xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c (revision 8aaaf2f3af2ae212428f4db1af34214225f5cec3)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 #include "hclge_comm_rss.h"
13 
14 #define HCLGEVF_NAME	"hclgevf"
15 
16 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
17 
18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
20 				  unsigned long delay);
21 
22 static struct hnae3_ae_algo ae_algovf;
23 
24 static struct workqueue_struct *hclgevf_wq;
25 
26 static const struct pci_device_id ae_algovf_pci_tbl[] = {
27 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
28 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
29 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
30 	/* required last entry */
31 	{0, }
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
37 					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
38 					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
39 					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
40 					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
41 					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
42 					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
43 					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
44 					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
45 					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
46 					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG,
48 					 HCLGE_COMM_CMDQ_INTR_EN_REG,
49 					 HCLGE_COMM_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 /* hclgevf_cmd_send - send command to command queue
89  * @hw: pointer to the hw struct
90  * @desc: prefilled descriptor for describing the command
91  * @num : the number of descriptors to be sent
92  *
93  * This is the main send command for command queue, it
94  * sends the queue, cleans the queue, etc
95  */
96 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
97 {
98 	return hclge_comm_cmd_send(&hw->hw, desc, num);
99 }
100 
101 void hclgevf_arq_init(struct hclgevf_dev *hdev)
102 {
103 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
104 
105 	spin_lock(&cmdq->crq.lock);
106 	/* initialize the pointers of async rx queue of mailbox */
107 	hdev->arq.hdev = hdev;
108 	hdev->arq.head = 0;
109 	hdev->arq.tail = 0;
110 	atomic_set(&hdev->arq.count, 0);
111 	spin_unlock(&cmdq->crq.lock);
112 }
113 
114 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
115 {
116 	if (!handle->client)
117 		return container_of(handle, struct hclgevf_dev, nic);
118 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
119 		return container_of(handle, struct hclgevf_dev, roce);
120 	else
121 		return container_of(handle, struct hclgevf_dev, nic);
122 }
123 
124 static void hclgevf_update_stats(struct hnae3_handle *handle,
125 				 struct net_device_stats *net_stats)
126 {
127 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
128 	int status;
129 
130 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
131 	if (status)
132 		dev_err(&hdev->pdev->dev,
133 			"VF update of TQPS stats fail, status = %d.\n",
134 			status);
135 }
136 
137 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
138 {
139 	if (strset == ETH_SS_TEST)
140 		return -EOPNOTSUPP;
141 	else if (strset == ETH_SS_STATS)
142 		return hclge_comm_tqps_get_sset_count(handle);
143 
144 	return 0;
145 }
146 
147 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
148 				u8 *data)
149 {
150 	u8 *p = (char *)data;
151 
152 	if (strset == ETH_SS_STATS)
153 		p = hclge_comm_tqps_get_strings(handle, p);
154 }
155 
156 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
157 {
158 	hclge_comm_tqps_get_stats(handle, data);
159 }
160 
161 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
162 				   u8 subcode)
163 {
164 	if (msg) {
165 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
166 		msg->code = code;
167 		msg->subcode = subcode;
168 	}
169 }
170 
171 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
172 {
173 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
174 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
175 	struct hclge_basic_info *basic_info;
176 	struct hclge_vf_to_pf_msg send_msg;
177 	unsigned long caps;
178 	int status;
179 
180 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
181 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
182 				      sizeof(resp_msg));
183 	if (status) {
184 		dev_err(&hdev->pdev->dev,
185 			"failed to get basic info from pf, ret = %d", status);
186 		return status;
187 	}
188 
189 	basic_info = (struct hclge_basic_info *)resp_msg;
190 
191 	hdev->hw_tc_map = basic_info->hw_tc_map;
192 	hdev->mbx_api_version = basic_info->mbx_api_version;
193 	caps = basic_info->pf_caps;
194 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
195 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
196 
197 	return 0;
198 }
199 
200 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
201 {
202 	struct hnae3_handle *nic = &hdev->nic;
203 	struct hclge_vf_to_pf_msg send_msg;
204 	u8 resp_msg;
205 	int ret;
206 
207 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
208 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
209 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
210 				   sizeof(u8));
211 	if (ret) {
212 		dev_err(&hdev->pdev->dev,
213 			"VF request to get port based vlan state failed %d",
214 			ret);
215 		return ret;
216 	}
217 
218 	nic->port_base_vlan_state = resp_msg;
219 
220 	return 0;
221 }
222 
223 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
224 {
225 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
226 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
227 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
228 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
229 
230 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
231 	struct hclge_vf_to_pf_msg send_msg;
232 	int status;
233 
234 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
235 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
236 				      HCLGEVF_TQPS_RSS_INFO_LEN);
237 	if (status) {
238 		dev_err(&hdev->pdev->dev,
239 			"VF request to get tqp info from PF failed %d",
240 			status);
241 		return status;
242 	}
243 
244 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
245 	       sizeof(u16));
246 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
247 	       sizeof(u16));
248 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
249 	       sizeof(u16));
250 
251 	return 0;
252 }
253 
254 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
255 {
256 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
257 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
258 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
259 
260 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
261 	struct hclge_vf_to_pf_msg send_msg;
262 	int ret;
263 
264 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
265 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
266 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
267 	if (ret) {
268 		dev_err(&hdev->pdev->dev,
269 			"VF request to get tqp depth info from PF failed %d",
270 			ret);
271 		return ret;
272 	}
273 
274 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
275 	       sizeof(u16));
276 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
277 	       sizeof(u16));
278 
279 	return 0;
280 }
281 
282 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
283 {
284 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
285 	struct hclge_vf_to_pf_msg send_msg;
286 	u16 qid_in_pf = 0;
287 	u8 resp_data[2];
288 	int ret;
289 
290 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
291 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
292 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
293 				   sizeof(resp_data));
294 	if (!ret)
295 		qid_in_pf = *(u16 *)resp_data;
296 
297 	return qid_in_pf;
298 }
299 
300 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
301 {
302 	struct hclge_vf_to_pf_msg send_msg;
303 	u8 resp_msg[2];
304 	int ret;
305 
306 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
307 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
308 				   sizeof(resp_msg));
309 	if (ret) {
310 		dev_err(&hdev->pdev->dev,
311 			"VF request to get the pf port media type failed %d",
312 			ret);
313 		return ret;
314 	}
315 
316 	hdev->hw.mac.media_type = resp_msg[0];
317 	hdev->hw.mac.module_type = resp_msg[1];
318 
319 	return 0;
320 }
321 
322 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
323 {
324 	struct hclge_comm_tqp *tqp;
325 	int i;
326 
327 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
328 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
329 	if (!hdev->htqp)
330 		return -ENOMEM;
331 
332 	tqp = hdev->htqp;
333 
334 	for (i = 0; i < hdev->num_tqps; i++) {
335 		tqp->dev = &hdev->pdev->dev;
336 		tqp->index = i;
337 
338 		tqp->q.ae_algo = &ae_algovf;
339 		tqp->q.buf_size = hdev->rx_buf_len;
340 		tqp->q.tx_desc_num = hdev->num_tx_desc;
341 		tqp->q.rx_desc_num = hdev->num_rx_desc;
342 
343 		/* need an extended offset to configure queues >=
344 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
345 		 */
346 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
347 			tqp->q.io_base = hdev->hw.hw.io_base +
348 					 HCLGEVF_TQP_REG_OFFSET +
349 					 i * HCLGEVF_TQP_REG_SIZE;
350 		else
351 			tqp->q.io_base = hdev->hw.hw.io_base +
352 					 HCLGEVF_TQP_REG_OFFSET +
353 					 HCLGEVF_TQP_EXT_REG_OFFSET +
354 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
355 					 HCLGEVF_TQP_REG_SIZE;
356 
357 		tqp++;
358 	}
359 
360 	return 0;
361 }
362 
363 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
364 {
365 	struct hnae3_handle *nic = &hdev->nic;
366 	struct hnae3_knic_private_info *kinfo;
367 	u16 new_tqps = hdev->num_tqps;
368 	unsigned int i;
369 	u8 num_tc = 0;
370 
371 	kinfo = &nic->kinfo;
372 	kinfo->num_tx_desc = hdev->num_tx_desc;
373 	kinfo->num_rx_desc = hdev->num_rx_desc;
374 	kinfo->rx_buf_len = hdev->rx_buf_len;
375 	for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
376 		if (hdev->hw_tc_map & BIT(i))
377 			num_tc++;
378 
379 	num_tc = num_tc ? num_tc : 1;
380 	kinfo->tc_info.num_tc = num_tc;
381 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
382 	new_tqps = kinfo->rss_size * num_tc;
383 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
384 
385 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
386 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
387 	if (!kinfo->tqp)
388 		return -ENOMEM;
389 
390 	for (i = 0; i < kinfo->num_tqps; i++) {
391 		hdev->htqp[i].q.handle = &hdev->nic;
392 		hdev->htqp[i].q.tqp_index = i;
393 		kinfo->tqp[i] = &hdev->htqp[i].q;
394 	}
395 
396 	/* after init the max rss_size and tqps, adjust the default tqp numbers
397 	 * and rss size with the actual vector numbers
398 	 */
399 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
400 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
401 				kinfo->rss_size);
402 
403 	return 0;
404 }
405 
406 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
407 {
408 	struct hclge_vf_to_pf_msg send_msg;
409 	int status;
410 
411 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
412 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
413 	if (status)
414 		dev_err(&hdev->pdev->dev,
415 			"VF failed to fetch link status(%d) from PF", status);
416 }
417 
418 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
419 {
420 	struct hnae3_handle *rhandle = &hdev->roce;
421 	struct hnae3_handle *handle = &hdev->nic;
422 	struct hnae3_client *rclient;
423 	struct hnae3_client *client;
424 
425 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
426 		return;
427 
428 	client = handle->client;
429 	rclient = hdev->roce_client;
430 
431 	link_state =
432 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
433 	if (link_state != hdev->hw.mac.link) {
434 		hdev->hw.mac.link = link_state;
435 		client->ops->link_status_change(handle, !!link_state);
436 		if (rclient && rclient->ops->link_status_change)
437 			rclient->ops->link_status_change(rhandle, !!link_state);
438 	}
439 
440 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
441 }
442 
443 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
444 {
445 #define HCLGEVF_ADVERTISING	0
446 #define HCLGEVF_SUPPORTED	1
447 
448 	struct hclge_vf_to_pf_msg send_msg;
449 
450 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
451 	send_msg.data[0] = HCLGEVF_ADVERTISING;
452 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
453 	send_msg.data[0] = HCLGEVF_SUPPORTED;
454 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
455 }
456 
457 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
458 {
459 	struct hnae3_handle *nic = &hdev->nic;
460 	int ret;
461 
462 	nic->ae_algo = &ae_algovf;
463 	nic->pdev = hdev->pdev;
464 	nic->numa_node_mask = hdev->numa_node_mask;
465 	nic->flags |= HNAE3_SUPPORT_VF;
466 	nic->kinfo.io_base = hdev->hw.hw.io_base;
467 
468 	ret = hclgevf_knic_setup(hdev);
469 	if (ret)
470 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
471 			ret);
472 	return ret;
473 }
474 
475 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
476 {
477 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
478 		dev_warn(&hdev->pdev->dev,
479 			 "vector(vector_id %d) has been freed.\n", vector_id);
480 		return;
481 	}
482 
483 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
484 	hdev->num_msi_left += 1;
485 	hdev->num_msi_used -= 1;
486 }
487 
488 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
489 			      struct hnae3_vector_info *vector_info)
490 {
491 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
492 	struct hnae3_vector_info *vector = vector_info;
493 	int alloc = 0;
494 	int i, j;
495 
496 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
497 	vector_num = min(hdev->num_msi_left, vector_num);
498 
499 	for (j = 0; j < vector_num; j++) {
500 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
501 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
502 				vector->vector = pci_irq_vector(hdev->pdev, i);
