1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static struct workqueue_struct *hclgevf_wq;
20 
21 static const struct pci_device_id ae_algovf_pci_tbl[] = {
22 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
23 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
24 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
25 	/* required last entry */
26 	{0, }
27 };
28 
29 static const u8 hclgevf_hash_key[] = {
30 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
31 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
32 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
33 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
34 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
35 };
36 
37 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
38 
39 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_TX_TAIL_REG,
43 					 HCLGEVF_CMDQ_TX_HEAD_REG,
44 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
45 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
46 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
47 					 HCLGEVF_CMDQ_RX_TAIL_REG,
48 					 HCLGEVF_CMDQ_RX_HEAD_REG,
49 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
50 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
51 					 HCLGEVF_CMDQ_INTR_EN_REG,
52 					 HCLGEVF_CMDQ_INTR_GEN_REG};
53 
54 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
55 					   HCLGEVF_RST_ING,
56 					   HCLGEVF_GRO_EN_REG};
57 
58 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
59 					 HCLGEVF_RING_RX_ADDR_H_REG,
60 					 HCLGEVF_RING_RX_BD_NUM_REG,
61 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
62 					 HCLGEVF_RING_RX_MERGE_EN_REG,
63 					 HCLGEVF_RING_RX_TAIL_REG,
64 					 HCLGEVF_RING_RX_HEAD_REG,
65 					 HCLGEVF_RING_RX_FBD_NUM_REG,
66 					 HCLGEVF_RING_RX_OFFSET_REG,
67 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
68 					 HCLGEVF_RING_RX_STASH_REG,
69 					 HCLGEVF_RING_RX_BD_ERR_REG,
70 					 HCLGEVF_RING_TX_ADDR_L_REG,
71 					 HCLGEVF_RING_TX_ADDR_H_REG,
72 					 HCLGEVF_RING_TX_BD_NUM_REG,
73 					 HCLGEVF_RING_TX_PRIORITY_REG,
74 					 HCLGEVF_RING_TX_TC_REG,
75 					 HCLGEVF_RING_TX_MERGE_EN_REG,
76 					 HCLGEVF_RING_TX_TAIL_REG,
77 					 HCLGEVF_RING_TX_HEAD_REG,
78 					 HCLGEVF_RING_TX_FBD_NUM_REG,
79 					 HCLGEVF_RING_TX_OFFSET_REG,
80 					 HCLGEVF_RING_TX_EBD_NUM_REG,
81 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
82 					 HCLGEVF_RING_TX_BD_ERR_REG,
83 					 HCLGEVF_RING_EN_REG};
84 
85 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
86 					     HCLGEVF_TQP_INTR_GL0_REG,
87 					     HCLGEVF_TQP_INTR_GL1_REG,
88 					     HCLGEVF_TQP_INTR_GL2_REG,
89 					     HCLGEVF_TQP_INTR_RL_REG};
90 
91 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
92 {
93 	if (!handle->client)
94 		return container_of(handle, struct hclgevf_dev, nic);
95 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
96 		return container_of(handle, struct hclgevf_dev, roce);
97 	else
98 		return container_of(handle, struct hclgevf_dev, nic);
99 }
100 
101 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
102 {
103 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
104 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
105 	struct hclgevf_desc desc;
106 	struct hclgevf_tqp *tqp;
107 	int status;
108 	int i;
109 
110 	for (i = 0; i < kinfo->num_tqps; i++) {
111 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
112 		hclgevf_cmd_setup_basic_desc(&desc,
113 					     HCLGEVF_OPC_QUERY_RX_STATUS,
114 					     true);
115 
116 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
117 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
118 		if (status) {
119 			dev_err(&hdev->pdev->dev,
120 				"Query tqp stat fail, status = %d,queue = %d\n",
121 				status,	i);
122 			return status;
123 		}
124 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
125 			le32_to_cpu(desc.data[1]);
126 
127 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
128 					     true);
129 
130 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
131 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
132 		if (status) {
133 			dev_err(&hdev->pdev->dev,
134 				"Query tqp stat fail, status = %d,queue = %d\n",
135 				status, i);
136 			return status;
137 		}
138 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
139 			le32_to_cpu(desc.data[1]);
140 	}
141 
142 	return 0;
143 }
144 
145 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
146 {
147 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
148 	struct hclgevf_tqp *tqp;
149 	u64 *buff = data;
150 	int i;
151 
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
155 	}
156 	for (i = 0; i < kinfo->num_tqps; i++) {
157 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
158 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
159 	}
160 
161 	return buff;
162 }
163 
164 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
165 {
166 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
167 
168 	return kinfo->num_tqps * 2;
169 }
170 
171 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
172 {
173 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
174 	u8 *buff = data;
175 	int i;
176 
177 	for (i = 0; i < kinfo->num_tqps; i++) {
178 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
179 						       struct hclgevf_tqp, q);
180 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
181 			 tqp->index);
182 		buff += ETH_GSTRING_LEN;
183 	}
184 
185 	for (i = 0; i < kinfo->num_tqps; i++) {
186 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
187 						       struct hclgevf_tqp, q);
188 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
189 			 tqp->index);
190 		buff += ETH_GSTRING_LEN;
191 	}
192 
193 	return buff;
194 }
195 
196 static void hclgevf_update_stats(struct hnae3_handle *handle,
197 				 struct net_device_stats *net_stats)
198 {
199 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
200 	int status;
201 
202 	status = hclgevf_tqps_update_stats(handle);
203 	if (status)
204 		dev_err(&hdev->pdev->dev,
205 			"VF update of TQPS stats fail, status = %d.\n",
206 			status);
207 }
208 
209 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
210 {
211 	if (strset == ETH_SS_TEST)
212 		return -EOPNOTSUPP;
213 	else if (strset == ETH_SS_STATS)
214 		return hclgevf_tqps_get_sset_count(handle, strset);
215 
216 	return 0;
217 }
218 
219 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
220 				u8 *data)
221 {
222 	u8 *p = (char *)data;
223 
224 	if (strset == ETH_SS_STATS)
225 		p = hclgevf_tqps_get_strings(handle, p);
226 }
227 
228 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
229 {
230 	hclgevf_tqps_get_stats(handle, data);
231 }
232 
233 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
234 				   u8 subcode)
235 {
236 	if (msg) {
237 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
238 		msg->code = code;
239 		msg->subcode = subcode;
240 	}
241 }
242 
243 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
244 {
245 	struct hclge_vf_to_pf_msg send_msg;
246 	u8 resp_msg;
247 	int status;
248 
249 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
250 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
251 				      sizeof(resp_msg));
252 	if (status) {
253 		dev_err(&hdev->pdev->dev,
254 			"VF request to get TC info from PF failed %d",
255 			status);
256 		return status;
257 	}
258 
259 	hdev->hw_tc_map = resp_msg;
260 
261 	return 0;
262 }
263 
264 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
265 {
266 	struct hnae3_handle *nic = &hdev->nic;
267 	struct hclge_vf_to_pf_msg send_msg;
268 	u8 resp_msg;
269 	int ret;
270 
271 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
272 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
273 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
274 				   sizeof(u8));
275 	if (ret) {
276 		dev_err(&hdev->pdev->dev,
277 			"VF request to get port based vlan state failed %d",
278 			ret);
279 		return ret;
280 	}
281 
282 	nic->port_base_vlan_state = resp_msg;
283 
284 	return 0;
285 }
286 
287 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
288 {
289 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
290 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
291 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
292 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
293 
294 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
295 	struct hclge_vf_to_pf_msg send_msg;
296 	int status;
297 
298 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
299 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
300 				      HCLGEVF_TQPS_RSS_INFO_LEN);
301 	if (status) {
302 		dev_err(&hdev->pdev->dev,
303 			"VF request to get tqp info from PF failed %d",
304 			status);
305 		return status;
306 	}
307 
308 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
309 	       sizeof(u16));
310 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
311 	       sizeof(u16));
312 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
313 	       sizeof(u16));
314 
315 	return 0;
316 }
317 
318 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
319 {
320 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
321 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
322 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
323 
324 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
325 	struct hclge_vf_to_pf_msg send_msg;
326 	int ret;
327 
328 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
329 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
330 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
331 	if (ret) {
332 		dev_err(&hdev->pdev->dev,
333 			"VF request to get tqp depth info from PF failed %d",
334 			ret);
335 		return ret;
336 	}
337 
338 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
339 	       sizeof(u16));
340 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
341 	       sizeof(u16));
342 
343 	return 0;
344 }
345 
346 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
347 {
348 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
349 	struct hclge_vf_to_pf_msg send_msg;
350 	u16 qid_in_pf = 0;
351 	u8 resp_data[2];
352 	int ret;
353 
354 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
355 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
356 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
357 				   sizeof(resp_data));
358 	if (!ret)
359 		qid_in_pf = *(u16 *)resp_data;
360 
361 	return qid_in_pf;
362 }
363 
364 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
365 {
366 	struct hclge_vf_to_pf_msg send_msg;
367 	u8 resp_msg[2];
368 	int ret;
369 
370 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
371 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
372 				   sizeof(resp_msg));
373 	if (ret) {
374 		dev_err(&hdev->pdev->dev,
375 			"VF request to get the pf port media type failed %d",
376 			ret);
377 		return ret;
378 	}
379 
380 	hdev->hw.mac.media_type = resp_msg[0];
381 	hdev->hw.mac.module_type = resp_msg[1];
382 
383 	return 0;
384 }
385 
386 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
387 {
388 	struct hclgevf_tqp *tqp;
389 	int i;
390 
391 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
392 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
393 	if (!hdev->htqp)
394 		return -ENOMEM;
395 
396 	tqp = hdev->htqp;
397 
398 	for (i = 0; i < hdev->num_tqps; i++) {
399 		tqp->dev = &hdev->pdev->dev;
400 		tqp->index = i;
401 
402 		tqp->q.ae_algo = &ae_algovf;
403 		tqp->q.buf_size = hdev->rx_buf_len;
404 		tqp->q.tx_desc_num = hdev->num_tx_desc;
405 		tqp->q.rx_desc_num = hdev->num_rx_desc;
406 
407 		/* need an extended offset to configure queues >=
408 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
409 		 */
410 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
411 			tqp->q.io_base = hdev->hw.io_base +
412 					 HCLGEVF_TQP_REG_OFFSET +
413 					 i * HCLGEVF_TQP_REG_SIZE;
414 		else
415 			tqp->q.io_base = hdev->hw.io_base +
416 					 HCLGEVF_TQP_REG_OFFSET +
417 					 HCLGEVF_TQP_EXT_REG_OFFSET +
418 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
419 					 HCLGEVF_TQP_REG_SIZE;
420 
421 		tqp++;
422 	}
423 
424 	return 0;
425 }
426 
427 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
428 {
429 	struct hnae3_handle *nic = &hdev->nic;
430 	struct hnae3_knic_private_info *kinfo;
431 	u16 new_tqps = hdev->num_tqps;
432 	unsigned int i;
433 
434 	kinfo = &nic->kinfo;
435 	kinfo->num_tc = 0;
436 	kinfo->num_tx_desc = hdev->num_tx_desc;
437 	kinfo->num_rx_desc = hdev->num_rx_desc;
438 	kinfo->rx_buf_len = hdev->rx_buf_len;
439 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
440 		if (hdev->hw_tc_map & BIT(i))
441 			kinfo->num_tc++;
442 
443 	kinfo->rss_size
444 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
445 	new_tqps = kinfo->rss_size * kinfo->num_tc;
446 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
447 
448 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
449 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
450 	if (!kinfo->tqp)
451 		return -ENOMEM;
452 
453 	for (i = 0; i < kinfo->num_tqps; i++) {
454 		hdev->htqp[i].q.handle = &hdev->nic;
455 		hdev->htqp[i].q.tqp_index = i;
456 		kinfo->tqp[i] = &hdev->htqp[i].q;
457 	}
458 
459 	/* after init the max rss_size and tqps, adjust the default tqp numbers
460 	 * and rss size with the actual vector numbers
461 	 */
462 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
463 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
464 				kinfo->rss_size);
465 
466 	return 0;
467 }
468 
469 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
470 {
471 	struct hclge_vf_to_pf_msg send_msg;
472 	int status;
473 
474 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
475 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
476 	if (status)
477 		dev_err(&hdev->pdev->dev,
478 			"VF failed to fetch link status(%d) from PF", status);
479 }
480 
481 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
482 {
483 	struct hnae3_handle *rhandle = &hdev->roce;
484 	struct hnae3_handle *handle = &hdev->nic;
485 	struct hnae3_client *rclient;
486 	struct hnae3_client *client;
487 
488 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
489 		return;
490 
491 	client = handle->client;
492 	rclient = hdev->roce_client;
493 
494 	link_state =
495 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
496 
497 	if (link_state != hdev->hw.mac.link) {
498 		client->ops->link_status_change(handle, !!link_state);
499 		if (rclient && rclient->ops->link_status_change)
500 			rclient->ops->link_status_change(rhandle, !!link_state);
501 		hdev->hw.mac.link = link_state;
502 	}
503 
504 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
505 }
506 
507 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
508 {
509 #define HCLGEVF_ADVERTISING	0
