1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static const struct pci_device_id ae_algovf_pci_tbl[] = {
20 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
21 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
22 	/* required last entry */
23 	{0, }
24 };
25 
26 static const u8 hclgevf_hash_key[] = {
27 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
28 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
29 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
30 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
31 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
37 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
38 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
39 					 HCLGEVF_CMDQ_TX_TAIL_REG,
40 					 HCLGEVF_CMDQ_TX_HEAD_REG,
41 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
42 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
43 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
44 					 HCLGEVF_CMDQ_RX_TAIL_REG,
45 					 HCLGEVF_CMDQ_RX_HEAD_REG,
46 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGEVF_CMDQ_INTR_STS_REG,
48 					 HCLGEVF_CMDQ_INTR_EN_REG,
49 					 HCLGEVF_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
89 {
90 	if (!handle->client)
91 		return container_of(handle, struct hclgevf_dev, nic);
92 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
93 		return container_of(handle, struct hclgevf_dev, roce);
94 	else
95 		return container_of(handle, struct hclgevf_dev, nic);
96 }
97 
98 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
99 {
100 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
101 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
102 	struct hclgevf_desc desc;
103 	struct hclgevf_tqp *tqp;
104 	int status;
105 	int i;
106 
107 	for (i = 0; i < kinfo->num_tqps; i++) {
108 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
109 		hclgevf_cmd_setup_basic_desc(&desc,
110 					     HCLGEVF_OPC_QUERY_RX_STATUS,
111 					     true);
112 
113 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 		if (status) {
116 			dev_err(&hdev->pdev->dev,
117 				"Query tqp stat fail, status = %d,queue = %d\n",
118 				status,	i);
119 			return status;
120 		}
121 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
122 			le32_to_cpu(desc.data[1]);
123 
124 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
125 					     true);
126 
127 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
128 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
129 		if (status) {
130 			dev_err(&hdev->pdev->dev,
131 				"Query tqp stat fail, status = %d,queue = %d\n",
132 				status, i);
133 			return status;
134 		}
135 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
136 			le32_to_cpu(desc.data[1]);
137 	}
138 
139 	return 0;
140 }
141 
142 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
143 {
144 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
145 	struct hclgevf_tqp *tqp;
146 	u64 *buff = data;
147 	int i;
148 
149 	for (i = 0; i < kinfo->num_tqps; i++) {
150 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
151 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
152 	}
153 	for (i = 0; i < kinfo->num_tqps; i++) {
154 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
155 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
156 	}
157 
158 	return buff;
159 }
160 
161 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
162 {
163 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
164 
165 	return kinfo->num_tqps * 2;
166 }
167 
168 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
169 {
170 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171 	u8 *buff = data;
172 	int i = 0;
173 
174 	for (i = 0; i < kinfo->num_tqps; i++) {
175 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
176 						       struct hclgevf_tqp, q);
177 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
178 			 tqp->index);
179 		buff += ETH_GSTRING_LEN;
180 	}
181 
182 	for (i = 0; i < kinfo->num_tqps; i++) {
183 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
184 						       struct hclgevf_tqp, q);
185 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
186 			 tqp->index);
187 		buff += ETH_GSTRING_LEN;
188 	}
189 
190 	return buff;
191 }
192 
193 static void hclgevf_update_stats(struct hnae3_handle *handle,
194 				 struct net_device_stats *net_stats)
195 {
196 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
197 	int status;
198 
199 	status = hclgevf_tqps_update_stats(handle);
200 	if (status)
201 		dev_err(&hdev->pdev->dev,
202 			"VF update of TQPS stats fail, status = %d.\n",
203 			status);
204 }
205 
206 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
207 {
208 	if (strset == ETH_SS_TEST)
209 		return -EOPNOTSUPP;
210 	else if (strset == ETH_SS_STATS)
211 		return hclgevf_tqps_get_sset_count(handle, strset);
212 
213 	return 0;
214 }
215 
216 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
217 				u8 *data)
218 {
219 	u8 *p = (char *)data;
220 
221 	if (strset == ETH_SS_STATS)
222 		p = hclgevf_tqps_get_strings(handle, p);
223 }
224 
225 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
226 {
227 	hclgevf_tqps_get_stats(handle, data);
228 }
229 
230 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
231 {
232 	u8 resp_msg;
233 	int status;
234 
235 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
236 				      true, &resp_msg, sizeof(resp_msg));
237 	if (status) {
238 		dev_err(&hdev->pdev->dev,
239 			"VF request to get TC info from PF failed %d",
240 			status);
241 		return status;
242 	}
243 
244 	hdev->hw_tc_map = resp_msg;
245 
246 	return 0;
247 }
248 
249 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
250 {
251 	struct hnae3_handle *nic = &hdev->nic;
252 	u8 resp_msg;
253 	int ret;
254 
255 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
256 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
257 				   NULL, 0, true, &resp_msg, sizeof(u8));
258 	if (ret) {
259 		dev_err(&hdev->pdev->dev,
260 			"VF request to get port based vlan state failed %d",
261 			ret);
262 		return ret;
263 	}
264 
265 	nic->port_base_vlan_state = resp_msg;
266 
267 	return 0;
268 }
269 
270 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
271 {
272 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
273 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
274 	int status;
275 
276 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
277 				      true, resp_msg,
278 				      HCLGEVF_TQPS_RSS_INFO_LEN);
279 	if (status) {
280 		dev_err(&hdev->pdev->dev,
281 			"VF request to get tqp info from PF failed %d",
282 			status);
283 		return status;
284 	}
285 
286 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
287 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
288 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
289 
290 	return 0;
291 }
292 
293 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
294 {
295 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
296 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
297 	int ret;
298 
299 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
300 				   true, resp_msg,
301 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
302 	if (ret) {
303 		dev_err(&hdev->pdev->dev,
304 			"VF request to get tqp depth info from PF failed %d",
305 			ret);
306 		return ret;
307 	}
308 
309 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
310 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
311 
312 	return 0;
313 }
314 
315 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
316 {
317 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
318 	u8 msg_data[2], resp_data[2];
319 	u16 qid_in_pf = 0;
320 	int ret;
321 
322 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
323 
324 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
325 				   sizeof(msg_data), true, resp_data,
326 				   sizeof(resp_data));
327 	if (!ret)
328 		qid_in_pf = *(u16 *)resp_data;
329 
330 	return qid_in_pf;
331 }
332 
333 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
334 {
335 	u8 resp_msg[2];
336 	int ret;
337 
338 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
339 				   true, resp_msg, sizeof(resp_msg));
340 	if (ret) {
341 		dev_err(&hdev->pdev->dev,
342 			"VF request to get the pf port media type failed %d",
343 			ret);
344 		return ret;
345 	}
346 
347 	hdev->hw.mac.media_type = resp_msg[0];
348 	hdev->hw.mac.module_type = resp_msg[1];
349 
350 	return 0;
351 }
352 
353 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
354 {
355 	struct hclgevf_tqp *tqp;
356 	int i;
357 
358 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
359 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
360 	if (!hdev->htqp)
361 		return -ENOMEM;
362 
363 	tqp = hdev->htqp;
364 
365 	for (i = 0; i < hdev->num_tqps; i++) {
366 		tqp->dev = &hdev->pdev->dev;
367 		tqp->index = i;
368 
369 		tqp->q.ae_algo = &ae_algovf;
370 		tqp->q.buf_size = hdev->rx_buf_len;
371 		tqp->q.tx_desc_num = hdev->num_tx_desc;
372 		tqp->q.rx_desc_num = hdev->num_rx_desc;
373 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
374 			i * HCLGEVF_TQP_REG_SIZE;
375 
376 		tqp++;
377 	}
378 
379 	return 0;
380 }
381 
382 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
383 {
384 	struct hnae3_handle *nic = &hdev->nic;
385 	struct hnae3_knic_private_info *kinfo;
386 	u16 new_tqps = hdev->num_tqps;
387 	unsigned int i;
388 
389 	kinfo = &nic->kinfo;
390 	kinfo->num_tc = 0;
391 	kinfo->num_tx_desc = hdev->num_tx_desc;
392 	kinfo->num_rx_desc = hdev->num_rx_desc;
393 	kinfo->rx_buf_len = hdev->rx_buf_len;
394 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
395 		if (hdev->hw_tc_map & BIT(i))
396 			kinfo->num_tc++;
397 
398 	kinfo->rss_size
399 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
400 	new_tqps = kinfo->rss_size * kinfo->num_tc;
401 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
402 
403 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
404 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
405 	if (!kinfo->tqp)
406 		return -ENOMEM;
407 
408 	for (i = 0; i < kinfo->num_tqps; i++) {
409 		hdev->htqp[i].q.handle = &hdev->nic;
410 		hdev->htqp[i].q.tqp_index = i;
411 		kinfo->tqp[i] = &hdev->htqp[i].q;
412 	}
413 
414 	return 0;
415 }
416 
417 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
418 {
419 	int status;
420 	u8 resp_msg;
421 
422 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
423 				      0, false, &resp_msg, sizeof(resp_msg));
424 	if (status)
425 		dev_err(&hdev->pdev->dev,
426 			"VF failed to fetch link status(%d) from PF", status);
427 }
428 
429 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
430 {
431 	struct hnae3_handle *rhandle = &hdev->roce;
432 	struct hnae3_handle *handle = &hdev->nic;
433 	struct hnae3_client *rclient;
434 	struct hnae3_client *client;
435 
436 	client = handle->client;
437 	rclient = hdev->roce_client;
438 
439 	link_state =
440 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
441 
442 	if (link_state != hdev->hw.mac.link) {
443 		client->ops->link_status_change(handle, !!link_state);
444 		if (rclient && rclient->ops->link_status_change)
445 			rclient->ops->link_status_change(rhandle, !!link_state);
446 		hdev->hw.mac.link = link_state;
447 	}
448 }
449 
450 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
451 {
452 #define HCLGEVF_ADVERTISING 0
453 #define HCLGEVF_SUPPORTED   1
454 	u8 send_msg;
455 	u8 resp_msg;
456 
457 	send_msg = HCLGEVF_ADVERTISING;
458 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
459 			     &send_msg, sizeof(send_msg), false,
460 			     &resp_msg, sizeof(resp_msg));
461 	send_msg = HCLGEVF_SUPPORTED;
462 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
463 			     &send_msg, sizeof(send_msg), false,
464 			     &resp_msg, sizeof(resp_msg));
465 }
466 
467 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
468 {
469 	struct hnae3_handle *nic = &hdev->nic;
470 	int ret;
471 
472 	nic->ae_algo = &ae_algovf;
473 	nic->pdev = hdev->pdev;
474 	nic->numa_node_mask = hdev->numa_node_mask;
475 	nic->flags |= HNAE3_SUPPORT_VF;
476 
477 	ret = hclgevf_knic_setup(hdev);
478 	if (ret)
479 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
480 			ret);
481 	return ret;
482 }
483 
484 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
485 {
486 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
487 		dev_warn(&hdev->pdev->dev,
488 			 "vector(vector_id %d) has been freed.\n", vector_id);
