1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/etherdevice.h> 5 #include <linux/iopoll.h> 6 #include <net/rtnetlink.h> 7 #include "hclgevf_cmd.h" 8 #include "hclgevf_main.h" 9 #include "hclgevf_regs.h" 10 #include "hclge_mbx.h" 11 #include "hnae3.h" 12 #include "hclgevf_devlink.h" 13 #include "hclge_comm_rss.h" 14 15 #define HCLGEVF_NAME "hclgevf" 16 17 #define HCLGEVF_RESET_MAX_FAIL_CNT 5 18 19 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev); 20 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 21 unsigned long delay); 22 23 static struct hnae3_ae_algo ae_algovf; 24 25 static struct workqueue_struct *hclgevf_wq; 26 27 static const struct pci_device_id ae_algovf_pci_tbl[] = { 28 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, 29 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), 30 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 31 /* required last entry */ 32 {0, } 33 }; 34 35 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); 36 37 /* hclgevf_cmd_send - send command to command queue 38 * @hw: pointer to the hw struct 39 * @desc: prefilled descriptor for describing the command 40 * @num : the number of descriptors to be sent 41 * 42 * This is the main send command for command queue, it 43 * sends the queue, cleans the queue, etc 44 */ 45 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num) 46 { 47 return hclge_comm_cmd_send(&hw->hw, desc, num); 48 } 49 50 void hclgevf_arq_init(struct hclgevf_dev *hdev) 51 { 52 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq; 53 54 spin_lock(&cmdq->crq.lock); 55 /* initialize the pointers of async rx queue of mailbox */ 56 hdev->arq.hdev = hdev; 57 hdev->arq.head = 0; 58 hdev->arq.tail = 0; 59 atomic_set(&hdev->arq.count, 0); 60 spin_unlock(&cmdq->crq.lock); 61 } 62 63 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle) 64 { 65 if (!handle->client) 66 return container_of(handle, struct hclgevf_dev, nic); 67 else if (handle->client->type == HNAE3_CLIENT_ROCE) 68 return container_of(handle, struct hclgevf_dev, roce); 69 else 70 return container_of(handle, struct hclgevf_dev, nic); 71 } 72 73 static void hclgevf_update_stats(struct hnae3_handle *handle) 74 { 75 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 76 int status; 77 78 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 79 if (status) 80 dev_err(&hdev->pdev->dev, 81 "VF update of TQPS stats fail, status = %d.\n", 82 status); 83 } 84 85 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) 86 { 87 if (strset == ETH_SS_TEST) 88 return -EOPNOTSUPP; 89 else if (strset == ETH_SS_STATS) 90 return hclge_comm_tqps_get_sset_count(handle); 91 92 return 0; 93 } 94 95 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, 96 u8 *data) 97 { 98 u8 *p = (char *)data; 99 100 if (strset == ETH_SS_STATS) 101 p = hclge_comm_tqps_get_strings(handle, p); 102 } 103 104 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) 105 { 106 hclge_comm_tqps_get_stats(handle, data); 107 } 108 109 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code, 110 u8 subcode) 111 { 112 if (msg) { 113 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg)); 114 msg->code = code; 115 msg->subcode = subcode; 116 } 117 } 118 119 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev) 120 { 121 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 122 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE]; 123 struct hclge_basic_info *basic_info; 124 struct hclge_vf_to_pf_msg send_msg; 125 unsigned long caps; 126 int status; 127 128 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0); 129 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 130 sizeof(resp_msg)); 131 if (status) { 132 dev_err(&hdev->pdev->dev, 133 "failed to get basic info from pf, ret = %d", status); 134 return status; 135 } 136 137 basic_info = (struct hclge_basic_info *)resp_msg; 138 139 hdev->hw_tc_map = basic_info->hw_tc_map; 140 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version); 141 caps = le32_to_cpu(basic_info->pf_caps); 142 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps)) 143 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps); 144 145 return 0; 146 } 147 148 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev) 149 { 150 struct hnae3_handle *nic = &hdev->nic; 151 struct hclge_vf_to_pf_msg send_msg; 152 u8 resp_msg; 153 int ret; 154 155 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 156 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE); 157 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg, 158 sizeof(u8)); 159 if (ret) { 160 dev_err(&hdev->pdev->dev, 161 "VF request to get port based vlan state failed %d", 162 ret); 163 return ret; 164 } 165 166 nic->port_base_vlan_state = resp_msg; 167 168 return 0; 169 } 170 171 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev) 172 { 173 #define HCLGEVF_TQPS_RSS_INFO_LEN 6 174 175 struct hclge_mbx_vf_queue_info *queue_info; 176 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; 177 struct hclge_vf_to_pf_msg send_msg; 178 int status; 179 180 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0); 181 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 182 HCLGEVF_TQPS_RSS_INFO_LEN); 183 if (status) { 184 dev_err(&hdev->pdev->dev, 185 "VF request to get tqp info from PF failed %d", 186 status); 187 return status; 188 } 189 190 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg; 191 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps); 192 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size); 193 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len); 194 195 return 0; 196 } 197 198 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev) 199 { 200 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4 201 202 struct hclge_mbx_vf_queue_depth *queue_depth; 203 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN]; 204 struct hclge_vf_to_pf_msg send_msg; 205 int ret; 206 207 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0); 208 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 209 HCLGEVF_TQPS_DEPTH_INFO_LEN); 210 if (ret) { 211 dev_err(&hdev->pdev->dev, 212 "VF request to get tqp depth info from PF failed %d", 213 ret); 214 return ret; 215 } 216 217 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg; 218 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc); 219 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc); 220 221 return 0; 222 } 223 224 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id) 225 { 226 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 227 struct hclge_vf_to_pf_msg send_msg; 228 u16 qid_in_pf = 0; 229 u8 resp_data[2]; 230 int ret; 231 232 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0); 233 *(__le16 *)send_msg.data = cpu_to_le16(queue_id); 234 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data, 235 sizeof(resp_data)); 236 if (!ret) 237 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data); 238 239 return qid_in_pf; 240 } 241 242 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev) 243 { 244 struct hclge_vf_to_pf_msg send_msg; 245 u8 resp_msg[2]; 246 int ret; 247 248 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0); 249 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 250 sizeof(resp_msg)); 251 if (ret) { 252 dev_err(&hdev->pdev->dev, 253 "VF request to get the pf port media type failed %d", 254 ret); 255 return ret; 256 } 257 258 hdev->hw.mac.media_type = resp_msg[0]; 259 hdev->hw.mac.module_type = resp_msg[1]; 260 261 return 0; 262 } 263 264 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) 265 { 266 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 267 struct hclge_comm_tqp *tqp; 268 int i; 269 270 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 271 sizeof(struct hclge_comm_tqp), GFP_KERNEL); 272 if (!hdev->htqp) 273 return -ENOMEM; 274 275 tqp = hdev->htqp; 276 277 for (i = 0; i < hdev->num_tqps; i++) { 278 tqp->dev = &hdev->pdev->dev; 279 tqp->index = i; 280 281 tqp->q.ae_algo = &ae_algovf; 282 tqp->q.buf_size = hdev->rx_buf_len; 283 tqp->q.tx_desc_num = hdev->num_tx_desc; 284 tqp->q.rx_desc_num = hdev->num_rx_desc; 285 286 /* need an extended offset to configure queues >= 287 * HCLGEVF_TQP_MAX_SIZE_DEV_V2. 288 */ 289 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2) 290 tqp->q.io_base = hdev->hw.hw.io_base + 291 HCLGEVF_TQP_REG_OFFSET + 292 i * HCLGEVF_TQP_REG_SIZE; 293 else 294 tqp->q.io_base = hdev->hw.hw.io_base + 295 HCLGEVF_TQP_REG_OFFSET + 296 HCLGEVF_TQP_EXT_REG_OFFSET + 297 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) * 298 HCLGEVF_TQP_REG_SIZE; 299 300 /* when device supports tx push and has device memory, 301 * the queue can execute push mode or doorbell mode on 302 * device memory. 303 */ 304 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps)) 305 tqp->q.mem_base = hdev->hw.hw.mem_base + 306 HCLGEVF_TQP_MEM_OFFSET(hdev, i); 307 308 tqp++; 309 } 310 311 return 0; 312 } 313 314 static int hclgevf_knic_setup(struct hclgevf_dev *hdev) 315 { 316 struct hnae3_handle *nic = &hdev->nic; 317 struct hnae3_knic_private_info *kinfo; 318 u16 new_tqps = hdev->num_tqps; 319 unsigned int i; 320 u8 num_tc = 0; 321 322 kinfo = &nic->kinfo; 323 kinfo->num_tx_desc = hdev->num_tx_desc; 324 kinfo->num_rx_desc = hdev->num_rx_desc; 325 kinfo->rx_buf_len = hdev->rx_buf_len; 326 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++) 327 if (hdev->hw_tc_map & BIT(i)) 328 num_tc++; 329 330 num_tc = num_tc ? num_tc : 1; 331 kinfo->tc_info.num_tc = num_tc; 332 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc); 333 new_tqps = kinfo->rss_size * num_tc; 334 kinfo->num_tqps = min(new_tqps, hdev->num_tqps); 335 336 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, 337 sizeof(struct hnae3_queue *), GFP_KERNEL); 338 if (!kinfo->tqp) 339 return -ENOMEM; 340 341 for (i = 0; i < kinfo->num_tqps; i++) { 342 hdev->htqp[i].q.handle = &hdev->nic; 343 hdev->htqp[i].q.tqp_index = i; 344 kinfo->tqp[i] = &hdev->htqp[i].q; 345 } 346 347 /* after init the max rss_size and tqps, adjust the default tqp numbers 348 * and rss size with the actual vector numbers 349 */ 350 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps); 351 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc, 352 kinfo->rss_size); 353 354 return 0; 355 } 356 357 static void hclgevf_request_link_info(struct hclgevf_dev *hdev) 358 { 359 struct hclge_vf_to_pf_msg send_msg; 360 int status; 361 362 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0); 363 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 364 if (status) 365 dev_err(&hdev->pdev->dev, 366 "VF failed to fetch link status(%d) from PF", status); 367 } 368 369 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) 370 { 371 struct hnae3_handle *rhandle = &hdev->roce; 372 struct hnae3_handle *handle = &hdev->nic; 373 struct hnae3_client *rclient; 374 struct hnae3_client *client; 375 376 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state)) 377 return; 378 379 client = handle->client; 380 rclient = hdev->roce_client; 381 382 link_state = 383 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state; 384 if (link_state != hdev->hw.mac.link) { 385 hdev->hw.mac.link = link_state; 386 client->ops->link_status_change(handle, !!link_state); 387 if (rclient && rclient->ops->link_status_change) 388 rclient->ops->link_status_change(rhandle, !!link_state); 389 } 390 391 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state); 392 } 393 394 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev) 395 { 396 #define HCLGEVF_ADVERTISING 0 397 #define HCLGEVF_SUPPORTED 1 398 399 struct hclge_vf_to_pf_msg send_msg; 400 401 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0); 402 send_msg.data[0] = HCLGEVF_ADVERTISING; 403 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 404 send_msg.data[0] = HCLGEVF_SUPPORTED; 405 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 406 } 407 408 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) 409 { 410 struct hnae3_handle *nic = &hdev->nic; 411 int ret; 412 413 nic->ae_algo = &ae_algovf; 414 nic->pdev = hdev->pdev; 415 nic->numa_node_mask = hdev->numa_node_mask; 416 nic->flags |= HNAE3_SUPPORT_VF; 417 nic->kinfo.io_base = hdev->hw.hw.io_base; 418 419 ret = hclgevf_knic_setup(hdev); 420 if (ret) 421 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", 422 ret); 423 return ret; 424 } 425 426 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) 427 { 428 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { 429 dev_warn(&hdev->pdev->dev, 430 "vector(vector_id %d) has been freed.