1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18 				  unsigned long delay);
19 
20 static struct hnae3_ae_algo ae_algovf;
21 
22 static struct workqueue_struct *hclgevf_wq;
23 
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 	/* required last entry */
29 	{0, }
30 };
31 
32 static const u8 hclgevf_hash_key[] = {
33 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39 
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41 
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
44 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
45 					 HCLGEVF_CMDQ_TX_TAIL_REG,
46 					 HCLGEVF_CMDQ_TX_HEAD_REG,
47 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
48 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
49 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
50 					 HCLGEVF_CMDQ_RX_TAIL_REG,
51 					 HCLGEVF_CMDQ_RX_HEAD_REG,
52 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 					 HCLGEVF_CMDQ_INTR_EN_REG,
55 					 HCLGEVF_CMDQ_INTR_GEN_REG};
56 
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58 					   HCLGEVF_RST_ING,
59 					   HCLGEVF_GRO_EN_REG};
60 
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62 					 HCLGEVF_RING_RX_ADDR_H_REG,
63 					 HCLGEVF_RING_RX_BD_NUM_REG,
64 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
65 					 HCLGEVF_RING_RX_MERGE_EN_REG,
66 					 HCLGEVF_RING_RX_TAIL_REG,
67 					 HCLGEVF_RING_RX_HEAD_REG,
68 					 HCLGEVF_RING_RX_FBD_NUM_REG,
69 					 HCLGEVF_RING_RX_OFFSET_REG,
70 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
71 					 HCLGEVF_RING_RX_STASH_REG,
72 					 HCLGEVF_RING_RX_BD_ERR_REG,
73 					 HCLGEVF_RING_TX_ADDR_L_REG,
74 					 HCLGEVF_RING_TX_ADDR_H_REG,
75 					 HCLGEVF_RING_TX_BD_NUM_REG,
76 					 HCLGEVF_RING_TX_PRIORITY_REG,
77 					 HCLGEVF_RING_TX_TC_REG,
78 					 HCLGEVF_RING_TX_MERGE_EN_REG,
79 					 HCLGEVF_RING_TX_TAIL_REG,
80 					 HCLGEVF_RING_TX_HEAD_REG,
81 					 HCLGEVF_RING_TX_FBD_NUM_REG,
82 					 HCLGEVF_RING_TX_OFFSET_REG,
83 					 HCLGEVF_RING_TX_EBD_NUM_REG,
84 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
85 					 HCLGEVF_RING_TX_BD_ERR_REG,
86 					 HCLGEVF_RING_EN_REG};
87 
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89 					     HCLGEVF_TQP_INTR_GL0_REG,
90 					     HCLGEVF_TQP_INTR_GL1_REG,
91 					     HCLGEVF_TQP_INTR_GL2_REG,
92 					     HCLGEVF_TQP_INTR_RL_REG};
93 
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96 	if (!handle->client)
97 		return container_of(handle, struct hclgevf_dev, nic);
98 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
99 		return container_of(handle, struct hclgevf_dev, roce);
100 	else
101 		return container_of(handle, struct hclgevf_dev, nic);
102 }
103 
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108 	struct hclgevf_desc desc;
109 	struct hclgevf_tqp *tqp;
110 	int status;
111 	int i;
112 
113 	for (i = 0; i < kinfo->num_tqps; i++) {
114 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 		hclgevf_cmd_setup_basic_desc(&desc,
116 					     HCLGEVF_OPC_QUERY_RX_STATUS,
117 					     true);
118 
119 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121 		if (status) {
122 			dev_err(&hdev->pdev->dev,
123 				"Query tqp stat fail, status = %d,queue = %d\n",
124 				status,	i);
125 			return status;
126 		}
127 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128 			le32_to_cpu(desc.data[1]);
129 
130 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131 					     true);
132 
133 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135 		if (status) {
136 			dev_err(&hdev->pdev->dev,
137 				"Query tqp stat fail, status = %d,queue = %d\n",
138 				status, i);
139 			return status;
140 		}
141 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142 			le32_to_cpu(desc.data[1]);
143 	}
144 
145 	return 0;
146 }
147 
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151 	struct hclgevf_tqp *tqp;
152 	u64 *buff = data;
153 	int i;
154 
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158 	}
159 	for (i = 0; i < kinfo->num_tqps; i++) {
160 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162 	}
163 
164 	return buff;
165 }
166 
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 
171 	return kinfo->num_tqps * 2;
172 }
173 
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177 	u8 *buff = data;
178 	int i;
179 
180 	for (i = 0; i < kinfo->num_tqps; i++) {
181 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 						       struct hclgevf_tqp, q);
183 		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184 			 tqp->index);
185 		buff += ETH_GSTRING_LEN;
186 	}
187 
188 	for (i = 0; i < kinfo->num_tqps; i++) {
189 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190 						       struct hclgevf_tqp, q);
191 		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192 			 tqp->index);
193 		buff += ETH_GSTRING_LEN;
194 	}
195 
196 	return buff;
197 }
198 
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200 				 struct net_device_stats *net_stats)
201 {
202 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203 	int status;
204 
205 	status = hclgevf_tqps_update_stats(handle);
206 	if (status)
207 		dev_err(&hdev->pdev->dev,
208 			"VF update of TQPS stats fail, status = %d.\n",
209 			status);
210 }
211 
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214 	if (strset == ETH_SS_TEST)
215 		return -EOPNOTSUPP;
216 	else if (strset == ETH_SS_STATS)
217 		return hclgevf_tqps_get_sset_count(handle, strset);
218 
219 	return 0;
220 }
221 
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223 				u8 *data)
224 {
225 	u8 *p = (char *)data;
226 
227 	if (strset == ETH_SS_STATS)
228 		p = hclgevf_tqps_get_strings(handle, p);
229 }
230 
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233 	hclgevf_tqps_get_stats(handle, data);
234 }
235 
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237 				   u8 subcode)
238 {
239 	if (msg) {
240 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241 		msg->code = code;
242 		msg->subcode = subcode;
243 	}
244 }
245 
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
247 {
248 	struct hclge_vf_to_pf_msg send_msg;
249 	u8 resp_msg;
250 	int status;
251 
252 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254 				      sizeof(resp_msg));
255 	if (status) {
256 		dev_err(&hdev->pdev->dev,
257 			"VF request to get TC info from PF failed %d",
258 			status);
259 		return status;
260 	}
261 
262 	hdev->hw_tc_map = resp_msg;
263 
264 	return 0;
265 }
266 
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
268 {
269 	struct hnae3_handle *nic = &hdev->nic;
270 	struct hclge_vf_to_pf_msg send_msg;
271 	u8 resp_msg;
272 	int ret;
273 
274 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277 				   sizeof(u8));
278 	if (ret) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get port based vlan state failed %d",
281 			ret);
282 		return ret;
283 	}
284 
285 	nic->port_base_vlan_state = resp_msg;
286 
287 	return 0;
288 }
289 
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291 {
292 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
296 
297 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298 	struct hclge_vf_to_pf_msg send_msg;
299 	int status;
300 
301 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303 				      HCLGEVF_TQPS_RSS_INFO_LEN);
304 	if (status) {
305 		dev_err(&hdev->pdev->dev,
306 			"VF request to get tqp info from PF failed %d",
307 			status);
308 		return status;
309 	}
310 
311 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312 	       sizeof(u16));
313 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314 	       sizeof(u16));
315 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316 	       sizeof(u16));
317 
318 	return 0;
319 }
320 
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
322 {
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
326 
327 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328 	struct hclge_vf_to_pf_msg send_msg;
329 	int ret;
330 
331 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
334 	if (ret) {
335 		dev_err(&hdev->pdev->dev,
336 			"VF request to get tqp depth info from PF failed %d",
337 			ret);
338 		return ret;
339 	}
340 
341 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342 	       sizeof(u16));
343 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344 	       sizeof(u16));
345 
346 	return 0;
347 }
348 
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
350 {
351 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352 	struct hclge_vf_to_pf_msg send_msg;
353 	u16 qid_in_pf = 0;
354 	u8 resp_data[2];
355 	int ret;
356 
357 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360 				   sizeof(resp_data));
361 	if (!ret)
362 		qid_in_pf = *(u16 *)resp_data;
363 
364 	return qid_in_pf;
365 }
366 
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
368 {
369 	struct hclge_vf_to_pf_msg send_msg;
370 	u8 resp_msg[2];
371 	int ret;
372 
373 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375 				   sizeof(resp_msg));
376 	if (ret) {
377 		dev_err(&hdev->pdev->dev,
378 			"VF request to get the pf port media type failed %d",
379 			ret);
380 		return ret;
381 	}
382 
383 	hdev->hw.mac.media_type = resp_msg[0];
384 	hdev->hw.mac.module_type = resp_msg[1];
385 
386 	return 0;
387 }
388 
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
390 {
391 	struct hclgevf_tqp *tqp;
392 	int i;
393 
394 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
396 	if (!hdev->htqp)
397 		return -ENOMEM;
398 
399 	tqp = hdev->htqp;
400 
401 	for (i = 0; i < hdev->num_tqps; i++) {
402 		tqp->dev = &hdev->pdev->dev;
403 		tqp->index = i;
404 
405 		tqp->q.ae_algo = &ae_algovf;
406 		tqp->q.buf_size = hdev->rx_buf_len;
407 		tqp->q.tx_desc_num = hdev->num_tx_desc;
408 		tqp->q.rx_desc_num = hdev->num_rx_desc;
409 
410 		/* need an extended offset to configure queues >=
411 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
412 		 */
413 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414 			tqp->q.io_base = hdev->hw.io_base +
415 					 HCLGEVF_TQP_REG_OFFSET +
416 					 i * HCLGEVF_TQP_REG_SIZE;
417 		else
418 			tqp->q.io_base = hdev->hw.io_base +
419 					 HCLGEVF_TQP_REG_OFFSET +
420 					 HCLGEVF_TQP_EXT_REG_OFFSET +
421 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422 					 HCLGEVF_TQP_REG_SIZE;
423 
424 		tqp++;
425 	}
426 
427 	return 0;
428 }
429 
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
431 {
432 	struct hnae3_handle *nic = &hdev->nic;
433 	struct hnae3_knic_private_info *kinfo;
434 	u16 new_tqps = hdev->num_tqps;
435 	unsigned int i;
436 	u8 num_tc = 0;
437 
438 	kinfo = &nic->kinfo;
439 	kinfo->num_tx_desc = hdev->num_tx_desc;
440 	kinfo->num_rx_desc = hdev->num_rx_desc;
441 	kinfo->rx_buf_len = hdev->rx_buf_len;
442 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443 		if (hdev->hw_tc_map & BIT(i))
444 			num_tc++;
445 
446 	num_tc = num_tc ? num_tc : 1;
447 	kinfo->tc_info.num_tc = num_tc;
448 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
449 	new_tqps = kinfo->rss_size * num_tc;
450 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
451 
452 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
453 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
454 	if (!kinfo->tqp)
455 		return -ENOMEM;
456 
457 	for (i = 0; i < kinfo->num_tqps; i++) {
458 		hdev->htqp[i].q.handle = &hdev->nic;
459 		hdev->htqp[i].q.tqp_index = i;
460 		kinfo->tqp[i] = &hdev->htqp[i].q;
461 	}
462 
463 	/* after init the max rss_size and tqps, adjust the default tqp numbers
464 	 * and rss size with the actual vector numbers
465 	 */
466 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468 				kinfo->rss_size);
469 
470 	return 0;
471 }
472 
473 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
474 {
475 	struct hclge_vf_to_pf_msg send_msg;
476 	int status;
477 
478 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
479 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480 	if (status)
481 		dev_err(&hdev->pdev->dev,
482 			"VF failed to fetch link status(%d) from PF", status);
483 }
484 
485 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
486 {
487 	struct hnae3_handle *rhandle = &hdev->roce;
488 	struct hnae3_handle *handle = &hdev->nic;
489 	struct hnae3_client *rclient;
490 	struct hnae3_client *client;
491 
492 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
493 		return;
494 
495 	client = handle->client;
496 	rclient = hdev->roce_client;
497 
498 	link_state =
499 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
500 	if (link_state != hdev->hw.mac.link) {
501 		client->ops->link_status_change(handle, !!link_state);
502 		if (rclient && rclient->ops->link_status_change)
503 			rclient->ops->link_status_change(rhandle, !!link_state);
504 		hdev->hw.mac.link = link_state;
505 	}
506 
507 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
508 }
509 
510 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
511 {
512 #define HCLGEVF_ADVERTISING	0
513 #define HCLGEVF_SUPPORTED	1
514 
515 	struct hclge_vf_to_pf_msg send_msg;
516 
517 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
518 	send_msg.data[0] = HCLGEVF_ADVERTISING;
519 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
520 	send_msg.data[0] = HCLGEVF_SUPPORTED;
521 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
522 }
523 
524 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
525 {
526 	struct hnae3_handle *nic = &hdev->nic;
527 	int ret;
528 
529 	nic->ae_algo = &ae_algovf;
530 	nic->pdev = hdev->pdev;
531 	nic->numa_node_mask = hdev->numa_node_mask;
532 	nic->flags |= HNAE3_SUPPORT_VF;
533 
534 	ret = hclgevf_knic_setup(hdev);
535 	if (ret)
536 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
537 			ret);
538 	return ret;
539 }
540 
541 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
542 {
543 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
544 		dev_warn(&hdev->pdev->dev,
545 			 "vector(vector_id %d) has been freed.\n", vector_id);
546 		return;
547 	}
548 
549 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
550 	hdev->num_msi_left += 1;
551 	hdev->num_msi_used -= 1;
552 }
553 
554 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
555 			      struct hnae3_vector_info *vector_info)
556 {
557 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
558 	struct hnae3_vector_info *vector = vector_info;
559 	int alloc = 0;
560 	int i, j;
561 
562 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
563 	vector_num = min(hdev->num_msi_left, vector_num);
564 
565 	for (j = 0; j < vector_num; j++) {
566 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
567 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
568 				vector->vector = pci_irq_vector(hdev->pdev, i);
569 				vector->io_addr = hdev->hw.io_base +
570 					HCLGEVF_VECTOR_REG_BASE +
571 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
572 				hdev->vector_status[i] = 0;
573 				hdev->vector_irq[i] = vector->vector;
574 
575 				vector++;
576 				alloc++;
577 
578 				break;
579 			}
580 		}
581 	}
