1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
87 	struct hnae3_handle *handle)
88 {
89 	if (!handle->client)
90 		return container_of(handle, struct hclgevf_dev, nic);
91 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
92 		return container_of(handle, struct hclgevf_dev, roce);
93 	else
94 		return container_of(handle, struct hclgevf_dev, nic);
95 }
96 
97 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
98 {
99 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
101 	struct hclgevf_desc desc;
102 	struct hclgevf_tqp *tqp;
103 	int status;
104 	int i;
105 
106 	for (i = 0; i < kinfo->num_tqps; i++) {
107 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
108 		hclgevf_cmd_setup_basic_desc(&desc,
109 					     HCLGEVF_OPC_QUERY_RX_STATUS,
110 					     true);
111 
112 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
113 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
114 		if (status) {
115 			dev_err(&hdev->pdev->dev,
116 				"Query tqp stat fail, status = %d,queue = %d\n",
117 				status,	i);
118 			return status;
119 		}
120 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
121 			le32_to_cpu(desc.data[1]);
122 
123 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
124 					     true);
125 
126 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
127 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
128 		if (status) {
129 			dev_err(&hdev->pdev->dev,
130 				"Query tqp stat fail, status = %d,queue = %d\n",
131 				status, i);
132 			return status;
133 		}
134 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
135 			le32_to_cpu(desc.data[1]);
136 	}
137 
138 	return 0;
139 }
140 
141 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
144 	struct hclgevf_tqp *tqp;
145 	u64 *buff = data;
146 	int i;
147 
148 	for (i = 0; i < kinfo->num_tqps; i++) {
149 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
150 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
151 	}
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
155 	}
156 
157 	return buff;
158 }
159 
160 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
161 {
162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
163 
164 	return kinfo->num_tqps * 2;
165 }
166 
167 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 	u8 *buff = data;
171 	int i = 0;
172 
173 	for (i = 0; i < kinfo->num_tqps; i++) {
174 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
175 						       struct hclgevf_tqp, q);
176 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
177 			 tqp->index);
178 		buff += ETH_GSTRING_LEN;
179 	}
180 
181 	for (i = 0; i < kinfo->num_tqps; i++) {
182 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 						       struct hclgevf_tqp, q);
184 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
185 			 tqp->index);
186 		buff += ETH_GSTRING_LEN;
187 	}
188 
189 	return buff;
190 }
191 
192 static void hclgevf_update_stats(struct hnae3_handle *handle,
193 				 struct net_device_stats *net_stats)
194 {
195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
196 	int status;
197 
198 	status = hclgevf_tqps_update_stats(handle);
199 	if (status)
200 		dev_err(&hdev->pdev->dev,
201 			"VF update of TQPS stats fail, status = %d.\n",
202 			status);
203 }
204 
205 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
206 {
207 	if (strset == ETH_SS_TEST)
208 		return -EOPNOTSUPP;
209 	else if (strset == ETH_SS_STATS)
210 		return hclgevf_tqps_get_sset_count(handle, strset);
211 
212 	return 0;
213 }
214 
215 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
216 				u8 *data)
217 {
218 	u8 *p = (char *)data;
219 
220 	if (strset == ETH_SS_STATS)
221 		p = hclgevf_tqps_get_strings(handle, p);
222 }
223 
224 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
225 {
226 	hclgevf_tqps_get_stats(handle, data);
227 }
228 
229 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
230 {
231 	u8 resp_msg;
232 	int status;
233 
234 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
235 				      true, &resp_msg, sizeof(u8));
236 	if (status) {
237 		dev_err(&hdev->pdev->dev,
238 			"VF request to get TC info from PF failed %d",
239 			status);
240 		return status;
241 	}
242 
243 	hdev->hw_tc_map = resp_msg;
244 
245 	return 0;
246 }
247 
248 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
249 {
250 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
251 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
252 	int status;
253 
254 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
255 				      true, resp_msg,
256 				      HCLGEVF_TQPS_RSS_INFO_LEN);
257 	if (status) {
258 		dev_err(&hdev->pdev->dev,
259 			"VF request to get tqp info from PF failed %d",
260 			status);
261 		return status;
262 	}
263 
264 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
265 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
266 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
267 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
268 
269 	return 0;
270 }
271 
272 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
273 {
274 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
275 	u8 msg_data[2], resp_data[2];
276 	u16 qid_in_pf = 0;
277 	int ret;
278 
279 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
280 
281 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
282 				   2, true, resp_data, 2);
283 	if (!ret)
284 		qid_in_pf = *(u16 *)resp_data;
285 
286 	return qid_in_pf;
287 }
288 
289 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
290 {
291 	struct hclgevf_tqp *tqp;
292 	int i;
293 
294 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
295 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
296 	if (!hdev->htqp)
297 		return -ENOMEM;
298 
299 	tqp = hdev->htqp;
300 
301 	for (i = 0; i < hdev->num_tqps; i++) {
302 		tqp->dev = &hdev->pdev->dev;
303 		tqp->index = i;
304 
305 		tqp->q.ae_algo = &ae_algovf;
306 		tqp->q.buf_size = hdev->rx_buf_len;
307 		tqp->q.desc_num = hdev->num_desc;
308 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
309 			i * HCLGEVF_TQP_REG_SIZE;
310 
311 		tqp++;
312 	}
313 
314 	return 0;
315 }
316 
317 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
318 {
319 	struct hnae3_handle *nic = &hdev->nic;
320 	struct hnae3_knic_private_info *kinfo;
321 	u16 new_tqps = hdev->num_tqps;
322 	int i;
323 
324 	kinfo = &nic->kinfo;
325 	kinfo->num_tc = 0;
326 	kinfo->num_desc = hdev->num_desc;
327 	kinfo->rx_buf_len = hdev->rx_buf_len;
328 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
329 		if (hdev->hw_tc_map & BIT(i))
330 			kinfo->num_tc++;
331 
332 	kinfo->rss_size
333 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
334 	new_tqps = kinfo->rss_size * kinfo->num_tc;
335 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
336 
337 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
338 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
339 	if (!kinfo->tqp)
340 		return -ENOMEM;
341 
342 	for (i = 0; i < kinfo->num_tqps; i++) {
343 		hdev->htqp[i].q.handle = &hdev->nic;
344 		hdev->htqp[i].q.tqp_index = i;
345 		kinfo->tqp[i] = &hdev->htqp[i].q;
346 	}
347 
348 	return 0;
349 }
350 
351 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
352 {
353 	int status;
354 	u8 resp_msg;
355 
356 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
357 				      0, false, &resp_msg, sizeof(u8));
358 	if (status)
359 		dev_err(&hdev->pdev->dev,
360 			"VF failed to fetch link status(%d) from PF", status);
361 }
362 
363 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
364 {
365 	struct hnae3_handle *rhandle = &hdev->roce;
366 	struct hnae3_handle *handle = &hdev->nic;
367 	struct hnae3_client *rclient;
368 	struct hnae3_client *client;
369 
370 	client = handle->client;
371 	rclient = hdev->roce_client;
372 
373 	link_state =
374 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
375 
376 	if (link_state != hdev->hw.mac.link) {
377 		client->ops->link_status_change(handle, !!link_state);
378 		if (rclient && rclient->ops->link_status_change)
379 			rclient->ops->link_status_change(rhandle, !!link_state);
380 		hdev->hw.mac.link = link_state;
381 	}
382 }
383 
384 void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
385 {
386 #define HCLGEVF_ADVERTISING 0
387 #define HCLGEVF_SUPPORTED   1
388 	u8 send_msg;
389 	u8 resp_msg;
390 
391 	send_msg = HCLGEVF_ADVERTISING;
392 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
393 			     sizeof(u8), false, &resp_msg, sizeof(u8));
394 	send_msg = HCLGEVF_SUPPORTED;
395 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
396 			     sizeof(u8), false, &resp_msg, sizeof(u8));
397 }
398 
399 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
400 {
401 	struct hnae3_handle *nic = &hdev->nic;
402 	int ret;
403 
404 	nic->ae_algo = &ae_algovf;
405 	nic->pdev = hdev->pdev;
406 	nic->numa_node_mask = hdev->numa_node_mask;
407 	nic->flags |= HNAE3_SUPPORT_VF;
408 
409 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
410 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
411 			hdev->ae_dev->dev_type);
412 		return -EINVAL;
413 	}
414 
415 	ret = hclgevf_knic_setup(hdev);
416 	if (ret)
417 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
418 			ret);
419 	return ret;
420 }
421 
422 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
423 {
424 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
425 		dev_warn(&hdev->pdev->dev,
426 			 "vector(vector_id %d) has been freed.\n", vector_id);
427 		return;
428 	}
429 
430 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
431 	hdev->num_msi_left += 1;
432 	hdev->num_msi_used -= 1;
433 }
434 
435 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
436 			      struct hnae3_vector_info *vector_info)
437 {
438 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
439 	struct hnae3_vector_info *vector = vector_info;
440 	int alloc = 0;
441 	int i, j;
442 
443 	vector_num = min(hdev->num_msi_left, vector_num);
444 
445 	for (j = 0; j < vector_num; j++) {
446 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
447 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
448 				vector->vector = pci_irq_vector(hdev->pdev, i);
449 				vector->io_addr = hdev->hw.io_base +
450 					HCLGEVF_VECTOR_REG_BASE +
451 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
452 				hdev->vector_status[i] = 0;
453 				hdev->vector_irq[i] = vector->vector;
454 
455 				vector++;
456 				alloc++;
457 
458 				break;
459 			}
460 		}
461 	}
462 	hdev->num_msi_left -= alloc;
463 	hdev->num_msi_used += alloc;
464 
465 	return alloc;
466 }
467 
468 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
469 {
470 	int i;
471 
472 	for (i = 0; i < hdev->num_msi; i++)
473 		if (vector == hdev->vector_irq[i])
474 			return i;
475 
476 	return -EINVAL;
477 }
478 
479 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
480 				    const u8 hfunc, const u8 *key)
481 {
482 	struct hclgevf_rss_config_cmd *req;
483 	struct hclgevf_desc desc;
484 	int key_offset;
485 	int key_size;
486 	int ret;
487 
488 	req = (struct hclgevf_rss_config_cmd *)desc.data;
489 
490 	for (key_offset = 0; key_offset < 3; key_offset++) {
491 		hclgevf_cmd_setup_basic_desc(&desc,
492 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
493 					     false);
494 
495 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
496 		req->hash_config |=
497 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
498 
499 		if (key_offset == 2)
500 			key_size =
501 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
502 		else
503 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
504 
505 		memcpy(req->hash_key,
506 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
507 
508 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
509 		if (ret) {