489 		return;
490 	}
491 
492 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
493 	hdev->num_msi_left += 1;
494 	hdev->num_msi_used -= 1;
495 }
496 
497 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
498 			      struct hnae3_vector_info *vector_info)
499 {
500 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
501 	struct hnae3_vector_info *vector = vector_info;
502 	int alloc = 0;
503 	int i, j;
504 
505 	vector_num = min(hdev->num_msi_left, vector_num);
506 
507 	for (j = 0; j < vector_num; j++) {
508 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
509 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
510 				vector->vector = pci_irq_vector(hdev->pdev, i);
511 				vector->io_addr = hdev->hw.io_base +
512 					HCLGEVF_VECTOR_REG_BASE +
513 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
514 				hdev->vector_status[i] = 0;
515 				hdev->vector_irq[i] = vector->vector;
516 
517 				vector++;
518 				alloc++;
519 
520 				break;
521 			}
522 		}
523 	}
524 	hdev->num_msi_left -= alloc;
525 	hdev->num_msi_used += alloc;
526 
527 	return alloc;
528 }
529 
530 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
531 {
532 	int i;
533 
534 	for (i = 0; i < hdev->num_msi; i++)
535 		if (vector == hdev->vector_irq[i])
536 			return i;
537 
538 	return -EINVAL;
539 }
540 
541 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
542 				    const u8 hfunc, const u8 *key)
543 {
544 	struct hclgevf_rss_config_cmd *req;
545 	unsigned int key_offset = 0;
546 	struct hclgevf_desc desc;
547 	int key_counts;
548 	int key_size;
549 	int ret;
550 
551 	key_counts = HCLGEVF_RSS_KEY_SIZE;
552 	req = (struct hclgevf_rss_config_cmd *)desc.data;
553 
554 	while (key_counts) {
555 		hclgevf_cmd_setup_basic_desc(&desc,
556 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
557 					     false);
558 
559 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
560 		req->hash_config |=
561 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
562 
563 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
564 		memcpy(req->hash_key,
565 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
566 
567 		key_counts -= key_size;
568 		key_offset++;
569 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
570 		if (ret) {
571 			dev_err(&hdev->pdev->dev,
572 				"Configure RSS config fail, status = %d\n",
573 				ret);
574 			return ret;
575 		}
576 	}
577 
578 	return 0;
579 }
580 
581 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
582 {
583 	return HCLGEVF_RSS_KEY_SIZE;
584 }
585 
586 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
587 {
588 	return HCLGEVF_RSS_IND_TBL_SIZE;
589 }
590 
591 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
592 {
593 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
594 	struct hclgevf_rss_indirection_table_cmd *req;
595 	struct hclgevf_desc desc;
596 	int status;
597 	int i, j;
598 
599 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
600 
601 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
602 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
603 					     false);
604 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
605 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
606 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
607 			req->rss_result[j] =
608 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
609 
610 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
611 		if (status) {
612 			dev_err(&hdev->pdev->dev,
613 				"VF failed(=%d) to set RSS indirection table\n",
614 				status);
615 			return status;
616 		}
617 	}
618 
619 	return 0;
620 }
621 
622 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
623 {
624 	struct hclgevf_rss_tc_mode_cmd *req;
625 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
626 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
627 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
628 	struct hclgevf_desc desc;
629 	u16 roundup_size;
630 	int status;
631 	unsigned int i;
632 
633 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
634 
635 	roundup_size = roundup_pow_of_two(rss_size);
636 	roundup_size = ilog2(roundup_size);
637 
638 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
639 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
640 		tc_size[i] = roundup_size;
641 		tc_offset[i] = rss_size * i;
642 	}
643 
644 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
645 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
646 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
647 			      (tc_valid[i] & 0x1));
648 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
649 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
650 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
651 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
652 	}
653 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
654 	if (status)
655 		dev_err(&hdev->pdev->dev,
656 			"VF failed(=%d) to set rss tc mode\n", status);
657 
658 	return status;
659 }
660 
661 /* for revision 0x20, vf shared the same rss config with pf */
662 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
663 {
664 #define HCLGEVF_RSS_MBX_RESP_LEN	8
665 
666 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
667 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
668 	u16 msg_num, hash_key_index;
669 	u8 index;
670 	int ret;
671 
672 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
673 			HCLGEVF_RSS_MBX_RESP_LEN;
674 	for (index = 0; index < msg_num; index++) {
675 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
676 					   &index, sizeof(index),
677 					   true, resp_msg,
678 					   HCLGEVF_RSS_MBX_RESP_LEN);
679 		if (ret) {
680 			dev_err(&hdev->pdev->dev,
681 				"VF get rss hash key from PF failed, ret=%d",
682 				ret);
683 			return ret;
684 		}
685 
686 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
687 		if (index == msg_num - 1)
688 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
689 			       &resp_msg[0],
690 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
691 		else
692 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
693 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
694 	}
695 
696 	return 0;
697 }
698 
699 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
700 			   u8 *hfunc)
701 {
702 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
703 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
704 	int i, ret;
705 
706 	if (handle->pdev->revision >= 0x21) {
707 		/* Get hash algorithm */
708 		if (hfunc) {
709 			switch (rss_cfg->hash_algo) {
710 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
711 				*hfunc = ETH_RSS_HASH_TOP;
712 				break;
713 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
714 				*hfunc = ETH_RSS_HASH_XOR;
715 				break;
716 			default:
717 				*hfunc = ETH_RSS_HASH_UNKNOWN;
718 				break;
719 			}
720 		}
721 
722 		/* Get the RSS Key required by the user */
723 		if (key)
724 			memcpy(key, rss_cfg->rss_hash_key,
725 			       HCLGEVF_RSS_KEY_SIZE);
726 	} else {
727 		if (hfunc)
728 			*hfunc = ETH_RSS_HASH_TOP;
729 		if (key) {
730 			ret = hclgevf_get_rss_hash_key(hdev);
731 			if (ret)
732 				return ret;
733 			memcpy(key, rss_cfg->rss_hash_key,
734 			       HCLGEVF_RSS_KEY_SIZE);
735 		}
736 	}
737 
738 	if (indir)
739 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
740 			indir[i] = rss_cfg->rss_indirection_tbl[i];
741 
742 	return 0;
743 }
744 
745 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
746 			   const u8 *key, const u8 hfunc)
747 {
748 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
749 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
750 	int ret, i;
751 
752 	if (handle->pdev->revision >= 0x21) {
753 		/* Set the RSS Hash Key if specififed by the user */
754 		if (key) {
755 			switch (hfunc) {
756 			case ETH_RSS_HASH_TOP:
757 				rss_cfg->hash_algo =
758 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
759 				break;
760 			case ETH_RSS_HASH_XOR:
761 				rss_cfg->hash_algo =
762 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
763 				break;
764 			case ETH_RSS_HASH_NO_CHANGE:
765 				break;
766 			default:
767 				return -EINVAL;
768 			}
769 
770 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
771 						       key);
772 			if (ret)
773 				return ret;
774 
775 			/* Update the shadow RSS key with user specified qids */
776 			memcpy(rss_cfg->rss_hash_key, key,
777 			       HCLGEVF_RSS_KEY_SIZE);
778 		}
779 	}
780 
781 	/* update the shadow RSS table with user specified qids */
782 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
783 		rss_cfg->rss_indirection_tbl[i] = indir[i];
784 
785 	/* update the hardware */
786 	return hclgevf_set_rss_indir_table(hdev);
787 }
788 
789 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
790 {
791 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
792 
793 	if (nfc->data & RXH_L4_B_2_3)
794 		hash_sets |= HCLGEVF_D_PORT_BIT;
795 	else
796 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
797 
798 	if (nfc->data & RXH_IP_SRC)
799 		hash_sets |= HCLGEVF_S_IP_BIT;
800 	else
801 		hash_sets &= ~HCLGEVF_S_IP_BIT;
802 
803 	if (nfc->data & RXH_IP_DST)
804 		hash_sets |= HCLGEVF_D_IP_BIT;
805 	else
806 		hash_sets &= ~HCLGEVF_D_IP_BIT;
807 
808 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
809 		hash_sets |= HCLGEVF_V_TAG_BIT;
810 
811 	return hash_sets;
812 }
813 
814 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
815 				 struct ethtool_rxnfc *nfc)
816 {
817 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
818 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
819 	struct hclgevf_rss_input_tuple_cmd *req;
820 	struct hclgevf_desc desc;
821 	u8 tuple_sets;
822 	int ret;
823 
824 	if (handle->pdev->revision == 0x20)
825 		return -EOPNOTSUPP;
826 
827 	if (nfc->data &
828 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
829 		return -EINVAL;
830 
831 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
832 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
833 
834 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
835 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
836 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
837 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
838 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
839 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
840 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
841 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
842 
843 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
844 	switch (nfc->flow_type) {
845 	case TCP_V4_FLOW:
846 		req->ipv4_tcp_en = tuple_sets;
847 		break;
848 	case TCP_V6_FLOW:
849 		req->ipv6_tcp_en = tuple_sets;
850 		break;
851 	case UDP_V4_FLOW:
852 		req->ipv4_udp_en = tuple_sets;
853 		break;
854 	case UDP_V6_FLOW:
855 		req->ipv6_udp_en = tuple_sets;
856 		break;
857 	case SCTP_V4_FLOW:
858 		req->ipv4_sctp_en = tuple_sets;
859 		break;
860 	case SCTP_V6_FLOW:
861 		if ((nfc->data & RXH_L4_B_0_1) ||
862 		    (nfc->data & RXH_L4_B_2_3))
863 			return -EINVAL;
864 
865 		req->ipv6_sctp_en = tuple_sets;
866 		break;
867 	case IPV4_FLOW:
868 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
869 		break;
870 	case IPV6_FLOW:
871 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
872 		break;
873 	default:
874 		return -EINVAL;
875 	}
876 
877 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
878 	if (ret) {
879 		dev_err(&hdev->pdev->dev,
880 			"Set rss tuple fail, status = %d\n", ret);
881 		return ret;
882 	}
883 
884 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
885 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
886 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
887 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
888 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
889 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
890 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
891 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
892 	return 0;
893 }
894 
895 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
896 				 struct ethtool_rxnfc *nfc)
897 {
898 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
899 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
900 	u8 tuple_sets;
901 
902 	if (handle->pdev->revision == 0x20)
903 		return -EOPNOTSUPP;
904 
905 	nfc->data = 0;
906 
907 	switch (nfc->flow_type) {
908 	case TCP_V4_FLOW:
909 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