\n", vector_id); 431 return; 432 } 433 434 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; 435 hdev->num_msi_left += 1; 436 hdev->num_msi_used -= 1; 437 } 438 439 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, 440 struct hnae3_vector_info *vector_info) 441 { 442 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 443 struct hnae3_vector_info *vector = vector_info; 444 int alloc = 0; 445 int i, j; 446 447 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num); 448 vector_num = min(hdev->num_msi_left, vector_num); 449 450 for (j = 0; j < vector_num; j++) { 451 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { 452 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { 453 vector->vector = pci_irq_vector(hdev->pdev, i); 454 vector->io_addr = hdev->hw.hw.io_base + 455 HCLGEVF_VECTOR_REG_BASE + 456 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; 457 hdev->vector_status[i] = 0; 458 hdev->vector_irq[i] = vector->vector; 459 460 vector++; 461 alloc++; 462 463 break; 464 } 465 } 466 } 467 hdev->num_msi_left -= alloc; 468 hdev->num_msi_used += alloc; 469 470 return alloc; 471 } 472 473 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) 474 { 475 int i; 476 477 for (i = 0; i < hdev->num_msi; i++) 478 if (vector == hdev->vector_irq[i]) 479 return i; 480 481 return -EINVAL; 482 } 483 484 /* for revision 0x20, vf shared the same rss config with pf */ 485 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev) 486 { 487 #define HCLGEVF_RSS_MBX_RESP_LEN 8 488 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 489 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN]; 490 struct hclge_vf_to_pf_msg send_msg; 491 u16 msg_num, hash_key_index; 492 u8 index; 493 int ret; 494 495 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0); 496 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) / 497 HCLGEVF_RSS_MBX_RESP_LEN; 498 for (index = 0; index < msg_num; index++) { 499 send_msg.data[0] = index; 500 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 501 HCLGEVF_RSS_MBX_RESP_LEN); 502 if (ret) { 503 dev_err(&hdev->pdev->dev, 504 "VF get rss hash key from PF failed, ret=%d", 505 ret); 506 return ret; 507 } 508 509 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index; 510 if (index == msg_num - 1) 511 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 512 &resp_msg[0], 513 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index); 514 else 515 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 516 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN); 517 } 518 519 return 0; 520 } 521 522 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, 523 u8 *hfunc) 524 { 525 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 526 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 527 int ret; 528 529 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 530 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc); 531 } else { 532 if (hfunc) 533 *hfunc = ETH_RSS_HASH_TOP; 534 if (key) { 535 ret = hclgevf_get_rss_hash_key(hdev); 536 if (ret) 537 return ret; 538 memcpy(key, rss_cfg->rss_hash_key, 539 HCLGE_COMM_RSS_KEY_SIZE); 540 } 541 } 542 543 hclge_comm_get_rss_indir_tbl(rss_cfg, indir, 544 hdev->ae_dev->dev_specs.rss_ind_tbl_size); 545 546 return 0; 547 } 548 549 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, 550 const u8 *key, const u8 hfunc) 551 { 552 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 553 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 554 int ret, i; 555 556 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 557 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, 558 hfunc); 559 if (ret) 560 return ret; 561 } 562 563 /* update the shadow RSS table with user specified qids */ 564 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 565 rss_cfg->rss_indirection_tbl[i] = indir[i]; 566 567 /* update the hardware */ 568 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 569 rss_cfg->rss_indirection_tbl); 570 } 571 572 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle, 573 struct ethtool_rxnfc *nfc) 574 { 575 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 576 int ret; 577 578 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 579 return -EOPNOTSUPP; 580 581 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw, 582 &hdev->rss_cfg, nfc); 583 if (ret) 584 dev_err(&hdev->pdev->dev, 585 "failed to set rss tuple, ret = %d.\n", ret); 586 587 return ret; 588 } 589 590 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle, 591 struct ethtool_rxnfc *nfc) 592 { 593 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 594 u8 tuple_sets; 595 int ret; 596 597 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 598 return -EOPNOTSUPP; 599 600 nfc->data = 0; 601 602 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type, 603 &tuple_sets); 604 if (ret || !tuple_sets) 605 return ret; 606 607 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets); 608 609 return 0; 610 } 611 612 static int hclgevf_get_tc_size(struct hnae3_handle *handle) 613 { 614 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 615 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 616 617 return rss_cfg->rss_size; 618 } 619 620 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, 621 int vector_id, 622 struct hnae3_ring_chain_node *ring_chain) 623 { 624 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 625 struct hclge_vf_to_pf_msg send_msg; 626 struct hnae3_ring_chain_node *node; 627 int status; 628 int i = 0; 629 630 memset(&send_msg, 0, sizeof(send_msg)); 631 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR : 632 HCLGE_MBX_UNMAP_RING_TO_VECTOR; 633 send_msg.vector_id = vector_id; 634 635 for (node = ring_chain; node; node = node->next) { 636 send_msg.param[i].ring_type = 637 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); 638 639 send_msg.param[i].tqp_index = node->tqp_index; 640 send_msg.param[i].int_gl_index = 641 hnae3_get_field(node->int_gl_idx, 642 HNAE3_RING_GL_IDX_M, 643 HNAE3_RING_GL_IDX_S); 644 645 i++; 646 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) { 647 send_msg.ring_num = i; 648 649 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, 650 NULL, 0); 651 if (status) { 652 dev_err(&hdev->pdev->dev, 653 "Map TQP fail, status is %d.\n", 654 status); 655 return status; 656 } 657 i = 0; 658 } 659 } 660 661 return 0; 662 } 663 664 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, 665 struct hnae3_ring_chain_node *ring_chain) 666 { 667 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 668 int vector_id; 669 670 vector_id = hclgevf_get_vector_index(hdev, vector); 671 if (vector_id < 0) { 672 dev_err(&handle->pdev->dev, 673 "Get vector index fail. ret =%d\n", vector_id); 674 return vector_id; 675 } 676 677 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); 678 } 679 680 static int hclgevf_unmap_ring_from_vector( 681 struct hnae3_handle *handle, 682 int vector, 683 struct hnae3_ring_chain_node *ring_chain) 684 { 685 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 686 int ret, vector_id; 687 688 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 689 return 0; 690 691 vector_id = hclgevf_get_vector_index(hdev, vector); 692 if (vector_id < 0) { 693 dev_err(&handle->pdev->dev, 694 "Get vector index fail. ret =%d\n", vector_id); 695 return vector_id; 696 } 697 698 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); 699 if (ret) 700 dev_err(&handle->pdev->dev, 701 "Unmap ring from vector fail. vector=%d, ret =%d\n", 702 vector_id, 703 ret); 704 705 return ret; 706 } 707 708 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) 709 { 710 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 711 int vector_id; 712 713 vector_id = hclgevf_get_vector_index(hdev, vector); 714 if (vector_id < 0) { 715 dev_err(&handle->pdev->dev, 716 "hclgevf_put_vector get vector index fail. ret =%d\n", 717 vector_id); 718 return vector_id; 719 } 720 721 hclgevf_free_vector(hdev, vector_id); 722 723 return 0; 724 } 725 726 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, 727 bool en_uc_pmc, bool en_mc_pmc, 728 bool en_bc_pmc) 729 { 730 struct hnae3_handle *handle = &hdev->nic; 731 struct hclge_vf_to_pf_msg send_msg; 732 int ret; 733 734 memset(&send_msg, 0, sizeof(send_msg)); 735 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE; 736 send_msg.en_bc = en_bc_pmc ? 1 : 0; 737 send_msg.en_uc = en_uc_pmc ? 1 : 0; 738 send_msg.en_mc = en_mc_pmc ? 1 : 0; 739 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC, 740 &handle->priv_flags) ? 1 : 0; 741 742 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 743 if (ret) 744 dev_err(&hdev->pdev->dev, 745 "Set promisc mode fail, status is %d.\n", ret); 746 747 return ret; 748 } 749 750 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, 751 bool en_mc_pmc) 752 { 753 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 754 bool en_bc_pmc; 755 756 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2; 757 758 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc, 759 en_bc_pmc); 760 } 761 762 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle) 763 { 764 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 765 766 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 767 hclgevf_task_schedule(hdev, 0); 768 } 769 770 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev) 771 { 772 struct hnae3_handle *handle = &hdev->nic; 773 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE; 774 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE; 775 int ret; 776 777 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) { 778 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc); 779 if (!ret) 780 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 781 } 782 } 783 784 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id, 785 u16 stream_id, bool enable) 786 { 787 struct hclgevf_cfg_com_tqp_queue_cmd *req; 788 struct hclge_desc desc; 789 790 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; 791 792 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false); 793 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); 794 req->stream_id = cpu_to_le16(stream_id); 795 if (enable) 796 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B; 797 798 return hclgevf_cmd_send(&hdev->hw, &desc, 1); 799 } 800 801 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable) 802 { 803 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 804 int ret; 805 u16 i; 806 807 for (i = 0; i < handle->kinfo.num_tqps; i++) { 808 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable); 809 if (ret) 810 return ret; 811 } 812 813 return 0; 814 } 815 816 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p) 817 { 818 struct hclge_vf_to_pf_msg send_msg; 819 u8 host_mac[ETH_ALEN]; 820 int status; 821 822 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0); 823 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac, 824 ETH_ALEN); 825 if (status) { 826 dev_err(&hdev->pdev->dev, 827 "fail to get VF MAC from host %d", status); 828 return status; 829 } 830 831 ether_addr_copy(p, host_mac); 832 833 return 0; 834 } 835 836 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) 837 { 838 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 839 u8 host_mac_addr[ETH_ALEN]; 840 841 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr)) 842 return; 843 844 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr); 845 if (hdev->has_pf_mac) 846 ether_addr_copy(p, host_mac_addr); 847 else 848 ether_addr_copy(p, hdev->hw.mac.mac_addr); 849 } 850 851 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p, 852 bool is_first) 853 { 854 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 855 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; 856 struct hclge_vf_to_pf_msg send_msg; 857 u8 *new_mac_addr = (u8 *)p; 858 int status; 859 860 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0); 861 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY; 862 ether_addr_copy(send_msg.data, new_mac_addr); 863 if (is_first && !hdev->has_pf_mac) 864 eth_zero_addr(&send_msg.data[ETH_ALEN]); 865 else 866 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr); 867 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 868 if (!status) 869 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); 870 871 return status; 872 } 873 874 static struct hclgevf_mac_addr_node * 875 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr) 876 { 877 struct hclgevf_mac_addr_node *mac_node, *tmp; 878 879 list_for_each_entry_safe(mac_node, tmp, list, node) 880 if (ether_addr_equal(mac_addr, mac_node->mac_addr)) 881 return mac_node; 882 883 return NULL; 884 } 885 886 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node, 887 enum HCLGEVF_MAC_NODE_STATE state) 888 { 889 switch (state) { 890 /* from set_rx_mode or tmp_add_list */ 891 case HCLGEVF_MAC_TO_ADD: 892 if (mac_node->state == HCLGEVF_MAC_TO_DEL) 893 mac_node->state = HCLGEVF_MAC_ACTIVE; 894 break; 895 /* only from set_rx_mode */ 896 case HCLGEVF_MAC_TO_DEL: 897 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 898 list_del(&mac_node->node); 899 kfree(mac_node); 900 } else { 901 mac_node->state = HCLGEVF_MAC_TO_DEL; 902 } 903 break; 904 /* only from tmp_add_list, the mac_node->state won't be 905 * HCLGEVF_MAC_ACTIVE 906 */ 907 case HCLGEVF_MAC_ACTIVE: 908 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 909 mac_node->state = HCLGEVF_MAC_ACTIVE; 910 break; 911 } 912 } 913 914 static int hclgevf_update_mac_list(struct hnae3_handle *handle, 915 enum HCLGEVF_MAC_NODE_STATE state, 916 enum HCLGEVF_MAC_ADDR_TYPE mac_type, 917 const unsigned char *addr) 918 { 919 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 920 struct hclgevf_mac_addr_node *mac_node; 921 struct list_head *list; 922 923 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 924 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 925 926 spin_lock_bh(&hdev->mac_table.mac_list_lock); 927 928 /* if the mac addr is already in the mac list, no need to add a new 929 * one into it, just check the mac addr state, convert it to a new 930 * state, or just remove it, or do nothing. 