582 	hdev->num_msi_left -= alloc;
583 	hdev->num_msi_used += alloc;
584 
585 	return alloc;
586 }
587 
588 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
589 {
590 	int i;
591 
592 	for (i = 0; i < hdev->num_msi; i++)
593 		if (vector == hdev->vector_irq[i])
594 			return i;
595 
596 	return -EINVAL;
597 }
598 
599 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
600 				    const u8 hfunc, const u8 *key)
601 {
602 	struct hclgevf_rss_config_cmd *req;
603 	unsigned int key_offset = 0;
604 	struct hclgevf_desc desc;
605 	int key_counts;
606 	int key_size;
607 	int ret;
608 
609 	key_counts = HCLGEVF_RSS_KEY_SIZE;
610 	req = (struct hclgevf_rss_config_cmd *)desc.data;
611 
612 	while (key_counts) {
613 		hclgevf_cmd_setup_basic_desc(&desc,
614 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
615 					     false);
616 
617 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
618 		req->hash_config |=
619 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
620 
621 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
622 		memcpy(req->hash_key,
623 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
624 
625 		key_counts -= key_size;
626 		key_offset++;
627 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
628 		if (ret) {
629 			dev_err(&hdev->pdev->dev,
630 				"Configure RSS config fail, status = %d\n",
631 				ret);
632 			return ret;
633 		}
634 	}
635 
636 	return 0;
637 }
638 
639 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
640 {
641 	return HCLGEVF_RSS_KEY_SIZE;
642 }
643 
644 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
645 {
646 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
647 	struct hclgevf_rss_indirection_table_cmd *req;
648 	struct hclgevf_desc desc;
649 	int rss_cfg_tbl_num;
650 	int status;
651 	int i, j;
652 
653 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
654 	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
655 			  HCLGEVF_RSS_CFG_TBL_SIZE;
656 
657 	for (i = 0; i < rss_cfg_tbl_num; i++) {
658 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
659 					     false);
660 		req->start_table_index =
661 			cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
662 		req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
663 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
664 			req->rss_result[j] =
665 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
666 
667 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
668 		if (status) {
669 			dev_err(&hdev->pdev->dev,
670 				"VF failed(=%d) to set RSS indirection table\n",
671 				status);
672 			return status;
673 		}
674 	}
675 
676 	return 0;
677 }
678 
679 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
680 {
681 	struct hclgevf_rss_tc_mode_cmd *req;
682 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
683 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
684 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
685 	struct hclgevf_desc desc;
686 	u16 roundup_size;
687 	unsigned int i;
688 	int status;
689 
690 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
691 
692 	roundup_size = roundup_pow_of_two(rss_size);
693 	roundup_size = ilog2(roundup_size);
694 
695 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
696 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
697 		tc_size[i] = roundup_size;
698 		tc_offset[i] = rss_size * i;
699 	}
700 
701 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
702 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
703 		u16 mode = 0;
704 
705 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
706 			      (tc_valid[i] & 0x1));
707 		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
708 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
709 		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
710 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
711 
712 		req->rss_tc_mode[i] = cpu_to_le16(mode);
713 	}
714 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
715 	if (status)
716 		dev_err(&hdev->pdev->dev,
717 			"VF failed(=%d) to set rss tc mode\n", status);
718 
719 	return status;
720 }
721 
722 /* for revision 0x20, vf shared the same rss config with pf */
723 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
724 {
725 #define HCLGEVF_RSS_MBX_RESP_LEN	8
726 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
727 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
728 	struct hclge_vf_to_pf_msg send_msg;
729 	u16 msg_num, hash_key_index;
730 	u8 index;
731 	int ret;
732 
733 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
734 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
735 			HCLGEVF_RSS_MBX_RESP_LEN;
736 	for (index = 0; index < msg_num; index++) {
737 		send_msg.data[0] = index;
738 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
739 					   HCLGEVF_RSS_MBX_RESP_LEN);
740 		if (ret) {
741 			dev_err(&hdev->pdev->dev,
742 				"VF get rss hash key from PF failed, ret=%d",
743 				ret);
744 			return ret;
745 		}
746 
747 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
748 		if (index == msg_num - 1)
749 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
750 			       &resp_msg[0],
751 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
752 		else
753 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
754 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
755 	}
756 
757 	return 0;
758 }
759 
760 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
761 			   u8 *hfunc)
762 {
763 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
764 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
765 	int i, ret;
766 
767 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
768 		/* Get hash algorithm */
769 		if (hfunc) {
770 			switch (rss_cfg->hash_algo) {
771 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
772 				*hfunc = ETH_RSS_HASH_TOP;
773 				break;
774 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
775 				*hfunc = ETH_RSS_HASH_XOR;
776 				break;
777 			default:
778 				*hfunc = ETH_RSS_HASH_UNKNOWN;
779 				break;
780 			}
781 		}
782 
783 		/* Get the RSS Key required by the user */
784 		if (key)
785 			memcpy(key, rss_cfg->rss_hash_key,
786 			       HCLGEVF_RSS_KEY_SIZE);
787 	} else {
788 		if (hfunc)
789 			*hfunc = ETH_RSS_HASH_TOP;
790 		if (key) {
791 			ret = hclgevf_get_rss_hash_key(hdev);
792 			if (ret)
793 				return ret;
794 			memcpy(key, rss_cfg->rss_hash_key,
795 			       HCLGEVF_RSS_KEY_SIZE);
796 		}
797 	}
798 
799 	if (indir)
800 		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
801 			indir[i] = rss_cfg->rss_indirection_tbl[i];
802 
803 	return 0;
804 }
805 
806 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
807 			   const u8 *key, const u8 hfunc)
808 {
809 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
810 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
811 	int ret, i;
812 
813 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
814 		/* Set the RSS Hash Key if specififed by the user */
815 		if (key) {
816 			switch (hfunc) {
817 			case ETH_RSS_HASH_TOP:
818 				rss_cfg->hash_algo =
819 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
820 				break;
821 			case ETH_RSS_HASH_XOR:
822 				rss_cfg->hash_algo =
823 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
824 				break;
825 			case ETH_RSS_HASH_NO_CHANGE:
826 				break;
827 			default:
828 				return -EINVAL;
829 			}
830 
831 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
832 						       key);
833 			if (ret)
834 				return ret;
835 
836 			/* Update the shadow RSS key with user specified qids */
837 			memcpy(rss_cfg->rss_hash_key, key,
838 			       HCLGEVF_RSS_KEY_SIZE);
839 		}
840 	}
841 
842 	/* update the shadow RSS table with user specified qids */
843 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
844 		rss_cfg->rss_indirection_tbl[i] = indir[i];
845 
846 	/* update the hardware */
847 	return hclgevf_set_rss_indir_table(hdev);
848 }
849 
850 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
851 {
852 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
853 
854 	if (nfc->data & RXH_L4_B_2_3)
855 		hash_sets |= HCLGEVF_D_PORT_BIT;
856 	else
857 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
858 
859 	if (nfc->data & RXH_IP_SRC)
860 		hash_sets |= HCLGEVF_S_IP_BIT;
861 	else
862 		hash_sets &= ~HCLGEVF_S_IP_BIT;
863 
864 	if (nfc->data & RXH_IP_DST)
865 		hash_sets |= HCLGEVF_D_IP_BIT;
866 	else
867 		hash_sets &= ~HCLGEVF_D_IP_BIT;
868 
869 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
870 		hash_sets |= HCLGEVF_V_TAG_BIT;
871 
872 	return hash_sets;
873 }
874 
875 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
876 				      struct ethtool_rxnfc *nfc,
877 				      struct hclgevf_rss_input_tuple_cmd *req)
878 {
879 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
880 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
881 	u8 tuple_sets;
882 
883 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
884 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
885 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
886 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
887 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
888 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
889 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
890 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
891 
892 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
893 	switch (nfc->flow_type) {
894 	case TCP_V4_FLOW:
895 		req->ipv4_tcp_en = tuple_sets;
896 		break;
897 	case TCP_V6_FLOW:
898 		req->ipv6_tcp_en = tuple_sets;
899 		break;
900 	case UDP_V4_FLOW:
901 		req->ipv4_udp_en = tuple_sets;
902 		break;
903 	case UDP_V6_FLOW:
904 		req->ipv6_udp_en = tuple_sets;
905 		break;
906 	case SCTP_V4_FLOW:
907 		req->ipv4_sctp_en = tuple_sets;
908 		break;
909 	case SCTP_V6_FLOW:
910 		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
911 		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
912 			return -EINVAL;
913 
914 		req->ipv6_sctp_en = tuple_sets;
915 		break;
916 	case IPV4_FLOW:
917 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
918 		break;
919 	case IPV6_FLOW:
920 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
921 		break;
922 	default:
923 		return -EINVAL;
924 	}
925 
926 	return 0;
927 }
928 
929 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
930 				 struct ethtool_rxnfc *nfc)
931 {
932 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
933 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
934 	struct hclgevf_rss_input_tuple_cmd *req;
935 	struct hclgevf_desc desc;
936 	int ret;
937 
938 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
939 		return -EOPNOTSUPP;
940 
941 	if (nfc->data &
942 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
943 		return -EINVAL;
944 
945 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
946 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
947 
948 	ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
949 	if (ret) {
950 		dev_err(&hdev->pdev->dev,
951 			"failed to init rss tuple cmd, ret = %d\n", ret);
952 		return ret;
953 	}
954 
955 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
956 	if (ret) {
957 		dev_err(&hdev->pdev->dev,
958 			"Set rss tuple fail, status = %d\n", ret);
959 		return ret;
960 	}
961 
962 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
963 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
964 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
965 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
966 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
967 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
968 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
969 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
970 	return 0;
971 }
972 
973 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
974 					      int flow_type, u8 *tuple_sets)
975 {
976 	switch (flow_type) {
977 	case TCP_V4_FLOW:
978 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
979 		break;
980 	case UDP_V4_FLOW:
981 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
982 		break;
983 	case TCP_V6_FLOW:
984 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
985 		break;
986 	case UDP_V6_FLOW:
987 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
988 		break;
989 	case SCTP_V4_FLOW:
990 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
991 		break;
992 	case SCTP_V6_FLOW:
993 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
994 		break;
995 	case IPV4_FLOW:
996 	case IPV6_FLOW:
997 		*tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
998 		break;
999 	default:
1000 		return -EINVAL;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1007 {
1008 	u64 tuple_data = 0;
1009 
1010 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
1011 		tuple_data |= RXH_L4_B_2_3;
1012 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
1013 		tuple_data |= RXH_L4_B_0_1;
1014 	if (tuple_sets & HCLGEVF_D_IP_BIT)
1015 		tuple_data |= RXH_IP_DST;
1016 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1017 		tuple_data |= RXH_IP_SRC;
1018 
1019 	return tuple_data;
1020 }
1021 
1022 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1023 				 struct ethtool_rxnfc *nfc)
1024 {
1025 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1026 	u8 tuple_sets;
1027 	int ret;
1028 
1029 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1030 		return -EOPNOTSUPP;
1031 
1032 	nfc->data = 0;
1033 
1034 	ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1035 						 &tuple_sets);
1036 	if (ret || !tuple_sets)
1037 		return ret;
1038 
1039 	nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1040 
1041 	return 0;
1042 }
1043 
1044 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1045 				       struct hclgevf_rss_cfg *rss_cfg)
1046 {
1047 	struct hclgevf_rss_input_tuple_cmd *req;
1048 	struct hclgevf_desc desc;
1049 	int ret;
1050 
1051 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1052 
1053 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1054 
1055 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1056 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1057 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1058 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1059 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1060 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1061 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1062 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1063 
1064 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1065 	if (ret)
1066 		dev_err(&hdev->pdev->dev,
1067 			"Configure rss input fail, status = %d\n", ret);
1068 	return ret;
1069 }
1070 
1071 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1072 {
1073 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1074 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1075 
1076 	return rss_cfg->rss_size;
1077 }
1078 
1079 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1080 				       int vector_id,