910 		break;
911 	case UDP_V4_FLOW:
912 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
913 		break;
914 	case TCP_V6_FLOW:
915 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
916 		break;
917 	case UDP_V6_FLOW:
918 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
919 		break;
920 	case SCTP_V4_FLOW:
921 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
922 		break;
923 	case SCTP_V6_FLOW:
924 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
925 		break;
926 	case IPV4_FLOW:
927 	case IPV6_FLOW:
928 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
929 		break;
930 	default:
931 		return -EINVAL;
932 	}
933 
934 	if (!tuple_sets)
935 		return 0;
936 
937 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
938 		nfc->data |= RXH_L4_B_2_3;
939 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
940 		nfc->data |= RXH_L4_B_0_1;
941 	if (tuple_sets & HCLGEVF_D_IP_BIT)
942 		nfc->data |= RXH_IP_DST;
943 	if (tuple_sets & HCLGEVF_S_IP_BIT)
944 		nfc->data |= RXH_IP_SRC;
945 
946 	return 0;
947 }
948 
949 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
950 				       struct hclgevf_rss_cfg *rss_cfg)
951 {
952 	struct hclgevf_rss_input_tuple_cmd *req;
953 	struct hclgevf_desc desc;
954 	int ret;
955 
956 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
957 
958 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
959 
960 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
961 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
962 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
963 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
964 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
965 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
966 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
967 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
968 
969 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
970 	if (ret)
971 		dev_err(&hdev->pdev->dev,
972 			"Configure rss input fail, status = %d\n", ret);
973 	return ret;
974 }
975 
976 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
977 {
978 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
979 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
980 
981 	return rss_cfg->rss_size;
982 }
983 
984 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
985 				       int vector_id,
986 				       struct hnae3_ring_chain_node *ring_chain)
987 {
988 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
989 	struct hnae3_ring_chain_node *node;
990 	struct hclge_mbx_vf_to_pf_cmd *req;
991 	struct hclgevf_desc desc;
992 	int i = 0;
993 	int status;
994 	u8 type;
995 
996 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
997 	type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
998 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
999 
1000 	for (node = ring_chain; node; node = node->next) {
1001 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1002 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1003 
1004 		if (i == 0) {
1005 			hclgevf_cmd_setup_basic_desc(&desc,
1006 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1007 						     false);
1008 			req->msg[0] = type;
1009 			req->msg[1] = vector_id;
1010 		}
1011 
1012 		req->msg[idx_offset] =
1013 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1014 		req->msg[idx_offset + 1] = node->tqp_index;
1015 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1016 							   HNAE3_RING_GL_IDX_M,
1017 							   HNAE3_RING_GL_IDX_S);
1018 
1019 		i++;
1020 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1021 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1022 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1023 		    !node->next) {
1024 			req->msg[2] = i;
1025 
1026 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1027 			if (status) {
1028 				dev_err(&hdev->pdev->dev,
1029 					"Map TQP fail, status is %d.\n",
1030 					status);
1031 				return status;
1032 			}
1033 			i = 0;
1034 			hclgevf_cmd_setup_basic_desc(&desc,
1035 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1036 						     false);
1037 			req->msg[0] = type;
1038 			req->msg[1] = vector_id;
1039 		}
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1046 				      struct hnae3_ring_chain_node *ring_chain)
1047 {
1048 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1049 	int vector_id;
1050 
1051 	vector_id = hclgevf_get_vector_index(hdev, vector);
1052 	if (vector_id < 0) {
1053 		dev_err(&handle->pdev->dev,
1054 			"Get vector index fail. ret =%d\n", vector_id);
1055 		return vector_id;
1056 	}
1057 
1058 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1059 }
1060 
1061 static int hclgevf_unmap_ring_from_vector(
1062 				struct hnae3_handle *handle,
1063 				int vector,
1064 				struct hnae3_ring_chain_node *ring_chain)
1065 {
1066 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1067 	int ret, vector_id;
1068 
1069 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1070 		return 0;
1071 
1072 	vector_id = hclgevf_get_vector_index(hdev, vector);
1073 	if (vector_id < 0) {
1074 		dev_err(&handle->pdev->dev,
1075 			"Get vector index fail. ret =%d\n", vector_id);
1076 		return vector_id;
1077 	}
1078 
1079 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1080 	if (ret)
1081 		dev_err(&handle->pdev->dev,
1082 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1083 			vector_id,
1084 			ret);
1085 
1086 	return ret;
1087 }
1088 
1089 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1090 {
1091 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1092 	int vector_id;
1093 
1094 	vector_id = hclgevf_get_vector_index(hdev, vector);
1095 	if (vector_id < 0) {
1096 		dev_err(&handle->pdev->dev,
1097 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1098 			vector_id);
1099 		return vector_id;
1100 	}
1101 
1102 	hclgevf_free_vector(hdev, vector_id);
1103 
1104 	return 0;
1105 }
1106 
1107 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1108 					bool en_uc_pmc, bool en_mc_pmc,
1109 					bool en_bc_pmc)
1110 {
1111 	struct hclge_mbx_vf_to_pf_cmd *req;
1112 	struct hclgevf_desc desc;
1113 	int ret;
1114 
1115 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1116 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1117 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1118 	req->msg[1] = en_bc_pmc ? 1 : 0;
1119 	req->msg[2] = en_uc_pmc ? 1 : 0;
1120 	req->msg[3] = en_mc_pmc ? 1 : 0;
1121 
1122 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1123 	if (ret)
1124 		dev_err(&hdev->pdev->dev,
1125 			"Set promisc mode fail, status is %d.\n", ret);
1126 
1127 	return ret;
1128 }
1129 
1130 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1131 				    bool en_mc_pmc)
1132 {
1133 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1134 	struct pci_dev *pdev = hdev->pdev;
1135 	bool en_bc_pmc;
1136 
1137 	en_bc_pmc = pdev->revision != 0x20;
1138 
1139 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1140 					    en_bc_pmc);
1141 }
1142 
1143 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1144 			      int stream_id, bool enable)
1145 {
1146 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1147 	struct hclgevf_desc desc;
1148 	int status;
1149 
1150 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1151 
1152 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1153 				     false);
1154 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1155 	req->stream_id = cpu_to_le16(stream_id);
1156 	if (enable)
1157 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1158 
1159 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1160 	if (status)
1161 		dev_err(&hdev->pdev->dev,
1162 			"TQP enable fail, status =%d.\n", status);
1163 
1164 	return status;
1165 }
1166 
1167 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1168 {
1169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1170 	struct hclgevf_tqp *tqp;
1171 	int i;
1172 
1173 	for (i = 0; i < kinfo->num_tqps; i++) {
1174 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1175 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1176 	}
1177 }
1178 
1179 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1180 {
1181 	u8 host_mac[ETH_ALEN];
1182 	int status;
1183 
1184 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MAC_ADDR, 0, NULL, 0,
1185 				      true, host_mac, ETH_ALEN);
1186 	if (status) {
1187 		dev_err(&hdev->pdev->dev,
1188 			"fail to get VF MAC from host %d", status);
1189 		return status;
1190 	}
1191 
1192 	ether_addr_copy(p, host_mac);
1193 
1194 	return 0;
1195 }
1196 
1197 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1198 {
1199 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1200 	u8 host_mac_addr[ETH_ALEN];
1201 
1202 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1203 		return;
1204 
1205 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1206 	if (hdev->has_pf_mac)
1207 		ether_addr_copy(p, host_mac_addr);
1208 	else
1209 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1210 }
1211 
1212 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1213 				bool is_first)
1214 {
1215 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1216 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1217 	u8 *new_mac_addr = (u8 *)p;
1218 	u8 msg_data[ETH_ALEN * 2];
1219 	u16 subcode;
1220 	int status;
1221 
1222 	ether_addr_copy(msg_data, new_mac_addr);
1223 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1224 
1225 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1226 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1227 
1228 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1229 				      subcode, msg_data, sizeof(msg_data),
1230 				      true, NULL, 0);
1231 	if (!status)
1232 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1233 
1234 	return status;
1235 }
1236 
1237 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1238 			       const unsigned char *addr)
1239 {
1240 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1241 
1242 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1243 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1244 				    addr, ETH_ALEN, false, NULL, 0);
1245 }
1246 
1247 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1248 			      const unsigned char *addr)
1249 {
1250 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1251 
1252 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1253 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1254 				    addr, ETH_ALEN, false, NULL, 0);
1255 }
1256 
1257 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1258 			       const unsigned char *addr)
1259 {
1260 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1261 
1262 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1263 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1264 				    addr, ETH_ALEN, false, NULL, 0);
1265 }
1266 
1267 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1268 			      const unsigned char *addr)
1269 {
1270 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1271 
1272 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1273 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1274 				    addr, ETH_ALEN, false, NULL, 0);
1275 }
1276 
1277 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1278 				   __be16 proto, u16 vlan_id,
1279 				   bool is_kill)
1280 {
1281 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1282 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1283 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1284 	int ret;
1285 
1286 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1287 		return -EINVAL;
1288 
1289 	if (proto != htons(ETH_P_8021Q))
1290 		return -EPROTONOSUPPORT;
1291 
1292 	/* When device is resetting, firmware is unable to handle
1293 	 * mailbox. Just record the vlan id, and remove it after
1294 	 * reset finished.
1295 	 */
1296 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1297 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1298 		return -EBUSY;
1299 	}
1300 
1301 	msg_data[0] = is_kill;
1302 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1303 	memcpy(&msg_data[3], &proto, sizeof(proto));
1304 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1305 				   HCLGE_MBX_VLAN_FILTER, msg_data,
1306 				   HCLGEVF_VLAN_MBX_MSG_LEN, true, NULL, 0);
1307 
1308 	/* when remove hw vlan filter failed, record the vlan id,
1309 	 * and try to remove it from hw later, to be consistence
1310 	 * with stack.