503 				vector->io_addr = hdev->hw.hw.io_base +
504 					HCLGEVF_VECTOR_REG_BASE +
505 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
506 				hdev->vector_status[i] = 0;
507 				hdev->vector_irq[i] = vector->vector;
508 
509 				vector++;
510 				alloc++;
511 
512 				break;
513 			}
514 		}
515 	}
516 	hdev->num_msi_left -= alloc;
517 	hdev->num_msi_used += alloc;
518 
519 	return alloc;
520 }
521 
522 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
523 {
524 	int i;
525 
526 	for (i = 0; i < hdev->num_msi; i++)
527 		if (vector == hdev->vector_irq[i])
528 			return i;
529 
530 	return -EINVAL;
531 }
532 
533 /* for revision 0x20, vf shared the same rss config with pf */
534 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
535 {
536 #define HCLGEVF_RSS_MBX_RESP_LEN	8
537 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
538 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
539 	struct hclge_vf_to_pf_msg send_msg;
540 	u16 msg_num, hash_key_index;
541 	u8 index;
542 	int ret;
543 
544 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
545 	msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
546 			HCLGEVF_RSS_MBX_RESP_LEN;
547 	for (index = 0; index < msg_num; index++) {
548 		send_msg.data[0] = index;
549 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
550 					   HCLGEVF_RSS_MBX_RESP_LEN);
551 		if (ret) {
552 			dev_err(&hdev->pdev->dev,
553 				"VF get rss hash key from PF failed, ret=%d",
554 				ret);
555 			return ret;
556 		}
557 
558 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
559 		if (index == msg_num - 1)
560 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
561 			       &resp_msg[0],
562 			       HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
563 		else
564 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
565 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
566 	}
567 
568 	return 0;
569 }
570 
571 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
572 			   u8 *hfunc)
573 {
574 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
575 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
576 	int ret;
577 
578 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
579 		hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
580 	} else {
581 		if (hfunc)
582 			*hfunc = ETH_RSS_HASH_TOP;
583 		if (key) {
584 			ret = hclgevf_get_rss_hash_key(hdev);
585 			if (ret)
586 				return ret;
587 			memcpy(key, rss_cfg->rss_hash_key,
588 			       HCLGE_COMM_RSS_KEY_SIZE);
589 		}
590 	}
591 
592 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
593 				     hdev->ae_dev->dev_specs.rss_ind_tbl_size);
594 
595 	return 0;
596 }
597 
598 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
599 			   const u8 *key, const u8 hfunc)
600 {
601 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
602 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
603 	int ret, i;
604 
605 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
606 		ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
607 						  hfunc);
608 		if (ret)
609 			return ret;
610 	}
611 
612 	/* update the shadow RSS table with user specified qids */
613 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
614 		rss_cfg->rss_indirection_tbl[i] = indir[i];
615 
616 	/* update the hardware */
617 	return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
618 					      rss_cfg->rss_indirection_tbl);
619 }
620 
621 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
622 				 struct ethtool_rxnfc *nfc)
623 {
624 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
625 	int ret;
626 
627 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
628 		return -EOPNOTSUPP;
629 
630 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
631 				       &hdev->rss_cfg, nfc);
632 	if (ret)
633 		dev_err(&hdev->pdev->dev,
634 		"failed to set rss tuple, ret = %d.\n", ret);
635 
636 	return ret;
637 }
638 
639 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
640 				 struct ethtool_rxnfc *nfc)
641 {
642 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
643 	u8 tuple_sets;
644 	int ret;
645 
646 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
647 		return -EOPNOTSUPP;
648 
649 	nfc->data = 0;
650 
651 	ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
652 				       &tuple_sets);
653 	if (ret || !tuple_sets)
654 		return ret;
655 
656 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
657 
658 	return 0;
659 }
660 
661 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
662 {
663 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
664 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
665 
666 	return rss_cfg->rss_size;
667 }
668 
669 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
670 				       int vector_id,
671 				       struct hnae3_ring_chain_node *ring_chain)
672 {
673 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
674 	struct hclge_vf_to_pf_msg send_msg;
675 	struct hnae3_ring_chain_node *node;
676 	int status;
677 	int i = 0;
678 
679 	memset(&send_msg, 0, sizeof(send_msg));
680 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
681 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
682 	send_msg.vector_id = vector_id;
683 
684 	for (node = ring_chain; node; node = node->next) {
685 		send_msg.param[i].ring_type =
686 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
687 
688 		send_msg.param[i].tqp_index = node->tqp_index;
689 		send_msg.param[i].int_gl_index =
690 					hnae3_get_field(node->int_gl_idx,
691 							HNAE3_RING_GL_IDX_M,
692 							HNAE3_RING_GL_IDX_S);
693 
694 		i++;
695 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
696 			send_msg.ring_num = i;
697 
698 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
699 						      NULL, 0);
700 			if (status) {
701 				dev_err(&hdev->pdev->dev,
702 					"Map TQP fail, status is %d.\n",
703 					status);
704 				return status;
705 			}
706 			i = 0;
707 		}
708 	}
709 
710 	return 0;
711 }
712 
713 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
714 				      struct hnae3_ring_chain_node *ring_chain)
715 {
716 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
717 	int vector_id;
718 
719 	vector_id = hclgevf_get_vector_index(hdev, vector);
720 	if (vector_id < 0) {
721 		dev_err(&handle->pdev->dev,
722 			"Get vector index fail. ret =%d\n", vector_id);
723 		return vector_id;
724 	}
725 
726 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
727 }
728 
729 static int hclgevf_unmap_ring_from_vector(
730 				struct hnae3_handle *handle,
731 				int vector,
732 				struct hnae3_ring_chain_node *ring_chain)
733 {
734 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
735 	int ret, vector_id;
736 
737 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
738 		return 0;
739 
740 	vector_id = hclgevf_get_vector_index(hdev, vector);
741 	if (vector_id < 0) {
742 		dev_err(&handle->pdev->dev,
743 			"Get vector index fail. ret =%d\n", vector_id);
744 		return vector_id;
745 	}
746 
747 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
748 	if (ret)
749 		dev_err(&handle->pdev->dev,
750 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
751 			vector_id,
752 			ret);
753 
754 	return ret;
755 }
756 
757 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
758 {
759 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
760 	int vector_id;
761 
762 	vector_id = hclgevf_get_vector_index(hdev, vector);
763 	if (vector_id < 0) {
764 		dev_err(&handle->pdev->dev,
765 			"hclgevf_put_vector get vector index fail. ret =%d\n",
766 			vector_id);
767 		return vector_id;
768 	}
769 
770 	hclgevf_free_vector(hdev, vector_id);
771 
772 	return 0;
773 }
774 
775 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
776 					bool en_uc_pmc, bool en_mc_pmc,
777 					bool en_bc_pmc)
778 {
779 	struct hnae3_handle *handle = &hdev->nic;
780 	struct hclge_vf_to_pf_msg send_msg;
781 	int ret;
782 
783 	memset(&send_msg, 0, sizeof(send_msg));
784 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
785 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
786 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
787 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
788 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
789 					     &handle->priv_flags) ? 1 : 0;
790 
791 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
792 	if (ret)
793 		dev_err(&hdev->pdev->dev,
794 			"Set promisc mode fail, status is %d.\n", ret);
795 
796 	return ret;
797 }
798 
799 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
800 				    bool en_mc_pmc)
801 {
802 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
803 	bool en_bc_pmc;
804 
805 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
806 
807 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
808 					    en_bc_pmc);
809 }
810 
811 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
812 {
813 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
814 
815 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
816 	hclgevf_task_schedule(hdev, 0);
817 }
818 
819 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
820 {
821 	struct hnae3_handle *handle = &hdev->nic;
822 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
823 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
824 	int ret;
825 
826 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
827 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
828 		if (!ret)
829 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
830 	}
831 }
832 
833 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
834 				       u16 stream_id, bool enable)
835 {
836 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
837 	struct hclge_desc desc;
838 
839 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
840 
841 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
842 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
843 	req->stream_id = cpu_to_le16(stream_id);
844 	if (enable)
845 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
846 
847 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
848 }
849 
850 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
851 {
852 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
853 	int ret;
854 	u16 i;
855 
856 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
857 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
858 		if (ret)
859 			return ret;
860 	}
861 
862 	return 0;
863 }
864 
865 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
866 {
867 	struct hclge_vf_to_pf_msg send_msg;
868 	u8 host_mac[ETH_ALEN];
869 	int status;
870 
871 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
872 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
873 				      ETH_ALEN);
874 	if (status) {
875 		dev_err(&hdev->pdev->dev,
876 			"fail to get VF MAC from host %d", status);
877 		return status;
878 	}
879 
880 	ether_addr_copy(p, host_mac);
881 
882 	return 0;
883 }
884 
885 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
886 {
887 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
888 	u8 host_mac_addr[ETH_ALEN];
889 
890 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
891 		return;
892 
893 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
894 	if (hdev->has_pf_mac)
895 		ether_addr_copy(p, host_mac_addr);
896 	else
897 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
898 }
899 
900 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
901 				bool is_first)
902 {
903 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
904 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
905 	struct hclge_vf_to_pf_msg send_msg;
906 	u8 *new_mac_addr = (u8 *)p;
907 	int status;
908 
909 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
910 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
911 	ether_addr_copy(send_msg.data, new_mac_addr);
912 	if (is_first && !hdev->has_pf_mac)
913 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
914 	else
915 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
916 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
917 	if (!status)
918 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
919 
920 	return status;
921 }
922 
923 static struct hclgevf_mac_addr_node *
924 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
925 {
926 	struct hclgevf_mac_addr_node *mac_node, *tmp;
927 
928 	list_for_each_entry_safe(mac_node, tmp, list, node)
929 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
930 			return mac_node;
931 
932 	return NULL;
933 }
934 
935 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
936 				    enum HCLGEVF_MAC_NODE_STATE state)
937 {
938 	switch (state) {
939 	/* from set_rx_mode or tmp_add_list */
940 	case HCLGEVF_MAC_TO_ADD:
941 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
942 			mac_node->state = HCLGEVF_MAC_ACTIVE;
943 		break;
944 	/* only from set_rx_mode */
945 	case HCLGEVF_MAC_TO_DEL:
946 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
947 			list_del(&mac_node->node);
948 			kfree(mac_node);
949 		} else {
950 			mac_node->state = HCLGEVF_MAC_TO_DEL;
951 		}
952 		break;
953 	/* only from tmp_add_list, the mac_node->state won't be
954 	 * HCLGEVF_MAC_ACTIVE
955 	 */
956 	case HCLGEVF_MAC_ACTIVE:
957 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
958 			mac_node->state = HCLGEVF_MAC_ACTIVE;
959 		break;
960 	}
961 }
962 
963 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
964 				   enum HCLGEVF_MAC_NODE_STATE state,
965 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
966 				   const unsigned char *addr)
967 {
968 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
969 	struct hclgevf_mac_addr_node *mac_node;
970 	struct list_head *list;
971 
972 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
973 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
974 
975 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
976 
977 	/* if the mac addr is already in the mac list, no need to add a new
978 	 * one into it, just check the mac addr state, convert it to a new
979 	 * new state, or just remove it, or do nothing.