1081 				       struct hnae3_ring_chain_node *ring_chain)
1082 {
1083 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1084 	struct hclge_vf_to_pf_msg send_msg;
1085 	struct hnae3_ring_chain_node *node;
1086 	int status;
1087 	int i = 0;
1088 
1089 	memset(&send_msg, 0, sizeof(send_msg));
1090 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1091 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1092 	send_msg.vector_id = vector_id;
1093 
1094 	for (node = ring_chain; node; node = node->next) {
1095 		send_msg.param[i].ring_type =
1096 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1097 
1098 		send_msg.param[i].tqp_index = node->tqp_index;
1099 		send_msg.param[i].int_gl_index =
1100 					hnae3_get_field(node->int_gl_idx,
1101 							HNAE3_RING_GL_IDX_M,
1102 							HNAE3_RING_GL_IDX_S);
1103 
1104 		i++;
1105 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1106 			send_msg.ring_num = i;
1107 
1108 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1109 						      NULL, 0);
1110 			if (status) {
1111 				dev_err(&hdev->pdev->dev,
1112 					"Map TQP fail, status is %d.\n",
1113 					status);
1114 				return status;
1115 			}
1116 			i = 0;
1117 		}
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1124 				      struct hnae3_ring_chain_node *ring_chain)
1125 {
1126 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1127 	int vector_id;
1128 
1129 	vector_id = hclgevf_get_vector_index(hdev, vector);
1130 	if (vector_id < 0) {
1131 		dev_err(&handle->pdev->dev,
1132 			"Get vector index fail. ret =%d\n", vector_id);
1133 		return vector_id;
1134 	}
1135 
1136 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1137 }
1138 
1139 static int hclgevf_unmap_ring_from_vector(
1140 				struct hnae3_handle *handle,
1141 				int vector,
1142 				struct hnae3_ring_chain_node *ring_chain)
1143 {
1144 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1145 	int ret, vector_id;
1146 
1147 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1148 		return 0;
1149 
1150 	vector_id = hclgevf_get_vector_index(hdev, vector);
1151 	if (vector_id < 0) {
1152 		dev_err(&handle->pdev->dev,
1153 			"Get vector index fail. ret =%d\n", vector_id);
1154 		return vector_id;
1155 	}
1156 
1157 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1158 	if (ret)
1159 		dev_err(&handle->pdev->dev,
1160 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1161 			vector_id,
1162 			ret);
1163 
1164 	return ret;
1165 }
1166 
1167 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1168 {
1169 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1170 	int vector_id;
1171 
1172 	vector_id = hclgevf_get_vector_index(hdev, vector);
1173 	if (vector_id < 0) {
1174 		dev_err(&handle->pdev->dev,
1175 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1176 			vector_id);
1177 		return vector_id;
1178 	}
1179 
1180 	hclgevf_free_vector(hdev, vector_id);
1181 
1182 	return 0;
1183 }
1184 
1185 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1186 					bool en_uc_pmc, bool en_mc_pmc,
1187 					bool en_bc_pmc)
1188 {
1189 	struct hnae3_handle *handle = &hdev->nic;
1190 	struct hclge_vf_to_pf_msg send_msg;
1191 	int ret;
1192 
1193 	memset(&send_msg, 0, sizeof(send_msg));
1194 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1195 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1196 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1197 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1198 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1199 					     &handle->priv_flags) ? 1 : 0;
1200 
1201 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1202 	if (ret)
1203 		dev_err(&hdev->pdev->dev,
1204 			"Set promisc mode fail, status is %d.\n", ret);
1205 
1206 	return ret;
1207 }
1208 
1209 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1210 				    bool en_mc_pmc)
1211 {
1212 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1213 	bool en_bc_pmc;
1214 
1215 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1216 
1217 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1218 					    en_bc_pmc);
1219 }
1220 
1221 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1222 {
1223 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1224 
1225 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1226 	hclgevf_task_schedule(hdev, 0);
1227 }
1228 
1229 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1230 {
1231 	struct hnae3_handle *handle = &hdev->nic;
1232 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1233 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1234 	int ret;
1235 
1236 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1237 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1238 		if (!ret)
1239 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1240 	}
1241 }
1242 
1243 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
1244 				       u16 stream_id, bool enable)
1245 {
1246 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1247 	struct hclgevf_desc desc;
1248 
1249 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1250 
1251 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1252 				     false);
1253 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1254 	req->stream_id = cpu_to_le16(stream_id);
1255 	if (enable)
1256 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1257 
1258 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
1259 }
1260 
1261 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
1262 {
1263 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1264 	int ret;
1265 	u16 i;
1266 
1267 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
1268 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
1269 		if (ret)
1270 			return ret;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1277 {
1278 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1279 	struct hclgevf_tqp *tqp;
1280 	int i;
1281 
1282 	for (i = 0; i < kinfo->num_tqps; i++) {
1283 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1284 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1285 	}
1286 }
1287 
1288 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1289 {
1290 	struct hclge_vf_to_pf_msg send_msg;
1291 	u8 host_mac[ETH_ALEN];
1292 	int status;
1293 
1294 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1295 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1296 				      ETH_ALEN);
1297 	if (status) {
1298 		dev_err(&hdev->pdev->dev,
1299 			"fail to get VF MAC from host %d", status);
1300 		return status;
1301 	}
1302 
1303 	ether_addr_copy(p, host_mac);
1304 
1305 	return 0;
1306 }
1307 
1308 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1309 {
1310 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1311 	u8 host_mac_addr[ETH_ALEN];
1312 
1313 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1314 		return;
1315 
1316 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1317 	if (hdev->has_pf_mac)
1318 		ether_addr_copy(p, host_mac_addr);
1319 	else
1320 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1321 }
1322 
1323 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1324 				bool is_first)
1325 {
1326 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1327 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1328 	struct hclge_vf_to_pf_msg send_msg;
1329 	u8 *new_mac_addr = (u8 *)p;
1330 	int status;
1331 
1332 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1333 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1334 	ether_addr_copy(send_msg.data, new_mac_addr);
1335 	if (is_first && !hdev->has_pf_mac)
1336 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1337 	else
1338 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1339 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1340 	if (!status)
1341 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1342 
1343 	return status;
1344 }
1345 
1346 static struct hclgevf_mac_addr_node *
1347 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1348 {
1349 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1350 
1351 	list_for_each_entry_safe(mac_node, tmp, list, node)
1352 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1353 			return mac_node;
1354 
1355 	return NULL;
1356 }
1357 
1358 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1359 				    enum HCLGEVF_MAC_NODE_STATE state)
1360 {
1361 	switch (state) {
1362 	/* from set_rx_mode or tmp_add_list */
1363 	case HCLGEVF_MAC_TO_ADD:
1364 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1365 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1366 		break;
1367 	/* only from set_rx_mode */
1368 	case HCLGEVF_MAC_TO_DEL:
1369 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1370 			list_del(&mac_node->node);
1371 			kfree(mac_node);
1372 		} else {
1373 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1374 		}
1375 		break;
1376 	/* only from tmp_add_list, the mac_node->state won't be
1377 	 * HCLGEVF_MAC_ACTIVE
1378 	 */
1379 	case HCLGEVF_MAC_ACTIVE:
1380 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1381 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1382 		break;
1383 	}
1384 }
1385 
1386 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1387 				   enum HCLGEVF_MAC_NODE_STATE state,
1388 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1389 				   const unsigned char *addr)
1390 {
1391 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1392 	struct hclgevf_mac_addr_node *mac_node;
1393 	struct list_head *list;
1394 
1395 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1396 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1397 
1398 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1399 
1400 	/* if the mac addr is already in the mac list, no need to add a new
1401 	 * one into it, just check the mac addr state, convert it to a new
1402 	 * new state, or just remove it, or do nothing.
1403 	 */
1404 	mac_node = hclgevf_find_mac_node(list, addr);
1405 	if (mac_node) {
1406 		hclgevf_update_mac_node(mac_node, state);
1407 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1408 		return 0;
1409 	}
1410 	/* if this address is never added, unnecessary to delete */
1411 	if (state == HCLGEVF_MAC_TO_DEL) {
1412 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1413 		return -ENOENT;
1414 	}
1415 
1416 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1417 	if (!mac_node) {
1418 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1419 		return -ENOMEM;
1420 	}
1421 
1422 	mac_node->state = state;
1423 	ether_addr_copy(mac_node->mac_addr, addr);
1424 	list_add_tail(&mac_node->node, list);
1425 
1426 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1427 	return 0;
1428 }
1429 
1430 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1431 			       const unsigned char *addr)
1432 {
1433 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1434 				       HCLGEVF_MAC_ADDR_UC, addr);
1435 }
1436 
1437 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1438 			      const unsigned char *addr)
1439 {
1440 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1441 				       HCLGEVF_MAC_ADDR_UC, addr);
1442 }
1443 
1444 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1445 			       const unsigned char *addr)
1446 {
1447 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1448 				       HCLGEVF_MAC_ADDR_MC, addr);
1449 }
1450 
1451 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1452 			      const unsigned char *addr)
1453 {
1454 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1455 				       HCLGEVF_MAC_ADDR_MC, addr);
1456 }
1457 
1458 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1459 				    struct hclgevf_mac_addr_node *mac_node,
1460 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1461 {
1462 	struct hclge_vf_to_pf_msg send_msg;
1463 	u8 code, subcode;
1464 
1465 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1466 		code = HCLGE_MBX_SET_UNICAST;
1467 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1468 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1469 		else
1470 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1471 	} else {
1472 		code = HCLGE_MBX_SET_MULTICAST;
1473 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1474 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1475 		else
1476 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1477 	}
1478 
1479 	hclgevf_build_send_msg(&send_msg, code, subcode);
1480 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1481 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1482 }
1483 
1484 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1485 				    struct list_head *list,
1486 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1487 {
1488 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1489 	int ret;
1490 
1491 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1492 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1493 		if  (ret) {
1494 			dev_err(&hdev->pdev->dev,
1495 				"failed to configure mac %pM, state = %d, ret = %d\n",
1496 				mac_node->mac_addr, mac_node->state, ret);
1497 			return;
1498 		}
1499 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1500 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1501 		} else {
1502 			list_del(&mac_node->node);
1503 			kfree(mac_node);
1504 		}
1505 	}
1506 }
1507 
1508 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1509 				       struct list_head *mac_list)
1510 {
1511 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1512 
1513 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1514 		/* if the mac address from tmp_add_list is not in the
1515 		 * uc/mc_mac_list, it means have received a TO_DEL request
1516 		 * during the time window of sending mac config request to PF
1517 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1518 		 * then it will be removed at next time. If is TO_ADD, it means
1519 		 * send TO_ADD request failed, so just remove the mac node.
1520 		 */
1521 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1522 		if (new_node) {
1523 			hclgevf_update_mac_node(new_node, mac_node->state);
1524 			list_del(&mac_node->node);
1525 			kfree(mac_node);
1526 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1527 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1528 			list_del(&mac_node->node);
1529 			list_add_tail(&mac_node->node, mac_list);
1530 		} else {
1531 			list_del(&mac_node->node);
1532 			kfree(mac_node);
1533 		}
1534 	}
1535 }
1536 
1537 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1538 				       struct list_head *mac_list)
1539 {
1540 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1541 
1542 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1543 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1544 		if (new_node) {
1545 			/* If the mac addr is exist in the mac list, it means
1546 			 * received a new request TO_ADD during the time window
1547 			 * of sending mac addr configurrequest to PF, so just
1548 			 * change the mac state to ACTIVE.