931 */ 932 mac_node = hclgevf_find_mac_node(list, addr); 933 if (mac_node) { 934 hclgevf_update_mac_node(mac_node, state); 935 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 936 return 0; 937 } 938 /* if this address is never added, unnecessary to delete */ 939 if (state == HCLGEVF_MAC_TO_DEL) { 940 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 941 return -ENOENT; 942 } 943 944 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); 945 if (!mac_node) { 946 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 947 return -ENOMEM; 948 } 949 950 mac_node->state = state; 951 ether_addr_copy(mac_node->mac_addr, addr); 952 list_add_tail(&mac_node->node, list); 953 954 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 955 return 0; 956 } 957 958 static int hclgevf_add_uc_addr(struct hnae3_handle *handle, 959 const unsigned char *addr) 960 { 961 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 962 HCLGEVF_MAC_ADDR_UC, addr); 963 } 964 965 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, 966 const unsigned char *addr) 967 { 968 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 969 HCLGEVF_MAC_ADDR_UC, addr); 970 } 971 972 static int hclgevf_add_mc_addr(struct hnae3_handle *handle, 973 const unsigned char *addr) 974 { 975 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 976 HCLGEVF_MAC_ADDR_MC, addr); 977 } 978 979 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, 980 const unsigned char *addr) 981 { 982 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 983 HCLGEVF_MAC_ADDR_MC, addr); 984 } 985 986 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev, 987 struct hclgevf_mac_addr_node *mac_node, 988 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 989 { 990 struct hclge_vf_to_pf_msg send_msg; 991 u8 code, subcode; 992 993 if (mac_type == HCLGEVF_MAC_ADDR_UC) { 994 code = HCLGE_MBX_SET_UNICAST; 995 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 996 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD; 997 else 998 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE; 999 } else { 1000 code = HCLGE_MBX_SET_MULTICAST; 1001 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1002 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD; 1003 else 1004 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE; 1005 } 1006 1007 hclgevf_build_send_msg(&send_msg, code, subcode); 1008 ether_addr_copy(send_msg.data, mac_node->mac_addr); 1009 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1010 } 1011 1012 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev, 1013 struct list_head *list, 1014 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1015 { 1016 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 1017 struct hclgevf_mac_addr_node *mac_node, *tmp; 1018 int ret; 1019 1020 list_for_each_entry_safe(mac_node, tmp, list, node) { 1021 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type); 1022 if (ret) { 1023 hnae3_format_mac_addr(format_mac_addr, 1024 mac_node->mac_addr); 1025 dev_err(&hdev->pdev->dev, 1026 "failed to configure mac %s, state = %d, ret = %d\n", 1027 format_mac_addr, mac_node->state, ret); 1028 return; 1029 } 1030 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1031 mac_node->state = HCLGEVF_MAC_ACTIVE; 1032 } else { 1033 list_del(&mac_node->node); 1034 kfree(mac_node); 1035 } 1036 } 1037 } 1038 1039 static void hclgevf_sync_from_add_list(struct list_head *add_list, 1040 struct list_head *mac_list) 1041 { 1042 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1043 1044 list_for_each_entry_safe(mac_node, tmp, add_list, node) { 1045 /* if the mac address from tmp_add_list is not in the 1046 * uc/mc_mac_list, it means have received a TO_DEL request 1047 * during the time window of sending mac config request to PF 1048 * If mac_node state is ACTIVE, then change its state to TO_DEL, 1049 * then it will be removed at next time. If is TO_ADD, it means 1050 * send TO_ADD request failed, so just remove the mac node. 1051 */ 1052 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1053 if (new_node) { 1054 hclgevf_update_mac_node(new_node, mac_node->state); 1055 list_del(&mac_node->node); 1056 kfree(mac_node); 1057 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) { 1058 mac_node->state = HCLGEVF_MAC_TO_DEL; 1059 list_move_tail(&mac_node->node, mac_list); 1060 } else { 1061 list_del(&mac_node->node); 1062 kfree(mac_node); 1063 } 1064 } 1065 } 1066 1067 static void hclgevf_sync_from_del_list(struct list_head *del_list, 1068 struct list_head *mac_list) 1069 { 1070 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1071 1072 list_for_each_entry_safe(mac_node, tmp, del_list, node) { 1073 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1074 if (new_node) { 1075 /* If the mac addr is exist in the mac list, it means 1076 * received a new request TO_ADD during the time window 1077 * of sending mac addr configurrequest to PF, so just 1078 * change the mac state to ACTIVE. 1079 */ 1080 new_node->state = HCLGEVF_MAC_ACTIVE; 1081 list_del(&mac_node->node); 1082 kfree(mac_node); 1083 } else { 1084 list_move_tail(&mac_node->node, mac_list); 1085 } 1086 } 1087 } 1088 1089 static void hclgevf_clear_list(struct list_head *list) 1090 { 1091 struct hclgevf_mac_addr_node *mac_node, *tmp; 1092 1093 list_for_each_entry_safe(mac_node, tmp, list, node) { 1094 list_del(&mac_node->node); 1095 kfree(mac_node); 1096 } 1097 } 1098 1099 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev, 1100 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1101 { 1102 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1103 struct list_head tmp_add_list, tmp_del_list; 1104 struct list_head *list; 1105 1106 INIT_LIST_HEAD(&tmp_add_list); 1107 INIT_LIST_HEAD(&tmp_del_list); 1108 1109 /* move the mac addr to the tmp_add_list and tmp_del_list, then 1110 * we can add/delete these mac addr outside the spin lock 1111 */ 1112 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1113 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1114 1115 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1116 1117 list_for_each_entry_safe(mac_node, tmp, list, node) { 1118 switch (mac_node->state) { 1119 case HCLGEVF_MAC_TO_DEL: 1120 list_move_tail(&mac_node->node, &tmp_del_list); 1121 break; 1122 case HCLGEVF_MAC_TO_ADD: 1123 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 1124 if (!new_node) 1125 goto stop_traverse; 1126 1127 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); 1128 new_node->state = mac_node->state; 1129 list_add_tail(&new_node->node, &tmp_add_list); 1130 break; 1131 default: 1132 break; 1133 } 1134 } 1135 1136 stop_traverse: 1137 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1138 1139 /* delete first, in order to get max mac table space for adding */ 1140 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type); 1141 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type); 1142 1143 /* if some mac addresses were added/deleted fail, move back to the 1144 * mac_list, and retry at next time. 1145 */ 1146 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1147 1148 hclgevf_sync_from_del_list(&tmp_del_list, list); 1149 hclgevf_sync_from_add_list(&tmp_add_list, list); 1150 1151 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1152 } 1153 1154 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev) 1155 { 1156 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC); 1157 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC); 1158 } 1159 1160 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev) 1161 { 1162 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1163 1164 hclgevf_clear_list(&hdev->mac_table.uc_mac_list); 1165 hclgevf_clear_list(&hdev->mac_table.mc_mac_list); 1166 1167 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1168 } 1169 1170 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable) 1171 { 1172 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1173 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 1174 struct hclge_vf_to_pf_msg send_msg; 1175 1176 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 1177 return -EOPNOTSUPP; 1178 1179 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1180 HCLGE_MBX_ENABLE_VLAN_FILTER); 1181 send_msg.data[0] = enable ? 1 : 0; 1182 1183 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1184 } 1185 1186 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, 1187 __be16 proto, u16 vlan_id, 1188 bool is_kill) 1189 { 1190 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1191 struct hclge_mbx_vlan_filter *vlan_filter; 1192 struct hclge_vf_to_pf_msg send_msg; 1193 int ret; 1194 1195 if (vlan_id > HCLGEVF_MAX_VLAN_ID) 1196 return -EINVAL; 1197 1198 if (proto != htons(ETH_P_8021Q)) 1199 return -EPROTONOSUPPORT; 1200 1201 /* When device is resetting or reset failed, firmware is unable to 1202 * handle mailbox. Just record the vlan id, and remove it after 1203 * reset finished. 1204 */ 1205 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 1206 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) { 1207 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1208 return -EBUSY; 1209 } else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) { 1210 clear_bit(vlan_id, hdev->vlan_del_fail_bmap); 1211 } 1212 1213 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1214 HCLGE_MBX_VLAN_FILTER); 1215 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data; 1216 vlan_filter->is_kill = is_kill; 1217 vlan_filter->vlan_id = cpu_to_le16(vlan_id); 1218 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto)); 1219 1220 /* when remove hw vlan filter failed, record the vlan id, 1221 * and try to remove it from hw later, to be consistence 1222 * with stack. 1223 */ 1224 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1225 if (is_kill && ret) 1226 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1227 1228 return ret; 1229 } 1230 1231 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev) 1232 { 1233 #define HCLGEVF_MAX_SYNC_COUNT 60 1234 struct hnae3_handle *handle = &hdev->nic; 1235 int ret, sync_cnt = 0; 1236 u16 vlan_id; 1237 1238 if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID)) 1239 return; 1240 1241 rtnl_lock(); 1242 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1243 while (vlan_id != VLAN_N_VID) { 1244 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q), 1245 vlan_id, true); 1246 if (ret) 1247 break; 1248 1249 clear_bit(vlan_id, hdev->vlan_del_fail_bmap); 1250 sync_cnt++; 1251 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT) 1252 break; 1253 1254 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1255 } 1256 rtnl_unlock(); 1257 } 1258 1259 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 1260 { 1261 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1262 struct hclge_vf_to_pf_msg send_msg; 1263 1264 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1265 HCLGE_MBX_VLAN_RX_OFF_CFG); 1266 send_msg.data[0] = enable ? 