510 #define HCLGEVF_SUPPORTED	1
511 
512 	struct hclge_vf_to_pf_msg send_msg;
513 
514 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
515 	send_msg.data[0] = HCLGEVF_ADVERTISING;
516 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
517 	send_msg.data[0] = HCLGEVF_SUPPORTED;
518 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
519 }
520 
521 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
522 {
523 	struct hnae3_handle *nic = &hdev->nic;
524 	int ret;
525 
526 	nic->ae_algo = &ae_algovf;
527 	nic->pdev = hdev->pdev;
528 	nic->numa_node_mask = hdev->numa_node_mask;
529 	nic->flags |= HNAE3_SUPPORT_VF;
530 
531 	ret = hclgevf_knic_setup(hdev);
532 	if (ret)
533 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
534 			ret);
535 	return ret;
536 }
537 
538 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
539 {
540 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
541 		dev_warn(&hdev->pdev->dev,
542 			 "vector(vector_id %d) has been freed.\n", vector_id);
543 		return;
544 	}
545 
546 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
547 	hdev->num_msi_left += 1;
548 	hdev->num_msi_used -= 1;
549 }
550 
551 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
552 			      struct hnae3_vector_info *vector_info)
553 {
554 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
555 	struct hnae3_vector_info *vector = vector_info;
556 	int alloc = 0;
557 	int i, j;
558 
559 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
560 	vector_num = min(hdev->num_msi_left, vector_num);
561 
562 	for (j = 0; j < vector_num; j++) {
563 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
564 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
565 				vector->vector = pci_irq_vector(hdev->pdev, i);
566 				vector->io_addr = hdev->hw.io_base +
567 					HCLGEVF_VECTOR_REG_BASE +
568 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
569 				hdev->vector_status[i] = 0;
570 				hdev->vector_irq[i] = vector->vector;
571 
572 				vector++;
573 				alloc++;
574 
575 				break;
576 			}
577 		}
578 	}
579 	hdev->num_msi_left -= alloc;
580 	hdev->num_msi_used += alloc;
581 
582 	return alloc;
583 }
584 
585 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
586 {
587 	int i;
588 
589 	for (i = 0; i < hdev->num_msi; i++)
590 		if (vector == hdev->vector_irq[i])
591 			return i;
592 
593 	return -EINVAL;
594 }
595 
596 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
597 				    const u8 hfunc, const u8 *key)
598 {
599 	struct hclgevf_rss_config_cmd *req;
600 	unsigned int key_offset = 0;
601 	struct hclgevf_desc desc;
602 	int key_counts;
603 	int key_size;
604 	int ret;
605 
606 	key_counts = HCLGEVF_RSS_KEY_SIZE;
607 	req = (struct hclgevf_rss_config_cmd *)desc.data;
608 
609 	while (key_counts) {
610 		hclgevf_cmd_setup_basic_desc(&desc,
611 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
612 					     false);
613 
614 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
615 		req->hash_config |=
616 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
617 
618 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
619 		memcpy(req->hash_key,
620 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
621 
622 		key_counts -= key_size;
623 		key_offset++;
624 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
625 		if (ret) {
626 			dev_err(&hdev->pdev->dev,
627 				"Configure RSS config fail, status = %d\n",
628 				ret);
629 			return ret;
630 		}
631 	}
632 
633 	return 0;
634 }
635 
636 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
637 {
638 	return HCLGEVF_RSS_KEY_SIZE;
639 }
640 
641 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
642 {
643 	return HCLGEVF_RSS_IND_TBL_SIZE;
644 }
645 
646 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
647 {
648 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
649 	struct hclgevf_rss_indirection_table_cmd *req;
650 	struct hclgevf_desc desc;
651 	int status;
652 	int i, j;
653 
654 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
655 
656 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
657 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
658 					     false);
659 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
660 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
661 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
662 			req->rss_result[j] =
663 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
664 
665 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
666 		if (status) {
667 			dev_err(&hdev->pdev->dev,
668 				"VF failed(=%d) to set RSS indirection table\n",
669 				status);
670 			return status;
671 		}
672 	}
673 
674 	return 0;
675 }
676 
677 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
678 {
679 	struct hclgevf_rss_tc_mode_cmd *req;
680 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
681 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
682 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
683 	struct hclgevf_desc desc;
684 	u16 roundup_size;
685 	unsigned int i;
686 	int status;
687 
688 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
689 
690 	roundup_size = roundup_pow_of_two(rss_size);
691 	roundup_size = ilog2(roundup_size);
692 
693 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
694 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
695 		tc_size[i] = roundup_size;
696 		tc_offset[i] = rss_size * i;
697 	}
698 
699 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
700 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
701 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
702 			      (tc_valid[i] & 0x1));
703 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
704 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
705 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
706 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
707 	}
708 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
709 	if (status)
710 		dev_err(&hdev->pdev->dev,
711 			"VF failed(=%d) to set rss tc mode\n", status);
712 
713 	return status;
714 }
715 
716 /* for revision 0x20, vf shared the same rss config with pf */
717 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
718 {
719 #define HCLGEVF_RSS_MBX_RESP_LEN	8
720 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
721 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
722 	struct hclge_vf_to_pf_msg send_msg;
723 	u16 msg_num, hash_key_index;
724 	u8 index;
725 	int ret;
726 
727 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
728 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
729 			HCLGEVF_RSS_MBX_RESP_LEN;
730 	for (index = 0; index < msg_num; index++) {
731 		send_msg.data[0] = index;
732 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
733 					   HCLGEVF_RSS_MBX_RESP_LEN);
734 		if (ret) {
735 			dev_err(&hdev->pdev->dev,
736 				"VF get rss hash key from PF failed, ret=%d",
737 				ret);
738 			return ret;
739 		}
740 
741 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
742 		if (index == msg_num - 1)
743 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
744 			       &resp_msg[0],
745 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
746 		else
747 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
748 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
749 	}
750 
751 	return 0;
752 }
753 
754 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
755 			   u8 *hfunc)
756 {
757 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
758 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
759 	int i, ret;
760 
761 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
762 		/* Get hash algorithm */
763 		if (hfunc) {
764 			switch (rss_cfg->hash_algo) {
765 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
766 				*hfunc = ETH_RSS_HASH_TOP;
767 				break;
768 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
769 				*hfunc = ETH_RSS_HASH_XOR;
770 				break;
771 			default:
772 				*hfunc = ETH_RSS_HASH_UNKNOWN;
773 				break;
774 			}
775 		}
776 
777 		/* Get the RSS Key required by the user */
778 		if (key)
779 			memcpy(key, rss_cfg->rss_hash_key,
780 			       HCLGEVF_RSS_KEY_SIZE);
781 	} else {
782 		if (hfunc)
783 			*hfunc = ETH_RSS_HASH_TOP;
784 		if (key) {
785 			ret = hclgevf_get_rss_hash_key(hdev);
786 			if (ret)
787 				return ret;
788 			memcpy(key, rss_cfg->rss_hash_key,
789 			       HCLGEVF_RSS_KEY_SIZE);
790 		}
791 	}
792 
793 	if (indir)
794 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
795 			indir[i] = rss_cfg->rss_indirection_tbl[i];
796 
797 	return 0;
798 }
799 
800 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
801 			   const u8 *key, const u8 hfunc)
802 {
803 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
804 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
805 	int ret, i;
806 
807 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
808 		/* Set the RSS Hash Key if specififed by the user */
809 		if (key) {
810 			switch (hfunc) {
811 			case ETH_RSS_HASH_TOP:
812 				rss_cfg->hash_algo =
813 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
814 				break;
815 			case ETH_RSS_HASH_XOR:
816 				rss_cfg->hash_algo =
817 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
818 				break;
819 			case ETH_RSS_HASH_NO_CHANGE:
820 				break;
821 			default:
822 				return -EINVAL;
823 			}
824 
825 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
826 						       key);
827 			if (ret)
828 				return ret;
829 
830 			/* Update the shadow RSS key with user specified qids */
831 			memcpy(rss_cfg->rss_hash_key, key,
832 			       HCLGEVF_RSS_KEY_SIZE);
833 		}
834 	}
835 
836 	/* update the shadow RSS table with user specified qids */
837 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
838 		rss_cfg->rss_indirection_tbl[i] = indir[i];
839 
840 	/* update the hardware */
841 	return hclgevf_set_rss_indir_table(hdev);
842 }
843 
844 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
845 {
846 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
847 
848 	if (nfc->data & RXH_L4_B_2_3)
849 		hash_sets |= HCLGEVF_D_PORT_BIT;
850 	else
851 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
852 
853 	if (nfc->data & RXH_IP_SRC)
854 		hash_sets |= HCLGEVF_S_IP_BIT;
855 	else
856 		hash_sets &= ~HCLGEVF_S_IP_BIT;
857 
858 	if (nfc->data & RXH_IP_DST)
859 		hash_sets |= HCLGEVF_D_IP_BIT;
860 	else
861 		hash_sets &= ~HCLGEVF_D_IP_BIT;
862 
863 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
864 		hash_sets |= HCLGEVF_V_TAG_BIT;
865 
866 	return hash_sets;
867 }
868 
869 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
870 				 struct ethtool_rxnfc *nfc)
871 {
872 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
873 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
874 	struct hclgevf_rss_input_tuple_cmd *req;
875 	struct hclgevf_desc desc;
876 	u8 tuple_sets;
877 	int ret;
878 
879 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
880 		return -EOPNOTSUPP;
881 
882 	if (nfc->data &
883 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
884 		return -EINVAL;
885 
886 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
887 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
888 
889 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
890 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
891 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
892 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
893 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
894 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
895 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
896 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
897 
898 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
899 	switch (nfc->flow_type) {
900 	case TCP_V4_FLOW:
901 		req->ipv4_tcp_en = tuple_sets;
902 		break;
903 	case TCP_V6_FLOW:
904 		req->ipv6_tcp_en = tuple_sets;
905 		break;
906 	case UDP_V4_FLOW:
907 		req->ipv4_udp_en = tuple_sets;
908 		break;
909 	case UDP_V6_FLOW:
910 		req->ipv6_udp_en = tuple_sets;
911 		break;
912 	case SCTP_V4_FLOW:
913 		req->ipv4_sctp_en = tuple_sets;
914 		break;
915 	case SCTP_V6_FLOW:
916 		if ((nfc->data & RXH_L4_B_0_1) ||
917 		    (nfc->data & RXH_L4_B_2_3))
918 			return -EINVAL;
919 
920 		req->ipv6_sctp_en = tuple_sets;
921 		break;
922 	case IPV4_FLOW:
923 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
924 		break;
925 	case IPV6_FLOW:
926 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
927 		break;
928 	default:
929 		return -EINVAL;
930 	}
931 
932 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
933 	if (ret) {
934 		dev_err(&hdev->pdev->dev,
935 			"Set rss tuple fail, status = %d\n", ret);
936 		return ret;
937 	}
938 
939 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
940 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
941 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
942 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
943 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
944 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
945 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
946 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
947 	return 0;
948 }
949 
950 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
951 				 struct ethtool_rxnfc *nfc)
952 {
953 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
954 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
955 	u8 tuple_sets;
956 
957 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
958 		return -EOPNOTSUPP;
959 
960 	nfc->data = 0;
961 
962 	switch (nfc->flow_type) {
963 	case TCP_V4_FLOW:
964 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
965 		break;
966 	case UDP_V4_FLOW:
967 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
968 		break;
969 	case TCP_V6_FLOW:
970 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
971 		break;
972 	case UDP_V6_FLOW:
973 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
974 		break;
975 	case SCTP_V4_FLOW:
976 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
977 		break;
978 	case SCTP_V6_FLOW:
979 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
980 		break;
981 	case IPV4_FLOW:
982 	case IPV6_FLOW:
983 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
984 		break;
985 	default:
986 		return -EINVAL;
987 	}
988 
989 	if (!tuple_sets)
990 		return 0;
991 
992 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
993 		nfc->data |= RXH_L4_B_2_3;
994 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
995 		nfc->data |= RXH_L4_B_0_1;
996 	if (tuple_sets & HCLGEVF_D_IP_BIT)
997 		nfc->data |= RXH_IP_DST;
998 	if (tuple_sets & HCLGEVF_S_IP_BIT)
999 		nfc->data |= RXH_IP_SRC;
1000 
1001 	return 0;
1002 }
1003 
1004 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1005 				       struct hclgevf_rss_cfg *rss_cfg)
