector, true); 1336 1337 return IRQ_HANDLED; 1338 } 1339 1340 static int hclgevf_configure(struct hclgevf_dev *hdev) 1341 { 1342 int ret; 1343 1344 /* get queue configuration from PF */ 1345 ret = hclge_get_queue_info(hdev); 1346 if (ret) 1347 return ret; 1348 /* get tc configuration from PF */ 1349 return hclgevf_get_tc_info(hdev); 1350 } 1351 1352 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) 1353 { 1354 struct pci_dev *pdev = ae_dev->pdev; 1355 struct hclgevf_dev *hdev = ae_dev->priv; 1356 1357 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 1358 if (!hdev) 1359 return -ENOMEM; 1360 1361 hdev->pdev = pdev; 1362 hdev->ae_dev = ae_dev; 1363 ae_dev->priv = hdev; 1364 1365 return 0; 1366 } 1367 1368 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) 1369 { 1370 struct hnae3_handle *roce = &hdev->roce; 1371 struct hnae3_handle *nic = &hdev->nic; 1372 1373 roce->rinfo.num_vectors = HCLGEVF_ROCEE_VECTOR_NUM; 1374 1375 if (hdev->num_msi_left < roce->rinfo.num_vectors || 1376 hdev->num_msi_left == 0) 1377 return -EINVAL; 1378 1379 roce->rinfo.base_vector = 1380 hdev->vector_status[hdev->num_msi_used]; 1381 1382 roce->rinfo.netdev = nic->kinfo.netdev; 1383 roce->rinfo.roce_io_base = hdev->hw.io_base; 1384 1385 roce->pdev = nic->pdev; 1386 roce->ae_algo = nic->ae_algo; 1387 roce->numa_node_mask = nic->numa_node_mask; 1388 1389 return 0; 1390 } 1391 1392 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) 1393 { 1394 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 1395 int i, ret; 1396 1397 rss_cfg->rss_size = hdev->rss_size_max; 1398 1399 /* Initialize RSS indirect table for each vport */ 1400 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 1401 rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max; 1402 1403 ret = hclgevf_set_rss_indir_table(hdev); 1404 if (ret) 1405 return ret; 1406 1407 return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max); 1408 } 1409 1410 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) 1411 { 1412 /* other vlan config(like, VLAN TX/RX offload) would also be added 1413 * here later 1414 */ 1415 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, 1416 false); 1417 } 1418 1419 static int hclgevf_ae_start(struct hnae3_handle *handle) 1420 { 1421 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1422 int i, queue_id; 1423 1424 for (i = 0; i < handle->kinfo.num_tqps; i++) { 1425 /* ring enable */ 1426 queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]); 1427 if (queue_id < 0) { 1428 dev_warn(&hdev->pdev->dev, 1429 "Get invalid queue id, ignore it\n"); 1430 continue; 1431 } 1432 1433 hclgevf_tqp_enable(hdev, queue_id, 0, true); 1434 } 1435 1436 /* reset tqp stats */ 1437 hclgevf_reset_tqp_stats(handle); 1438 1439 hclgevf_request_link_info(hdev); 1440 1441 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); 1442 mod_timer(&hdev->service_timer, jiffies + HZ); 1443 1444 return 0; 1445 } 1446 1447 static void hclgevf_ae_stop(struct hnae3_handle *handle) 1448 { 1449 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1450 int i, queue_id; 1451 1452 for (i = 0; i < hdev->num_tqps; i++) { 1453 /* Ring disable */ 1454 queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]); 1455 if (queue_id < 0) { 1456 dev_warn(&hdev->pdev->dev, 1457 "Get invalid queue id, ignore it\n"); 1458 continue; 1459 } 1460 1461 hclgevf_tqp_enable(hdev, queue_id, 0, false); 1462 } 1463 1464 /* reset tqp stats */ 1465 hclgevf_reset_tqp_stats(handle); 1466 del_timer_sync(&hdev->service_timer); 1467 cancel_work_sync(&hdev->service_task); 1468 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state); 1469 hclgevf_update_link_status(hdev, 0); 1470 } 1471 1472 static void hclgevf_state_init(struct hclgevf_dev *hdev) 