510 			dev_err(&hdev->pdev->dev,
511 				"Configure RSS config fail, status = %d\n",
512 				ret);
513 			return ret;
514 		}
515 	}
516 
517 	return 0;
518 }
519 
520 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
521 {
522 	return HCLGEVF_RSS_KEY_SIZE;
523 }
524 
525 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
526 {
527 	return HCLGEVF_RSS_IND_TBL_SIZE;
528 }
529 
530 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
531 {
532 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
533 	struct hclgevf_rss_indirection_table_cmd *req;
534 	struct hclgevf_desc desc;
535 	int status;
536 	int i, j;
537 
538 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
539 
540 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
541 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
542 					     false);
543 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
544 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
545 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
546 			req->rss_result[j] =
547 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
548 
549 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
550 		if (status) {
551 			dev_err(&hdev->pdev->dev,
552 				"VF failed(=%d) to set RSS indirection table\n",
553 				status);
554 			return status;
555 		}
556 	}
557 
558 	return 0;
559 }
560 
561 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
562 {
563 	struct hclgevf_rss_tc_mode_cmd *req;
564 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
565 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
566 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
567 	struct hclgevf_desc desc;
568 	u16 roundup_size;
569 	int status;
570 	int i;
571 
572 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
573 
574 	roundup_size = roundup_pow_of_two(rss_size);
575 	roundup_size = ilog2(roundup_size);
576 
577 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
578 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
579 		tc_size[i] = roundup_size;
580 		tc_offset[i] = rss_size * i;
581 	}
582 
583 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
584 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
585 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
586 			      (tc_valid[i] & 0x1));
587 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
588 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
589 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
590 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
591 	}
592 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
593 	if (status)
594 		dev_err(&hdev->pdev->dev,
595 			"VF failed(=%d) to set rss tc mode\n", status);
596 
597 	return status;
598 }
599 
600 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
601 			   u8 *hfunc)
602 {
603 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
604 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
605 	int i;
606 
607 	if (handle->pdev->revision >= 0x21) {
608 		/* Get hash algorithm */
609 		if (hfunc) {
610 			switch (rss_cfg->hash_algo) {
611 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
612 				*hfunc = ETH_RSS_HASH_TOP;
613 				break;
614 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
615 				*hfunc = ETH_RSS_HASH_XOR;
616 				break;
617 			default:
618 				*hfunc = ETH_RSS_HASH_UNKNOWN;
619 				break;
620 			}
621 		}
622 
623 		/* Get the RSS Key required by the user */
624 		if (key)
625 			memcpy(key, rss_cfg->rss_hash_key,
626 			       HCLGEVF_RSS_KEY_SIZE);
627 	}
628 
629 	if (indir)
630 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
631 			indir[i] = rss_cfg->rss_indirection_tbl[i];
632 
633 	return 0;
634 }
635 
636 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
637 			   const  u8 *key, const  u8 hfunc)
638 {
639 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
640 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
641 	int ret, i;
642 
643 	if (handle->pdev->revision >= 0x21) {
644 		/* Set the RSS Hash Key if specififed by the user */
645 		if (key) {
646 			switch (hfunc) {
647 			case ETH_RSS_HASH_TOP:
648 				rss_cfg->hash_algo =
649 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
650 				break;
651 			case ETH_RSS_HASH_XOR:
652 				rss_cfg->hash_algo =
653 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
654 				break;
655 			case ETH_RSS_HASH_NO_CHANGE:
656 				break;
657 			default:
658 				return -EINVAL;
659 			}
660 
661 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
662 						       key);
663 			if (ret)
664 				return ret;
665 
666 			/* Update the shadow RSS key with user specified qids */
667 			memcpy(rss_cfg->rss_hash_key, key,
668 			       HCLGEVF_RSS_KEY_SIZE);
669 		}
670 	}
671 
672 	/* update the shadow RSS table with user specified qids */
673 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
674 		rss_cfg->rss_indirection_tbl[i] = indir[i];
675 
676 	/* update the hardware */
677 	return hclgevf_set_rss_indir_table(hdev);
678 }
679 
680 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
681 {
682 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
683 
684 	if (nfc->data & RXH_L4_B_2_3)
685 		hash_sets |= HCLGEVF_D_PORT_BIT;
686 	else
687 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
688 
689 	if (nfc->data & RXH_IP_SRC)
690 		hash_sets |= HCLGEVF_S_IP_BIT;
691 	else
692 		hash_sets &= ~HCLGEVF_S_IP_BIT;
693 
694 	if (nfc->data & RXH_IP_DST)
695 		hash_sets |= HCLGEVF_D_IP_BIT;
696 	else
697 		hash_sets &= ~HCLGEVF_D_IP_BIT;
698 
699 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
700 		hash_sets |= HCLGEVF_V_TAG_BIT;
701 
702 	return hash_sets;
703 }
704 
705 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
706 				 struct ethtool_rxnfc *nfc)
707 {
708 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
709 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
710 	struct hclgevf_rss_input_tuple_cmd *req;
711 	struct hclgevf_desc desc;
712 	u8 tuple_sets;
713 	int ret;
714 
715 	if (handle->pdev->revision == 0x20)
716 		return -EOPNOTSUPP;
717 
718 	if (nfc->data &
719 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
720 		return -EINVAL;
721 
722 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
723 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
724 
725 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
726 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
727 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
728 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
729 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
730 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
731 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
732 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
733 
734 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
735 	switch (nfc->flow_type) {
736 	case TCP_V4_FLOW:
737 		req->ipv4_tcp_en = tuple_sets;
738 		break;
739 	case TCP_V6_FLOW:
740 		req->ipv6_tcp_en = tuple_sets;
741 		break;
742 	case UDP_V4_FLOW:
743 		req->ipv4_udp_en = tuple_sets;
744 		break;
745 	case UDP_V6_FLOW:
746 		req->ipv6_udp_en = tuple_sets;
747 		break;
748 	case SCTP_V4_FLOW:
749 		req->ipv4_sctp_en = tuple_sets;
750 		break;
751 	case SCTP_V6_FLOW:
752 		if ((nfc->data & RXH_L4_B_0_1) ||
753 		    (nfc->data & RXH_L4_B_2_3))
754 			return -EINVAL;
755 
756 		req->ipv6_sctp_en = tuple_sets;
757 		break;
758 	case IPV4_FLOW:
759 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
760 		break;
761 	case IPV6_FLOW:
762 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
763 		break;
764 	default:
765 		return -EINVAL;
766 	}
767 
768 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
769 	if (ret) {
770 		dev_err(&hdev->pdev->dev,
771 			"Set rss tuple fail, status = %d\n", ret);
772 		return ret;
773 	}
774 
775 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
776 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
777 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
778 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
779 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
780 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
781 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
782 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
783 	return 0;
784 }
785 
786 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
787 				 struct ethtool_rxnfc *nfc)
788 {
789 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
790 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
791 	u8 tuple_sets;
792 
793 	if (handle->pdev->revision == 0x20)
794 		return -EOPNOTSUPP;
795 
796 	nfc->data = 0;
797 
798 	switch (nfc->flow_type) {
799 	case TCP_V4_FLOW:
800 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
801 		break;
802 	case UDP_V4_FLOW:
803 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
804 		break;
805 	case TCP_V6_FLOW:
806 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
807 		break;
808 	case UDP_V6_FLOW:
809 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
810 		break;
811 	case SCTP_V4_FLOW:
812 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
813 		break;
814 	case SCTP_V6_FLOW:
815 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
816 		break;
817 	case IPV4_FLOW:
818 	case IPV6_FLOW:
819 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
820 		break;
821 	default:
822 		return -EINVAL;
823 	}
824 
825 	if (!tuple_sets)
826 		return 0;
827 
828 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
829 		nfc->data |= RXH_L4_B_2_3;
830 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
831 		nfc->data |= RXH_L4_B_0_1;
832 	if (tuple_sets & HCLGEVF_D_IP_BIT)
833 		nfc->data |= RXH_IP_DST;
834 	if (tuple_sets & HCLGEVF_S_IP_BIT)
835 		nfc->data |= RXH_IP_SRC;
836 
837 	return 0;
838 }
839 
840 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
841 				       struct hclgevf_rss_cfg *rss_cfg)
842 {
843 	struct hclgevf_rss_input_tuple_cmd *req;
844 	struct hclgevf_desc desc;
845 	int ret;
846 
847 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
848 
849 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
850 
851 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
852 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
853 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
854 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
855 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
856 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
857 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
858 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
859 
860 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
861 	if (ret)
862 		dev_err(&hdev->pdev->dev,
863 			"Configure rss input fail, status = %d\n", ret);
864 	return ret;
865 }
866 
867 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
868 {
869 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
870 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
871 
872 	return rss_cfg->rss_size;
873 }
874 
875 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
876 				       int vector_id,
877 				       struct hnae3_ring_chain_node *ring_chain)
878 {
879 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
880 	struct hnae3_ring_chain_node *node;
881 	struct hclge_mbx_vf_to_pf_cmd *req;
882 	struct hclgevf_desc desc;
883 	int i = 0;
884 	int status;
885 	u8 type;
886 
887 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
888 
889 	for (node = ring_chain; node; node = node->next) {
890 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
891 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
892 
893 		if (i == 0) {
894 			hclgevf_cmd_setup_basic_desc(&desc,
895 						     HCLGEVF_OPC_MBX_VF_TO_PF,
896 						     false);
897 			type = en ?