1311 	 */
1312 	if (is_kill && ret)
1313 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1314 
1315 	return ret;
1316 }
1317 
1318 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1319 {
1320 #define HCLGEVF_MAX_SYNC_COUNT	60
1321 	struct hnae3_handle *handle = &hdev->nic;
1322 	int ret, sync_cnt = 0;
1323 	u16 vlan_id;
1324 
1325 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1326 	while (vlan_id != VLAN_N_VID) {
1327 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1328 					      vlan_id, true);
1329 		if (ret)
1330 			return;
1331 
1332 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1333 		sync_cnt++;
1334 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1335 			return;
1336 
1337 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1338 	}
1339 }
1340 
1341 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1342 {
1343 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1344 	u8 msg_data;
1345 
1346 	msg_data = enable ? 1 : 0;
1347 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1348 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1349 				    1, false, NULL, 0);
1350 }
1351 
1352 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1353 {
1354 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1355 	u8 msg_data[2];
1356 	int ret;
1357 
1358 	memcpy(msg_data, &queue_id, sizeof(queue_id));
1359 
1360 	/* disable vf queue before send queue reset msg to PF */
1361 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1362 	if (ret)
1363 		return ret;
1364 
1365 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1366 				    sizeof(msg_data), true, NULL, 0);
1367 }
1368 
1369 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1370 {
1371 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1372 
1373 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1374 				    sizeof(new_mtu), true, NULL, 0);
1375 }
1376 
1377 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1378 				 enum hnae3_reset_notify_type type)
1379 {
1380 	struct hnae3_client *client = hdev->nic_client;
1381 	struct hnae3_handle *handle = &hdev->nic;
1382 	int ret;
1383 
1384 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1385 	    !client)
1386 		return 0;
1387 
1388 	if (!client->ops->reset_notify)
1389 		return -EOPNOTSUPP;
1390 
1391 	ret = client->ops->reset_notify(handle, type);
1392 	if (ret)
1393 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1394 			type, ret);
1395 
1396 	return ret;
1397 }
1398 
1399 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1400 {
1401 	struct hclgevf_dev *hdev = ae_dev->priv;
1402 
1403 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1404 }
1405 
1406 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1407 				    unsigned long delay_us,
1408 				    unsigned long wait_cnt)
1409 {
1410 	unsigned long cnt = 0;
1411 
1412 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1413 	       cnt++ < wait_cnt)
1414 		usleep_range(delay_us, delay_us * 2);
1415 
1416 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1417 		dev_err(&hdev->pdev->dev,
1418 			"flr wait timeout\n");
1419 		return -ETIMEDOUT;
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1426 {
1427 #define HCLGEVF_RESET_WAIT_US	20000
1428 #define HCLGEVF_RESET_WAIT_CNT	2000
1429 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1430 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1431 
1432 	u32 val;
1433 	int ret;
1434 
1435 	if (hdev->reset_type == HNAE3_FLR_RESET)
1436 		return hclgevf_flr_poll_timeout(hdev,
1437 						HCLGEVF_RESET_WAIT_US,
1438 						HCLGEVF_RESET_WAIT_CNT);
1439 	else if (hdev->reset_type == HNAE3_VF_RESET)
1440 		ret = readl_poll_timeout(hdev->hw.io_base +
1441 					 HCLGEVF_VF_RST_ING, val,
1442 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1443 					 HCLGEVF_RESET_WAIT_US,
1444 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1445 	else
1446 		ret = readl_poll_timeout(hdev->hw.io_base +
1447 					 HCLGEVF_RST_ING, val,
1448 					 !(val & HCLGEVF_RST_ING_BITS),
1449 					 HCLGEVF_RESET_WAIT_US,
1450 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1451 
1452 	/* hardware completion status should be available by this time */
1453 	if (ret) {
1454 		dev_err(&hdev->pdev->dev,
1455 			"could'nt get reset done status from h/w, timeout!\n");
1456 		return ret;
1457 	}
1458 
1459 	/* we will wait a bit more to let reset of the stack to complete. This
1460 	 * might happen in case reset assertion was made by PF. Yes, this also
1461 	 * means we might end up waiting bit more even for VF reset.
1462 	 */
1463 	msleep(5000);
1464 
1465 	return 0;
1466 }
1467 
1468 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1469 {
1470 	u32 reg_val;
1471 
1472 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1473 	if (enable)
1474 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1475 	else
1476 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1477 
1478 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1479 			  reg_val);
1480 }
1481 
1482 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1483 {
1484 	int ret;
1485 
1486 	/* uninitialize the nic client */
1487 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1488 	if (ret)
1489 		return ret;
1490 
1491 	/* re-initialize the hclge device */
1492 	ret = hclgevf_reset_hdev(hdev);
1493 	if (ret) {
1494 		dev_err(&hdev->pdev->dev,
1495 			"hclge device re-init failed, VF is disabled!\n");
1496 		return ret;
1497 	}
1498 
1499 	/* bring up the nic client again */
1500 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1501 	if (ret)
1502 		return ret;
1503 
1504 	ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1505 	if (ret)
1506 		return ret;
1507 
1508 	/* clear handshake status with IMP */
1509 	hclgevf_reset_handshake(hdev, false);
1510 
1511 	return 0;
1512 }
1513 
1514 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1515 {
1516 #define HCLGEVF_RESET_SYNC_TIME 100
1517 
1518 	int ret = 0;
1519 
1520 	switch (hdev->reset_type) {
1521 	case HNAE3_VF_FUNC_RESET:
1522 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1523 					   0, true, NULL, sizeof(u8));
1524 		hdev->rst_stats.vf_func_rst_cnt++;
1525 		break;
1526 	case HNAE3_FLR_RESET:
1527 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1528 		hdev->rst_stats.flr_rst_cnt++;
1529 		break;
1530 	default:
1531 		break;
1532 	}
1533 
1534 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1535 	/* inform hardware that preparatory work is done */
1536 	msleep(HCLGEVF_RESET_SYNC_TIME);
1537 	hclgevf_reset_handshake(hdev, true);
1538 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1539 		 hdev->reset_type, ret);
1540 
1541 	return ret;
1542 }
1543 
1544 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1545 {
1546 	/* recover handshake status with IMP when reset fail */
1547 	hclgevf_reset_handshake(hdev, true);
1548 	hdev->rst_stats.rst_fail_cnt++;
1549 	dev_err(&hdev->pdev->dev, "failed to reset VF(%d)\n",
1550 		hdev->rst_stats.rst_fail_cnt);
1551 
1552 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1553 		set_bit(hdev->reset_type, &hdev->reset_pending);
1554 
1555 	if (hclgevf_is_reset_pending(hdev)) {
1556 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1557 		hclgevf_reset_task_schedule(hdev);
1558 	}
1559 }
1560 
1561 static int hclgevf_reset(struct hclgevf_dev *hdev)
1562 {
1563 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1564 	int ret;
1565 
1566 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1567 	 * know if device is undergoing reset
1568 	 */
1569 	ae_dev->reset_type = hdev->reset_type;
1570 	hdev->rst_stats.rst_cnt++;
1571 	rtnl_lock();
1572 
1573 	/* bring down the nic to stop any ongoing TX/RX */
1574 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1575 	if (ret)
1576 		goto err_reset_lock;
1577 
1578 	rtnl_unlock();
1579 
1580 	ret = hclgevf_reset_prepare_wait(hdev);
1581 	if (ret)
1582 		goto err_reset;
1583 
1584 	/* check if VF could successfully fetch the hardware reset completion
1585 	 * status from the hardware
1586 	 */
1587 	ret = hclgevf_reset_wait(hdev);
1588 	if (ret) {
1589 		/* can't do much in this situation, will disable VF */
1590 		dev_err(&hdev->pdev->dev,
1591 			"VF failed(=%d) to fetch H/W reset completion status\n",
1592 			ret);
1593 		goto err_reset;
1594 	}
1595 
1596 	hdev->rst_stats.hw_rst_done_cnt++;
1597 
1598 	rtnl_lock();
1599 
1600 	/* now, re-initialize the nic client and ae device */
1601 	ret = hclgevf_reset_stack(hdev);
1602 	if (ret) {
1603 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1604 		goto err_reset_lock;
1605 	}
1606 
1607 	/* bring up the nic to enable TX/RX again */
1608 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1609 	if (ret)
1610 		goto err_reset_lock;
1611 
1612 	rtnl_unlock();
1613 
1614 	hdev->last_reset_time = jiffies;
1615 	ae_dev->reset_type = HNAE3_NONE_RESET;
1616 	hdev->rst_stats.rst_done_cnt++;
1617 	hdev->rst_stats.rst_fail_cnt = 0;
1618 
1619 	return ret;
1620 err_reset_lock:
1621 	rtnl_unlock();
1622 err_reset:
1623 	hclgevf_reset_err_handle(hdev);
1624 
1625 	return ret;
1626 }
1627 
1628 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1629 						     unsigned long *addr)
1630 {
1631 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1632 
1633 	/* return the highest priority reset level amongst all */
1634 	if (test_bit(HNAE3_VF_RESET, addr)) {
1635 		rst_level = HNAE3_VF_RESET;
1636 		clear_bit(HNAE3_VF_RESET, addr);
1637 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1638 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1639 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1640 		rst_level = HNAE3_VF_FULL_RESET;
1641 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1642 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1643 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1644 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1645 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1646 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1647 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1648 		rst_level = HNAE3_VF_FUNC_RESET;
1649 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1650 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1651 		rst_level = HNAE3_FLR_RESET;
1652 		clear_bit(HNAE3_FLR_RESET, addr);
1653 	}
1654 
1655 	return rst_level;
1656 }
1657 
1658 static void hclgevf_reset_event(struct pci_dev *pdev,
1659 				struct hnae3_handle *handle)
1660 {
1661 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1662 	struct hclgevf_dev *hdev = ae_dev->priv;
1663 
1664 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1665 
1666 	if (hdev->default_reset_request)
1667 		hdev->reset_level =
1668 			hclgevf_get_reset_level(hdev,
1669 						&hdev->default_reset_request);
1670 	else
1671 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1672 
1673 	/* reset of this VF requested */
1674 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1675 	hclgevf_reset_task_schedule(hdev);
1676 
1677 	hdev->last_reset_time = jiffies;
1678 }
1679 
1680 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1681 					  enum hnae3_reset_type rst_type)
1682 {
1683 	struct hclgevf_dev *hdev = ae_dev->priv;
1684 
1685 	set_bit(rst_type, &hdev->default_reset_request);
1686 }
1687 
1688 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1689 {
1690 #define HCLGEVF_FLR_WAIT_MS	100
1691 #define HCLGEVF_FLR_WAIT_CNT	50
1692 	struct hclgevf_dev *hdev = ae_dev->priv;
1693 	int cnt = 0;
1694 
1695 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1696 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1697 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1698 	hclgevf_reset_event(hdev->pdev, NULL);
1699 
1700 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1701 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1702 		msleep(HCLGEVF_FLR_WAIT_MS);
1703 
1704 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1705 		dev_err(&hdev->pdev->dev,
1706 			"flr wait down timeout: %d\n", cnt);
1707 }
1708 
1709 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1710 {
1711 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1712 
1713 	return hdev->fw_version;
1714 }
1715 
1716 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1717 {
1718 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1719 
1720 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1721 					    HCLGEVF_MISC_VECTOR_NUM);
1722 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1723 	/* vector status always valid for Vector 0 */
1724 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1725 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1726 
1727 	hdev->num_msi_left -= 1;
1728 	hdev->num_msi_used += 1;
1729 }
1730 
1731 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1732 {
1733 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1734 	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1735 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1736 		schedule_work(&hdev->rst_service_task);
1737 	}
1738 }
1739 
1740 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1741 {
1742 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1743 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1744 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1745 		schedule_work(&hdev->mbx_service_task);
1746 	}
1747 }
1748 
1749 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1750 {
1751 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1752 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1753 		schedule_work(&hdev->service_task);
1754 }
1755 
1756 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1757 {
1758 	/* if we have any pending mailbox event then schedule the mbx task */
1759 	if (hdev->mbx_event_pending)
1760 		hclgevf_mbx_task_schedule(hdev);
1761 
1762 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1763 		hclgevf_reset_task_schedule(hdev);
1764 }
1765 
1766 static void hclgevf_service_timer(struct timer_list *t)
1767 {
1768 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1769 
1770 	mod_timer(&hdev->service_timer, jiffies +
1771 		  HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1772 
1773 	hdev->stats_timer++;
1774 	hclgevf_task_schedule(hdev);
1775 }
1776 
1777 static void hclgevf_reset_service_task(struct work_struct *work)
1778 {
1779 	struct hclgevf_dev *hdev =
1780 		container_of(work, struct hclgevf_dev, rst_service_task);
1781 	int ret;
1782 
1783 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1784 		return;
1785 
1786 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1787 
1788 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1789 			       &hdev->reset_state)) {
1790 		/* PF has initmated that it is about to reset the hardware.