1473 { 1474 /* if this is on going reset then skip this initialization */ 1475 if (hclgevf_dev_ongoing_reset(hdev)) 1476 return; 1477 1478 /* setup tasks for the MBX */ 1479 INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task); 1480 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 1481 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 1482 1483 /* setup tasks for service timer */ 1484 timer_setup(&hdev->service_timer, hclgevf_service_timer, 0); 1485 1486 INIT_WORK(&hdev->service_task, hclgevf_service_task); 1487 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state); 1488 1489 INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task); 1490 1491 mutex_init(&hdev->mbx_resp.mbx_mutex); 1492 1493 /* bring the device down */ 1494 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 1495 } 1496 1497 static void hclgevf_state_uninit(struct hclgevf_dev *hdev) 1498 { 1499 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 1500 1501 if (hdev->service_timer.function) 1502 del_timer_sync(&hdev->service_timer); 1503 if (hdev->service_task.func) 1504 cancel_work_sync(&hdev->service_task); 1505 if (hdev->mbx_service_task.func) 1506 cancel_work_sync(&hdev->mbx_service_task); 1507 if (hdev->rst_service_task.func) 1508 cancel_work_sync(&hdev->rst_service_task); 1509 1510 mutex_destroy(&hdev->mbx_resp.mbx_mutex); 1511 } 1512 1513 static int hclgevf_init_msi(struct hclgevf_dev *hdev) 1514 { 1515 struct pci_dev *pdev = hdev->pdev; 1516 int vectors; 1517 int i; 1518 1519 /* if this is on going reset then skip this initialization */ 1520 if (hclgevf_dev_ongoing_reset(hdev)) 1521 return 0; 1522 1523 hdev->num_msi = HCLGEVF_MAX_VF_VECTOR_NUM; 1524 1525 vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi, 1526 PCI_IRQ_MSI | PCI_IRQ_MSIX); 1527 if (vectors < 0) { 1528 dev_err(&pdev->dev, 1529 "failed(%d) to allocate MSI/MSI-X vectors\n", 1530 vectors); 1531 return vectors; 1532 } 1533 if (vectors < hdev->num_msi) 1534 dev_warn(&hdev->pdev->dev, 1535 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n", 1536 hdev->num_msi, vectors); 1537 1538 hdev->num_msi = vectors; 1539 hdev->num_msi_left = vectors; 1540 hdev->base_msi_vector = pdev->irq; 1541 1542 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 1543 sizeof(u16), GFP_KERNEL); 1544 if (!hdev->vector_status) { 1545 pci_free_irq_vectors(pdev); 1546 return -ENOMEM; 1547 } 1548 1549 for (i = 0; i < hdev->num_msi; i++) 1550 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; 1551 1552 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 1553 sizeof(int), GFP_KERNEL); 1554 if (!hdev->vector_irq) { 1555 pci_free_irq_vectors(pdev); 1556 return -ENOMEM; 1557 } 1558 1559 return 0; 1560 } 1561 1562 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) 1563 { 1564 struct pci_dev *pdev = hdev->pdev; 1565 1566 pci_free_irq_vectors(pdev); 1567 } 1568 1569 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) 1570 { 1571 int ret = 0; 1572 1573 /* if this is on going reset then skip this initialization */ 1574 if (hclgevf_dev_ongoing_reset(hdev)) 1575 return 0; 1576 1577 hclgevf_get_misc_vector(hdev); 1578 1579 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 1580 0, "hclgevf_cmd", hdev); 1581 if (ret) { 1582 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", 1583 hdev->misc_vector.vector_irq); 1584 return ret; 1585 } 1586 1587 hclgevf_clear_event_cause(hdev, 0); 1588 1589 /* enable misc. vector(vector 0) */ 1590 hclgevf_enable_vector(&hdev->misc_vector, true); 1591 1592 return ret; 1593 } 1594 1595 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) 1596 { 1597 /* disable misc vector(vector 0) */ 1598 hclgevf_enable_vector(&hdev->misc_vector, false); 1599 synchronize_irq(hdev->misc_vector.vector_irq); 