980 	 */
981 	mac_node = hclgevf_find_mac_node(list, addr);
982 	if (mac_node) {
983 		hclgevf_update_mac_node(mac_node, state);
984 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
985 		return 0;
986 	}
987 	/* if this address is never added, unnecessary to delete */
988 	if (state == HCLGEVF_MAC_TO_DEL) {
989 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
990 		return -ENOENT;
991 	}
992 
993 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
994 	if (!mac_node) {
995 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
996 		return -ENOMEM;
997 	}
998 
999 	mac_node->state = state;
1000 	ether_addr_copy(mac_node->mac_addr, addr);
1001 	list_add_tail(&mac_node->node, list);
1002 
1003 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1004 	return 0;
1005 }
1006 
1007 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1008 			       const unsigned char *addr)
1009 {
1010 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1011 				       HCLGEVF_MAC_ADDR_UC, addr);
1012 }
1013 
1014 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1015 			      const unsigned char *addr)
1016 {
1017 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1018 				       HCLGEVF_MAC_ADDR_UC, addr);
1019 }
1020 
1021 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1022 			       const unsigned char *addr)
1023 {
1024 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1025 				       HCLGEVF_MAC_ADDR_MC, addr);
1026 }
1027 
1028 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1029 			      const unsigned char *addr)
1030 {
1031 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1032 				       HCLGEVF_MAC_ADDR_MC, addr);
1033 }
1034 
1035 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1036 				    struct hclgevf_mac_addr_node *mac_node,
1037 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1038 {
1039 	struct hclge_vf_to_pf_msg send_msg;
1040 	u8 code, subcode;
1041 
1042 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1043 		code = HCLGE_MBX_SET_UNICAST;
1044 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1045 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1046 		else
1047 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1048 	} else {
1049 		code = HCLGE_MBX_SET_MULTICAST;
1050 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1051 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1052 		else
1053 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1054 	}
1055 
1056 	hclgevf_build_send_msg(&send_msg, code, subcode);
1057 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1058 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1059 }
1060 
1061 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1062 				    struct list_head *list,
1063 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1064 {
1065 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1066 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1067 	int ret;
1068 
1069 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1070 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1071 		if  (ret) {
1072 			hnae3_format_mac_addr(format_mac_addr,
1073 					      mac_node->mac_addr);
1074 			dev_err(&hdev->pdev->dev,
1075 				"failed to configure mac %s, state = %d, ret = %d\n",
1076 				format_mac_addr, mac_node->state, ret);
1077 			return;
1078 		}
1079 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1080 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1081 		} else {
1082 			list_del(&mac_node->node);
1083 			kfree(mac_node);
1084 		}
1085 	}
1086 }
1087 
1088 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1089 				       struct list_head *mac_list)
1090 {
1091 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1092 
1093 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1094 		/* if the mac address from tmp_add_list is not in the
1095 		 * uc/mc_mac_list, it means have received a TO_DEL request
1096 		 * during the time window of sending mac config request to PF
1097 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1098 		 * then it will be removed at next time. If is TO_ADD, it means
1099 		 * send TO_ADD request failed, so just remove the mac node.
1100 		 */
1101 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1102 		if (new_node) {
1103 			hclgevf_update_mac_node(new_node, mac_node->state);
1104 			list_del(&mac_node->node);
1105 			kfree(mac_node);
1106 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1107 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1108 			list_move_tail(&mac_node->node, mac_list);
1109 		} else {
1110 			list_del(&mac_node->node);
1111 			kfree(mac_node);
1112 		}
1113 	}
1114 }
1115 
1116 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1117 				       struct list_head *mac_list)
1118 {
1119 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1120 
1121 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1122 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1123 		if (new_node) {
1124 			/* If the mac addr is exist in the mac list, it means
1125 			 * received a new request TO_ADD during the time window
1126 			 * of sending mac addr configurrequest to PF, so just
1127 			 * change the mac state to ACTIVE.
1128 			 */
1129 			new_node->state = HCLGEVF_MAC_ACTIVE;
1130 			list_del(&mac_node->node);
1131 			kfree(mac_node);
1132 		} else {
1133 			list_move_tail(&mac_node->node, mac_list);
1134 		}
1135 	}
1136 }
1137 
1138 static void hclgevf_clear_list(struct list_head *list)
1139 {
1140 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1141 
1142 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1143 		list_del(&mac_node->node);
1144 		kfree(mac_node);
1145 	}
1146 }
1147 
1148 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1149 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1150 {
1151 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1152 	struct list_head tmp_add_list, tmp_del_list;
1153 	struct list_head *list;
1154 
1155 	INIT_LIST_HEAD(&tmp_add_list);
1156 	INIT_LIST_HEAD(&tmp_del_list);
1157 
1158 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1159 	 * we can add/delete these mac addr outside the spin lock
1160 	 */
1161 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1162 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1163 
1164 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1165 
1166 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1167 		switch (mac_node->state) {
1168 		case HCLGEVF_MAC_TO_DEL:
1169 			list_move_tail(&mac_node->node, &tmp_del_list);
1170 			break;
1171 		case HCLGEVF_MAC_TO_ADD:
1172 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1173 			if (!new_node)
1174 				goto stop_traverse;
1175 
1176 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1177 			new_node->state = mac_node->state;
1178 			list_add_tail(&new_node->node, &tmp_add_list);
1179 			break;
1180 		default:
1181 			break;
1182 		}
1183 	}
1184 
1185 stop_traverse:
1186 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1187 
1188 	/* delete first, in order to get max mac table space for adding */
1189 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1190 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1191 
1192 	/* if some mac addresses were added/deleted fail, move back to the
1193 	 * mac_list, and retry at next time.
1194 	 */
1195 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1196 
1197 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1198 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1199 
1200 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1201 }
1202 
1203 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1204 {
1205 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1206 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1207 }
1208 
1209 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1210 {
1211 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1212 
1213 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1214 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1215 
1216 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1217 }
1218 
1219 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1220 {
1221 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1222 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1223 	struct hclge_vf_to_pf_msg send_msg;
1224 
1225 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1226 		return -EOPNOTSUPP;
1227 
1228 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1229 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1230 	send_msg.data[0] = enable ? 1 : 0;
1231 
1232 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1233 }
1234 
1235 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1236 				   __be16 proto, u16 vlan_id,
1237 				   bool is_kill)
1238 {
1239 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1240 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1241 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1242 
1243 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1244 	struct hclge_vf_to_pf_msg send_msg;
1245 	int ret;
1246 
1247 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1248 		return -EINVAL;
1249 
1250 	if (proto != htons(ETH_P_8021Q))
1251 		return -EPROTONOSUPPORT;
1252 
1253 	/* When device is resetting or reset failed, firmware is unable to
1254 	 * handle mailbox. Just record the vlan id, and remove it after
1255 	 * reset finished.
1256 	 */
1257 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1258 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1259 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1260 		return -EBUSY;
1261 	}
1262 
1263 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1264 			       HCLGE_MBX_VLAN_FILTER);
1265 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1266 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1267 	       sizeof(vlan_id));
1268 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1269 	       sizeof(proto));
1270 	/* when remove hw vlan filter failed, record the vlan id,
1271 	 * and try to remove it from hw later, to be consistence
1272 	 * with stack.
1273 	 */
1274 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1275 	if (is_kill && ret)
1276 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1277 
1278 	return ret;
1279 }
1280 
1281 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1282 {
1283 #define HCLGEVF_MAX_SYNC_COUNT	60
1284 	struct hnae3_handle *handle = &hdev->nic;
1285 	int ret, sync_cnt = 0;
1286 	u16 vlan_id;
1287 
1288 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1289 	while (vlan_id != VLAN_N_VID) {
1290 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1291 					      vlan_id, true);
1292 		if (ret)
1293 			return;
1294 
1295 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1296 		sync_cnt++;
1297 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1298 			return;
1299 
1300 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1301 	}
1302 }
1303 
1304 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1305 {
1306 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1307 	struct hclge_vf_to_pf_msg send_msg;
1308 
1309 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1310 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1311 	send_msg.data[0] = enable ? 1 : 0;
1312 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1313 }
1314 
1315 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1316 {
1317 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1318 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1319 	struct hclge_vf_to_pf_msg send_msg;
1320 	u8 return_status = 0;
1321 	int ret;
1322 	u16 i;
1323 
1324 	/* disable vf queue before send queue reset msg to PF */
1325 	ret = hclgevf_tqp_enable(handle, false);
1326 	if (ret) {
1327 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1328 			ret);
1329 		return ret;
1330 	}
1331 
1332 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1333 
1334 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1335 				   sizeof(return_status));
1336 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1337 		return ret;
1338 
1339 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1340 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1341 		memcpy(send_msg.data, &i, sizeof(i));
1342 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1343 		if (ret)
1344 			return ret;
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1351 {
1352 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1353 	struct hclge_vf_to_pf_msg send_msg;
1354 
1355 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1356 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1357 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1358 }
1359 
1360 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1361 				 enum hnae3_reset_notify_type type)
1362 {
1363 	struct hnae3_client *client = hdev->nic_client;
1364 	struct hnae3_handle *handle = &hdev->nic;
1365 	int ret;
1366 
1367 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1368 	    !client)
1369 		return 0;
1370 
1371 	if (!client->ops->reset_notify)
1372 		return -EOPNOTSUPP;
1373 
1374 	ret = client->ops->reset_notify(handle, type);
1375 	if (ret)
1376 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1377 			type, ret);
1378 
1379 	return ret;
1380 }
1381 
1382 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1383 				      enum hnae3_reset_notify_type type)
1384 {
1385 	struct hnae3_client *client = hdev->roce_client;
1386 	struct hnae3_handle *handle = &hdev->roce;
1387 	int ret;
1388 
1389 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1390 		return 0;
1391 
1392 	if (!client->ops->reset_notify)
1393 		return -EOPNOTSUPP;
1394 
1395 	ret = client->ops->reset_notify(handle, type);
1396 	if (ret)
1397 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1398 			type, ret);
1399 	return ret;
1400 }
1401 
1402 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1403 {
1404 #define HCLGEVF_RESET_WAIT_US	20000
1405 #define HCLGEVF_RESET_WAIT_CNT	2000
1406 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1407 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1408 
1409 	u32 val;
1410 	int ret;
1411 
1412 	if (hdev->reset_type == HNAE3_VF_RESET)
1413 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1414 					 HCLGEVF_VF_RST_ING, val,
1415 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1416 					 HCLGEVF_RESET_WAIT_US,
1417 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1418 	else
1419 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1420 					 HCLGEVF_RST_ING, val,
1421 					 !(val & HCLGEVF_RST_ING_BITS),
1422 					 HCLGEVF_RESET_WAIT_US,
1423 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1424 
1425 	/* hardware completion status should be available by this time */
1426 	if (ret) {
1427 		dev_err(&hdev->pdev->dev,
1428 			"couldn't get reset done status from h/w, timeout!\n");
1429 		return ret;
1430 	}
1431 
1432 	/* we will wait a bit more to let reset of the stack to complete. This
1433 	 * might happen in case reset assertion was made by PF. Yes, this also
1434 	 * means we might end up waiting bit more even for VF reset.