1006 {
1007 	struct hclgevf_rss_input_tuple_cmd *req;
1008 	struct hclgevf_desc desc;
1009 	int ret;
1010 
1011 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1012 
1013 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1014 
1015 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1016 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1017 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1018 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1019 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1020 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1021 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1022 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1023 
1024 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1025 	if (ret)
1026 		dev_err(&hdev->pdev->dev,
1027 			"Configure rss input fail, status = %d\n", ret);
1028 	return ret;
1029 }
1030 
1031 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1032 {
1033 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1034 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1035 
1036 	return rss_cfg->rss_size;
1037 }
1038 
1039 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1040 				       int vector_id,
1041 				       struct hnae3_ring_chain_node *ring_chain)
1042 {
1043 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1044 	struct hclge_vf_to_pf_msg send_msg;
1045 	struct hnae3_ring_chain_node *node;
1046 	int status;
1047 	int i = 0;
1048 
1049 	memset(&send_msg, 0, sizeof(send_msg));
1050 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1051 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1052 	send_msg.vector_id = vector_id;
1053 
1054 	for (node = ring_chain; node; node = node->next) {
1055 		send_msg.param[i].ring_type =
1056 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1057 
1058 		send_msg.param[i].tqp_index = node->tqp_index;
1059 		send_msg.param[i].int_gl_index =
1060 					hnae3_get_field(node->int_gl_idx,
1061 							HNAE3_RING_GL_IDX_M,
1062 							HNAE3_RING_GL_IDX_S);
1063 
1064 		i++;
1065 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1066 			send_msg.ring_num = i;
1067 
1068 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1069 						      NULL, 0);
1070 			if (status) {
1071 				dev_err(&hdev->pdev->dev,
1072 					"Map TQP fail, status is %d.\n",
1073 					status);
1074 				return status;
1075 			}
1076 			i = 0;
1077 		}
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1084 				      struct hnae3_ring_chain_node *ring_chain)
1085 {
1086 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1087 	int vector_id;
1088 
1089 	vector_id = hclgevf_get_vector_index(hdev, vector);
1090 	if (vector_id < 0) {
1091 		dev_err(&handle->pdev->dev,
1092 			"Get vector index fail. ret =%d\n", vector_id);
1093 		return vector_id;
1094 	}
1095 
1096 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1097 }
1098 
1099 static int hclgevf_unmap_ring_from_vector(
1100 				struct hnae3_handle *handle,
1101 				int vector,
1102 				struct hnae3_ring_chain_node *ring_chain)
1103 {
1104 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1105 	int ret, vector_id;
1106 
1107 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1108 		return 0;
1109 
1110 	vector_id = hclgevf_get_vector_index(hdev, vector);
1111 	if (vector_id < 0) {
1112 		dev_err(&handle->pdev->dev,
1113 			"Get vector index fail. ret =%d\n", vector_id);
1114 		return vector_id;
1115 	}
1116 
1117 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1118 	if (ret)
1119 		dev_err(&handle->pdev->dev,
1120 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1121 			vector_id,
1122 			ret);
1123 
1124 	return ret;
1125 }
1126 
1127 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1128 {
1129 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1130 	int vector_id;
1131 
1132 	vector_id = hclgevf_get_vector_index(hdev, vector);
1133 	if (vector_id < 0) {
1134 		dev_err(&handle->pdev->dev,
1135 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1136 			vector_id);
1137 		return vector_id;
1138 	}
1139 
1140 	hclgevf_free_vector(hdev, vector_id);
1141 
1142 	return 0;
1143 }
1144 
1145 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1146 					bool en_uc_pmc, bool en_mc_pmc,
1147 					bool en_bc_pmc)
1148 {
1149 	struct hclge_vf_to_pf_msg send_msg;
1150 	int ret;
1151 
1152 	memset(&send_msg, 0, sizeof(send_msg));
1153 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1154 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1155 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1156 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1157 
1158 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1159 	if (ret)
1160 		dev_err(&hdev->pdev->dev,
1161 			"Set promisc mode fail, status is %d.\n", ret);
1162 
1163 	return ret;
1164 }
1165 
1166 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1167 				    bool en_mc_pmc)
1168 {
1169 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1170 	bool en_bc_pmc;
1171 
1172 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1173 
1174 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1175 					    en_bc_pmc);
1176 }
1177 
1178 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1179 {
1180 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1181 
1182 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1183 }
1184 
1185 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1186 {
1187 	struct hnae3_handle *handle = &hdev->nic;
1188 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1189 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1190 	int ret;
1191 
1192 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1193 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1194 		if (!ret)
1195 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1196 	}
1197 }
1198 
1199 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1200 			      int stream_id, bool enable)
1201 {
1202 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1203 	struct hclgevf_desc desc;
1204 	int status;
1205 
1206 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1207 
1208 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1209 				     false);
1210 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1211 	req->stream_id = cpu_to_le16(stream_id);
1212 	if (enable)
1213 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1214 
1215 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1216 	if (status)
1217 		dev_err(&hdev->pdev->dev,
1218 			"TQP enable fail, status =%d.\n", status);
1219 
1220 	return status;
1221 }
1222 
1223 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1224 {
1225 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1226 	struct hclgevf_tqp *tqp;
1227 	int i;
1228 
1229 	for (i = 0; i < kinfo->num_tqps; i++) {
1230 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1231 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1232 	}
1233 }
1234 
1235 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1236 {
1237 	struct hclge_vf_to_pf_msg send_msg;
1238 	u8 host_mac[ETH_ALEN];
1239 	int status;
1240 
1241 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1242 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1243 				      ETH_ALEN);
1244 	if (status) {
1245 		dev_err(&hdev->pdev->dev,
1246 			"fail to get VF MAC from host %d", status);
1247 		return status;
1248 	}
1249 
1250 	ether_addr_copy(p, host_mac);
1251 
1252 	return 0;
1253 }
1254 
1255 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1256 {
1257 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1258 	u8 host_mac_addr[ETH_ALEN];
1259 
1260 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1261 		return;
1262 
1263 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1264 	if (hdev->has_pf_mac)
1265 		ether_addr_copy(p, host_mac_addr);
1266 	else
1267 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1268 }
1269 
1270 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1271 				bool is_first)
1272 {
1273 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1274 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1275 	struct hclge_vf_to_pf_msg send_msg;
1276 	u8 *new_mac_addr = (u8 *)p;
1277 	int status;
1278 
1279 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1280 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1281 	ether_addr_copy(send_msg.data, new_mac_addr);
1282 	if (is_first && !hdev->has_pf_mac)
1283 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1284 	else
1285 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1286 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1287 	if (!status)
1288 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1289 
1290 	return status;
1291 }
1292 
1293 static struct hclgevf_mac_addr_node *
1294 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1295 {
1296 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1297 
1298 	list_for_each_entry_safe(mac_node, tmp, list, node)
1299 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1300 			return mac_node;
1301 
1302 	return NULL;
1303 }
1304 
1305 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1306 				    enum HCLGEVF_MAC_NODE_STATE state)
1307 {
1308 	switch (state) {
1309 	/* from set_rx_mode or tmp_add_list */
1310 	case HCLGEVF_MAC_TO_ADD:
1311 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1312 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1313 		break;
1314 	/* only from set_rx_mode */
1315 	case HCLGEVF_MAC_TO_DEL:
1316 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1317 			list_del(&mac_node->node);
1318 			kfree(mac_node);
1319 		} else {
1320 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1321 		}
1322 		break;
1323 	/* only from tmp_add_list, the mac_node->state won't be
1324 	 * HCLGEVF_MAC_ACTIVE
1325 	 */
1326 	case HCLGEVF_MAC_ACTIVE:
1327 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1328 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1329 		break;
1330 	}
1331 }
1332 
1333 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1334 				   enum HCLGEVF_MAC_NODE_STATE state,
1335 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1336 				   const unsigned char *addr)
1337 {
1338 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1339 	struct hclgevf_mac_addr_node *mac_node;
1340 	struct list_head *list;
1341 
1342 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1343 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1344 
1345 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1346 
1347 	/* if the mac addr is already in the mac list, no need to add a new
1348 	 * one into it, just check the mac addr state, convert it to a new
1349 	 * new state, or just remove it, or do nothing.
1350 	 */
1351 	mac_node = hclgevf_find_mac_node(list, addr);
1352 	if (mac_node) {
1353 		hclgevf_update_mac_node(mac_node, state);
1354 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1355 		return 0;
1356 	}
1357 	/* if this address is never added, unnecessary to delete */
1358 	if (state == HCLGEVF_MAC_TO_DEL) {
1359 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1360 		return -ENOENT;
1361 	}
1362 
1363 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1364 	if (!mac_node) {
1365 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1366 		return -ENOMEM;
1367 	}
1368 
1369 	mac_node->state = state;
1370 	ether_addr_copy(mac_node->mac_addr, addr);
1371 	list_add_tail(&mac_node->node, list);
1372 
1373 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1374 	return 0;
1375 }
1376 
1377 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1378 			       const unsigned char *addr)
1379 {
1380 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1381 				       HCLGEVF_MAC_ADDR_UC, addr);
1382 }
1383 
1384 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1385 			      const unsigned char *addr)
1386 {
1387 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1388 				       HCLGEVF_MAC_ADDR_UC, addr);
1389 }
1390 
1391 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1392 			       const unsigned char *addr)
1393 {
1394 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1395 				       HCLGEVF_MAC_ADDR_MC, addr);
1396 }
1397 
1398 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1399 			      const unsigned char *addr)
1400 {
1401 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1402 				       HCLGEVF_MAC_ADDR_MC, addr);
1403 }
1404 
1405 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1406 				    struct hclgevf_mac_addr_node *mac_node,
1407 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1408 {
1409 	struct hclge_vf_to_pf_msg send_msg;
1410 	u8 code, subcode;
1411 
1412 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1413 		code = HCLGE_MBX_SET_UNICAST;
1414 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1415 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1416 		else
1417 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1418 	} else {
1419 		code = HCLGE_MBX_SET_MULTICAST;
1420 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1421 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1422 		else
1423 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1424 	}
1425 
1426 	hclgevf_build_send_msg(&send_msg, code, subcode);
1427 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1428 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1429 }
1430 
1431 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1432 				    struct list_head *list,
1433 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1434 {
1435 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1436 	int ret;
1437 
1438 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1439 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1440 		if  (ret) {
1441 			dev_err(&hdev->pdev->dev,
1442 				"failed to configure mac %pM, state = %d, ret = %d\n",
1443 				mac_node->mac_addr, mac_node->state, ret);
1444 			return;
1445 		}
1446 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1447 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1448 		} else {
1449 			list_del(&mac_node->node);
1450 			kfree(mac_node);
1451 		}
1452 	}
1453 }
1454 
1455 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1456 				       struct list_head *mac_list)
1457 {
1458 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1459 
1460 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1461 		/* if the mac address from tmp_add_list is not in the
1462 		 * uc/mc_mac_list, it means have received a TO_DEL request
1463 		 * during the time window of sending mac config request to PF
1464 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1465 		 * then it will be removed at next time. If is TO_ADD, it means
1466 		 * send TO_ADD request failed, so just remove the mac node.
