1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 #include "hclge_comm_rss.h"
13 
14 #define HCLGEVF_NAME	"hclgevf"
15 
16 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
17 
18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
20 				  unsigned long delay);
21 
22 static struct hnae3_ae_algo ae_algovf;
23 
24 static struct workqueue_struct *hclgevf_wq;
25 
26 static const struct pci_device_id ae_algovf_pci_tbl[] = {
27 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
28 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
29 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
30 	/* required last entry */
31 	{0, }
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
37 					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
38 					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
39 					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
40 					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
41 					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
42 					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
43 					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
44 					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
45 					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
46 					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG,
48 					 HCLGE_COMM_CMDQ_INTR_EN_REG,
49 					 HCLGE_COMM_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 /* hclgevf_cmd_send - send command to command queue
89  * @hw: pointer to the hw struct
90  * @desc: prefilled descriptor for describing the command
91  * @num : the number of descriptors to be sent
92  *
93  * This is the main send command for command queue, it
94  * sends the queue, cleans the queue, etc
95  */
96 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
97 {
98 	return hclge_comm_cmd_send(&hw->hw, desc, num);
99 }
100 
101 void hclgevf_arq_init(struct hclgevf_dev *hdev)
102 {
103 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
104 
105 	spin_lock(&cmdq->crq.lock);
106 	/* initialize the pointers of async rx queue of mailbox */
107 	hdev->arq.hdev = hdev;
108 	hdev->arq.head = 0;
109 	hdev->arq.tail = 0;
110 	atomic_set(&hdev->arq.count, 0);
111 	spin_unlock(&cmdq->crq.lock);
112 }
113 
114 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
115 {
116 	if (!handle->client)
117 		return container_of(handle, struct hclgevf_dev, nic);
118 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
119 		return container_of(handle, struct hclgevf_dev, roce);
120 	else
121 		return container_of(handle, struct hclgevf_dev, nic);
122 }
123 
124 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
125 {
126 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
127 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
128 	struct hclge_desc desc;
129 	struct hclgevf_tqp *tqp;
130 	int status;
131 	int i;
132 
133 	for (i = 0; i < kinfo->num_tqps; i++) {
134 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
135 		hclgevf_cmd_setup_basic_desc(&desc,
136 					     HCLGEVF_OPC_QUERY_RX_STATUS,
137 					     true);
138 
139 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
140 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
141 		if (status) {
142 			dev_err(&hdev->pdev->dev,
143 				"Query tqp stat fail, status = %d,queue = %d\n",
144 				status,	i);
145 			return status;
146 		}
147 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
148 			le32_to_cpu(desc.data[1]);
149 
150 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
151 					     true);
152 
153 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
154 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
155 		if (status) {
156 			dev_err(&hdev->pdev->dev,
157 				"Query tqp stat fail, status = %d,queue = %d\n",
158 				status, i);
159 			return status;
160 		}
161 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
162 			le32_to_cpu(desc.data[1]);
163 	}
164 
165 	return 0;
166 }
167 
168 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
169 {
170 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171 	struct hclgevf_tqp *tqp;
172 	u64 *buff = data;
173 	int i;
174 
175 	for (i = 0; i < kinfo->num_tqps; i++) {
176 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
177 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
178 	}
179 	for (i = 0; i < kinfo->num_tqps; i++) {
180 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
181 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
182 	}
183 
184 	return buff;
185 }
186 
187 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
188 {
189 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
190 
191 	return kinfo->num_tqps * 2;
192 }
193 
194 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
195 {
196 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
197 	u8 *buff = data;
198 	int i;
199 
200 	for (i = 0; i < kinfo->num_tqps; i++) {
201 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
202 						       struct hclgevf_tqp, q);
203 		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
204 			 tqp->index);
205 		buff += ETH_GSTRING_LEN;
206 	}
207 
208 	for (i = 0; i < kinfo->num_tqps; i++) {
209 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
210 						       struct hclgevf_tqp, q);
211 		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
212 			 tqp->index);
213 		buff += ETH_GSTRING_LEN;
214 	}
215 
216 	return buff;
217 }
218 
219 static void hclgevf_update_stats(struct hnae3_handle *handle,
220 				 struct net_device_stats *net_stats)
221 {
222 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
223 	int status;
224 
225 	status = hclgevf_tqps_update_stats(handle);
226 	if (status)
227 		dev_err(&hdev->pdev->dev,
228 			"VF update of TQPS stats fail, status = %d.\n",
229 			status);
230 }
231 
232 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
233 {
234 	if (strset == ETH_SS_TEST)
235 		return -EOPNOTSUPP;
236 	else if (strset == ETH_SS_STATS)
237 		return hclgevf_tqps_get_sset_count(handle, strset);
238 
239 	return 0;
240 }
241 
242 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
243 				u8 *data)
244 {
245 	u8 *p = (char *)data;
246 
247 	if (strset == ETH_SS_STATS)
248 		p = hclgevf_tqps_get_strings(handle, p);
249 }
250 
251 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
252 {
253 	hclgevf_tqps_get_stats(handle, data);
254 }
255 
256 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
257 				   u8 subcode)
258 {
259 	if (msg) {
260 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
261 		msg->code = code;
262 		msg->subcode = subcode;
263 	}
264 }
265 
266 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
267 {
268 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
269 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
270 	struct hclge_basic_info *basic_info;
271 	struct hclge_vf_to_pf_msg send_msg;
272 	unsigned long caps;
273 	int status;
274 
275 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
276 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
277 				      sizeof(resp_msg));
278 	if (status) {
279 		dev_err(&hdev->pdev->dev,
280 			"failed to get basic info from pf, ret = %d", status);
281 		return status;
282 	}
283 
284 	basic_info = (struct hclge_basic_info *)resp_msg;
285 
286 	hdev->hw_tc_map = basic_info->hw_tc_map;
287 	hdev->mbx_api_version = basic_info->mbx_api_version;
288 	caps = basic_info->pf_caps;
289 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
290 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
291 
292 	return 0;
293 }
294 
295 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
296 {
297 	struct hnae3_handle *nic = &hdev->nic;
298 	struct hclge_vf_to_pf_msg send_msg;
299 	u8 resp_msg;
300 	int ret;
301 
302 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
303 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
304 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
305 				   sizeof(u8));
306 	if (ret) {
307 		dev_err(&hdev->pdev->dev,
308 			"VF request to get port based vlan state failed %d",
309 			ret);
310 		return ret;
311 	}
312 
313 	nic->port_base_vlan_state = resp_msg;
314 
315 	return 0;
316 }
317 
318 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
319 {
320 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
321 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
322 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
323 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
324 
325 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
326 	struct hclge_vf_to_pf_msg send_msg;
327 	int status;
328 
329 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
330 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
331 				      HCLGEVF_TQPS_RSS_INFO_LEN);
332 	if (status) {
333 		dev_err(&hdev->pdev->dev,
334 			"VF request to get tqp info from PF failed %d",
335 			status);
336 		return status;
337 	}
338 
339 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
340 	       sizeof(u16));
341 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
342 	       sizeof(u16));
343 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
344 	       sizeof(u16));
345 
346 	return 0;
347 }
348 
349 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
350 {
351 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
352 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
353 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
354 
355 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
356 	struct hclge_vf_to_pf_msg send_msg;
357 	int ret;
358 
359 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
360 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
361 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
362 	if (ret) {
363 		dev_err(&hdev->pdev->dev,
364 			"VF request to get tqp depth info from PF failed %d",
365 			ret);
366 		return ret;
367 	}
368 
369 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
370 	       sizeof(u16));
371 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
372 	       sizeof(u16));
373 
374 	return 0;
375 }
376 
377 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
378 {
379 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
380 	struct hclge_vf_to_pf_msg send_msg;
381 	u16 qid_in_pf = 0;
382 	u8 resp_data[2];
383 	int ret;
384 
385 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
386 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
387 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
388 				   sizeof(resp_data));
389 	if (!ret)
390 		qid_in_pf = *(u16 *)resp_data;
391 
392 	return qid_in_pf;
393 }
394 
395 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
396 {
397 	struct hclge_vf_to_pf_msg send_msg;
398 	u8 resp_msg[2];
399 	int ret;
400 
401 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
402 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
403 				   sizeof(resp_msg));
404 	if (ret) {
405 		dev_err(&hdev->pdev->dev,
406 			"VF request to get the pf port media type failed %d",
407 			ret);
408 		return ret;
409 	}
410 
411 	hdev->hw.mac.media_type = resp_msg[0];
412 	hdev->hw.mac.module_type = resp_msg[1];
413 
414 	return 0;
415 }
416 
417 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
418 {
419 	struct hclgevf_tqp *tqp;
420 	int i;
421 
422 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
423 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
424 	if (!hdev->htqp)
425 		return -ENOMEM;
426 
427 	tqp = hdev->htqp;
428 
429 	for (i = 0; i < hdev->num_tqps; i++) {
430 		tqp->dev = &hdev->pdev->dev;
431 		tqp->index = i;
432 
433 		tqp->q.ae_algo = &ae_algovf;
434 		tqp->q.buf_size = hdev->rx_buf_len;
435 		tqp->q.tx_desc_num = hdev->num_tx_desc;
436 		tqp->q.rx_desc_num = hdev->num_rx_desc;
437 
438 		/* need an extended offset to configure queues >=
439 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
440 		 */
441 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
442 			tqp->q.io_base = hdev->hw.hw.io_base +
443 					 HCLGEVF_TQP_REG_OFFSET +
444 					 i * HCLGEVF_TQP_REG_SIZE;
445 		else
446 			tqp->q.io_base = hdev->hw.hw.io_base +
447 					 HCLGEVF_TQP_REG_OFFSET +
448 					 HCLGEVF_TQP_EXT_REG_OFFSET +
449 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
450 					 HCLGEVF_TQP_REG_SIZE;
451 
452 		tqp++;
453 	}
454 
455 	return 0;
456 }
457 
458 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
459 {
460 	struct hnae3_handle *nic = &hdev->nic;
461 	struct hnae3_knic_private_info *kinfo;
462 	u16 new_tqps = hdev->num_tqps;
463 	unsigned int i;
464 	u8 num_tc = 0;
465 
466 	kinfo = &nic->kinfo;
467 	kinfo->num_tx_desc = hdev->num_tx_desc;
468 	kinfo->num_rx_desc = hdev->num_rx_desc;
469 	kinfo->rx_buf_len = hdev->rx_buf_len;
470 	for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
471 		if (hdev->hw_tc_map & BIT(i))
472 			num_tc++;
473 
474 	num_tc = num_tc ? num_tc : 1;
475 	kinfo->tc_info.num_tc = num_tc;
476 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
477 	new_tqps = kinfo->rss_size * num_tc;
478 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
479 
480 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
481 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
482 	if (!kinfo->tqp)
483 		return -ENOMEM;
484 
485 	for (i = 0; i < kinfo->num_tqps; i++) {
486 		hdev->htqp[i].q.handle = &hdev->nic;
487 		hdev->htqp[i].q.tqp_index = i;
488 		kinfo->tqp[i] = &hdev->htqp[i].q;
489 	}
490 
491 	/* after init the max rss_size and tqps, adjust the default tqp numbers
492 	 * and rss size with the actual vector numbers
493 	 */
494 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
495 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
496 				kinfo->rss_size);
497 
498 	return 0;
499 }
500 
501 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
502 {
503 	struct hclge_vf_to_pf_msg send_msg;
504 	int status;
505 
506 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
507 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
508 	if (status)
509 		dev_err(&hdev->pdev->dev,
510 			"VF failed to fetch link status(%d) from PF", status);
511 }
512 
513 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
514 {
515 	struct hnae3_handle *rhandle = &hdev->roce;
516 	struct hnae3_handle *handle = &hdev->nic;
517 	struct hnae3_client *rclient;
518 	struct hnae3_client *client;
519 
520 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
521 		return;
522 
523 	client = handle->client;
524 	rclient = hdev->roce_client;
525 
526 	link_state =
527 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
528 	if (link_state != hdev->hw.mac.link) {
529 		hdev->hw.mac.link = link_state;
530 		client->ops->link_status_change(handle, !!link_state);
531 		if (rclient && rclient->ops->link_status_change)
532 			rclient->ops->link_status_change(rhandle, !!link_state);
533 	}
534 
535 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
536 }
537 
538 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
539 {
540 #define HCLGEVF_ADVERTISING	0
541 #define HCLGEVF_SUPPORTED	1
542 
543 	struct hclge_vf_to_pf_msg send_msg;
544 
545 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
546 	send_msg.data[0] = HCLGEVF_ADVERTISING;
547 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
548 	send_msg.data[0] = HCLGEVF_SUPPORTED;
549 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
550 }
551 
552 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
553 {
554 	struct hnae3_handle *nic = &hdev->nic;
555 	int ret;
556 
557 	nic->ae_algo = &ae_algovf;
558 	nic->pdev = hdev->pdev;
559 	nic->numa_node_mask = hdev->numa_node_mask;
560 	nic->flags |= HNAE3_SUPPORT_VF;
561 	nic->kinfo.io_base = hdev->hw.hw.io_base;
562 