1 : 0; 1267 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1268 } 1269 1270 static int hclgevf_reset_tqp(struct hnae3_handle *handle) 1271 { 1272 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U 1273 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1274 struct hclge_vf_to_pf_msg send_msg; 1275 u8 return_status = 0; 1276 int ret; 1277 u16 i; 1278 1279 /* disable vf queue before send queue reset msg to PF */ 1280 ret = hclgevf_tqp_enable(handle, false); 1281 if (ret) { 1282 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n", 1283 ret); 1284 return ret; 1285 } 1286 1287 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1288 1289 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status, 1290 sizeof(return_status)); 1291 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE) 1292 return ret; 1293 1294 for (i = 1; i < handle->kinfo.num_tqps; i++) { 1295 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1296 *(__le16 *)send_msg.data = cpu_to_le16(i); 1297 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1298 if (ret) 1299 return ret; 1300 } 1301 1302 return 0; 1303 } 1304 1305 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu) 1306 { 1307 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1308 struct hclge_mbx_mtu_info *mtu_info; 1309 struct hclge_vf_to_pf_msg send_msg; 1310 1311 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0); 1312 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data; 1313 mtu_info->mtu = cpu_to_le32(new_mtu); 1314 1315 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1316 } 1317 1318 static int hclgevf_notify_client(struct hclgevf_dev *hdev, 1319 enum hnae3_reset_notify_type type) 1320 { 1321 struct hnae3_client *client = hdev->nic_client; 1322 struct hnae3_handle *handle = &hdev->nic; 1323 int ret; 1324 1325 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) || 1326 !client) 1327 return 0; 1328 1329 if (!client->ops->reset_notify) 1330 return -EOPNOTSUPP; 1331 1332 ret = client->ops->reset_notify(handle, type); 1333 if (ret) 1334 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", 1335 type, ret); 1336 1337 return ret; 1338 } 1339 1340 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev, 1341 enum hnae3_reset_notify_type type) 1342 { 1343 struct hnae3_client *client = hdev->roce_client; 1344 struct hnae3_handle *handle = &hdev->roce; 1345 int ret; 1346 1347 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client) 1348 return 0; 1349 1350 if (!client->ops->reset_notify) 1351 return -EOPNOTSUPP; 1352 1353 ret = client->ops->reset_notify(handle, type); 1354 if (ret) 1355 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", 1356 type, ret); 1357 return ret; 1358 } 1359 1360 static int hclgevf_reset_wait(struct hclgevf_dev *hdev) 1361 { 1362 #define HCLGEVF_RESET_WAIT_US 20000 1363 #define HCLGEVF_RESET_WAIT_CNT 2000 1364 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \ 1365 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT) 1366 1367 u32 val; 1368 int ret; 1369 1370 if (hdev->reset_type == HNAE3_VF_RESET) 1371 ret = readl_poll_timeout(hdev->hw.hw.io_base + 1372 HCLGEVF_VF_RST_ING, val, 1373 !(val & HCLGEVF_VF_RST_ING_BIT), 1374 HCLGEVF_RESET_WAIT_US, 1375 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1376 else 1377 ret = readl_poll_timeout(hdev->hw.hw.io_base + 1378 HCLGEVF_RST_ING, val, 1379 !(val & HCLGEVF_RST_ING_BITS), 1380 HCLGEVF_RESET_WAIT_US, 1381 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1382 1383 /* hardware completion status should be available by this time */ 1384 if (ret) { 1385 dev_err(&hdev->pdev->dev, 1386 "couldn't get reset done status from h/w, timeout!\n"); 1387 return ret; 1388 } 1389 1390 /* we will wait a bit more to let reset of the stack to complete. This 1391 * might happen in case reset assertion was made by PF. Yes, this also 1392 * means we might end up waiting bit more even for VF reset. 1393 */ 1394 if (hdev->reset_type == HNAE3_VF_FULL_RESET) 1395 msleep(5000); 1396 else 1397 msleep(500); 1398 1399 return 0; 1400 } 1401 1402 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable) 1403 { 1404 u32 reg_val; 1405 1406 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG); 1407 if (enable) 1408 reg_val |= HCLGEVF_NIC_SW_RST_RDY; 1409 else 1410 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY; 1411 1412 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, 1413 reg_val); 1414 } 1415 1416 static int hclgevf_reset_stack(struct hclgevf_dev *hdev) 1417 { 1418 int ret; 1419 1420 /* uninitialize the nic client */ 1421 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 1422 if (ret) 1423 return ret; 1424 1425 /* re-initialize the hclge device */ 1426 ret = hclgevf_reset_hdev(hdev); 1427 if (ret) { 1428 dev_err(&hdev->pdev->dev, 1429 "hclge device re-init failed, VF is disabled!\n"); 1430 return ret; 1431 } 1432 1433 /* bring up the nic client again */ 1434 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); 1435 if (ret) 1436 return ret; 1437 1438 /* clear handshake status with IMP */ 1439 hclgevf_reset_handshake(hdev, false); 1440 1441 /* bring up the nic to enable TX/RX again */ 1442 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 1443 } 1444 1445 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev) 1446 { 1447 #define HCLGEVF_RESET_SYNC_TIME 100 1448 1449 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) { 1450 struct hclge_vf_to_pf_msg send_msg; 1451 int ret; 1452 1453 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0); 1454 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1455 if (ret) { 1456 dev_err(&hdev->pdev->dev, 1457 "failed to assert VF reset, ret = %d\n", ret); 1458 return ret; 1459 } 1460 hdev->rst_stats.vf_func_rst_cnt++; 1461 } 1462 1463 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 1464 /* inform hardware that preparatory work is done */ 1465 msleep(HCLGEVF_RESET_SYNC_TIME); 1466 hclgevf_reset_handshake(hdev, true); 1467 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n", 1468 hdev->reset_type); 1469 1470 return 0; 1471 } 1472 1473 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev) 1474 { 1475 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n", 1476 hdev->rst_stats.vf_func_rst_cnt); 1477 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n", 1478 hdev->rst_stats.flr_rst_cnt); 1479 dev_info(&hdev->pdev->dev, "VF reset count: %u\n", 1480 hdev->rst_stats.vf_rst_cnt); 1481 dev_info(&hdev->pdev->dev, "reset done count: %u\n", 1482 hdev->rst_stats.rst_done_cnt); 1483 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n", 1484 hdev->rst_stats.hw_rst_done_cnt); 1485 dev_info(&hdev->pdev->dev, "reset count: %u\n", 1486 hdev->rst_stats.rst_cnt); 1487 dev_info(&hdev->pdev->dev, "reset fail count: %u\n", 1488 hdev->rst_stats.rst_fail_cnt); 1489 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n", 1490 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE)); 1491 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n", 1492 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG)); 1493 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n", 1494 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG)); 1495 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n", 1496 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING)); 1497 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state); 1498 } 1499 1500 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev) 1501 { 1502 /* recover handshake status with IMP when reset fail */ 1503 hclgevf_reset_handshake(hdev, true); 1504 hdev->rst_stats.rst_fail_cnt++; 1505 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n", 1506 hdev->rst_stats.rst_fail_cnt); 1507 1508 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT) 1509 set_bit(hdev->reset_type, &hdev->reset_pending); 1510 1511 if (hclgevf_is_reset_pending(hdev)) { 1512 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1513 hclgevf_reset_task_schedule(hdev); 1514 } else { 1515 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1516 hclgevf_dump_rst_info(hdev); 1517 } 1518 } 1519 1520 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev) 1521 { 1522 int ret; 1523 1524 hdev->rst_stats.rst_cnt++; 1525 1526 /* perform reset of the stack & ae device for a client */ 1527 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); 1528 if (ret) 1529 return ret; 1530 1531 rtnl_lock(); 1532 /* bring down the nic to stop any ongoing TX/RX */ 1533 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 1534 rtnl_unlock(); 1535 if (ret) 1536 return ret; 1537 1538 return hclgevf_reset_prepare_wait(hdev); 1539 } 1540 1541 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev) 1542 { 1543 int ret; 1544 1545 hdev->rst_stats.hw_rst_done_cnt++; 1546 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); 1547 if (ret) 1548 return ret; 1549 1550 rtnl_lock(); 1551 /* now, re-initialize the nic client and ae device */ 1552 ret = hclgevf_reset_stack(hdev); 1553 rtnl_unlock(); 1554 if (ret) { 1555 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); 1556 return ret; 1557 } 1558 1559 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT); 1560 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1 1561 * times 1562 */ 1563 if (ret && 1564 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1) 1565 return ret; 1566 1567 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT); 1568 if (ret) 1569 return ret; 1570 1571 hdev->last_reset_time = jiffies; 1572 hdev->rst_stats.rst_done_cnt++; 1573 hdev->rst_stats.rst_fail_cnt = 0; 1574 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1575 1576 return 0; 1577 } 1578 1579 static void hclgevf_reset(struct hclgevf_dev *hdev) 1580 { 1581 if (hclgevf_reset_prepare(hdev)) 1582 goto err_reset; 1583 1584 /* check if VF could successfully fetch the hardware reset completion 1585 * status from the hardware 1586 */ 1587 if (hclgevf_reset_wait(hdev)) { 1588 /* can't do much in this situation, will disable VF */ 1589 dev_err(&hdev->pdev->dev, 1590 "failed to fetch H/W reset completion status\n"); 1591 goto err_reset; 1592 } 1593 1594 if (hclgevf_reset_rebuild(hdev)) 1595 goto err_reset; 1596 1597 return; 1598 1599 err_reset: 1600 hclgevf_reset_err_handle(hdev); 1601 } 1602 1603 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr) 1604 { 1605 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; 1606 1607 /* return the highest priority reset level amongst all */ 1608 if (test_bit(HNAE3_VF_RESET, addr)) { 1609 rst_level = HNAE3_VF_RESET; 1610 clear_bit(HNAE3_VF_RESET, addr); 1611 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1612 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1613 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) { 1614 rst_level = HNAE3_VF_FULL_RESET; 1615 clear_bit(HNAE3_VF_FULL_RESET, addr); 1616 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1617 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) { 1618 rst_level = HNAE3_VF_PF_FUNC_RESET; 1619 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1620 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1621 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) { 1622 rst_level = HNAE3_VF_FUNC_RESET; 1623 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1624 } else if (test_bit(HNAE3_FLR_RESET, addr)) { 1625 rst_level = HNAE3_FLR_RESET; 1626 clear_bit(HNAE3_FLR_RESET, addr); 1627 } 1628 1629 return rst_level; 1630 } 1631 1632 static void hclgevf_reset_event(struct pci_dev *pdev, 1633 struct hnae3_handle *handle) 1634 { 1635 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 1636 struct hclgevf_dev *hdev = ae_dev->priv; 1637 1638 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); 1639 1640 if (hdev->default_reset_request) 1641 hdev->reset_level = 1642 hclgevf_get_reset_level(&hdev->default_reset_request); 1643 else 1644 hdev->reset_level = HNAE3_VF_FUNC_RESET; 1645 1646 /* reset of this VF requested */ 1647 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); 1648 hclgevf_reset_task_schedule(hdev); 1649 1650 hdev->last_reset_time = jiffies; 1651 } 1652 1653 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev, 1654 enum hnae3_reset_type rst_type) 1655 { 1656 struct hclgevf_dev *hdev = ae_dev->priv; 1657 1658 set_bit(rst_type, &hdev->default_reset_request); 1659 } 1660 1661 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) 1662 { 1663 writel(en ? 