1467 		 */
1468 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1469 		if (new_node) {
1470 			hclgevf_update_mac_node(new_node, mac_node->state);
1471 			list_del(&mac_node->node);
1472 			kfree(mac_node);
1473 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1474 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1475 			list_del(&mac_node->node);
1476 			list_add_tail(&mac_node->node, mac_list);
1477 		} else {
1478 			list_del(&mac_node->node);
1479 			kfree(mac_node);
1480 		}
1481 	}
1482 }
1483 
1484 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1485 				       struct list_head *mac_list)
1486 {
1487 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1488 
1489 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1490 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1491 		if (new_node) {
1492 			/* If the mac addr is exist in the mac list, it means
1493 			 * received a new request TO_ADD during the time window
1494 			 * of sending mac addr configurrequest to PF, so just
1495 			 * change the mac state to ACTIVE.
1496 			 */
1497 			new_node->state = HCLGEVF_MAC_ACTIVE;
1498 			list_del(&mac_node->node);
1499 			kfree(mac_node);
1500 		} else {
1501 			list_del(&mac_node->node);
1502 			list_add_tail(&mac_node->node, mac_list);
1503 		}
1504 	}
1505 }
1506 
1507 static void hclgevf_clear_list(struct list_head *list)
1508 {
1509 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1510 
1511 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1512 		list_del(&mac_node->node);
1513 		kfree(mac_node);
1514 	}
1515 }
1516 
1517 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1518 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1519 {
1520 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1521 	struct list_head tmp_add_list, tmp_del_list;
1522 	struct list_head *list;
1523 
1524 	INIT_LIST_HEAD(&tmp_add_list);
1525 	INIT_LIST_HEAD(&tmp_del_list);
1526 
1527 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1528 	 * we can add/delete these mac addr outside the spin lock
1529 	 */
1530 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1531 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1532 
1533 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1534 
1535 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1536 		switch (mac_node->state) {
1537 		case HCLGEVF_MAC_TO_DEL:
1538 			list_del(&mac_node->node);
1539 			list_add_tail(&mac_node->node, &tmp_del_list);
1540 			break;
1541 		case HCLGEVF_MAC_TO_ADD:
1542 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1543 			if (!new_node)
1544 				goto stop_traverse;
1545 
1546 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1547 			new_node->state = mac_node->state;
1548 			list_add_tail(&new_node->node, &tmp_add_list);
1549 			break;
1550 		default:
1551 			break;
1552 		}
1553 	}
1554 
1555 stop_traverse:
1556 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1557 
1558 	/* delete first, in order to get max mac table space for adding */
1559 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1560 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1561 
1562 	/* if some mac addresses were added/deleted fail, move back to the
1563 	 * mac_list, and retry at next time.
1564 	 */
1565 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1566 
1567 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1568 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1569 
1570 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1571 }
1572 
1573 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1574 {
1575 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1576 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1577 }
1578 
1579 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1580 {
1581 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1582 
1583 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1584 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1585 
1586 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1587 }
1588 
1589 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1590 				   __be16 proto, u16 vlan_id,
1591 				   bool is_kill)
1592 {
1593 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1594 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1595 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1596 
1597 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1598 	struct hclge_vf_to_pf_msg send_msg;
1599 	int ret;
1600 
1601 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1602 		return -EINVAL;
1603 
1604 	if (proto != htons(ETH_P_8021Q))
1605 		return -EPROTONOSUPPORT;
1606 
1607 	/* When device is resetting or reset failed, firmware is unable to
1608 	 * handle mailbox. Just record the vlan id, and remove it after
1609 	 * reset finished.
1610 	 */
1611 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1612 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1613 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1614 		return -EBUSY;
1615 	}
1616 
1617 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1618 			       HCLGE_MBX_VLAN_FILTER);
1619 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1620 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1621 	       sizeof(vlan_id));
1622 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1623 	       sizeof(proto));
1624 	/* when remove hw vlan filter failed, record the vlan id,
1625 	 * and try to remove it from hw later, to be consistence
1626 	 * with stack.
1627 	 */
1628 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1629 	if (is_kill && ret)
1630 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1631 
1632 	return ret;
1633 }
1634 
1635 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1636 {
1637 #define HCLGEVF_MAX_SYNC_COUNT	60
1638 	struct hnae3_handle *handle = &hdev->nic;
1639 	int ret, sync_cnt = 0;
1640 	u16 vlan_id;
1641 
1642 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1643 	while (vlan_id != VLAN_N_VID) {
1644 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1645 					      vlan_id, true);
1646 		if (ret)
1647 			return;
1648 
1649 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1650 		sync_cnt++;
1651 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1652 			return;
1653 
1654 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1655 	}
1656 }
1657 
1658 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1659 {
1660 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1661 	struct hclge_vf_to_pf_msg send_msg;
1662 
1663 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1664 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1665 	send_msg.data[0] = enable ? 1 : 0;
1666 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1667 }
1668 
1669 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1670 {
1671 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1672 	struct hclge_vf_to_pf_msg send_msg;
1673 	int ret;
1674 
1675 	/* disable vf queue before send queue reset msg to PF */
1676 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1677 	if (ret)
1678 		return ret;
1679 
1680 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1681 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1682 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1683 }
1684 
1685 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1686 {
1687 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1688 	struct hclge_vf_to_pf_msg send_msg;
1689 
1690 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1691 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1692 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1693 }
1694 
1695 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1696 				 enum hnae3_reset_notify_type type)
1697 {
1698 	struct hnae3_client *client = hdev->nic_client;
1699 	struct hnae3_handle *handle = &hdev->nic;
1700 	int ret;
1701 
1702 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1703 	    !client)
1704 		return 0;
1705 
1706 	if (!client->ops->reset_notify)
1707 		return -EOPNOTSUPP;
1708 
1709 	ret = client->ops->reset_notify(handle, type);
1710 	if (ret)
1711 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1712 			type, ret);
1713 
1714 	return ret;
1715 }
1716 
1717 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1718 				      enum hnae3_reset_notify_type type)
1719 {
1720 	struct hnae3_client *client = hdev->roce_client;
1721 	struct hnae3_handle *handle = &hdev->roce;
1722 	int ret;
1723 
1724 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1725 		return 0;
1726 
1727 	if (!client->ops->reset_notify)
1728 		return -EOPNOTSUPP;
1729 
1730 	ret = client->ops->reset_notify(handle, type);
1731 	if (ret)
1732 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1733 			type, ret);
1734 	return ret;
1735 }
1736 
1737 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1738 {
1739 #define HCLGEVF_RESET_WAIT_US	20000
1740 #define HCLGEVF_RESET_WAIT_CNT	2000
1741 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1742 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1743 
1744 	u32 val;
1745 	int ret;
1746 
1747 	if (hdev->reset_type == HNAE3_VF_RESET)
1748 		ret = readl_poll_timeout(hdev->hw.io_base +
1749 					 HCLGEVF_VF_RST_ING, val,
1750 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1751 					 HCLGEVF_RESET_WAIT_US,
1752 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1753 	else
1754 		ret = readl_poll_timeout(hdev->hw.io_base +
1755 					 HCLGEVF_RST_ING, val,
1756 					 !(val & HCLGEVF_RST_ING_BITS),
1757 					 HCLGEVF_RESET_WAIT_US,
1758 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1759 
1760 	/* hardware completion status should be available by this time */
1761 	if (ret) {
1762 		dev_err(&hdev->pdev->dev,
1763 			"couldn't get reset done status from h/w, timeout!\n");
1764 		return ret;
1765 	}
1766 
1767 	/* we will wait a bit more to let reset of the stack to complete. This
1768 	 * might happen in case reset assertion was made by PF. Yes, this also
1769 	 * means we might end up waiting bit more even for VF reset.
1770 	 */
1771 	msleep(5000);
1772 
1773 	return 0;
1774 }
1775 
1776 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1777 {
1778 	u32 reg_val;
1779 
1780 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1781 	if (enable)
1782 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1783 	else
1784 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1785 
1786 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1787 			  reg_val);
1788 }
1789 
1790 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1791 {
1792 	int ret;
1793 
1794 	/* uninitialize the nic client */
1795 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1796 	if (ret)
1797 		return ret;
1798 
1799 	/* re-initialize the hclge device */
1800 	ret = hclgevf_reset_hdev(hdev);
1801 	if (ret) {
1802 		dev_err(&hdev->pdev->dev,
1803 			"hclge device re-init failed, VF is disabled!\n");
1804 		return ret;
1805 	}
1806 
1807 	/* bring up the nic client again */
1808 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1809 	if (ret)
1810 		return ret;
1811 
1812 	/* clear handshake status with IMP */
1813 	hclgevf_reset_handshake(hdev, false);
1814 
1815 	/* bring up the nic to enable TX/RX again */
1816 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1817 }
1818 
1819 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1820 {
1821 #define HCLGEVF_RESET_SYNC_TIME 100
1822 
1823 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1824 		struct hclge_vf_to_pf_msg send_msg;
1825 		int ret;
1826 
1827 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1828 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1829 		if (ret) {
1830 			dev_err(&hdev->pdev->dev,
1831 				"failed to assert VF reset, ret = %d\n", ret);
1832 			return ret;
1833 		}
1834 		hdev->rst_stats.vf_func_rst_cnt++;
1835 	}
1836 
1837 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1838 	/* inform hardware that preparatory work is done */
1839 	msleep(HCLGEVF_RESET_SYNC_TIME);
1840 	hclgevf_reset_handshake(hdev, true);
1841 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1842 		 hdev->reset_type);
1843 
1844 	return 0;
1845 }
1846 
1847 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1848 {
1849 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1850 		 hdev->rst_stats.vf_func_rst_cnt);
1851 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1852 		 hdev->rst_stats.flr_rst_cnt);
1853 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1854 		 hdev->rst_stats.vf_rst_cnt);
1855 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1856 		 hdev->rst_stats.rst_done_cnt);
1857 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1858 		 hdev->rst_stats.hw_rst_done_cnt);
1859 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1860 		 hdev->rst_stats.rst_cnt);
1861 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1862 		 hdev->rst_stats.rst_fail_cnt);
1863 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1864 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1865 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1866 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1867 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1868 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1869 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1870 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1871 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1872 }
1873 
1874 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1875 {
1876 	/* recover handshake status with IMP when reset fail */
1877 	hclgevf_reset_handshake(hdev, true);
1878 	hdev->rst_stats.rst_fail_cnt++;
1879 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1880 		hdev->rst_stats.rst_fail_cnt);
1881 
1882 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1883 		set_bit(hdev->reset_type, &hdev->reset_pending);
1884 
1885 	if (hclgevf_is_reset_pending(hdev)) {
1886 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1887 		hclgevf_reset_task_schedule(hdev);
1888 	} else {
1889 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1890 		hclgevf_dump_rst_info(hdev);
1891 	}
1892 }
1893 
1894 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1895 {
1896 	int ret;
1897 
1898 	hdev->rst_stats.rst_cnt++;
1899 
1900 	/* perform reset of the stack & ae device for a client */
1901 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1902 	if (ret)
1903 		return ret;
1904 
1905 	rtnl_lock();
1906 	/* bring down the nic to stop any ongoing TX/RX */