563 	ret = hclgevf_knic_setup(hdev);
564 	if (ret)
565 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
566 			ret);
567 	return ret;
568 }
569 
570 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
571 {
572 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
573 		dev_warn(&hdev->pdev->dev,
574 			 "vector(vector_id %d) has been freed.\n", vector_id);
575 		return;
576 	}
577 
578 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
579 	hdev->num_msi_left += 1;
580 	hdev->num_msi_used -= 1;
581 }
582 
583 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
584 			      struct hnae3_vector_info *vector_info)
585 {
586 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
587 	struct hnae3_vector_info *vector = vector_info;
588 	int alloc = 0;
589 	int i, j;
590 
591 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
592 	vector_num = min(hdev->num_msi_left, vector_num);
593 
594 	for (j = 0; j < vector_num; j++) {
595 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
596 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
597 				vector->vector = pci_irq_vector(hdev->pdev, i);
598 				vector->io_addr = hdev->hw.hw.io_base +
599 					HCLGEVF_VECTOR_REG_BASE +
600 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
601 				hdev->vector_status[i] = 0;
602 				hdev->vector_irq[i] = vector->vector;
603 
604 				vector++;
605 				alloc++;
606 
607 				break;
608 			}
609 		}
610 	}
611 	hdev->num_msi_left -= alloc;
612 	hdev->num_msi_used += alloc;
613 
614 	return alloc;
615 }
616 
617 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
618 {
619 	int i;
620 
621 	for (i = 0; i < hdev->num_msi; i++)
622 		if (vector == hdev->vector_irq[i])
623 			return i;
624 
625 	return -EINVAL;
626 }
627 
628 /* for revision 0x20, vf shared the same rss config with pf */
629 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
630 {
631 #define HCLGEVF_RSS_MBX_RESP_LEN	8
632 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
633 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
634 	struct hclge_vf_to_pf_msg send_msg;
635 	u16 msg_num, hash_key_index;
636 	u8 index;
637 	int ret;
638 
639 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
640 	msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
641 			HCLGEVF_RSS_MBX_RESP_LEN;
642 	for (index = 0; index < msg_num; index++) {
643 		send_msg.data[0] = index;
644 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
645 					   HCLGEVF_RSS_MBX_RESP_LEN);
646 		if (ret) {
647 			dev_err(&hdev->pdev->dev,
648 				"VF get rss hash key from PF failed, ret=%d",
649 				ret);
650 			return ret;
651 		}
652 
653 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
654 		if (index == msg_num - 1)
655 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
656 			       &resp_msg[0],
657 			       HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
658 		else
659 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
660 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
661 	}
662 
663 	return 0;
664 }
665 
666 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
667 			   u8 *hfunc)
668 {
669 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
670 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
671 	int ret;
672 
673 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
674 		hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
675 	} else {
676 		if (hfunc)
677 			*hfunc = ETH_RSS_HASH_TOP;
678 		if (key) {
679 			ret = hclgevf_get_rss_hash_key(hdev);
680 			if (ret)
681 				return ret;
682 			memcpy(key, rss_cfg->rss_hash_key,
683 			       HCLGE_COMM_RSS_KEY_SIZE);
684 		}
685 	}
686 
687 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
688 				     hdev->ae_dev->dev_specs.rss_ind_tbl_size);
689 
690 	return 0;
691 }
692 
693 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
694 			   const u8 *key, const u8 hfunc)
695 {
696 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
697 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
698 	int ret, i;
699 
700 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
701 		ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
702 						  hfunc);
703 		if (ret)
704 			return ret;
705 	}
706 
707 	/* update the shadow RSS table with user specified qids */
708 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
709 		rss_cfg->rss_indirection_tbl[i] = indir[i];
710 
711 	/* update the hardware */
712 	return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
713 					      rss_cfg->rss_indirection_tbl);
714 }
715 
716 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
717 				 struct ethtool_rxnfc *nfc)
718 {
719 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
720 	int ret;
721 
722 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
723 		return -EOPNOTSUPP;
724 
725 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
726 				       &hdev->rss_cfg, nfc);
727 	if (ret)
728 		dev_err(&hdev->pdev->dev,
729 		"failed to set rss tuple, ret = %d.\n", ret);
730 
731 	return ret;
732 }
733 
734 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
735 				 struct ethtool_rxnfc *nfc)
736 {
737 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
738 	u8 tuple_sets;
739 	int ret;
740 
741 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
742 		return -EOPNOTSUPP;
743 
744 	nfc->data = 0;
745 
746 	ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
747 				       &tuple_sets);
748 	if (ret || !tuple_sets)
749 		return ret;
750 
751 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
752 
753 	return 0;
754 }
755 
756 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
757 {
758 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
759 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
760 
761 	return rss_cfg->rss_size;
762 }
763 
764 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
765 				       int vector_id,
766 				       struct hnae3_ring_chain_node *ring_chain)
767 {
768 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
769 	struct hclge_vf_to_pf_msg send_msg;
770 	struct hnae3_ring_chain_node *node;
771 	int status;
772 	int i = 0;
773 
774 	memset(&send_msg, 0, sizeof(send_msg));
775 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
776 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
777 	send_msg.vector_id = vector_id;
778 
779 	for (node = ring_chain; node; node = node->next) {
780 		send_msg.param[i].ring_type =
781 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
782 
783 		send_msg.param[i].tqp_index = node->tqp_index;
784 		send_msg.param[i].int_gl_index =
785 					hnae3_get_field(node->int_gl_idx,
786 							HNAE3_RING_GL_IDX_M,
787 							HNAE3_RING_GL_IDX_S);
788 
789 		i++;
790 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
791 			send_msg.ring_num = i;
792 
793 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
794 						      NULL, 0);
795 			if (status) {
796 				dev_err(&hdev->pdev->dev,
797 					"Map TQP fail, status is %d.\n",
798 					status);
799 				return status;
800 			}
801 			i = 0;
802 		}
803 	}
804 
805 	return 0;
806 }
807 
808 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
809 				      struct hnae3_ring_chain_node *ring_chain)
810 {
811 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
812 	int vector_id;
813 
814 	vector_id = hclgevf_get_vector_index(hdev, vector);
815 	if (vector_id < 0) {
816 		dev_err(&handle->pdev->dev,
817 			"Get vector index fail. ret =%d\n", vector_id);
818 		return vector_id;
819 	}
820 
821 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
822 }
823 
824 static int hclgevf_unmap_ring_from_vector(
825 				struct hnae3_handle *handle,
826 				int vector,
827 				struct hnae3_ring_chain_node *ring_chain)
828 {
829 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
830 	int ret, vector_id;
831 
832 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
833 		return 0;
834 
835 	vector_id = hclgevf_get_vector_index(hdev, vector);
836 	if (vector_id < 0) {
837 		dev_err(&handle->pdev->dev,
838 			"Get vector index fail. ret =%d\n", vector_id);
839 		return vector_id;
840 	}
841 
842 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
843 	if (ret)
844 		dev_err(&handle->pdev->dev,
845 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
846 			vector_id,
847 			ret);
848 
849 	return ret;
850 }
851 
852 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
853 {
854 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
855 	int vector_id;
856 
857 	vector_id = hclgevf_get_vector_index(hdev, vector);
858 	if (vector_id < 0) {
859 		dev_err(&handle->pdev->dev,
860 			"hclgevf_put_vector get vector index fail. ret =%d\n",
861 			vector_id);
862 		return vector_id;
863 	}
864 
865 	hclgevf_free_vector(hdev, vector_id);
866 
867 	return 0;
868 }
869 
870 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
871 					bool en_uc_pmc, bool en_mc_pmc,
872 					bool en_bc_pmc)
873 {
874 	struct hnae3_handle *handle = &hdev->nic;
875 	struct hclge_vf_to_pf_msg send_msg;
876 	int ret;
877 
878 	memset(&send_msg, 0, sizeof(send_msg));
879 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
880 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
881 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
882 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
883 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
884 					     &handle->priv_flags) ? 1 : 0;
885 
886 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
887 	if (ret)
888 		dev_err(&hdev->pdev->dev,
889 			"Set promisc mode fail, status is %d.\n", ret);
890 
891 	return ret;
892 }
893 
894 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
895 				    bool en_mc_pmc)
896 {
897 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
898 	bool en_bc_pmc;
899 
900 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
901 
902 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
903 					    en_bc_pmc);
904 }
905 
906 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
907 {
908 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
909 
910 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
911 	hclgevf_task_schedule(hdev, 0);
912 }
913 
914 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
915 {
916 	struct hnae3_handle *handle = &hdev->nic;
917 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
918 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
919 	int ret;
920 
921 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
922 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
923 		if (!ret)
924 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
925 	}
926 }
927 
928 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
929 				       u16 stream_id, bool enable)
930 {
931 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
932 	struct hclge_desc desc;
933 
934 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
935 
936 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
937 				     false);
938 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
939 	req->stream_id = cpu_to_le16(stream_id);
940 	if (enable)
941 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
942 
943 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
944 }
945 
946 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
947 {
948 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
949 	int ret;
950 	u16 i;
951 
952 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
953 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
954 		if (ret)
955 			return ret;
956 	}
957 
958 	return 0;
959 }
960 
961 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
962 {
963 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
964 	struct hclgevf_tqp *tqp;
965 	int i;
966 
967 	for (i = 0; i < kinfo->num_tqps; i++) {
968 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
969 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
970 	}
971 }
972 
973 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
974 {
975 	struct hclge_vf_to_pf_msg send_msg;
976 	u8 host_mac[ETH_ALEN];
977 	int status;
978 
979 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
980 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
981 				      ETH_ALEN);
982 	if (status) {
983 		dev_err(&hdev->pdev->dev,
984 			"fail to get VF MAC from host %d", status);
985 		return status;
986 	}
987 
988 	ether_addr_copy(p, host_mac);
989 
990 	return 0;
991 }
992 
993 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
994 {
995 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
996 	u8 host_mac_addr[ETH_ALEN];
997 
998 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
999 		return;
1000 
1001 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1002 	if (hdev->has_pf_mac)
1003 		ether_addr_copy(p, host_mac_addr);
1004 	else
1005 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1006 }
1007 
1008 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
1009 				bool is_first)
1010 {
1011 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1012 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1013 	struct hclge_vf_to_pf_msg send_msg;
1014 	u8 *new_mac_addr = (u8 *)p;
1015 	int status;
1016 
1017 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1018 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1019 	ether_addr_copy(send_msg.data, new_mac_addr);
1020 	if (is_first && !hdev->has_pf_mac)
1021 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1022 	else
1023 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1024 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1025 	if (!status)
1026 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1027 
1028 	return status;
1029 }
1030 
1031 static struct hclgevf_mac_addr_node *
1032 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1033 {
1034 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1035 
1036 	list_for_each_entry_safe(mac_node, tmp, list, node)
1037 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1038 			return mac_node;
1039 
1040 	return NULL;
1041 }
1042 
1043 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1044 				    enum HCLGEVF_MAC_NODE_STATE state)
1045 {
1046 	switch (state) {
1047 	/* from set_rx_mode or tmp_add_list */
1048 	case HCLGEVF_MAC_TO_ADD:
1049 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1050 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1051 		break;
1052 	/* only from set_rx_mode */
1053 	case HCLGEVF_MAC_TO_DEL:
1054 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1055 			list_del(&mac_node->node);
1056 			kfree(mac_node);
1057 		} else {
1058 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1059 		}
1060 		break;
1061 	/* only from tmp_add_list, the mac_node->state won't be
1062 	 * HCLGEVF_MAC_ACTIVE
1063 	 */
1064 	case HCLGEVF_MAC_ACTIVE:
1065 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1066 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1067 		break;
1068 	}
1069 }
1070 
1071 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1072 				   enum HCLGEVF_MAC_NODE_STATE state,
1073 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1074 				   const unsigned char *addr)
1075 {
1076 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1077 	struct hclgevf_mac_addr_node *mac_node;
1078 	struct list_head *list;
1079 
1080 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1081 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1082 
1083 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1084 
1085 	/* if the mac addr is already in the mac list, no need to add a new
1086 	 * one into it, just check the mac addr state, convert it to a new
1087 	 * new state, or just remove it, or do nothing.