1435 	 */
1436 	msleep(5000);
1437 
1438 	return 0;
1439 }
1440 
1441 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1442 {
1443 	u32 reg_val;
1444 
1445 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1446 	if (enable)
1447 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1448 	else
1449 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1450 
1451 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1452 			  reg_val);
1453 }
1454 
1455 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1456 {
1457 	int ret;
1458 
1459 	/* uninitialize the nic client */
1460 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1461 	if (ret)
1462 		return ret;
1463 
1464 	/* re-initialize the hclge device */
1465 	ret = hclgevf_reset_hdev(hdev);
1466 	if (ret) {
1467 		dev_err(&hdev->pdev->dev,
1468 			"hclge device re-init failed, VF is disabled!\n");
1469 		return ret;
1470 	}
1471 
1472 	/* bring up the nic client again */
1473 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1474 	if (ret)
1475 		return ret;
1476 
1477 	/* clear handshake status with IMP */
1478 	hclgevf_reset_handshake(hdev, false);
1479 
1480 	/* bring up the nic to enable TX/RX again */
1481 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1482 }
1483 
1484 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1485 {
1486 #define HCLGEVF_RESET_SYNC_TIME 100
1487 
1488 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1489 		struct hclge_vf_to_pf_msg send_msg;
1490 		int ret;
1491 
1492 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1493 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1494 		if (ret) {
1495 			dev_err(&hdev->pdev->dev,
1496 				"failed to assert VF reset, ret = %d\n", ret);
1497 			return ret;
1498 		}
1499 		hdev->rst_stats.vf_func_rst_cnt++;
1500 	}
1501 
1502 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1503 	/* inform hardware that preparatory work is done */
1504 	msleep(HCLGEVF_RESET_SYNC_TIME);
1505 	hclgevf_reset_handshake(hdev, true);
1506 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1507 		 hdev->reset_type);
1508 
1509 	return 0;
1510 }
1511 
1512 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1513 {
1514 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1515 		 hdev->rst_stats.vf_func_rst_cnt);
1516 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1517 		 hdev->rst_stats.flr_rst_cnt);
1518 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1519 		 hdev->rst_stats.vf_rst_cnt);
1520 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1521 		 hdev->rst_stats.rst_done_cnt);
1522 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1523 		 hdev->rst_stats.hw_rst_done_cnt);
1524 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1525 		 hdev->rst_stats.rst_cnt);
1526 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1527 		 hdev->rst_stats.rst_fail_cnt);
1528 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1529 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1530 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1531 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1532 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1533 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1534 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1535 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1536 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1537 }
1538 
1539 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1540 {
1541 	/* recover handshake status with IMP when reset fail */
1542 	hclgevf_reset_handshake(hdev, true);
1543 	hdev->rst_stats.rst_fail_cnt++;
1544 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1545 		hdev->rst_stats.rst_fail_cnt);
1546 
1547 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1548 		set_bit(hdev->reset_type, &hdev->reset_pending);
1549 
1550 	if (hclgevf_is_reset_pending(hdev)) {
1551 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1552 		hclgevf_reset_task_schedule(hdev);
1553 	} else {
1554 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1555 		hclgevf_dump_rst_info(hdev);
1556 	}
1557 }
1558 
1559 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1560 {
1561 	int ret;
1562 
1563 	hdev->rst_stats.rst_cnt++;
1564 
1565 	/* perform reset of the stack & ae device for a client */
1566 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1567 	if (ret)
1568 		return ret;
1569 
1570 	rtnl_lock();
1571 	/* bring down the nic to stop any ongoing TX/RX */
1572 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1573 	rtnl_unlock();
1574 	if (ret)
1575 		return ret;
1576 
1577 	return hclgevf_reset_prepare_wait(hdev);
1578 }
1579 
1580 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1581 {
1582 	int ret;
1583 
1584 	hdev->rst_stats.hw_rst_done_cnt++;
1585 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1586 	if (ret)
1587 		return ret;
1588 
1589 	rtnl_lock();
1590 	/* now, re-initialize the nic client and ae device */
1591 	ret = hclgevf_reset_stack(hdev);
1592 	rtnl_unlock();
1593 	if (ret) {
1594 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1595 		return ret;
1596 	}
1597 
1598 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1599 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1600 	 * times
1601 	 */
1602 	if (ret &&
1603 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1604 		return ret;
1605 
1606 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1607 	if (ret)
1608 		return ret;
1609 
1610 	hdev->last_reset_time = jiffies;
1611 	hdev->rst_stats.rst_done_cnt++;
1612 	hdev->rst_stats.rst_fail_cnt = 0;
1613 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1614 
1615 	return 0;
1616 }
1617 
1618 static void hclgevf_reset(struct hclgevf_dev *hdev)
1619 {
1620 	if (hclgevf_reset_prepare(hdev))
1621 		goto err_reset;
1622 
1623 	/* check if VF could successfully fetch the hardware reset completion
1624 	 * status from the hardware
1625 	 */
1626 	if (hclgevf_reset_wait(hdev)) {
1627 		/* can't do much in this situation, will disable VF */
1628 		dev_err(&hdev->pdev->dev,
1629 			"failed to fetch H/W reset completion status\n");
1630 		goto err_reset;
1631 	}
1632 
1633 	if (hclgevf_reset_rebuild(hdev))
1634 		goto err_reset;
1635 
1636 	return;
1637 
1638 err_reset:
1639 	hclgevf_reset_err_handle(hdev);
1640 }
1641 
1642 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1643 						     unsigned long *addr)
1644 {
1645 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1646 
1647 	/* return the highest priority reset level amongst all */
1648 	if (test_bit(HNAE3_VF_RESET, addr)) {
1649 		rst_level = HNAE3_VF_RESET;
1650 		clear_bit(HNAE3_VF_RESET, addr);
1651 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1652 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1653 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1654 		rst_level = HNAE3_VF_FULL_RESET;
1655 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1656 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1657 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1658 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1659 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1660 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1661 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1662 		rst_level = HNAE3_VF_FUNC_RESET;
1663 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1664 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1665 		rst_level = HNAE3_FLR_RESET;
1666 		clear_bit(HNAE3_FLR_RESET, addr);
1667 	}
1668 
1669 	return rst_level;
1670 }
1671 
1672 static void hclgevf_reset_event(struct pci_dev *pdev,
1673 				struct hnae3_handle *handle)
1674 {
1675 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1676 	struct hclgevf_dev *hdev = ae_dev->priv;
1677 
1678 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1679 
1680 	if (hdev->default_reset_request)
1681 		hdev->reset_level =
1682 			hclgevf_get_reset_level(hdev,
1683 						&hdev->default_reset_request);
1684 	else
1685 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1686 
1687 	/* reset of this VF requested */
1688 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1689 	hclgevf_reset_task_schedule(hdev);
1690 
1691 	hdev->last_reset_time = jiffies;
1692 }
1693 
1694 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1695 					  enum hnae3_reset_type rst_type)
1696 {
1697 	struct hclgevf_dev *hdev = ae_dev->priv;
1698 
1699 	set_bit(rst_type, &hdev->default_reset_request);
1700 }
1701 
1702 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1703 {
1704 	writel(en ? 1 : 0, vector->addr);
1705 }
1706 
1707 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1708 					  enum hnae3_reset_type rst_type)
1709 {
1710 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
1711 #define HCLGEVF_RESET_RETRY_CNT		5
1712 
1713 	struct hclgevf_dev *hdev = ae_dev->priv;
1714 	int retry_cnt = 0;
1715 	int ret;
1716 
1717 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1718 		down(&hdev->reset_sem);
1719 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1720 		hdev->reset_type = rst_type;
1721 		ret = hclgevf_reset_prepare(hdev);
1722 		if (!ret && !hdev->reset_pending)
1723 			break;
1724 
1725 		dev_err(&hdev->pdev->dev,
1726 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1727 			ret, hdev->reset_pending, retry_cnt);
1728 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1729 		up(&hdev->reset_sem);
1730 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1731 	}
1732 
1733 	/* disable misc vector before reset done */
1734 	hclgevf_enable_vector(&hdev->misc_vector, false);
1735 
1736 	if (hdev->reset_type == HNAE3_FLR_RESET)
1737 		hdev->rst_stats.flr_rst_cnt++;
1738 }
1739 
1740 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1741 {
1742 	struct hclgevf_dev *hdev = ae_dev->priv;
1743 	int ret;
1744 
1745 	hclgevf_enable_vector(&hdev->misc_vector, true);
1746 
1747 	ret = hclgevf_reset_rebuild(hdev);
1748 	if (ret)
1749 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1750 			 ret);
1751 
1752 	hdev->reset_type = HNAE3_NONE_RESET;
1753 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1754 	up(&hdev->reset_sem);
1755 }
1756 
1757 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1758 {
1759 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1760 
1761 	return hdev->fw_version;
1762 }
1763 
1764 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1765 {
1766 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1767 
1768 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1769 					    HCLGEVF_MISC_VECTOR_NUM);
1770 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1771 	/* vector status always valid for Vector 0 */
1772 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1773 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1774 
1775 	hdev->num_msi_left -= 1;
1776 	hdev->num_msi_used += 1;
1777 }
1778 
1779 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1780 {
1781 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1782 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1783 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1784 			      &hdev->state))
1785 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1786 }
1787 
1788 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1789 {
1790 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1791 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1792 			      &hdev->state))
1793 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1794 }
1795 
1796 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1797 				  unsigned long delay)
1798 {
1799 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1800 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1801 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1802 }
1803 
1804 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1805 {
1806 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1807 
1808 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1809 		return;
1810 
1811 	down(&hdev->reset_sem);
1812 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1813 
1814 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1815 			       &hdev->reset_state)) {
1816 		/* PF has intimated that it is about to reset the hardware.
1817 		 * We now have to poll & check if hardware has actually
1818 		 * completed the reset sequence. On hardware reset completion,
1819 		 * VF needs to reset the client and ae device.
1820 		 */
1821 		hdev->reset_attempts = 0;
1822 
1823 		hdev->last_reset_time = jiffies;
1824 		hdev->reset_type =
1825 			hclgevf_get_reset_level(hdev, &hdev->reset_pending);
1826 		if (hdev->reset_type != HNAE3_NONE_RESET)
1827 			hclgevf_reset(hdev);
1828 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1829 				      &hdev->reset_state)) {
1830 		/* we could be here when either of below happens:
1831 		 * 1. reset was initiated due to watchdog timeout caused by
1832 		 *    a. IMP was earlier reset and our TX got choked down and
1833 		 *       which resulted in watchdog reacting and inducing VF
1834 		 *       reset. This also means our cmdq would be unreliable.
1835 		 *    b. problem in TX due to other lower layer(example link
1836 		 *       layer not functioning properly etc.)