1791 		 * We now have to poll & check if hardware has actually
1792 		 * completed the reset sequence. On hardware reset completion,
1793 		 * VF needs to reset the client and ae device.
1794 		 */
1795 		hdev->reset_attempts = 0;
1796 
1797 		hdev->last_reset_time = jiffies;
1798 		while ((hdev->reset_type =
1799 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1800 		       != HNAE3_NONE_RESET) {
1801 			ret = hclgevf_reset(hdev);
1802 			if (ret)
1803 				dev_err(&hdev->pdev->dev,
1804 					"VF stack reset failed %d.\n", ret);
1805 		}
1806 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1807 				      &hdev->reset_state)) {
1808 		/* we could be here when either of below happens:
1809 		 * 1. reset was initiated due to watchdog timeout caused by
1810 		 *    a. IMP was earlier reset and our TX got choked down and
1811 		 *       which resulted in watchdog reacting and inducing VF
1812 		 *       reset. This also means our cmdq would be unreliable.
1813 		 *    b. problem in TX due to other lower layer(example link
1814 		 *       layer not functioning properly etc.)
1815 		 * 2. VF reset might have been initiated due to some config
1816 		 *    change.
1817 		 *
1818 		 * NOTE: Theres no clear way to detect above cases than to react
1819 		 * to the response of PF for this reset request. PF will ack the
1820 		 * 1b and 2. cases but we will not get any intimation about 1a
1821 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1822 		 * communication between PF and VF would be broken.
1823 		 *
1824 		 * if we are never geting into pending state it means either:
1825 		 * 1. PF is not receiving our request which could be due to IMP
1826 		 *    reset
1827 		 * 2. PF is screwed
1828 		 * We cannot do much for 2. but to check first we can try reset
1829 		 * our PCIe + stack and see if it alleviates the problem.
1830 		 */
1831 		if (hdev->reset_attempts > 3) {
1832 			/* prepare for full reset of stack + pcie interface */
1833 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1834 
1835 			/* "defer" schedule the reset task again */
1836 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1837 		} else {
1838 			hdev->reset_attempts++;
1839 
1840 			set_bit(hdev->reset_level, &hdev->reset_pending);
1841 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1842 		}
1843 		hclgevf_reset_task_schedule(hdev);
1844 	}
1845 
1846 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1847 }
1848 
1849 static void hclgevf_mailbox_service_task(struct work_struct *work)
1850 {
1851 	struct hclgevf_dev *hdev;
1852 
1853 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1854 
1855 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1856 		return;
1857 
1858 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1859 
1860 	hclgevf_mbx_async_handler(hdev);
1861 
1862 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1863 }
1864 
1865 static void hclgevf_keep_alive_timer(struct timer_list *t)
1866 {
1867 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1868 
1869 	schedule_work(&hdev->keep_alive_task);
1870 	mod_timer(&hdev->keep_alive_timer, jiffies +
1871 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1872 }
1873 
1874 static void hclgevf_keep_alive_task(struct work_struct *work)
1875 {
1876 	struct hclgevf_dev *hdev;
1877 	u8 respmsg;
1878 	int ret;
1879 
1880 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1881 
1882 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1883 		return;
1884 
1885 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1886 				   0, false, &respmsg, sizeof(respmsg));
1887 	if (ret)
1888 		dev_err(&hdev->pdev->dev,
1889 			"VF sends keep alive cmd failed(=%d)\n", ret);
1890 }
1891 
1892 static void hclgevf_service_task(struct work_struct *work)
1893 {
1894 	struct hnae3_handle *handle;
1895 	struct hclgevf_dev *hdev;
1896 
1897 	hdev = container_of(work, struct hclgevf_dev, service_task);
1898 	handle = &hdev->nic;
1899 
1900 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1901 		hclgevf_tqps_update_stats(handle);
1902 		hdev->stats_timer = 0;
1903 	}
1904 
1905 	/* request the link status from the PF. PF would be able to tell VF
1906 	 * about such updates in future so we might remove this later
1907 	 */
1908 	hclgevf_request_link_info(hdev);
1909 
1910 	hclgevf_update_link_mode(hdev);
1911 
1912 	hclgevf_sync_vlan_filter(hdev);
1913 
1914 	hclgevf_deferred_task_schedule(hdev);
1915 
1916 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1917 }
1918 
1919 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1920 {
1921 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1922 }
1923 
1924 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1925 						      u32 *clearval)
1926 {
1927 	u32 val, cmdq_stat_reg, rst_ing_reg;
1928 
1929 	/* fetch the events from their corresponding regs */
1930 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1931 					 HCLGEVF_VECTOR0_CMDQ_STAT_REG);
1932 
1933 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1934 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1935 		dev_info(&hdev->pdev->dev,
1936 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1937 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1938 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1939 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1940 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1941 		hdev->rst_stats.vf_rst_cnt++;
1942 		/* set up VF hardware reset status, its PF will clear
1943 		 * this status when PF has initialized done.
1944 		 */
1945 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1946 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1947 				  val | HCLGEVF_VF_RST_ING_BIT);
1948 		return HCLGEVF_VECTOR0_EVENT_RST;
1949 	}
1950 
1951 	/* check for vector0 mailbox(=CMDQ RX) event source */
1952 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1953 		/* for revision 0x21, clearing interrupt is writing bit 0
1954 		 * to the clear register, writing bit 1 means to keep the
1955 		 * old value.
1956 		 * for revision 0x20, the clear register is a read & write
1957 		 * register, so we should just write 0 to the bit we are
1958 		 * handling, and keep other bits as cmdq_stat_reg.