1088 	 */
1089 	mac_node = hclgevf_find_mac_node(list, addr);
1090 	if (mac_node) {
1091 		hclgevf_update_mac_node(mac_node, state);
1092 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1093 		return 0;
1094 	}
1095 	/* if this address is never added, unnecessary to delete */
1096 	if (state == HCLGEVF_MAC_TO_DEL) {
1097 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1098 		return -ENOENT;
1099 	}
1100 
1101 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1102 	if (!mac_node) {
1103 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1104 		return -ENOMEM;
1105 	}
1106 
1107 	mac_node->state = state;
1108 	ether_addr_copy(mac_node->mac_addr, addr);
1109 	list_add_tail(&mac_node->node, list);
1110 
1111 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1112 	return 0;
1113 }
1114 
1115 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1116 			       const unsigned char *addr)
1117 {
1118 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1119 				       HCLGEVF_MAC_ADDR_UC, addr);
1120 }
1121 
1122 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1123 			      const unsigned char *addr)
1124 {
1125 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1126 				       HCLGEVF_MAC_ADDR_UC, addr);
1127 }
1128 
1129 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1130 			       const unsigned char *addr)
1131 {
1132 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1133 				       HCLGEVF_MAC_ADDR_MC, addr);
1134 }
1135 
1136 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1137 			      const unsigned char *addr)
1138 {
1139 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1140 				       HCLGEVF_MAC_ADDR_MC, addr);
1141 }
1142 
1143 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1144 				    struct hclgevf_mac_addr_node *mac_node,
1145 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1146 {
1147 	struct hclge_vf_to_pf_msg send_msg;
1148 	u8 code, subcode;
1149 
1150 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1151 		code = HCLGE_MBX_SET_UNICAST;
1152 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1153 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1154 		else
1155 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1156 	} else {
1157 		code = HCLGE_MBX_SET_MULTICAST;
1158 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1159 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1160 		else
1161 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1162 	}
1163 
1164 	hclgevf_build_send_msg(&send_msg, code, subcode);
1165 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1166 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1167 }
1168 
1169 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1170 				    struct list_head *list,
1171 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1172 {
1173 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1174 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1175 	int ret;
1176 
1177 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1178 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1179 		if  (ret) {
1180 			hnae3_format_mac_addr(format_mac_addr,
1181 					      mac_node->mac_addr);
1182 			dev_err(&hdev->pdev->dev,
1183 				"failed to configure mac %s, state = %d, ret = %d\n",
1184 				format_mac_addr, mac_node->state, ret);
1185 			return;
1186 		}
1187 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1188 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1189 		} else {
1190 			list_del(&mac_node->node);
1191 			kfree(mac_node);
1192 		}
1193 	}
1194 }
1195 
1196 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1197 				       struct list_head *mac_list)
1198 {
1199 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1200 
1201 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1202 		/* if the mac address from tmp_add_list is not in the
1203 		 * uc/mc_mac_list, it means have received a TO_DEL request
1204 		 * during the time window of sending mac config request to PF
1205 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1206 		 * then it will be removed at next time. If is TO_ADD, it means
1207 		 * send TO_ADD request failed, so just remove the mac node.
1208 		 */
1209 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1210 		if (new_node) {
1211 			hclgevf_update_mac_node(new_node, mac_node->state);
1212 			list_del(&mac_node->node);
1213 			kfree(mac_node);
1214 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1215 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1216 			list_move_tail(&mac_node->node, mac_list);
1217 		} else {
1218 			list_del(&mac_node->node);
1219 			kfree(mac_node);
1220 		}
1221 	}
1222 }
1223 
1224 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1225 				       struct list_head *mac_list)
1226 {
1227 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1228 
1229 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1230 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1231 		if (new_node) {
1232 			/* If the mac addr is exist in the mac list, it means
1233 			 * received a new request TO_ADD during the time window
1234 			 * of sending mac addr configurrequest to PF, so just
1235 			 * change the mac state to ACTIVE.
1236 			 */
1237 			new_node->state = HCLGEVF_MAC_ACTIVE;
1238 			list_del(&mac_node->node);
1239 			kfree(mac_node);
1240 		} else {
1241 			list_move_tail(&mac_node->node, mac_list);
1242 		}
1243 	}
1244 }
1245 
1246 static void hclgevf_clear_list(struct list_head *list)
1247 {
1248 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1249 
1250 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1251 		list_del(&mac_node->node);
1252 		kfree(mac_node);
1253 	}
1254 }
1255 
1256 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1257 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1258 {
1259 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1260 	struct list_head tmp_add_list, tmp_del_list;
1261 	struct list_head *list;
1262 
1263 	INIT_LIST_HEAD(&tmp_add_list);
1264 	INIT_LIST_HEAD(&tmp_del_list);
1265 
1266 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1267 	 * we can add/delete these mac addr outside the spin lock
1268 	 */
1269 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1270 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1271 
1272 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1273 
1274 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1275 		switch (mac_node->state) {
1276 		case HCLGEVF_MAC_TO_DEL:
1277 			list_move_tail(&mac_node->node, &tmp_del_list);
1278 			break;
1279 		case HCLGEVF_MAC_TO_ADD:
1280 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1281 			if (!new_node)
1282 				goto stop_traverse;
1283 
1284 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1285 			new_node->state = mac_node->state;
1286 			list_add_tail(&new_node->node, &tmp_add_list);
1287 			break;
1288 		default:
1289 			break;
1290 		}
1291 	}
1292 
1293 stop_traverse:
1294 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1295 
1296 	/* delete first, in order to get max mac table space for adding */
1297 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1298 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1299 
1300 	/* if some mac addresses were added/deleted fail, move back to the
1301 	 * mac_list, and retry at next time.
1302 	 */
1303 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1304 
1305 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1306 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1307 
1308 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1309 }
1310 
1311 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1312 {
1313 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1314 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1315 }
1316 
1317 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1318 {
1319 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1320 
1321 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1322 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1323 
1324 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1325 }
1326 
1327 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1328 {
1329 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1330 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1331 	struct hclge_vf_to_pf_msg send_msg;
1332 
1333 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1334 		return -EOPNOTSUPP;
1335 
1336 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1337 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1338 	send_msg.data[0] = enable ? 1 : 0;
1339 
1340 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1341 }
1342 
1343 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1344 				   __be16 proto, u16 vlan_id,
1345 				   bool is_kill)
1346 {
1347 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1348 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1349 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1350 
1351 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1352 	struct hclge_vf_to_pf_msg send_msg;
1353 	int ret;
1354 
1355 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1356 		return -EINVAL;
1357 
1358 	if (proto != htons(ETH_P_8021Q))
1359 		return -EPROTONOSUPPORT;
1360 
1361 	/* When device is resetting or reset failed, firmware is unable to
1362 	 * handle mailbox. Just record the vlan id, and remove it after
1363 	 * reset finished.
1364 	 */
1365 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1366 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1367 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1368 		return -EBUSY;
1369 	}
1370 
1371 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1372 			       HCLGE_MBX_VLAN_FILTER);
1373 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1374 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1375 	       sizeof(vlan_id));
1376 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1377 	       sizeof(proto));
1378 	/* when remove hw vlan filter failed, record the vlan id,
1379 	 * and try to remove it from hw later, to be consistence
1380 	 * with stack.
1381 	 */
1382 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1383 	if (is_kill && ret)
1384 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1385 
1386 	return ret;
1387 }
1388 
1389 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1390 {
1391 #define HCLGEVF_MAX_SYNC_COUNT	60
1392 	struct hnae3_handle *handle = &hdev->nic;
1393 	int ret, sync_cnt = 0;
1394 	u16 vlan_id;
1395 
1396 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1397 	while (vlan_id != VLAN_N_VID) {
1398 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1399 					      vlan_id, true);
1400 		if (ret)
1401 			return;
1402 
1403 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1404 		sync_cnt++;
1405 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1406 			return;
1407 
1408 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1409 	}
1410 }
1411 
1412 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1413 {
1414 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1415 	struct hclge_vf_to_pf_msg send_msg;
1416 
1417 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1418 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1419 	send_msg.data[0] = enable ? 1 : 0;
1420 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1421 }
1422 
1423 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1424 {
1425 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1426 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1427 	struct hclge_vf_to_pf_msg send_msg;
1428 	u8 return_status = 0;
1429 	int ret;
1430 	u16 i;
1431 
1432 	/* disable vf queue before send queue reset msg to PF */
1433 	ret = hclgevf_tqp_enable(handle, false);
1434 	if (ret) {
1435 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1436 			ret);
1437 		return ret;
1438 	}
1439 
1440 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1441 
1442 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1443 				   sizeof(return_status));
1444 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1445 		return ret;
1446 
1447 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1448 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1449 		memcpy(send_msg.data, &i, sizeof(i));
1450 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1451 		if (ret)
1452 			return ret;
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1459 {
1460 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1461 	struct hclge_vf_to_pf_msg send_msg;
1462 
1463 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1464 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1465 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1466 }
1467 
1468 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1469 				 enum hnae3_reset_notify_type type)
1470 {
1471 	struct hnae3_client *client = hdev->nic_client;
1472 	struct hnae3_handle *handle = &hdev->nic;
1473 	int ret;
1474 
1475 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1476 	    !client)
1477 		return 0;
1478 
1479 	if (!client->ops->reset_notify)
1480 		return -EOPNOTSUPP;
1481 
1482 	ret = client->ops->reset_notify(handle, type);
1483 	if (ret)
1484 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1485 			type, ret);
1486 
1487 	return ret;
1488 }
1489 
1490 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1491 				      enum hnae3_reset_notify_type type)
1492 {
1493 	struct hnae3_client *client = hdev->roce_client;
1494 	struct hnae3_handle *handle = &hdev->roce;
1495 	int ret;
1496 
1497 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1498 		return 0;
1499 
1500 	if (!client->ops->reset_notify)
1501 		return -EOPNOTSUPP;
1502 
1503 	ret = client->ops->reset_notify(handle, type);
1504 	if (ret)
1505 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1506 			type, ret);
1507 	return ret;
1508 }
1509 
1510 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1511 {
1512 #define HCLGEVF_RESET_WAIT_US	20000
1513 #define HCLGEVF_RESET_WAIT_CNT	2000
1514 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1515 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1516 
1517 	u32 val;
1518 	int ret;
1519 
1520 	if (hdev->reset_type == HNAE3_VF_RESET)
1521 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1522 					 HCLGEVF_VF_RST_ING, val,
1523 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1524 					 HCLGEVF_RESET_WAIT_US,
1525 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1526 	else
1527 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1528 					 HCLGEVF_RST_ING, val,
1529 					 !(val & HCLGEVF_RST_ING_BITS),
1530 					 HCLGEVF_RESET_WAIT_US,
1531 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1532 
1533 	/* hardware completion status should be available by this time */
1534 	if (ret) {
1535 		dev_err(&hdev->pdev->dev,
1536 			"couldn't get reset done status from h/w, timeout!\n");
1537 		return ret;
1538 	}
1539 
1540 	/* we will wait a bit more to let reset of the stack to complete. This
1541 	 * might happen in case reset assertion was made by PF. Yes, this also
1542 	 * means we might end up waiting bit more even for VF reset.