1600 free_irq(hdev->misc_vector.vector_irq, hdev); 1601 hclgevf_free_vector(hdev, 0); 1602 } 1603 1604 static int hclgevf_init_client_instance(struct hnae3_client *client, 1605 struct hnae3_ae_dev *ae_dev) 1606 { 1607 struct hclgevf_dev *hdev = ae_dev->priv; 1608 int ret; 1609 1610 switch (client->type) { 1611 case HNAE3_CLIENT_KNIC: 1612 hdev->nic_client = client; 1613 hdev->nic.client = client; 1614 1615 ret = client->ops->init_instance(&hdev->nic); 1616 if (ret) 1617 return ret; 1618 1619 if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) { 1620 struct hnae3_client *rc = hdev->roce_client; 1621 1622 ret = hclgevf_init_roce_base_info(hdev); 1623 if (ret) 1624 return ret; 1625 ret = rc->ops->init_instance(&hdev->roce); 1626 if (ret) 1627 return ret; 1628 } 1629 break; 1630 case HNAE3_CLIENT_UNIC: 1631 hdev->nic_client = client; 1632 hdev->nic.client = client; 1633 1634 ret = client->ops->init_instance(&hdev->nic); 1635 if (ret) 1636 return ret; 1637 break; 1638 case HNAE3_CLIENT_ROCE: 1639 if (hnae3_dev_roce_supported(hdev)) { 1640 hdev->roce_client = client; 1641 hdev->roce.client = client; 1642 } 1643 1644 if (hdev->roce_client && hdev->nic_client) { 1645 ret = hclgevf_init_roce_base_info(hdev); 1646 if (ret) 1647 return ret; 1648 1649 ret = client->ops->init_instance(&hdev->roce); 1650 if (ret) 1651 return ret; 1652 } 1653 } 1654 1655 return 0; 1656 } 1657 1658 static void hclgevf_uninit_client_instance(struct hnae3_client *client, 1659 struct hnae3_ae_dev *ae_dev) 1660 { 1661 struct hclgevf_dev *hdev = ae_dev->priv; 1662 1663 /* un-init roce, if it exists */ 1664 if (hdev->roce_client) 1665 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); 1666 1667 /* un-init nic/unic, if this was not called by roce client */ 1668 if ((client->ops->uninit_instance) && 1669 (client->type != HNAE3_CLIENT_ROCE)) 1670 client->ops->uninit_instance(&hdev->nic, 0); 1671 } 1672 1673 static int hclgevf_pci_init(struct hclgevf_dev *hdev) 1674 { 1675 struct pci_dev *pdev = hdev->pdev; 1676 struct hclgevf_hw *hw; 1677 int ret; 1678 1679 /* check if we need to skip initialization of pci. This will happen if 1680 * device is undergoing VF reset. Otherwise, we would need to 1681 * re-initialize pci interface again i.e. when device is not going 1682 * through *any* reset or actually undergoing full reset. 1683 */ 1684 if (hclgevf_dev_ongoing_reset(hdev)) 1685 return 0; 1686 1687 ret = pci_enable_device(pdev); 1688 if (ret) { 1689 dev_err(&pdev->dev, "failed to enable PCI device\n"); 1690 return ret; 1691 } 1692 1693 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1694 if (ret) { 1695 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); 1696 goto err_disable_device; 1697 } 1698 1699 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); 1700 if (ret) { 1701 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 1702 goto err_disable_device; 1703 } 1704 1705 pci_set_master(pdev); 1706 hw = &hdev->hw; 1707 hw->hdev = hdev; 1708 hw->io_base = pci_iomap(pdev, 2, 0); 1709 if (!hw->io_base) { 1710 dev_err(&pdev->dev, "can't map configuration register space\n"); 1711 ret = -ENOMEM; 1712 goto err_clr_master; 1713 } 1714 1715 return 0; 1716 1717 err_clr_master: 1718 pci_clear_master(pdev); 1719 pci_release_regions(pdev); 1720 err_disable_device: 1721 pci_disable_device(pdev); 1722 1723 return ret; 1724 } 1725 1726 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) 1727 { 1728 struct pci_dev *pdev = hdev->pdev; 1729 1730 pci_iounmap(pdev, hdev->hw.io_base); 1731 pci_clear_master(pdev); 1732 pci_release_regions(pdev); 1733 pci_disable_device(pdev); 1734 } 1735 1736 static int hclgevf_init_hdev(struct hclgevf_dev *hdev) 1737 { 1738 struct pci_dev *pdev = hdev->pdev; 