1907 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1908 	rtnl_unlock();
1909 	if (ret)
1910 		return ret;
1911 
1912 	return hclgevf_reset_prepare_wait(hdev);
1913 }
1914 
1915 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1916 {
1917 	int ret;
1918 
1919 	hdev->rst_stats.hw_rst_done_cnt++;
1920 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1921 	if (ret)
1922 		return ret;
1923 
1924 	rtnl_lock();
1925 	/* now, re-initialize the nic client and ae device */
1926 	ret = hclgevf_reset_stack(hdev);
1927 	rtnl_unlock();
1928 	if (ret) {
1929 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1930 		return ret;
1931 	}
1932 
1933 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1934 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1935 	 * times
1936 	 */
1937 	if (ret &&
1938 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1939 		return ret;
1940 
1941 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1942 	if (ret)
1943 		return ret;
1944 
1945 	hdev->last_reset_time = jiffies;
1946 	hdev->rst_stats.rst_done_cnt++;
1947 	hdev->rst_stats.rst_fail_cnt = 0;
1948 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1949 
1950 	return 0;
1951 }
1952 
1953 static void hclgevf_reset(struct hclgevf_dev *hdev)
1954 {
1955 	if (hclgevf_reset_prepare(hdev))
1956 		goto err_reset;
1957 
1958 	/* check if VF could successfully fetch the hardware reset completion
1959 	 * status from the hardware
1960 	 */
1961 	if (hclgevf_reset_wait(hdev)) {
1962 		/* can't do much in this situation, will disable VF */
1963 		dev_err(&hdev->pdev->dev,
1964 			"failed to fetch H/W reset completion status\n");
1965 		goto err_reset;
1966 	}
1967 
1968 	if (hclgevf_reset_rebuild(hdev))
1969 		goto err_reset;
1970 
1971 	return;
1972 
1973 err_reset:
1974 	hclgevf_reset_err_handle(hdev);
1975 }
1976 
1977 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1978 						     unsigned long *addr)
1979 {
1980 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1981 
1982 	/* return the highest priority reset level amongst all */
1983 	if (test_bit(HNAE3_VF_RESET, addr)) {
1984 		rst_level = HNAE3_VF_RESET;
1985 		clear_bit(HNAE3_VF_RESET, addr);
1986 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1987 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1988 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1989 		rst_level = HNAE3_VF_FULL_RESET;
1990 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1991 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1992 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1993 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1994 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1995 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1996 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1997 		rst_level = HNAE3_VF_FUNC_RESET;
1998 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1999 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2000 		rst_level = HNAE3_FLR_RESET;
2001 		clear_bit(HNAE3_FLR_RESET, addr);
2002 	}
2003 
2004 	return rst_level;
2005 }
2006 
2007 static void hclgevf_reset_event(struct pci_dev *pdev,
2008 				struct hnae3_handle *handle)
2009 {
2010 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2011 	struct hclgevf_dev *hdev = ae_dev->priv;
2012 
2013 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2014 
2015 	if (hdev->default_reset_request)
2016 		hdev->reset_level =
2017 			hclgevf_get_reset_level(hdev,
2018 						&hdev->default_reset_request);
2019 	else
2020 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2021 
2022 	/* reset of this VF requested */
2023 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2024 	hclgevf_reset_task_schedule(hdev);
2025 
2026 	hdev->last_reset_time = jiffies;
2027 }
2028 
2029 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2030 					  enum hnae3_reset_type rst_type)
2031 {
2032 	struct hclgevf_dev *hdev = ae_dev->priv;
2033 
2034 	set_bit(rst_type, &hdev->default_reset_request);
2035 }
2036 
2037 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2038 {
2039 	writel(en ? 1 : 0, vector->addr);
2040 }
2041 
2042 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2043 {
2044 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
2045 #define HCLGEVF_FLR_RETRY_CNT		5
2046 
2047 	struct hclgevf_dev *hdev = ae_dev->priv;
2048 	int retry_cnt = 0;
2049 	int ret;
2050 
2051 retry:
2052 	down(&hdev->reset_sem);
2053 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2054 	hdev->reset_type = HNAE3_FLR_RESET;
2055 	ret = hclgevf_reset_prepare(hdev);
2056 	if (ret) {
2057 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2058 			ret);
2059 		if (hdev->reset_pending ||
2060 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2061 			dev_err(&hdev->pdev->dev,
2062 				"reset_pending:0x%lx, retry_cnt:%d\n",
2063 				hdev->reset_pending, retry_cnt);
2064 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2065 			up(&hdev->reset_sem);
2066 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2067 			goto retry;
2068 		}
2069 	}
2070 
2071 	/* disable misc vector before FLR done */
2072 	hclgevf_enable_vector(&hdev->misc_vector, false);
2073 	hdev->rst_stats.flr_rst_cnt++;
2074 }
2075 
2076 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2077 {
2078 	struct hclgevf_dev *hdev = ae_dev->priv;
2079 	int ret;
2080 
2081 	hclgevf_enable_vector(&hdev->misc_vector, true);
2082 
2083 	ret = hclgevf_reset_rebuild(hdev);
2084 	if (ret)
2085 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2086 			 ret);
2087 
2088 	hdev->reset_type = HNAE3_NONE_RESET;
2089 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2090 	up(&hdev->reset_sem);
2091 }
2092 
2093 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2094 {
2095 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2096 
2097 	return hdev->fw_version;
2098 }
2099 
2100 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2101 {
2102 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2103 
2104 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2105 					    HCLGEVF_MISC_VECTOR_NUM);
2106 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2107 	/* vector status always valid for Vector 0 */
2108 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2109 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2110 
2111 	hdev->num_msi_left -= 1;
2112 	hdev->num_msi_used += 1;
2113 }
2114 
2115 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2116 {
2117 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2118 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2119 			      &hdev->state))
2120 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2121 }
2122 
2123 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2124 {
2125 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2126 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2127 			      &hdev->state))
2128 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2129 }
2130 
2131 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2132 				  unsigned long delay)
2133 {
2134 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2135 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2136 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2137 }
2138 
2139 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2140 {
2141 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2142 
2143 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2144 		return;
2145 
2146 	down(&hdev->reset_sem);
2147 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2148 
2149 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2150 			       &hdev->reset_state)) {
2151 		/* PF has initmated that it is about to reset the hardware.
2152 		 * We now have to poll & check if hardware has actually
2153 		 * completed the reset sequence. On hardware reset completion,
2154 		 * VF needs to reset the client and ae device.
2155 		 */
2156 		hdev->reset_attempts = 0;
2157 
2158 		hdev->last_reset_time = jiffies;
2159 		while ((hdev->reset_type =
2160 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2161 		       != HNAE3_NONE_RESET)
2162 			hclgevf_reset(hdev);
2163 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2164 				      &hdev->reset_state)) {
2165 		/* we could be here when either of below happens:
2166 		 * 1. reset was initiated due to watchdog timeout caused by
2167 		 *    a. IMP was earlier reset and our TX got choked down and
2168 		 *       which resulted in watchdog reacting and inducing VF
2169 		 *       reset. This also means our cmdq would be unreliable.
2170 		 *    b. problem in TX due to other lower layer(example link
2171 		 *       layer not functioning properly etc.)
2172 		 * 2. VF reset might have been initiated due to some config
2173 		 *    change.
2174 		 *
2175 		 * NOTE: Theres no clear way to detect above cases than to react
2176 		 * to the response of PF for this reset request. PF will ack the
2177 		 * 1b and 2. cases but we will not get any intimation about 1a
2178 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2179 		 * communication between PF and VF would be broken.
2180 		 *
2181 		 * if we are never geting into pending state it means either:
2182 		 * 1. PF is not receiving our request which could be due to IMP
2183 		 *    reset
2184 		 * 2. PF is screwed
2185 		 * We cannot do much for 2. but to check first we can try reset
2186 		 * our PCIe + stack and see if it alleviates the problem.
2187 		 */
2188 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2189 			/* prepare for full reset of stack + pcie interface */
2190 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2191 
2192 			/* "defer" schedule the reset task again */
2193 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2194 		} else {
2195 			hdev->reset_attempts++;
2196 
2197 			set_bit(hdev->reset_level, &hdev->reset_pending);
2198 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2199 		}
2200 		hclgevf_reset_task_schedule(hdev);
2201 	}
2202 
2203 	hdev->reset_type = HNAE3_NONE_RESET;
2204 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2205 	up(&hdev->reset_sem);
2206 }
2207 
2208 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2209 {
2210 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2211 		return;
2212 
2213 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2214 		return;
2215 
2216 	hclgevf_mbx_async_handler(hdev);
2217 
2218 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2219 }
2220 
2221 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2222 {
2223 	struct hclge_vf_to_pf_msg send_msg;
2224 	int ret;
2225 
2226 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2227 		return;
2228 
2229 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2230 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2231 	if (ret)
2232 		dev_err(&hdev->pdev->dev,
2233 			"VF sends keep alive cmd failed(=%d)\n", ret);
2234 }
2235 
2236 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2237 {
2238 	unsigned long delta = round_jiffies_relative(HZ);
2239 	struct hnae3_handle *handle = &hdev->nic;
2240 
2241 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2242 		return;
2243 
2244 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2245 		delta = jiffies - hdev->last_serv_processed;
2246 
2247 		if (delta < round_jiffies_relative(HZ)) {
2248 			delta = round_jiffies_relative(HZ) - delta;
2249 			goto out;
2250 		}
2251 	}
2252 
2253 	hdev->serv_processed_cnt++;
2254 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2255 		hclgevf_keep_alive(hdev);
2256 
2257 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2258 		hdev->last_serv_processed = jiffies;
2259 		goto out;
2260 	}
2261 
2262 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2263 		hclgevf_tqps_update_stats(handle);
2264 
2265 	/* request the link status from the PF. PF would be able to tell VF
2266 	 * about such updates in future so we might remove this later
2267 	 */
2268 	hclgevf_request_link_info(hdev);
2269 
2270 	hclgevf_update_link_mode(hdev);
2271 
2272 	hclgevf_sync_vlan_filter(hdev);
2273 
2274 	hclgevf_sync_mac_table(hdev);
2275 
2276 	hclgevf_sync_promisc_mode(hdev);
2277 
2278 	hdev->last_serv_processed = jiffies;
2279 
2280 out:
2281 	hclgevf_task_schedule(hdev, delta);
2282 }
2283 
2284 static void hclgevf_service_task(struct work_struct *work)
2285 {
2286 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2287 						service_task.work);
2288 
2289 	hclgevf_reset_service_task(hdev);
2290 	hclgevf_mailbox_service_task(hdev);
2291 	hclgevf_periodic_service_task(hdev);
2292 
2293 	/* Handle reset and mbx again in case periodical task delays the
2294 	 * handling by calling hclgevf_task_schedule() in
2295 	 * hclgevf_periodic_service_task()
2296 	 */
2297 	hclgevf_reset_service_task(hdev);
2298 	hclgevf_mailbox_service_task(hdev);
2299 }
2300 
2301 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2302 {
2303 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2304 }
2305 
2306 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2307 						      u32 *clearval)
2308 {
2309 	u32 val, cmdq_stat_reg, rst_ing_reg;
2310 
2311 	/* fetch the events from their corresponding regs */
2312 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2313 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2314 
2315 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2316 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2317 		dev_info(&hdev->pdev->dev,
2318 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2319 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2320 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2321 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2322 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2323 		hdev->rst_stats.vf_rst_cnt++;
2324 		/* set up VF hardware reset status, its PF will clear
2325 		 * this status when PF has initialized done.
2326 		 */
2327 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2328 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2329 				  val | HCLGEVF_VF_RST_ING_BIT);
2330 		return HCLGEVF_VECTOR0_EVENT_RST;
2331 	}
2332 
2333 	/* check for vector0 mailbox(=CMDQ RX) event source */
2334 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2335 		/* for revision 0x21, clearing interrupt is writing bit 0
2336 		 * to the clear register, writing bit 1 means to keep the
2337 		 * old value.
2338 		 * for revision 0x20, the clear register is a read & write
2339 		 * register, so we should just write 0 to the bit we are
2340 		 * handling, and keep other bits as cmdq_stat_reg.