898 				HCLGE_MBX_MAP_RING_TO_VECTOR :
899 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
900 			req->msg[0] = type;
901 			req->msg[1] = vector_id;
902 		}
903 
904 		req->msg[idx_offset] =
905 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
906 		req->msg[idx_offset + 1] = node->tqp_index;
907 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
908 							   HNAE3_RING_GL_IDX_M,
909 							   HNAE3_RING_GL_IDX_S);
910 
911 		i++;
912 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
913 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
914 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
915 		    !node->next) {
916 			req->msg[2] = i;
917 
918 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
919 			if (status) {
920 				dev_err(&hdev->pdev->dev,
921 					"Map TQP fail, status is %d.\n",
922 					status);
923 				return status;
924 			}
925 			i = 0;
926 			hclgevf_cmd_setup_basic_desc(&desc,
927 						     HCLGEVF_OPC_MBX_VF_TO_PF,
928 						     false);
929 			req->msg[0] = type;
930 			req->msg[1] = vector_id;
931 		}
932 	}
933 
934 	return 0;
935 }
936 
937 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
938 				      struct hnae3_ring_chain_node *ring_chain)
939 {
940 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
941 	int vector_id;
942 
943 	vector_id = hclgevf_get_vector_index(hdev, vector);
944 	if (vector_id < 0) {
945 		dev_err(&handle->pdev->dev,
946 			"Get vector index fail. ret =%d\n", vector_id);
947 		return vector_id;
948 	}
949 
950 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
951 }
952 
953 static int hclgevf_unmap_ring_from_vector(
954 				struct hnae3_handle *handle,
955 				int vector,
956 				struct hnae3_ring_chain_node *ring_chain)
957 {
958 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
959 	int ret, vector_id;
960 
961 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
962 		return 0;
963 
964 	vector_id = hclgevf_get_vector_index(hdev, vector);
965 	if (vector_id < 0) {
966 		dev_err(&handle->pdev->dev,
967 			"Get vector index fail. ret =%d\n", vector_id);
968 		return vector_id;
969 	}
970 
971 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
972 	if (ret)
973 		dev_err(&handle->pdev->dev,
974 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
975 			vector_id,
976 			ret);
977 
978 	return ret;
979 }
980 
981 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
982 {
983 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
984 	int vector_id;
985 
986 	vector_id = hclgevf_get_vector_index(hdev, vector);
987 	if (vector_id < 0) {
988 		dev_err(&handle->pdev->dev,
989 			"hclgevf_put_vector get vector index fail. ret =%d\n",
990 			vector_id);
991 		return vector_id;
992 	}
993 
994 	hclgevf_free_vector(hdev, vector_id);
995 
996 	return 0;
997 }
998 
999 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1000 					bool en_bc_pmc)
1001 {
1002 	struct hclge_mbx_vf_to_pf_cmd *req;
1003 	struct hclgevf_desc desc;
1004 	int ret;
1005 
1006 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1007 
1008 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1009 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1010 	req->msg[1] = en_bc_pmc ? 1 : 0;
1011 
1012 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1013 	if (ret)
1014 		dev_err(&hdev->pdev->dev,
1015 			"Set promisc mode fail, status is %d.\n", ret);
1016 
1017 	return ret;
1018 }
1019 
1020 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1021 {
1022 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1023 }
1024 
1025 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1026 			      int stream_id, bool enable)
1027 {
1028 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1029 	struct hclgevf_desc desc;
1030 	int status;
1031 
1032 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1033 
1034 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1035 				     false);
1036 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1037 	req->stream_id = cpu_to_le16(stream_id);
1038 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1039 
1040 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1041 	if (status)
1042 		dev_err(&hdev->pdev->dev,
1043 			"TQP enable fail, status =%d.\n", status);
1044 
1045 	return status;
1046 }
1047 
1048 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1049 {
1050 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1051 	struct hclgevf_tqp *tqp;
1052 	int i;
1053 
1054 	for (i = 0; i < kinfo->num_tqps; i++) {
1055 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1056 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1057 	}
1058 }
1059 
1060 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1061 {
1062 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1063 
1064 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1065 }
1066 
1067 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1068 				bool is_first)
1069 {
1070 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1071 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1072 	u8 *new_mac_addr = (u8 *)p;
1073 	u8 msg_data[ETH_ALEN * 2];
1074 	u16 subcode;
1075 	int status;
1076 
1077 	ether_addr_copy(msg_data, new_mac_addr);
1078 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1079 
1080 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1081 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1082 
1083 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1084 				      subcode, msg_data, ETH_ALEN * 2,
1085 				      true, NULL, 0);
1086 	if (!status)
1087 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1088 
1089 	return status;
1090 }
1091 
1092 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1093 			       const unsigned char *addr)
1094 {
1095 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1096 
1097 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1098 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1099 				    addr, ETH_ALEN, false, NULL, 0);
1100 }
1101 
1102 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1103 			      const unsigned char *addr)
1104 {
1105 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1106 
1107 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1108 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1109 				    addr, ETH_ALEN, false, NULL, 0);
1110 }
1111 
1112 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1113 			       const unsigned char *addr)
1114 {
1115 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1116 
1117 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1118 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1119 				    addr, ETH_ALEN, false, NULL, 0);
1120 }
1121 
1122 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1123 			      const unsigned char *addr)
1124 {
1125 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1126 
1127 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1128 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1129 				    addr, ETH_ALEN, false, NULL, 0);
1130 }
1131 
1132 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1133 				   __be16 proto, u16 vlan_id,
1134 				   bool is_kill)
1135 {
1136 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1137 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1138 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1139 
1140 	if (vlan_id > 4095)
1141 		return -EINVAL;
1142 
1143 	if (proto != htons(ETH_P_8021Q))
1144 		return -EPROTONOSUPPORT;
1145 
1146 	msg_data[0] = is_kill;
1147 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1148 	memcpy(&msg_data[3], &proto, sizeof(proto));
1149 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1150 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1151 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1152 }
1153 
1154 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1155 {
1156 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1157 	u8 msg_data;
1158 
1159 	msg_data = enable ? 1 : 0;
1160 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1161 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1162 				    1, false, NULL, 0);
1163 }
1164 
1165 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1166 {
1167 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1168 	u8 msg_data[2];
1169 	int ret;
1170 
1171 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1172 
1173 	/* disable vf queue before send queue reset msg to PF */
1174 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1175 	if (ret)
1176 		return ret;
1177 
1178 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1179 				    2, true, NULL, 0);
1180 }
1181 
1182 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1183 {
1184 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1185 
1186 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1187 				    sizeof(new_mtu), true, NULL, 0);
1188 }
1189 
1190 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1191 				 enum hnae3_reset_notify_type type)
1192 {
1193 	struct hnae3_client *client = hdev->nic_client;
1194 	struct hnae3_handle *handle = &hdev->nic;
1195 	int ret;
1196 
1197 	if (!client->ops->reset_notify)
1198 		return -EOPNOTSUPP;
1199 
1200 	ret = client->ops->reset_notify(handle, type);
1201 	if (ret)
1202 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1203 			type, ret);
1204 
1205 	return ret;
1206 }
1207 
1208 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1209 {
1210 	struct hclgevf_dev *hdev = ae_dev->priv;
1211 
1212 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1213 }
1214 
1215 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1216 				    unsigned long delay_us,
1217 				    unsigned long wait_cnt)
1218 {
1219 	unsigned long cnt = 0;
1220 
1221 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1222 	       cnt++ < wait_cnt)
1223 		usleep_range(delay_us, delay_us * 2);
1224 
1225 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1226 		dev_err(&hdev->pdev->dev,
1227 			"flr wait timeout\n");
1228 		return -ETIMEDOUT;
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1235 {
1236 #define HCLGEVF_RESET_WAIT_US	20000
1237 #define HCLGEVF_RESET_WAIT_CNT	2000
1238 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1239 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1240 
1241 	u32 val;
1242 	int ret;
1243 
1244 	/* wait to check the hardware reset completion status */
1245 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1246 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1247 
1248 	if (hdev->reset_type == HNAE3_FLR_RESET)
1249 		return hclgevf_flr_poll_timeout(hdev,
1250 						HCLGEVF_RESET_WAIT_US,
1251 						HCLGEVF_RESET_WAIT_CNT);
1252 
1253 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1254 				 !(val & HCLGEVF_RST_ING_BITS),
1255 				 HCLGEVF_RESET_WAIT_US,
1256 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1257 
1258 	/* hardware completion status should be available by this time */
1259 	if (ret) {
1260 		dev_err(&hdev->pdev->dev,
1261 			"could'nt get reset done status from h/w, timeout!\n");
1262 		return ret;
1263 	}
1264 
1265 	/* we will wait a bit more to let reset of the stack to complete. This
1266 	 * might happen in case reset assertion was made by PF. Yes, this also
1267 	 * means we might end up waiting bit more even for VF reset.