1549 			 */
1550 			new_node->state = HCLGEVF_MAC_ACTIVE;
1551 			list_del(&mac_node->node);
1552 			kfree(mac_node);
1553 		} else {
1554 			list_del(&mac_node->node);
1555 			list_add_tail(&mac_node->node, mac_list);
1556 		}
1557 	}
1558 }
1559 
1560 static void hclgevf_clear_list(struct list_head *list)
1561 {
1562 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1563 
1564 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1565 		list_del(&mac_node->node);
1566 		kfree(mac_node);
1567 	}
1568 }
1569 
1570 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1571 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1572 {
1573 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1574 	struct list_head tmp_add_list, tmp_del_list;
1575 	struct list_head *list;
1576 
1577 	INIT_LIST_HEAD(&tmp_add_list);
1578 	INIT_LIST_HEAD(&tmp_del_list);
1579 
1580 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1581 	 * we can add/delete these mac addr outside the spin lock
1582 	 */
1583 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1584 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1585 
1586 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1587 
1588 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1589 		switch (mac_node->state) {
1590 		case HCLGEVF_MAC_TO_DEL:
1591 			list_del(&mac_node->node);
1592 			list_add_tail(&mac_node->node, &tmp_del_list);
1593 			break;
1594 		case HCLGEVF_MAC_TO_ADD:
1595 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1596 			if (!new_node)
1597 				goto stop_traverse;
1598 
1599 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1600 			new_node->state = mac_node->state;
1601 			list_add_tail(&new_node->node, &tmp_add_list);
1602 			break;
1603 		default:
1604 			break;
1605 		}
1606 	}
1607 
1608 stop_traverse:
1609 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1610 
1611 	/* delete first, in order to get max mac table space for adding */
1612 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1613 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1614 
1615 	/* if some mac addresses were added/deleted fail, move back to the
1616 	 * mac_list, and retry at next time.
1617 	 */
1618 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1619 
1620 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1621 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1622 
1623 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1624 }
1625 
1626 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1627 {
1628 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1629 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1630 }
1631 
1632 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1633 {
1634 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1635 
1636 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1637 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1638 
1639 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1640 }
1641 
1642 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1643 				   __be16 proto, u16 vlan_id,
1644 				   bool is_kill)
1645 {
1646 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1647 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1648 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1649 
1650 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1651 	struct hclge_vf_to_pf_msg send_msg;
1652 	int ret;
1653 
1654 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1655 		return -EINVAL;
1656 
1657 	if (proto != htons(ETH_P_8021Q))
1658 		return -EPROTONOSUPPORT;
1659 
1660 	/* When device is resetting or reset failed, firmware is unable to
1661 	 * handle mailbox. Just record the vlan id, and remove it after
1662 	 * reset finished.
1663 	 */
1664 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1665 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1666 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1667 		return -EBUSY;
1668 	}
1669 
1670 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1671 			       HCLGE_MBX_VLAN_FILTER);
1672 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1673 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1674 	       sizeof(vlan_id));
1675 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1676 	       sizeof(proto));
1677 	/* when remove hw vlan filter failed, record the vlan id,
1678 	 * and try to remove it from hw later, to be consistence
1679 	 * with stack.
1680 	 */
1681 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1682 	if (is_kill && ret)
1683 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1684 
1685 	return ret;
1686 }
1687 
1688 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1689 {
1690 #define HCLGEVF_MAX_SYNC_COUNT	60
1691 	struct hnae3_handle *handle = &hdev->nic;
1692 	int ret, sync_cnt = 0;
1693 	u16 vlan_id;
1694 
1695 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1696 	while (vlan_id != VLAN_N_VID) {
1697 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1698 					      vlan_id, true);
1699 		if (ret)
1700 			return;
1701 
1702 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1703 		sync_cnt++;
1704 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1705 			return;
1706 
1707 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1708 	}
1709 }
1710 
1711 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1712 {
1713 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1714 	struct hclge_vf_to_pf_msg send_msg;
1715 
1716 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1717 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1718 	send_msg.data[0] = enable ? 1 : 0;
1719 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1720 }
1721 
1722 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1723 {
1724 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1725 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1726 	struct hclge_vf_to_pf_msg send_msg;
1727 	u8 return_status = 0;
1728 	int ret;
1729 	u16 i;
1730 
1731 	/* disable vf queue before send queue reset msg to PF */
1732 	ret = hclgevf_tqp_enable(handle, false);
1733 	if (ret) {
1734 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1735 			ret);
1736 		return ret;
1737 	}
1738 
1739 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1740 
1741 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1742 				   sizeof(return_status));
1743 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1744 		return ret;
1745 
1746 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1747 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1748 		memcpy(send_msg.data, &i, sizeof(i));
1749 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1750 		if (ret)
1751 			return ret;
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1758 {
1759 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1760 	struct hclge_vf_to_pf_msg send_msg;
1761 
1762 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1763 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1764 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1765 }
1766 
1767 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1768 				 enum hnae3_reset_notify_type type)
1769 {
1770 	struct hnae3_client *client = hdev->nic_client;
1771 	struct hnae3_handle *handle = &hdev->nic;
1772 	int ret;
1773 
1774 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1775 	    !client)
1776 		return 0;
1777 
1778 	if (!client->ops->reset_notify)
1779 		return -EOPNOTSUPP;
1780 
1781 	ret = client->ops->reset_notify(handle, type);
1782 	if (ret)
1783 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1784 			type, ret);
1785 
1786 	return ret;
1787 }
1788 
1789 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1790 				      enum hnae3_reset_notify_type type)
1791 {
1792 	struct hnae3_client *client = hdev->roce_client;
1793 	struct hnae3_handle *handle = &hdev->roce;
1794 	int ret;
1795 
1796 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1797 		return 0;
1798 
1799 	if (!client->ops->reset_notify)
1800 		return -EOPNOTSUPP;
1801 
1802 	ret = client->ops->reset_notify(handle, type);
1803 	if (ret)
1804 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1805 			type, ret);
1806 	return ret;
1807 }
1808 
1809 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1810 {
1811 #define HCLGEVF_RESET_WAIT_US	20000
1812 #define HCLGEVF_RESET_WAIT_CNT	2000
1813 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1814 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1815 
1816 	u32 val;
1817 	int ret;
1818 
1819 	if (hdev->reset_type == HNAE3_VF_RESET)
1820 		ret = readl_poll_timeout(hdev->hw.io_base +
1821 					 HCLGEVF_VF_RST_ING, val,
1822 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1823 					 HCLGEVF_RESET_WAIT_US,
1824 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1825 	else
1826 		ret = readl_poll_timeout(hdev->hw.io_base +
1827 					 HCLGEVF_RST_ING, val,
1828 					 !(val & HCLGEVF_RST_ING_BITS),
1829 					 HCLGEVF_RESET_WAIT_US,
1830 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1831 
1832 	/* hardware completion status should be available by this time */
1833 	if (ret) {
1834 		dev_err(&hdev->pdev->dev,
1835 			"couldn't get reset done status from h/w, timeout!\n");
1836 		return ret;
1837 	}
1838 
1839 	/* we will wait a bit more to let reset of the stack to complete. This
1840 	 * might happen in case reset assertion was made by PF. Yes, this also
1841 	 * means we might end up waiting bit more even for VF reset.
1842 	 */
1843 	msleep(5000);
1844 
1845 	return 0;
1846 }
1847 
1848 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1849 {
1850 	u32 reg_val;
1851 
1852 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1853 	if (enable)
1854 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1855 	else
1856 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1857 
1858 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1859 			  reg_val);
1860 }
1861 
1862 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1863 {
1864 	int ret;
1865 
1866 	/* uninitialize the nic client */
1867 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1868 	if (ret)
1869 		return ret;
1870 
1871 	/* re-initialize the hclge device */
1872 	ret = hclgevf_reset_hdev(hdev);
1873 	if (ret) {
1874 		dev_err(&hdev->pdev->dev,
1875 			"hclge device re-init failed, VF is disabled!\n");
1876 		return ret;
1877 	}
1878 
1879 	/* bring up the nic client again */
1880 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1881 	if (ret)
1882 		return ret;
1883 
1884 	/* clear handshake status with IMP */
1885 	hclgevf_reset_handshake(hdev, false);
1886 
1887 	/* bring up the nic to enable TX/RX again */
1888 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1889 }
1890 
1891 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1892 {
1893 #define HCLGEVF_RESET_SYNC_TIME 100
1894 
1895 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1896 		struct hclge_vf_to_pf_msg send_msg;
1897 		int ret;
1898 
1899 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1900 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1901 		if (ret) {
1902 			dev_err(&hdev->pdev->dev,
1903 				"failed to assert VF reset, ret = %d\n", ret);
1904 			return ret;
1905 		}
1906 		hdev->rst_stats.vf_func_rst_cnt++;
1907 	}
1908 
1909 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1910 	/* inform hardware that preparatory work is done */
1911 	msleep(HCLGEVF_RESET_SYNC_TIME);
1912 	hclgevf_reset_handshake(hdev, true);
1913 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1914 		 hdev->reset_type);
1915 
1916 	return 0;
1917 }
1918 
1919 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1920 {
1921 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1922 		 hdev->rst_stats.vf_func_rst_cnt);
1923 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1924 		 hdev->rst_stats.flr_rst_cnt);
1925 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1926 		 hdev->rst_stats.vf_rst_cnt);
1927 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1928 		 hdev->rst_stats.rst_done_cnt);
1929 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1930 		 hdev->rst_stats.hw_rst_done_cnt);
1931 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1932 		 hdev->rst_stats.rst_cnt);
1933 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1934 		 hdev->rst_stats.rst_fail_cnt);
1935 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1936 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1937 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1938 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1939 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1940 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1941 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1942 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1943 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1944 }
1945 
1946 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1947 {
1948 	/* recover handshake status with IMP when reset fail */
1949 	hclgevf_reset_handshake(hdev, true);
1950 	hdev->rst_stats.rst_fail_cnt++;
1951 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1952 		hdev->rst_stats.rst_fail_cnt);
1953 
1954 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1955 		set_bit(hdev->reset_type, &hdev->reset_pending);
1956 
1957 	if (hclgevf_is_reset_pending(hdev)) {
1958 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1959 		hclgevf_reset_task_schedule(hdev);
1960 	} else {
1961 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1962 		hclgevf_dump_rst_info(hdev);
1963 	}
1964 }
1965 
1966 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1967 {
1968 	int ret;
1969 
1970 	hdev->rst_stats.rst_cnt++;
1971 
1972 	/* perform reset of the stack & ae device for a client */
1973 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1974 	if (ret)
1975 		return ret;
1976 
1977 	rtnl_lock();
1978 	/* bring down the nic to stop any ongoing TX/RX */
1979 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1980 	rtnl_unlock();
1981 	if (ret)
1982 		return ret;
1983 
1984 	return hclgevf_reset_prepare_wait(hdev);
1985 }
1986 
1987 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1988 {
1989 	int ret;
1990 
1991 	hdev->rst_stats.hw_rst_done_cnt++;