1 : 0, vector->addr); 1664 } 1665 1666 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev, 1667 enum hnae3_reset_type rst_type) 1668 { 1669 #define HCLGEVF_RESET_RETRY_WAIT_MS 500 1670 #define HCLGEVF_RESET_RETRY_CNT 5 1671 1672 struct hclgevf_dev *hdev = ae_dev->priv; 1673 int retry_cnt = 0; 1674 int ret; 1675 1676 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) { 1677 down(&hdev->reset_sem); 1678 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1679 hdev->reset_type = rst_type; 1680 ret = hclgevf_reset_prepare(hdev); 1681 if (!ret && !hdev->reset_pending) 1682 break; 1683 1684 dev_err(&hdev->pdev->dev, 1685 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n", 1686 ret, hdev->reset_pending, retry_cnt); 1687 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1688 up(&hdev->reset_sem); 1689 msleep(HCLGEVF_RESET_RETRY_WAIT_MS); 1690 } 1691 1692 /* disable misc vector before reset done */ 1693 hclgevf_enable_vector(&hdev->misc_vector, false); 1694 1695 if (hdev->reset_type == HNAE3_FLR_RESET) 1696 hdev->rst_stats.flr_rst_cnt++; 1697 } 1698 1699 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev) 1700 { 1701 struct hclgevf_dev *hdev = ae_dev->priv; 1702 int ret; 1703 1704 hclgevf_enable_vector(&hdev->misc_vector, true); 1705 1706 ret = hclgevf_reset_rebuild(hdev); 1707 if (ret) 1708 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", 1709 ret); 1710 1711 hdev->reset_type = HNAE3_NONE_RESET; 1712 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1713 up(&hdev->reset_sem); 1714 } 1715 1716 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) 1717 { 1718 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1719 1720 return hdev->fw_version; 1721 } 1722 1723 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) 1724 { 1725 struct hclgevf_misc_vector *vector = &hdev->misc_vector; 1726 1727 vector->vector_irq = pci_irq_vector(hdev->pdev, 1728 HCLGEVF_MISC_VECTOR_NUM); 1729 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; 1730 /* vector status always valid for Vector 0 */ 1731 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; 1732 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; 1733 1734 hdev->num_msi_left -= 1; 1735 hdev->num_msi_used += 1; 1736 } 1737 1738 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) 1739 { 1740 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1741 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) && 1742 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, 1743 &hdev->state)) 1744 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 1745 } 1746 1747 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) 1748 { 1749 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1750 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, 1751 &hdev->state)) 1752 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 1753 } 1754 1755 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 1756 unsigned long delay) 1757 { 1758 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1759 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 1760 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay); 1761 } 1762 1763 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev) 1764 { 1765 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3 1766 1767 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) 1768 return; 1769 1770 down(&hdev->reset_sem); 1771 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1772 1773 if (test_and_clear_bit(HCLGEVF_RESET_PENDING, 1774 &hdev->reset_state)) { 1775 /* PF has intimated that it is about to reset the hardware. 1776 * We now have to poll & check if hardware has actually 1777 * completed the reset sequence. On hardware reset completion, 1778 * VF needs to reset the client and ae device. 1779 */ 1780 hdev->reset_attempts = 0; 1781 1782 hdev->last_reset_time = jiffies; 1783 hdev->reset_type = 1784 hclgevf_get_reset_level(&hdev->reset_pending); 1785 if (hdev->reset_type != HNAE3_NONE_RESET) 1786 hclgevf_reset(hdev); 1787 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, 1788 &hdev->reset_state)) { 1789 /* we could be here when either of below happens: 1790 * 1. reset was initiated due to watchdog timeout caused by 1791 * a. IMP was earlier reset and our TX got choked down and 1792 * which resulted in watchdog reacting and inducing VF 1793 * reset. This also means our cmdq would be unreliable. 1794 * b. problem in TX due to other lower layer(example link 1795 * layer not functioning properly etc.) 1796 * 2. VF reset might have been initiated due to some config 1797 * change. 1798 * 1799 * NOTE: Theres no clear way to detect above cases than to react 1800 * to the response of PF for this reset request. PF will ack the 1801 * 1b and 2. cases but we will not get any intimation about 1a 1802 * from PF as cmdq would be in unreliable state i.e. mailbox 1803 * communication between PF and VF would be broken. 1804 * 1805 * if we are never geting into pending state it means either: 1806 * 1. PF is not receiving our request which could be due to IMP 1807 * reset 1808 * 2. PF is screwed 1809 * We cannot do much for 2. but to check first we can try reset 1810 * our PCIe + stack and see if it alleviates the problem. 1811 */ 1812 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) { 1813 /* prepare for full reset of stack + pcie interface */ 1814 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending); 1815 1816 /* "defer" schedule the reset task again */ 1817 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1818 } else { 1819 hdev->reset_attempts++; 1820 1821 set_bit(hdev->reset_level, &hdev->reset_pending); 1822 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1823 } 1824 hclgevf_reset_task_schedule(hdev); 1825 } 1826 1827 hdev->reset_type = HNAE3_NONE_RESET; 1828 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1829 up(&hdev->reset_sem); 1830 } 1831 1832 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev) 1833 { 1834 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state)) 1835 return; 1836 1837 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) 1838 return; 1839 1840 hclgevf_mbx_async_handler(hdev); 1841 1842 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 1843 } 1844 1845 static void hclgevf_keep_alive(struct hclgevf_dev *hdev) 1846 { 1847 struct hclge_vf_to_pf_msg send_msg; 1848 int ret; 1849 1850 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state)) 1851 return; 1852 1853 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0); 1854 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1855 if (ret) 1856 dev_err(&hdev->pdev->dev, 1857 "VF sends keep alive cmd failed(=%d)\n", ret); 1858 } 1859 1860 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev) 1861 { 1862 unsigned long delta = round_jiffies_relative(HZ); 1863 struct hnae3_handle *handle = &hdev->nic; 1864 1865 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) || 1866 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state)) 1867 return; 1868 1869 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { 1870 delta = jiffies - hdev->last_serv_processed; 1871 1872 if (delta < round_jiffies_relative(HZ)) { 1873 delta = round_jiffies_relative(HZ) - delta; 1874 goto out; 1875 } 1876 } 1877 1878 hdev->serv_processed_cnt++; 1879 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL)) 1880 hclgevf_keep_alive(hdev); 1881 1882 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) { 1883 hdev->last_serv_processed = jiffies; 1884 goto out; 1885 } 1886 1887 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL)) 1888 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 1889 1890 /* VF does not need to request link status when this bit is set, because 1891 * PF will push its link status to VFs when link status changed. 1892 */ 1893 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state)) 1894 hclgevf_request_link_info(hdev); 1895 1896 hclgevf_update_link_mode(hdev); 1897 1898 hclgevf_sync_vlan_filter(hdev); 1899 1900 hclgevf_sync_mac_table(hdev); 1901 1902 hclgevf_sync_promisc_mode(hdev); 1903 1904 hdev->last_serv_processed = jiffies; 1905 1906 out: 1907 hclgevf_task_schedule(hdev, delta); 1908 } 1909 1910 static void hclgevf_service_task(struct work_struct *work) 1911 { 1912 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev, 1913 service_task.work); 1914 1915 hclgevf_reset_service_task(hdev); 1916 hclgevf_mailbox_service_task(hdev); 1917 hclgevf_periodic_service_task(hdev); 1918 1919 /* Handle reset and mbx again in case periodical task delays the 1920 * handling by calling hclgevf_task_schedule() in 1921 * hclgevf_periodic_service_task() 1922 */ 1923 hclgevf_reset_service_task(hdev); 1924 hclgevf_mailbox_service_task(hdev); 1925 } 1926 1927 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) 1928 { 1929 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr); 1930 } 1931 1932 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev, 1933 u32 *clearval) 1934 { 1935 u32 val, cmdq_stat_reg, rst_ing_reg; 1936 1937 /* fetch the events from their corresponding regs */ 1938 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw, 1939 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG); 1940 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) { 1941 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 1942 dev_info(&hdev->pdev->dev, 1943 "receive reset interrupt 0x%x!\n", rst_ing_reg); 1944 set_bit(HNAE3_VF_RESET, &hdev->reset_pending); 1945 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1946 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 1947 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B); 1948 hdev->rst_stats.vf_rst_cnt++; 1949 /* set up VF hardware reset status, its PF will clear 1950 * this status when PF has initialized done. 1951 */ 1952 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING); 1953 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING, 1954 val | HCLGEVF_VF_RST_ING_BIT); 1955 return HCLGEVF_VECTOR0_EVENT_RST; 1956 } 1957 1958 /* check for vector0 mailbox(=CMDQ RX) event source */ 1959 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) { 1960 /* for revision 0x21, clearing interrupt is writing bit 0 1961 * to the clear register, writing bit 1 means to keep the 1962 * old value. 1963 * for revision 0x20, the clear register is a read & write 1964 * register, so we should just write 0 to the bit we are 1965 * handling, and keep other bits as cmdq_stat_reg. 1966 */ 1967 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) 1968 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 1969 else 1970 *clearval = cmdq_stat_reg & 1971 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 1972 1973 return HCLGEVF_VECTOR0_EVENT_MBX; 1974 } 1975 1976 /* print other vector0 event source */ 1977 dev_info(&hdev->pdev->dev, 1978 "vector 0 interrupt from unknown source, cmdq_src = %#x\n", 1979 cmdq_stat_reg); 1980 1981 return HCLGEVF_VECTOR0_EVENT_OTHER; 1982 } 1983 1984 static void hclgevf_reset_timer(struct timer_list *t) 1985 { 1986 struct hclgevf_dev *hdev = from_timer(hdev, t, reset_timer); 1987 1988 hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST); 1989 hclgevf_reset_task_schedule(hdev); 1990 } 1991 1992 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) 1993 { 1994 #define HCLGEVF_RESET_DELAY 5 1995 1996 enum hclgevf_evt_cause event_cause; 1997 struct hclgevf_dev *hdev = data; 1998 u32 clearval; 1999 2000 hclgevf_enable_vector(&hdev->misc_vector, false); 2001 event_cause = hclgevf_check_evt_cause(hdev, &clearval); 2002 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) 2003 hclgevf_clear_event_cause(hdev, clearval); 2004 2005 switch (event_cause) { 2006 case HCLGEVF_VECTOR0_EVENT_RST: 2007 mod_timer(&hdev->reset_timer, 2008 jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY)); 2009 break; 2010 case HCLGEVF_VECTOR0_EVENT_MBX: 2011 hclgevf_mbx_handler(hdev); 2012 break; 2013 default: 2014 break; 2015 } 2016 2017 hclgevf_enable_vector(&hdev->misc_vector, true); 2018 2019 return IRQ_HANDLED; 2020 } 2021 2022 static int hclgevf_configure(struct hclgevf_dev *hdev) 2023 { 2024 int ret; 2025 2026 hdev->gro_en = true; 2027 2028 ret = hclgevf_get_basic_info(hdev); 2029 if (ret) 2030 return ret; 2031 2032 /* get current port based vlan state from PF */ 2033 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2034 if (ret) 2035 return ret; 2036 2037 /* get queue configuration from PF */ 2038 ret = hclgevf_get_queue_info(hdev); 2039 if (ret) 2040 return ret; 2041 2042 /* get queue depth info from PF */ 2043 ret = hclgevf_get_queue_depth(hdev); 2044 if (ret) 2045 return ret; 2046 2047 return hclgevf_get_pf_media_type(hdev); 2048 } 2049 2050 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) 2051 { 2052 struct pci_dev *pdev = ae_dev->pdev; 2053 struct hclgevf_dev *hdev; 2054 2055 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 2056 if (!hdev) 2057 return -ENOMEM; 2058 2059 hdev->pdev = pdev; 2060 hdev->ae_dev = ae_dev; 2061 ae_dev->priv = hdev; 2062 2063 return 0; 2064 } 2065 2066 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) 2067 { 2068 struct hnae3_handle *roce = &hdev->roce; 2069 struct hnae3_handle *nic = &hdev->nic; 2070 2071 roce->rinfo.num_vectors = hdev->num_roce_msix; 2072 2073 if (hdev->num_msi_left < roce->rinfo.num_vectors || 2074 hdev->num_msi_left == 0) 2075 return -EINVAL; 2076 2077 roce->rinfo.base_vector = hdev->roce_base_msix_offset; 2078 2079 roce->rinfo.netdev = nic->kinfo.netdev; 2080 roce->rinfo.roce_io_base = hdev->hw.hw.io_base; 2081 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base; 2082 2083 roce->pdev = nic->pdev; 2084 roce->ae_algo = nic->ae_algo; 2085 roce->numa_node_mask = nic->numa_node_mask; 2086 2087 return 0; 2088 } 2089 2090 static int hclgevf_config_gro(struct hclgevf_dev *hdev) 2091 { 2092 struct hclgevf_cfg_gro_status_cmd *req; 2093 struct hclge_desc desc; 2094 int ret; 2095 2096 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev)) 2097 return 0; 2098 2099 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, 2100 false); 2101 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data; 2102 2103 req->gro_en = hdev->gro_en ? 