1268 	 */
1269 	msleep(5000);
1270 
1271 	return 0;
1272 }
1273 
1274 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1275 {
1276 	int ret;
1277 
1278 	/* uninitialize the nic client */
1279 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1280 	if (ret)
1281 		return ret;
1282 
1283 	/* re-initialize the hclge device */
1284 	ret = hclgevf_reset_hdev(hdev);
1285 	if (ret) {
1286 		dev_err(&hdev->pdev->dev,
1287 			"hclge device re-init failed, VF is disabled!\n");
1288 		return ret;
1289 	}
1290 
1291 	/* bring up the nic client again */
1292 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1293 	if (ret)
1294 		return ret;
1295 
1296 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1297 }
1298 
1299 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1300 {
1301 	int ret = 0;
1302 
1303 	switch (hdev->reset_type) {
1304 	case HNAE3_VF_FUNC_RESET:
1305 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1306 					   0, true, NULL, sizeof(u8));
1307 		break;
1308 	case HNAE3_FLR_RESET:
1309 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1310 		break;
1311 	default:
1312 		break;
1313 	}
1314 
1315 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1316 
1317 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1318 		 hdev->reset_type, ret);
1319 
1320 	return ret;
1321 }
1322 
1323 static int hclgevf_reset(struct hclgevf_dev *hdev)
1324 {
1325 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1326 	int ret;
1327 
1328 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1329 	 * know if device is undergoing reset
1330 	 */
1331 	ae_dev->reset_type = hdev->reset_type;
1332 	hdev->reset_count++;
1333 	rtnl_lock();
1334 
1335 	/* bring down the nic to stop any ongoing TX/RX */
1336 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1337 	if (ret)
1338 		goto err_reset_lock;
1339 
1340 	rtnl_unlock();
1341 
1342 	ret = hclgevf_reset_prepare_wait(hdev);
1343 	if (ret)
1344 		goto err_reset;
1345 
1346 	/* check if VF could successfully fetch the hardware reset completion
1347 	 * status from the hardware
1348 	 */
1349 	ret = hclgevf_reset_wait(hdev);
1350 	if (ret) {
1351 		/* can't do much in this situation, will disable VF */
1352 		dev_err(&hdev->pdev->dev,
1353 			"VF failed(=%d) to fetch H/W reset completion status\n",
1354 			ret);
1355 		goto err_reset;
1356 	}
1357 
1358 	rtnl_lock();
1359 
1360 	/* now, re-initialize the nic client and ae device*/
1361 	ret = hclgevf_reset_stack(hdev);
1362 	if (ret) {
1363 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1364 		goto err_reset_lock;
1365 	}
1366 
1367 	/* bring up the nic to enable TX/RX again */
1368 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1369 	if (ret)
1370 		goto err_reset_lock;
1371 
1372 	rtnl_unlock();
1373 
1374 	hdev->last_reset_time = jiffies;
1375 	ae_dev->reset_type = HNAE3_NONE_RESET;
1376 
1377 	return ret;
1378 err_reset_lock:
1379 	rtnl_unlock();
1380 err_reset:
1381 	/* When VF reset failed, only the higher level reset asserted by PF
1382 	 * can restore it, so re-initialize the command queue to receive
1383 	 * this higher reset event.
1384 	 */
1385 	hclgevf_cmd_init(hdev);
1386 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1387 
1388 	return ret;
1389 }
1390 
1391 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1392 						     unsigned long *addr)
1393 {
1394 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1395 
1396 	/* return the highest priority reset level amongst all */
1397 	if (test_bit(HNAE3_VF_RESET, addr)) {
1398 		rst_level = HNAE3_VF_RESET;
1399 		clear_bit(HNAE3_VF_RESET, addr);
1400 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1401 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1402 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1403 		rst_level = HNAE3_VF_FULL_RESET;
1404 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1405 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1406 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1407 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1408 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1409 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1410 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1411 		rst_level = HNAE3_VF_FUNC_RESET;
1412 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1413 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1414 		rst_level = HNAE3_FLR_RESET;
1415 		clear_bit(HNAE3_FLR_RESET, addr);
1416 	}
1417 
1418 	return rst_level;
1419 }
1420 
1421 static void hclgevf_reset_event(struct pci_dev *pdev,
1422 				struct hnae3_handle *handle)
1423 {
1424 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1425 	struct hclgevf_dev *hdev = ae_dev->priv;
1426 
1427 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1428 
1429 	if (hdev->default_reset_request)
1430 		hdev->reset_level =
1431 			hclgevf_get_reset_level(hdev,
1432 						&hdev->default_reset_request);
1433 	else
1434 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1435 
1436 	/* reset of this VF requested */
1437 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1438 	hclgevf_reset_task_schedule(hdev);
1439 
1440 	hdev->last_reset_time = jiffies;
1441 }
1442 
1443 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1444 					  enum hnae3_reset_type rst_type)
1445 {
1446 	struct hclgevf_dev *hdev = ae_dev->priv;
1447 
1448 	set_bit(rst_type, &hdev->default_reset_request);
1449 }
1450 
1451 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1452 {
1453 #define HCLGEVF_FLR_WAIT_MS	100
1454 #define HCLGEVF_FLR_WAIT_CNT	50
1455 	struct hclgevf_dev *hdev = ae_dev->priv;
1456 	int cnt = 0;
1457 
1458 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1459 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1460 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1461 	hclgevf_reset_event(hdev->pdev, NULL);
1462 
1463 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1464 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1465 		msleep(HCLGEVF_FLR_WAIT_MS);
1466 
1467 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1468 		dev_err(&hdev->pdev->dev,
1469 			"flr wait down timeout: %d\n", cnt);
1470 }
1471 
1472 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1473 {
1474 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1475 
1476 	return hdev->fw_version;
1477 }
1478 
1479 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1480 {
1481 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1482 
1483 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1484 					    HCLGEVF_MISC_VECTOR_NUM);
1485 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1486 	/* vector status always valid for Vector 0 */
1487 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1488 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1489 
1490 	hdev->num_msi_left -= 1;
1491 	hdev->num_msi_used += 1;
1492 }
1493 
1494 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1495 {
1496 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1497 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1498 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1499 		schedule_work(&hdev->rst_service_task);
1500 	}
1501 }
1502 
1503 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1504 {
1505 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1506 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1507 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1508 		schedule_work(&hdev->mbx_service_task);
1509 	}
1510 }
1511 
1512 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1513 {
1514 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1515 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1516 		schedule_work(&hdev->service_task);
1517 }
1518 
1519 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1520 {
1521 	/* if we have any pending mailbox event then schedule the mbx task */
1522 	if (hdev->mbx_event_pending)
1523 		hclgevf_mbx_task_schedule(hdev);
1524 
1525 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1526 		hclgevf_reset_task_schedule(hdev);
1527 }
1528 
1529 static void hclgevf_service_timer(struct timer_list *t)
1530 {
1531 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1532 
1533 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1534 
1535 	hclgevf_task_schedule(hdev);
1536 }
1537 
1538 static void hclgevf_reset_service_task(struct work_struct *work)
1539 {
1540 	struct hclgevf_dev *hdev =
1541 		container_of(work, struct hclgevf_dev, rst_service_task);
1542 	int ret;
1543 
1544 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1545 		return;
1546 
1547 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1548 
1549 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1550 			       &hdev->reset_state)) {
1551 		/* PF has initmated that it is about to reset the hardware.