1992 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1993 	if (ret)
1994 		return ret;
1995 
1996 	rtnl_lock();
1997 	/* now, re-initialize the nic client and ae device */
1998 	ret = hclgevf_reset_stack(hdev);
1999 	rtnl_unlock();
2000 	if (ret) {
2001 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2002 		return ret;
2003 	}
2004 
2005 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
2006 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
2007 	 * times
2008 	 */
2009 	if (ret &&
2010 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
2011 		return ret;
2012 
2013 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
2014 	if (ret)
2015 		return ret;
2016 
2017 	hdev->last_reset_time = jiffies;
2018 	hdev->rst_stats.rst_done_cnt++;
2019 	hdev->rst_stats.rst_fail_cnt = 0;
2020 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2021 
2022 	return 0;
2023 }
2024 
2025 static void hclgevf_reset(struct hclgevf_dev *hdev)
2026 {
2027 	if (hclgevf_reset_prepare(hdev))
2028 		goto err_reset;
2029 
2030 	/* check if VF could successfully fetch the hardware reset completion
2031 	 * status from the hardware
2032 	 */
2033 	if (hclgevf_reset_wait(hdev)) {
2034 		/* can't do much in this situation, will disable VF */
2035 		dev_err(&hdev->pdev->dev,
2036 			"failed to fetch H/W reset completion status\n");
2037 		goto err_reset;
2038 	}
2039 
2040 	if (hclgevf_reset_rebuild(hdev))
2041 		goto err_reset;
2042 
2043 	return;
2044 
2045 err_reset:
2046 	hclgevf_reset_err_handle(hdev);
2047 }
2048 
2049 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2050 						     unsigned long *addr)
2051 {
2052 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2053 
2054 	/* return the highest priority reset level amongst all */
2055 	if (test_bit(HNAE3_VF_RESET, addr)) {
2056 		rst_level = HNAE3_VF_RESET;
2057 		clear_bit(HNAE3_VF_RESET, addr);
2058 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2059 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2060 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2061 		rst_level = HNAE3_VF_FULL_RESET;
2062 		clear_bit(HNAE3_VF_FULL_RESET, addr);
2063 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2064 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2065 		rst_level = HNAE3_VF_PF_FUNC_RESET;
2066 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2067 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2068 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2069 		rst_level = HNAE3_VF_FUNC_RESET;
2070 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2071 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2072 		rst_level = HNAE3_FLR_RESET;
2073 		clear_bit(HNAE3_FLR_RESET, addr);
2074 	}
2075 
2076 	return rst_level;
2077 }
2078 
2079 static void hclgevf_reset_event(struct pci_dev *pdev,
2080 				struct hnae3_handle *handle)
2081 {
2082 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2083 	struct hclgevf_dev *hdev = ae_dev->priv;
2084 
2085 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2086 
2087 	if (hdev->default_reset_request)
2088 		hdev->reset_level =
2089 			hclgevf_get_reset_level(hdev,
2090 						&hdev->default_reset_request);
2091 	else
2092 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2093 
2094 	/* reset of this VF requested */
2095 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2096 	hclgevf_reset_task_schedule(hdev);
2097 
2098 	hdev->last_reset_time = jiffies;
2099 }
2100 
2101 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2102 					  enum hnae3_reset_type rst_type)
2103 {
2104 	struct hclgevf_dev *hdev = ae_dev->priv;
2105 
2106 	set_bit(rst_type, &hdev->default_reset_request);
2107 }
2108 
2109 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2110 {
2111 	writel(en ? 1 : 0, vector->addr);
2112 }
2113 
2114 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2115 {
2116 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
2117 #define HCLGEVF_FLR_RETRY_CNT		5
2118 
2119 	struct hclgevf_dev *hdev = ae_dev->priv;
2120 	int retry_cnt = 0;
2121 	int ret;
2122 
2123 retry:
2124 	down(&hdev->reset_sem);
2125 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2126 	hdev->reset_type = HNAE3_FLR_RESET;
2127 	ret = hclgevf_reset_prepare(hdev);
2128 	if (ret) {
2129 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2130 			ret);
2131 		if (hdev->reset_pending ||
2132 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2133 			dev_err(&hdev->pdev->dev,
2134 				"reset_pending:0x%lx, retry_cnt:%d\n",
2135 				hdev->reset_pending, retry_cnt);
2136 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2137 			up(&hdev->reset_sem);
2138 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2139 			goto retry;
2140 		}
2141 	}
2142 
2143 	/* disable misc vector before FLR done */
2144 	hclgevf_enable_vector(&hdev->misc_vector, false);
2145 	hdev->rst_stats.flr_rst_cnt++;
2146 }
2147 
2148 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2149 {
2150 	struct hclgevf_dev *hdev = ae_dev->priv;
2151 	int ret;
2152 
2153 	hclgevf_enable_vector(&hdev->misc_vector, true);
2154 
2155 	ret = hclgevf_reset_rebuild(hdev);
2156 	if (ret)
2157 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2158 			 ret);
2159 
2160 	hdev->reset_type = HNAE3_NONE_RESET;
2161 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2162 	up(&hdev->reset_sem);
2163 }
2164 
2165 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2166 {
2167 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2168 
2169 	return hdev->fw_version;
2170 }
2171 
2172 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2173 {
2174 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2175 
2176 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2177 					    HCLGEVF_MISC_VECTOR_NUM);
2178 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2179 	/* vector status always valid for Vector 0 */
2180 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2181 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2182 
2183 	hdev->num_msi_left -= 1;
2184 	hdev->num_msi_used += 1;
2185 }
2186 
2187 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2188 {
2189 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2190 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2191 			      &hdev->state))
2192 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2193 }
2194 
2195 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2196 {
2197 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2198 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2199 			      &hdev->state))
2200 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2201 }
2202 
2203 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2204 				  unsigned long delay)
2205 {
2206 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2207 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2208 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2209 }
2210 
2211 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2212 {
2213 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2214 
2215 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2216 		return;
2217 
2218 	down(&hdev->reset_sem);
2219 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2220 
2221 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2222 			       &hdev->reset_state)) {
2223 		/* PF has initmated that it is about to reset the hardware.
2224 		 * We now have to poll & check if hardware has actually
2225 		 * completed the reset sequence. On hardware reset completion,
2226 		 * VF needs to reset the client and ae device.
2227 		 */
2228 		hdev->reset_attempts = 0;
2229 
2230 		hdev->last_reset_time = jiffies;
2231 		while ((hdev->reset_type =
2232 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2233 		       != HNAE3_NONE_RESET)
2234 			hclgevf_reset(hdev);
2235 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2236 				      &hdev->reset_state)) {
2237 		/* we could be here when either of below happens:
2238 		 * 1. reset was initiated due to watchdog timeout caused by
2239 		 *    a. IMP was earlier reset and our TX got choked down and
2240 		 *       which resulted in watchdog reacting and inducing VF
2241 		 *       reset. This also means our cmdq would be unreliable.
2242 		 *    b. problem in TX due to other lower layer(example link
2243 		 *       layer not functioning properly etc.)
2244 		 * 2. VF reset might have been initiated due to some config
2245 		 *    change.
2246 		 *
2247 		 * NOTE: Theres no clear way to detect above cases than to react
2248 		 * to the response of PF for this reset request. PF will ack the
2249 		 * 1b and 2. cases but we will not get any intimation about 1a
2250 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2251 		 * communication between PF and VF would be broken.
2252 		 *
2253 		 * if we are never geting into pending state it means either:
2254 		 * 1. PF is not receiving our request which could be due to IMP
2255 		 *    reset
2256 		 * 2. PF is screwed
2257 		 * We cannot do much for 2. but to check first we can try reset
2258 		 * our PCIe + stack and see if it alleviates the problem.
2259 		 */
2260 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2261 			/* prepare for full reset of stack + pcie interface */
2262 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2263 
2264 			/* "defer" schedule the reset task again */
2265 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2266 		} else {
2267 			hdev->reset_attempts++;
2268 
2269 			set_bit(hdev->reset_level, &hdev->reset_pending);
2270 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2271 		}
2272 		hclgevf_reset_task_schedule(hdev);
2273 	}
2274 
2275 	hdev->reset_type = HNAE3_NONE_RESET;
2276 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2277 	up(&hdev->reset_sem);
2278 }
2279 
2280 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2281 {
2282 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2283 		return;
2284 
2285 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2286 		return;
2287 
2288 	hclgevf_mbx_async_handler(hdev);
2289 
2290 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2291 }
2292 
2293 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2294 {
2295 	struct hclge_vf_to_pf_msg send_msg;
2296 	int ret;
2297 
2298 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2299 		return;
2300 
2301 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2302 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2303 	if (ret)
2304 		dev_err(&hdev->pdev->dev,
2305 			"VF sends keep alive cmd failed(=%d)\n", ret);
2306 }
2307 
2308 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2309 {
2310 	unsigned long delta = round_jiffies_relative(HZ);
2311 	struct hnae3_handle *handle = &hdev->nic;
2312 
2313 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2314 		return;
2315 
2316 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2317 		delta = jiffies - hdev->last_serv_processed;
2318 
2319 		if (delta < round_jiffies_relative(HZ)) {
2320 			delta = round_jiffies_relative(HZ) - delta;
2321 			goto out;
2322 		}
2323 	}
2324 
2325 	hdev->serv_processed_cnt++;
2326 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2327 		hclgevf_keep_alive(hdev);
2328 
2329 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2330 		hdev->last_serv_processed = jiffies;
2331 		goto out;
2332 	}
2333 
2334 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2335 		hclgevf_tqps_update_stats(handle);
2336 
2337 	/* request the link status from the PF. PF would be able to tell VF
2338 	 * about such updates in future so we might remove this later
2339 	 */
2340 	hclgevf_request_link_info(hdev);
2341 
2342 	hclgevf_update_link_mode(hdev);
2343 
2344 	hclgevf_sync_vlan_filter(hdev);
2345 
2346 	hclgevf_sync_mac_table(hdev);
2347 
2348 	hclgevf_sync_promisc_mode(hdev);
2349 
2350 	hdev->last_serv_processed = jiffies;
2351 
2352 out:
2353 	hclgevf_task_schedule(hdev, delta);
2354 }
2355 
2356 static void hclgevf_service_task(struct work_struct *work)
2357 {
2358 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2359 						service_task.work);
2360 
2361 	hclgevf_reset_service_task(hdev);
2362 	hclgevf_mailbox_service_task(hdev);
2363 	hclgevf_periodic_service_task(hdev);
2364 
2365 	/* Handle reset and mbx again in case periodical task delays the
2366 	 * handling by calling hclgevf_task_schedule() in
2367 	 * hclgevf_periodic_service_task()
2368 	 */
2369 	hclgevf_reset_service_task(hdev);
2370 	hclgevf_mailbox_service_task(hdev);
2371 }
2372 
2373 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2374 {
2375 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2376 }
2377 
2378 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2379 						      u32 *clearval)
2380 {
2381 	u32 val, cmdq_stat_reg, rst_ing_reg;
2382 
2383 	/* fetch the events from their corresponding regs */
2384 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2385 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2386 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2387 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2388 		dev_info(&hdev->pdev->dev,
2389 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2390 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2391 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2392 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2393 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2394 		hdev->rst_stats.vf_rst_cnt++;
2395 		/* set up VF hardware reset status, its PF will clear
2396 		 * this status when PF has initialized done.
2397 		 */
2398 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2399 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2400 				  val | HCLGEVF_VF_RST_ING_BIT);
2401 		return HCLGEVF_VECTOR0_EVENT_RST;
2402 	}
2403 
2404 	/* check for vector0 mailbox(=CMDQ RX) event source */
2405 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2406 		/* for revision 0x21, clearing interrupt is writing bit 0
2407 		 * to the clear register, writing bit 1 means to keep the
2408 		 * old value.
2409 		 * for revision 0x20, the clear register is a read & write
2410 		 * register, so we should just write 0 to the bit we are
2411 		 * handling, and keep other bits as cmdq_stat_reg.