1 : 0; 2104 2105 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2106 if (ret) 2107 dev_err(&hdev->pdev->dev, 2108 "VF GRO hardware config cmd failed, ret = %d.\n", ret); 2109 2110 return ret; 2111 } 2112 2113 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) 2114 { 2115 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 2116 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM]; 2117 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM]; 2118 u16 tc_size[HCLGE_COMM_MAX_TC_NUM]; 2119 int ret; 2120 2121 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 2122 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, 2123 rss_cfg->rss_algo, 2124 rss_cfg->rss_hash_key); 2125 if (ret) 2126 return ret; 2127 2128 ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg); 2129 if (ret) 2130 return ret; 2131 } 2132 2133 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 2134 rss_cfg->rss_indirection_tbl); 2135 if (ret) 2136 return ret; 2137 2138 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map, 2139 tc_offset, tc_valid, tc_size); 2140 2141 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, 2142 tc_valid, tc_size); 2143 } 2144 2145 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) 2146 { 2147 struct hnae3_handle *nic = &hdev->nic; 2148 int ret; 2149 2150 ret = hclgevf_en_hw_strip_rxvtag(nic, true); 2151 if (ret) { 2152 dev_err(&hdev->pdev->dev, 2153 "failed to enable rx vlan offload, ret = %d\n", ret); 2154 return ret; 2155 } 2156 2157 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, 2158 false); 2159 } 2160 2161 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev) 2162 { 2163 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000 2164 2165 unsigned long last = hdev->serv_processed_cnt; 2166 int i = 0; 2167 2168 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) && 2169 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT && 2170 last == hdev->serv_processed_cnt) 2171 usleep_range(1, 1); 2172 } 2173 2174 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable) 2175 { 2176 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2177 2178 if (enable) { 2179 hclgevf_task_schedule(hdev, 0); 2180 } else { 2181 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2182 2183 /* flush memory to make sure DOWN is seen by service task */ 2184 smp_mb__before_atomic(); 2185 hclgevf_flush_link_update(hdev); 2186 } 2187 } 2188 2189 static int hclgevf_ae_start(struct hnae3_handle *handle) 2190 { 2191 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2192 2193 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2194 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state); 2195 2196 hclge_comm_reset_tqp_stats(handle); 2197 2198 hclgevf_request_link_info(hdev); 2199 2200 hclgevf_update_link_mode(hdev); 2201 2202 return 0; 2203 } 2204 2205 static void hclgevf_ae_stop(struct hnae3_handle *handle) 2206 { 2207 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2208 2209 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2210 2211 if (hdev->reset_type != HNAE3_VF_RESET) 2212 hclgevf_reset_tqp(handle); 2213 2214 hclge_comm_reset_tqp_stats(handle); 2215 hclgevf_update_link_status(hdev, 0); 2216 } 2217 2218 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive) 2219 { 2220 #define HCLGEVF_STATE_ALIVE 1 2221 #define HCLGEVF_STATE_NOT_ALIVE 0 2222 2223 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2224 struct hclge_vf_to_pf_msg send_msg; 2225 2226 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0); 2227 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE : 2228 HCLGEVF_STATE_NOT_ALIVE; 2229 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2230 } 2231 2232 static int hclgevf_client_start(struct hnae3_handle *handle) 2233 { 2234 return hclgevf_set_alive(handle, true); 2235 } 2236 2237 static void hclgevf_client_stop(struct hnae3_handle *handle) 2238 { 2239 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2240 int ret; 2241 2242 ret = hclgevf_set_alive(handle, false); 2243 if (ret) 2244 dev_warn(&hdev->pdev->dev, 2245 "%s failed %d\n", __func__, ret); 2246 } 2247 2248 static void hclgevf_state_init(struct hclgevf_dev *hdev) 2249 { 2250 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 2251 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2252 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 2253 2254 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task); 2255 2256 mutex_init(&hdev->mbx_resp.mbx_mutex); 2257 sema_init(&hdev->reset_sem, 1); 2258 2259 spin_lock_init(&hdev->mac_table.mac_list_lock); 2260 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list); 2261 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list); 2262 2263 /* bring the device down */ 2264 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2265 } 2266 2267 static void hclgevf_state_uninit(struct hclgevf_dev *hdev) 2268 { 2269 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2270 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state); 2271 2272 if (hdev->service_task.work.func) 2273 cancel_delayed_work_sync(&hdev->service_task); 2274 2275 mutex_destroy(&hdev->mbx_resp.mbx_mutex); 2276 } 2277 2278 static int hclgevf_init_msi(struct hclgevf_dev *hdev) 2279 { 2280 struct pci_dev *pdev = hdev->pdev; 2281 int vectors; 2282 int i; 2283 2284 if (hnae3_dev_roce_supported(hdev)) 2285 vectors = pci_alloc_irq_vectors(pdev, 2286 hdev->roce_base_msix_offset + 1, 2287 hdev->num_msi, 2288 PCI_IRQ_MSIX); 2289 else 2290 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, 2291 hdev->num_msi, 2292 PCI_IRQ_MSI | PCI_IRQ_MSIX); 2293 2294 if (vectors < 0) { 2295 dev_err(&pdev->dev, 2296 "failed(%d) to allocate MSI/MSI-X vectors\n", 2297 vectors); 2298 return vectors; 2299 } 2300 if (vectors < hdev->num_msi) 2301 dev_warn(&hdev->pdev->dev, 2302 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", 2303 hdev->num_msi, vectors); 2304 2305 hdev->num_msi = vectors; 2306 hdev->num_msi_left = vectors; 2307 2308 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 2309 sizeof(u16), GFP_KERNEL); 2310 if (!hdev->vector_status) { 2311 pci_free_irq_vectors(pdev); 2312 return -ENOMEM; 2313 } 2314 2315 for (i = 0; i < hdev->num_msi; i++) 2316 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; 2317 2318 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 2319 sizeof(int), GFP_KERNEL); 2320 if (!hdev->vector_irq) { 2321 devm_kfree(&pdev->dev, hdev->vector_status); 2322 pci_free_irq_vectors(pdev); 2323 return -ENOMEM; 2324 } 2325 2326 return 0; 2327 } 2328 2329 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) 2330 { 2331 struct pci_dev *pdev = hdev->pdev; 2332 2333 devm_kfree(&pdev->dev, hdev->vector_status); 2334 devm_kfree(&pdev->dev, hdev->vector_irq); 2335 pci_free_irq_vectors(pdev); 2336 } 2337 2338 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) 2339 { 2340 int ret; 2341 2342 hclgevf_get_misc_vector(hdev); 2343 2344 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", 2345 HCLGEVF_NAME, pci_name(hdev->pdev)); 2346 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 2347 0, hdev->misc_vector.name, hdev); 2348 if (ret) { 2349 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", 2350 hdev->misc_vector.vector_irq); 2351 return ret; 2352 } 2353 2354 hclgevf_clear_event_cause(hdev, 0); 2355 2356 /* enable misc. vector(vector 0) */ 2357 hclgevf_enable_vector(&hdev->misc_vector, true); 2358 2359 return ret; 2360 } 2361 2362 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) 2363 { 2364 /* disable misc vector(vector 0) */ 2365 hclgevf_enable_vector(&hdev->misc_vector, false); 2366 synchronize_irq(hdev->misc_vector.vector_irq); 2367 free_irq(hdev->misc_vector.vector_irq, hdev); 2368 hclgevf_free_vector(hdev, 0); 2369 } 2370 2371 static void hclgevf_info_show(struct hclgevf_dev *hdev) 2372 { 2373 struct device *dev = &hdev->pdev->dev; 2374 2375 dev_info(dev, "VF info begin:\n"); 2376 2377 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); 2378 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); 2379 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); 2380 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); 2381 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); 2382 dev_info(dev, "PF media type of this VF: %u\n", 2383 hdev->hw.mac.media_type); 2384 2385 dev_info(dev, "VF info end.\n"); 2386 } 2387 2388 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, 2389 struct hnae3_client *client) 2390 { 2391 struct hclgevf_dev *hdev = ae_dev->priv; 2392 int rst_cnt = hdev->rst_stats.rst_cnt; 2393 int ret; 2394 2395 ret = client->ops->init_instance(&hdev->nic); 2396 if (ret) 2397 return ret; 2398 2399 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2400 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 2401 rst_cnt != hdev->rst_stats.rst_cnt) { 2402 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2403 2404 client->ops->uninit_instance(&hdev->nic, 0); 2405 return -EBUSY; 2406 } 2407 2408 hnae3_set_client_init_flag(client, ae_dev, 1); 2409 2410 if (netif_msg_drv(&hdev->nic)) 2411 hclgevf_info_show(hdev); 2412 2413 return 0; 2414 } 2415 2416 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, 2417 struct hnae3_client *client) 2418 { 2419 struct hclgevf_dev *hdev = ae_dev->priv; 2420 int ret; 2421 2422 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || 2423 !hdev->nic_client) 2424 return 0; 2425 2426 ret = hclgevf_init_roce_base_info(hdev); 2427 if (ret) 2428 return ret; 2429 2430 ret = client->ops->init_instance(&hdev->roce); 2431 if (ret) 2432 return ret; 2433 2434 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2435 hnae3_set_client_init_flag(client, ae_dev, 1); 2436 2437 return 0; 2438 } 2439 2440 static int hclgevf_init_client_instance(struct hnae3_client *client, 2441 struct hnae3_ae_dev *ae_dev) 2442 { 2443 struct hclgevf_dev *hdev = ae_dev->priv; 2444 int ret; 2445 2446 switch (client->type) { 2447 case HNAE3_CLIENT_KNIC: 2448 hdev->nic_client = client; 2449 hdev->nic.client = client; 2450 2451 ret = hclgevf_init_nic_client_instance(ae_dev, client); 2452 if (ret) 2453 goto clear_nic; 2454 2455 ret = hclgevf_init_roce_client_instance(ae_dev, 2456 hdev->roce_client); 2457 if (ret) 2458 goto clear_roce; 2459 2460 break; 2461 case HNAE3_CLIENT_ROCE: 2462 if (hnae3_dev_roce_supported(hdev)) { 2463 hdev->roce_client = client; 2464 hdev->roce.client = client; 2465 } 2466 2467 ret = hclgevf_init_roce_client_instance(ae_dev, client); 2468 if (ret) 2469 goto clear_roce; 2470 2471 break; 2472 default: 2473 return -EINVAL; 2474 } 2475 2476 return 0; 2477 2478 clear_nic: 2479 hdev->nic_client = NULL; 2480 hdev->nic.client = NULL; 2481 return ret; 2482 clear_roce: 2483 hdev->roce_client = NULL; 2484 hdev->roce.client = NULL; 2485 return ret; 2486 } 2487 2488 static void hclgevf_uninit_client_instance(struct hnae3_client *client, 2489 struct hnae3_ae_dev *ae_dev) 2490 { 2491 struct hclgevf_dev *hdev = ae_dev->priv; 2492 2493 /* un-init roce, if it exists */ 2494 if (hdev->roce_client) { 2495 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 2496 msleep(HCLGEVF_WAIT_RESET_DONE); 2497 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2498 2499 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); 2500 hdev->roce_client = NULL; 2501 hdev->roce.client = NULL; 2502 } 2503 2504 /* un-init nic/unic, if this was not called by roce client */ 2505 if (client->ops->uninit_instance && hdev->nic_client && 2506 client->type != HNAE3_CLIENT_ROCE) { 2507 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 2508 msleep(HCLGEVF_WAIT_RESET_DONE); 2509 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2510 2511 client->ops->uninit_instance(&hdev->nic, 0); 2512 hdev->nic_client = NULL; 2513 hdev->nic.client = NULL; 2514 } 2515 } 2516 2517 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev) 2518 { 2519 struct