1739 int ret; 1740 1741 /* check if device is on-going full reset(i.e. pcie as well) */ 1742 if (hclgevf_dev_ongoing_full_reset(hdev)) { 1743 dev_warn(&pdev->dev, "device is going full reset\n"); 1744 hclgevf_uninit_hdev(hdev); 1745 } 1746 1747 ret = hclgevf_pci_init(hdev); 1748 if (ret) { 1749 dev_err(&pdev->dev, "PCI initialization failed\n"); 1750 return ret; 1751 } 1752 1753 ret = hclgevf_init_msi(hdev); 1754 if (ret) { 1755 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); 1756 goto err_irq_init; 1757 } 1758 1759 hclgevf_state_init(hdev); 1760 1761 ret = hclgevf_cmd_init(hdev); 1762 if (ret) 1763 goto err_cmd_init; 1764 1765 ret = hclgevf_misc_irq_init(hdev); 1766 if (ret) { 1767 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", 1768 ret); 1769 goto err_misc_irq_init; 1770 } 1771 1772 ret = hclgevf_configure(hdev); 1773 if (ret) { 1774 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); 1775 goto err_config; 1776 } 1777 1778 ret = hclgevf_alloc_tqps(hdev); 1779 if (ret) { 1780 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); 1781 goto err_config; 1782 } 1783 1784 ret = hclgevf_set_handle_info(hdev); 1785 if (ret) { 1786 dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret); 1787 goto err_config; 1788 } 1789 1790 /* Initialize mta type for this VF */ 1791 ret = hclgevf_cfg_func_mta_type(hdev); 1792 if (ret) { 1793 dev_err(&hdev->pdev->dev, 1794 "failed(%d) to initialize MTA type\n", ret); 1795 goto err_config; 1796 } 1797 1798 /* Initialize RSS for this VF */ 1799 ret = hclgevf_rss_init_hw(hdev); 1800 if (ret) { 1801 dev_err(&hdev->pdev->dev, 1802 "failed(%d) to initialize RSS\n", ret); 1803 goto err_config; 1804 } 1805 1806 ret = hclgevf_init_vlan_config(hdev); 1807 if (ret) { 1808 dev_err(&hdev->pdev->dev, 1809 "failed(%d) to initialize VLAN config\n", ret); 1810 goto err_config; 1811 } 1812 1813 pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME); 1814 1815 return 0; 1816 1817 err_config: 1818 hclgevf_misc_irq_uninit(hdev); 1819 err_misc_irq_init: 1820 hclgevf_cmd_uninit(hdev); 1821 err_cmd_init: 1822 hclgevf_state_uninit(hdev); 1823 hclgevf_uninit_msi(hdev); 1824 err_irq_init: 1825 hclgevf_pci_uninit(hdev); 1826 return ret; 1827 } 1828 1829 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) 1830 { 1831 hclgevf_state_uninit(hdev); 1832 hclgevf_misc_irq_uninit(hdev); 1833 hclgevf_cmd_uninit(hdev); 1834 hclgevf_uninit_msi(hdev); 1835 hclgevf_pci_uninit(hdev); 1836 } 1837 1838 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) 1839 { 1840 struct pci_dev *pdev = ae_dev->pdev; 1841 int ret; 1842 1843 ret = hclgevf_alloc_hdev(ae_dev); 1844 if (ret) { 1845 dev_err(&pdev->dev, "hclge device allocation failed\n"); 1846 return ret; 1847 } 1848 1849 ret = hclgevf_init_hdev(ae_dev->priv); 1850 if (ret) 1851 dev_err(&pdev->dev, "hclge device initialization failed\n"); 1852 1853 return ret; 1854 } 1855 1856 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 1857 { 1858 struct hclgevf_dev *hdev = ae_dev->priv; 1859 1860 hclgevf_uninit_hdev(hdev); 1861 ae_dev->priv = NULL; 1862 } 1863 1864 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) 1865 { 1866 struct hnae3_handle *nic = &hdev->nic; 1867 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 1868 1869 return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps); 1870 } 1871 1872 /** 1873 * hclgevf_get_channels - Get the current channels enabled and max supported. 1874 * @handle: hardware information for network interface 1875 * @ch: ethtool channels structure 1876 * 1877 * We don't support separate tx and rx queues as channels. The other count 1878 * represents how many queues are being used for control. max_combined counts 1879 * how many queue pairs we can support. They may not be mapped 1 to 1 with 1880 * q_vectors since we support a lot more queue pairs than q_vectors. 