2412 		 */
2413 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2414 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2415 		else
2416 			*clearval = cmdq_stat_reg &
2417 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2418 
2419 		return HCLGEVF_VECTOR0_EVENT_MBX;
2420 	}
2421 
2422 	/* print other vector0 event source */
2423 	dev_info(&hdev->pdev->dev,
2424 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2425 		 cmdq_stat_reg);
2426 
2427 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2428 }
2429 
2430 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2431 {
2432 	enum hclgevf_evt_cause event_cause;
2433 	struct hclgevf_dev *hdev = data;
2434 	u32 clearval;
2435 
2436 	hclgevf_enable_vector(&hdev->misc_vector, false);
2437 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2438 
2439 	switch (event_cause) {
2440 	case HCLGEVF_VECTOR0_EVENT_RST:
2441 		hclgevf_reset_task_schedule(hdev);
2442 		break;
2443 	case HCLGEVF_VECTOR0_EVENT_MBX:
2444 		hclgevf_mbx_handler(hdev);
2445 		break;
2446 	default:
2447 		break;
2448 	}
2449 
2450 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2451 		hclgevf_clear_event_cause(hdev, clearval);
2452 		hclgevf_enable_vector(&hdev->misc_vector, true);
2453 	}
2454 
2455 	return IRQ_HANDLED;
2456 }
2457 
2458 static int hclgevf_configure(struct hclgevf_dev *hdev)
2459 {
2460 	int ret;
2461 
2462 	/* get current port based vlan state from PF */
2463 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2464 	if (ret)
2465 		return ret;
2466 
2467 	/* get queue configuration from PF */
2468 	ret = hclgevf_get_queue_info(hdev);
2469 	if (ret)
2470 		return ret;
2471 
2472 	/* get queue depth info from PF */
2473 	ret = hclgevf_get_queue_depth(hdev);
2474 	if (ret)
2475 		return ret;
2476 
2477 	ret = hclgevf_get_pf_media_type(hdev);
2478 	if (ret)
2479 		return ret;
2480 
2481 	/* get tc configuration from PF */
2482 	return hclgevf_get_tc_info(hdev);
2483 }
2484 
2485 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2486 {
2487 	struct pci_dev *pdev = ae_dev->pdev;
2488 	struct hclgevf_dev *hdev;
2489 
2490 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2491 	if (!hdev)
2492 		return -ENOMEM;
2493 
2494 	hdev->pdev = pdev;
2495 	hdev->ae_dev = ae_dev;
2496 	ae_dev->priv = hdev;
2497 
2498 	return 0;
2499 }
2500 
2501 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2502 {
2503 	struct hnae3_handle *roce = &hdev->roce;
2504 	struct hnae3_handle *nic = &hdev->nic;
2505 
2506 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2507 
2508 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2509 	    hdev->num_msi_left == 0)
2510 		return -EINVAL;
2511 
2512 	roce->rinfo.base_vector = hdev->roce_base_vector;
2513 
2514 	roce->rinfo.netdev = nic->kinfo.netdev;
2515 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2516 	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2517 
2518 	roce->pdev = nic->pdev;
2519 	roce->ae_algo = nic->ae_algo;
2520 	roce->numa_node_mask = nic->numa_node_mask;
2521 
2522 	return 0;
2523 }
2524 
2525 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2526 {
2527 	struct hclgevf_cfg_gro_status_cmd *req;
2528 	struct hclgevf_desc desc;
2529 	int ret;
2530 
2531 	if (!hnae3_dev_gro_supported(hdev))
2532 		return 0;
2533 
2534 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2535 				     false);
2536 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2537 
2538 	req->gro_en = en ? 1 : 0;
2539 
2540 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2541 	if (ret)
2542 		dev_err(&hdev->pdev->dev,
2543 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2544 
2545 	return ret;
2546 }
2547 
2548 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2549 {
2550 	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2551 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2552 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2553 	u32 i;
2554 
2555 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2556 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2557 	tuple_sets = &rss_cfg->rss_tuple_sets;
2558 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2559 		u8 *rss_ind_tbl;
2560 
2561 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2562 
2563 		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2564 					   sizeof(*rss_ind_tbl), GFP_KERNEL);
2565 		if (!rss_ind_tbl)
2566 			return -ENOMEM;
2567 
2568 		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2569 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2570 		       HCLGEVF_RSS_KEY_SIZE);
2571 
2572 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2573 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2574 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2575 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2576 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2577 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2578 		tuple_sets->ipv6_sctp_en =
2579 			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2580 					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2581 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2582 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2583 	}
2584 
2585 	/* Initialize RSS indirect table */
2586 	for (i = 0; i < rss_ind_tbl_size; i++)
2587 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2588 
2589 	return 0;
2590 }
2591 
2592 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2593 {
2594 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2595 	int ret;
2596 
2597 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2598 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2599 					       rss_cfg->rss_hash_key);
2600 		if (ret)
2601 			return ret;
2602 
2603 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2604 		if (ret)
2605 			return ret;
2606 	}
2607 
2608 	ret = hclgevf_set_rss_indir_table(hdev);
2609 	if (ret)
2610 		return ret;
2611 
2612 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2613 }
2614 
2615 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2616 {
2617 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2618 				       false);
2619 }
2620 
2621 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2622 {
2623 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2624 
2625 	unsigned long last = hdev->serv_processed_cnt;
2626 	int i = 0;
2627 
2628 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2629 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2630 	       last == hdev->serv_processed_cnt)
2631 		usleep_range(1, 1);
2632 }
2633 
2634 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2635 {
2636 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2637 
2638 	if (enable) {
2639 		hclgevf_task_schedule(hdev, 0);
2640 	} else {
2641 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2642 
2643 		/* flush memory to make sure DOWN is seen by service task */
2644 		smp_mb__before_atomic();
2645 		hclgevf_flush_link_update(hdev);
2646 	}
2647 }
2648 
2649 static int hclgevf_ae_start(struct hnae3_handle *handle)
2650 {
2651 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2652 
2653 	hclgevf_reset_tqp_stats(handle);
2654 
2655 	hclgevf_request_link_info(hdev);
2656 
2657 	hclgevf_update_link_mode(hdev);
2658 
2659 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2660 
2661 	return 0;
2662 }
2663 
2664 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2665 {
2666 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2667 
2668 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2669 
2670 	if (hdev->reset_type != HNAE3_VF_RESET)
2671 		hclgevf_reset_tqp(handle);
2672 
2673 	hclgevf_reset_tqp_stats(handle);
2674 	hclgevf_update_link_status(hdev, 0);
2675 }
2676 
2677 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2678 {
2679 #define HCLGEVF_STATE_ALIVE	1
2680 #define HCLGEVF_STATE_NOT_ALIVE	0
2681 
2682 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2683 	struct hclge_vf_to_pf_msg send_msg;
2684 
2685 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2686 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2687 				HCLGEVF_STATE_NOT_ALIVE;
2688 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2689 }
2690 
2691 static int hclgevf_client_start(struct hnae3_handle *handle)
2692 {
2693 	return hclgevf_set_alive(handle, true);
2694 }
2695 
2696 static void hclgevf_client_stop(struct hnae3_handle *handle)
2697 {
2698 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2699 	int ret;
2700 
2701 	ret = hclgevf_set_alive(handle, false);
2702 	if (ret)
2703 		dev_warn(&hdev->pdev->dev,
2704 			 "%s failed %d\n", __func__, ret);
2705 }
2706 
2707 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2708 {
2709 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2710 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2711 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2712 
2713 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2714 
2715 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2716 	sema_init(&hdev->reset_sem, 1);
2717 
2718 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2719 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2720 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2721 
2722 	/* bring the device down */
2723 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2724 }
2725 
2726 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2727 {
2728 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2729 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2730 
2731 	if (hdev->service_task.work.func)
2732 		cancel_delayed_work_sync(&hdev->service_task);
2733 
2734 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2735 }
2736 
2737 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2738 {
2739 	struct pci_dev *pdev = hdev->pdev;
2740 	int vectors;
2741 	int i;
2742 
2743 	if (hnae3_dev_roce_supported(hdev))
2744 		vectors = pci_alloc_irq_vectors(pdev,
2745 						hdev->roce_base_msix_offset + 1,
2746 						hdev->num_msi,
2747 						PCI_IRQ_MSIX);
2748 	else
2749 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2750 						hdev->num_msi,
2751 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2752 
2753 	if (vectors < 0) {
2754 		dev_err(&pdev->dev,
2755 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2756 			vectors);
2757 		return vectors;
2758 	}
2759 	if (vectors < hdev->num_msi)
2760 		dev_warn(&hdev->pdev->dev,
2761 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2762 			 hdev->num_msi, vectors);
2763 
2764 	hdev->num_msi = vectors;
2765 	hdev->num_msi_left = vectors;
2766 
2767 	hdev->base_msi_vector = pdev->irq;
2768 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2769 
2770 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2771 					   sizeof(u16), GFP_KERNEL);
2772 	if (!hdev->vector_status) {
2773 		pci_free_irq_vectors(pdev);
2774 		return -ENOMEM;
2775 	}
2776 
2777 	for (i = 0; i < hdev->num_msi; i++)
2778 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2779 
2780 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2781 					sizeof(int), GFP_KERNEL);
2782 	if (!hdev->vector_irq) {
2783 		devm_kfree(&pdev->dev, hdev->vector_status);
2784 		pci_free_irq_vectors(pdev);
2785 		return -ENOMEM;
2786 	}
2787 
2788 	return 0;
2789 }
2790 
2791 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2792 {
2793 	struct pci_dev *pdev = hdev->pdev;
2794 
2795 	devm_kfree(&pdev->dev, hdev->vector_status);
2796 	devm_kfree(&pdev->dev, hdev->vector_irq);
2797 	pci_free_irq_vectors(pdev);
2798 }
2799 
2800 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2801 {
2802 	int ret;
2803 
2804 	hclgevf_get_misc_vector(hdev);
2805 
2806 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2807 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2808 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2809 			  0, hdev->misc_vector.name, hdev);
2810 	if (ret) {
2811 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2812 			hdev->misc_vector.vector_irq);
2813 		return ret;
2814 	}
2815 
2816 	hclgevf_clear_event_cause(hdev, 0);
2817 
2818 	/* enable misc. vector(vector 0) */
2819 	hclgevf_enable_vector(&hdev->misc_vector, true);
2820 
2821 	return ret;
2822 }
2823 
2824 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2825 {
2826 	/* disable misc vector(vector 0) */
2827 	hclgevf_enable_vector(&hdev->misc_vector, false);
2828 	synchronize_irq(hdev->misc_vector.vector_irq);
2829 	free_irq(hdev->misc_vector.vector_irq, hdev);
2830 	hclgevf_free_vector(hdev, 0);
2831 }
2832 
2833 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2834 {
2835 	struct device *dev = &hdev->pdev->dev;
2836 
2837 	dev_info(dev, "VF info begin:\n");
2838 
2839 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2840 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2841 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2842 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2843 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2844 	dev_info(dev, "PF media type of this VF: %u\n",
2845 		 hdev->hw.mac.media_type);
2846 
2847 	dev_info(dev, "VF info end.\n");
2848 }
2849 
2850 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2851 					    struct hnae3_client *client)
2852 {
2853 	struct hclgevf_dev *hdev = ae_dev->priv;
2854 	int rst_cnt = hdev->rst_stats.rst_cnt;
2855 	int ret;
2856 
2857 	ret = client->ops->init_instance(&hdev->nic);
2858 	if (ret)
2859 		return ret;
2860 
2861 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2862 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2863 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2864 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2865 
2866 		client->ops->uninit_instance(&hdev->nic, 0);
2867 		return -EBUSY;
2868 	}
2869 
2870 	hnae3_set_client_init_flag(client, ae_dev, 1);
2871 
2872 	if (netif_msg_drv(&hdev->nic))
2873 		hclgevf_info_show(hdev);
2874 
2875 	return 0;
2876 }
2877 
2878 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2879 					     struct hnae3_client *client)
2880 {
2881 	struct hclgevf_dev *hdev = ae_dev->priv;
2882 	int ret;
2883 
2884 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2885 	    !hdev->nic_client)
2886 		return 0;
2887 
2888 	ret = hclgevf_init_roce_base_info(hdev);
2889 	if (ret)
2890 		return ret;
2891 
2892 	ret = client->ops->init_instance(&hdev->roce);
2893 	if (ret)
2894 		return ret;
2895 
2896 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2897 	hnae3_set_client_init_flag(client, ae_dev, 1);
2898 
2899 	return 0;
2900 }
2901 
2902 static int hclgevf_init_client_instance(struct hnae3_client *client,
2903 					struct hnae3_ae_dev *ae_dev)
2904 {
2905 	struct hclgevf_dev *hdev = ae_dev->priv;
2906 	int ret;
2907 
2908 	switch (client->type) {
2909 	case HNAE3_CLIENT_KNIC:
2910 		hdev->nic_client = client;
2911 		hdev->nic.client = client;
2912 
2913 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2914 		if (ret)
2915 			goto clear_nic;
2916 
2917 		ret = hclgevf_init_roce_client_instance(ae_dev,
2918 							hdev->roce_client);
2919 		if (ret)
2920 			goto clear_roce;