pci_dev *pdev = hdev->pdev; 2520 struct hclgevf_hw *hw = &hdev->hw; 2521 2522 /* for device does not have device memory, return directly */ 2523 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR))) 2524 return 0; 2525 2526 hw->hw.mem_base = 2527 devm_ioremap_wc(&pdev->dev, 2528 pci_resource_start(pdev, HCLGEVF_MEM_BAR), 2529 pci_resource_len(pdev, HCLGEVF_MEM_BAR)); 2530 if (!hw->hw.mem_base) { 2531 dev_err(&pdev->dev, "failed to map device memory\n"); 2532 return -EFAULT; 2533 } 2534 2535 return 0; 2536 } 2537 2538 static int hclgevf_pci_init(struct hclgevf_dev *hdev) 2539 { 2540 struct pci_dev *pdev = hdev->pdev; 2541 struct hclgevf_hw *hw; 2542 int ret; 2543 2544 ret = pci_enable_device(pdev); 2545 if (ret) { 2546 dev_err(&pdev->dev, "failed to enable PCI device\n"); 2547 return ret; 2548 } 2549 2550 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2551 if (ret) { 2552 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); 2553 goto err_disable_device; 2554 } 2555 2556 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); 2557 if (ret) { 2558 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 2559 goto err_disable_device; 2560 } 2561 2562 pci_set_master(pdev); 2563 hw = &hdev->hw; 2564 hw->hw.io_base = pci_iomap(pdev, 2, 0); 2565 if (!hw->hw.io_base) { 2566 dev_err(&pdev->dev, "can't map configuration register space\n"); 2567 ret = -ENOMEM; 2568 goto err_release_regions; 2569 } 2570 2571 ret = hclgevf_dev_mem_map(hdev); 2572 if (ret) 2573 goto err_unmap_io_base; 2574 2575 return 0; 2576 2577 err_unmap_io_base: 2578 pci_iounmap(pdev, hdev->hw.hw.io_base); 2579 err_release_regions: 2580 pci_release_regions(pdev); 2581 err_disable_device: 2582 pci_disable_device(pdev); 2583 2584 return ret; 2585 } 2586 2587 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) 2588 { 2589 struct pci_dev *pdev = hdev->pdev; 2590 2591 if (hdev->hw.hw.mem_base) 2592 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base); 2593 2594 pci_iounmap(pdev, hdev->hw.hw.io_base); 2595 pci_release_regions(pdev); 2596 pci_disable_device(pdev); 2597 } 2598 2599 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev) 2600 { 2601 struct hclgevf_query_res_cmd *req; 2602 struct hclge_desc desc; 2603 int ret; 2604 2605 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true); 2606 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2607 if (ret) { 2608 dev_err(&hdev->pdev->dev, 2609 "query vf resource failed, ret = %d.\n", ret); 2610 return ret; 2611 } 2612 2613 req = (struct hclgevf_query_res_cmd *)desc.data; 2614 2615 if (hnae3_dev_roce_supported(hdev)) { 2616 hdev->roce_base_msix_offset = 2617 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee), 2618 HCLGEVF_MSIX_OFT_ROCEE_M, 2619 HCLGEVF_MSIX_OFT_ROCEE_S); 2620 hdev->num_roce_msix = 2621 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2622 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2623 2624 /* nic's msix numbers is always equals to the roce's. */ 2625 hdev->num_nic_msix = hdev->num_roce_msix; 2626 2627 /* VF should have NIC vectors and Roce vectors, NIC vectors 2628 * are queued before Roce vectors. The offset is fixed to 64. 2629 */ 2630 hdev->num_msi = hdev->num_roce_msix + 2631 hdev->roce_base_msix_offset; 2632 } else { 2633 hdev->num_msi = 2634 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2635 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2636 2637 hdev->num_nic_msix = hdev->num_msi; 2638 } 2639 2640 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) { 2641 dev_err(&hdev->pdev->dev, 2642 "Just %u msi resources, not enough for vf(min:2).\n", 2643 hdev->num_nic_msix); 2644 return -EINVAL; 2645 } 2646 2647 return 0; 2648 } 2649 2650 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev) 2651 { 2652 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U 2653 2654 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2655 2656 ae_dev->dev_specs.max_non_tso_bd_num = 2657 HCLGEVF_MAX_NON_TSO_BD_NUM; 2658 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 2659 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 2660 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 2661 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME; 2662 } 2663 2664 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev, 2665 struct hclge_desc *desc) 2666 { 2667 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2668 struct hclgevf_dev_specs_0_cmd *req0; 2669 struct hclgevf_dev_specs_1_cmd *req1; 2670 2671 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data; 2672 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data; 2673 2674 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num; 2675 ae_dev->dev_specs.rss_ind_tbl_size = 2676 le16_to_cpu(req0->rss_ind_tbl_size); 2677 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max); 2678 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size); 2679 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl); 2680 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size); 2681 } 2682 2683 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev) 2684 { 2685 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs; 2686 2687 if (!dev_specs->max_non_tso_bd_num) 2688 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM; 2689 if (!dev_specs->rss_ind_tbl_size) 2690 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 2691 if (!dev_specs->rss_key_size) 2692 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 2693 if (!dev_specs->max_int_gl) 2694 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 2695 if (!dev_specs->max_frm_size) 2696 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME; 2697 } 2698 2699 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev) 2700 { 2701 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM]; 2702 int ret; 2703 int i; 2704 2705 /* set default specifications as devices lower than version V3 do not 2706 * support querying specifications from firmware. 2707 */ 2708 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 2709 hclgevf_set_default_dev_specs(hdev); 2710 return 0; 2711 } 2712 2713 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) { 2714 hclgevf_cmd_setup_basic_desc(&desc[i], 2715 HCLGE_OPC_QUERY_DEV_SPECS, true); 2716 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2717 } 2718 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true); 2719 2720 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM); 2721 if (ret) 2722 return ret; 2723 2724 hclgevf_parse_dev_specs(hdev, desc); 2725 hclgevf_check_dev_specs(hdev); 2726 2727 return 0; 2728 } 2729 2730 static int hclgevf_pci_reset(struct hclgevf_dev *hdev) 2731 { 2732 struct pci_dev *pdev = hdev->pdev; 2733 int ret = 0; 2734 2735 if ((hdev->reset_type == HNAE3_VF_FULL_RESET || 2736 hdev->reset_type == HNAE3_FLR_RESET) && 2737 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2738 hclgevf_misc_irq_uninit(hdev); 2739 hclgevf_uninit_msi(hdev); 2740 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2741 } 2742 2743 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2744 pci_set_master(pdev); 2745 ret = hclgevf_init_msi(hdev); 2746 if (ret) { 2747 dev_err(&pdev->dev, 2748 "failed(%d) to init MSI/MSI-X\n", ret); 2749 return ret; 2750 } 2751 2752 ret = hclgevf_misc_irq_init(hdev); 2753 if (ret) { 2754 hclgevf_uninit_msi(hdev); 2755 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", 2756 ret); 2757 return ret; 2758 } 2759 2760 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2761 } 2762 2763 return ret; 2764 } 2765 2766 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev) 2767 { 2768 struct hclge_vf_to_pf_msg send_msg; 2769 2770 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL, 2771 HCLGE_MBX_VPORT_LIST_CLEAR); 2772 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2773 } 2774 2775 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev) 2776 { 2777 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 2778 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1); 2779 } 2780 2781 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev) 2782 { 2783 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 2784 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0); 2785 } 2786 2787 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev) 2788 { 2789 struct pci_dev *pdev = hdev->pdev; 2790 int ret; 2791 2792 ret = hclgevf_pci_reset(hdev); 2793 if (ret) { 2794 dev_err(&pdev->dev, "pci reset failed %d\n", ret); 2795 return ret; 2796 } 2797 2798 hclgevf_arq_init(hdev); 2799 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, 2800 &hdev->fw_version, false, 2801 hdev->reset_pending); 2802 if (ret) { 2803 dev_err(&pdev->dev, "cmd failed %d\n", ret); 2804 return ret; 2805 } 2806 2807 ret = hclgevf_rss_init_hw(hdev); 2808 if (ret) { 2809 dev_err(&hdev->pdev->dev, 2810 "failed(%d) to initialize RSS\n", ret); 2811 return ret; 2812 } 2813 2814 ret = hclgevf_config_gro(hdev); 2815 if (ret) 2816 return ret; 2817 2818 ret = hclgevf_init_vlan_config(hdev); 2819 if (ret) { 2820 dev_err(&hdev->pdev->dev, 2821 "failed(%d) to initialize VLAN config\n", ret); 2822 return ret; 2823 } 2824 2825 /* get current port based vlan state from PF */ 2826 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2827 if (ret) 2828 return ret; 2829 2830 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 2831 2832 hclgevf_init_rxd_adv_layout(hdev); 2833 2834 dev_info(&hdev->pdev->dev, "Reset done\n"); 2835 2836 return 0; 2837 } 2838 2839 static int hclgevf_init_hdev(struct hclgevf_dev *hdev) 2840 { 2841 struct pci_dev *pdev = hdev->pdev; 2842 int ret; 2843 2844 ret = hclgevf_pci_init(hdev); 2845 if (ret) 2846 return ret; 2847 2848 ret = hclgevf_devlink_init(hdev); 2849 if (ret) 2850 goto err_devlink_init; 2851 2852 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw); 2853 if (ret) 2854 goto err_cmd_queue_init; 2855 2856 hclgevf_arq_init(hdev); 2857 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, 2858 &hdev->fw_version, false, 2859 hdev->reset_pending); 2860 if (ret) 2861 goto err_cmd_init; 2862 2863 /* Get vf resource */ 2864 ret = hclgevf_query_vf_resource(hdev); 2865 if (ret) 2866 goto err_cmd_init; 2867 2868 ret = hclgevf_query_dev_specs(hdev); 2869 if (ret) { 2870 dev_err(&pdev->dev, 2871 "failed to query dev specifications, ret = %d\n", ret); 2872 goto err_cmd_init; 2873 } 2874 2875 ret = hclgevf_init_msi(hdev); 2876 if (ret) { 2877 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); 2878 goto err_cmd_init; 2879 } 2880 2881 hclgevf_state_init(hdev); 2882 hdev->reset_level = HNAE3_VF_FUNC_RESET; 2883 hdev->reset_type = HNAE3_NONE_RESET; 2884 2885 ret = hclgevf_misc_irq_init(hdev); 2886 if (ret) 2887 goto err_misc_irq_init; 2888 2889 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2890 2891 ret = hclgevf_configure(hdev); 2892 if (ret) { 2893 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); 2894 goto err_config; 2895 } 2896 2897 ret = hclgevf_alloc_tqps(hdev); 2898 if (ret) { 2899 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); 2900 goto err_config; 2901 } 2902 2903 ret = hclgevf_set_handle_info(hdev); 2904 if (ret) 2905 goto err_config; 2906 2907 ret = hclgevf_config_gro(hdev); 2908 if (ret) 2909 goto err_config; 2910 2911 /* Initialize RSS for this VF */ 2912 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev, 2913 &hdev->rss_cfg); 2914 if (ret) { 2915 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret); 2916 goto err_config; 2917 } 2918 2919 ret = hclgevf_rss_init_hw(hdev); 2920 if (ret) { 2921 dev_err(&hdev->pdev->dev, 2922 "failed(%d) to initialize RSS\n", ret); 2923 goto err_config; 2924 } 2925 2926 /* ensure vf tbl list as empty before init */ 2927 ret = hclgevf_clear_vport_list(hdev); 2928 if (ret) { 2929 dev_err(&pdev->dev, 2930 "failed to clear tbl list configuration, ret = %d.