1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
87 	struct hnae3_handle *handle)
88 {
89 	if (!handle->client)
90 		return container_of(handle, struct hclgevf_dev, nic);
91 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
92 		return container_of(handle, struct hclgevf_dev, roce);
93 	else
94 		return container_of(handle, struct hclgevf_dev, nic);
95 }
96 
97 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
98 {
99 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
101 	struct hclgevf_desc desc;
102 	struct hclgevf_tqp *tqp;
103 	int status;
104 	int i;
105 
106 	for (i = 0; i < kinfo->num_tqps; i++) {
107 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
108 		hclgevf_cmd_setup_basic_desc(&desc,
109 					     HCLGEVF_OPC_QUERY_RX_STATUS,
110 					     true);
111 
112 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
113 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
114 		if (status) {
115 			dev_err(&hdev->pdev->dev,
116 				"Query tqp stat fail, status = %d,queue = %d\n",
117 				status,	i);
118 			return status;
119 		}
120 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
121 			le32_to_cpu(desc.data[1]);
122 
123 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
124 					     true);
125 
126 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
127 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
128 		if (status) {
129 			dev_err(&hdev->pdev->dev,
130 				"Query tqp stat fail, status = %d,queue = %d\n",
131 				status, i);
132 			return status;
133 		}
134 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
135 			le32_to_cpu(desc.data[1]);
136 	}
137 
138 	return 0;
139 }
140 
141 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
144 	struct hclgevf_tqp *tqp;
145 	u64 *buff = data;
146 	int i;
147 
148 	for (i = 0; i < kinfo->num_tqps; i++) {
149 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
150 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
151 	}
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
155 	}
156 
157 	return buff;
158 }
159 
160 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
161 {
162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
163 
164 	return kinfo->num_tqps * 2;
165 }
166 
167 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 	u8 *buff = data;
171 	int i = 0;
172 
173 	for (i = 0; i < kinfo->num_tqps; i++) {
174 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
175 						       struct hclgevf_tqp, q);
176 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
177 			 tqp->index);
178 		buff += ETH_GSTRING_LEN;
179 	}
180 
181 	for (i = 0; i < kinfo->num_tqps; i++) {
182 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 						       struct hclgevf_tqp, q);
184 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
185 			 tqp->index);
186 		buff += ETH_GSTRING_LEN;
187 	}
188 
189 	return buff;
190 }
191 
192 static void hclgevf_update_stats(struct hnae3_handle *handle,
193 				 struct net_device_stats *net_stats)
194 {
195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
196 	int status;
197 
198 	status = hclgevf_tqps_update_stats(handle);
199 	if (status)
200 		dev_err(&hdev->pdev->dev,
201 			"VF update of TQPS stats fail, status = %d.\n",
202 			status);
203 }
204 
205 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
206 {
207 	if (strset == ETH_SS_TEST)
208 		return -EOPNOTSUPP;
209 	else if (strset == ETH_SS_STATS)
210 		return hclgevf_tqps_get_sset_count(handle, strset);
211 
212 	return 0;
213 }
214 
215 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
216 				u8 *data)
217 {
218 	u8 *p = (char *)data;
219 
220 	if (strset == ETH_SS_STATS)
221 		p = hclgevf_tqps_get_strings(handle, p);
222 }
223 
224 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
225 {
226 	hclgevf_tqps_get_stats(handle, data);
227 }
228 
229 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
230 {
231 	u8 resp_msg;
232 	int status;
233 
234 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
235 				      true, &resp_msg, sizeof(u8));
236 	if (status) {
237 		dev_err(&hdev->pdev->dev,
238 			"VF request to get TC info from PF failed %d",
239 			status);
240 		return status;
241 	}
242 
243 	hdev->hw_tc_map = resp_msg;
244 
245 	return 0;
246 }
247 
248 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
249 {
250 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
251 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
252 	int status;
253 
254 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
255 				      true, resp_msg,
256 				      HCLGEVF_TQPS_RSS_INFO_LEN);
257 	if (status) {
258 		dev_err(&hdev->pdev->dev,
259 			"VF request to get tqp info from PF failed %d",
260 			status);
261 		return status;
262 	}
263 
264 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
265 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
266 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
267 
268 	return 0;
269 }
270 
271 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
272 {
273 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
274 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
275 	int ret;
276 
277 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
278 				   true, resp_msg,
279 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
280 	if (ret) {
281 		dev_err(&hdev->pdev->dev,
282 			"VF request to get tqp depth info from PF failed %d",
283 			ret);
284 		return ret;
285 	}
286 
287 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
288 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
289 
290 	return 0;
291 }
292 
293 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
294 {
295 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
296 	u8 msg_data[2], resp_data[2];
297 	u16 qid_in_pf = 0;
298 	int ret;
299 
300 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
301 
302 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
303 				   2, true, resp_data, 2);
304 	if (!ret)
305 		qid_in_pf = *(u16 *)resp_data;
306 
307 	return qid_in_pf;
308 }
309 
310 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
311 {
312 	u8 resp_msg;
313 	int ret;
314 
315 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
316 				   true, &resp_msg, sizeof(resp_msg));
317 	if (ret) {
318 		dev_err(&hdev->pdev->dev,
319 			"VF request to get the pf port media type failed %d",
320 			ret);
321 		return ret;
322 	}
323 
324 	hdev->hw.mac.media_type = resp_msg;
325 
326 	return 0;
327 }
328 
329 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
330 {
331 	struct hclgevf_tqp *tqp;
332 	int i;
333 
334 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
335 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
336 	if (!hdev->htqp)
337 		return -ENOMEM;
338 
339 	tqp = hdev->htqp;
340 
341 	for (i = 0; i < hdev->num_tqps; i++) {
342 		tqp->dev = &hdev->pdev->dev;
343 		tqp->index = i;
344 
345 		tqp->q.ae_algo = &ae_algovf;
346 		tqp->q.buf_size = hdev->rx_buf_len;
347 		tqp->q.tx_desc_num = hdev->num_tx_desc;
348 		tqp->q.rx_desc_num = hdev->num_rx_desc;
349 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
350 			i * HCLGEVF_TQP_REG_SIZE;
351 
352 		tqp++;
353 	}
354 
355 	return 0;
356 }
357 
358 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
359 {
360 	struct hnae3_handle *nic = &hdev->nic;
361 	struct hnae3_knic_private_info *kinfo;
362 	u16 new_tqps = hdev->num_tqps;
363 	int i;
364 
365 	kinfo = &nic->kinfo;
366 	kinfo->num_tc = 0;
367 	kinfo->num_tx_desc = hdev->num_tx_desc;
368 	kinfo->num_rx_desc = hdev->num_rx_desc;
369 	kinfo->rx_buf_len = hdev->rx_buf_len;
370 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
371 		if (hdev->hw_tc_map & BIT(i))
372 			kinfo->num_tc++;
373 
374 	kinfo->rss_size
375 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
376 	new_tqps = kinfo->rss_size * kinfo->num_tc;
377 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
378 
379 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
380 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
381 	if (!kinfo->tqp)
382 		return -ENOMEM;
383 
384 	for (i = 0; i < kinfo->num_tqps; i++) {
385 		hdev->htqp[i].q.handle = &hdev->nic;
386 		hdev->htqp[i].q.tqp_index = i;
387 		kinfo->tqp[i] = &hdev->htqp[i].q;
388 	}
389 
390 	return 0;
391 }
392 
393 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
394 {
395 	int status;
396 	u8 resp_msg;
397 
398 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
399 				      0, false, &resp_msg, sizeof(u8));
400 	if (status)
401 		dev_err(&hdev->pdev->dev,
402 			"VF failed to fetch link status(%d) from PF", status);
403 }
404 
405 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
406 {
407 	struct hnae3_handle *rhandle = &hdev->roce;
408 	struct hnae3_handle *handle = &hdev->nic;
409 	struct hnae3_client *rclient;
410 	struct hnae3_client *client;
411 
412 	client = handle->client;
413 	rclient = hdev->roce_client;
414 
415 	link_state =
416 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
417 
418 	if (link_state != hdev->hw.mac.link) {
419 		client->ops->link_status_change(handle, !!link_state);
420 		if (rclient && rclient->ops->link_status_change)
421 			rclient->ops->link_status_change(rhandle, !!link_state);
422 		hdev->hw.mac.link = link_state;
423 	}
424 }
425 
426 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
427 {
428 #define HCLGEVF_ADVERTISING 0
429 #define HCLGEVF_SUPPORTED   1
430 	u8 send_msg;
431 	u8 resp_msg;
432 
433 	send_msg = HCLGEVF_ADVERTISING;
434 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
435 			     sizeof(u8), false, &resp_msg, sizeof(u8));
436 	send_msg = HCLGEVF_SUPPORTED;
437 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
438 			     sizeof(u8), false, &resp_msg, sizeof(u8));
439 }
440 
441 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
442 {
443 	struct hnae3_handle *nic = &hdev->nic;
444 	int ret;
445 
446 	nic->ae_algo = &ae_algovf;
447 	nic->pdev = hdev->pdev;
448 	nic->numa_node_mask = hdev->numa_node_mask;
449 	nic->flags |= HNAE3_SUPPORT_VF;
450 
451 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
452 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
453 			hdev->ae_dev->dev_type);
454 		return -EINVAL;
455 	}
456 
457 	ret = hclgevf_knic_setup(hdev);
458 	if (ret)
459 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
460 			ret);
461 	return ret;
462 }
463 
464 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
465 {
466 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
467 		dev_warn(&hdev->pdev->dev,
468 			 "vector(vector_id %d) has been freed.\n", vector_id);
469 		return;
470 	}
471 
472 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
473 	hdev->num_msi_left += 1;
474 	hdev->num_msi_used -= 1;
475 }
476 
477 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
478 			      struct hnae3_vector_info *vector_info)
479 {
480 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
481 	struct hnae3_vector_info *vector = vector_info;
482 	int alloc = 0;
483 	int i, j;
484 
485 	vector_num = min(hdev->num_msi_left, vector_num);
486 
487 	for (j = 0; j < vector_num; j++) {
488 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
489 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
490 				vector->vector = pci_irq_vector(hdev->pdev, i);
491 				vector->io_addr = hdev->hw.io_base +
492 					HCLGEVF_VECTOR_REG_BASE +
493 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
494 				hdev->vector_status[i] = 0;
495 				hdev->vector_irq[i] = vector->vector;
496 
497 				vector++;
498 				alloc++;
499 
500 				break;
501 			}
502 		}
503 	}