1552 		 * We now have to poll & check if harware has actually completed
1553 		 * the reset sequence. On hardware reset completion, VF needs to
1554 		 * reset the client and ae device.
1555 		 */
1556 		hdev->reset_attempts = 0;
1557 
1558 		hdev->last_reset_time = jiffies;
1559 		while ((hdev->reset_type =
1560 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1561 		       != HNAE3_NONE_RESET) {
1562 			ret = hclgevf_reset(hdev);
1563 			if (ret)
1564 				dev_err(&hdev->pdev->dev,
1565 					"VF stack reset failed %d.\n", ret);
1566 		}
1567 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1568 				      &hdev->reset_state)) {
1569 		/* we could be here when either of below happens:
1570 		 * 1. reset was initiated due to watchdog timeout due to
1571 		 *    a. IMP was earlier reset and our TX got choked down and
1572 		 *       which resulted in watchdog reacting and inducing VF
1573 		 *       reset. This also means our cmdq would be unreliable.
1574 		 *    b. problem in TX due to other lower layer(example link
1575 		 *       layer not functioning properly etc.)
1576 		 * 2. VF reset might have been initiated due to some config
1577 		 *    change.
1578 		 *
1579 		 * NOTE: Theres no clear way to detect above cases than to react
1580 		 * to the response of PF for this reset request. PF will ack the
1581 		 * 1b and 2. cases but we will not get any intimation about 1a
1582 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1583 		 * communication between PF and VF would be broken.
1584 		 */
1585 
1586 		/* if we are never geting into pending state it means either:
1587 		 * 1. PF is not receiving our request which could be due to IMP
1588 		 *    reset
1589 		 * 2. PF is screwed
1590 		 * We cannot do much for 2. but to check first we can try reset
1591 		 * our PCIe + stack and see if it alleviates the problem.
1592 		 */
1593 		if (hdev->reset_attempts > 3) {
1594 			/* prepare for full reset of stack + pcie interface */
1595 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1596 
1597 			/* "defer" schedule the reset task again */
1598 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1599 		} else {
1600 			hdev->reset_attempts++;
1601 
1602 			set_bit(hdev->reset_level, &hdev->reset_pending);
1603 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1604 		}
1605 		hclgevf_reset_task_schedule(hdev);
1606 	}
1607 
1608 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1609 }
1610 
1611 static void hclgevf_mailbox_service_task(struct work_struct *work)
1612 {
1613 	struct hclgevf_dev *hdev;
1614 
1615 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1616 
1617 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1618 		return;
1619 
1620 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1621 
1622 	hclgevf_mbx_async_handler(hdev);
1623 
1624 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1625 }
1626 
1627 static void hclgevf_keep_alive_timer(struct timer_list *t)
1628 {
1629 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1630 
1631 	schedule_work(&hdev->keep_alive_task);
1632 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1633 }
1634 
1635 static void hclgevf_keep_alive_task(struct work_struct *work)
1636 {
1637 	struct hclgevf_dev *hdev;
1638 	u8 respmsg;
1639 	int ret;
1640 
1641 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1642 
1643 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1644 		return;
1645 
1646 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1647 				   0, false, &respmsg, sizeof(u8));
1648 	if (ret)
1649 		dev_err(&hdev->pdev->dev,
1650 			"VF sends keep alive cmd failed(=%d)\n", ret);
1651 }
1652 
1653 static void hclgevf_service_task(struct work_struct *work)
1654 {
1655 	struct hclgevf_dev *hdev;
1656 
1657 	hdev = container_of(work, struct hclgevf_dev, service_task);
1658 
1659 	/* request the link status from the PF. PF would be able to tell VF
1660 	 * about such updates in future so we might remove this later
1661 	 */
1662 	hclgevf_request_link_info(hdev);
1663 
1664 	hclgevf_update_link_mode(hdev);
1665 
1666 	hclgevf_deferred_task_schedule(hdev);
1667 
1668 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1669 }
1670 
1671 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1672 {
1673 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1674 }
1675 
1676 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1677 						      u32 *clearval)
1678 {
1679 	u32 cmdq_src_reg, rst_ing_reg;
1680 
1681 	/* fetch the events from their corresponding regs */
1682 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1683 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1684 
1685 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1686 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1687 		dev_info(&hdev->pdev->dev,
1688 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1689 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1690 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1691 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1692 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1693 		*clearval = cmdq_src_reg;
1694 		return HCLGEVF_VECTOR0_EVENT_RST;
1695 	}
1696 
1697 	/* check for vector0 mailbox(=CMDQ RX) event source */
1698 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1699 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1700 		*clearval = cmdq_src_reg;
1701 		return HCLGEVF_VECTOR0_EVENT_MBX;
1702 	}
1703 
1704 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1705 
1706 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1707 }
1708 
1709 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1710 {
1711 	writel(en ? 1 : 0, vector->addr);
1712 }
1713 
1714 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1715 {
1716 	enum hclgevf_evt_cause event_cause;
1717 	struct hclgevf_dev *hdev = data;
1718 	u32 clearval;
1719 
1720 	hclgevf_enable_vector(&hdev->misc_vector, false);
1721 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1722 
1723 	switch (event_cause) {
1724 	case HCLGEVF_VECTOR0_EVENT_RST:
1725 		hclgevf_reset_task_schedule(hdev);
1726 		break;
1727 	case HCLGEVF_VECTOR0_EVENT_MBX:
1728 		hclgevf_mbx_handler(hdev);
1729 		break;
1730 	default:
1731 		break;
1732 	}
1733 
1734 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1735 		hclgevf_clear_event_cause(hdev, clearval);
1736 		hclgevf_enable_vector(&hdev->misc_vector, true);
1737 	}
1738 
1739 	return IRQ_HANDLED;
1740 }
1741 
1742 static int hclgevf_configure(struct hclgevf_dev *hdev)
1743 {
1744 	int ret;
1745 
1746 	/* get queue configuration from PF */
1747 	ret = hclgevf_get_queue_info(hdev);
1748 	if (ret)
1749 		return ret;
1750 	/* get tc configuration from PF */
1751 	return hclgevf_get_tc_info(hdev);
1752 }
1753 
1754 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1755 {
1756 	struct pci_dev *pdev = ae_dev->pdev;
1757 	struct hclgevf_dev *hdev;
1758 
1759 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1760 	if (!hdev)
1761 		return -ENOMEM;
1762 
1763 	hdev->pdev = pdev;
1764 	hdev->ae_dev = ae_dev;
1765 	ae_dev->priv = hdev;
1766 
1767 	return 0;
1768 }
1769 
1770 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1771 {
1772 	struct hnae3_handle *roce = &hdev->roce;
1773 	struct hnae3_handle *nic = &hdev->nic;
1774 
1775 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1776 
1777 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1778 	    hdev->num_msi_left == 0)
1779 		return -EINVAL;
1780 
1781 	roce->rinfo.base_vector = hdev->roce_base_vector;
1782 
1783 	roce->rinfo.netdev = nic->kinfo.netdev;
1784 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1785 
1786 	roce->pdev = nic->pdev;
1787 	roce->ae_algo = nic->ae_algo;
1788 	roce->numa_node_mask = nic->numa_node_mask;
1789 
1790 	return 0;
1791 }
1792 
1793 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1794 {
1795 	struct hclgevf_cfg_gro_status_cmd *req;
1796 	struct hclgevf_desc desc;
1797 	int ret;
1798 
1799 	if (!hnae3_dev_gro_supported(hdev))
1800 		return 0;
1801 
1802 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1803 				     false);
1804 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1805 
1806 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1807 
1808 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1809 	if (ret)
1810 		dev_err(&hdev->pdev->dev,
1811 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1812 
1813 	return ret;
1814 }
1815 
1816 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1817 {
1818 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1819 	int i, ret;
1820 
1821 	rss_cfg->rss_size = hdev->rss_size_max;
1822 
1823 	if (hdev->pdev->revision >= 0x21) {
1824 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1825 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1826 		       HCLGEVF_RSS_KEY_SIZE);
1827 
1828 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1829 					       rss_cfg->rss_hash_key);
1830 		if (ret)
1831 			return ret;
1832 
1833 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1834 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1835 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1836 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1837 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1838 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1839 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1840 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1841 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1842 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1843 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1844 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1845 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1846 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1847 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1848 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1849 
1850 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1851 		if (ret)
1852 			return ret;
1853 
1854 	}
1855 
1856 	/* Initialize RSS indirect table for each vport */
1857 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1858 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1859 
1860 	ret = hclgevf_set_rss_indir_table(hdev);
1861 	if (ret)
1862 		return ret;
1863 
1864 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1865 }
1866 
1867 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1868 {
1869 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1870 	 * here later
1871 	 */
1872 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1873 				       false);
1874 }
1875 
1876 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
1877 {
1878 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1879 
1880 	if (enable) {
1881 		mod_timer(&hdev->service_timer, jiffies + HZ);
1882 	} else {
1883 		del_timer_sync(&hdev->service_timer);