1837 		 * 2. VF reset might have been initiated due to some config
1838 		 *    change.
1839 		 *
1840 		 * NOTE: Theres no clear way to detect above cases than to react
1841 		 * to the response of PF for this reset request. PF will ack the
1842 		 * 1b and 2. cases but we will not get any intimation about 1a
1843 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1844 		 * communication between PF and VF would be broken.
1845 		 *
1846 		 * if we are never geting into pending state it means either:
1847 		 * 1. PF is not receiving our request which could be due to IMP
1848 		 *    reset
1849 		 * 2. PF is screwed
1850 		 * We cannot do much for 2. but to check first we can try reset
1851 		 * our PCIe + stack and see if it alleviates the problem.
1852 		 */
1853 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1854 			/* prepare for full reset of stack + pcie interface */
1855 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1856 
1857 			/* "defer" schedule the reset task again */
1858 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1859 		} else {
1860 			hdev->reset_attempts++;
1861 
1862 			set_bit(hdev->reset_level, &hdev->reset_pending);
1863 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1864 		}
1865 		hclgevf_reset_task_schedule(hdev);
1866 	}
1867 
1868 	hdev->reset_type = HNAE3_NONE_RESET;
1869 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1870 	up(&hdev->reset_sem);
1871 }
1872 
1873 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1874 {
1875 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1876 		return;
1877 
1878 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1879 		return;
1880 
1881 	hclgevf_mbx_async_handler(hdev);
1882 
1883 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1884 }
1885 
1886 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1887 {
1888 	struct hclge_vf_to_pf_msg send_msg;
1889 	int ret;
1890 
1891 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1892 		return;
1893 
1894 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1895 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1896 	if (ret)
1897 		dev_err(&hdev->pdev->dev,
1898 			"VF sends keep alive cmd failed(=%d)\n", ret);
1899 }
1900 
1901 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1902 {
1903 	unsigned long delta = round_jiffies_relative(HZ);
1904 	struct hnae3_handle *handle = &hdev->nic;
1905 
1906 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1907 		return;
1908 
1909 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1910 		delta = jiffies - hdev->last_serv_processed;
1911 
1912 		if (delta < round_jiffies_relative(HZ)) {
1913 			delta = round_jiffies_relative(HZ) - delta;
1914 			goto out;
1915 		}
1916 	}
1917 
1918 	hdev->serv_processed_cnt++;
1919 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1920 		hclgevf_keep_alive(hdev);
1921 
1922 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1923 		hdev->last_serv_processed = jiffies;
1924 		goto out;
1925 	}
1926 
1927 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1928 		hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1929 
1930 	/* VF does not need to request link status when this bit is set, because
1931 	 * PF will push its link status to VFs when link status changed.
1932 	 */
1933 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1934 		hclgevf_request_link_info(hdev);
1935 
1936 	hclgevf_update_link_mode(hdev);
1937 
1938 	hclgevf_sync_vlan_filter(hdev);
1939 
1940 	hclgevf_sync_mac_table(hdev);
1941 
1942 	hclgevf_sync_promisc_mode(hdev);
1943 
1944 	hdev->last_serv_processed = jiffies;
1945 
1946 out:
1947 	hclgevf_task_schedule(hdev, delta);
1948 }
1949 
1950 static void hclgevf_service_task(struct work_struct *work)
1951 {
1952 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1953 						service_task.work);
1954 
1955 	hclgevf_reset_service_task(hdev);
1956 	hclgevf_mailbox_service_task(hdev);
1957 	hclgevf_periodic_service_task(hdev);
1958 
1959 	/* Handle reset and mbx again in case periodical task delays the
1960 	 * handling by calling hclgevf_task_schedule() in
1961 	 * hclgevf_periodic_service_task()
1962 	 */
1963 	hclgevf_reset_service_task(hdev);
1964 	hclgevf_mailbox_service_task(hdev);
1965 }
1966 
1967 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1968 {
1969 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1970 }
1971 
1972 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1973 						      u32 *clearval)
1974 {
1975 	u32 val, cmdq_stat_reg, rst_ing_reg;
1976 
1977 	/* fetch the events from their corresponding regs */
1978 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1979 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1980 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1981 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1982 		dev_info(&hdev->pdev->dev,
1983 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1984 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1985 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1986 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1987 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1988 		hdev->rst_stats.vf_rst_cnt++;
1989 		/* set up VF hardware reset status, its PF will clear
1990 		 * this status when PF has initialized done.
1991 		 */
1992 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1993 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1994 				  val | HCLGEVF_VF_RST_ING_BIT);
1995 		return HCLGEVF_VECTOR0_EVENT_RST;
1996 	}
1997 
1998 	/* check for vector0 mailbox(=CMDQ RX) event source */
1999 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2000 		/* for revision 0x21, clearing interrupt is writing bit 0
2001 		 * to the clear register, writing bit 1 means to keep the
2002 		 * old value.
2003 		 * for revision 0x20, the clear register is a read & write
2004 		 * register, so we should just write 0 to the bit we are
2005 		 * handling, and keep other bits as cmdq_stat_reg.
2006 		 */
2007 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2008 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2009 		else
2010 			*clearval = cmdq_stat_reg &
2011 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2012 
2013 		return HCLGEVF_VECTOR0_EVENT_MBX;
2014 	}
2015 
2016 	/* print other vector0 event source */
2017 	dev_info(&hdev->pdev->dev,
2018 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2019 		 cmdq_stat_reg);
2020 
2021 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2022 }
2023 
2024 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2025 {
2026 	enum hclgevf_evt_cause event_cause;
2027 	struct hclgevf_dev *hdev = data;
2028 	u32 clearval;
2029 
2030 	hclgevf_enable_vector(&hdev->misc_vector, false);
2031 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2032 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2033 		hclgevf_clear_event_cause(hdev, clearval);
2034 
2035 	switch (event_cause) {
2036 	case HCLGEVF_VECTOR0_EVENT_RST:
2037 		hclgevf_reset_task_schedule(hdev);
2038 		break;
2039 	case HCLGEVF_VECTOR0_EVENT_MBX:
2040 		hclgevf_mbx_handler(hdev);
2041 		break;
2042 	default:
2043 		break;
2044 	}
2045 
2046 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2047 		hclgevf_enable_vector(&hdev->misc_vector, true);
2048 
2049 	return IRQ_HANDLED;
2050 }
2051 
2052 static int hclgevf_configure(struct hclgevf_dev *hdev)
2053 {
2054 	int ret;
2055 
2056 	hdev->gro_en = true;
2057 
2058 	ret = hclgevf_get_basic_info(hdev);
2059 	if (ret)
2060 		return ret;
2061 
2062 	/* get current port based vlan state from PF */
2063 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2064 	if (ret)
2065 		return ret;
2066 
2067 	/* get queue configuration from PF */
2068 	ret = hclgevf_get_queue_info(hdev);
2069 	if (ret)
2070 		return ret;
2071 
2072 	/* get queue depth info from PF */
2073 	ret = hclgevf_get_queue_depth(hdev);
2074 	if (ret)
2075 		return ret;
2076 
2077 	return hclgevf_get_pf_media_type(hdev);
2078 }
2079 
2080 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2081 {
2082 	struct pci_dev *pdev = ae_dev->pdev;
2083 	struct hclgevf_dev *hdev;
2084 
2085 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2086 	if (!hdev)
2087 		return -ENOMEM;
2088 
2089 	hdev->pdev = pdev;
2090 	hdev->ae_dev = ae_dev;
2091 	ae_dev->priv = hdev;
2092 
2093 	return 0;
2094 }
2095 
2096 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2097 {
2098 	struct hnae3_handle *roce = &hdev->roce;
2099 	struct hnae3_handle *nic = &hdev->nic;
2100 
2101 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2102 
2103 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2104 	    hdev->num_msi_left == 0)
2105 		return -EINVAL;
2106 
2107 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2108 
2109 	roce->rinfo.netdev = nic->kinfo.netdev;
2110 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2111 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2112 
2113 	roce->pdev = nic->pdev;
2114 	roce->ae_algo = nic->ae_algo;
2115 	roce->numa_node_mask = nic->numa_node_mask;
2116 
2117 	return 0;
2118 }
2119 
2120 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2121 {
2122 	struct hclgevf_cfg_gro_status_cmd *req;
2123 	struct hclge_desc desc;
2124 	int ret;
2125 
2126 	if (!hnae3_dev_gro_supported(hdev))
2127 		return 0;
2128 
2129 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2130 				     false);
2131 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2132 
2133 	req->gro_en = hdev->gro_en ? 1 : 0;
2134 
2135 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2136 	if (ret)
2137 		dev_err(&hdev->pdev->dev,
2138 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2139 
2140 	return ret;
2141 }
2142 
2143 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2144 {
2145 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2146 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2147 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2148 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2149 	int ret;
2150 
2151 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2152 		ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2153 						  rss_cfg->rss_algo,
2154 						  rss_cfg->rss_hash_key);
2155 		if (ret)
2156 			return ret;
2157 
2158 		ret = hclge_comm_set_rss_input_tuple(&hdev->nic, &hdev->hw.hw,
2159 						     false, rss_cfg);
2160 		if (ret)
2161 			return ret;
2162 	}
2163 
2164 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2165 					     rss_cfg->rss_indirection_tbl);
2166 	if (ret)
2167 		return ret;
2168 
2169 	hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2170 				   tc_offset, tc_valid, tc_size);
2171 
2172 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2173 					  tc_valid, tc_size);
2174 }
2175 
2176 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2177 {
2178 	struct hnae3_handle *nic = &hdev->nic;
2179 	int ret;
2180 
2181 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2182 	if (ret) {
2183 		dev_err(&hdev->pdev->dev,
2184 			"failed to enable rx vlan offload, ret = %d\n", ret);
2185 		return ret;
2186 	}
2187 
2188 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2189 				       false);
2190 }
2191 
2192 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2193 {
2194 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2195 
2196 	unsigned long last = hdev->serv_processed_cnt;
2197 	int i = 0;
2198 
2199 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2200 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2201 	       last == hdev->serv_processed_cnt)
2202 		usleep_range(1, 1);
2203 }
2204 
2205 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2206 {
2207 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2208 
2209 	if (enable) {
2210 		hclgevf_task_schedule(hdev, 0);
2211 	} else {
2212 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2213 
2214 		/* flush memory to make sure DOWN is seen by service task */
2215 		smp_mb__before_atomic();
2216 		hclgevf_flush_link_update(hdev);
2217 	}
2218 }
2219 
2220 static int hclgevf_ae_start(struct hnae3_handle *handle)
2221 {
2222 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2223 
2224 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2225 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2226 
2227 	hclge_comm_reset_tqp_stats(handle);
2228 
2229 	hclgevf_request_link_info(hdev);
2230 
2231 	hclgevf_update_link_mode(hdev);
2232 
2233 	return 0;
2234 }
2235 
2236 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2237 {