504 	hdev->num_msi_left -= alloc;
505 	hdev->num_msi_used += alloc;
506 
507 	return alloc;
508 }
509 
510 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
511 {
512 	int i;
513 
514 	for (i = 0; i < hdev->num_msi; i++)
515 		if (vector == hdev->vector_irq[i])
516 			return i;
517 
518 	return -EINVAL;
519 }
520 
521 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
522 				    const u8 hfunc, const u8 *key)
523 {
524 	struct hclgevf_rss_config_cmd *req;
525 	struct hclgevf_desc desc;
526 	int key_offset;
527 	int key_size;
528 	int ret;
529 
530 	req = (struct hclgevf_rss_config_cmd *)desc.data;
531 
532 	for (key_offset = 0; key_offset < 3; key_offset++) {
533 		hclgevf_cmd_setup_basic_desc(&desc,
534 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
535 					     false);
536 
537 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
538 		req->hash_config |=
539 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
540 
541 		if (key_offset == 2)
542 			key_size =
543 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
544 		else
545 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
546 
547 		memcpy(req->hash_key,
548 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
549 
550 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
551 		if (ret) {
552 			dev_err(&hdev->pdev->dev,
553 				"Configure RSS config fail, status = %d\n",
554 				ret);
555 			return ret;
556 		}
557 	}
558 
559 	return 0;
560 }
561 
562 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
563 {
564 	return HCLGEVF_RSS_KEY_SIZE;
565 }
566 
567 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
568 {
569 	return HCLGEVF_RSS_IND_TBL_SIZE;
570 }
571 
572 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
573 {
574 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
575 	struct hclgevf_rss_indirection_table_cmd *req;
576 	struct hclgevf_desc desc;
577 	int status;
578 	int i, j;
579 
580 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
581 
582 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
583 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
584 					     false);
585 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
586 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
587 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
588 			req->rss_result[j] =
589 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
590 
591 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
592 		if (status) {
593 			dev_err(&hdev->pdev->dev,
594 				"VF failed(=%d) to set RSS indirection table\n",
595 				status);
596 			return status;
597 		}
598 	}
599 
600 	return 0;
601 }
602 
603 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
604 {
605 	struct hclgevf_rss_tc_mode_cmd *req;
606 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
607 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
608 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
609 	struct hclgevf_desc desc;
610 	u16 roundup_size;
611 	int status;
612 	int i;
613 
614 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
615 
616 	roundup_size = roundup_pow_of_two(rss_size);
617 	roundup_size = ilog2(roundup_size);
618 
619 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
620 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
621 		tc_size[i] = roundup_size;
622 		tc_offset[i] = rss_size * i;
623 	}
624 
625 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
626 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
627 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
628 			      (tc_valid[i] & 0x1));
629 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
630 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
631 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
632 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
633 	}
634 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
635 	if (status)
636 		dev_err(&hdev->pdev->dev,
637 			"VF failed(=%d) to set rss tc mode\n", status);
638 
639 	return status;
640 }
641 
642 /* for revision 0x20, vf shared the same rss config with pf */
643 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
644 {
645 #define HCLGEVF_RSS_MBX_RESP_LEN	8
646 
647 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
648 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
649 	u16 msg_num, hash_key_index;
650 	u8 index;
651 	int ret;
652 
653 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
654 			HCLGEVF_RSS_MBX_RESP_LEN;
655 	for (index = 0; index < msg_num; index++) {
656 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
657 					   &index, sizeof(index),
658 					   true, resp_msg,
659 					   HCLGEVF_RSS_MBX_RESP_LEN);
660 		if (ret) {
661 			dev_err(&hdev->pdev->dev,
662 				"VF get rss hash key from PF failed, ret=%d",
663 				ret);
664 			return ret;
665 		}
666 
667 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
668 		if (index == msg_num - 1)
669 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
670 			       &resp_msg[0],
671 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
672 		else
673 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
674 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
675 	}
676 
677 	return 0;
678 }
679 
680 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
681 			   u8 *hfunc)
682 {
683 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
684 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
685 	int i, ret;
686 
687 	if (handle->pdev->revision >= 0x21) {
688 		/* Get hash algorithm */
689 		if (hfunc) {
690 			switch (rss_cfg->hash_algo) {
691 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
692 				*hfunc = ETH_RSS_HASH_TOP;
693 				break;
694 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
695 				*hfunc = ETH_RSS_HASH_XOR;
696 				break;
697 			default:
698 				*hfunc = ETH_RSS_HASH_UNKNOWN;
699 				break;
700 			}
701 		}
702 
703 		/* Get the RSS Key required by the user */
704 		if (key)
705 			memcpy(key, rss_cfg->rss_hash_key,
706 			       HCLGEVF_RSS_KEY_SIZE);
707 	} else {
708 		if (hfunc)
709 			*hfunc = ETH_RSS_HASH_TOP;
710 		if (key) {
711 			ret = hclgevf_get_rss_hash_key(hdev);
712 			if (ret)
713 				return ret;
714 			memcpy(key, rss_cfg->rss_hash_key,
715 			       HCLGEVF_RSS_KEY_SIZE);
716 		}
717 	}
718 
719 	if (indir)
720 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
721 			indir[i] = rss_cfg->rss_indirection_tbl[i];
722 
723 	return 0;
724 }
725 
726 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
727 			   const  u8 *key, const  u8 hfunc)
728 {
729 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
730 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
731 	int ret, i;
732 
733 	if (handle->pdev->revision >= 0x21) {
734 		/* Set the RSS Hash Key if specififed by the user */
735 		if (key) {
736 			switch (hfunc) {
737 			case ETH_RSS_HASH_TOP:
738 				rss_cfg->hash_algo =
739 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
740 				break;
741 			case ETH_RSS_HASH_XOR:
742 				rss_cfg->hash_algo =
743 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
744 				break;
745 			case ETH_RSS_HASH_NO_CHANGE:
746 				break;
747 			default:
748 				return -EINVAL;
749 			}
750 
751 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
752 						       key);
753 			if (ret)
754 				return ret;
755 
756 			/* Update the shadow RSS key with user specified qids */
757 			memcpy(rss_cfg->rss_hash_key, key,
758 			       HCLGEVF_RSS_KEY_SIZE);
759 		}
760 	}
761 
762 	/* update the shadow RSS table with user specified qids */
763 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
764 		rss_cfg->rss_indirection_tbl[i] = indir[i];
765 
766 	/* update the hardware */
767 	return hclgevf_set_rss_indir_table(hdev);
768 }
769 
770 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
771 {
772 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
773 
774 	if (nfc->data & RXH_L4_B_2_3)
775 		hash_sets |= HCLGEVF_D_PORT_BIT;
776 	else
777 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
778 
779 	if (nfc->data & RXH_IP_SRC)
780 		hash_sets |= HCLGEVF_S_IP_BIT;
781 	else
782 		hash_sets &= ~HCLGEVF_S_IP_BIT;
783 
784 	if (nfc->data & RXH_IP_DST)
785 		hash_sets |= HCLGEVF_D_IP_BIT;
786 	else
787 		hash_sets &= ~HCLGEVF_D_IP_BIT;
788 
789 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
790 		hash_sets |= HCLGEVF_V_TAG_BIT;
791 
792 	return hash_sets;
793 }
794 
795 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
796 				 struct ethtool_rxnfc *nfc)
797 {
798 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
799 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
800 	struct hclgevf_rss_input_tuple_cmd *req;
801 	struct hclgevf_desc desc;
802 	u8 tuple_sets;
803 	int ret;
804 
805 	if (handle->pdev->revision == 0x20)
806 		return -EOPNOTSUPP;
807 
808 	if (nfc->data &
809 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
810 		return -EINVAL;
811 
812 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
813 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
814 
815 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
816 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
817 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
818 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
819 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
820 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
821 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
822 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
823 
824 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
825 	switch (nfc->flow_type) {
826 	case TCP_V4_FLOW:
827 		req->ipv4_tcp_en = tuple_sets;
828 		break;
829 	case TCP_V6_FLOW:
830 		req->ipv6_tcp_en = tuple_sets;
831 		break;
832 	case UDP_V4_FLOW:
833 		req->ipv4_udp_en = tuple_sets;
834 		break;
835 	case UDP_V6_FLOW:
836 		req->ipv6_udp_en = tuple_sets;
837 		break;
838 	case SCTP_V4_FLOW:
839 		req->ipv4_sctp_en = tuple_sets;
840 		break;
841 	case SCTP_V6_FLOW:
842 		if ((nfc->data & RXH_L4_B_0_1) ||
843 		    (nfc->data & RXH_L4_B_2_3))
844 			return -EINVAL;
845 
846 		req->ipv6_sctp_en = tuple_sets;
847 		break;
848 	case IPV4_FLOW:
849 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
850 		break;
851 	case IPV6_FLOW:
852 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
853 		break;
854 	default:
855 		return -EINVAL;
856 	}
857 
858 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
859 	if (ret) {
860 		dev_err(&hdev->pdev->dev,
861 			"Set rss tuple fail, status = %d\n", ret);
862 		return ret;
863 	}
864 
865 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
866 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
867 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
868 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
869 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
870 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
871 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
872 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
873 	return 0;
874 }
875 
876 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
877 				 struct ethtool_rxnfc *nfc)
878 {
879 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
880 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
881 	u8 tuple_sets;
882 
883 	if (handle->pdev->revision == 0x20)
884 		return -EOPNOTSUPP;
885 
886 	nfc->data = 0;
887 
888 	switch (nfc->flow_type) {
889 	case TCP_V4_FLOW:
890 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
891 		break;
892 	case UDP_V4_FLOW:
893 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
894 		break;
895 	case TCP_V6_FLOW:
896 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
897 		break;
898 	case UDP_V6_FLOW:
899 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
900 		break;
901 	case SCTP_V4_FLOW:
902 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
903 		break;
904 	case SCTP_V6_FLOW:
905 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
906 		break;
907 	case IPV4_FLOW:
908 	case IPV6_FLOW:
909 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
910 		break;
911 	default:
912 		return -EINVAL;
913 	}
914 
915 	if (!tuple_sets)
916 		return 0;
917 
918 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
919 		nfc->data |= RXH_L4_B_2_3;
920 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
921 		nfc->data |= RXH_L4_B_0_1;
922 	if (tuple_sets & HCLGEVF_D_IP_BIT)
923 		nfc->data |= RXH_IP_DST;
924 	if (tuple_sets & HCLGEVF_S_IP_BIT)
925 		nfc->data |= RXH_IP_SRC;
926 
927 	return 0;
928 }
929 
930 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
931 				       struct hclgevf_rss_cfg *rss_cfg)
932 {
933 	struct hclgevf_rss_input_tuple_cmd *req;
934 	struct hclgevf_desc desc;
935 	int ret;
936 
937 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
938 
939 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
940 
941 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
942 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
943 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
944 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
945 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
946 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
947 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
948 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
949 
950 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
951 	if (ret)
952 		dev_err(&hdev->pdev->dev,
953 			"Configure rss input fail, status = %d\n", ret);
954 	return ret;
955 }
956 
957 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
958 {
959 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
960 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
961 
962 	return rss_cfg->rss_size;
963 }
964 
965 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
966 				       int vector_id,
967 				       struct hnae3_ring_chain_node *ring_chain)
968 {
969 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
970 	struct hnae3_ring_chain_node *node;
971 	struct hclge_mbx_vf_to_pf_cmd *req;
972 	struct hclgevf_desc desc;
973 	int i = 0;
974 	int status;
975 	u8 type;
976 
977 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
978 
979 	for (node = ring_chain; node; node = node->next) {
980 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
981 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
982 
983 		if (i == 0) {
984 			hclgevf_cmd_setup_basic_desc(&desc,
985 						     HCLGEVF_OPC_MBX_VF_TO_PF,
986 						     false);
987 			type = en ?
988 				HCLGE_MBX_MAP_RING_TO_VECTOR :
989 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
990 			req->msg[0] = type;
991 			req->msg[1] = vector_id;
992 		}
993 
994 		req->msg[idx_offset] =
995 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
996 		req->msg[idx_offset + 1] = node->tqp_index;
997 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
998 							   HNAE3_RING_GL_IDX_M,
999 							   HNAE3_RING_GL_IDX_S);
1000 
1001 		i++;
1002 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1003 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1004 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1005 		    !node->next) {
1006 			req->msg[2] = i;
1007 
1008 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1009 			if (status) {
1010 				dev_err(&hdev->pdev->dev,
1011 					"Map TQP fail, status is %d.\n",
1012 					status);
1013 				return status;
1014 			}
1015 			i = 0;
1016 			hclgevf_cmd_setup_basic_desc(&desc,
1017 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1018 						     false);
1019 			req->msg[0] = type;
1020 			req->msg[1] = vector_id;
1021 		}
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1028 				      struct hnae3_ring_chain_node *ring_chain)
1029 {
1030 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1031 	int vector_id;
1032 
1033 	vector_id = hclgevf_get_vector_index(hdev, vector);
1034 	if (vector_id < 0) {
1035 		dev_err(&handle->pdev->dev,
1036 			"Get vector index fail. ret =%d\n", vector_id);
1037 		return vector_id;
1038 	}
1039 
1040 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1041 }
1042 
1043 static int hclgevf_unmap_ring_from_vector(
1044 				struct hnae3_handle *handle,
1045 				int vector,
1046 				struct hnae3_ring_chain_node *ring_chain)
1047 {
1048 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1049 	int ret, vector_id;
1050 
1051 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1052 		return 0;
1053 
1054 	vector_id = hclgevf_get_vector_index(hdev, vector);
1055 	if (vector_id < 0) {
1056 		dev_err(&handle->pdev->dev,
1057 			"Get vector index fail. ret =%d\n", vector_id);
1058 		return vector_id;
1059 	}
1060 
1061 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1062 	if (ret)
1063 		dev_err(&handle->pdev->dev,
1064 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1065 			vector_id,
1066 			ret);
1067 
1068 	return ret;
1069 }
1070 
1071 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1072 {
1073 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1074 	int vector_id;
1075 
1076 	vector_id = hclgevf_get_vector_index(hdev, vector);
1077 	if (vector_id < 0) {
1078 		dev_err(&handle->pdev->dev,
1079 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1080 			vector_id);
1081 		return vector_id;
1082 	}
1083 
1084 	hclgevf_free_vector(hdev, vector_id);
1085 
1086 	return 0;
1087 }
1088 
1089 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1090 					bool en_bc_pmc)
1091 {
1092 	struct hclge_mbx_vf_to_pf_cmd *req;
1093 	struct hclgevf_desc desc;
1094 	int ret;
1095 
1096 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1097 
1098 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1099 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1100 	req->msg[1] = en_bc_pmc ? 1 : 0;
1101 
1102 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1103 	if (ret)
1104 		dev_err(&hdev->pdev->dev,
1105 			"Set promisc mode fail, status is %d.\n", ret);
1106 
1107 	return ret;
1108 }
1109 
1110 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1111 {
1112 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1113 }
1114 
1115 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1116 			      int stream_id, bool enable)
1117 {
1118 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1119 	struct hclgevf_desc desc;
1120 	int status;
1121 
1122 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1123 
1124 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1125 				     false);
1126 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1127 	req->stream_id = cpu_to_le16(stream_id);
1128 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1129 
1130 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1131 	if (status)
1132 		dev_err(&hdev->pdev->dev,
1133 			"TQP enable fail, status =%d.\n", status);
1134 
1135 	return status;
1136 }
1137 
1138 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1139 {
1140 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1141 	struct hclgevf_tqp *tqp;
1142 	int i;
1143 
1144 	for (i = 0; i < kinfo->num_tqps; i++) {
1145 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1146 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1147 	}
1148 }
1149 
1150 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1151 {
1152 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1153 
1154 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1155 }
1156 
1157 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1158 				bool is_first)
1159 {
1160 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1161 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1162 	u8 *new_mac_addr = (u8 *)p;
1163 	u8 msg_data[ETH_ALEN * 2];
1164 	u16 subcode;
1165 	int status;
1166 
1167 	ether_addr_copy(msg_data, new_mac_addr);
1168 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1169 
1170 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1171 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1172 
1173 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1174 				      subcode, msg_data, ETH_ALEN * 2,
1175 				      true, NULL, 0);
1176 	if (!status)
1177 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1178 
1179 	return status;
1180 }
1181 
1182 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1183 			       const unsigned char *addr)
1184 {
1185 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1186 
1187 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1188 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1189 				    addr, ETH_ALEN, false, NULL, 0);
1190 }
1191 
1192 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1193 			      const unsigned char *addr)
1194 {
1195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1196 
1197 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1198 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1199 				    addr, ETH_ALEN, false, NULL, 0);
1200 }
1201 
1202 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1203 			       const unsigned char *addr)
1204 {
1205 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1206 
1207 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1208 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1209 				    addr, ETH_ALEN, false, NULL, 0);
1210 }
1211 
1212 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1213 			      const unsigned char *addr)
1214 {
1215 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1216 
1217 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1218 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1219 				    addr, ETH_ALEN, false, NULL, 0);
1220 }
1221 
1222 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1223 				   __be16 proto, u16 vlan_id,
1224 				   bool is_kill)
1225 {
1226 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1227 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1228 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1229 
1230 	if (vlan_id > 4095)
1231 		return -EINVAL;
1232 
1233 	if (proto != htons(ETH_P_8021Q))
1234 		return -EPROTONOSUPPORT;
1235 
1236 	msg_data[0] = is_kill;
1237 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1238 	memcpy(&msg_data[3], &proto, sizeof(proto));
1239 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1240 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1241 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1242 }
1243 
1244 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1245 {
1246 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1247 	u8 msg_data;
1248 
1249 	msg_data = enable ? 1 : 0;
1250 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1251 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1252 				    1, false, NULL, 0);
1253 }
1254 
1255 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1256 {
1257 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1258 	u8 msg_data[2];
1259 	int ret;
1260 
1261 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1262 
1263 	/* disable vf queue before send queue reset msg to PF */
1264 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1265 	if (ret)
1266 		return ret;
1267 