1884 		cancel_work_sync(&hdev->service_task);
1885 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1886 	}
1887 }
1888 
1889 static int hclgevf_ae_start(struct hnae3_handle *handle)
1890 {
1891 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1892 
1893 	/* reset tqp stats */
1894 	hclgevf_reset_tqp_stats(handle);
1895 
1896 	hclgevf_request_link_info(hdev);
1897 
1898 	hclgevf_update_link_mode(hdev);
1899 
1900 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1901 
1902 	return 0;
1903 }
1904 
1905 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1906 {
1907 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1908 	int i;
1909 
1910 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1911 
1912 	for (i = 0; i < handle->kinfo.num_tqps; i++)
1913 		hclgevf_reset_tqp(handle, i);
1914 
1915 	/* reset tqp stats */
1916 	hclgevf_reset_tqp_stats(handle);
1917 	hclgevf_update_link_status(hdev, 0);
1918 }
1919 
1920 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
1921 {
1922 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1923 	u8 msg_data;
1924 
1925 	msg_data = alive ? 1 : 0;
1926 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
1927 				    0, &msg_data, 1, false, NULL, 0);
1928 }
1929 
1930 static int hclgevf_client_start(struct hnae3_handle *handle)
1931 {
1932 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1933 
1934 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1935 	return hclgevf_set_alive(handle, true);
1936 }
1937 
1938 static void hclgevf_client_stop(struct hnae3_handle *handle)
1939 {
1940 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1941 	int ret;
1942 
1943 	ret = hclgevf_set_alive(handle, false);
1944 	if (ret)
1945 		dev_warn(&hdev->pdev->dev,
1946 			 "%s failed %d\n", __func__, ret);
1947 
1948 	del_timer_sync(&hdev->keep_alive_timer);
1949 	cancel_work_sync(&hdev->keep_alive_task);
1950 }
1951 
1952 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1953 {
1954 	/* setup tasks for the MBX */
1955 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1956 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1957 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1958 
1959 	/* setup tasks for service timer */
1960 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1961 
1962 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1963 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1964 
1965 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1966 
1967 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1968 
1969 	/* bring the device down */
1970 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1971 }
1972 
1973 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1974 {
1975 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1976 
1977 	if (hdev->service_timer.function)
1978 		del_timer_sync(&hdev->service_timer);
1979 	if (hdev->service_task.func)
1980 		cancel_work_sync(&hdev->service_task);
1981 	if (hdev->mbx_service_task.func)
1982 		cancel_work_sync(&hdev->mbx_service_task);
1983 	if (hdev->rst_service_task.func)
1984 		cancel_work_sync(&hdev->rst_service_task);
1985 
1986 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1987 }
1988 
1989 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1990 {
1991 	struct pci_dev *pdev = hdev->pdev;
1992 	int vectors;
1993 	int i;
1994 
1995 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1996 		vectors = pci_alloc_irq_vectors(pdev,
1997 						hdev->roce_base_msix_offset + 1,
1998 						hdev->num_msi,
1999 						PCI_IRQ_MSIX);
2000 	else
2001 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2002 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2003 
2004 	if (vectors < 0) {
2005 		dev_err(&pdev->dev,
2006 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2007 			vectors);
2008 		return vectors;
2009 	}
2010 	if (vectors < hdev->num_msi)
2011 		dev_warn(&hdev->pdev->dev,
2012 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2013 			 hdev->num_msi, vectors);
2014 
2015 	hdev->num_msi = vectors;
2016 	hdev->num_msi_left = vectors;
2017 	hdev->base_msi_vector = pdev->irq;
2018 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2019 
2020 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2021 					   sizeof(u16), GFP_KERNEL);
2022 	if (!hdev->vector_status) {
2023 		pci_free_irq_vectors(pdev);
2024 		return -ENOMEM;
2025 	}
2026 
2027 	for (i = 0; i < hdev->num_msi; i++)
2028 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2029 
2030 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2031 					sizeof(int), GFP_KERNEL);
2032 	if (!hdev->vector_irq) {
2033 		devm_kfree(&pdev->dev, hdev->vector_status);
2034 		pci_free_irq_vectors(pdev);
2035 		return -ENOMEM;
2036 	}
2037 
2038 	return 0;
2039 }
2040 
2041 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2042 {
2043 	struct pci_dev *pdev = hdev->pdev;
2044 
2045 	devm_kfree(&pdev->dev, hdev->vector_status);
2046 	devm_kfree(&pdev->dev, hdev->vector_irq);
2047 	pci_free_irq_vectors(pdev);
2048 }
2049 
2050 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2051 {
2052 	int ret = 0;
2053 
2054 	hclgevf_get_misc_vector(hdev);
2055 
2056 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2057 			  0, "hclgevf_cmd", hdev);
2058 	if (ret) {
2059 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2060 			hdev->misc_vector.vector_irq);
2061 		return ret;
2062 	}
2063 
2064 	hclgevf_clear_event_cause(hdev, 0);
2065 
2066 	/* enable misc. vector(vector 0) */
2067 	hclgevf_enable_vector(&hdev->misc_vector, true);
2068 
2069 	return ret;
2070 }
2071 
2072 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2073 {
2074 	/* disable misc vector(vector 0) */
2075 	hclgevf_enable_vector(&hdev->misc_vector, false);
2076 	synchronize_irq(hdev->misc_vector.vector_irq);
2077 	free_irq(hdev->misc_vector.vector_irq, hdev);
2078 	hclgevf_free_vector(hdev, 0);
2079 }
2080 
2081 static int hclgevf_init_client_instance(struct hnae3_client *client,
2082 					struct hnae3_ae_dev *ae_dev)
2083 {
2084 	struct hclgevf_dev *hdev = ae_dev->priv;
2085 	int ret;
2086 
2087 	switch (client->type) {
2088 	case HNAE3_CLIENT_KNIC:
2089 		hdev->nic_client = client;
2090 		hdev->nic.client = client;
2091 
2092 		ret = client->ops->init_instance(&hdev->nic);
2093 		if (ret)
2094 			goto clear_nic;
2095 
2096 		hnae3_set_client_init_flag(client, ae_dev, 1);
2097 
2098 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
2099 			struct hnae3_client *rc = hdev->roce_client;
2100 
2101 			ret = hclgevf_init_roce_base_info(hdev);
2102 			if (ret)
2103 				goto clear_roce;
2104 			ret = rc->ops->init_instance(&hdev->roce);
2105 			if (ret)
2106 				goto clear_roce;
2107 
2108 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
2109 						   1);
2110 		}
2111 		break;
2112 	case HNAE3_CLIENT_UNIC:
2113 		hdev->nic_client = client;
2114 		hdev->nic.client = client;
2115 
2116 		ret = client->ops->init_instance(&hdev->nic);
2117 		if (ret)
2118 			goto clear_nic;
2119 
2120 		hnae3_set_client_init_flag(client, ae_dev, 1);
2121 		break;
2122 	case HNAE3_CLIENT_ROCE:
2123 		if (hnae3_dev_roce_supported(hdev)) {
2124 			hdev->roce_client = client;
2125 			hdev->roce.client = client;
2126 		}
2127 
2128 		if (hdev->roce_client && hdev->nic_client) {
2129 			ret = hclgevf_init_roce_base_info(hdev);
2130 			if (ret)
2131 				goto clear_roce;
2132 
2133 			ret = client->ops->init_instance(&hdev->roce);
2134 			if (ret)
2135 				goto clear_roce;
2136 		}
2137 
2138 		hnae3_set_client_init_flag(client, ae_dev, 1);
2139 		break;
2140 	default:
2141 		return -EINVAL;
2142 	}
2143 
2144 	return 0;
2145 
2146 clear_nic:
2147 	hdev->nic_client = NULL;
2148 	hdev->nic.client = NULL;
2149 	return ret;
2150 clear_roce:
2151 	hdev->roce_client = NULL;
2152 	hdev->roce.client = NULL;
2153 	return ret;
2154 }
2155 
2156 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2157 					   struct hnae3_ae_dev *ae_dev)
2158 {
2159 	struct hclgevf_dev *hdev = ae_dev->priv;
2160 
2161 	/* un-init roce, if it exists */
2162 	if (hdev->roce_client) {
2163 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2164 		hdev->roce_client = NULL;
2165 		hdev->roce.client = NULL;
2166 	}
2167 
2168 	/* un-init nic/unic, if this was not called by roce client */
2169 	if (client->ops->uninit_instance && hdev->nic_client &&
2170 	    client->type != HNAE3_CLIENT_ROCE) {
2171 		client->ops->uninit_instance(&hdev->nic, 0);
2172 		hdev->nic_client = NULL;
2173 		hdev->nic.client = NULL;
2174 	}
2175 }
2176 
2177 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2178 {
2179 	struct pci_dev *pdev = hdev->pdev;
2180 	struct hclgevf_hw *hw;
2181 	int ret;
2182 
2183 	ret = pci_enable_device(pdev);
2184 	if (ret) {
2185 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2186 		return ret;
2187 	}
2188 
2189 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2190 	if (ret) {
2191 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2192 		goto err_disable_device;
2193 	}
2194 
2195 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2196 	if (ret) {
2197 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2198 		goto err_disable_device;
2199 	}
2200 
2201 	pci_set_master(pdev);
2202 	hw = &hdev->hw;
2203 	hw->hdev = hdev;
2204 	hw->io_base = pci_iomap(pdev, 2, 0);
2205 	if (!hw->io_base) {
2206 		dev_err(&pdev->dev, "can't map configuration register space\n");
2207 		ret = -ENOMEM;
2208 		goto err_clr_master;
2209 	}
2210 
2211 	return 0;
2212 
2213 err_clr_master:
2214 	pci_clear_master(pdev);
2215 	pci_release_regions(pdev);
2216 err_disable_device:
2217 	pci_disable_device(pdev);
2218 
2219 	return ret;
2220 }
2221 
2222 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2223 {
2224 	struct pci_dev *pdev = hdev->pdev;
2225 
2226 	pci_iounmap(pdev, hdev->hw.io_base);
2227 	pci_clear_master(pdev);
2228 	pci_release_regions(pdev);
2229 	pci_disable_device(pdev);
2230 }
2231 
2232 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2233 {
2234 	struct hclgevf_query_res_cmd *req;
2235 	struct hclgevf_desc desc;
2236 	int ret;
2237 
2238 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2239 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2240 	if (ret) {
2241 		dev_err(&hdev->pdev->dev,
2242 			"query vf resource failed, ret = %d.\n", ret);
2243 		return ret;
2244 	}
2245 
2246 	req = (struct hclgevf_query_res_cmd *)desc.data;
2247 
2248 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2249 		hdev->roce_base_msix_offset =
2250 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2251 				HCLGEVF_MSIX_OFT_ROCEE_M,
2252 				HCLGEVF_MSIX_OFT_ROCEE_S);
2253 		hdev->num_roce_msix =
2254 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2255 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2256 
2257 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2258 		 * are queued before Roce vectors. The offset is fixed to 64.