2341 		 */
2342 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2343 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2344 		else
2345 			*clearval = cmdq_stat_reg &
2346 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2347 
2348 		return HCLGEVF_VECTOR0_EVENT_MBX;
2349 	}
2350 
2351 	/* print other vector0 event source */
2352 	dev_info(&hdev->pdev->dev,
2353 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2354 		 cmdq_stat_reg);
2355 
2356 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2357 }
2358 
2359 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2360 {
2361 	enum hclgevf_evt_cause event_cause;
2362 	struct hclgevf_dev *hdev = data;
2363 	u32 clearval;
2364 
2365 	hclgevf_enable_vector(&hdev->misc_vector, false);
2366 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2367 
2368 	switch (event_cause) {
2369 	case HCLGEVF_VECTOR0_EVENT_RST:
2370 		hclgevf_reset_task_schedule(hdev);
2371 		break;
2372 	case HCLGEVF_VECTOR0_EVENT_MBX:
2373 		hclgevf_mbx_handler(hdev);
2374 		break;
2375 	default:
2376 		break;
2377 	}
2378 
2379 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2380 		hclgevf_clear_event_cause(hdev, clearval);
2381 		hclgevf_enable_vector(&hdev->misc_vector, true);
2382 	}
2383 
2384 	return IRQ_HANDLED;
2385 }
2386 
2387 static int hclgevf_configure(struct hclgevf_dev *hdev)
2388 {
2389 	int ret;
2390 
2391 	/* get current port based vlan state from PF */
2392 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2393 	if (ret)
2394 		return ret;
2395 
2396 	/* get queue configuration from PF */
2397 	ret = hclgevf_get_queue_info(hdev);
2398 	if (ret)
2399 		return ret;
2400 
2401 	/* get queue depth info from PF */
2402 	ret = hclgevf_get_queue_depth(hdev);
2403 	if (ret)
2404 		return ret;
2405 
2406 	ret = hclgevf_get_pf_media_type(hdev);
2407 	if (ret)
2408 		return ret;
2409 
2410 	/* get tc configuration from PF */
2411 	return hclgevf_get_tc_info(hdev);
2412 }
2413 
2414 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2415 {
2416 	struct pci_dev *pdev = ae_dev->pdev;
2417 	struct hclgevf_dev *hdev;
2418 
2419 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2420 	if (!hdev)
2421 		return -ENOMEM;
2422 
2423 	hdev->pdev = pdev;
2424 	hdev->ae_dev = ae_dev;
2425 	ae_dev->priv = hdev;
2426 
2427 	return 0;
2428 }
2429 
2430 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2431 {
2432 	struct hnae3_handle *roce = &hdev->roce;
2433 	struct hnae3_handle *nic = &hdev->nic;
2434 
2435 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2436 
2437 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2438 	    hdev->num_msi_left == 0)
2439 		return -EINVAL;
2440 
2441 	roce->rinfo.base_vector = hdev->roce_base_vector;
2442 
2443 	roce->rinfo.netdev = nic->kinfo.netdev;
2444 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2445 
2446 	roce->pdev = nic->pdev;
2447 	roce->ae_algo = nic->ae_algo;
2448 	roce->numa_node_mask = nic->numa_node_mask;
2449 
2450 	return 0;
2451 }
2452 
2453 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2454 {
2455 	struct hclgevf_cfg_gro_status_cmd *req;
2456 	struct hclgevf_desc desc;
2457 	int ret;
2458 
2459 	if (!hnae3_dev_gro_supported(hdev))
2460 		return 0;
2461 
2462 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2463 				     false);
2464 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2465 
2466 	req->gro_en = en ? 1 : 0;
2467 
2468 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2469 	if (ret)
2470 		dev_err(&hdev->pdev->dev,
2471 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2472 
2473 	return ret;
2474 }
2475 
2476 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2477 {
2478 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2479 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2480 	u32 i;
2481 
2482 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2483 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2484 	tuple_sets = &rss_cfg->rss_tuple_sets;
2485 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2486 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2487 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2488 		       HCLGEVF_RSS_KEY_SIZE);
2489 
2490 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2491 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2492 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2493 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2494 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2495 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2496 		tuple_sets->ipv6_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2497 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2498 	}
2499 
2500 	/* Initialize RSS indirect table */
2501 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2502 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2503 }
2504 
2505 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2506 {
2507 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2508 	int ret;
2509 
2510 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2511 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2512 					       rss_cfg->rss_hash_key);
2513 		if (ret)
2514 			return ret;
2515 
2516 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2517 		if (ret)
2518 			return ret;
2519 	}
2520 
2521 	ret = hclgevf_set_rss_indir_table(hdev);
2522 	if (ret)
2523 		return ret;
2524 
2525 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2526 }
2527 
2528 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2529 {
2530 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2531 				       false);
2532 }
2533 
2534 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2535 {
2536 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2537 
2538 	unsigned long last = hdev->serv_processed_cnt;
2539 	int i = 0;
2540 
2541 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2542 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2543 	       last == hdev->serv_processed_cnt)
2544 		usleep_range(1, 1);
2545 }
2546 
2547 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2548 {
2549 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2550 
2551 	if (enable) {
2552 		hclgevf_task_schedule(hdev, 0);
2553 	} else {
2554 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2555 
2556 		/* flush memory to make sure DOWN is seen by service task */
2557 		smp_mb__before_atomic();
2558 		hclgevf_flush_link_update(hdev);
2559 	}
2560 }
2561 
2562 static int hclgevf_ae_start(struct hnae3_handle *handle)
2563 {
2564 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2565 
2566 	hclgevf_reset_tqp_stats(handle);
2567 
2568 	hclgevf_request_link_info(hdev);
2569 
2570 	hclgevf_update_link_mode(hdev);
2571 
2572 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2573 
2574 	return 0;
2575 }
2576 
2577 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2578 {
2579 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2580 	int i;
2581 
2582 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2583 
2584 	if (hdev->reset_type != HNAE3_VF_RESET)
2585 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2586 			if (hclgevf_reset_tqp(handle, i))
2587 				break;
2588 
2589 	hclgevf_reset_tqp_stats(handle);
2590 	hclgevf_update_link_status(hdev, 0);
2591 }
2592 
2593 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2594 {
2595 #define HCLGEVF_STATE_ALIVE	1
2596 #define HCLGEVF_STATE_NOT_ALIVE	0
2597 
2598 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2599 	struct hclge_vf_to_pf_msg send_msg;
2600 
2601 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2602 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2603 				HCLGEVF_STATE_NOT_ALIVE;
2604 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2605 }
2606 
2607 static int hclgevf_client_start(struct hnae3_handle *handle)
2608 {
2609 	return hclgevf_set_alive(handle, true);
2610 }
2611 
2612 static void hclgevf_client_stop(struct hnae3_handle *handle)
2613 {
2614 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2615 	int ret;
2616 
2617 	ret = hclgevf_set_alive(handle, false);
2618 	if (ret)
2619 		dev_warn(&hdev->pdev->dev,
2620 			 "%s failed %d\n", __func__, ret);
2621 }
2622 
2623 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2624 {
2625 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2626 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2627 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2628 
2629 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2630 
2631 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2632 	sema_init(&hdev->reset_sem, 1);
2633 
2634 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2635 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2636 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2637 
2638 	/* bring the device down */
2639 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2640 }
2641 
2642 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2643 {
2644 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2645 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2646 
2647 	if (hdev->service_task.work.func)
2648 		cancel_delayed_work_sync(&hdev->service_task);
2649 
2650 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2651 }
2652 
2653 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2654 {
2655 	struct pci_dev *pdev = hdev->pdev;
2656 	int vectors;
2657 	int i;
2658 
2659 	if (hnae3_dev_roce_supported(hdev))
2660 		vectors = pci_alloc_irq_vectors(pdev,
2661 						hdev->roce_base_msix_offset + 1,
2662 						hdev->num_msi,
2663 						PCI_IRQ_MSIX);
2664 	else
2665 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2666 						hdev->num_msi,
2667 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2668 
2669 	if (vectors < 0) {
2670 		dev_err(&pdev->dev,
2671 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2672 			vectors);
2673 		return vectors;
2674 	}
2675 	if (vectors < hdev->num_msi)
2676 		dev_warn(&hdev->pdev->dev,
2677 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2678 			 hdev->num_msi, vectors);
2679 
2680 	hdev->num_msi = vectors;
2681 	hdev->num_msi_left = vectors;
2682 
2683 	hdev->base_msi_vector = pdev->irq;
2684 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2685 
2686 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2687 					   sizeof(u16), GFP_KERNEL);
2688 	if (!hdev->vector_status) {
2689 		pci_free_irq_vectors(pdev);
2690 		return -ENOMEM;
2691 	}
2692 
2693 	for (i = 0; i < hdev->num_msi; i++)
2694 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2695 
2696 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2697 					sizeof(int), GFP_KERNEL);
2698 	if (!hdev->vector_irq) {
2699 		devm_kfree(&pdev->dev, hdev->vector_status);
2700 		pci_free_irq_vectors(pdev);
2701 		return -ENOMEM;
2702 	}
2703 
2704 	return 0;
2705 }
2706 
2707 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2708 {
2709 	struct pci_dev *pdev = hdev->pdev;
2710 
2711 	devm_kfree(&pdev->dev, hdev->vector_status);
2712 	devm_kfree(&pdev->dev, hdev->vector_irq);
2713 	pci_free_irq_vectors(pdev);
2714 }
2715 
2716 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2717 {
2718 	int ret;
2719 
2720 	hclgevf_get_misc_vector(hdev);
2721 
2722 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2723 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2724 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2725 			  0, hdev->misc_vector.name, hdev);
2726 	if (ret) {
2727 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2728 			hdev->misc_vector.vector_irq);
2729 		return ret;
2730 	}
2731 
2732 	hclgevf_clear_event_cause(hdev, 0);
2733 
2734 	/* enable misc. vector(vector 0) */
2735 	hclgevf_enable_vector(&hdev->misc_vector, true);
2736 
2737 	return ret;
2738 }
2739 
2740 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2741 {
2742 	/* disable misc vector(vector 0) */
2743 	hclgevf_enable_vector(&hdev->misc_vector, false);
2744 	synchronize_irq(hdev->misc_vector.vector_irq);
2745 	free_irq(hdev->misc_vector.vector_irq, hdev);
2746 	hclgevf_free_vector(hdev, 0);
2747 }
2748 
2749 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2750 {
2751 	struct device *dev = &hdev->pdev->dev;
2752 
2753 	dev_info(dev, "VF info begin:\n");
2754 
2755 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2756 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2757 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2758 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2759 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2760 	dev_info(dev, "PF media type of this VF: %u\n",
2761 		 hdev->hw.mac.media_type);
2762 
2763 	dev_info(dev, "VF info end.\n");
2764 }
2765 
2766 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2767 					    struct hnae3_client *client)
2768 {
2769 	struct hclgevf_dev *hdev = ae_dev->priv;
2770 	int rst_cnt = hdev->rst_stats.rst_cnt;
2771 	int ret;
2772 
2773 	ret = client->ops->init_instance(&hdev->nic);
2774 	if (ret)
2775 		return ret;
2776 
2777 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2778 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2779 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2780 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2781 
2782 		client->ops->uninit_instance(&hdev->nic, 0);
2783 		return -EBUSY;
2784 	}
2785 
2786 	hnae3_set_client_init_flag(client, ae_dev, 1);
2787 
2788 	if (netif_msg_drv(&hdev->nic))
2789 		hclgevf_info_show(hdev);
2790 
2791 	return 0;
2792 }
2793 
2794 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2795 					     struct hnae3_client *client)
2796 {
2797 	struct hclgevf_dev *hdev = ae_dev->priv;
2798 	int ret;
2799 
2800 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2801 	    !hdev->nic_client)
2802 		return 0;
2803 
2804 	ret = hclgevf_init_roce_base_info(hdev);
2805 	if (ret)
2806 		return ret;
2807 
2808 	ret = client->ops->init_instance(&hdev->roce);
2809 	if (ret)
2810 		return ret;
2811 
2812 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2813 	hnae3_set_client_init_flag(client, ae_dev, 1);
2814 
2815 	return 0;
2816 }
2817 
2818 static int hclgevf_init_client_instance(struct hnae3_client *client,
2819 					struct hnae3_ae_dev *ae_dev)
2820 {
2821 	struct hclgevf_dev *hdev = ae_dev->priv;
2822 	int ret;
2823 
2824 	switch (client->type) {
2825 	case HNAE3_CLIENT_KNIC:
2826 		hdev->nic_client = client;
2827 		hdev->nic.client = client;
2828 
2829 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2830 		if (ret)
2831 			goto clear_nic;
2832 
2833 		ret = hclgevf_init_roce_client_instance(ae_dev,
2834 							hdev->roce_client);
2835 		if (ret)
2836 			goto clear_roce;
2837 
2838 		break;
2839 	case HNAE3_CLIENT_ROCE:
2840 		if (hnae3_dev_roce_supported(hdev)) {
2841 			hdev->roce_client = client;
2842 			hdev->roce.client = client;
2843 		}
2844 
2845 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2846 		if (ret)
2847 			goto clear_roce;
2848 
2849 		break;
2850 	default:
2851 		return -EINVAL;
2852 	}
2853 
2854 	return 0;
2855 
2856 clear_nic:
2857 	hdev->nic_client = NULL;
2858 	hdev->nic.client = NULL;
2859 	return ret;
2860 clear_roce:
2861 	hdev->roce_client = NULL;
2862 	hdev->roce.client = NULL;
2863 	return ret;
2864 }
2865 
2866 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2867 					   struct hnae3_ae_dev *ae_dev)
2868 {
2869 	struct hclgevf_dev *hdev = ae_dev->priv;
2870 
2871 	/* un-init roce, if it exists */
2872 	if (hdev->roce_client) {
2873 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2874 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2875 		hdev->roce_client = NULL;
2876 		hdev->roce.client = NULL;
2877 	}
2878 
2879 	/* un-init nic/unic, if this was not called by roce client */
2880 	if (client->ops->uninit_instance && hdev->nic_client &&
2881 	    client->type != HNAE3_CLIENT_ROCE) {
2882 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2883 
2884 		client->ops->uninit_instance(&hdev->nic, 0);
2885 		hdev->nic_client = NULL;
2886 		hdev->nic.client = NULL;
2887 	}
2888 }
2889 
2890 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2891 {
2892 	struct pci_dev *pdev = hdev->pdev;
2893 	struct hclgevf_hw *hw;
2894 	int ret;
2895 
2896 	ret = pci_enable_device(pdev);
2897 	if (ret) {
2898 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2899 		return ret;
2900 	}
2901 
2902 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2903 	if (ret) {
2904 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2905 		goto err_disable_device;
2906 	}
2907 
2908 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2909 	if (ret) {
2910 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2911 		goto err_disable_device;
2912 	}
2913 
2914 	pci_set_master(pdev);
2915 	hw = &hdev->hw;
2916 	hw->hdev = hdev;
2917 	hw->io_base = pci_iomap(pdev, 2, 0);
2918 	if (!hw->io_base) {
2919 		dev_err(&pdev->dev, "can't map configuration register space\n");
2920 		ret = -ENOMEM;
2921 		goto err_clr_master;
2922 	}
2923 
2924 	return 0;
2925 
2926 err_clr_master:
2927 	pci_clear_master(pdev);
2928 	pci_release_regions(pdev);
2929 err_disable_device:
2930 	pci_disable_device(pdev);
2931 
2932 	return ret;
2933 }
2934 
2935 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2936 {
2937 	struct pci_dev *pdev = hdev->pdev;
2938 
2939 	pci_iounmap(pdev, hdev->hw.io_base);
2940 	pci_clear_master(pdev);
2941 	pci_release_regions(pdev);
2942 	pci_disable_device(pdev);
2943 }
2944 
2945 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2946 {
2947 	struct hclgevf_query_res_cmd *req;
2948 	struct hclgevf_desc desc;
2949 	int ret;
2950 
2951 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2952 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2953 	if (ret) {
2954 		dev_err(&hdev->pdev->dev,
2955 			"query vf resource failed, ret = %d.\n", ret);
2956 		return ret;
2957 	}
2958 
2959 	req = (struct hclgevf_query_res_cmd *)desc.data;
2960 
2961 	if (hnae3_dev_roce_supported(hdev)) {
2962 		hdev->roce_base_msix_offset =
2963 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2964 				HCLGEVF_MSIX_OFT_ROCEE_M,
2965 				HCLGEVF_MSIX_OFT_ROCEE_S);
2966 		hdev->num_roce_msix =
2967 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2968 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2969 
2970 		/* nic's msix numbers is always equals to the roce's. */
2971 		hdev->num_nic_msix = hdev->num_roce_msix;
2972 
2973 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2974 		 * are queued before Roce vectors. The offset is fixed to 64.