2921 
2922 		break;
2923 	case HNAE3_CLIENT_ROCE:
2924 		if (hnae3_dev_roce_supported(hdev)) {
2925 			hdev->roce_client = client;
2926 			hdev->roce.client = client;
2927 		}
2928 
2929 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2930 		if (ret)
2931 			goto clear_roce;
2932 
2933 		break;
2934 	default:
2935 		return -EINVAL;
2936 	}
2937 
2938 	return 0;
2939 
2940 clear_nic:
2941 	hdev->nic_client = NULL;
2942 	hdev->nic.client = NULL;
2943 	return ret;
2944 clear_roce:
2945 	hdev->roce_client = NULL;
2946 	hdev->roce.client = NULL;
2947 	return ret;
2948 }
2949 
2950 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2951 					   struct hnae3_ae_dev *ae_dev)
2952 {
2953 	struct hclgevf_dev *hdev = ae_dev->priv;
2954 
2955 	/* un-init roce, if it exists */
2956 	if (hdev->roce_client) {
2957 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2958 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2959 		hdev->roce_client = NULL;
2960 		hdev->roce.client = NULL;
2961 	}
2962 
2963 	/* un-init nic/unic, if this was not called by roce client */
2964 	if (client->ops->uninit_instance && hdev->nic_client &&
2965 	    client->type != HNAE3_CLIENT_ROCE) {
2966 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2967 
2968 		client->ops->uninit_instance(&hdev->nic, 0);
2969 		hdev->nic_client = NULL;
2970 		hdev->nic.client = NULL;
2971 	}
2972 }
2973 
2974 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2975 {
2976 #define HCLGEVF_MEM_BAR		4
2977 
2978 	struct pci_dev *pdev = hdev->pdev;
2979 	struct hclgevf_hw *hw = &hdev->hw;
2980 
2981 	/* for device does not have device memory, return directly */
2982 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2983 		return 0;
2984 
2985 	hw->mem_base = devm_ioremap_wc(&pdev->dev,
2986 				       pci_resource_start(pdev,
2987 							  HCLGEVF_MEM_BAR),
2988 				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2989 	if (!hw->mem_base) {
2990 		dev_err(&pdev->dev, "failed to map device memory\n");
2991 		return -EFAULT;
2992 	}
2993 
2994 	return 0;
2995 }
2996 
2997 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2998 {
2999 	struct pci_dev *pdev = hdev->pdev;
3000 	struct hclgevf_hw *hw;
3001 	int ret;
3002 
3003 	ret = pci_enable_device(pdev);
3004 	if (ret) {
3005 		dev_err(&pdev->dev, "failed to enable PCI device\n");
3006 		return ret;
3007 	}
3008 
3009 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3010 	if (ret) {
3011 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
3012 		goto err_disable_device;
3013 	}
3014 
3015 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
3016 	if (ret) {
3017 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
3018 		goto err_disable_device;
3019 	}
3020 
3021 	pci_set_master(pdev);
3022 	hw = &hdev->hw;
3023 	hw->hdev = hdev;
3024 	hw->io_base = pci_iomap(pdev, 2, 0);
3025 	if (!hw->io_base) {
3026 		dev_err(&pdev->dev, "can't map configuration register space\n");
3027 		ret = -ENOMEM;
3028 		goto err_clr_master;
3029 	}
3030 
3031 	ret = hclgevf_dev_mem_map(hdev);
3032 	if (ret)
3033 		goto err_unmap_io_base;
3034 
3035 	return 0;
3036 
3037 err_unmap_io_base:
3038 	pci_iounmap(pdev, hdev->hw.io_base);
3039 err_clr_master:
3040 	pci_clear_master(pdev);
3041 	pci_release_regions(pdev);
3042 err_disable_device:
3043 	pci_disable_device(pdev);
3044 
3045 	return ret;
3046 }
3047 
3048 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3049 {
3050 	struct pci_dev *pdev = hdev->pdev;
3051 
3052 	if (hdev->hw.mem_base)
3053 		devm_iounmap(&pdev->dev, hdev->hw.mem_base);
3054 
3055 	pci_iounmap(pdev, hdev->hw.io_base);
3056 	pci_clear_master(pdev);
3057 	pci_release_regions(pdev);
3058 	pci_disable_device(pdev);
3059 }
3060 
3061 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3062 {
3063 	struct hclgevf_query_res_cmd *req;
3064 	struct hclgevf_desc desc;
3065 	int ret;
3066 
3067 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3068 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3069 	if (ret) {
3070 		dev_err(&hdev->pdev->dev,
3071 			"query vf resource failed, ret = %d.\n", ret);
3072 		return ret;
3073 	}
3074 
3075 	req = (struct hclgevf_query_res_cmd *)desc.data;
3076 
3077 	if (hnae3_dev_roce_supported(hdev)) {
3078 		hdev->roce_base_msix_offset =
3079 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3080 				HCLGEVF_MSIX_OFT_ROCEE_M,
3081 				HCLGEVF_MSIX_OFT_ROCEE_S);
3082 		hdev->num_roce_msix =
3083 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3084 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3085 
3086 		/* nic's msix numbers is always equals to the roce's. */
3087 		hdev->num_nic_msix = hdev->num_roce_msix;
3088 
3089 		/* VF should have NIC vectors and Roce vectors, NIC vectors
3090 		 * are queued before Roce vectors. The offset is fixed to 64.
3091 		 */
3092 		hdev->num_msi = hdev->num_roce_msix +
3093 				hdev->roce_base_msix_offset;
3094 	} else {
3095 		hdev->num_msi =
3096 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3097 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3098 
3099 		hdev->num_nic_msix = hdev->num_msi;
3100 	}
3101 
3102 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3103 		dev_err(&hdev->pdev->dev,
3104 			"Just %u msi resources, not enough for vf(min:2).\n",
3105 			hdev->num_nic_msix);
3106 		return -EINVAL;
3107 	}
3108 
3109 	return 0;
3110 }
3111 
3112 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3113 {
3114 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3115 
3116 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3117 
3118 	ae_dev->dev_specs.max_non_tso_bd_num =
3119 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3120 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3121 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3122 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3123 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3124 }
3125 
3126 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3127 				    struct hclgevf_desc *desc)
3128 {
3129 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3130 	struct hclgevf_dev_specs_0_cmd *req0;
3131 	struct hclgevf_dev_specs_1_cmd *req1;
3132 
3133 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3134 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3135 
3136 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3137 	ae_dev->dev_specs.rss_ind_tbl_size =
3138 					le16_to_cpu(req0->rss_ind_tbl_size);
3139 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3140 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3141 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3142 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3143 }
3144 
3145 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3146 {
3147 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3148 
3149 	if (!dev_specs->max_non_tso_bd_num)
3150 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3151 	if (!dev_specs->rss_ind_tbl_size)
3152 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3153 	if (!dev_specs->rss_key_size)
3154 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3155 	if (!dev_specs->max_int_gl)
3156 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3157 	if (!dev_specs->max_frm_size)
3158 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3159 }
3160 
3161 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3162 {
3163 	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3164 	int ret;
3165 	int i;
3166 
3167 	/* set default specifications as devices lower than version V3 do not
3168 	 * support querying specifications from firmware.
3169 	 */
3170 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3171 		hclgevf_set_default_dev_specs(hdev);
3172 		return 0;
3173 	}
3174 
3175 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3176 		hclgevf_cmd_setup_basic_desc(&desc[i],
3177 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3178 		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3179 	}
3180 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3181 				     true);
3182 
3183 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3184 	if (ret)
3185 		return ret;
3186 
3187 	hclgevf_parse_dev_specs(hdev, desc);
3188 	hclgevf_check_dev_specs(hdev);
3189 
3190 	return 0;
3191 }
3192 
3193 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3194 {
3195 	struct pci_dev *pdev = hdev->pdev;
3196 	int ret = 0;
3197 
3198 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3199 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3200 		hclgevf_misc_irq_uninit(hdev);
3201 		hclgevf_uninit_msi(hdev);
3202 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3203 	}
3204 
3205 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3206 		pci_set_master(pdev);
3207 		ret = hclgevf_init_msi(hdev);
3208 		if (ret) {
3209 			dev_err(&pdev->dev,
3210 				"failed(%d) to init MSI/MSI-X\n", ret);
3211 			return ret;
3212 		}
3213 
3214 		ret = hclgevf_misc_irq_init(hdev);
3215 		if (ret) {
3216 			hclgevf_uninit_msi(hdev);
3217 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3218 				ret);
3219 			return ret;
3220 		}
3221 
3222 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3223 	}
3224 
3225 	return ret;
3226 }
3227 
3228 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3229 {
3230 	struct hclge_vf_to_pf_msg send_msg;
3231 
3232 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3233 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3234 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3235 }
3236 
3237 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3238 {
3239 	struct pci_dev *pdev = hdev->pdev;
3240 	int ret;
3241 
3242 	ret = hclgevf_pci_reset(hdev);
3243 	if (ret) {
3244 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3245 		return ret;
3246 	}
3247 
3248 	ret = hclgevf_cmd_init(hdev);
3249 	if (ret) {
3250 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3251 		return ret;
3252 	}
3253 
3254 	ret = hclgevf_rss_init_hw(hdev);
3255 	if (ret) {
3256 		dev_err(&hdev->pdev->dev,
3257 			"failed(%d) to initialize RSS\n", ret);
3258 		return ret;
3259 	}
3260 
3261 	ret = hclgevf_config_gro(hdev, true);
3262 	if (ret)
3263 		return ret;
3264 
3265 	ret = hclgevf_init_vlan_config(hdev);
3266 	if (ret) {
3267 		dev_err(&hdev->pdev->dev,
3268 			"failed(%d) to initialize VLAN config\n", ret);
3269 		return ret;
3270 	}
3271 
3272 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3273 
3274 	dev_info(&hdev->pdev->dev, "Reset done\n");
3275 
3276 	return 0;
3277 }
3278 
3279 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3280 {
3281 	struct pci_dev *pdev = hdev->pdev;
3282 	int ret;
3283 
3284 	ret = hclgevf_pci_init(hdev);
3285 	if (ret)
3286 		return ret;
3287 
3288 	ret = hclgevf_cmd_queue_init(hdev);
3289 	if (ret)
3290 		goto err_cmd_queue_init;
3291 
3292 	ret = hclgevf_cmd_init(hdev);
3293 	if (ret)
3294 		goto err_cmd_init;
3295 
3296 	/* Get vf resource */
3297 	ret = hclgevf_query_vf_resource(hdev);
3298 	if (ret)
3299 		goto err_cmd_init;
3300 
3301 	ret = hclgevf_query_dev_specs(hdev);
3302 	if (ret) {
3303 		dev_err(&pdev->dev,
3304 			"failed to query dev specifications, ret = %d\n", ret);
3305 		goto err_cmd_init;
3306 	}
3307 
3308 	ret = hclgevf_init_msi(hdev);
3309 	if (ret) {
3310 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3311 		goto err_cmd_init;
3312 	}
3313 
3314 	hclgevf_state_init(hdev);
3315 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3316 	hdev->reset_type = HNAE3_NONE_RESET;
3317 
3318 	ret = hclgevf_misc_irq_init(hdev);
3319 	if (ret)
3320 		goto err_misc_irq_init;
3321 
3322 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3323 
3324 	ret = hclgevf_configure(hdev);
3325 	if (ret) {
3326 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3327 		goto err_config;
3328 	}
3329 
3330 	ret = hclgevf_alloc_tqps(hdev);
3331 	if (ret) {
3332 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3333 		goto err_config;
3334 	}
3335 
3336 	ret = hclgevf_set_handle_info(hdev);
3337 	if (ret)
3338 		goto err_config;
3339 
3340 	ret = hclgevf_config_gro(hdev, true);
3341 	if (ret)
3342 		goto err_config;
3343 
3344 	/* Initialize RSS for this VF */
3345 	ret = hclgevf_rss_init_cfg(hdev);
3346 	if (ret) {
3347 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3348 		goto err_config;
3349 	}
3350 
3351 	ret = hclgevf_rss_init_hw(hdev);
3352 	if (ret) {
3353 		dev_err(&hdev->pdev->dev,
3354 			"failed(%d) to initialize RSS\n", ret);
3355 		goto err_config;
3356 	}
3357 
3358 	/* ensure vf tbl list as empty before init*/
3359 	ret = hclgevf_clear_vport_list(hdev);
3360 	if (ret) {
3361 		dev_err(&pdev->dev,
3362 			"failed to clear tbl list configuration, ret = %d.\n",
3363 			ret);
3364 		goto err_config;
3365 	}
3366 
3367 	ret = hclgevf_init_vlan_config(hdev);
3368 	if (ret) {
3369 		dev_err(&hdev->pdev->dev,
3370 			"failed(%d) to initialize VLAN config\n", ret);
3371 		goto err_config;
3372 	}
3373 
3374 	hdev->last_reset_time = jiffies;
3375 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3376 		 HCLGEVF_DRIVER_NAME);
3377 
3378 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3379 
3380 	return 0;
3381 
3382 err_config:
3383 	hclgevf_misc_irq_uninit(hdev);
3384 err_misc_irq_init:
3385 	hclgevf_state_uninit(hdev);
3386 	hclgevf_uninit_msi(hdev);
3387 err_cmd_init:
3388 	hclgevf_cmd_uninit(hdev);
3389 err_cmd_queue_init:
3390 	hclgevf_pci_uninit(hdev);
3391 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3392 	return ret;
3393 }
3394 
3395 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3396 {
3397 	struct hclge_vf_to_pf_msg send_msg;
3398 
3399 	hclgevf_state_uninit(hdev);
3400 
3401 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3402 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3403 
3404 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3405 		hclgevf_misc_irq_uninit(hdev);
3406 		hclgevf_uninit_msi(hdev);
3407 	}
3408 
3409 	hclgevf_cmd_uninit(hdev);
3410 	hclgevf_pci_uninit(hdev);
3411 	hclgevf_uninit_mac_list(hdev);
3412 }
3413 
3414 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3415 {
3416 	struct pci_dev *pdev = ae_dev->pdev;
3417 	int ret;
3418 
3419 	ret = hclgevf_alloc_hdev(ae_dev);
3420 	if (ret) {
3421 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3422 		return ret;
3423 	}
3424 
3425 	ret = hclgevf_init_hdev(ae_dev->priv);
3426 	if (ret) {
3427 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3428 		return ret;
3429 	}
3430 
3431 	return 0;
3432 }
3433 
3434 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3435 {
3436 	struct hclgevf_dev *hdev = ae_dev->priv;
3437 
3438 	hclgevf_uninit_hdev(hdev);
3439 	ae_dev->priv = NULL;
3440 }
3441 
3442 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3443 {
3444 	struct hnae3_handle *nic = &hdev->nic;
3445 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3446 
3447 	return min_t(u32, hdev->rss_size_max,
3448 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3449 }
3450 
3451 /**
3452  * hclgevf_get_channels - Get the current channels enabled and max supported.