1959 		 */
1960 		if (hdev->pdev->revision >= 0x21)
1961 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1962 		else
1963 			*clearval = cmdq_stat_reg &
1964 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1965 
1966 		return HCLGEVF_VECTOR0_EVENT_MBX;
1967 	}
1968 
1969 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1970 
1971 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1972 }
1973 
1974 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1975 {
1976 	writel(en ? 1 : 0, vector->addr);
1977 }
1978 
1979 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1980 {
1981 	enum hclgevf_evt_cause event_cause;
1982 	struct hclgevf_dev *hdev = data;
1983 	u32 clearval;
1984 
1985 	hclgevf_enable_vector(&hdev->misc_vector, false);
1986 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1987 
1988 	switch (event_cause) {
1989 	case HCLGEVF_VECTOR0_EVENT_RST:
1990 		hclgevf_reset_task_schedule(hdev);
1991 		break;
1992 	case HCLGEVF_VECTOR0_EVENT_MBX:
1993 		hclgevf_mbx_handler(hdev);
1994 		break;
1995 	default:
1996 		break;
1997 	}
1998 
1999 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2000 		hclgevf_clear_event_cause(hdev, clearval);
2001 		hclgevf_enable_vector(&hdev->misc_vector, true);
2002 	}
2003 
2004 	return IRQ_HANDLED;
2005 }
2006 
2007 static int hclgevf_configure(struct hclgevf_dev *hdev)
2008 {
2009 	int ret;
2010 
2011 	/* get current port based vlan state from PF */
2012 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2013 	if (ret)
2014 		return ret;
2015 
2016 	/* get queue configuration from PF */
2017 	ret = hclgevf_get_queue_info(hdev);
2018 	if (ret)
2019 		return ret;
2020 
2021 	/* get queue depth info from PF */
2022 	ret = hclgevf_get_queue_depth(hdev);
2023 	if (ret)
2024 		return ret;
2025 
2026 	ret = hclgevf_get_pf_media_type(hdev);
2027 	if (ret)
2028 		return ret;
2029 
2030 	/* get tc configuration from PF */
2031 	return hclgevf_get_tc_info(hdev);
2032 }
2033 
2034 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2035 {
2036 	struct pci_dev *pdev = ae_dev->pdev;
2037 	struct hclgevf_dev *hdev;
2038 
2039 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2040 	if (!hdev)
2041 		return -ENOMEM;
2042 
2043 	hdev->pdev = pdev;
2044 	hdev->ae_dev = ae_dev;
2045 	ae_dev->priv = hdev;
2046 
2047 	return 0;
2048 }
2049 
2050 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2051 {
2052 	struct hnae3_handle *roce = &hdev->roce;
2053 	struct hnae3_handle *nic = &hdev->nic;
2054 
2055 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2056 
2057 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2058 	    hdev->num_msi_left == 0)
2059 		return -EINVAL;
2060 
2061 	roce->rinfo.base_vector = hdev->roce_base_vector;
2062 
2063 	roce->rinfo.netdev = nic->kinfo.netdev;
2064 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2065 
2066 	roce->pdev = nic->pdev;
2067 	roce->ae_algo = nic->ae_algo;
2068 	roce->numa_node_mask = nic->numa_node_mask;
2069 
2070 	return 0;
2071 }
2072 
2073 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2074 {
2075 	struct hclgevf_cfg_gro_status_cmd *req;
2076 	struct hclgevf_desc desc;
2077 	int ret;
2078 
2079 	if (!hnae3_dev_gro_supported(hdev))
2080 		return 0;
2081 
2082 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2083 				     false);
2084 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2085 
2086 	req->gro_en = cpu_to_le16(en ? 1 : 0);
2087 
2088 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2089 	if (ret)
2090 		dev_err(&hdev->pdev->dev,
2091 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2092 
2093 	return ret;
2094 }
2095 
2096 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2097 {
2098 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2099 	int ret;
2100 	u32 i;
2101 
2102 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2103 
2104 	if (hdev->pdev->revision >= 0x21) {
2105 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2106 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2107 		       HCLGEVF_RSS_KEY_SIZE);
2108 
2109 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2110 					       rss_cfg->rss_hash_key);
2111 		if (ret)
2112 			return ret;
2113 
2114 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
2115 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2116 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
2117 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2118 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
2119 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2120 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
2121 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2122 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
2123 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2124 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
2125 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2126 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
2127 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2128 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2129 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2130 
2131 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2132 		if (ret)
2133 			return ret;
2134 
2135 	}
2136 
2137 	/* Initialize RSS indirect table */
2138 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2139 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2140 
2141 	ret = hclgevf_set_rss_indir_table(hdev);
2142 	if (ret)
2143 		return ret;
2144 
2145 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2146 }
2147 
2148 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2149 {
2150 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2151 				       false);
2152 }
2153 
2154 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2155 {
2156 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2157 
2158 	if (enable) {
2159 		mod_timer(&hdev->service_timer, jiffies + HZ);
2160 	} else {
2161 		del_timer_sync(&hdev->service_timer);
2162 		cancel_work_sync(&hdev->service_task);
2163 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2164 	}
2165 }
2166 
2167 static int hclgevf_ae_start(struct hnae3_handle *handle)
2168 {
2169 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2170 
2171 	hclgevf_reset_tqp_stats(handle);
2172 
2173 	hclgevf_request_link_info(hdev);
2174 
2175 	hclgevf_update_link_mode(hdev);
2176 
2177 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2178 
2179 	return 0;
2180 }
2181 
2182 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2183 {
2184 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2185 	int i;
2186 
2187 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2188 
2189 	if (hdev->reset_type != HNAE3_VF_RESET)
2190 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2191 			if (hclgevf_reset_tqp(handle, i))
2192 				break;
2193 
2194 	hclgevf_reset_tqp_stats(handle);
2195 	hclgevf_update_link_status(hdev, 0);
2196 }
2197 
2198 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2199 {
2200 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2201 	u8 msg_data;
2202 
2203 	msg_data = alive ? 1 : 0;
2204 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2205 				    0, &msg_data, 1, false, NULL, 0);
2206 }
2207 
2208 static int hclgevf_client_start(struct hnae3_handle *handle)
2209 {
2210 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2211 	int ret;
2212 
2213 	ret = hclgevf_set_alive(handle, true);
2214 	if (ret)
2215 		return ret;
2216 
2217 	mod_timer(&hdev->keep_alive_timer, jiffies +
2218 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2219 
2220 	return 0;
2221 }
2222 
2223 static void hclgevf_client_stop(struct hnae3_handle *handle)
2224 {
2225 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2226 	int ret;
2227 
2228 	ret = hclgevf_set_alive(handle, false);
2229 	if (ret)
2230 		dev_warn(&hdev->pdev->dev,
2231 			 "%s failed %d\n", __func__, ret);
2232 
2233 	del_timer_sync(&hdev->keep_alive_timer);
2234 	cancel_work_sync(&hdev->keep_alive_task);
2235 }
2236 
2237 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2238 {
2239 	/* setup tasks for the MBX */
2240 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2241 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2242 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2243 
2244 	/* setup tasks for service timer */
2245 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2246 
2247 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2248 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2249 
2250 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2251 
2252 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2253 
2254 	/* bring the device down */
2255 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2256 }
2257 
2258 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2259 {
2260 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2261 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2262 
2263 	if (hdev->keep_alive_timer.function)
2264 		del_timer_sync(&hdev->keep_alive_timer);
2265 	if (hdev->keep_alive_task.func)
2266 		cancel_work_sync(&hdev->keep_alive_task);
2267 	if (hdev->service_timer.function)
2268 		del_timer_sync(&hdev->service_timer);
2269 	if (hdev->service_task.func)
2270 		cancel_work_sync(&hdev->service_task);
2271 	if (hdev->mbx_service_task.func)
2272 		cancel_work_sync(&hdev->mbx_service_task);
2273 	if (hdev->rst_service_task.func)
2274 		cancel_work_sync(&hdev->rst_service_task);
2275 
2276 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2277 }
2278 
2279 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2280 {
2281 	struct pci_dev *pdev = hdev->pdev;
2282 	int vectors;
2283 	int i;
2284 
2285 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2286 		vectors = pci_alloc_irq_vectors(pdev,
2287 						hdev->roce_base_msix_offset + 1,
2288 						hdev->num_msi,
2289 						PCI_IRQ_MSIX);
2290 	else
2291 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2292 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2293 
2294 	if (vectors < 0) {
2295 		dev_err(&pdev->dev,
2296 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2297 			vectors);
2298 		return vectors;
2299 	}
2300 	if (vectors < hdev->num_msi)
2301 		dev_warn(&hdev->pdev->dev,
2302 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2303 			 hdev->num_msi, vectors);
2304 
2305 	hdev->num_msi = vectors;
2306 	hdev->num_msi_left = vectors;
2307 	hdev->base_msi_vector = pdev->irq;
2308 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2309 
2310 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2311 					   sizeof(u16), GFP_KERNEL);
2312 	if (!hdev->vector_status) {
2313 		pci_free_irq_vectors(pdev);
2314 		return -ENOMEM;
2315 	}
2316 
2317 	for (i = 0; i < hdev->num_msi; i++)
2318 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2319 
2320 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2321 					sizeof(int), GFP_KERNEL);
2322 	if (!hdev->vector_irq) {
2323 		devm_kfree(&pdev->dev, hdev->vector_status);
2324 		pci_free_irq_vectors(pdev);
2325 		return -ENOMEM;
2326 	}
2327 
2328 	return 0;
2329 }
2330 
2331 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2332 {
2333 	struct pci_dev *pdev = hdev->pdev;
2334 
2335 	devm_kfree(&pdev->dev, hdev->vector_status);
2336 	devm_kfree(&pdev->dev, hdev->vector_irq);
2337 	pci_free_irq_vectors(pdev);
2338 }
2339 
2340 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2341 {
2342 	int ret;
2343 
2344 	hclgevf_get_misc_vector(hdev);
2345 
2346 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2347 			  0, "hclgevf_cmd", hdev);
2348 	if (ret) {
2349 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2350 			hdev->misc_vector.vector_irq);
2351 		return ret;
2352 	}
2353 
2354 	hclgevf_clear_event_cause(hdev, 0);
2355 
2356 	/* enable misc. vector(vector 0) */
2357 	hclgevf_enable_vector(&hdev->misc_vector, true);
2358 
2359 	return ret;
2360 }
2361 
2362 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2363 {
2364 	/* disable misc vector(vector 0) */
2365 	hclgevf_enable_vector(&hdev->misc_vector, false);
2366 	synchronize_irq(hdev->misc_vector.vector_irq);
2367 	free_irq(hdev->misc_vector.vector_irq, hdev);
2368 	hclgevf_free_vector(hdev, 0);
2369 }
2370 
2371 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2372 {
2373 	struct device *dev = &hdev->pdev->dev;
2374 
2375 	dev_info(dev, "VF info begin:\n");
2376 