1543 	 */
1544 	msleep(5000);
1545 
1546 	return 0;
1547 }
1548 
1549 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1550 {
1551 	u32 reg_val;
1552 
1553 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1554 	if (enable)
1555 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1556 	else
1557 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1558 
1559 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1560 			  reg_val);
1561 }
1562 
1563 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1564 {
1565 	int ret;
1566 
1567 	/* uninitialize the nic client */
1568 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1569 	if (ret)
1570 		return ret;
1571 
1572 	/* re-initialize the hclge device */
1573 	ret = hclgevf_reset_hdev(hdev);
1574 	if (ret) {
1575 		dev_err(&hdev->pdev->dev,
1576 			"hclge device re-init failed, VF is disabled!\n");
1577 		return ret;
1578 	}
1579 
1580 	/* bring up the nic client again */
1581 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1582 	if (ret)
1583 		return ret;
1584 
1585 	/* clear handshake status with IMP */
1586 	hclgevf_reset_handshake(hdev, false);
1587 
1588 	/* bring up the nic to enable TX/RX again */
1589 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1590 }
1591 
1592 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1593 {
1594 #define HCLGEVF_RESET_SYNC_TIME 100
1595 
1596 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1597 		struct hclge_vf_to_pf_msg send_msg;
1598 		int ret;
1599 
1600 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1601 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1602 		if (ret) {
1603 			dev_err(&hdev->pdev->dev,
1604 				"failed to assert VF reset, ret = %d\n", ret);
1605 			return ret;
1606 		}
1607 		hdev->rst_stats.vf_func_rst_cnt++;
1608 	}
1609 
1610 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1611 	/* inform hardware that preparatory work is done */
1612 	msleep(HCLGEVF_RESET_SYNC_TIME);
1613 	hclgevf_reset_handshake(hdev, true);
1614 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1615 		 hdev->reset_type);
1616 
1617 	return 0;
1618 }
1619 
1620 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1621 {
1622 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1623 		 hdev->rst_stats.vf_func_rst_cnt);
1624 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1625 		 hdev->rst_stats.flr_rst_cnt);
1626 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1627 		 hdev->rst_stats.vf_rst_cnt);
1628 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1629 		 hdev->rst_stats.rst_done_cnt);
1630 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1631 		 hdev->rst_stats.hw_rst_done_cnt);
1632 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1633 		 hdev->rst_stats.rst_cnt);
1634 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1635 		 hdev->rst_stats.rst_fail_cnt);
1636 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1637 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1638 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1639 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1640 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1641 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1642 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1643 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1644 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1645 }
1646 
1647 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1648 {
1649 	/* recover handshake status with IMP when reset fail */
1650 	hclgevf_reset_handshake(hdev, true);
1651 	hdev->rst_stats.rst_fail_cnt++;
1652 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1653 		hdev->rst_stats.rst_fail_cnt);
1654 
1655 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1656 		set_bit(hdev->reset_type, &hdev->reset_pending);
1657 
1658 	if (hclgevf_is_reset_pending(hdev)) {
1659 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1660 		hclgevf_reset_task_schedule(hdev);
1661 	} else {
1662 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1663 		hclgevf_dump_rst_info(hdev);
1664 	}
1665 }
1666 
1667 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1668 {
1669 	int ret;
1670 
1671 	hdev->rst_stats.rst_cnt++;
1672 
1673 	/* perform reset of the stack & ae device for a client */
1674 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1675 	if (ret)
1676 		return ret;
1677 
1678 	rtnl_lock();
1679 	/* bring down the nic to stop any ongoing TX/RX */
1680 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1681 	rtnl_unlock();
1682 	if (ret)
1683 		return ret;
1684 
1685 	return hclgevf_reset_prepare_wait(hdev);
1686 }
1687 
1688 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1689 {
1690 	int ret;
1691 
1692 	hdev->rst_stats.hw_rst_done_cnt++;
1693 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1694 	if (ret)
1695 		return ret;
1696 
1697 	rtnl_lock();
1698 	/* now, re-initialize the nic client and ae device */
1699 	ret = hclgevf_reset_stack(hdev);
1700 	rtnl_unlock();
1701 	if (ret) {
1702 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1703 		return ret;
1704 	}
1705 
1706 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1707 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1708 	 * times
1709 	 */
1710 	if (ret &&
1711 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1712 		return ret;
1713 
1714 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1715 	if (ret)
1716 		return ret;
1717 
1718 	hdev->last_reset_time = jiffies;
1719 	hdev->rst_stats.rst_done_cnt++;
1720 	hdev->rst_stats.rst_fail_cnt = 0;
1721 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1722 
1723 	return 0;
1724 }
1725 
1726 static void hclgevf_reset(struct hclgevf_dev *hdev)
1727 {
1728 	if (hclgevf_reset_prepare(hdev))
1729 		goto err_reset;
1730 
1731 	/* check if VF could successfully fetch the hardware reset completion
1732 	 * status from the hardware
1733 	 */
1734 	if (hclgevf_reset_wait(hdev)) {
1735 		/* can't do much in this situation, will disable VF */
1736 		dev_err(&hdev->pdev->dev,
1737 			"failed to fetch H/W reset completion status\n");
1738 		goto err_reset;
1739 	}
1740 
1741 	if (hclgevf_reset_rebuild(hdev))
1742 		goto err_reset;
1743 
1744 	return;
1745 
1746 err_reset:
1747 	hclgevf_reset_err_handle(hdev);
1748 }
1749 
1750 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1751 						     unsigned long *addr)
1752 {
1753 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1754 
1755 	/* return the highest priority reset level amongst all */
1756 	if (test_bit(HNAE3_VF_RESET, addr)) {
1757 		rst_level = HNAE3_VF_RESET;
1758 		clear_bit(HNAE3_VF_RESET, addr);
1759 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1760 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1761 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1762 		rst_level = HNAE3_VF_FULL_RESET;
1763 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1764 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1765 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1766 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1767 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1768 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1769 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1770 		rst_level = HNAE3_VF_FUNC_RESET;
1771 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1772 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1773 		rst_level = HNAE3_FLR_RESET;
1774 		clear_bit(HNAE3_FLR_RESET, addr);
1775 	}
1776 
1777 	return rst_level;
1778 }
1779 
1780 static void hclgevf_reset_event(struct pci_dev *pdev,
1781 				struct hnae3_handle *handle)
1782 {
1783 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1784 	struct hclgevf_dev *hdev = ae_dev->priv;
1785 
1786 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1787 
1788 	if (hdev->default_reset_request)
1789 		hdev->reset_level =
1790 			hclgevf_get_reset_level(hdev,
1791 						&hdev->default_reset_request);
1792 	else
1793 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1794 
1795 	/* reset of this VF requested */
1796 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1797 	hclgevf_reset_task_schedule(hdev);
1798 
1799 	hdev->last_reset_time = jiffies;
1800 }
1801 
1802 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1803 					  enum hnae3_reset_type rst_type)
1804 {
1805 	struct hclgevf_dev *hdev = ae_dev->priv;
1806 
1807 	set_bit(rst_type, &hdev->default_reset_request);
1808 }
1809 
1810 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1811 {
1812 	writel(en ? 1 : 0, vector->addr);
1813 }
1814 
1815 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1816 					  enum hnae3_reset_type rst_type)
1817 {
1818 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
1819 #define HCLGEVF_RESET_RETRY_CNT		5
1820 
1821 	struct hclgevf_dev *hdev = ae_dev->priv;
1822 	int retry_cnt = 0;
1823 	int ret;
1824 
1825 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1826 		down(&hdev->reset_sem);
1827 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1828 		hdev->reset_type = rst_type;
1829 		ret = hclgevf_reset_prepare(hdev);
1830 		if (!ret && !hdev->reset_pending)
1831 			break;
1832 
1833 		dev_err(&hdev->pdev->dev,
1834 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1835 			ret, hdev->reset_pending, retry_cnt);
1836 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1837 		up(&hdev->reset_sem);
1838 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1839 	}
1840 
1841 	/* disable misc vector before reset done */
1842 	hclgevf_enable_vector(&hdev->misc_vector, false);
1843 
1844 	if (hdev->reset_type == HNAE3_FLR_RESET)
1845 		hdev->rst_stats.flr_rst_cnt++;
1846 }
1847 
1848 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1849 {
1850 	struct hclgevf_dev *hdev = ae_dev->priv;
1851 	int ret;
1852 
1853 	hclgevf_enable_vector(&hdev->misc_vector, true);
1854 
1855 	ret = hclgevf_reset_rebuild(hdev);
1856 	if (ret)
1857 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1858 			 ret);
1859 
1860 	hdev->reset_type = HNAE3_NONE_RESET;
1861 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1862 	up(&hdev->reset_sem);
1863 }
1864 
1865 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1866 {
1867 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1868 
1869 	return hdev->fw_version;
1870 }
1871 
1872 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1873 {
1874 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1875 
1876 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1877 					    HCLGEVF_MISC_VECTOR_NUM);
1878 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1879 	/* vector status always valid for Vector 0 */
1880 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1881 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1882 
1883 	hdev->num_msi_left -= 1;
1884 	hdev->num_msi_used += 1;
1885 }
1886 
1887 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1888 {
1889 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1890 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1891 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1892 			      &hdev->state))
1893 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1894 }
1895 
1896 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1897 {
1898 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1899 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1900 			      &hdev->state))
1901 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1902 }
1903 
1904 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1905 				  unsigned long delay)
1906 {
1907 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1908 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1909 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1910 }
1911 
1912 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1913 {
1914 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1915 
1916 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1917 		return;
1918 
1919 	down(&hdev->reset_sem);
1920 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1921 
1922 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1923 			       &hdev->reset_state)) {
1924 		/* PF has intimated that it is about to reset the hardware.