2238 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2239 
2240 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2241 
2242 	if (hdev->reset_type != HNAE3_VF_RESET)
2243 		hclgevf_reset_tqp(handle);
2244 
2245 	hclge_comm_reset_tqp_stats(handle);
2246 	hclgevf_update_link_status(hdev, 0);
2247 }
2248 
2249 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2250 {
2251 #define HCLGEVF_STATE_ALIVE	1
2252 #define HCLGEVF_STATE_NOT_ALIVE	0
2253 
2254 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2255 	struct hclge_vf_to_pf_msg send_msg;
2256 
2257 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2258 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2259 				HCLGEVF_STATE_NOT_ALIVE;
2260 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2261 }
2262 
2263 static int hclgevf_client_start(struct hnae3_handle *handle)
2264 {
2265 	return hclgevf_set_alive(handle, true);
2266 }
2267 
2268 static void hclgevf_client_stop(struct hnae3_handle *handle)
2269 {
2270 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2271 	int ret;
2272 
2273 	ret = hclgevf_set_alive(handle, false);
2274 	if (ret)
2275 		dev_warn(&hdev->pdev->dev,
2276 			 "%s failed %d\n", __func__, ret);
2277 }
2278 
2279 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2280 {
2281 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2282 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2283 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2284 
2285 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2286 
2287 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2288 	sema_init(&hdev->reset_sem, 1);
2289 
2290 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2291 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2292 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2293 
2294 	/* bring the device down */
2295 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2296 }
2297 
2298 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2299 {
2300 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2301 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2302 
2303 	if (hdev->service_task.work.func)
2304 		cancel_delayed_work_sync(&hdev->service_task);
2305 
2306 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2307 }
2308 
2309 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2310 {
2311 	struct pci_dev *pdev = hdev->pdev;
2312 	int vectors;
2313 	int i;
2314 
2315 	if (hnae3_dev_roce_supported(hdev))
2316 		vectors = pci_alloc_irq_vectors(pdev,
2317 						hdev->roce_base_msix_offset + 1,
2318 						hdev->num_msi,
2319 						PCI_IRQ_MSIX);
2320 	else
2321 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2322 						hdev->num_msi,
2323 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2324 
2325 	if (vectors < 0) {
2326 		dev_err(&pdev->dev,
2327 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2328 			vectors);
2329 		return vectors;
2330 	}
2331 	if (vectors < hdev->num_msi)
2332 		dev_warn(&hdev->pdev->dev,
2333 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2334 			 hdev->num_msi, vectors);
2335 
2336 	hdev->num_msi = vectors;
2337 	hdev->num_msi_left = vectors;
2338 
2339 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2340 					   sizeof(u16), GFP_KERNEL);
2341 	if (!hdev->vector_status) {
2342 		pci_free_irq_vectors(pdev);
2343 		return -ENOMEM;
2344 	}
2345 
2346 	for (i = 0; i < hdev->num_msi; i++)
2347 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2348 
2349 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2350 					sizeof(int), GFP_KERNEL);
2351 	if (!hdev->vector_irq) {
2352 		devm_kfree(&pdev->dev, hdev->vector_status);
2353 		pci_free_irq_vectors(pdev);
2354 		return -ENOMEM;
2355 	}
2356 
2357 	return 0;
2358 }
2359 
2360 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2361 {
2362 	struct pci_dev *pdev = hdev->pdev;
2363 
2364 	devm_kfree(&pdev->dev, hdev->vector_status);
2365 	devm_kfree(&pdev->dev, hdev->vector_irq);
2366 	pci_free_irq_vectors(pdev);
2367 }
2368 
2369 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2370 {
2371 	int ret;
2372 
2373 	hclgevf_get_misc_vector(hdev);
2374 
2375 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2376 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2377 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2378 			  0, hdev->misc_vector.name, hdev);
2379 	if (ret) {
2380 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2381 			hdev->misc_vector.vector_irq);
2382 		return ret;
2383 	}
2384 
2385 	hclgevf_clear_event_cause(hdev, 0);
2386 
2387 	/* enable misc. vector(vector 0) */
2388 	hclgevf_enable_vector(&hdev->misc_vector, true);
2389 
2390 	return ret;
2391 }
2392 
2393 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2394 {
2395 	/* disable misc vector(vector 0) */
2396 	hclgevf_enable_vector(&hdev->misc_vector, false);
2397 	synchronize_irq(hdev->misc_vector.vector_irq);
2398 	free_irq(hdev->misc_vector.vector_irq, hdev);
2399 	hclgevf_free_vector(hdev, 0);
2400 }
2401 
2402 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2403 {
2404 	struct device *dev = &hdev->pdev->dev;
2405 
2406 	dev_info(dev, "VF info begin:\n");
2407 
2408 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2409 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2410 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2411 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2412 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2413 	dev_info(dev, "PF media type of this VF: %u\n",
2414 		 hdev->hw.mac.media_type);
2415 
2416 	dev_info(dev, "VF info end.\n");
2417 }
2418 
2419 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2420 					    struct hnae3_client *client)
2421 {
2422 	struct hclgevf_dev *hdev = ae_dev->priv;
2423 	int rst_cnt = hdev->rst_stats.rst_cnt;
2424 	int ret;
2425 
2426 	ret = client->ops->init_instance(&hdev->nic);
2427 	if (ret)
2428 		return ret;
2429 
2430 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2431 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2432 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2433 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2434 
2435 		client->ops->uninit_instance(&hdev->nic, 0);
2436 		return -EBUSY;
2437 	}
2438 
2439 	hnae3_set_client_init_flag(client, ae_dev, 1);
2440 
2441 	if (netif_msg_drv(&hdev->nic))
2442 		hclgevf_info_show(hdev);
2443 
2444 	return 0;
2445 }
2446 
2447 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2448 					     struct hnae3_client *client)
2449 {
2450 	struct hclgevf_dev *hdev = ae_dev->priv;
2451 	int ret;
2452 
2453 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2454 	    !hdev->nic_client)
2455 		return 0;
2456 
2457 	ret = hclgevf_init_roce_base_info(hdev);
2458 	if (ret)
2459 		return ret;
2460 
2461 	ret = client->ops->init_instance(&hdev->roce);
2462 	if (ret)
2463 		return ret;
2464 
2465 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2466 	hnae3_set_client_init_flag(client, ae_dev, 1);
2467 
2468 	return 0;
2469 }
2470 
2471 static int hclgevf_init_client_instance(struct hnae3_client *client,
2472 					struct hnae3_ae_dev *ae_dev)
2473 {
2474 	struct hclgevf_dev *hdev = ae_dev->priv;
2475 	int ret;
2476 
2477 	switch (client->type) {
2478 	case HNAE3_CLIENT_KNIC:
2479 		hdev->nic_client = client;
2480 		hdev->nic.client = client;
2481 
2482 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2483 		if (ret)
2484 			goto clear_nic;
2485 
2486 		ret = hclgevf_init_roce_client_instance(ae_dev,
2487 							hdev->roce_client);
2488 		if (ret)
2489 			goto clear_roce;
2490 
2491 		break;
2492 	case HNAE3_CLIENT_ROCE:
2493 		if (hnae3_dev_roce_supported(hdev)) {
2494 			hdev->roce_client = client;
2495 			hdev->roce.client = client;
2496 		}
2497 
2498 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2499 		if (ret)
2500 			goto clear_roce;
2501 
2502 		break;
2503 	default:
2504 		return -EINVAL;
2505 	}
2506 
2507 	return 0;
2508 
2509 clear_nic:
2510 	hdev->nic_client = NULL;
2511 	hdev->nic.client = NULL;
2512 	return ret;
2513 clear_roce:
2514 	hdev->roce_client = NULL;
2515 	hdev->roce.client = NULL;
2516 	return ret;
2517 }
2518 
2519 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2520 					   struct hnae3_ae_dev *ae_dev)
2521 {
2522 	struct hclgevf_dev *hdev = ae_dev->priv;
2523 
2524 	/* un-init roce, if it exists */
2525 	if (hdev->roce_client) {
2526 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2527 			msleep(HCLGEVF_WAIT_RESET_DONE);
2528 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2529 
2530 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2531 		hdev->roce_client = NULL;
2532 		hdev->roce.client = NULL;
2533 	}
2534 
2535 	/* un-init nic/unic, if this was not called by roce client */
2536 	if (client->ops->uninit_instance && hdev->nic_client &&
2537 	    client->type != HNAE3_CLIENT_ROCE) {
2538 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2539 			msleep(HCLGEVF_WAIT_RESET_DONE);
2540 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2541 
2542 		client->ops->uninit_instance(&hdev->nic, 0);
2543 		hdev->nic_client = NULL;
2544 		hdev->nic.client = NULL;
2545 	}
2546 }
2547 
2548 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2549 {
2550 #define HCLGEVF_MEM_BAR		4
2551 
2552 	struct pci_dev *pdev = hdev->pdev;
2553 	struct hclgevf_hw *hw = &hdev->hw;
2554 
2555 	/* for device does not have device memory, return directly */
2556 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2557 		return 0;
2558 
2559 	hw->hw.mem_base =
2560 		devm_ioremap_wc(&pdev->dev,
2561 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2562 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2563 	if (!hw->hw.mem_base) {
2564 		dev_err(&pdev->dev, "failed to map device memory\n");
2565 		return -EFAULT;
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2572 {
2573 	struct pci_dev *pdev = hdev->pdev;
2574 	struct hclgevf_hw *hw;
2575 	int ret;
2576 
2577 	ret = pci_enable_device(pdev);
2578 	if (ret) {
2579 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2580 		return ret;
2581 	}
2582 
2583 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2584 	if (ret) {
2585 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2586 		goto err_disable_device;
2587 	}
2588 
2589 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2590 	if (ret) {
2591 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2592 		goto err_disable_device;
2593 	}
2594 
2595 	pci_set_master(pdev);
2596 	hw = &hdev->hw;
2597 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
2598 	if (!hw->hw.io_base) {
2599 		dev_err(&pdev->dev, "can't map configuration register space\n");
2600 		ret = -ENOMEM;
2601 		goto err_clr_master;
2602 	}
2603 
2604 	ret = hclgevf_dev_mem_map(hdev);
2605 	if (ret)
2606 		goto err_unmap_io_base;
2607 
2608 	return 0;
2609 
2610 err_unmap_io_base:
2611 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2612 err_clr_master:
2613 	pci_clear_master(pdev);
2614 	pci_release_regions(pdev);
2615 err_disable_device:
2616 	pci_disable_device(pdev);
2617 
2618 	return ret;
2619 }
2620 
2621 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2622 {
2623 	struct pci_dev *pdev = hdev->pdev;
2624 
2625 	if (hdev->hw.hw.mem_base)
2626 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2627 
2628 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2629 	pci_clear_master(pdev);
2630 	pci_release_regions(pdev);
2631 	pci_disable_device(pdev);
2632 }
2633 
2634 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2635 {
2636 	struct hclgevf_query_res_cmd *req;
2637 	struct hclge_desc desc;
2638 	int ret;
2639 
2640 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2641 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2642 	if (ret) {
2643 		dev_err(&hdev->pdev->dev,
2644 			"query vf resource failed, ret = %d.\n", ret);
2645 		return ret;
2646 	}
2647 
2648 	req = (struct hclgevf_query_res_cmd *)desc.data;
2649 
2650 	if (hnae3_dev_roce_supported(hdev)) {
2651 		hdev->roce_base_msix_offset =
2652 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2653 				HCLGEVF_MSIX_OFT_ROCEE_M,
2654 				HCLGEVF_MSIX_OFT_ROCEE_S);
2655 		hdev->num_roce_msix =
2656 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2657 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2658 
2659 		/* nic's msix numbers is always equals to the roce's. */
2660 		hdev->num_nic_msix = hdev->num_roce_msix;
2661 
2662 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2663 		 * are queued before Roce vectors. The offset is fixed to 64.