2377 	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2378 	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2379 	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2380 	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2381 	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2382 	dev_info(dev, "PF media type of this VF: %d\n",
2383 		 hdev->hw.mac.media_type);
2384 
2385 	dev_info(dev, "VF info end.\n");
2386 }
2387 
2388 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2389 					    struct hnae3_client *client)
2390 {
2391 	struct hclgevf_dev *hdev = ae_dev->priv;
2392 	int ret;
2393 
2394 	ret = client->ops->init_instance(&hdev->nic);
2395 	if (ret)
2396 		return ret;
2397 
2398 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2399 	hnae3_set_client_init_flag(client, ae_dev, 1);
2400 
2401 	if (netif_msg_drv(&hdev->nic))
2402 		hclgevf_info_show(hdev);
2403 
2404 	return 0;
2405 }
2406 
2407 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2408 					     struct hnae3_client *client)
2409 {
2410 	struct hclgevf_dev *hdev = ae_dev->priv;
2411 	int ret;
2412 
2413 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2414 	    !hdev->nic_client)
2415 		return 0;
2416 
2417 	ret = hclgevf_init_roce_base_info(hdev);
2418 	if (ret)
2419 		return ret;
2420 
2421 	ret = client->ops->init_instance(&hdev->roce);
2422 	if (ret)
2423 		return ret;
2424 
2425 	hnae3_set_client_init_flag(client, ae_dev, 1);
2426 
2427 	return 0;
2428 }
2429 
2430 static int hclgevf_init_client_instance(struct hnae3_client *client,
2431 					struct hnae3_ae_dev *ae_dev)
2432 {
2433 	struct hclgevf_dev *hdev = ae_dev->priv;
2434 	int ret;
2435 
2436 	switch (client->type) {
2437 	case HNAE3_CLIENT_KNIC:
2438 		hdev->nic_client = client;
2439 		hdev->nic.client = client;
2440 
2441 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2442 		if (ret)
2443 			goto clear_nic;
2444 
2445 		ret = hclgevf_init_roce_client_instance(ae_dev,
2446 							hdev->roce_client);
2447 		if (ret)
2448 			goto clear_roce;
2449 
2450 		break;
2451 	case HNAE3_CLIENT_ROCE:
2452 		if (hnae3_dev_roce_supported(hdev)) {
2453 			hdev->roce_client = client;
2454 			hdev->roce.client = client;
2455 		}
2456 
2457 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2458 		if (ret)
2459 			goto clear_roce;
2460 
2461 		break;
2462 	default:
2463 		return -EINVAL;
2464 	}
2465 
2466 	return 0;
2467 
2468 clear_nic:
2469 	hdev->nic_client = NULL;
2470 	hdev->nic.client = NULL;
2471 	return ret;
2472 clear_roce:
2473 	hdev->roce_client = NULL;
2474 	hdev->roce.client = NULL;
2475 	return ret;
2476 }
2477 
2478 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2479 					   struct hnae3_ae_dev *ae_dev)
2480 {
2481 	struct hclgevf_dev *hdev = ae_dev->priv;
2482 
2483 	/* un-init roce, if it exists */
2484 	if (hdev->roce_client) {
2485 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2486 		hdev->roce_client = NULL;
2487 		hdev->roce.client = NULL;
2488 	}
2489 
2490 	/* un-init nic/unic, if this was not called by roce client */
2491 	if (client->ops->uninit_instance && hdev->nic_client &&
2492 	    client->type != HNAE3_CLIENT_ROCE) {
2493 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2494 
2495 		client->ops->uninit_instance(&hdev->nic, 0);
2496 		hdev->nic_client = NULL;
2497 		hdev->nic.client = NULL;
2498 	}
2499 }
2500 
2501 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2502 {
2503 	struct pci_dev *pdev = hdev->pdev;
2504 	struct hclgevf_hw *hw;
2505 	int ret;
2506 
2507 	ret = pci_enable_device(pdev);
2508 	if (ret) {
2509 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2510 		return ret;
2511 	}
2512 
2513 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2514 	if (ret) {
2515 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2516 		goto err_disable_device;
2517 	}
2518 
2519 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2520 	if (ret) {
2521 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2522 		goto err_disable_device;
2523 	}
2524 
2525 	pci_set_master(pdev);
2526 	hw = &hdev->hw;
2527 	hw->hdev = hdev;
2528 	hw->io_base = pci_iomap(pdev, 2, 0);
2529 	if (!hw->io_base) {
2530 		dev_err(&pdev->dev, "can't map configuration register space\n");
2531 		ret = -ENOMEM;
2532 		goto err_clr_master;
2533 	}
2534 
2535 	return 0;
2536 
2537 err_clr_master:
2538 	pci_clear_master(pdev);
2539 	pci_release_regions(pdev);
2540 err_disable_device:
2541 	pci_disable_device(pdev);
2542 
2543 	return ret;
2544 }
2545 
2546 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2547 {
2548 	struct pci_dev *pdev = hdev->pdev;
2549 
2550 	pci_iounmap(pdev, hdev->hw.io_base);
2551 	pci_clear_master(pdev);
2552 	pci_release_regions(pdev);
2553 	pci_disable_device(pdev);
2554 }
2555 
2556 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2557 {
2558 	struct hclgevf_query_res_cmd *req;
2559 	struct hclgevf_desc desc;
2560 	int ret;
2561 
2562 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2563 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2564 	if (ret) {
2565 		dev_err(&hdev->pdev->dev,
2566 			"query vf resource failed, ret = %d.\n", ret);
2567 		return ret;
2568 	}
2569 
2570 	req = (struct hclgevf_query_res_cmd *)desc.data;
2571 
2572 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2573 		hdev->roce_base_msix_offset =
2574 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2575 				HCLGEVF_MSIX_OFT_ROCEE_M,
2576 				HCLGEVF_MSIX_OFT_ROCEE_S);
2577 		hdev->num_roce_msix =
2578 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2579 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2580 
2581 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2582 		 * are queued before Roce vectors. The offset is fixed to 64.
2583 		 */
2584 		hdev->num_msi = hdev->num_roce_msix +
2585 				hdev->roce_base_msix_offset;
2586 	} else {
2587 		hdev->num_msi =
2588 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2589 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2590 	}
2591 
2592 	return 0;
2593 }
2594 
2595 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2596 {
2597 	struct pci_dev *pdev = hdev->pdev;
2598 	int ret = 0;
2599 
2600 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2601 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2602 		hclgevf_misc_irq_uninit(hdev);
2603 		hclgevf_uninit_msi(hdev);
2604 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2605 	}
2606 
2607 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2608 		pci_set_master(pdev);
2609 		ret = hclgevf_init_msi(hdev);
2610 		if (ret) {
2611 			dev_err(&pdev->dev,
2612 				"failed(%d) to init MSI/MSI-X\n", ret);
2613 			return ret;
2614 		}
2615 
2616 		ret = hclgevf_misc_irq_init(hdev);
2617 		if (ret) {
2618 			hclgevf_uninit_msi(hdev);
2619 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2620 				ret);
2621 			return ret;
2622 		}
2623 
2624 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2625 	}
2626 
2627 	return ret;
2628 }
2629 
2630 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2631 {
2632 	struct pci_dev *pdev = hdev->pdev;
2633 	int ret;
2634 
2635 	ret = hclgevf_pci_reset(hdev);
2636 	if (ret) {
2637 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2638 		return ret;
2639 	}
2640 
2641 	ret = hclgevf_cmd_init(hdev);
2642 	if (ret) {
2643 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2644 		return ret;
2645 	}
2646 
2647 	ret = hclgevf_rss_init_hw(hdev);
2648 	if (ret) {
2649 		dev_err(&hdev->pdev->dev,
2650 			"failed(%d) to initialize RSS\n", ret);
2651 		return ret;
2652 	}
2653 
2654 	ret = hclgevf_config_gro(hdev, true);
2655 	if (ret)
2656 		return ret;
2657 
2658 	ret = hclgevf_init_vlan_config(hdev);
2659 	if (ret) {
2660 		dev_err(&hdev->pdev->dev,
2661 			"failed(%d) to initialize VLAN config\n", ret);
2662 		return ret;
2663 	}
2664 
2665 	dev_info(&hdev->pdev->dev, "Reset done\n");
2666 
2667 	return 0;
2668 }
2669 
2670 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2671 {
2672 	struct pci_dev *pdev = hdev->pdev;
2673 	int ret;
2674 
2675 	ret = hclgevf_pci_init(hdev);
2676 	if (ret) {
2677 		dev_err(&pdev->dev, "PCI initialization failed\n");
2678 		return ret;
2679 	}
2680 
2681 	ret = hclgevf_cmd_queue_init(hdev);
2682 	if (ret) {
2683 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2684 		goto err_cmd_queue_init;
2685 	}
2686 
2687 	ret = hclgevf_cmd_init(hdev);
2688 	if (ret)
2689 		goto err_cmd_init;
2690 
2691 	/* Get vf resource */
2692 	ret = hclgevf_query_vf_resource(hdev);
2693 	if (ret) {
2694 		dev_err(&hdev->pdev->dev,
2695 			"Query vf status error, ret = %d.\n", ret);
2696 		goto err_cmd_init;
2697 	}
2698 
2699 	ret = hclgevf_init_msi(hdev);
2700 	if (ret) {
2701 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2702 		goto err_cmd_init;
2703 	}
2704 
2705 	hclgevf_state_init(hdev);
2706 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2707 
2708 	ret = hclgevf_misc_irq_init(hdev);
2709 	if (ret) {
2710 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2711 			ret);
2712 		goto err_misc_irq_init;
2713 	}
2714 
2715 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2716 
2717 	ret = hclgevf_configure(hdev);
2718 	if (ret) {
2719 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2720 		goto err_config;
2721 	}
2722 
2723 	ret = hclgevf_alloc_tqps(hdev);
2724 	if (ret) {
2725 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2726 		goto err_config;
2727 	}
2728 
2729 	ret = hclgevf_set_handle_info(hdev);
2730 	if (ret) {
2731 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2732 		goto err_config;
2733 	}
2734 
2735 	ret = hclgevf_config_gro(hdev, true);
2736 	if (ret)
2737 		goto err_config;
2738 
2739 	/* Initialize RSS for this VF */
2740 	ret = hclgevf_rss_init_hw(hdev);
2741 	if (ret) {
2742 		dev_err(&hdev->pdev->dev,
2743 			"failed(%d) to initialize RSS\n", ret);
2744 		goto err_config;
2745 	}
2746 
2747 	ret = hclgevf_init_vlan_config(hdev);
2748 	if (ret) {
2749 		dev_err(&hdev->pdev->dev,
2750 			"failed(%d) to initialize VLAN config\n", ret);
2751 		goto err_config;
2752 	}
2753 
2754 	hdev->last_reset_time = jiffies;
2755 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2756 		 HCLGEVF_DRIVER_NAME);
2757 
2758 	return 0;
2759 
2760 err_config:
2761 	hclgevf_misc_irq_uninit(hdev);
2762 err_misc_irq_init:
2763 	hclgevf_state_uninit(hdev);
2764 	hclgevf_uninit_msi(hdev);
2765 err_cmd_init:
2766 	hclgevf_cmd_uninit(hdev);
2767 err_cmd_queue_init:
2768 	hclgevf_pci_uninit(hdev);
2769 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2770 	return ret;
2771 }
2772 
2773 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2774 {
2775 	hclgevf_state_uninit(hdev);
2776 
2777 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2778 		hclgevf_misc_irq_uninit(hdev);
2779 		hclgevf_uninit_msi(hdev);
2780 	}
2781 
2782 	hclgevf_pci_uninit(hdev);
2783 	hclgevf_cmd_uninit(hdev);
2784 }
2785 
2786 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2787 {
2788 	struct pci_dev *pdev = ae_dev->pdev;
2789 	struct hclgevf_dev *hdev;
2790 	int ret;
2791 
2792 	ret = hclgevf_alloc_hdev(ae_dev);
2793 	if (ret) {
2794 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2795 		return ret;
2796 	}
2797 
2798 	ret = hclgevf_init_hdev(ae_dev->priv);
2799 	if (ret) {
2800 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2801 		return ret;
2802 	}
2803 
2804 	hdev = ae_dev->priv;
2805 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2806 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2807 
2808 	return 0;
2809 }
2810 
2811 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2812 {
2813 	struct hclgevf_dev *hdev = ae_dev->priv;
2814 
2815 	hclgevf_uninit_hdev(hdev);
2816 	ae_dev->priv = NULL;
2817 }
2818 
2819 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2820 {
2821 	struct hnae3_handle *nic = &hdev->nic;
2822 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2823 
2824 	return min_t(u32, hdev->rss_size_max,
2825 		     hdev->num_tqps / kinfo->num_tc);
2826 }
2827 
2828 /**
2829  * hclgevf_get_channels - Get the current channels enabled and max supported.
2830  * @handle: hardware information for network interface
2831  * @ch: ethtool channels structure
2832  *
2833  * We don't support separate tx and rx queues as channels. The other count
2834  * represents how many queues are being used for control. max_combined counts
2835  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2836  * q_vectors since we support a lot more queue pairs than q_vectors.