1925 		 * We now have to poll & check if hardware has actually
1926 		 * completed the reset sequence. On hardware reset completion,
1927 		 * VF needs to reset the client and ae device.
1928 		 */
1929 		hdev->reset_attempts = 0;
1930 
1931 		hdev->last_reset_time = jiffies;
1932 		hdev->reset_type =
1933 			hclgevf_get_reset_level(hdev, &hdev->reset_pending);
1934 		if (hdev->reset_type != HNAE3_NONE_RESET)
1935 			hclgevf_reset(hdev);
1936 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1937 				      &hdev->reset_state)) {
1938 		/* we could be here when either of below happens:
1939 		 * 1. reset was initiated due to watchdog timeout caused by
1940 		 *    a. IMP was earlier reset and our TX got choked down and
1941 		 *       which resulted in watchdog reacting and inducing VF
1942 		 *       reset. This also means our cmdq would be unreliable.
1943 		 *    b. problem in TX due to other lower layer(example link
1944 		 *       layer not functioning properly etc.)
1945 		 * 2. VF reset might have been initiated due to some config
1946 		 *    change.
1947 		 *
1948 		 * NOTE: Theres no clear way to detect above cases than to react
1949 		 * to the response of PF for this reset request. PF will ack the
1950 		 * 1b and 2. cases but we will not get any intimation about 1a
1951 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1952 		 * communication between PF and VF would be broken.
1953 		 *
1954 		 * if we are never geting into pending state it means either:
1955 		 * 1. PF is not receiving our request which could be due to IMP
1956 		 *    reset
1957 		 * 2. PF is screwed
1958 		 * We cannot do much for 2. but to check first we can try reset
1959 		 * our PCIe + stack and see if it alleviates the problem.
1960 		 */
1961 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1962 			/* prepare for full reset of stack + pcie interface */
1963 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1964 
1965 			/* "defer" schedule the reset task again */
1966 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1967 		} else {
1968 			hdev->reset_attempts++;
1969 
1970 			set_bit(hdev->reset_level, &hdev->reset_pending);
1971 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1972 		}
1973 		hclgevf_reset_task_schedule(hdev);
1974 	}
1975 
1976 	hdev->reset_type = HNAE3_NONE_RESET;
1977 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1978 	up(&hdev->reset_sem);
1979 }
1980 
1981 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1982 {
1983 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1984 		return;
1985 
1986 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1987 		return;
1988 
1989 	hclgevf_mbx_async_handler(hdev);
1990 
1991 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1992 }
1993 
1994 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1995 {
1996 	struct hclge_vf_to_pf_msg send_msg;
1997 	int ret;
1998 
1999 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
2000 		return;
2001 
2002 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2003 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2004 	if (ret)
2005 		dev_err(&hdev->pdev->dev,
2006 			"VF sends keep alive cmd failed(=%d)\n", ret);
2007 }
2008 
2009 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2010 {
2011 	unsigned long delta = round_jiffies_relative(HZ);
2012 	struct hnae3_handle *handle = &hdev->nic;
2013 
2014 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2015 		return;
2016 
2017 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2018 		delta = jiffies - hdev->last_serv_processed;
2019 
2020 		if (delta < round_jiffies_relative(HZ)) {
2021 			delta = round_jiffies_relative(HZ) - delta;
2022 			goto out;
2023 		}
2024 	}
2025 
2026 	hdev->serv_processed_cnt++;
2027 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2028 		hclgevf_keep_alive(hdev);
2029 
2030 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2031 		hdev->last_serv_processed = jiffies;
2032 		goto out;
2033 	}
2034 
2035 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2036 		hclgevf_tqps_update_stats(handle);
2037 
2038 	/* VF does not need to request link status when this bit is set, because
2039 	 * PF will push its link status to VFs when link status changed.
2040 	 */
2041 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
2042 		hclgevf_request_link_info(hdev);
2043 
2044 	hclgevf_update_link_mode(hdev);
2045 
2046 	hclgevf_sync_vlan_filter(hdev);
2047 
2048 	hclgevf_sync_mac_table(hdev);
2049 
2050 	hclgevf_sync_promisc_mode(hdev);
2051 
2052 	hdev->last_serv_processed = jiffies;
2053 
2054 out:
2055 	hclgevf_task_schedule(hdev, delta);
2056 }
2057 
2058 static void hclgevf_service_task(struct work_struct *work)
2059 {
2060 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2061 						service_task.work);
2062 
2063 	hclgevf_reset_service_task(hdev);
2064 	hclgevf_mailbox_service_task(hdev);
2065 	hclgevf_periodic_service_task(hdev);
2066 
2067 	/* Handle reset and mbx again in case periodical task delays the
2068 	 * handling by calling hclgevf_task_schedule() in
2069 	 * hclgevf_periodic_service_task()
2070 	 */
2071 	hclgevf_reset_service_task(hdev);
2072 	hclgevf_mailbox_service_task(hdev);
2073 }
2074 
2075 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2076 {
2077 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
2078 }
2079 
2080 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2081 						      u32 *clearval)
2082 {
2083 	u32 val, cmdq_stat_reg, rst_ing_reg;
2084 
2085 	/* fetch the events from their corresponding regs */
2086 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2087 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
2088 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2089 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2090 		dev_info(&hdev->pdev->dev,
2091 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2092 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2093 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2094 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
2095 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2096 		hdev->rst_stats.vf_rst_cnt++;
2097 		/* set up VF hardware reset status, its PF will clear
2098 		 * this status when PF has initialized done.
2099 		 */
2100 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2101 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2102 				  val | HCLGEVF_VF_RST_ING_BIT);
2103 		return HCLGEVF_VECTOR0_EVENT_RST;
2104 	}
2105 
2106 	/* check for vector0 mailbox(=CMDQ RX) event source */
2107 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2108 		/* for revision 0x21, clearing interrupt is writing bit 0
2109 		 * to the clear register, writing bit 1 means to keep the
2110 		 * old value.
2111 		 * for revision 0x20, the clear register is a read & write
2112 		 * register, so we should just write 0 to the bit we are
2113 		 * handling, and keep other bits as cmdq_stat_reg.
2114 		 */
2115 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2116 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2117 		else
2118 			*clearval = cmdq_stat_reg &
2119 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2120 
2121 		return HCLGEVF_VECTOR0_EVENT_MBX;
2122 	}
2123 
2124 	/* print other vector0 event source */
2125 	dev_info(&hdev->pdev->dev,
2126 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2127 		 cmdq_stat_reg);
2128 
2129 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2130 }
2131 
2132 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2133 {
2134 	enum hclgevf_evt_cause event_cause;
2135 	struct hclgevf_dev *hdev = data;
2136 	u32 clearval;
2137 
2138 	hclgevf_enable_vector(&hdev->misc_vector, false);
2139 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2140 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2141 		hclgevf_clear_event_cause(hdev, clearval);
2142 
2143 	switch (event_cause) {
2144 	case HCLGEVF_VECTOR0_EVENT_RST:
2145 		hclgevf_reset_task_schedule(hdev);
2146 		break;
2147 	case HCLGEVF_VECTOR0_EVENT_MBX:
2148 		hclgevf_mbx_handler(hdev);
2149 		break;
2150 	default:
2151 		break;
2152 	}
2153 
2154 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2155 		hclgevf_enable_vector(&hdev->misc_vector, true);
2156 
2157 	return IRQ_HANDLED;
2158 }
2159 
2160 static int hclgevf_configure(struct hclgevf_dev *hdev)
2161 {
2162 	int ret;
2163 
2164 	hdev->gro_en = true;
2165 
2166 	ret = hclgevf_get_basic_info(hdev);
2167 	if (ret)
2168 		return ret;
2169 
2170 	/* get current port based vlan state from PF */
2171 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2172 	if (ret)
2173 		return ret;
2174 
2175 	/* get queue configuration from PF */
2176 	ret = hclgevf_get_queue_info(hdev);
2177 	if (ret)
2178 		return ret;
2179 
2180 	/* get queue depth info from PF */
2181 	ret = hclgevf_get_queue_depth(hdev);
2182 	if (ret)
2183 		return ret;
2184 
2185 	return hclgevf_get_pf_media_type(hdev);
2186 }
2187 
2188 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2189 {
2190 	struct pci_dev *pdev = ae_dev->pdev;
2191 	struct hclgevf_dev *hdev;
2192 
2193 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2194 	if (!hdev)
2195 		return -ENOMEM;
2196 
2197 	hdev->pdev = pdev;
2198 	hdev->ae_dev = ae_dev;
2199 	ae_dev->priv = hdev;
2200 
2201 	return 0;
2202 }
2203 
2204 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2205 {
2206 	struct hnae3_handle *roce = &hdev->roce;
2207 	struct hnae3_handle *nic = &hdev->nic;
2208 
2209 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2210 
2211 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2212 	    hdev->num_msi_left == 0)
2213 		return -EINVAL;
2214 
2215 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2216 
2217 	roce->rinfo.netdev = nic->kinfo.netdev;
2218 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2219 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2220 
2221 	roce->pdev = nic->pdev;
2222 	roce->ae_algo = nic->ae_algo;
2223 	roce->numa_node_mask = nic->numa_node_mask;
2224 
2225 	return 0;
2226 }
2227 
2228 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2229 {
2230 	struct hclgevf_cfg_gro_status_cmd *req;
2231 	struct hclge_desc desc;
2232 	int ret;
2233 
2234 	if (!hnae3_dev_gro_supported(hdev))
2235 		return 0;
2236 
2237 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2238 				     false);
2239 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2240 
2241 	req->gro_en = hdev->gro_en ? 1 : 0;
2242 
2243 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2244 	if (ret)
2245 		dev_err(&hdev->pdev->dev,
2246 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2247 
2248 	return ret;
2249 }
2250 
2251 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2252 {
2253 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2254 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2255 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2256 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2257 	int ret;
2258 
2259 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2260 		ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2261 						  rss_cfg->rss_algo,
2262 						  rss_cfg->rss_hash_key);
2263 		if (ret)
2264 			return ret;
2265 
2266 		ret = hclge_comm_set_rss_input_tuple(&hdev->nic, &hdev->hw.hw,
2267 						     false, rss_cfg);
2268 		if (ret)
2269 			return ret;
2270 	}
2271 
2272 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2273 					     rss_cfg->rss_indirection_tbl);
2274 	if (ret)
2275 		return ret;
2276 
2277 	hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2278 				   tc_offset, tc_valid, tc_size);
2279 
2280 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2281 					  tc_valid, tc_size);
2282 }
2283 
2284 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2285 {
2286 	struct hnae3_handle *nic = &hdev->nic;
2287 	int ret;
2288 
2289 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2290 	if (ret) {
2291 		dev_err(&hdev->pdev->dev,
2292 			"failed to enable rx vlan offload, ret = %d\n", ret);
2293 		return ret;
2294 	}
2295 
2296 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2297 				       false);
2298 }
2299 
2300 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2301 {
2302 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2303 
2304 	unsigned long last = hdev->serv_processed_cnt;
2305 	int i = 0;
2306 
2307 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2308 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2309 	       last == hdev->serv_processed_cnt)
2310 		usleep_range(1, 1);
2311 }
2312 
2313 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2314 {
2315 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2316 
2317 	if (enable) {
2318 		hclgevf_task_schedule(hdev, 0);
2319 	} else {
2320 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2321 
2322 		/* flush memory to make sure DOWN is seen by service task */
2323 		smp_mb__before_atomic();
2324 		hclgevf_flush_link_update(hdev);
2325 	}
2326 }
2327 