1268 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1269 				    2, true, NULL, 0);
1270 }
1271 
1272 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1273 {
1274 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1275 
1276 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1277 				    sizeof(new_mtu), true, NULL, 0);
1278 }
1279 
1280 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1281 				 enum hnae3_reset_notify_type type)
1282 {
1283 	struct hnae3_client *client = hdev->nic_client;
1284 	struct hnae3_handle *handle = &hdev->nic;
1285 	int ret;
1286 
1287 	if (!client->ops->reset_notify)
1288 		return -EOPNOTSUPP;
1289 
1290 	ret = client->ops->reset_notify(handle, type);
1291 	if (ret)
1292 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1293 			type, ret);
1294 
1295 	return ret;
1296 }
1297 
1298 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1299 {
1300 	struct hclgevf_dev *hdev = ae_dev->priv;
1301 
1302 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1303 }
1304 
1305 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1306 				    unsigned long delay_us,
1307 				    unsigned long wait_cnt)
1308 {
1309 	unsigned long cnt = 0;
1310 
1311 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1312 	       cnt++ < wait_cnt)
1313 		usleep_range(delay_us, delay_us * 2);
1314 
1315 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1316 		dev_err(&hdev->pdev->dev,
1317 			"flr wait timeout\n");
1318 		return -ETIMEDOUT;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1325 {
1326 #define HCLGEVF_RESET_WAIT_US	20000
1327 #define HCLGEVF_RESET_WAIT_CNT	2000
1328 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1329 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1330 
1331 	u32 val;
1332 	int ret;
1333 
1334 	/* wait to check the hardware reset completion status */
1335 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1336 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1337 
1338 	if (hdev->reset_type == HNAE3_FLR_RESET)
1339 		return hclgevf_flr_poll_timeout(hdev,
1340 						HCLGEVF_RESET_WAIT_US,
1341 						HCLGEVF_RESET_WAIT_CNT);
1342 
1343 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1344 				 !(val & HCLGEVF_RST_ING_BITS),
1345 				 HCLGEVF_RESET_WAIT_US,
1346 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1347 
1348 	/* hardware completion status should be available by this time */
1349 	if (ret) {
1350 		dev_err(&hdev->pdev->dev,
1351 			"could'nt get reset done status from h/w, timeout!\n");
1352 		return ret;
1353 	}
1354 
1355 	/* we will wait a bit more to let reset of the stack to complete. This
1356 	 * might happen in case reset assertion was made by PF. Yes, this also
1357 	 * means we might end up waiting bit more even for VF reset.
1358 	 */
1359 	msleep(5000);
1360 
1361 	return 0;
1362 }
1363 
1364 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1365 {
1366 	int ret;
1367 
1368 	/* uninitialize the nic client */
1369 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1370 	if (ret)
1371 		return ret;
1372 
1373 	/* re-initialize the hclge device */
1374 	ret = hclgevf_reset_hdev(hdev);
1375 	if (ret) {
1376 		dev_err(&hdev->pdev->dev,
1377 			"hclge device re-init failed, VF is disabled!\n");
1378 		return ret;
1379 	}
1380 
1381 	/* bring up the nic client again */
1382 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1383 	if (ret)
1384 		return ret;
1385 
1386 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1387 }
1388 
1389 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1390 {
1391 	int ret = 0;
1392 
1393 	switch (hdev->reset_type) {
1394 	case HNAE3_VF_FUNC_RESET:
1395 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1396 					   0, true, NULL, sizeof(u8));
1397 		break;
1398 	case HNAE3_FLR_RESET:
1399 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1400 		break;
1401 	default:
1402 		break;
1403 	}
1404 
1405 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1406 
1407 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1408 		 hdev->reset_type, ret);
1409 
1410 	return ret;
1411 }
1412 
1413 static int hclgevf_reset(struct hclgevf_dev *hdev)
1414 {
1415 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1416 	int ret;
1417 
1418 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1419 	 * know if device is undergoing reset
1420 	 */
1421 	ae_dev->reset_type = hdev->reset_type;
1422 	hdev->reset_count++;
1423 	rtnl_lock();
1424 
1425 	/* bring down the nic to stop any ongoing TX/RX */
1426 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1427 	if (ret)
1428 		goto err_reset_lock;
1429 
1430 	rtnl_unlock();
1431 
1432 	ret = hclgevf_reset_prepare_wait(hdev);
1433 	if (ret)
1434 		goto err_reset;
1435 
1436 	/* check if VF could successfully fetch the hardware reset completion
1437 	 * status from the hardware
1438 	 */
1439 	ret = hclgevf_reset_wait(hdev);
1440 	if (ret) {
1441 		/* can't do much in this situation, will disable VF */
1442 		dev_err(&hdev->pdev->dev,
1443 			"VF failed(=%d) to fetch H/W reset completion status\n",
1444 			ret);
1445 		goto err_reset;
1446 	}
1447 
1448 	rtnl_lock();
1449 
1450 	/* now, re-initialize the nic client and ae device*/
1451 	ret = hclgevf_reset_stack(hdev);
1452 	if (ret) {
1453 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1454 		goto err_reset_lock;
1455 	}
1456 
1457 	/* bring up the nic to enable TX/RX again */
1458 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1459 	if (ret)
1460 		goto err_reset_lock;
1461 
1462 	rtnl_unlock();
1463 
1464 	hdev->last_reset_time = jiffies;
1465 	ae_dev->reset_type = HNAE3_NONE_RESET;
1466 
1467 	return ret;
1468 err_reset_lock:
1469 	rtnl_unlock();
1470 err_reset:
1471 	/* When VF reset failed, only the higher level reset asserted by PF
1472 	 * can restore it, so re-initialize the command queue to receive
1473 	 * this higher reset event.
1474 	 */
1475 	hclgevf_cmd_init(hdev);
1476 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1477 
1478 	return ret;
1479 }
1480 
1481 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1482 						     unsigned long *addr)
1483 {
1484 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1485 
1486 	/* return the highest priority reset level amongst all */
1487 	if (test_bit(HNAE3_VF_RESET, addr)) {
1488 		rst_level = HNAE3_VF_RESET;
1489 		clear_bit(HNAE3_VF_RESET, addr);
1490 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1491 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1492 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1493 		rst_level = HNAE3_VF_FULL_RESET;
1494 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1495 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1496 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1497 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1498 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1499 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1500 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1501 		rst_level = HNAE3_VF_FUNC_RESET;
1502 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1503 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1504 		rst_level = HNAE3_FLR_RESET;
1505 		clear_bit(HNAE3_FLR_RESET, addr);
1506 	}
1507 
1508 	return rst_level;
1509 }
1510 
1511 static void hclgevf_reset_event(struct pci_dev *pdev,
1512 				struct hnae3_handle *handle)
1513 {
1514 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1515 	struct hclgevf_dev *hdev = ae_dev->priv;
1516 
1517 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1518 
1519 	if (hdev->default_reset_request)
1520 		hdev->reset_level =
1521 			hclgevf_get_reset_level(hdev,
1522 						&hdev->default_reset_request);
1523 	else
1524 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1525 
1526 	/* reset of this VF requested */
1527 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1528 	hclgevf_reset_task_schedule(hdev);
1529 
1530 	hdev->last_reset_time = jiffies;
1531 }
1532 
1533 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1534 					  enum hnae3_reset_type rst_type)
1535 {
1536 	struct hclgevf_dev *hdev = ae_dev->priv;
1537 
1538 	set_bit(rst_type, &hdev->default_reset_request);
1539 }
1540 
1541 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1542 {
1543 #define HCLGEVF_FLR_WAIT_MS	100
1544 #define HCLGEVF_FLR_WAIT_CNT	50
1545 	struct hclgevf_dev *hdev = ae_dev->priv;
1546 	int cnt = 0;
1547 
1548 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1549 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1550 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1551 	hclgevf_reset_event(hdev->pdev, NULL);
1552 
1553 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1554 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1555 		msleep(HCLGEVF_FLR_WAIT_MS);
1556 
1557 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1558 		dev_err(&hdev->pdev->dev,
1559 			"flr wait down timeout: %d\n", cnt);
1560 }
1561 
1562 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1563 {
1564 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1565 
1566 	return hdev->fw_version;
1567 }
1568 
1569 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1570 {
1571 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1572 
1573 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1574 					    HCLGEVF_MISC_VECTOR_NUM);
1575 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1576 	/* vector status always valid for Vector 0 */
1577 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1578 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1579 
1580 	hdev->num_msi_left -= 1;
1581 	hdev->num_msi_used += 1;
1582 }
1583 
1584 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1585 {
1586 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1587 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1588 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1589 		schedule_work(&hdev->rst_service_task);
1590 	}
1591 }
1592 
1593 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1594 {
1595 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1596 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1597 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1598 		schedule_work(&hdev->mbx_service_task);
1599 	}
1600 }
1601 
1602 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1603 {
1604 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1605 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1606 		schedule_work(&hdev->service_task);
1607 }
1608 
1609 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1610 {
1611 	/* if we have any pending mailbox event then schedule the mbx task */
1612 	if (hdev->mbx_event_pending)
1613 		hclgevf_mbx_task_schedule(hdev);
1614 
1615 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1616 		hclgevf_reset_task_schedule(hdev);
1617 }
1618 
1619 static void hclgevf_service_timer(struct timer_list *t)
1620 {
1621 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1622 
1623 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1624 
1625 	hclgevf_task_schedule(hdev);
1626 }
1627 
1628 static void hclgevf_reset_service_task(struct work_struct *work)
1629 {
1630 	struct hclgevf_dev *hdev =
1631 		container_of(work, struct hclgevf_dev, rst_service_task);
1632 	int ret;
1633 
1634 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1635 		return;
1636 
1637 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1638 
1639 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1640 			       &hdev->reset_state)) {
1641 		/* PF has initmated that it is about to reset the hardware.