2837  **/
2838 static void hclgevf_get_channels(struct hnae3_handle *handle,
2839 				 struct ethtool_channels *ch)
2840 {
2841 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2842 
2843 	ch->max_combined = hclgevf_get_max_channels(hdev);
2844 	ch->other_count = 0;
2845 	ch->max_other = 0;
2846 	ch->combined_count = handle->kinfo.rss_size;
2847 }
2848 
2849 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2850 					  u16 *alloc_tqps, u16 *max_rss_size)
2851 {
2852 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2853 
2854 	*alloc_tqps = hdev->num_tqps;
2855 	*max_rss_size = hdev->rss_size_max;
2856 }
2857 
2858 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
2859 				    u32 new_tqps_num)
2860 {
2861 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2862 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2863 	u16 max_rss_size;
2864 
2865 	kinfo->req_rss_size = new_tqps_num;
2866 
2867 	max_rss_size = min_t(u16, hdev->rss_size_max,
2868 			     hdev->num_tqps / kinfo->num_tc);
2869 
2870 	/* Use the user's configuration when it is not larger than
2871 	 * max_rss_size, otherwise, use the maximum specification value.
2872 	 */
2873 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
2874 	    kinfo->req_rss_size <= max_rss_size)
2875 		kinfo->rss_size = kinfo->req_rss_size;
2876 	else if (kinfo->rss_size > max_rss_size ||
2877 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
2878 		kinfo->rss_size = max_rss_size;
2879 
2880 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
2881 }
2882 
2883 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
2884 				bool rxfh_configured)
2885 {
2886 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2887 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
2888 	u16 cur_rss_size = kinfo->rss_size;
2889 	u16 cur_tqps = kinfo->num_tqps;
2890 	u32 *rss_indir;
2891 	unsigned int i;
2892 	int ret;
2893 
2894 	hclgevf_update_rss_size(handle, new_tqps_num);
2895 
2896 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
2897 	if (ret)
2898 		return ret;
2899 
2900 	/* RSS indirection table has been configuared by user */
2901 	if (rxfh_configured)
2902 		goto out;
2903 
2904 	/* Reinitializes the rss indirect table according to the new RSS size */
2905 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
2906 	if (!rss_indir)
2907 		return -ENOMEM;
2908 
2909 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2910 		rss_indir[i] = i % kinfo->rss_size;
2911 
2912 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
2913 	if (ret)
2914 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
2915 			ret);
2916 
2917 	kfree(rss_indir);
2918 
2919 out:
2920 	if (!ret)
2921 		dev_info(&hdev->pdev->dev,
2922 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
2923 			 cur_rss_size, kinfo->rss_size,
2924 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
2925 
2926 	return ret;
2927 }
2928 
2929 static int hclgevf_get_status(struct hnae3_handle *handle)
2930 {
2931 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2932 
2933 	return hdev->hw.mac.link;
2934 }
2935 
2936 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2937 					    u8 *auto_neg, u32 *speed,
2938 					    u8 *duplex)
2939 {
2940 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2941 
2942 	if (speed)
2943 		*speed = hdev->hw.mac.speed;
2944 	if (duplex)
2945 		*duplex = hdev->hw.mac.duplex;
2946 	if (auto_neg)
2947 		*auto_neg = AUTONEG_DISABLE;
2948 }
2949 
2950 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2951 				 u8 duplex)
2952 {
2953 	hdev->hw.mac.speed = speed;
2954 	hdev->hw.mac.duplex = duplex;
2955 }
2956 
2957 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2958 {
2959 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2960 
2961 	return hclgevf_config_gro(hdev, enable);
2962 }
2963 
2964 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2965 				   u8 *module_type)
2966 {
2967 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2968 
2969 	if (media_type)
2970 		*media_type = hdev->hw.mac.media_type;
2971 
2972 	if (module_type)
2973 		*module_type = hdev->hw.mac.module_type;
2974 }
2975 
2976 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2977 {
2978 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2979 
2980 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2981 }
2982 
2983 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2984 {
2985 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2986 
2987 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2988 }
2989 
2990 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2991 {
2992 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2993 
2994 	return hdev->rst_stats.hw_rst_done_cnt;
2995 }
2996 
2997 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2998 				  unsigned long *supported,
2999 				  unsigned long *advertising)
3000 {
3001 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3002 
3003 	*supported = hdev->hw.mac.supported;
3004 	*advertising = hdev->hw.mac.advertising;
3005 }
3006 
3007 #define MAX_SEPARATE_NUM	4
3008 #define SEPARATOR_VALUE		0xFFFFFFFF
3009 #define REG_NUM_PER_LINE	4
3010 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3011 
3012 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3013 {
3014 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3015 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3016 
3017 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3018 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3019 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3020 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3021 
3022 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3023 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3024 }
3025 
3026 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3027 			     void *data)
3028 {
3029 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3030 	int i, j, reg_um, separator_num;
3031 	u32 *reg = data;
3032 
3033 	*version = hdev->fw_version;
3034 
3035 	/* fetching per-VF registers values from VF PCIe register space */
3036 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3037 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3038 	for (i = 0; i < reg_um; i++)
3039 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3040 	for (i = 0; i < separator_num; i++)
3041 		*reg++ = SEPARATOR_VALUE;
3042 
3043 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3044 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3045 	for (i = 0; i < reg_um; i++)
3046 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3047 	for (i = 0; i < separator_num; i++)
3048 		*reg++ = SEPARATOR_VALUE;
3049 
3050 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3051 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3052 	for (j = 0; j < hdev->num_tqps; j++) {
3053 		for (i = 0; i < reg_um; i++)
3054 			*reg++ = hclgevf_read_dev(&hdev->hw,
3055 						  ring_reg_addr_list[i] +
3056 						  0x200 * j);
3057 		for (i = 0; i < separator_num; i++)
3058 			*reg++ = SEPARATOR_VALUE;
3059 	}
3060 
3061 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3062 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3063 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3064 		for (i = 0; i < reg_um; i++)
3065 			*reg++ = hclgevf_read_dev(&hdev->hw,
3066 						  tqp_intr_reg_addr_list[i] +
3067 						  4 * j);
3068 		for (i = 0; i < separator_num; i++)
3069 			*reg++ = SEPARATOR_VALUE;
3070 	}
3071 }
3072 
3073 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3074 					u8 *port_base_vlan_info, u8 data_size)
3075 {
3076 	struct hnae3_handle *nic = &hdev->nic;
3077 
3078 	rtnl_lock();
3079 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3080 	rtnl_unlock();
3081 
3082 	/* send msg to PF and wait update port based vlan info */
3083 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
3084 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
3085 			     port_base_vlan_info, data_size,
3086 			     false, NULL, 0);
3087 
3088 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3089 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
3090 	else
3091 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3092 
3093 	rtnl_lock();
3094 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3095 	rtnl_unlock();
3096 }
3097 
3098 static const struct hnae3_ae_ops hclgevf_ops = {
3099 	.init_ae_dev = hclgevf_init_ae_dev,
3100 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3101 	.flr_prepare = hclgevf_flr_prepare,
3102 	.flr_done = hclgevf_flr_done,
3103 	.init_client_instance = hclgevf_init_client_instance,
3104 	.uninit_client_instance = hclgevf_uninit_client_instance,
3105 	.start = hclgevf_ae_start,
3106 	.stop = hclgevf_ae_stop,
3107 	.client_start = hclgevf_client_start,
3108 	.client_stop = hclgevf_client_stop,
3109 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3110 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3111 	.get_vector = hclgevf_get_vector,
3112 	.put_vector = hclgevf_put_vector,
3113 	.reset_queue = hclgevf_reset_tqp,
3114 	.get_mac_addr = hclgevf_get_mac_addr,
3115 	.set_mac_addr = hclgevf_set_mac_addr,
3116 	.add_uc_addr = hclgevf_add_uc_addr,
3117 	.rm_uc_addr = hclgevf_rm_uc_addr,
3118 	.add_mc_addr = hclgevf_add_mc_addr,
3119 	.rm_mc_addr = hclgevf_rm_mc_addr,
3120 	.get_stats = hclgevf_get_stats,
3121 	.update_stats = hclgevf_update_stats,
3122 	.get_strings = hclgevf_get_strings,
3123 	.get_sset_count = hclgevf_get_sset_count,
3124 	.get_rss_key_size = hclgevf_get_rss_key_size,
3125 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3126 	.get_rss = hclgevf_get_rss,
3127 	.set_rss = hclgevf_set_rss,
3128 	.get_rss_tuple = hclgevf_get_rss_tuple,
3129 	.set_rss_tuple = hclgevf_set_rss_tuple,
3130 	.get_tc_size = hclgevf_get_tc_size,
3131 	.get_fw_version = hclgevf_get_fw_version,
3132 	.set_vlan_filter = hclgevf_set_vlan_filter,
3133 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3134 	.reset_event = hclgevf_reset_event,
3135 	.set_default_reset_request = hclgevf_set_def_reset_request,
3136 	.set_channels = hclgevf_set_channels,
3137 	.get_channels = hclgevf_get_channels,
3138 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3139 	.get_regs_len = hclgevf_get_regs_len,
3140 	.get_regs = hclgevf_get_regs,
3141 	.get_status = hclgevf_get_status,
3142 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3143 	.get_media_type = hclgevf_get_media_type,
3144 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3145 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3146 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3147 	.set_gro_en = hclgevf_gro_en,
3148 	.set_mtu = hclgevf_set_mtu,
3149 	.get_global_queue_id = hclgevf_get_qid_global,
3150 	.set_timer_task = hclgevf_set_timer_task,
3151 	.get_link_mode = hclgevf_get_link_mode,
3152 	.set_promisc_mode = hclgevf_set_promisc_mode,
3153 };
3154 
3155 static struct hnae3_ae_algo ae_algovf = {
3156 	.ops = &hclgevf_ops,
3157 	.pdev_id_table = ae_algovf_pci_tbl,
3158 };
3159 
3160 static int hclgevf_init(void)
3161 {
3162 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3163 
3164 	hnae3_register_ae_algo(&ae_algovf);
3165 
3166 	return 0;
3167 }
3168 
3169 static void hclgevf_exit(void)
3170 {
3171 	hnae3_unregister_ae_algo(&ae_algovf);
3172 }
3173 module_init(hclgevf_init);
3174 module_exit(hclgevf_exit);
3175 
3176 MODULE_LICENSE("GPL");
3177 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3178 MODULE_DESCRIPTION("HCLGEVF Driver");
3179 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3180