2975 		 */
2976 		hdev->num_msi = hdev->num_roce_msix +
2977 				hdev->roce_base_msix_offset;
2978 	} else {
2979 		hdev->num_msi =
2980 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2981 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2982 
2983 		hdev->num_nic_msix = hdev->num_msi;
2984 	}
2985 
2986 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2987 		dev_err(&hdev->pdev->dev,
2988 			"Just %u msi resources, not enough for vf(min:2).\n",
2989 			hdev->num_nic_msix);
2990 		return -EINVAL;
2991 	}
2992 
2993 	return 0;
2994 }
2995 
2996 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2997 {
2998 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
2999 
3000 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3001 
3002 	ae_dev->dev_specs.max_non_tso_bd_num =
3003 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3004 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3005 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3006 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3007 }
3008 
3009 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3010 				    struct hclgevf_desc *desc)
3011 {
3012 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3013 	struct hclgevf_dev_specs_0_cmd *req0;
3014 	struct hclgevf_dev_specs_1_cmd *req1;
3015 
3016 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3017 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3018 
3019 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3020 	ae_dev->dev_specs.rss_ind_tbl_size =
3021 					le16_to_cpu(req0->rss_ind_tbl_size);
3022 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3023 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3024 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3025 }
3026 
3027 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3028 {
3029 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3030 
3031 	if (!dev_specs->max_non_tso_bd_num)
3032 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3033 	if (!dev_specs->rss_ind_tbl_size)
3034 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3035 	if (!dev_specs->rss_key_size)
3036 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3037 	if (!dev_specs->max_int_gl)
3038 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3039 }
3040 
3041 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3042 {
3043 	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3044 	int ret;
3045 	int i;
3046 
3047 	/* set default specifications as devices lower than version V3 do not
3048 	 * support querying specifications from firmware.
3049 	 */
3050 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3051 		hclgevf_set_default_dev_specs(hdev);
3052 		return 0;
3053 	}
3054 
3055 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3056 		hclgevf_cmd_setup_basic_desc(&desc[i],
3057 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3058 		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3059 	}
3060 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3061 				     true);
3062 
3063 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3064 	if (ret)
3065 		return ret;
3066 
3067 	hclgevf_parse_dev_specs(hdev, desc);
3068 	hclgevf_check_dev_specs(hdev);
3069 
3070 	return 0;
3071 }
3072 
3073 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3074 {
3075 	struct pci_dev *pdev = hdev->pdev;
3076 	int ret = 0;
3077 
3078 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3079 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3080 		hclgevf_misc_irq_uninit(hdev);
3081 		hclgevf_uninit_msi(hdev);
3082 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3083 	}
3084 
3085 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3086 		pci_set_master(pdev);
3087 		ret = hclgevf_init_msi(hdev);
3088 		if (ret) {
3089 			dev_err(&pdev->dev,
3090 				"failed(%d) to init MSI/MSI-X\n", ret);
3091 			return ret;
3092 		}
3093 
3094 		ret = hclgevf_misc_irq_init(hdev);
3095 		if (ret) {
3096 			hclgevf_uninit_msi(hdev);
3097 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3098 				ret);
3099 			return ret;
3100 		}
3101 
3102 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3103 	}
3104 
3105 	return ret;
3106 }
3107 
3108 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3109 {
3110 	struct hclge_vf_to_pf_msg send_msg;
3111 
3112 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3113 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3114 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3115 }
3116 
3117 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3118 {
3119 	struct pci_dev *pdev = hdev->pdev;
3120 	int ret;
3121 
3122 	ret = hclgevf_pci_reset(hdev);
3123 	if (ret) {
3124 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3125 		return ret;
3126 	}
3127 
3128 	ret = hclgevf_cmd_init(hdev);
3129 	if (ret) {
3130 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3131 		return ret;
3132 	}
3133 
3134 	ret = hclgevf_rss_init_hw(hdev);
3135 	if (ret) {
3136 		dev_err(&hdev->pdev->dev,
3137 			"failed(%d) to initialize RSS\n", ret);
3138 		return ret;
3139 	}
3140 
3141 	ret = hclgevf_config_gro(hdev, true);
3142 	if (ret)
3143 		return ret;
3144 
3145 	ret = hclgevf_init_vlan_config(hdev);
3146 	if (ret) {
3147 		dev_err(&hdev->pdev->dev,
3148 			"failed(%d) to initialize VLAN config\n", ret);
3149 		return ret;
3150 	}
3151 
3152 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3153 
3154 	dev_info(&hdev->pdev->dev, "Reset done\n");
3155 
3156 	return 0;
3157 }
3158 
3159 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3160 {
3161 	struct pci_dev *pdev = hdev->pdev;
3162 	int ret;
3163 
3164 	ret = hclgevf_pci_init(hdev);
3165 	if (ret)
3166 		return ret;
3167 
3168 	ret = hclgevf_cmd_queue_init(hdev);
3169 	if (ret)
3170 		goto err_cmd_queue_init;
3171 
3172 	ret = hclgevf_cmd_init(hdev);
3173 	if (ret)
3174 		goto err_cmd_init;
3175 
3176 	/* Get vf resource */
3177 	ret = hclgevf_query_vf_resource(hdev);
3178 	if (ret)
3179 		goto err_cmd_init;
3180 
3181 	ret = hclgevf_query_dev_specs(hdev);
3182 	if (ret) {
3183 		dev_err(&pdev->dev,
3184 			"failed to query dev specifications, ret = %d\n", ret);
3185 		goto err_cmd_init;
3186 	}
3187 
3188 	ret = hclgevf_init_msi(hdev);
3189 	if (ret) {
3190 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3191 		goto err_cmd_init;
3192 	}
3193 
3194 	hclgevf_state_init(hdev);
3195 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3196 	hdev->reset_type = HNAE3_NONE_RESET;
3197 
3198 	ret = hclgevf_misc_irq_init(hdev);
3199 	if (ret)
3200 		goto err_misc_irq_init;
3201 
3202 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3203 
3204 	ret = hclgevf_configure(hdev);
3205 	if (ret) {
3206 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3207 		goto err_config;
3208 	}
3209 
3210 	ret = hclgevf_alloc_tqps(hdev);
3211 	if (ret) {
3212 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3213 		goto err_config;
3214 	}
3215 
3216 	ret = hclgevf_set_handle_info(hdev);
3217 	if (ret)
3218 		goto err_config;
3219 
3220 	ret = hclgevf_config_gro(hdev, true);
3221 	if (ret)
3222 		goto err_config;
3223 
3224 	/* Initialize RSS for this VF */
3225 	hclgevf_rss_init_cfg(hdev);
3226 	ret = hclgevf_rss_init_hw(hdev);
3227 	if (ret) {
3228 		dev_err(&hdev->pdev->dev,
3229 			"failed(%d) to initialize RSS\n", ret);
3230 		goto err_config;
3231 	}
3232 
3233 	/* ensure vf tbl list as empty before init*/
3234 	ret = hclgevf_clear_vport_list(hdev);
3235 	if (ret) {
3236 		dev_err(&pdev->dev,
3237 			"failed to clear tbl list configuration, ret = %d.\n",
3238 			ret);
3239 		goto err_config;
3240 	}
3241 
3242 	ret = hclgevf_init_vlan_config(hdev);
3243 	if (ret) {
3244 		dev_err(&hdev->pdev->dev,
3245 			"failed(%d) to initialize VLAN config\n", ret);
3246 		goto err_config;
3247 	}
3248 
3249 	hdev->last_reset_time = jiffies;
3250 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3251 		 HCLGEVF_DRIVER_NAME);
3252 
3253 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3254 
3255 	return 0;
3256 
3257 err_config:
3258 	hclgevf_misc_irq_uninit(hdev);
3259 err_misc_irq_init:
3260 	hclgevf_state_uninit(hdev);
3261 	hclgevf_uninit_msi(hdev);
3262 err_cmd_init:
3263 	hclgevf_cmd_uninit(hdev);
3264 err_cmd_queue_init:
3265 	hclgevf_pci_uninit(hdev);
3266 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3267 	return ret;
3268 }
3269 
3270 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3271 {
3272 	struct hclge_vf_to_pf_msg send_msg;
3273 
3274 	hclgevf_state_uninit(hdev);
3275 
3276 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3277 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3278 
3279 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3280 		hclgevf_misc_irq_uninit(hdev);
3281 		hclgevf_uninit_msi(hdev);
3282 	}
3283 
3284 	hclgevf_cmd_uninit(hdev);
3285 	hclgevf_pci_uninit(hdev);
3286 	hclgevf_uninit_mac_list(hdev);
3287 }
3288 
3289 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3290 {
3291 	struct pci_dev *pdev = ae_dev->pdev;
3292 	int ret;
3293 
3294 	ret = hclgevf_alloc_hdev(ae_dev);
3295 	if (ret) {
3296 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3297 		return ret;
3298 	}
3299 
3300 	ret = hclgevf_init_hdev(ae_dev->priv);
3301 	if (ret) {
3302 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3303 		return ret;
3304 	}
3305 
3306 	return 0;
3307 }
3308 
3309 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3310 {
3311 	struct hclgevf_dev *hdev = ae_dev->priv;
3312 
3313 	hclgevf_uninit_hdev(hdev);
3314 	ae_dev->priv = NULL;
3315 }
3316 
3317 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3318 {
3319 	struct hnae3_handle *nic = &hdev->nic;
3320 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3321 
3322 	return min_t(u32, hdev->rss_size_max,
3323 		     hdev->num_tqps / kinfo->num_tc);
3324 }
3325 
3326 /**
3327  * hclgevf_get_channels - Get the current channels enabled and max supported.