2328 static int hclgevf_ae_start(struct hnae3_handle *handle)
2329 {
2330 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2331 
2332 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2333 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2334 
2335 	hclgevf_reset_tqp_stats(handle);
2336 
2337 	hclgevf_request_link_info(hdev);
2338 
2339 	hclgevf_update_link_mode(hdev);
2340 
2341 	return 0;
2342 }
2343 
2344 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2345 {
2346 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2347 
2348 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2349 
2350 	if (hdev->reset_type != HNAE3_VF_RESET)
2351 		hclgevf_reset_tqp(handle);
2352 
2353 	hclgevf_reset_tqp_stats(handle);
2354 	hclgevf_update_link_status(hdev, 0);
2355 }
2356 
2357 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2358 {
2359 #define HCLGEVF_STATE_ALIVE	1
2360 #define HCLGEVF_STATE_NOT_ALIVE	0
2361 
2362 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2363 	struct hclge_vf_to_pf_msg send_msg;
2364 
2365 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2366 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2367 				HCLGEVF_STATE_NOT_ALIVE;
2368 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2369 }
2370 
2371 static int hclgevf_client_start(struct hnae3_handle *handle)
2372 {
2373 	return hclgevf_set_alive(handle, true);
2374 }
2375 
2376 static void hclgevf_client_stop(struct hnae3_handle *handle)
2377 {
2378 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2379 	int ret;
2380 
2381 	ret = hclgevf_set_alive(handle, false);
2382 	if (ret)
2383 		dev_warn(&hdev->pdev->dev,
2384 			 "%s failed %d\n", __func__, ret);
2385 }
2386 
2387 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2388 {
2389 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2390 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2391 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2392 
2393 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2394 
2395 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2396 	sema_init(&hdev->reset_sem, 1);
2397 
2398 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2399 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2400 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2401 
2402 	/* bring the device down */
2403 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2404 }
2405 
2406 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2407 {
2408 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2409 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2410 
2411 	if (hdev->service_task.work.func)
2412 		cancel_delayed_work_sync(&hdev->service_task);
2413 
2414 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2415 }
2416 
2417 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2418 {
2419 	struct pci_dev *pdev = hdev->pdev;
2420 	int vectors;
2421 	int i;
2422 
2423 	if (hnae3_dev_roce_supported(hdev))
2424 		vectors = pci_alloc_irq_vectors(pdev,
2425 						hdev->roce_base_msix_offset + 1,
2426 						hdev->num_msi,
2427 						PCI_IRQ_MSIX);
2428 	else
2429 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2430 						hdev->num_msi,
2431 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2432 
2433 	if (vectors < 0) {
2434 		dev_err(&pdev->dev,
2435 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2436 			vectors);
2437 		return vectors;
2438 	}
2439 	if (vectors < hdev->num_msi)
2440 		dev_warn(&hdev->pdev->dev,
2441 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2442 			 hdev->num_msi, vectors);
2443 
2444 	hdev->num_msi = vectors;
2445 	hdev->num_msi_left = vectors;
2446 
2447 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2448 					   sizeof(u16), GFP_KERNEL);
2449 	if (!hdev->vector_status) {
2450 		pci_free_irq_vectors(pdev);
2451 		return -ENOMEM;
2452 	}
2453 
2454 	for (i = 0; i < hdev->num_msi; i++)
2455 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2456 
2457 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2458 					sizeof(int), GFP_KERNEL);
2459 	if (!hdev->vector_irq) {
2460 		devm_kfree(&pdev->dev, hdev->vector_status);
2461 		pci_free_irq_vectors(pdev);
2462 		return -ENOMEM;
2463 	}
2464 
2465 	return 0;
2466 }
2467 
2468 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2469 {
2470 	struct pci_dev *pdev = hdev->pdev;
2471 
2472 	devm_kfree(&pdev->dev, hdev->vector_status);
2473 	devm_kfree(&pdev->dev, hdev->vector_irq);
2474 	pci_free_irq_vectors(pdev);
2475 }
2476 
2477 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2478 {
2479 	int ret;
2480 
2481 	hclgevf_get_misc_vector(hdev);
2482 
2483 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2484 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2485 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2486 			  0, hdev->misc_vector.name, hdev);
2487 	if (ret) {
2488 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2489 			hdev->misc_vector.vector_irq);
2490 		return ret;
2491 	}
2492 
2493 	hclgevf_clear_event_cause(hdev, 0);
2494 
2495 	/* enable misc. vector(vector 0) */
2496 	hclgevf_enable_vector(&hdev->misc_vector, true);
2497 
2498 	return ret;
2499 }
2500 
2501 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2502 {
2503 	/* disable misc vector(vector 0) */
2504 	hclgevf_enable_vector(&hdev->misc_vector, false);
2505 	synchronize_irq(hdev->misc_vector.vector_irq);
2506 	free_irq(hdev->misc_vector.vector_irq, hdev);
2507 	hclgevf_free_vector(hdev, 0);
2508 }
2509 
2510 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2511 {
2512 	struct device *dev = &hdev->pdev->dev;
2513 
2514 	dev_info(dev, "VF info begin:\n");
2515 
2516 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2517 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2518 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2519 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2520 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2521 	dev_info(dev, "PF media type of this VF: %u\n",
2522 		 hdev->hw.mac.media_type);
2523 
2524 	dev_info(dev, "VF info end.\n");
2525 }
2526 
2527 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2528 					    struct hnae3_client *client)
2529 {
2530 	struct hclgevf_dev *hdev = ae_dev->priv;
2531 	int rst_cnt = hdev->rst_stats.rst_cnt;
2532 	int ret;
2533 
2534 	ret = client->ops->init_instance(&hdev->nic);
2535 	if (ret)
2536 		return ret;
2537 
2538 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2539 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2540 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2541 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2542 
2543 		client->ops->uninit_instance(&hdev->nic, 0);
2544 		return -EBUSY;
2545 	}
2546 
2547 	hnae3_set_client_init_flag(client, ae_dev, 1);
2548 
2549 	if (netif_msg_drv(&hdev->nic))
2550 		hclgevf_info_show(hdev);
2551 
2552 	return 0;
2553 }
2554 
2555 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2556 					     struct hnae3_client *client)
2557 {
2558 	struct hclgevf_dev *hdev = ae_dev->priv;
2559 	int ret;
2560 
2561 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2562 	    !hdev->nic_client)
2563 		return 0;
2564 
2565 	ret = hclgevf_init_roce_base_info(hdev);
2566 	if (ret)
2567 		return ret;
2568 
2569 	ret = client->ops->init_instance(&hdev->roce);
2570 	if (ret)
2571 		return ret;
2572 
2573 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2574 	hnae3_set_client_init_flag(client, ae_dev, 1);
2575 
2576 	return 0;
2577 }
2578 
2579 static int hclgevf_init_client_instance(struct hnae3_client *client,
2580 					struct hnae3_ae_dev *ae_dev)
2581 {
2582 	struct hclgevf_dev *hdev = ae_dev->priv;
2583 	int ret;
2584 
2585 	switch (client->type) {
2586 	case HNAE3_CLIENT_KNIC:
2587 		hdev->nic_client = client;
2588 		hdev->nic.client = client;
2589 
2590 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2591 		if (ret)
2592 			goto clear_nic;
2593 
2594 		ret = hclgevf_init_roce_client_instance(ae_dev,
2595 							hdev->roce_client);
2596 		if (ret)
2597 			goto clear_roce;
2598 
2599 		break;
2600 	case HNAE3_CLIENT_ROCE:
2601 		if (hnae3_dev_roce_supported(hdev)) {
2602 			hdev->roce_client = client;
2603 			hdev->roce.client = client;
2604 		}
2605 
2606 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2607 		if (ret)
2608 			goto clear_roce;
2609 
2610 		break;
2611 	default:
2612 		return -EINVAL;
2613 	}
2614 
2615 	return 0;
2616 
2617 clear_nic:
2618 	hdev->nic_client = NULL;
2619 	hdev->nic.client = NULL;
2620 	return ret;
2621 clear_roce:
2622 	hdev->roce_client = NULL;
2623 	hdev->roce.client = NULL;
2624 	return ret;
2625 }
2626 
2627 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2628 					   struct hnae3_ae_dev *ae_dev)
2629 {
2630 	struct hclgevf_dev *hdev = ae_dev->priv;
2631 
2632 	/* un-init roce, if it exists */
2633 	if (hdev->roce_client) {
2634 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2635 			msleep(HCLGEVF_WAIT_RESET_DONE);
2636 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2637 
2638 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2639 		hdev->roce_client = NULL;
2640 		hdev->roce.client = NULL;
2641 	}
2642 
2643 	/* un-init nic/unic, if this was not called by roce client */
2644 	if (client->ops->uninit_instance && hdev->nic_client &&
2645 	    client->type != HNAE3_CLIENT_ROCE) {
2646 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2647 			msleep(HCLGEVF_WAIT_RESET_DONE);
2648 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2649 
2650 		client->ops->uninit_instance(&hdev->nic, 0);
2651 		hdev->nic_client = NULL;
2652 		hdev->nic.client = NULL;
2653 	}
2654 }
2655 
2656 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2657 {
2658 #define HCLGEVF_MEM_BAR		4
2659 
2660 	struct pci_dev *pdev = hdev->pdev;
2661 	struct hclgevf_hw *hw = &hdev->hw;
2662 
2663 	/* for device does not have device memory, return directly */
2664 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2665 		return 0;
2666 
2667 	hw->hw.mem_base =
2668 		devm_ioremap_wc(&pdev->dev,
2669 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2670 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2671 	if (!hw->hw.mem_base) {
2672 		dev_err(&pdev->dev, "failed to map device memory\n");
2673 		return -EFAULT;
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2680 {
2681 	struct pci_dev *pdev = hdev->pdev;
2682 	struct hclgevf_hw *hw;
2683 	int ret;
2684 
2685 	ret = pci_enable_device(pdev);
2686 	if (ret) {
2687 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2688 		return ret;
2689 	}
2690 
2691 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2692 	if (ret) {
2693 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2694 		goto err_disable_device;
2695 	}
2696 
2697 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2698 	if (ret) {
2699 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2700 		goto err_disable_device;
2701 	}
2702 
2703 	pci_set_master(pdev);
2704 	hw = &hdev->hw;
2705 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
2706 	if (!hw->hw.io_base) {
2707 		dev_err(&pdev->dev, "can't map configuration register space\n");
2708 		ret = -ENOMEM;
2709 		goto err_clr_master;
2710 	}
2711 
2712 	ret = hclgevf_dev_mem_map(hdev);
2713 	if (ret)
2714 		goto err_unmap_io_base;
2715 
2716 	return 0;
2717 
2718 err_unmap_io_base:
2719 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2720 err_clr_master:
2721 	pci_clear_master(pdev);
2722 	pci_release_regions(pdev);
2723 err_disable_device:
2724 	pci_disable_device(pdev);
2725 
2726 	return ret;
2727 }
2728 
2729 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2730 {
2731 	struct pci_dev *pdev = hdev->pdev;
2732 
2733 	if (hdev->hw.hw.mem_base)
2734 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2735 
2736 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2737 	pci_clear_master(pdev);
2738 	pci_release_regions(pdev);
2739 	pci_disable_device(pdev);
2740 }
2741 
2742 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2743 {
2744 	struct hclgevf_query_res_cmd *req;
2745 	struct hclge_desc desc;
2746 	int ret;
2747 
2748 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2749 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2750 	if (ret) {
2751 		dev_err(&hdev->pdev->dev,
2752 			"query vf resource failed, ret = %d.\n", ret);
2753 		return ret;
2754 	}
2755 
2756 	req = (struct hclgevf_query_res_cmd *)desc.data;
2757 
2758 	if (hnae3_dev_roce_supported(hdev)) {
2759 		hdev->roce_base_msix_offset =
2760 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2761 				HCLGEVF_MSIX_OFT_ROCEE_M,
2762 				HCLGEVF_MSIX_OFT_ROCEE_S);
2763 		hdev->num_roce_msix =
2764 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2765 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2766 
2767 		/* nic's msix numbers is always equals to the roce's. */
2768 		hdev->num_nic_msix = hdev->num_roce_msix;
2769 
2770 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2771 		 * are queued before Roce vectors. The offset is fixed to 64.