2664 		 */
2665 		hdev->num_msi = hdev->num_roce_msix +
2666 				hdev->roce_base_msix_offset;
2667 	} else {
2668 		hdev->num_msi =
2669 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2670 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2671 
2672 		hdev->num_nic_msix = hdev->num_msi;
2673 	}
2674 
2675 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2676 		dev_err(&hdev->pdev->dev,
2677 			"Just %u msi resources, not enough for vf(min:2).\n",
2678 			hdev->num_nic_msix);
2679 		return -EINVAL;
2680 	}
2681 
2682 	return 0;
2683 }
2684 
2685 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2686 {
2687 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
2688 
2689 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2690 
2691 	ae_dev->dev_specs.max_non_tso_bd_num =
2692 					HCLGEVF_MAX_NON_TSO_BD_NUM;
2693 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2694 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2695 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2696 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2697 }
2698 
2699 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2700 				    struct hclge_desc *desc)
2701 {
2702 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2703 	struct hclgevf_dev_specs_0_cmd *req0;
2704 	struct hclgevf_dev_specs_1_cmd *req1;
2705 
2706 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2707 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2708 
2709 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2710 	ae_dev->dev_specs.rss_ind_tbl_size =
2711 					le16_to_cpu(req0->rss_ind_tbl_size);
2712 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2713 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2714 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2715 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2716 }
2717 
2718 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2719 {
2720 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2721 
2722 	if (!dev_specs->max_non_tso_bd_num)
2723 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2724 	if (!dev_specs->rss_ind_tbl_size)
2725 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2726 	if (!dev_specs->rss_key_size)
2727 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2728 	if (!dev_specs->max_int_gl)
2729 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2730 	if (!dev_specs->max_frm_size)
2731 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2732 }
2733 
2734 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2735 {
2736 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2737 	int ret;
2738 	int i;
2739 
2740 	/* set default specifications as devices lower than version V3 do not
2741 	 * support querying specifications from firmware.
2742 	 */
2743 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2744 		hclgevf_set_default_dev_specs(hdev);
2745 		return 0;
2746 	}
2747 
2748 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2749 		hclgevf_cmd_setup_basic_desc(&desc[i],
2750 					     HCLGE_OPC_QUERY_DEV_SPECS, true);
2751 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2752 	}
2753 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2754 
2755 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2756 	if (ret)
2757 		return ret;
2758 
2759 	hclgevf_parse_dev_specs(hdev, desc);
2760 	hclgevf_check_dev_specs(hdev);
2761 
2762 	return 0;
2763 }
2764 
2765 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2766 {
2767 	struct pci_dev *pdev = hdev->pdev;
2768 	int ret = 0;
2769 
2770 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2771 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2772 		hclgevf_misc_irq_uninit(hdev);
2773 		hclgevf_uninit_msi(hdev);
2774 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2775 	}
2776 
2777 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2778 		pci_set_master(pdev);
2779 		ret = hclgevf_init_msi(hdev);
2780 		if (ret) {
2781 			dev_err(&pdev->dev,
2782 				"failed(%d) to init MSI/MSI-X\n", ret);
2783 			return ret;
2784 		}
2785 
2786 		ret = hclgevf_misc_irq_init(hdev);
2787 		if (ret) {
2788 			hclgevf_uninit_msi(hdev);
2789 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2790 				ret);
2791 			return ret;
2792 		}
2793 
2794 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2795 	}
2796 
2797 	return ret;
2798 }
2799 
2800 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2801 {
2802 	struct hclge_vf_to_pf_msg send_msg;
2803 
2804 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2805 			       HCLGE_MBX_VPORT_LIST_CLEAR);
2806 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2807 }
2808 
2809 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2810 {
2811 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2812 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2813 }
2814 
2815 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2816 {
2817 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2818 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2819 }
2820 
2821 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2822 {
2823 	struct pci_dev *pdev = hdev->pdev;
2824 	int ret;
2825 
2826 	ret = hclgevf_pci_reset(hdev);
2827 	if (ret) {
2828 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2829 		return ret;
2830 	}
2831 
2832 	hclgevf_arq_init(hdev);
2833 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2834 				  &hdev->fw_version, false,
2835 				  hdev->reset_pending);
2836 	if (ret) {
2837 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2838 		return ret;
2839 	}
2840 
2841 	ret = hclgevf_rss_init_hw(hdev);
2842 	if (ret) {
2843 		dev_err(&hdev->pdev->dev,
2844 			"failed(%d) to initialize RSS\n", ret);
2845 		return ret;
2846 	}
2847 
2848 	ret = hclgevf_config_gro(hdev);
2849 	if (ret)
2850 		return ret;
2851 
2852 	ret = hclgevf_init_vlan_config(hdev);
2853 	if (ret) {
2854 		dev_err(&hdev->pdev->dev,
2855 			"failed(%d) to initialize VLAN config\n", ret);
2856 		return ret;
2857 	}
2858 
2859 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2860 
2861 	hclgevf_init_rxd_adv_layout(hdev);
2862 
2863 	dev_info(&hdev->pdev->dev, "Reset done\n");
2864 
2865 	return 0;
2866 }
2867 
2868 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2869 {
2870 	struct pci_dev *pdev = hdev->pdev;
2871 	int ret;
2872 
2873 	ret = hclgevf_pci_init(hdev);
2874 	if (ret)
2875 		return ret;
2876 
2877 	ret = hclgevf_devlink_init(hdev);
2878 	if (ret)
2879 		goto err_devlink_init;
2880 
2881 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2882 	if (ret)
2883 		goto err_cmd_queue_init;
2884 
2885 	hclgevf_arq_init(hdev);
2886 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2887 				  &hdev->fw_version, false,
2888 				  hdev->reset_pending);
2889 	if (ret)
2890 		goto err_cmd_init;
2891 
2892 	/* Get vf resource */
2893 	ret = hclgevf_query_vf_resource(hdev);
2894 	if (ret)
2895 		goto err_cmd_init;
2896 
2897 	ret = hclgevf_query_dev_specs(hdev);
2898 	if (ret) {
2899 		dev_err(&pdev->dev,
2900 			"failed to query dev specifications, ret = %d\n", ret);
2901 		goto err_cmd_init;
2902 	}
2903 
2904 	ret = hclgevf_init_msi(hdev);
2905 	if (ret) {
2906 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2907 		goto err_cmd_init;
2908 	}
2909 
2910 	hclgevf_state_init(hdev);
2911 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2912 	hdev->reset_type = HNAE3_NONE_RESET;
2913 
2914 	ret = hclgevf_misc_irq_init(hdev);
2915 	if (ret)
2916 		goto err_misc_irq_init;
2917 
2918 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2919 
2920 	ret = hclgevf_configure(hdev);
2921 	if (ret) {
2922 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2923 		goto err_config;
2924 	}
2925 
2926 	ret = hclgevf_alloc_tqps(hdev);
2927 	if (ret) {
2928 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2929 		goto err_config;
2930 	}
2931 
2932 	ret = hclgevf_set_handle_info(hdev);
2933 	if (ret)
2934 		goto err_config;
2935 
2936 	ret = hclgevf_config_gro(hdev);
2937 	if (ret)
2938 		goto err_config;
2939 
2940 	/* Initialize RSS for this VF */
2941 	ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2942 				      &hdev->rss_cfg);
2943 	if (ret) {
2944 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2945 		goto err_config;
2946 	}
2947 
2948 	ret = hclgevf_rss_init_hw(hdev);
2949 	if (ret) {
2950 		dev_err(&hdev->pdev->dev,
2951 			"failed(%d) to initialize RSS\n", ret);
2952 		goto err_config;
2953 	}
2954 
2955 	/* ensure vf tbl list as empty before init*/
2956 	ret = hclgevf_clear_vport_list(hdev);
2957 	if (ret) {
2958 		dev_err(&pdev->dev,
2959 			"failed to clear tbl list configuration, ret = %d.\n",
2960 			ret);
2961 		goto err_config;
2962 	}
2963 
2964 	ret = hclgevf_init_vlan_config(hdev);
2965 	if (ret) {
2966 		dev_err(&hdev->pdev->dev,
2967 			"failed(%d) to initialize VLAN config\n", ret);
2968 		goto err_config;
2969 	}
2970 
2971 	hclgevf_init_rxd_adv_layout(hdev);
2972 
2973 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2974 
2975 	hdev->last_reset_time = jiffies;
2976 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2977 		 HCLGEVF_DRIVER_NAME);
2978 
2979 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2980 
2981 	return 0;
2982 
2983 err_config:
2984 	hclgevf_misc_irq_uninit(hdev);
2985 err_misc_irq_init:
2986 	hclgevf_state_uninit(hdev);
2987 	hclgevf_uninit_msi(hdev);
2988 err_cmd_init:
2989 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
2990 err_cmd_queue_init:
2991 	hclgevf_devlink_uninit(hdev);
2992 err_devlink_init:
2993 	hclgevf_pci_uninit(hdev);
2994 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2995 	return ret;
2996 }
2997 
2998 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2999 {
3000 	struct hclge_vf_to_pf_msg send_msg;
3001 
3002 	hclgevf_state_uninit(hdev);
3003 	hclgevf_uninit_rxd_adv_layout(hdev);
3004 
3005 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3006 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3007 
3008 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3009 		hclgevf_misc_irq_uninit(hdev);
3010 		hclgevf_uninit_msi(hdev);
3011 	}
3012 
3013 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3014 	hclgevf_devlink_uninit(hdev);
3015 	hclgevf_pci_uninit(hdev);
3016 	hclgevf_uninit_mac_list(hdev);
3017 }
3018 
3019 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3020 {
3021 	struct pci_dev *pdev = ae_dev->pdev;
3022 	int ret;
3023 
3024 	ret = hclgevf_alloc_hdev(ae_dev);
3025 	if (ret) {
3026 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3027 		return ret;
3028 	}
3029 
3030 	ret = hclgevf_init_hdev(ae_dev->priv);
3031 	if (ret) {
3032 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3033 		return ret;
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3040 {
3041 	struct hclgevf_dev *hdev = ae_dev->priv;
3042 
3043 	hclgevf_uninit_hdev(hdev);
3044 	ae_dev->priv = NULL;
3045 }
3046 
3047 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3048 {
3049 	struct hnae3_handle *nic = &hdev->nic;
3050 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3051 
3052 	return min_t(u32, hdev->rss_size_max,
3053 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3054 }
3055 
3056 /**
3057  * hclgevf_get_channels - Get the current channels enabled and max supported.
3058  * @handle: hardware information for network interface
3059  * @ch: ethtool channels structure
3060  *
3061  * We don't support separate tx and rx queues as channels. The other count
3062  * represents how many queues are being used for control. max_combined counts
3063  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3064  * q_vectors since we support a lot more queue pairs than q_vectors.