2259 		 */
2260 		hdev->num_msi = hdev->num_roce_msix +
2261 				hdev->roce_base_msix_offset;
2262 	} else {
2263 		hdev->num_msi =
2264 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2265 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2272 {
2273 	struct pci_dev *pdev = hdev->pdev;
2274 	int ret = 0;
2275 
2276 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2277 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2278 		hclgevf_misc_irq_uninit(hdev);
2279 		hclgevf_uninit_msi(hdev);
2280 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2281 	}
2282 
2283 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2284 		pci_set_master(pdev);
2285 		ret = hclgevf_init_msi(hdev);
2286 		if (ret) {
2287 			dev_err(&pdev->dev,
2288 				"failed(%d) to init MSI/MSI-X\n", ret);
2289 			return ret;
2290 		}
2291 
2292 		ret = hclgevf_misc_irq_init(hdev);
2293 		if (ret) {
2294 			hclgevf_uninit_msi(hdev);
2295 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2296 				ret);
2297 			return ret;
2298 		}
2299 
2300 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2301 	}
2302 
2303 	return ret;
2304 }
2305 
2306 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2307 {
2308 	struct pci_dev *pdev = hdev->pdev;
2309 	int ret;
2310 
2311 	ret = hclgevf_pci_reset(hdev);
2312 	if (ret) {
2313 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2314 		return ret;
2315 	}
2316 
2317 	ret = hclgevf_cmd_init(hdev);
2318 	if (ret) {
2319 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2320 		return ret;
2321 	}
2322 
2323 	ret = hclgevf_rss_init_hw(hdev);
2324 	if (ret) {
2325 		dev_err(&hdev->pdev->dev,
2326 			"failed(%d) to initialize RSS\n", ret);
2327 		return ret;
2328 	}
2329 
2330 	ret = hclgevf_config_gro(hdev, true);
2331 	if (ret)
2332 		return ret;
2333 
2334 	ret = hclgevf_init_vlan_config(hdev);
2335 	if (ret) {
2336 		dev_err(&hdev->pdev->dev,
2337 			"failed(%d) to initialize VLAN config\n", ret);
2338 		return ret;
2339 	}
2340 
2341 	dev_info(&hdev->pdev->dev, "Reset done\n");
2342 
2343 	return 0;
2344 }
2345 
2346 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2347 {
2348 	struct pci_dev *pdev = hdev->pdev;
2349 	int ret;
2350 
2351 	ret = hclgevf_pci_init(hdev);
2352 	if (ret) {
2353 		dev_err(&pdev->dev, "PCI initialization failed\n");
2354 		return ret;
2355 	}
2356 
2357 	ret = hclgevf_cmd_queue_init(hdev);
2358 	if (ret) {
2359 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2360 		goto err_cmd_queue_init;
2361 	}
2362 
2363 	ret = hclgevf_cmd_init(hdev);
2364 	if (ret)
2365 		goto err_cmd_init;
2366 
2367 	/* Get vf resource */
2368 	ret = hclgevf_query_vf_resource(hdev);
2369 	if (ret) {
2370 		dev_err(&hdev->pdev->dev,
2371 			"Query vf status error, ret = %d.\n", ret);
2372 		goto err_cmd_init;
2373 	}
2374 
2375 	ret = hclgevf_init_msi(hdev);
2376 	if (ret) {
2377 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2378 		goto err_cmd_init;
2379 	}
2380 
2381 	hclgevf_state_init(hdev);
2382 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2383 
2384 	ret = hclgevf_misc_irq_init(hdev);
2385 	if (ret) {
2386 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2387 			ret);
2388 		goto err_misc_irq_init;
2389 	}
2390 
2391 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2392 
2393 	ret = hclgevf_configure(hdev);
2394 	if (ret) {
2395 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2396 		goto err_config;
2397 	}
2398 
2399 	ret = hclgevf_alloc_tqps(hdev);
2400 	if (ret) {
2401 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2402 		goto err_config;
2403 	}
2404 
2405 	ret = hclgevf_set_handle_info(hdev);
2406 	if (ret) {
2407 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2408 		goto err_config;
2409 	}
2410 
2411 	ret = hclgevf_config_gro(hdev, true);
2412 	if (ret)
2413 		goto err_config;
2414 
2415 	/* vf is not allowed to enable unicast/multicast promisc mode.
2416 	 * For revision 0x20, default to disable broadcast promisc mode,
2417 	 * firmware makes sure broadcast packets can be accepted.
2418 	 * For revision 0x21, default to enable broadcast promisc mode.
2419 	 */
2420 	ret = hclgevf_set_promisc_mode(hdev, true);
2421 	if (ret)
2422 		goto err_config;
2423 
2424 	/* Initialize RSS for this VF */
2425 	ret = hclgevf_rss_init_hw(hdev);
2426 	if (ret) {
2427 		dev_err(&hdev->pdev->dev,
2428 			"failed(%d) to initialize RSS\n", ret);
2429 		goto err_config;
2430 	}
2431 
2432 	ret = hclgevf_init_vlan_config(hdev);
2433 	if (ret) {
2434 		dev_err(&hdev->pdev->dev,
2435 			"failed(%d) to initialize VLAN config\n", ret);
2436 		goto err_config;
2437 	}
2438 
2439 	hdev->last_reset_time = jiffies;
2440 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2441 
2442 	return 0;
2443 
2444 err_config:
2445 	hclgevf_misc_irq_uninit(hdev);
2446 err_misc_irq_init:
2447 	hclgevf_state_uninit(hdev);
2448 	hclgevf_uninit_msi(hdev);
2449 err_cmd_init:
2450 	hclgevf_cmd_uninit(hdev);
2451 err_cmd_queue_init:
2452 	hclgevf_pci_uninit(hdev);
2453 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2454 	return ret;
2455 }
2456 
2457 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2458 {
2459 	hclgevf_state_uninit(hdev);
2460 
2461 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2462 		hclgevf_misc_irq_uninit(hdev);
2463 		hclgevf_uninit_msi(hdev);
2464 	}
2465 
2466 	hclgevf_pci_uninit(hdev);
2467 	hclgevf_cmd_uninit(hdev);
2468 }
2469 
2470 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2471 {
2472 	struct pci_dev *pdev = ae_dev->pdev;
2473 	struct hclgevf_dev *hdev;
2474 	int ret;
2475 
2476 	ret = hclgevf_alloc_hdev(ae_dev);
2477 	if (ret) {
2478 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2479 		return ret;
2480 	}
2481 
2482 	ret = hclgevf_init_hdev(ae_dev->priv);
2483 	if (ret) {
2484 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2485 		return ret;
2486 	}
2487 
2488 	hdev = ae_dev->priv;
2489 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2490 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2491 
2492 	return 0;
2493 }
2494 
2495 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2496 {
2497 	struct hclgevf_dev *hdev = ae_dev->priv;
2498 
2499 	hclgevf_uninit_hdev(hdev);
2500 	ae_dev->priv = NULL;
2501 }
2502 
2503 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2504 {
2505 	struct hnae3_handle *nic = &hdev->nic;
2506 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2507 
2508 	return min_t(u32, hdev->rss_size_max,
2509 		     hdev->num_tqps / kinfo->num_tc);
2510 }
2511 
2512 /**
2513  * hclgevf_get_channels - Get the current channels enabled and max supported.