2772 		 */
2773 		hdev->num_msi = hdev->num_roce_msix +
2774 				hdev->roce_base_msix_offset;
2775 	} else {
2776 		hdev->num_msi =
2777 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2778 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2779 
2780 		hdev->num_nic_msix = hdev->num_msi;
2781 	}
2782 
2783 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2784 		dev_err(&hdev->pdev->dev,
2785 			"Just %u msi resources, not enough for vf(min:2).\n",
2786 			hdev->num_nic_msix);
2787 		return -EINVAL;
2788 	}
2789 
2790 	return 0;
2791 }
2792 
2793 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2794 {
2795 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
2796 
2797 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2798 
2799 	ae_dev->dev_specs.max_non_tso_bd_num =
2800 					HCLGEVF_MAX_NON_TSO_BD_NUM;
2801 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2802 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2803 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2804 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2805 }
2806 
2807 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2808 				    struct hclge_desc *desc)
2809 {
2810 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2811 	struct hclgevf_dev_specs_0_cmd *req0;
2812 	struct hclgevf_dev_specs_1_cmd *req1;
2813 
2814 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2815 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2816 
2817 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2818 	ae_dev->dev_specs.rss_ind_tbl_size =
2819 					le16_to_cpu(req0->rss_ind_tbl_size);
2820 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2821 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2822 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2823 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2824 }
2825 
2826 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2827 {
2828 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2829 
2830 	if (!dev_specs->max_non_tso_bd_num)
2831 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2832 	if (!dev_specs->rss_ind_tbl_size)
2833 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2834 	if (!dev_specs->rss_key_size)
2835 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2836 	if (!dev_specs->max_int_gl)
2837 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2838 	if (!dev_specs->max_frm_size)
2839 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2840 }
2841 
2842 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2843 {
2844 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2845 	int ret;
2846 	int i;
2847 
2848 	/* set default specifications as devices lower than version V3 do not
2849 	 * support querying specifications from firmware.
2850 	 */
2851 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2852 		hclgevf_set_default_dev_specs(hdev);
2853 		return 0;
2854 	}
2855 
2856 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2857 		hclgevf_cmd_setup_basic_desc(&desc[i],
2858 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
2859 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2860 	}
2861 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
2862 				     true);
2863 
2864 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2865 	if (ret)
2866 		return ret;
2867 
2868 	hclgevf_parse_dev_specs(hdev, desc);
2869 	hclgevf_check_dev_specs(hdev);
2870 
2871 	return 0;
2872 }
2873 
2874 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2875 {
2876 	struct pci_dev *pdev = hdev->pdev;
2877 	int ret = 0;
2878 
2879 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2880 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2881 		hclgevf_misc_irq_uninit(hdev);
2882 		hclgevf_uninit_msi(hdev);
2883 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2884 	}
2885 
2886 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2887 		pci_set_master(pdev);
2888 		ret = hclgevf_init_msi(hdev);
2889 		if (ret) {
2890 			dev_err(&pdev->dev,
2891 				"failed(%d) to init MSI/MSI-X\n", ret);
2892 			return ret;
2893 		}
2894 
2895 		ret = hclgevf_misc_irq_init(hdev);
2896 		if (ret) {
2897 			hclgevf_uninit_msi(hdev);
2898 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2899 				ret);
2900 			return ret;
2901 		}
2902 
2903 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2904 	}
2905 
2906 	return ret;
2907 }
2908 
2909 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2910 {
2911 	struct hclge_vf_to_pf_msg send_msg;
2912 
2913 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2914 			       HCLGE_MBX_VPORT_LIST_CLEAR);
2915 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2916 }
2917 
2918 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2919 {
2920 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2921 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2922 }
2923 
2924 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2925 {
2926 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2927 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2928 }
2929 
2930 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2931 {
2932 	struct pci_dev *pdev = hdev->pdev;
2933 	int ret;
2934 
2935 	ret = hclgevf_pci_reset(hdev);
2936 	if (ret) {
2937 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2938 		return ret;
2939 	}
2940 
2941 	hclgevf_arq_init(hdev);
2942 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2943 				  &hdev->fw_version, false,
2944 				  hdev->reset_pending);
2945 	if (ret) {
2946 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2947 		return ret;
2948 	}
2949 
2950 	ret = hclgevf_rss_init_hw(hdev);
2951 	if (ret) {
2952 		dev_err(&hdev->pdev->dev,
2953 			"failed(%d) to initialize RSS\n", ret);
2954 		return ret;
2955 	}
2956 
2957 	ret = hclgevf_config_gro(hdev);
2958 	if (ret)
2959 		return ret;
2960 
2961 	ret = hclgevf_init_vlan_config(hdev);
2962 	if (ret) {
2963 		dev_err(&hdev->pdev->dev,
2964 			"failed(%d) to initialize VLAN config\n", ret);
2965 		return ret;
2966 	}
2967 
2968 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2969 
2970 	hclgevf_init_rxd_adv_layout(hdev);
2971 
2972 	dev_info(&hdev->pdev->dev, "Reset done\n");
2973 
2974 	return 0;
2975 }
2976 
2977 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2978 {
2979 	struct pci_dev *pdev = hdev->pdev;
2980 	int ret;
2981 
2982 	ret = hclgevf_pci_init(hdev);
2983 	if (ret)
2984 		return ret;
2985 
2986 	ret = hclgevf_devlink_init(hdev);
2987 	if (ret)
2988 		goto err_devlink_init;
2989 
2990 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2991 	if (ret)
2992 		goto err_cmd_queue_init;
2993 
2994 	hclgevf_arq_init(hdev);
2995 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2996 				  &hdev->fw_version, false,
2997 				  hdev->reset_pending);
2998 	if (ret)
2999 		goto err_cmd_init;
3000 
3001 	/* Get vf resource */
3002 	ret = hclgevf_query_vf_resource(hdev);
3003 	if (ret)
3004 		goto err_cmd_init;
3005 
3006 	ret = hclgevf_query_dev_specs(hdev);
3007 	if (ret) {
3008 		dev_err(&pdev->dev,
3009 			"failed to query dev specifications, ret = %d\n", ret);
3010 		goto err_cmd_init;
3011 	}
3012 
3013 	ret = hclgevf_init_msi(hdev);
3014 	if (ret) {
3015 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3016 		goto err_cmd_init;
3017 	}
3018 
3019 	hclgevf_state_init(hdev);
3020 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3021 	hdev->reset_type = HNAE3_NONE_RESET;
3022 
3023 	ret = hclgevf_misc_irq_init(hdev);
3024 	if (ret)
3025 		goto err_misc_irq_init;
3026 
3027 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3028 
3029 	ret = hclgevf_configure(hdev);
3030 	if (ret) {
3031 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3032 		goto err_config;
3033 	}
3034 
3035 	ret = hclgevf_alloc_tqps(hdev);
3036 	if (ret) {
3037 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3038 		goto err_config;
3039 	}
3040 
3041 	ret = hclgevf_set_handle_info(hdev);
3042 	if (ret)
3043 		goto err_config;
3044 
3045 	ret = hclgevf_config_gro(hdev);
3046 	if (ret)
3047 		goto err_config;
3048 
3049 	/* Initialize RSS for this VF */
3050 	ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
3051 				      &hdev->rss_cfg);
3052 	if (ret) {
3053 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3054 		goto err_config;
3055 	}
3056 
3057 	ret = hclgevf_rss_init_hw(hdev);
3058 	if (ret) {
3059 		dev_err(&hdev->pdev->dev,
3060 			"failed(%d) to initialize RSS\n", ret);
3061 		goto err_config;
3062 	}
3063 
3064 	/* ensure vf tbl list as empty before init*/
3065 	ret = hclgevf_clear_vport_list(hdev);
3066 	if (ret) {
3067 		dev_err(&pdev->dev,
3068 			"failed to clear tbl list configuration, ret = %d.\n",
3069 			ret);
3070 		goto err_config;
3071 	}
3072 
3073 	ret = hclgevf_init_vlan_config(hdev);
3074 	if (ret) {
3075 		dev_err(&hdev->pdev->dev,
3076 			"failed(%d) to initialize VLAN config\n", ret);
3077 		goto err_config;
3078 	}
3079 
3080 	hclgevf_init_rxd_adv_layout(hdev);
3081 
3082 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
3083 
3084 	hdev->last_reset_time = jiffies;
3085 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3086 		 HCLGEVF_DRIVER_NAME);
3087 
3088 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3089 
3090 	return 0;
3091 
3092 err_config:
3093 	hclgevf_misc_irq_uninit(hdev);
3094 err_misc_irq_init:
3095 	hclgevf_state_uninit(hdev);
3096 	hclgevf_uninit_msi(hdev);
3097 err_cmd_init:
3098 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3099 err_cmd_queue_init:
3100 	hclgevf_devlink_uninit(hdev);
3101 err_devlink_init:
3102 	hclgevf_pci_uninit(hdev);
3103 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3104 	return ret;
3105 }
3106 
3107 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3108 {
3109 	struct hclge_vf_to_pf_msg send_msg;
3110 
3111 	hclgevf_state_uninit(hdev);
3112 	hclgevf_uninit_rxd_adv_layout(hdev);
3113 
3114 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3115 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3116 
3117 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3118 		hclgevf_misc_irq_uninit(hdev);
3119 		hclgevf_uninit_msi(hdev);
3120 	}
3121 
3122 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3123 	hclgevf_devlink_uninit(hdev);
3124 	hclgevf_pci_uninit(hdev);
3125 	hclgevf_uninit_mac_list(hdev);
3126 }
3127 
3128 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3129 {
3130 	struct pci_dev *pdev = ae_dev->pdev;
3131 	int ret;
3132 
3133 	ret = hclgevf_alloc_hdev(ae_dev);
3134 	if (ret) {
3135 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3136 		return ret;
3137 	}
3138 
3139 	ret = hclgevf_init_hdev(ae_dev->priv);
3140 	if (ret) {
3141 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3142 		return ret;
3143 	}
3144 
3145 	return 0;
3146 }
3147 
3148 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3149 {
3150 	struct hclgevf_dev *hdev = ae_dev->priv;
3151 
3152 	hclgevf_uninit_hdev(hdev);
3153 	ae_dev->priv = NULL;
3154 }
3155 
3156 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3157 {
3158 	struct hnae3_handle *nic = &hdev->nic;
3159 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3160 
3161 	return min_t(u32, hdev->rss_size_max,
3162 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3163 }
3164 
3165 /**
3166  * hclgevf_get_channels - Get the current channels enabled and max supported.
3167  * @handle: hardware information for network interface
3168  * @ch: ethtool channels structure
3169  *
3170  * We don't support separate tx and rx queues as channels. The other count
3171  * represents how many queues are being used for control. max_combined counts
3172  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3173  * q_vectors since we support a lot more queue pairs than q_vectors.