1642 		 * We now have to poll & check if harware has actually completed
1643 		 * the reset sequence. On hardware reset completion, VF needs to
1644 		 * reset the client and ae device.
1645 		 */
1646 		hdev->reset_attempts = 0;
1647 
1648 		hdev->last_reset_time = jiffies;
1649 		while ((hdev->reset_type =
1650 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1651 		       != HNAE3_NONE_RESET) {
1652 			ret = hclgevf_reset(hdev);
1653 			if (ret)
1654 				dev_err(&hdev->pdev->dev,
1655 					"VF stack reset failed %d.\n", ret);
1656 		}
1657 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1658 				      &hdev->reset_state)) {
1659 		/* we could be here when either of below happens:
1660 		 * 1. reset was initiated due to watchdog timeout due to
1661 		 *    a. IMP was earlier reset and our TX got choked down and
1662 		 *       which resulted in watchdog reacting and inducing VF
1663 		 *       reset. This also means our cmdq would be unreliable.
1664 		 *    b. problem in TX due to other lower layer(example link
1665 		 *       layer not functioning properly etc.)
1666 		 * 2. VF reset might have been initiated due to some config
1667 		 *    change.
1668 		 *
1669 		 * NOTE: Theres no clear way to detect above cases than to react
1670 		 * to the response of PF for this reset request. PF will ack the
1671 		 * 1b and 2. cases but we will not get any intimation about 1a
1672 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1673 		 * communication between PF and VF would be broken.
1674 		 */
1675 
1676 		/* if we are never geting into pending state it means either:
1677 		 * 1. PF is not receiving our request which could be due to IMP
1678 		 *    reset
1679 		 * 2. PF is screwed
1680 		 * We cannot do much for 2. but to check first we can try reset
1681 		 * our PCIe + stack and see if it alleviates the problem.
1682 		 */
1683 		if (hdev->reset_attempts > 3) {
1684 			/* prepare for full reset of stack + pcie interface */
1685 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1686 
1687 			/* "defer" schedule the reset task again */
1688 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1689 		} else {
1690 			hdev->reset_attempts++;
1691 
1692 			set_bit(hdev->reset_level, &hdev->reset_pending);
1693 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1694 		}
1695 		hclgevf_reset_task_schedule(hdev);
1696 	}
1697 
1698 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1699 }
1700 
1701 static void hclgevf_mailbox_service_task(struct work_struct *work)
1702 {
1703 	struct hclgevf_dev *hdev;
1704 
1705 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1706 
1707 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1708 		return;
1709 
1710 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1711 
1712 	hclgevf_mbx_async_handler(hdev);
1713 
1714 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1715 }
1716 
1717 static void hclgevf_keep_alive_timer(struct timer_list *t)
1718 {
1719 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1720 
1721 	schedule_work(&hdev->keep_alive_task);
1722 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1723 }
1724 
1725 static void hclgevf_keep_alive_task(struct work_struct *work)
1726 {
1727 	struct hclgevf_dev *hdev;
1728 	u8 respmsg;
1729 	int ret;
1730 
1731 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1732 
1733 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1734 		return;
1735 
1736 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1737 				   0, false, &respmsg, sizeof(u8));
1738 	if (ret)
1739 		dev_err(&hdev->pdev->dev,
1740 			"VF sends keep alive cmd failed(=%d)\n", ret);
1741 }
1742 
1743 static void hclgevf_service_task(struct work_struct *work)
1744 {
1745 	struct hclgevf_dev *hdev;
1746 
1747 	hdev = container_of(work, struct hclgevf_dev, service_task);
1748 
1749 	/* request the link status from the PF. PF would be able to tell VF
1750 	 * about such updates in future so we might remove this later
1751 	 */
1752 	hclgevf_request_link_info(hdev);
1753 
1754 	hclgevf_update_link_mode(hdev);
1755 
1756 	hclgevf_deferred_task_schedule(hdev);
1757 
1758 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1759 }
1760 
1761 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1762 {
1763 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1764 }
1765 
1766 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1767 						      u32 *clearval)
1768 {
1769 	u32 cmdq_src_reg, rst_ing_reg;
1770 
1771 	/* fetch the events from their corresponding regs */
1772 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1773 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1774 
1775 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1776 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1777 		dev_info(&hdev->pdev->dev,
1778 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1779 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1780 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1781 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1782 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1783 		*clearval = cmdq_src_reg;
1784 		return HCLGEVF_VECTOR0_EVENT_RST;
1785 	}
1786 
1787 	/* check for vector0 mailbox(=CMDQ RX) event source */
1788 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1789 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1790 		*clearval = cmdq_src_reg;
1791 		return HCLGEVF_VECTOR0_EVENT_MBX;
1792 	}
1793 
1794 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1795 
1796 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1797 }
1798 
1799 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1800 {
1801 	writel(en ? 1 : 0, vector->addr);
1802 }
1803 
1804 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1805 {
1806 	enum hclgevf_evt_cause event_cause;
1807 	struct hclgevf_dev *hdev = data;
1808 	u32 clearval;
1809 
1810 	hclgevf_enable_vector(&hdev->misc_vector, false);
1811 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1812 
1813 	switch (event_cause) {
1814 	case HCLGEVF_VECTOR0_EVENT_RST:
1815 		hclgevf_reset_task_schedule(hdev);
1816 		break;
1817 	case HCLGEVF_VECTOR0_EVENT_MBX:
1818 		hclgevf_mbx_handler(hdev);
1819 		break;
1820 	default:
1821 		break;
1822 	}
1823 
1824 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1825 		hclgevf_clear_event_cause(hdev, clearval);
1826 		hclgevf_enable_vector(&hdev->misc_vector, true);
1827 	}
1828 
1829 	return IRQ_HANDLED;
1830 }
1831 
1832 static int hclgevf_configure(struct hclgevf_dev *hdev)
1833 {
1834 	int ret;
1835 
1836 	/* get queue configuration from PF */
1837 	ret = hclgevf_get_queue_info(hdev);
1838 	if (ret)
1839 		return ret;
1840 
1841 	/* get queue depth info from PF */
1842 	ret = hclgevf_get_queue_depth(hdev);
1843 	if (ret)
1844 		return ret;
1845 
1846 	ret = hclgevf_get_pf_media_type(hdev);
1847 	if (ret)
1848 		return ret;
1849 
1850 	/* get tc configuration from PF */
1851 	return hclgevf_get_tc_info(hdev);
1852 }
1853 
1854 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1855 {
1856 	struct pci_dev *pdev = ae_dev->pdev;
1857 	struct hclgevf_dev *hdev;
1858 
1859 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1860 	if (!hdev)
1861 		return -ENOMEM;
1862 
1863 	hdev->pdev = pdev;
1864 	hdev->ae_dev = ae_dev;
1865 	ae_dev->priv = hdev;
1866 
1867 	return 0;
1868 }
1869 
1870 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1871 {
1872 	struct hnae3_handle *roce = &hdev->roce;
1873 	struct hnae3_handle *nic = &hdev->nic;
1874 
1875 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1876 
1877 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1878 	    hdev->num_msi_left == 0)
1879 		return -EINVAL;
1880 
1881 	roce->rinfo.base_vector = hdev->roce_base_vector;
1882 
1883 	roce->rinfo.netdev = nic->kinfo.netdev;
1884 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1885 
1886 	roce->pdev = nic->pdev;
1887 	roce->ae_algo = nic->ae_algo;
1888 	roce->numa_node_mask = nic->numa_node_mask;
1889 
1890 	return 0;
1891 }
1892 
1893 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1894 {
1895 	struct hclgevf_cfg_gro_status_cmd *req;
1896 	struct hclgevf_desc desc;
1897 	int ret;
1898 
1899 	if (!hnae3_dev_gro_supported(hdev))
1900 		return 0;
1901 
1902 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1903 				     false);
1904 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1905 
1906 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1907 
1908 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1909 	if (ret)
1910 		dev_err(&hdev->pdev->dev,
1911 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1912 
1913 	return ret;
1914 }
1915 
1916 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1917 {
1918 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1919 	int i, ret;
1920 
1921 	rss_cfg->rss_size = hdev->rss_size_max;
1922 
1923 	if (hdev->pdev->revision >= 0x21) {
1924 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1925 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1926 		       HCLGEVF_RSS_KEY_SIZE);
1927 
1928 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1929 					       rss_cfg->rss_hash_key);
1930 		if (ret)
1931 			return ret;
1932 