3453  * @handle: hardware information for network interface
3454  * @ch: ethtool channels structure
3455  *
3456  * We don't support separate tx and rx queues as channels. The other count
3457  * represents how many queues are being used for control. max_combined counts
3458  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3459  * q_vectors since we support a lot more queue pairs than q_vectors.
3460  **/
3461 static void hclgevf_get_channels(struct hnae3_handle *handle,
3462 				 struct ethtool_channels *ch)
3463 {
3464 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3465 
3466 	ch->max_combined = hclgevf_get_max_channels(hdev);
3467 	ch->other_count = 0;
3468 	ch->max_other = 0;
3469 	ch->combined_count = handle->kinfo.rss_size;
3470 }
3471 
3472 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3473 					  u16 *alloc_tqps, u16 *max_rss_size)
3474 {
3475 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3476 
3477 	*alloc_tqps = hdev->num_tqps;
3478 	*max_rss_size = hdev->rss_size_max;
3479 }
3480 
3481 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3482 				    u32 new_tqps_num)
3483 {
3484 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3485 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3486 	u16 max_rss_size;
3487 
3488 	kinfo->req_rss_size = new_tqps_num;
3489 
3490 	max_rss_size = min_t(u16, hdev->rss_size_max,
3491 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3492 
3493 	/* Use the user's configuration when it is not larger than
3494 	 * max_rss_size, otherwise, use the maximum specification value.
3495 	 */
3496 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3497 	    kinfo->req_rss_size <= max_rss_size)
3498 		kinfo->rss_size = kinfo->req_rss_size;
3499 	else if (kinfo->rss_size > max_rss_size ||
3500 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3501 		kinfo->rss_size = max_rss_size;
3502 
3503 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3504 }
3505 
3506 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3507 				bool rxfh_configured)
3508 {
3509 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3510 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3511 	u16 cur_rss_size = kinfo->rss_size;
3512 	u16 cur_tqps = kinfo->num_tqps;
3513 	u32 *rss_indir;
3514 	unsigned int i;
3515 	int ret;
3516 
3517 	hclgevf_update_rss_size(handle, new_tqps_num);
3518 
3519 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3520 	if (ret)
3521 		return ret;
3522 
3523 	/* RSS indirection table has been configuared by user */
3524 	if (rxfh_configured)
3525 		goto out;
3526 
3527 	/* Reinitializes the rss indirect table according to the new RSS size */
3528 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3529 			    sizeof(u32), GFP_KERNEL);
3530 	if (!rss_indir)
3531 		return -ENOMEM;
3532 
3533 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3534 		rss_indir[i] = i % kinfo->rss_size;
3535 
3536 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3537 
3538 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3539 	if (ret)
3540 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3541 			ret);
3542 
3543 	kfree(rss_indir);
3544 
3545 out:
3546 	if (!ret)
3547 		dev_info(&hdev->pdev->dev,
3548 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3549 			 cur_rss_size, kinfo->rss_size,
3550 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3551 
3552 	return ret;
3553 }
3554 
3555 static int hclgevf_get_status(struct hnae3_handle *handle)
3556 {
3557 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3558 
3559 	return hdev->hw.mac.link;
3560 }
3561 
3562 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3563 					    u8 *auto_neg, u32 *speed,
3564 					    u8 *duplex)
3565 {
3566 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3567 
3568 	if (speed)
3569 		*speed = hdev->hw.mac.speed;
3570 	if (duplex)
3571 		*duplex = hdev->hw.mac.duplex;
3572 	if (auto_neg)
3573 		*auto_neg = AUTONEG_DISABLE;
3574 }
3575 
3576 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3577 				 u8 duplex)
3578 {
3579 	hdev->hw.mac.speed = speed;
3580 	hdev->hw.mac.duplex = duplex;
3581 }
3582 
3583 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3584 {
3585 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3586 
3587 	return hclgevf_config_gro(hdev, enable);
3588 }
3589 
3590 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3591 				   u8 *module_type)
3592 {
3593 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3594 
3595 	if (media_type)
3596 		*media_type = hdev->hw.mac.media_type;
3597 
3598 	if (module_type)
3599 		*module_type = hdev->hw.mac.module_type;
3600 }
3601 
3602 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3603 {
3604 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3605 
3606 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3607 }
3608 
3609 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3610 {
3611 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3612 
3613 	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3614 }
3615 
3616 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3617 {
3618 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3619 
3620 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3621 }
3622 
3623 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3624 {
3625 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3626 
3627 	return hdev->rst_stats.hw_rst_done_cnt;
3628 }
3629 
3630 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3631 				  unsigned long *supported,
3632 				  unsigned long *advertising)
3633 {
3634 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3635 
3636 	*supported = hdev->hw.mac.supported;
3637 	*advertising = hdev->hw.mac.advertising;
3638 }
3639 
3640 #define MAX_SEPARATE_NUM	4
3641 #define SEPARATOR_VALUE		0xFFFFFFFF
3642 #define REG_NUM_PER_LINE	4
3643 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3644 
3645 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3646 {
3647 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3648 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3649 
3650 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3651 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3652 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3653 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3654 
3655 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3656 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3657 }
3658 
3659 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3660 			     void *data)
3661 {
3662 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3663 	int i, j, reg_um, separator_num;
3664 	u32 *reg = data;
3665 
3666 	*version = hdev->fw_version;
3667 
3668 	/* fetching per-VF registers values from VF PCIe register space */
3669 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3670 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3671 	for (i = 0; i < reg_um; i++)
3672 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3673 	for (i = 0; i < separator_num; i++)
3674 		*reg++ = SEPARATOR_VALUE;
3675 
3676 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3677 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3678 	for (i = 0; i < reg_um; i++)
3679 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3680 	for (i = 0; i < separator_num; i++)
3681 		*reg++ = SEPARATOR_VALUE;
3682 
3683 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3684 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3685 	for (j = 0; j < hdev->num_tqps; j++) {
3686 		for (i = 0; i < reg_um; i++)
3687 			*reg++ = hclgevf_read_dev(&hdev->hw,
3688 						  ring_reg_addr_list[i] +
3689 						  0x200 * j);
3690 		for (i = 0; i < separator_num; i++)
3691 			*reg++ = SEPARATOR_VALUE;
3692 	}
3693 
3694 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3695 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3696 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3697 		for (i = 0; i < reg_um; i++)
3698 			*reg++ = hclgevf_read_dev(&hdev->hw,
3699 						  tqp_intr_reg_addr_list[i] +
3700 						  4 * j);
3701 		for (i = 0; i < separator_num; i++)
3702 			*reg++ = SEPARATOR_VALUE;
3703 	}
3704 }
3705 
3706 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3707 					u8 *port_base_vlan_info, u8 data_size)
3708 {
3709 	struct hnae3_handle *nic = &hdev->nic;
3710 	struct hclge_vf_to_pf_msg send_msg;
3711 	int ret;
3712 
3713 	rtnl_lock();
3714 
3715 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3716 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3717 		dev_warn(&hdev->pdev->dev,
3718 			 "is resetting when updating port based vlan info\n");
3719 		rtnl_unlock();
3720 		return;
3721 	}
3722 
3723 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3724 	if (ret) {
3725 		rtnl_unlock();
3726 		return;
3727 	}
3728 
3729 	/* send msg to PF and wait update port based vlan info */
3730 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3731 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3732 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3733 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3734 	if (!ret) {
3735 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3736 			nic->port_base_vlan_state = state;
3737 		else
3738 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3739 	}
3740 
3741 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3742 	rtnl_unlock();
3743 }
3744 
3745 static const struct hnae3_ae_ops hclgevf_ops = {
3746 	.init_ae_dev = hclgevf_init_ae_dev,
3747 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3748 	.flr_prepare = hclgevf_flr_prepare,
3749 	.flr_done = hclgevf_flr_done,
3750 	.init_client_instance = hclgevf_init_client_instance,
3751 	.uninit_client_instance = hclgevf_uninit_client_instance,
3752 	.start = hclgevf_ae_start,
3753 	.stop = hclgevf_ae_stop,
3754 	.client_start = hclgevf_client_start,
3755 	.client_stop = hclgevf_client_stop,
3756 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3757 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3758 	.get_vector = hclgevf_get_vector,
3759 	.put_vector = hclgevf_put_vector,
3760 	.reset_queue = hclgevf_reset_tqp,
3761 	.get_mac_addr = hclgevf_get_mac_addr,
3762 	.set_mac_addr = hclgevf_set_mac_addr,
3763 	.add_uc_addr = hclgevf_add_uc_addr,
3764 	.rm_uc_addr = hclgevf_rm_uc_addr,
3765 	.add_mc_addr = hclgevf_add_mc_addr,
3766 	.rm_mc_addr = hclgevf_rm_mc_addr,
3767 	.get_stats = hclgevf_get_stats,
3768 	.update_stats = hclgevf_update_stats,
3769 	.get_strings = hclgevf_get_strings,
3770 	.get_sset_count = hclgevf_get_sset_count,
3771 	.get_rss_key_size = hclgevf_get_rss_key_size,
3772 	.get_rss = hclgevf_get_rss,
3773 	.set_rss = hclgevf_set_rss,
3774 	.get_rss_tuple = hclgevf_get_rss_tuple,
3775 	.set_rss_tuple = hclgevf_set_rss_tuple,
3776 	.get_tc_size = hclgevf_get_tc_size,
3777 	.get_fw_version = hclgevf_get_fw_version,
3778 	.set_vlan_filter = hclgevf_set_vlan_filter,
3779 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3780 	.reset_event = hclgevf_reset_event,
3781 	.set_default_reset_request = hclgevf_set_def_reset_request,
3782 	.set_channels = hclgevf_set_channels,
3783 	.get_channels = hclgevf_get_channels,
3784 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3785 	.get_regs_len = hclgevf_get_regs_len,
3786 	.get_regs = hclgevf_get_regs,
3787 	.get_status = hclgevf_get_status,
3788 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3789 	.get_media_type = hclgevf_get_media_type,
3790 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3791 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3792 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3793 	.set_gro_en = hclgevf_gro_en,
3794 	.set_mtu = hclgevf_set_mtu,
3795 	.get_global_queue_id = hclgevf_get_qid_global,
3796 	.set_timer_task = hclgevf_set_timer_task,
3797 	.get_link_mode = hclgevf_get_link_mode,
3798 	.set_promisc_mode = hclgevf_set_promisc_mode,
3799 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3800 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3801 };
3802 
3803 static struct hnae3_ae_algo ae_algovf = {
3804 	.ops = &hclgevf_ops,
3805 	.pdev_id_table = ae_algovf_pci_tbl,
3806 };
3807 
3808 static int hclgevf_init(void)
3809 {
3810 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3811 
3812 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3813 	if (!hclgevf_wq) {
3814 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3815 		return -ENOMEM;
3816 	}
3817 
3818 	hnae3_register_ae_algo(&ae_algovf);
3819 
3820 	return 0;
3821 }
3822 
3823 static void hclgevf_exit(void)
3824 {
3825 	hnae3_unregister_ae_algo(&ae_algovf);
3826 	destroy_workqueue(hclgevf_wq);
3827 }
3828 module_init(hclgevf_init);
3829 module_exit(hclgevf_exit);
3830 
3831 MODULE_LICENSE("GPL");
3832 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3833 MODULE_DESCRIPTION("HCLGEVF Driver");
3834 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3835