3065  **/
3066 static void hclgevf_get_channels(struct hnae3_handle *handle,
3067 				 struct ethtool_channels *ch)
3068 {
3069 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3070 
3071 	ch->max_combined = hclgevf_get_max_channels(hdev);
3072 	ch->other_count = 0;
3073 	ch->max_other = 0;
3074 	ch->combined_count = handle->kinfo.rss_size;
3075 }
3076 
3077 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3078 					  u16 *alloc_tqps, u16 *max_rss_size)
3079 {
3080 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3081 
3082 	*alloc_tqps = hdev->num_tqps;
3083 	*max_rss_size = hdev->rss_size_max;
3084 }
3085 
3086 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3087 				    u32 new_tqps_num)
3088 {
3089 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3090 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3091 	u16 max_rss_size;
3092 
3093 	kinfo->req_rss_size = new_tqps_num;
3094 
3095 	max_rss_size = min_t(u16, hdev->rss_size_max,
3096 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3097 
3098 	/* Use the user's configuration when it is not larger than
3099 	 * max_rss_size, otherwise, use the maximum specification value.
3100 	 */
3101 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3102 	    kinfo->req_rss_size <= max_rss_size)
3103 		kinfo->rss_size = kinfo->req_rss_size;
3104 	else if (kinfo->rss_size > max_rss_size ||
3105 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3106 		kinfo->rss_size = max_rss_size;
3107 
3108 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3109 }
3110 
3111 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3112 				bool rxfh_configured)
3113 {
3114 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3115 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3116 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3117 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3118 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3119 	u16 cur_rss_size = kinfo->rss_size;
3120 	u16 cur_tqps = kinfo->num_tqps;
3121 	u32 *rss_indir;
3122 	unsigned int i;
3123 	int ret;
3124 
3125 	hclgevf_update_rss_size(handle, new_tqps_num);
3126 
3127 	hclge_comm_get_rss_tc_info(cur_rss_size, hdev->hw_tc_map,
3128 				   tc_offset, tc_valid, tc_size);
3129 	ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3130 					 tc_valid, tc_size);
3131 	if (ret)
3132 		return ret;
3133 
3134 	/* RSS indirection table has been configured by user */
3135 	if (rxfh_configured)
3136 		goto out;
3137 
3138 	/* Reinitializes the rss indirect table according to the new RSS size */
3139 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3140 			    sizeof(u32), GFP_KERNEL);
3141 	if (!rss_indir)
3142 		return -ENOMEM;
3143 
3144 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3145 		rss_indir[i] = i % kinfo->rss_size;
3146 
3147 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3148 
3149 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3150 	if (ret)
3151 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3152 			ret);
3153 
3154 	kfree(rss_indir);
3155 
3156 out:
3157 	if (!ret)
3158 		dev_info(&hdev->pdev->dev,
3159 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3160 			 cur_rss_size, kinfo->rss_size,
3161 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3162 
3163 	return ret;
3164 }
3165 
3166 static int hclgevf_get_status(struct hnae3_handle *handle)
3167 {
3168 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3169 
3170 	return hdev->hw.mac.link;
3171 }
3172 
3173 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3174 					    u8 *auto_neg, u32 *speed,
3175 					    u8 *duplex)
3176 {
3177 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3178 
3179 	if (speed)
3180 		*speed = hdev->hw.mac.speed;
3181 	if (duplex)
3182 		*duplex = hdev->hw.mac.duplex;
3183 	if (auto_neg)
3184 		*auto_neg = AUTONEG_DISABLE;
3185 }
3186 
3187 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3188 				 u8 duplex)
3189 {
3190 	hdev->hw.mac.speed = speed;
3191 	hdev->hw.mac.duplex = duplex;
3192 }
3193 
3194 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3195 {
3196 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3197 	bool gro_en_old = hdev->gro_en;
3198 	int ret;
3199 
3200 	hdev->gro_en = enable;
3201 	ret = hclgevf_config_gro(hdev);
3202 	if (ret)
3203 		hdev->gro_en = gro_en_old;
3204 
3205 	return ret;
3206 }
3207 
3208 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3209 				   u8 *module_type)
3210 {
3211 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3212 
3213 	if (media_type)
3214 		*media_type = hdev->hw.mac.media_type;
3215 
3216 	if (module_type)
3217 		*module_type = hdev->hw.mac.module_type;
3218 }
3219 
3220 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3221 {
3222 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3223 
3224 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3225 }
3226 
3227 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3228 {
3229 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3230 
3231 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3232 }
3233 
3234 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3235 {
3236 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3237 
3238 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3239 }
3240 
3241 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3242 {
3243 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3244 
3245 	return hdev->rst_stats.hw_rst_done_cnt;
3246 }
3247 
3248 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3249 				  unsigned long *supported,
3250 				  unsigned long *advertising)
3251 {
3252 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3253 
3254 	*supported = hdev->hw.mac.supported;
3255 	*advertising = hdev->hw.mac.advertising;
3256 }
3257 
3258 #define MAX_SEPARATE_NUM	4
3259 #define SEPARATOR_VALUE		0xFDFCFBFA
3260 #define REG_NUM_PER_LINE	4
3261 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3262 
3263 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3264 {
3265 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3266 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3267 
3268 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3269 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3270 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3271 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3272 
3273 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3274 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3275 }
3276 
3277 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3278 			     void *data)
3279 {
3280 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3281 	int i, j, reg_um, separator_num;
3282 	u32 *reg = data;
3283 
3284 	*version = hdev->fw_version;
3285 
3286 	/* fetching per-VF registers values from VF PCIe register space */
3287 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3288 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3289 	for (i = 0; i < reg_um; i++)
3290 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3291 	for (i = 0; i < separator_num; i++)
3292 		*reg++ = SEPARATOR_VALUE;
3293 
3294 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3295 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3296 	for (i = 0; i < reg_um; i++)
3297 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3298 	for (i = 0; i < separator_num; i++)
3299 		*reg++ = SEPARATOR_VALUE;
3300 
3301 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3302 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3303 	for (j = 0; j < hdev->num_tqps; j++) {
3304 		for (i = 0; i < reg_um; i++)
3305 			*reg++ = hclgevf_read_dev(&hdev->hw,
3306 						  ring_reg_addr_list[i] +
3307 						  0x200 * j);
3308 		for (i = 0; i < separator_num; i++)
3309 			*reg++ = SEPARATOR_VALUE;
3310 	}
3311 
3312 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3313 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3314 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3315 		for (i = 0; i < reg_um; i++)
3316 			*reg++ = hclgevf_read_dev(&hdev->hw,
3317 						  tqp_intr_reg_addr_list[i] +
3318 						  4 * j);
3319 		for (i = 0; i < separator_num; i++)
3320 			*reg++ = SEPARATOR_VALUE;
3321 	}
3322 }
3323 
3324 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3325 					u8 *port_base_vlan_info, u8 data_size)
3326 {
3327 	struct hnae3_handle *nic = &hdev->nic;
3328 	struct hclge_vf_to_pf_msg send_msg;
3329 	int ret;
3330 
3331 	rtnl_lock();
3332 
3333 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3334 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3335 		dev_warn(&hdev->pdev->dev,
3336 			 "is resetting when updating port based vlan info\n");
3337 		rtnl_unlock();
3338 		return;
3339 	}
3340 
3341 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3342 	if (ret) {
3343 		rtnl_unlock();
3344 		return;
3345 	}
3346 
3347 	/* send msg to PF and wait update port based vlan info */
3348 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3349 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3350 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3351 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3352 	if (!ret) {
3353 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3354 			nic->port_base_vlan_state = state;
3355 		else
3356 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3357 	}
3358 
3359 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3360 	rtnl_unlock();
3361 }
3362 
3363 static const struct hnae3_ae_ops hclgevf_ops = {
3364 	.init_ae_dev = hclgevf_init_ae_dev,
3365 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3366 	.reset_prepare = hclgevf_reset_prepare_general,
3367 	.reset_done = hclgevf_reset_done,
3368 	.init_client_instance = hclgevf_init_client_instance,
3369 	.uninit_client_instance = hclgevf_uninit_client_instance,
3370 	.start = hclgevf_ae_start,
3371 	.stop = hclgevf_ae_stop,
3372 	.client_start = hclgevf_client_start,
3373 	.client_stop = hclgevf_client_stop,
3374 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3375 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3376 	.get_vector = hclgevf_get_vector,
3377 	.put_vector = hclgevf_put_vector,
3378 	.reset_queue = hclgevf_reset_tqp,
3379 	.get_mac_addr = hclgevf_get_mac_addr,
3380 	.set_mac_addr = hclgevf_set_mac_addr,
3381 	.add_uc_addr = hclgevf_add_uc_addr,
3382 	.rm_uc_addr = hclgevf_rm_uc_addr,
3383 	.add_mc_addr = hclgevf_add_mc_addr,
3384 	.rm_mc_addr = hclgevf_rm_mc_addr,
3385 	.get_stats = hclgevf_get_stats,
3386 	.update_stats = hclgevf_update_stats,
3387 	.get_strings = hclgevf_get_strings,
3388 	.get_sset_count = hclgevf_get_sset_count,
3389 	.get_rss_key_size = hclge_comm_get_rss_key_size,
3390 	.get_rss = hclgevf_get_rss,
3391 	.set_rss = hclgevf_set_rss,
3392 	.get_rss_tuple = hclgevf_get_rss_tuple,
3393 	.set_rss_tuple = hclgevf_set_rss_tuple,
3394 	.get_tc_size = hclgevf_get_tc_size,
3395 	.get_fw_version = hclgevf_get_fw_version,
3396 	.set_vlan_filter = hclgevf_set_vlan_filter,
3397 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3398 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3399 	.reset_event = hclgevf_reset_event,
3400 	.set_default_reset_request = hclgevf_set_def_reset_request,
3401 	.set_channels = hclgevf_set_channels,
3402 	.get_channels = hclgevf_get_channels,
3403 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3404 	.get_regs_len = hclgevf_get_regs_len,
3405 	.get_regs = hclgevf_get_regs,
3406 	.get_status = hclgevf_get_status,
3407 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3408 	.get_media_type = hclgevf_get_media_type,
3409 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3410 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3411 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3412 	.set_gro_en = hclgevf_gro_en,
3413 	.set_mtu = hclgevf_set_mtu,
3414 	.get_global_queue_id = hclgevf_get_qid_global,
3415 	.set_timer_task = hclgevf_set_timer_task,
3416 	.get_link_mode = hclgevf_get_link_mode,
3417 	.set_promisc_mode = hclgevf_set_promisc_mode,
3418 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3419 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3420 };
3421 
3422 static struct hnae3_ae_algo ae_algovf = {
3423 	.ops = &hclgevf_ops,
3424 	.pdev_id_table = ae_algovf_pci_tbl,
3425 };
3426 
3427 static int hclgevf_init(void)
3428 {
3429 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3430 
3431 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3432 	if (!hclgevf_wq) {
3433 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3434 		return -ENOMEM;
3435 	}
3436 
3437 	hnae3_register_ae_algo(&ae_algovf);
3438 
3439 	return 0;
3440 }
3441 
3442 static void hclgevf_exit(void)
3443 {
3444 	hnae3_unregister_ae_algo(&ae_algovf);
3445 	destroy_workqueue(hclgevf_wq);
3446 }
3447 module_init(hclgevf_init);
3448 module_exit(hclgevf_exit);
3449 
3450 MODULE_LICENSE("GPL");
3451 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3452 MODULE_DESCRIPTION("HCLGEVF Driver");
3453 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3454