3174  **/
3175 static void hclgevf_get_channels(struct hnae3_handle *handle,
3176 				 struct ethtool_channels *ch)
3177 {
3178 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3179 
3180 	ch->max_combined = hclgevf_get_max_channels(hdev);
3181 	ch->other_count = 0;
3182 	ch->max_other = 0;
3183 	ch->combined_count = handle->kinfo.rss_size;
3184 }
3185 
3186 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3187 					  u16 *alloc_tqps, u16 *max_rss_size)
3188 {
3189 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3190 
3191 	*alloc_tqps = hdev->num_tqps;
3192 	*max_rss_size = hdev->rss_size_max;
3193 }
3194 
3195 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3196 				    u32 new_tqps_num)
3197 {
3198 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3199 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3200 	u16 max_rss_size;
3201 
3202 	kinfo->req_rss_size = new_tqps_num;
3203 
3204 	max_rss_size = min_t(u16, hdev->rss_size_max,
3205 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3206 
3207 	/* Use the user's configuration when it is not larger than
3208 	 * max_rss_size, otherwise, use the maximum specification value.
3209 	 */
3210 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3211 	    kinfo->req_rss_size <= max_rss_size)
3212 		kinfo->rss_size = kinfo->req_rss_size;
3213 	else if (kinfo->rss_size > max_rss_size ||
3214 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3215 		kinfo->rss_size = max_rss_size;
3216 
3217 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3218 }
3219 
3220 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3221 				bool rxfh_configured)
3222 {
3223 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3224 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3225 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3226 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3227 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3228 	u16 cur_rss_size = kinfo->rss_size;
3229 	u16 cur_tqps = kinfo->num_tqps;
3230 	u32 *rss_indir;
3231 	unsigned int i;
3232 	int ret;
3233 
3234 	hclgevf_update_rss_size(handle, new_tqps_num);
3235 
3236 	hclge_comm_get_rss_tc_info(cur_rss_size, hdev->hw_tc_map,
3237 				   tc_offset, tc_valid, tc_size);
3238 	ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3239 					 tc_valid, tc_size);
3240 	if (ret)
3241 		return ret;
3242 
3243 	/* RSS indirection table has been configured by user */
3244 	if (rxfh_configured)
3245 		goto out;
3246 
3247 	/* Reinitializes the rss indirect table according to the new RSS size */
3248 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3249 			    sizeof(u32), GFP_KERNEL);
3250 	if (!rss_indir)
3251 		return -ENOMEM;
3252 
3253 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3254 		rss_indir[i] = i % kinfo->rss_size;
3255 
3256 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3257 
3258 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3259 	if (ret)
3260 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3261 			ret);
3262 
3263 	kfree(rss_indir);
3264 
3265 out:
3266 	if (!ret)
3267 		dev_info(&hdev->pdev->dev,
3268 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3269 			 cur_rss_size, kinfo->rss_size,
3270 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3271 
3272 	return ret;
3273 }
3274 
3275 static int hclgevf_get_status(struct hnae3_handle *handle)
3276 {
3277 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3278 
3279 	return hdev->hw.mac.link;
3280 }
3281 
3282 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3283 					    u8 *auto_neg, u32 *speed,
3284 					    u8 *duplex)
3285 {
3286 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3287 
3288 	if (speed)
3289 		*speed = hdev->hw.mac.speed;
3290 	if (duplex)
3291 		*duplex = hdev->hw.mac.duplex;
3292 	if (auto_neg)
3293 		*auto_neg = AUTONEG_DISABLE;
3294 }
3295 
3296 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3297 				 u8 duplex)
3298 {
3299 	hdev->hw.mac.speed = speed;
3300 	hdev->hw.mac.duplex = duplex;
3301 }
3302 
3303 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3304 {
3305 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3306 	bool gro_en_old = hdev->gro_en;
3307 	int ret;
3308 
3309 	hdev->gro_en = enable;
3310 	ret = hclgevf_config_gro(hdev);
3311 	if (ret)
3312 		hdev->gro_en = gro_en_old;
3313 
3314 	return ret;
3315 }
3316 
3317 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3318 				   u8 *module_type)
3319 {
3320 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3321 
3322 	if (media_type)
3323 		*media_type = hdev->hw.mac.media_type;
3324 
3325 	if (module_type)
3326 		*module_type = hdev->hw.mac.module_type;
3327 }
3328 
3329 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3330 {
3331 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3332 
3333 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3334 }
3335 
3336 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3337 {
3338 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3339 
3340 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3341 }
3342 
3343 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3344 {
3345 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3346 
3347 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3348 }
3349 
3350 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3351 {
3352 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3353 
3354 	return hdev->rst_stats.hw_rst_done_cnt;
3355 }
3356 
3357 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3358 				  unsigned long *supported,
3359 				  unsigned long *advertising)
3360 {
3361 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3362 
3363 	*supported = hdev->hw.mac.supported;
3364 	*advertising = hdev->hw.mac.advertising;
3365 }
3366 
3367 #define MAX_SEPARATE_NUM	4
3368 #define SEPARATOR_VALUE		0xFDFCFBFA
3369 #define REG_NUM_PER_LINE	4
3370 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3371 
3372 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3373 {
3374 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3375 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3376 
3377 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3378 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3379 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3380 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3381 
3382 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3383 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3384 }
3385 
3386 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3387 			     void *data)
3388 {
3389 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3390 	int i, j, reg_um, separator_num;
3391 	u32 *reg = data;
3392 
3393 	*version = hdev->fw_version;
3394 
3395 	/* fetching per-VF registers values from VF PCIe register space */
3396 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3397 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3398 	for (i = 0; i < reg_um; i++)
3399 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3400 	for (i = 0; i < separator_num; i++)
3401 		*reg++ = SEPARATOR_VALUE;
3402 
3403 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3404 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3405 	for (i = 0; i < reg_um; i++)
3406 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3407 	for (i = 0; i < separator_num; i++)
3408 		*reg++ = SEPARATOR_VALUE;
3409 
3410 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3411 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3412 	for (j = 0; j < hdev->num_tqps; j++) {
3413 		for (i = 0; i < reg_um; i++)
3414 			*reg++ = hclgevf_read_dev(&hdev->hw,
3415 						  ring_reg_addr_list[i] +
3416 						  0x200 * j);
3417 		for (i = 0; i < separator_num; i++)
3418 			*reg++ = SEPARATOR_VALUE;
3419 	}
3420 
3421 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3422 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3423 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3424 		for (i = 0; i < reg_um; i++)
3425 			*reg++ = hclgevf_read_dev(&hdev->hw,
3426 						  tqp_intr_reg_addr_list[i] +
3427 						  4 * j);
3428 		for (i = 0; i < separator_num; i++)
3429 			*reg++ = SEPARATOR_VALUE;
3430 	}
3431 }
3432 
3433 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3434 					u8 *port_base_vlan_info, u8 data_size)
3435 {
3436 	struct hnae3_handle *nic = &hdev->nic;
3437 	struct hclge_vf_to_pf_msg send_msg;
3438 	int ret;
3439 
3440 	rtnl_lock();
3441 
3442 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3443 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3444 		dev_warn(&hdev->pdev->dev,
3445 			 "is resetting when updating port based vlan info\n");
3446 		rtnl_unlock();
3447 		return;
3448 	}
3449 
3450 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3451 	if (ret) {
3452 		rtnl_unlock();
3453 		return;
3454 	}
3455 
3456 	/* send msg to PF and wait update port based vlan info */
3457 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3458 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3459 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3460 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3461 	if (!ret) {
3462 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3463 			nic->port_base_vlan_state = state;
3464 		else
3465 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3466 	}
3467 
3468 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3469 	rtnl_unlock();
3470 }
3471 
3472 static const struct hnae3_ae_ops hclgevf_ops = {
3473 	.init_ae_dev = hclgevf_init_ae_dev,
3474 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3475 	.reset_prepare = hclgevf_reset_prepare_general,
3476 	.reset_done = hclgevf_reset_done,
3477 	.init_client_instance = hclgevf_init_client_instance,
3478 	.uninit_client_instance = hclgevf_uninit_client_instance,
3479 	.start = hclgevf_ae_start,
3480 	.stop = hclgevf_ae_stop,
3481 	.client_start = hclgevf_client_start,
3482 	.client_stop = hclgevf_client_stop,
3483 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3484 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3485 	.get_vector = hclgevf_get_vector,
3486 	.put_vector = hclgevf_put_vector,
3487 	.reset_queue = hclgevf_reset_tqp,
3488 	.get_mac_addr = hclgevf_get_mac_addr,
3489 	.set_mac_addr = hclgevf_set_mac_addr,
3490 	.add_uc_addr = hclgevf_add_uc_addr,
3491 	.rm_uc_addr = hclgevf_rm_uc_addr,
3492 	.add_mc_addr = hclgevf_add_mc_addr,
3493 	.rm_mc_addr = hclgevf_rm_mc_addr,
3494 	.get_stats = hclgevf_get_stats,
3495 	.update_stats = hclgevf_update_stats,
3496 	.get_strings = hclgevf_get_strings,
3497 	.get_sset_count = hclgevf_get_sset_count,
3498 	.get_rss_key_size = hclge_comm_get_rss_key_size,
3499 	.get_rss = hclgevf_get_rss,
3500 	.set_rss = hclgevf_set_rss,
3501 	.get_rss_tuple = hclgevf_get_rss_tuple,
3502 	.set_rss_tuple = hclgevf_set_rss_tuple,
3503 	.get_tc_size = hclgevf_get_tc_size,
3504 	.get_fw_version = hclgevf_get_fw_version,
3505 	.set_vlan_filter = hclgevf_set_vlan_filter,
3506 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3507 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3508 	.reset_event = hclgevf_reset_event,
3509 	.set_default_reset_request = hclgevf_set_def_reset_request,
3510 	.set_channels = hclgevf_set_channels,
3511 	.get_channels = hclgevf_get_channels,
3512 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3513 	.get_regs_len = hclgevf_get_regs_len,
3514 	.get_regs = hclgevf_get_regs,
3515 	.get_status = hclgevf_get_status,
3516 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3517 	.get_media_type = hclgevf_get_media_type,
3518 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3519 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3520 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3521 	.set_gro_en = hclgevf_gro_en,
3522 	.set_mtu = hclgevf_set_mtu,
3523 	.get_global_queue_id = hclgevf_get_qid_global,
3524 	.set_timer_task = hclgevf_set_timer_task,
3525 	.get_link_mode = hclgevf_get_link_mode,
3526 	.set_promisc_mode = hclgevf_set_promisc_mode,
3527 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3528 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3529 };
3530 
3531 static struct hnae3_ae_algo ae_algovf = {
3532 	.ops = &hclgevf_ops,
3533 	.pdev_id_table = ae_algovf_pci_tbl,
3534 };
3535 
3536 static int hclgevf_init(void)
3537 {
3538 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3539 
3540 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3541 	if (!hclgevf_wq) {
3542 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3543 		return -ENOMEM;
3544 	}
3545 
3546 	hnae3_register_ae_algo(&ae_algovf);
3547 
3548 	return 0;
3549 }
3550 
3551 static void hclgevf_exit(void)
3552 {
3553 	hnae3_unregister_ae_algo(&ae_algovf);
3554 	destroy_workqueue(hclgevf_wq);
3555 }
3556 module_init(hclgevf_init);
3557 module_exit(hclgevf_exit);
3558 
3559 MODULE_LICENSE("GPL");
3560 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3561 MODULE_DESCRIPTION("HCLGEVF Driver");
3562 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3563