\n", 2931 ret); 2932 goto err_config; 2933 } 2934 2935 ret = hclgevf_init_vlan_config(hdev); 2936 if (ret) { 2937 dev_err(&hdev->pdev->dev, 2938 "failed(%d) to initialize VLAN config\n", ret); 2939 goto err_config; 2940 } 2941 2942 hclgevf_init_rxd_adv_layout(hdev); 2943 2944 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state); 2945 2946 hdev->last_reset_time = jiffies; 2947 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n", 2948 HCLGEVF_DRIVER_NAME); 2949 2950 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ)); 2951 timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0); 2952 2953 return 0; 2954 2955 err_config: 2956 hclgevf_misc_irq_uninit(hdev); 2957 err_misc_irq_init: 2958 hclgevf_state_uninit(hdev); 2959 hclgevf_uninit_msi(hdev); 2960 err_cmd_init: 2961 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 2962 err_cmd_queue_init: 2963 hclgevf_devlink_uninit(hdev); 2964 err_devlink_init: 2965 hclgevf_pci_uninit(hdev); 2966 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2967 return ret; 2968 } 2969 2970 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) 2971 { 2972 struct hclge_vf_to_pf_msg send_msg; 2973 2974 hclgevf_state_uninit(hdev); 2975 hclgevf_uninit_rxd_adv_layout(hdev); 2976 2977 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0); 2978 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2979 2980 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2981 hclgevf_misc_irq_uninit(hdev); 2982 hclgevf_uninit_msi(hdev); 2983 } 2984 2985 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 2986 hclgevf_devlink_uninit(hdev); 2987 hclgevf_pci_uninit(hdev); 2988 hclgevf_uninit_mac_list(hdev); 2989 } 2990 2991 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) 2992 { 2993 struct pci_dev *pdev = ae_dev->pdev; 2994 int ret; 2995 2996 ret = hclgevf_alloc_hdev(ae_dev); 2997 if (ret) { 2998 dev_err(&pdev->dev, "hclge device allocation failed\n"); 2999 return ret; 3000 } 3001 3002 ret = hclgevf_init_hdev(ae_dev->priv); 3003 if (ret) { 3004 dev_err(&pdev->dev, "hclge device initialization failed\n"); 3005 return ret; 3006 } 3007 3008 return 0; 3009 } 3010 3011 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 3012 { 3013 struct hclgevf_dev *hdev = ae_dev->priv; 3014 3015 hclgevf_uninit_hdev(hdev); 3016 ae_dev->priv = NULL; 3017 } 3018 3019 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) 3020 { 3021 struct hnae3_handle *nic = &hdev->nic; 3022 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 3023 3024 return min_t(u32, hdev->rss_size_max, 3025 hdev->num_tqps / kinfo->tc_info.num_tc); 3026 } 3027 3028 /** 3029 * hclgevf_get_channels - Get the current channels enabled and max supported. 3030 * @handle: hardware information for network interface 3031 * @ch: ethtool channels structure 3032 * 3033 * We don't support separate tx and rx queues as channels. The other count 3034 * represents how many queues are being used for control. max_combined counts 3035 * how many queue pairs we can support. They may not be mapped 1 to 1 with 3036 * q_vectors since we support a lot more queue pairs than q_vectors. 3037 **/ 3038 static void hclgevf_get_channels(struct hnae3_handle *handle, 3039 struct ethtool_channels *ch) 3040 { 3041 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3042 3043 ch->max_combined = hclgevf_get_max_channels(hdev); 3044 ch->other_count = 0; 3045 ch->max_other = 0; 3046 ch->combined_count = handle->kinfo.rss_size; 3047 } 3048 3049 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, 3050 u16 *alloc_tqps, u16 *max_rss_size) 3051 { 3052 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3053 3054 *alloc_tqps = hdev->num_tqps; 3055 *max_rss_size = hdev->rss_size_max; 3056 } 3057 3058 static void hclgevf_update_rss_size(struct hnae3_handle *handle, 3059 u32 new_tqps_num) 3060 { 3061 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3062 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3063 u16 max_rss_size; 3064 3065 kinfo->req_rss_size = new_tqps_num; 3066 3067 max_rss_size = min_t(u16, hdev->rss_size_max, 3068 hdev->num_tqps / kinfo->tc_info.num_tc); 3069 3070 /* Use the user's configuration when it is not larger than 3071 * max_rss_size, otherwise, use the maximum specification value. 3072 */ 3073 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size && 3074 kinfo->req_rss_size <= max_rss_size) 3075 kinfo->rss_size = kinfo->req_rss_size; 3076 else if (kinfo->rss_size > max_rss_size || 3077 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size)) 3078 kinfo->rss_size = max_rss_size; 3079 3080 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size; 3081 } 3082 3083 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, 3084 bool rxfh_configured) 3085 { 3086 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3087 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3088 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM]; 3089 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM]; 3090 u16 tc_size[HCLGE_COMM_MAX_TC_NUM]; 3091 u16 cur_rss_size = kinfo->rss_size; 3092 u16 cur_tqps = kinfo->num_tqps; 3093 u32 *rss_indir; 3094 unsigned int i; 3095 int ret; 3096 3097 hclgevf_update_rss_size(handle, new_tqps_num); 3098 3099 hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map, 3100 tc_offset, tc_valid, tc_size); 3101 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, 3102 tc_valid, tc_size); 3103 if (ret) 3104 return ret; 3105 3106 /* RSS indirection table has been configured by user */ 3107 if (rxfh_configured) 3108 goto out; 3109 3110 /* Reinitializes the rss indirect table according to the new RSS size */ 3111 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size, 3112 sizeof(u32), GFP_KERNEL); 3113 if (!rss_indir) 3114 return -ENOMEM; 3115 3116 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 3117 rss_indir[i] = i % kinfo->rss_size; 3118 3119 hdev->rss_cfg.rss_size = kinfo->rss_size; 3120 3121 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0); 3122 if (ret) 3123 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", 3124 ret); 3125 3126 kfree(rss_indir); 3127 3128 out: 3129 if (!ret) 3130 dev_info(&hdev->pdev->dev, 3131 "Channels changed, rss_size from %u to %u, tqps from %u to %u", 3132 cur_rss_size, kinfo->rss_size, 3133 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc); 3134 3135 return ret; 3136 } 3137 3138 static int hclgevf_get_status(struct hnae3_handle *handle) 3139 { 3140 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3141 3142 return hdev->hw.mac.link; 3143 } 3144 3145 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, 3146 u8 *auto_neg, u32 *speed, 3147 u8 *duplex, u32 *lane_num) 3148 { 3149 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3150 3151 if (speed) 3152 *speed = hdev->hw.mac.speed; 3153 if (duplex) 3154 *duplex = hdev->hw.mac.duplex; 3155 if (auto_neg) 3156 *auto_neg = AUTONEG_DISABLE; 3157 } 3158 3159 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, 3160 u8 duplex) 3161 { 3162 hdev->hw.mac.speed = speed; 3163 hdev->hw.mac.duplex = duplex; 3164 } 3165 3166 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable) 3167 { 3168 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3169 bool gro_en_old = hdev->gro_en; 3170 int ret; 3171 3172 hdev->gro_en = enable; 3173 ret = hclgevf_config_gro(hdev); 3174 if (ret) 3175 hdev->gro_en = gro_en_old; 3176 3177 return ret; 3178 } 3179 3180 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type, 3181 u8 *module_type) 3182 { 3183 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3184 3185 if (media_type) 3186 *media_type = hdev->hw.mac.media_type; 3187 3188 if (module_type) 3189 *module_type = hdev->hw.mac.module_type; 3190 } 3191 3192 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle) 3193 { 3194 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3195 3196 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 3197 } 3198 3199 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle) 3200 { 3201 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3202 3203 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 3204 } 3205 3206 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle) 3207 { 3208 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3209 3210 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 3211 } 3212 3213 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle) 3214 { 3215 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3216 3217 return hdev->rst_stats.hw_rst_done_cnt; 3218 } 3219 3220 static void hclgevf_get_link_mode(struct hnae3_handle *handle, 3221 unsigned long *supported, 3222 unsigned long *advertising) 3223 { 3224 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3225 3226 *supported = hdev->hw.mac.supported; 3227 *advertising = hdev->hw.mac.advertising; 3228 } 3229 3230 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state, 3231 struct hclge_mbx_port_base_vlan *port_base_vlan) 3232 { 3233 struct hnae3_handle *nic = &hdev->nic; 3234 struct hclge_vf_to_pf_msg send_msg; 3235 int ret; 3236 3237 rtnl_lock(); 3238 3239 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 3240 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) { 3241 dev_warn(&hdev->pdev->dev, 3242 "is resetting when updating port based vlan info\n"); 3243 rtnl_unlock(); 3244 return; 3245 } 3246 3247 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 3248 if (ret) { 3249 rtnl_unlock(); 3250 return; 3251 } 3252 3253 /* send msg to PF and wait update port based vlan info */ 3254 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 3255 HCLGE_MBX_PORT_BASE_VLAN_CFG); 3256 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan)); 3257 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3258 if (!ret) { 3259 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) 3260 nic->port_base_vlan_state = state; 3261 else 3262 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; 3263 } 3264 3265 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 3266 rtnl_unlock(); 3267 } 3268 3269 static const struct hnae3_ae_ops hclgevf_ops = { 3270 .init_ae_dev = hclgevf_init_ae_dev, 3271 .uninit_ae_dev = hclgevf_uninit_ae_dev, 3272 .reset_prepare = hclgevf_reset_prepare_general, 3273 .reset_done = hclgevf_reset_done, 3274 .init_client_instance = hclgevf_init_client_instance, 3275 .uninit_client_instance = hclgevf_uninit_client_instance, 3276 .start = hclgevf_ae_start, 3277 .stop = hclgevf_ae_stop, 3278 .client_start = hclgevf_client_start, 3279 .client_stop = hclgevf_client_stop, 3280 .map_ring_to_vector = hclgevf_map_ring_to_vector, 3281 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, 3282 .get_vector = hclgevf_get_vector, 3283 .put_vector = hclgevf_put_vector, 3284 .reset_queue = hclgevf_reset_tqp, 3285 .get_mac_addr = hclgevf_get_mac_addr, 3286 .set_mac_addr = hclgevf_set_mac_addr, 3287 .add_uc_addr = hclgevf_add_uc_addr, 3288 .rm_uc_addr = hclgevf_rm_uc_addr, 3289 .add_mc_addr = hclgevf_add_mc_addr, 3290 .rm_mc_addr = hclgevf_rm_mc_addr, 3291 .get_stats = hclgevf_get_stats, 3292 .update_stats = hclgevf_update_stats, 3293 .get_strings = hclgevf_get_strings, 3294 .get_sset_count = hclgevf_get_sset_count, 3295 .get_rss_key_size = hclge_comm_get_rss_key_size, 3296 .get_rss = hclgevf_get_rss, 3297 .set_rss = hclgevf_set_rss, 3298 .get_rss_tuple = hclgevf_get_rss_tuple, 3299 .set_rss_tuple = hclgevf_set_rss_tuple, 3300 .get_tc_size = hclgevf_get_tc_size, 3301 .get_fw_version = hclgevf_get_fw_version, 3302 .set_vlan_filter = hclgevf_set_vlan_filter, 3303 .enable_vlan_filter = hclgevf_enable_vlan_filter, 3304 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, 3305 .reset_event = hclgevf_reset_event, 3306 .set_default_reset_request = hclgevf_set_def_reset_request, 3307 .set_channels = hclgevf_set_channels, 3308 .get_channels = hclgevf_get_channels, 3309 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, 3310 .get_regs_len = hclgevf_get_regs_len, 3311 .get_regs = hclgevf_get_regs, 3312 .get_status = hclgevf_get_status, 3313 .get_ksettings_an_result = hclgevf_get_ksettings_an_result, 3314 .get_media_type = hclgevf_get_media_type, 3315 .get_hw_reset_stat = hclgevf_get_hw_reset_stat, 3316 .ae_dev_resetting = hclgevf_ae_dev_resetting, 3317 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt, 3318 .set_gro_en = hclgevf_gro_en, 3319 .set_mtu = hclgevf_set_mtu, 3320 .get_global_queue_id = hclgevf_get_qid_global, 3321 .set_timer_task = hclgevf_set_timer_task, 3322 .get_link_mode = hclgevf_get_link_mode, 3323 .set_promisc_mode = hclgevf_set_promisc_mode, 3324 .request_update_promisc_mode = hclgevf_request_update_promisc_mode, 3325 .get_cmdq_stat = hclgevf_get_cmdq_stat, 3326 }; 3327 3328 static struct hnae3_ae_algo ae_algovf = { 3329 .ops = &hclgevf_ops, 3330 .pdev_id_table = ae_algovf_pci_tbl, 3331 }; 3332 3333 static int __init hclgevf_init(void) 3334 { 3335 pr_info("%s is initializing\n", HCLGEVF_NAME); 3336 3337 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME); 3338 if (!hclgevf_wq) { 3339 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME); 3340 return -ENOMEM; 3341 } 3342 3343 hnae3_register_ae_algo(&ae_algovf); 3344 3345 return 0; 3346 } 3347 3348 static void __exit hclgevf_exit(void) 3349 { 3350 hnae3_unregister_ae_algo(&ae_algovf); 3351 destroy_workqueue(hclgevf_wq); 3352 } 3353 module_init(hclgevf_init); 3354 module_exit(hclgevf_exit); 3355 3356 MODULE_LICENSE("GPL"); 3357 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 3358 MODULE_DESCRIPTION("HCLGEVF Driver"); 3359 MODULE_VERSION(HCLGEVF_MOD_VERSION); 3360