2514  * @handle: hardware information for network interface
2515  * @ch: ethtool channels structure
2516  *
2517  * We don't support separate tx and rx queues as channels. The other count
2518  * represents how many queues are being used for control. max_combined counts
2519  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2520  * q_vectors since we support a lot more queue pairs than q_vectors.
2521  **/
2522 static void hclgevf_get_channels(struct hnae3_handle *handle,
2523 				 struct ethtool_channels *ch)
2524 {
2525 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2526 
2527 	ch->max_combined = hclgevf_get_max_channels(hdev);
2528 	ch->other_count = 0;
2529 	ch->max_other = 0;
2530 	ch->combined_count = handle->kinfo.rss_size;
2531 }
2532 
2533 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2534 					  u16 *alloc_tqps, u16 *max_rss_size)
2535 {
2536 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2537 
2538 	*alloc_tqps = hdev->num_tqps;
2539 	*max_rss_size = hdev->rss_size_max;
2540 }
2541 
2542 static int hclgevf_get_status(struct hnae3_handle *handle)
2543 {
2544 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2545 
2546 	return hdev->hw.mac.link;
2547 }
2548 
2549 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2550 					    u8 *auto_neg, u32 *speed,
2551 					    u8 *duplex)
2552 {
2553 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2554 
2555 	if (speed)
2556 		*speed = hdev->hw.mac.speed;
2557 	if (duplex)
2558 		*duplex = hdev->hw.mac.duplex;
2559 	if (auto_neg)
2560 		*auto_neg = AUTONEG_DISABLE;
2561 }
2562 
2563 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2564 				 u8 duplex)
2565 {
2566 	hdev->hw.mac.speed = speed;
2567 	hdev->hw.mac.duplex = duplex;
2568 }
2569 
2570 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2571 {
2572 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2573 
2574 	return hclgevf_config_gro(hdev, enable);
2575 }
2576 
2577 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2578 				  u8 *media_type)
2579 {
2580 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2581 	if (media_type)
2582 		*media_type = hdev->hw.mac.media_type;
2583 }
2584 
2585 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2586 {
2587 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2588 
2589 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2590 }
2591 
2592 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2593 {
2594 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2595 
2596 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2597 }
2598 
2599 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2600 {
2601 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2602 
2603 	return hdev->reset_count;
2604 }
2605 
2606 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2607 				  unsigned long *supported,
2608 				  unsigned long *advertising)
2609 {
2610 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2611 
2612 	*supported = hdev->hw.mac.supported;
2613 	*advertising = hdev->hw.mac.advertising;
2614 }
2615 
2616 #define MAX_SEPARATE_NUM	4
2617 #define SEPARATOR_VALUE		0xFFFFFFFF
2618 #define REG_NUM_PER_LINE	4
2619 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2620 
2621 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2622 {
2623 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2624 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2625 
2626 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2627 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2628 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2629 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2630 
2631 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2632 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2633 }
2634 
2635 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2636 			     void *data)
2637 {
2638 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2639 	int i, j, reg_um, separator_num;
2640 	u32 *reg = data;
2641 
2642 	*version = hdev->fw_version;
2643 
2644 	/* fetching per-VF registers values from VF PCIe register space */
2645 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2646 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2647 	for (i = 0; i < reg_um; i++)
2648 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2649 	for (i = 0; i < separator_num; i++)
2650 		*reg++ = SEPARATOR_VALUE;
2651 
2652 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2653 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2654 	for (i = 0; i < reg_um; i++)
2655 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2656 	for (i = 0; i < separator_num; i++)
2657 		*reg++ = SEPARATOR_VALUE;
2658 
2659 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2660 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2661 	for (j = 0; j < hdev->num_tqps; j++) {
2662 		for (i = 0; i < reg_um; i++)
2663 			*reg++ = hclgevf_read_dev(&hdev->hw,
2664 						  ring_reg_addr_list[i] +
2665 						  0x200 * j);
2666 		for (i = 0; i < separator_num; i++)
2667 			*reg++ = SEPARATOR_VALUE;
2668 	}
2669 
2670 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2671 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2672 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2673 		for (i = 0; i < reg_um; i++)
2674 			*reg++ = hclgevf_read_dev(&hdev->hw,
2675 						  tqp_intr_reg_addr_list[i] +
2676 						  4 * j);
2677 		for (i = 0; i < separator_num; i++)
2678 			*reg++ = SEPARATOR_VALUE;
2679 	}
2680 }
2681 
2682 static const struct hnae3_ae_ops hclgevf_ops = {
2683 	.init_ae_dev = hclgevf_init_ae_dev,
2684 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2685 	.flr_prepare = hclgevf_flr_prepare,
2686 	.flr_done = hclgevf_flr_done,
2687 	.init_client_instance = hclgevf_init_client_instance,
2688 	.uninit_client_instance = hclgevf_uninit_client_instance,
2689 	.start = hclgevf_ae_start,
2690 	.stop = hclgevf_ae_stop,
2691 	.client_start = hclgevf_client_start,
2692 	.client_stop = hclgevf_client_stop,
2693 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2694 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2695 	.get_vector = hclgevf_get_vector,
2696 	.put_vector = hclgevf_put_vector,
2697 	.reset_queue = hclgevf_reset_tqp,
2698 	.get_mac_addr = hclgevf_get_mac_addr,
2699 	.set_mac_addr = hclgevf_set_mac_addr,
2700 	.add_uc_addr = hclgevf_add_uc_addr,
2701 	.rm_uc_addr = hclgevf_rm_uc_addr,
2702 	.add_mc_addr = hclgevf_add_mc_addr,
2703 	.rm_mc_addr = hclgevf_rm_mc_addr,
2704 	.get_stats = hclgevf_get_stats,
2705 	.update_stats = hclgevf_update_stats,
2706 	.get_strings = hclgevf_get_strings,
2707 	.get_sset_count = hclgevf_get_sset_count,
2708 	.get_rss_key_size = hclgevf_get_rss_key_size,
2709 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2710 	.get_rss = hclgevf_get_rss,
2711 	.set_rss = hclgevf_set_rss,
2712 	.get_rss_tuple = hclgevf_get_rss_tuple,
2713 	.set_rss_tuple = hclgevf_set_rss_tuple,
2714 	.get_tc_size = hclgevf_get_tc_size,
2715 	.get_fw_version = hclgevf_get_fw_version,
2716 	.set_vlan_filter = hclgevf_set_vlan_filter,
2717 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2718 	.reset_event = hclgevf_reset_event,
2719 	.set_default_reset_request = hclgevf_set_def_reset_request,
2720 	.get_channels = hclgevf_get_channels,
2721 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2722 	.get_regs_len = hclgevf_get_regs_len,
2723 	.get_regs = hclgevf_get_regs,
2724 	.get_status = hclgevf_get_status,
2725 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2726 	.get_media_type = hclgevf_get_media_type,
2727 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2728 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2729 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2730 	.set_gro_en = hclgevf_gro_en,
2731 	.set_mtu = hclgevf_set_mtu,
2732 	.get_global_queue_id = hclgevf_get_qid_global,
2733 	.set_timer_task = hclgevf_set_timer_task,
2734 	.get_link_mode = hclgevf_get_link_mode,
2735 };
2736 
2737 static struct hnae3_ae_algo ae_algovf = {
2738 	.ops = &hclgevf_ops,
2739 	.pdev_id_table = ae_algovf_pci_tbl,
2740 };
2741 
2742 static int hclgevf_init(void)
2743 {
2744 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2745 
2746 	hnae3_register_ae_algo(&ae_algovf);
2747 
2748 	return 0;
2749 }
2750 
2751 static void hclgevf_exit(void)
2752 {
2753 	hnae3_unregister_ae_algo(&ae_algovf);
2754 }
2755 module_init(hclgevf_init);
2756 module_exit(hclgevf_exit);
2757 
2758 MODULE_LICENSE("GPL");
2759 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2760 MODULE_DESCRIPTION("HCLGEVF Driver");
2761 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2762