3328  * @handle: hardware information for network interface
3329  * @ch: ethtool channels structure
3330  *
3331  * We don't support separate tx and rx queues as channels. The other count
3332  * represents how many queues are being used for control. max_combined counts
3333  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3334  * q_vectors since we support a lot more queue pairs than q_vectors.
3335  **/
3336 static void hclgevf_get_channels(struct hnae3_handle *handle,
3337 				 struct ethtool_channels *ch)
3338 {
3339 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3340 
3341 	ch->max_combined = hclgevf_get_max_channels(hdev);
3342 	ch->other_count = 0;
3343 	ch->max_other = 0;
3344 	ch->combined_count = handle->kinfo.rss_size;
3345 }
3346 
3347 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3348 					  u16 *alloc_tqps, u16 *max_rss_size)
3349 {
3350 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3351 
3352 	*alloc_tqps = hdev->num_tqps;
3353 	*max_rss_size = hdev->rss_size_max;
3354 }
3355 
3356 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3357 				    u32 new_tqps_num)
3358 {
3359 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3360 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3361 	u16 max_rss_size;
3362 
3363 	kinfo->req_rss_size = new_tqps_num;
3364 
3365 	max_rss_size = min_t(u16, hdev->rss_size_max,
3366 			     hdev->num_tqps / kinfo->num_tc);
3367 
3368 	/* Use the user's configuration when it is not larger than
3369 	 * max_rss_size, otherwise, use the maximum specification value.
3370 	 */
3371 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3372 	    kinfo->req_rss_size <= max_rss_size)
3373 		kinfo->rss_size = kinfo->req_rss_size;
3374 	else if (kinfo->rss_size > max_rss_size ||
3375 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3376 		kinfo->rss_size = max_rss_size;
3377 
3378 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
3379 }
3380 
3381 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3382 				bool rxfh_configured)
3383 {
3384 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3385 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3386 	u16 cur_rss_size = kinfo->rss_size;
3387 	u16 cur_tqps = kinfo->num_tqps;
3388 	u32 *rss_indir;
3389 	unsigned int i;
3390 	int ret;
3391 
3392 	hclgevf_update_rss_size(handle, new_tqps_num);
3393 
3394 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3395 	if (ret)
3396 		return ret;
3397 
3398 	/* RSS indirection table has been configuared by user */
3399 	if (rxfh_configured)
3400 		goto out;
3401 
3402 	/* Reinitializes the rss indirect table according to the new RSS size */
3403 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
3404 	if (!rss_indir)
3405 		return -ENOMEM;
3406 
3407 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
3408 		rss_indir[i] = i % kinfo->rss_size;
3409 
3410 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3411 
3412 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3413 	if (ret)
3414 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3415 			ret);
3416 
3417 	kfree(rss_indir);
3418 
3419 out:
3420 	if (!ret)
3421 		dev_info(&hdev->pdev->dev,
3422 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3423 			 cur_rss_size, kinfo->rss_size,
3424 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
3425 
3426 	return ret;
3427 }
3428 
3429 static int hclgevf_get_status(struct hnae3_handle *handle)
3430 {
3431 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3432 
3433 	return hdev->hw.mac.link;
3434 }
3435 
3436 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3437 					    u8 *auto_neg, u32 *speed,
3438 					    u8 *duplex)
3439 {
3440 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3441 
3442 	if (speed)
3443 		*speed = hdev->hw.mac.speed;
3444 	if (duplex)
3445 		*duplex = hdev->hw.mac.duplex;
3446 	if (auto_neg)
3447 		*auto_neg = AUTONEG_DISABLE;
3448 }
3449 
3450 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3451 				 u8 duplex)
3452 {
3453 	hdev->hw.mac.speed = speed;
3454 	hdev->hw.mac.duplex = duplex;
3455 }
3456 
3457 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3458 {
3459 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3460 
3461 	return hclgevf_config_gro(hdev, enable);
3462 }
3463 
3464 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3465 				   u8 *module_type)
3466 {
3467 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3468 
3469 	if (media_type)
3470 		*media_type = hdev->hw.mac.media_type;
3471 
3472 	if (module_type)
3473 		*module_type = hdev->hw.mac.module_type;
3474 }
3475 
3476 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3477 {
3478 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3479 
3480 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3481 }
3482 
3483 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3484 {
3485 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3486 
3487 	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3488 }
3489 
3490 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3491 {
3492 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3493 
3494 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3495 }
3496 
3497 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3498 {
3499 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3500 
3501 	return hdev->rst_stats.hw_rst_done_cnt;
3502 }
3503 
3504 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3505 				  unsigned long *supported,
3506 				  unsigned long *advertising)
3507 {
3508 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3509 
3510 	*supported = hdev->hw.mac.supported;
3511 	*advertising = hdev->hw.mac.advertising;
3512 }
3513 
3514 #define MAX_SEPARATE_NUM	4
3515 #define SEPARATOR_VALUE		0xFFFFFFFF
3516 #define REG_NUM_PER_LINE	4
3517 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3518 
3519 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3520 {
3521 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3522 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3523 
3524 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3525 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3526 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3527 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3528 
3529 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3530 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3531 }
3532 
3533 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3534 			     void *data)
3535 {
3536 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3537 	int i, j, reg_um, separator_num;
3538 	u32 *reg = data;
3539 
3540 	*version = hdev->fw_version;
3541 
3542 	/* fetching per-VF registers values from VF PCIe register space */
3543 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3544 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3545 	for (i = 0; i < reg_um; i++)
3546 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3547 	for (i = 0; i < separator_num; i++)
3548 		*reg++ = SEPARATOR_VALUE;
3549 
3550 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3551 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3552 	for (i = 0; i < reg_um; i++)
3553 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3554 	for (i = 0; i < separator_num; i++)
3555 		*reg++ = SEPARATOR_VALUE;
3556 
3557 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3558 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3559 	for (j = 0; j < hdev->num_tqps; j++) {
3560 		for (i = 0; i < reg_um; i++)
3561 			*reg++ = hclgevf_read_dev(&hdev->hw,
3562 						  ring_reg_addr_list[i] +
3563 						  0x200 * j);
3564 		for (i = 0; i < separator_num; i++)
3565 			*reg++ = SEPARATOR_VALUE;
3566 	}
3567 
3568 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3569 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3570 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3571 		for (i = 0; i < reg_um; i++)
3572 			*reg++ = hclgevf_read_dev(&hdev->hw,
3573 						  tqp_intr_reg_addr_list[i] +
3574 						  4 * j);
3575 		for (i = 0; i < separator_num; i++)
3576 			*reg++ = SEPARATOR_VALUE;
3577 	}
3578 }
3579 
3580 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3581 					u8 *port_base_vlan_info, u8 data_size)
3582 {
3583 	struct hnae3_handle *nic = &hdev->nic;
3584 	struct hclge_vf_to_pf_msg send_msg;
3585 	int ret;
3586 
3587 	rtnl_lock();
3588 
3589 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3590 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3591 		dev_warn(&hdev->pdev->dev,
3592 			 "is resetting when updating port based vlan info\n");
3593 		rtnl_unlock();
3594 		return;
3595 	}
3596 
3597 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3598 	if (ret) {
3599 		rtnl_unlock();
3600 		return;
3601 	}
3602 
3603 	/* send msg to PF and wait update port based vlan info */
3604 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3605 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3606 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3607 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3608 	if (!ret) {
3609 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3610 			nic->port_base_vlan_state = state;
3611 		else
3612 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3613 	}
3614 
3615 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3616 	rtnl_unlock();
3617 }
3618 
3619 static const struct hnae3_ae_ops hclgevf_ops = {
3620 	.init_ae_dev = hclgevf_init_ae_dev,
3621 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3622 	.flr_prepare = hclgevf_flr_prepare,
3623 	.flr_done = hclgevf_flr_done,
3624 	.init_client_instance = hclgevf_init_client_instance,
3625 	.uninit_client_instance = hclgevf_uninit_client_instance,
3626 	.start = hclgevf_ae_start,
3627 	.stop = hclgevf_ae_stop,
3628 	.client_start = hclgevf_client_start,
3629 	.client_stop = hclgevf_client_stop,
3630 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3631 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3632 	.get_vector = hclgevf_get_vector,
3633 	.put_vector = hclgevf_put_vector,
3634 	.reset_queue = hclgevf_reset_tqp,
3635 	.get_mac_addr = hclgevf_get_mac_addr,
3636 	.set_mac_addr = hclgevf_set_mac_addr,
3637 	.add_uc_addr = hclgevf_add_uc_addr,
3638 	.rm_uc_addr = hclgevf_rm_uc_addr,
3639 	.add_mc_addr = hclgevf_add_mc_addr,
3640 	.rm_mc_addr = hclgevf_rm_mc_addr,
3641 	.get_stats = hclgevf_get_stats,
3642 	.update_stats = hclgevf_update_stats,
3643 	.get_strings = hclgevf_get_strings,
3644 	.get_sset_count = hclgevf_get_sset_count,
3645 	.get_rss_key_size = hclgevf_get_rss_key_size,
3646 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3647 	.get_rss = hclgevf_get_rss,
3648 	.set_rss = hclgevf_set_rss,
3649 	.get_rss_tuple = hclgevf_get_rss_tuple,
3650 	.set_rss_tuple = hclgevf_set_rss_tuple,
3651 	.get_tc_size = hclgevf_get_tc_size,
3652 	.get_fw_version = hclgevf_get_fw_version,
3653 	.set_vlan_filter = hclgevf_set_vlan_filter,
3654 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3655 	.reset_event = hclgevf_reset_event,
3656 	.set_default_reset_request = hclgevf_set_def_reset_request,
3657 	.set_channels = hclgevf_set_channels,
3658 	.get_channels = hclgevf_get_channels,
3659 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3660 	.get_regs_len = hclgevf_get_regs_len,
3661 	.get_regs = hclgevf_get_regs,
3662 	.get_status = hclgevf_get_status,
3663 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3664 	.get_media_type = hclgevf_get_media_type,
3665 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3666 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3667 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3668 	.set_gro_en = hclgevf_gro_en,
3669 	.set_mtu = hclgevf_set_mtu,
3670 	.get_global_queue_id = hclgevf_get_qid_global,
3671 	.set_timer_task = hclgevf_set_timer_task,
3672 	.get_link_mode = hclgevf_get_link_mode,
3673 	.set_promisc_mode = hclgevf_set_promisc_mode,
3674 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3675 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3676 };
3677 
3678 static struct hnae3_ae_algo ae_algovf = {
3679 	.ops = &hclgevf_ops,
3680 	.pdev_id_table = ae_algovf_pci_tbl,
3681 };
3682 
3683 static int hclgevf_init(void)
3684 {
3685 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3686 
3687 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3688 	if (!hclgevf_wq) {
3689 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3690 		return -ENOMEM;
3691 	}
3692 
3693 	hnae3_register_ae_algo(&ae_algovf);
3694 
3695 	return 0;
3696 }
3697 
3698 static void hclgevf_exit(void)
3699 {
3700 	hnae3_unregister_ae_algo(&ae_algovf);
3701 	destroy_workqueue(hclgevf_wq);
3702 }
3703 module_init(hclgevf_init);
3704 module_exit(hclgevf_exit);
3705 
3706 MODULE_LICENSE("GPL");
3707 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3708 MODULE_DESCRIPTION("HCLGEVF Driver");
3709 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3710