1933 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1934 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1935 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1936 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1937 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1938 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1939 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1940 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1941 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1942 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1943 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1944 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1945 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1946 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1947 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1948 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1949 
1950 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1951 		if (ret)
1952 			return ret;
1953 
1954 	}
1955 
1956 	/* Initialize RSS indirect table for each vport */
1957 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1958 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1959 
1960 	ret = hclgevf_set_rss_indir_table(hdev);
1961 	if (ret)
1962 		return ret;
1963 
1964 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1965 }
1966 
1967 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1968 {
1969 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1970 	 * here later
1971 	 */
1972 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1973 				       false);
1974 }
1975 
1976 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
1977 {
1978 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1979 
1980 	if (enable) {
1981 		mod_timer(&hdev->service_timer, jiffies + HZ);
1982 	} else {
1983 		del_timer_sync(&hdev->service_timer);
1984 		cancel_work_sync(&hdev->service_task);
1985 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1986 	}
1987 }
1988 
1989 static int hclgevf_ae_start(struct hnae3_handle *handle)
1990 {
1991 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1992 
1993 	/* reset tqp stats */
1994 	hclgevf_reset_tqp_stats(handle);
1995 
1996 	hclgevf_request_link_info(hdev);
1997 
1998 	hclgevf_update_link_mode(hdev);
1999 
2000 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2001 
2002 	return 0;
2003 }
2004 
2005 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2006 {
2007 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2008 	int i;
2009 
2010 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2011 
2012 	for (i = 0; i < handle->kinfo.num_tqps; i++)
2013 		hclgevf_reset_tqp(handle, i);
2014 
2015 	/* reset tqp stats */
2016 	hclgevf_reset_tqp_stats(handle);
2017 	hclgevf_update_link_status(hdev, 0);
2018 }
2019 
2020 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2021 {
2022 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2023 	u8 msg_data;
2024 
2025 	msg_data = alive ? 1 : 0;
2026 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2027 				    0, &msg_data, 1, false, NULL, 0);
2028 }
2029 
2030 static int hclgevf_client_start(struct hnae3_handle *handle)
2031 {
2032 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2033 
2034 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
2035 	return hclgevf_set_alive(handle, true);
2036 }
2037 
2038 static void hclgevf_client_stop(struct hnae3_handle *handle)
2039 {
2040 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2041 	int ret;
2042 
2043 	ret = hclgevf_set_alive(handle, false);
2044 	if (ret)
2045 		dev_warn(&hdev->pdev->dev,
2046 			 "%s failed %d\n", __func__, ret);
2047 
2048 	del_timer_sync(&hdev->keep_alive_timer);
2049 	cancel_work_sync(&hdev->keep_alive_task);
2050 }
2051 
2052 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2053 {
2054 	/* setup tasks for the MBX */
2055 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2056 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2057 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2058 
2059 	/* setup tasks for service timer */
2060 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2061 
2062 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2063 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2064 
2065 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2066 
2067 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2068 
2069 	/* bring the device down */
2070 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2071 }
2072 
2073 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2074 {
2075 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2076 
2077 	if (hdev->service_timer.function)
2078 		del_timer_sync(&hdev->service_timer);
2079 	if (hdev->service_task.func)
2080 		cancel_work_sync(&hdev->service_task);
2081 	if (hdev->mbx_service_task.func)
2082 		cancel_work_sync(&hdev->mbx_service_task);
2083 	if (hdev->rst_service_task.func)
2084 		cancel_work_sync(&hdev->rst_service_task);
2085 
2086 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2087 }
2088 
2089 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2090 {
2091 	struct pci_dev *pdev = hdev->pdev;
2092 	int vectors;
2093 	int i;
2094 
2095 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2096 		vectors = pci_alloc_irq_vectors(pdev,
2097 						hdev->roce_base_msix_offset + 1,
2098 						hdev->num_msi,
2099 						PCI_IRQ_MSIX);
2100 	else
2101 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2102 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2103 
2104 	if (vectors < 0) {
2105 		dev_err(&pdev->dev,
2106 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2107 			vectors);
2108 		return vectors;
2109 	}
2110 	if (vectors < hdev->num_msi)
2111 		dev_warn(&hdev->pdev->dev,
2112 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2113 			 hdev->num_msi, vectors);
2114 
2115 	hdev->num_msi = vectors;
2116 	hdev->num_msi_left = vectors;
2117 	hdev->base_msi_vector = pdev->irq;
2118 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2119 
2120 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2121 					   sizeof(u16), GFP_KERNEL);
2122 	if (!hdev->vector_status) {
2123 		pci_free_irq_vectors(pdev);
2124 		return -ENOMEM;
2125 	}
2126 
2127 	for (i = 0; i < hdev->num_msi; i++)
2128 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2129 
2130 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2131 					sizeof(int), GFP_KERNEL);
2132 	if (!hdev->vector_irq) {
2133 		devm_kfree(&pdev->dev, hdev->vector_status);
2134 		pci_free_irq_vectors(pdev);
2135 		return -ENOMEM;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2142 {
2143 	struct pci_dev *pdev = hdev->pdev;
2144 
2145 	devm_kfree(&pdev->dev, hdev->vector_status);
2146 	devm_kfree(&pdev->dev, hdev->vector_irq);
2147 	pci_free_irq_vectors(pdev);
2148 }
2149 
2150 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2151 {
2152 	int ret = 0;
2153 
2154 	hclgevf_get_misc_vector(hdev);
2155 
2156 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2157 			  0, "hclgevf_cmd", hdev);
2158 	if (ret) {
2159 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2160 			hdev->misc_vector.vector_irq);
2161 		return ret;
2162 	}
2163 
2164 	hclgevf_clear_event_cause(hdev, 0);
2165 
2166 	/* enable misc. vector(vector 0) */
2167 	hclgevf_enable_vector(&hdev->misc_vector, true);
2168 
2169 	return ret;
2170 }
2171 
2172 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2173 {
2174 	/* disable misc vector(vector 0) */
2175 	hclgevf_enable_vector(&hdev->misc_vector, false);
2176 	synchronize_irq(hdev->misc_vector.vector_irq);
2177 	free_irq(hdev->misc_vector.vector_irq, hdev);
2178 	hclgevf_free_vector(hdev, 0);
2179 }
2180 
2181 static int hclgevf_init_client_instance(struct hnae3_client *client,
2182 					struct hnae3_ae_dev *ae_dev)
2183 {
2184 	struct hclgevf_dev *hdev = ae_dev->priv;
2185 	int ret;
2186 
2187 	switch (client->type) {
2188 	case HNAE3_CLIENT_KNIC:
2189 		hdev->nic_client = client;
2190 		hdev->nic.client = client;
2191 
2192 		ret = client->ops->init_instance(&hdev->nic);
2193 		if (ret)
2194 			goto clear_nic;
2195 
2196 		hnae3_set_client_init_flag(client, ae_dev, 1);
2197 
2198 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
2199 			struct hnae3_client *rc = hdev->roce_client;
2200 
2201 			ret = hclgevf_init_roce_base_info(hdev);
2202 			if (ret)
2203 				goto clear_roce;
2204 			ret = rc->ops->init_instance(&hdev->roce);
2205 			if (ret)
2206 				goto clear_roce;
2207 
2208 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
2209 						   1);
2210 		}
2211 		break;
2212 	case HNAE3_CLIENT_UNIC:
2213 		hdev->nic_client = client;
2214 		hdev->nic.client = client;
2215 
2216 		ret = client->ops->init_instance(&hdev->nic);
2217 		if (ret)
2218 			goto clear_nic;
2219 
2220 		hnae3_set_client_init_flag(client, ae_dev, 1);
2221 		break;
2222 	case HNAE3_CLIENT_ROCE:
2223 		if (hnae3_dev_roce_supported(hdev)) {
2224 			hdev->roce_client = client;
2225 			hdev->roce.client = client;
2226 		}
2227 
2228 		if (hdev->roce_client && hdev->nic_client) {
2229 			ret = hclgevf_init_roce_base_info(hdev);
2230 			if (ret)
2231 				goto clear_roce;
2232 
2233 			ret = client->ops->init_instance(&hdev->roce);
2234 			if (ret)
2235 				goto clear_roce;
2236 		}
2237 
2238 		hnae3_set_client_init_flag(client, ae_dev, 1);
2239 		break;
2240 	default:
2241 		return -EINVAL;
2242 	}
2243 
2244 	return 0;
2245 
2246 clear_nic:
2247 	hdev->nic_client = NULL;
2248 	hdev->nic.client = NULL;
2249 	return ret;
2250 clear_roce:
2251 	hdev->roce_client = NULL;
2252 	hdev->roce.client = NULL;
2253 	return ret;
2254 }
2255 
2256 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2257 					   struct hnae3_ae_dev *ae_dev)
2258 {
2259 	struct hclgevf_dev *hdev = ae_dev->priv;
2260 
2261 	/* un-init roce, if it exists */
2262 	if (hdev->roce_client) {