1881 **/ 1882 static void hclgevf_get_channels(struct hnae3_handle *handle, 1883 struct ethtool_channels *ch) 1884 { 1885 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1886 1887 ch->max_combined = hclgevf_get_max_channels(hdev); 1888 ch->other_count = 0; 1889 ch->max_other = 0; 1890 ch->combined_count = hdev->num_tqps; 1891 } 1892 1893 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, 1894 u16 *free_tqps, u16 *max_rss_size) 1895 { 1896 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1897 1898 *free_tqps = 0; 1899 *max_rss_size = hdev->rss_size_max; 1900 } 1901 1902 static int hclgevf_get_status(struct hnae3_handle *handle) 1903 { 1904 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1905 1906 return hdev->hw.mac.link; 1907 } 1908 1909 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, 1910 u8 *auto_neg, u32 *speed, 1911 u8 *duplex) 1912 { 1913 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1914 1915 if (speed) 1916 *speed = hdev->hw.mac.speed; 1917 if (duplex) 1918 *duplex = hdev->hw.mac.duplex; 1919 if (auto_neg) 1920 *auto_neg = AUTONEG_DISABLE; 1921 } 1922 1923 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, 1924 u8 duplex) 1925 { 1926 hdev->hw.mac.speed = speed; 1927 hdev->hw.mac.duplex = duplex; 1928 } 1929 1930 static const struct hnae3_ae_ops hclgevf_ops = { 1931 .init_ae_dev = hclgevf_init_ae_dev, 1932 .uninit_ae_dev = hclgevf_uninit_ae_dev, 1933 .init_client_instance = hclgevf_init_client_instance, 1934 .uninit_client_instance = hclgevf_uninit_client_instance, 1935 .start = hclgevf_ae_start, 1936 .stop = hclgevf_ae_stop, 1937 .map_ring_to_vector = hclgevf_map_ring_to_vector, 1938 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, 1939 .get_vector = hclgevf_get_vector, 1940 .put_vector = hclgevf_put_vector, 1941 .reset_queue = hclgevf_reset_tqp, 1942 .set_promisc_mode = hclgevf_set_promisc_mode, 1943 .get_mac_addr = hclgevf_get_mac_addr, 1944 .set_mac_addr = hclgevf_set_mac_addr, 1945 .add_uc_addr = hclgevf_add_uc_addr, 1946 .rm_uc_addr = hclgevf_rm_uc_addr, 1947 .add_mc_addr = hclgevf_add_mc_addr, 1948 .rm_mc_addr = hclgevf_rm_mc_addr, 1949 .update_mta_status = hclgevf_update_mta_status, 1950 .get_stats = hclgevf_get_stats, 1951 .update_stats = hclgevf_update_stats, 1952 .get_strings = hclgevf_get_strings, 1953 .get_sset_count = hclgevf_get_sset_count, 1954 .get_rss_key_size = hclgevf_get_rss_key_size, 1955 .get_rss_indir_size = hclgevf_get_rss_indir_size, 1956 .get_rss = hclgevf_get_rss, 1957 .set_rss = hclgevf_set_rss, 1958 .get_tc_size = hclgevf_get_tc_size, 1959 .get_fw_version = hclgevf_get_fw_version, 1960 .set_vlan_filter = hclgevf_set_vlan_filter, 1961 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, 1962 .reset_event = hclgevf_reset_event, 1963 .get_channels = hclgevf_get_channels, 1964 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, 1965 .get_status = hclgevf_get_status, 1966 .get_ksettings_an_result = hclgevf_get_ksettings_an_result, 1967 }; 1968 1969 static struct hnae3_ae_algo ae_algovf = { 1970 .ops = &hclgevf_ops, 1971 .pdev_id_table = ae_algovf_pci_tbl, 1972 }; 1973 1974 static int hclgevf_init(void) 1975 { 1976 pr_info("%s is initializing\n", HCLGEVF_NAME); 1977 1978 hnae3_register_ae_algo(&ae_algovf); 1979 1980 return 0; 1981 } 1982 1983 static void hclgevf_exit(void) 1984 { 1985 hnae3_unregister_ae_algo(&ae_algovf); 1986 } 1987 module_init(hclgevf_init); 1988 module_exit(hclgevf_exit); 1989 1990 MODULE_LICENSE("GPL"); 1991 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 1992 MODULE_DESCRIPTION("HCLGEVF Driver"); 1993 MODULE_VERSION(HCLGEVF_MOD_VERSION); 1994