2263 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2264 		hdev->roce_client = NULL;
2265 		hdev->roce.client = NULL;
2266 	}
2267 
2268 	/* un-init nic/unic, if this was not called by roce client */
2269 	if (client->ops->uninit_instance && hdev->nic_client &&
2270 	    client->type != HNAE3_CLIENT_ROCE) {
2271 		client->ops->uninit_instance(&hdev->nic, 0);
2272 		hdev->nic_client = NULL;
2273 		hdev->nic.client = NULL;
2274 	}
2275 }
2276 
2277 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2278 {
2279 	struct pci_dev *pdev = hdev->pdev;
2280 	struct hclgevf_hw *hw;
2281 	int ret;
2282 
2283 	ret = pci_enable_device(pdev);
2284 	if (ret) {
2285 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2286 		return ret;
2287 	}
2288 
2289 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2290 	if (ret) {
2291 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2292 		goto err_disable_device;
2293 	}
2294 
2295 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2296 	if (ret) {
2297 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2298 		goto err_disable_device;
2299 	}
2300 
2301 	pci_set_master(pdev);
2302 	hw = &hdev->hw;
2303 	hw->hdev = hdev;
2304 	hw->io_base = pci_iomap(pdev, 2, 0);
2305 	if (!hw->io_base) {
2306 		dev_err(&pdev->dev, "can't map configuration register space\n");
2307 		ret = -ENOMEM;
2308 		goto err_clr_master;
2309 	}
2310 
2311 	return 0;
2312 
2313 err_clr_master:
2314 	pci_clear_master(pdev);
2315 	pci_release_regions(pdev);
2316 err_disable_device:
2317 	pci_disable_device(pdev);
2318 
2319 	return ret;
2320 }
2321 
2322 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2323 {
2324 	struct pci_dev *pdev = hdev->pdev;
2325 
2326 	pci_iounmap(pdev, hdev->hw.io_base);
2327 	pci_clear_master(pdev);
2328 	pci_release_regions(pdev);
2329 	pci_disable_device(pdev);
2330 }
2331 
2332 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2333 {
2334 	struct hclgevf_query_res_cmd *req;
2335 	struct hclgevf_desc desc;
2336 	int ret;
2337 
2338 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2339 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2340 	if (ret) {
2341 		dev_err(&hdev->pdev->dev,
2342 			"query vf resource failed, ret = %d.\n", ret);
2343 		return ret;
2344 	}
2345 
2346 	req = (struct hclgevf_query_res_cmd *)desc.data;
2347 
2348 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2349 		hdev->roce_base_msix_offset =
2350 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2351 				HCLGEVF_MSIX_OFT_ROCEE_M,
2352 				HCLGEVF_MSIX_OFT_ROCEE_S);
2353 		hdev->num_roce_msix =
2354 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2355 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2356 
2357 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2358 		 * are queued before Roce vectors. The offset is fixed to 64.
2359 		 */
2360 		hdev->num_msi = hdev->num_roce_msix +
2361 				hdev->roce_base_msix_offset;
2362 	} else {
2363 		hdev->num_msi =
2364 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2365 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2366 	}
2367 
2368 	return 0;
2369 }
2370 
2371 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2372 {
2373 	struct pci_dev *pdev = hdev->pdev;
2374 	int ret = 0;
2375 
2376 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2377 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2378 		hclgevf_misc_irq_uninit(hdev);
2379 		hclgevf_uninit_msi(hdev);
2380 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2381 	}
2382 
2383 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2384 		pci_set_master(pdev);
2385 		ret = hclgevf_init_msi(hdev);
2386 		if (ret) {
2387 			dev_err(&pdev->dev,
2388 				"failed(%d) to init MSI/MSI-X\n", ret);
2389 			return ret;
2390 		}
2391 
2392 		ret = hclgevf_misc_irq_init(hdev);
2393 		if (ret) {
2394 			hclgevf_uninit_msi(hdev);
2395 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2396 				ret);
2397 			return ret;
2398 		}
2399 
2400 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2401 	}
2402 
2403 	return ret;
2404 }
2405 
2406 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2407 {
2408 	struct pci_dev *pdev = hdev->pdev;
2409 	int ret;
2410 
2411 	ret = hclgevf_pci_reset(hdev);
2412 	if (ret) {
2413 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2414 		return ret;
2415 	}
2416 
2417 	ret = hclgevf_cmd_init(hdev);
2418 	if (ret) {
2419 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2420 		return ret;
2421 	}
2422 
2423 	ret = hclgevf_rss_init_hw(hdev);
2424 	if (ret) {
2425 		dev_err(&hdev->pdev->dev,
2426 			"failed(%d) to initialize RSS\n", ret);
2427 		return ret;
2428 	}
2429 
2430 	ret = hclgevf_config_gro(hdev, true);
2431 	if (ret)
2432 		return ret;
2433 
2434 	ret = hclgevf_init_vlan_config(hdev);
2435 	if (ret) {
2436 		dev_err(&hdev->pdev->dev,
2437 			"failed(%d) to initialize VLAN config\n", ret);
2438 		return ret;
2439 	}
2440 
2441 	dev_info(&hdev->pdev->dev, "Reset done\n");
2442 
2443 	return 0;
2444 }
2445 
2446 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2447 {
2448 	struct pci_dev *pdev = hdev->pdev;
2449 	int ret;
2450 
2451 	ret = hclgevf_pci_init(hdev);
2452 	if (ret) {
2453 		dev_err(&pdev->dev, "PCI initialization failed\n");
2454 		return ret;
2455 	}
2456 
2457 	ret = hclgevf_cmd_queue_init(hdev);
2458 	if (ret) {
2459 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2460 		goto err_cmd_queue_init;
2461 	}
2462 
2463 	ret = hclgevf_cmd_init(hdev);
2464 	if (ret)
2465 		goto err_cmd_init;
2466 
2467 	/* Get vf resource */
2468 	ret = hclgevf_query_vf_resource(hdev);
2469 	if (ret) {
2470 		dev_err(&hdev->pdev->dev,
2471 			"Query vf status error, ret = %d.\n", ret);
2472 		goto err_cmd_init;
2473 	}
2474 
2475 	ret = hclgevf_init_msi(hdev);
2476 	if (ret) {
2477 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2478 		goto err_cmd_init;
2479 	}
2480 
2481 	hclgevf_state_init(hdev);
2482 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2483 
2484 	ret = hclgevf_misc_irq_init(hdev);
2485 	if (ret) {
2486 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2487 			ret);
2488 		goto err_misc_irq_init;
2489 	}
2490 
2491 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2492 
2493 	ret = hclgevf_configure(hdev);
2494 	if (ret) {
2495 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2496 		goto err_config;
2497 	}
2498 
2499 	ret = hclgevf_alloc_tqps(hdev);
2500 	if (ret) {
2501 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2502 		goto err_config;
2503 	}
2504 
2505 	ret = hclgevf_set_handle_info(hdev);
2506 	if (ret) {
2507 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2508 		goto err_config;
2509 	}
2510 
2511 	ret = hclgevf_config_gro(hdev, true);
2512 	if (ret)
2513 		goto err_config;
2514 
2515 	/* vf is not allowed to enable unicast/multicast promisc mode.
2516 	 * For revision 0x20, default to disable broadcast promisc mode,
2517 	 * firmware makes sure broadcast packets can be accepted.
2518 	 * For revision 0x21, default to enable broadcast promisc mode.
2519 	 */
2520 	ret = hclgevf_set_promisc_mode(hdev, true);
2521 	if (ret)
2522 		goto err_config;
2523 
2524 	/* Initialize RSS for this VF */
2525 	ret = hclgevf_rss_init_hw(hdev);
2526 	if (ret) {
2527 		dev_err(&hdev->pdev->dev,
2528 			"failed(%d) to initialize RSS\n", ret);
2529 		goto err_config;
2530 	}
2531 
2532 	ret = hclgevf_init_vlan_config(hdev);
2533 	if (ret) {
2534 		dev_err(&hdev->pdev->dev,
2535 			"failed(%d) to initialize VLAN config\n", ret);
2536 		goto err_config;
2537 	}
2538 
2539 	hdev->last_reset_time = jiffies;
2540 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2541 
2542 	return 0;
2543 
2544 err_config:
2545 	hclgevf_misc_irq_uninit(hdev);
2546 err_misc_irq_init:
2547 	hclgevf_state_uninit(hdev);
2548 	hclgevf_uninit_msi(hdev);
2549 err_cmd_init:
2550 	hclgevf_cmd_uninit(hdev);
2551 err_cmd_queue_init:
2552 	hclgevf_pci_uninit(hdev);
2553 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2554 	return ret;
2555 }
2556 
2557 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2558 {
2559 	hclgevf_state_uninit(hdev);
2560 
2561 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2562 		hclgevf_misc_irq_uninit(hdev);
2563 		hclgevf_uninit_msi(hdev);
2564 	}
2565 
2566 	hclgevf_pci_uninit(hdev);
2567 	hclgevf_cmd_uninit(hdev);
2568 }
2569 
2570 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2571 {
2572 	struct pci_dev *pdev = ae_dev->pdev;
2573 	struct hclgevf_dev *hdev;
2574 	int ret;
2575 
2576 	ret = hclgevf_alloc_hdev(ae_dev);
2577 	if (ret) {
2578 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2579 		return ret;
2580 	}
2581 
2582 	ret = hclgevf_init_hdev(ae_dev->priv);
2583 	if (ret) {
2584 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2585 		return ret;
2586 	}
2587 
2588 	hdev = ae_dev->priv;
2589 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2590 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2591 
2592 	return 0;
2593 }
2594 
2595 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2596 {
2597 	struct hclgevf_dev *hdev = ae_dev->priv;
2598 
2599 	hclgevf_uninit_hdev(hdev);
2600 	ae_dev->priv = NULL;
2601 }
2602 
2603 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2604 {
2605 	struct hnae3_handle *nic = &hdev->nic;
2606 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2607 
2608 	return min_t(u32, hdev->rss_size_max,
2609 		     hdev->num_tqps / kinfo->num_tc);
2610 }
2611 
2612 /**
2613  * hclgevf_get_channels - Get the current channels enabled and max supported.
2614  * @handle: hardware information for network interface
2615  * @ch: ethtool channels structure
2616  *
2617  * We don't support separate tx and rx queues as channels. The other count
2618  * represents how many queues are being used for control. max_combined counts
2619  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2620  * q_vectors since we support a lot more queue pairs than q_vectors.
2621  **/
2622 static void hclgevf_get_channels(struct hnae3_handle *handle,
2623 				 struct ethtool_channels *ch)
2624 {
2625 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2626 
2627 	ch->max_combined = hclgevf_get_max_channels(hdev);
2628 	ch->other_count = 0;
2629 	ch->max_other = 0;
2630 	ch->combined_count = handle->kinfo.rss_size;
2631 }
2632 
2633 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2634 					  u16 *alloc_tqps, u16 *max_rss_size)
2635 {
2636 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2637 
2638 	*alloc_tqps = hdev->num_tqps;
2639 	*max_rss_size = hdev->rss_size_max;
2640 }
2641 
2642 static int hclgevf_get_status(struct hnae3_handle *handle)
2643 {
2644 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2645 
2646 	return hdev->hw.mac.link;
2647 }
2648 
2649 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2650 					    u8 *auto_neg, u32 *speed,
2651 					    u8 *duplex)
2652 {
2653 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2654 
2655 	if (speed)
2656 		*speed = hdev->hw.mac.speed;
2657 	if (duplex)
2658 		*duplex = hdev->hw.mac.duplex;
2659 	if (auto_neg)
2660 		*auto_neg = AUTONEG_DISABLE;
2661 }
2662 
2663 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2664 				 u8 duplex)
2665 {
2666 	hdev->hw.mac.speed = speed;
2667 	hdev->hw.mac.duplex = duplex;
2668 }
2669 
2670 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2671 {
2672 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2673 
2674 	return hclgevf_config_gro(hdev, enable);
2675 }
2676 
2677 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2678 				  u8 *media_type)
2679 {
2680 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2681 	if (media_type)
2682 		*media_type = hdev->hw.mac.media_type;
2683 }
2684 
2685 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2686 {
2687 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2688 
2689 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2690 }
2691 
2692 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2693 {
2694 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2695 
2696 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2697 }
2698 
2699 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2700 {
2701 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2702 
2703 	return hdev->reset_count;
2704 }
2705 
2706 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2707 				  unsigned long *supported,
2708 				  unsigned long *advertising)
2709 {
2710 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2711 
2712 	*supported = hdev->hw.mac.supported;
2713 	*advertising = hdev->hw.mac.advertising;
2714 }
2715 
2716 #define MAX_SEPARATE_NUM	4
2717 #define SEPARATOR_VALUE		0xFFFFFFFF
2718 #define REG_NUM_PER_LINE	4
2719 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2720 
2721 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2722 {
2723 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2724 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2725 
2726 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2727 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2728 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2729 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2730 
2731 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2732 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2733 }
2734 
2735 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2736 			     void *data)
2737 {
2738 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2739 	int i, j, reg_um, separator_num;
2740 	u32 *reg = data;
2741 
2742 	*version = hdev->fw_version;
2743 
2744 	/* fetching per-VF registers values from VF PCIe register space */
2745 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2746 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2747 	for (i = 0; i < reg_um; i++)
2748 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2749 	for (i = 0; i < separator_num; i++)
2750 		*reg++ = SEPARATOR_VALUE;
2751 
2752 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2753 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2754 	for (i = 0; i < reg_um; i++)
2755 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2756 	for (i = 0; i < separator_num; i++)
2757 		*reg++ = SEPARATOR_VALUE;
2758 
2759 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2760 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2761 	for (j = 0; j < hdev->num_tqps; j++) {
2762 		for (i = 0; i < reg_um; i++)
2763 			*reg++ = hclgevf_read_dev(&hdev->hw,
2764 						  ring_reg_addr_list[i] +
2765 						  0x200 * j);
2766 		for (i = 0; i < separator_num; i++)
2767 			*reg++ = SEPARATOR_VALUE;
2768 	}
2769 
2770 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2771 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2772 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2773 		for (i = 0; i < reg_um; i++)
2774 			*reg++ = hclgevf_read_dev(&hdev->hw,
2775 						  tqp_intr_reg_addr_list[i] +
2776 						  4 * j);
2777 		for (i = 0; i < separator_num; i++)
2778 			*reg++ = SEPARATOR_VALUE;
2779 	}
2780 }
2781 
2782 static const struct hnae3_ae_ops hclgevf_ops = {
2783 	.init_ae_dev = hclgevf_init_ae_dev,
2784 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2785 	.flr_prepare = hclgevf_flr_prepare,
2786 	.flr_done = hclgevf_flr_done,
2787 	.init_client_instance = hclgevf_init_client_instance,
2788 	.uninit_client_instance = hclgevf_uninit_client_instance,
2789 	.start = hclgevf_ae_start,
2790 	.stop = hclgevf_ae_stop,
2791 	.client_start = hclgevf_client_start,
2792 	.client_stop = hclgevf_client_stop,
2793 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2794 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2795 	.get_vector = hclgevf_get_vector,
2796 	.put_vector = hclgevf_put_vector,
2797 	.reset_queue = hclgevf_reset_tqp,
2798 	.get_mac_addr = hclgevf_get_mac_addr,
2799 	.set_mac_addr = hclgevf_set_mac_addr,
2800 	.add_uc_addr = hclgevf_add_uc_addr,
2801 	.rm_uc_addr = hclgevf_rm_uc_addr,
2802 	.add_mc_addr = hclgevf_add_mc_addr,
2803 	.rm_mc_addr = hclgevf_rm_mc_addr,
2804 	.get_stats = hclgevf_get_stats,
2805 	.update_stats = hclgevf_update_stats,
2806 	.get_strings = hclgevf_get_strings,
2807 	.get_sset_count = hclgevf_get_sset_count,
2808 	.get_rss_key_size = hclgevf_get_rss_key_size,
2809 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2810 	.get_rss = hclgevf_get_rss,
2811 	.set_rss = hclgevf_set_rss,
2812 	.get_rss_tuple = hclgevf_get_rss_tuple,
2813 	.set_rss_tuple = hclgevf_set_rss_tuple,
2814 	.get_tc_size = hclgevf_get_tc_size,
2815 	.get_fw_version = hclgevf_get_fw_version,
2816 	.set_vlan_filter = hclgevf_set_vlan_filter,
2817 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2818 	.reset_event = hclgevf_reset_event,
2819 	.set_default_reset_request = hclgevf_set_def_reset_request,
2820 	.get_channels = hclgevf_get_channels,
2821 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2822 	.get_regs_len = hclgevf_get_regs_len,
2823 	.get_regs = hclgevf_get_regs,
2824 	.get_status = hclgevf_get_status,
2825 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2826 	.get_media_type = hclgevf_get_media_type,
2827 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2828 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2829 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2830 	.set_gro_en = hclgevf_gro_en,
2831 	.set_mtu = hclgevf_set_mtu,
2832 	.get_global_queue_id = hclgevf_get_qid_global,
2833 	.set_timer_task = hclgevf_set_timer_task,
2834 	.get_link_mode = hclgevf_get_link_mode,
2835 };
2836 
2837 static struct hnae3_ae_algo ae_algovf = {
2838 	.ops = &hclgevf_ops,
2839 	.pdev_id_table = ae_algovf_pci_tbl,
2840 };
2841 
2842 static int hclgevf_init(void)
2843 {
2844 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2845 
2846 	hnae3_register_ae_algo(&ae_algovf);
2847 
2848 	return 0;
2849 }
2850 
2851 static void hclgevf_exit(void)
2852 {
2853 	hnae3_unregister_ae_algo(&ae_algovf);
2854 }
2855 module_init(hclgevf_init);
2856 module_exit(hclgevf_exit);
2857 
2858 MODULE_LICENSE("GPL");
2859 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2860 MODULE_DESCRIPTION("HCLGEVF Driver");
2861 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2862