1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/etherdevice.h> 5 #include <linux/iopoll.h> 6 #include <net/rtnetlink.h> 7 #include "hclgevf_cmd.h" 8 #include "hclgevf_main.h" 9 #include "hclge_mbx.h" 10 #include "hnae3.h" 11 #include "hclgevf_devlink.h" 12 #include "hclge_comm_rss.h" 13 14 #define HCLGEVF_NAME "hclgevf" 15 16 #define HCLGEVF_RESET_MAX_FAIL_CNT 5 17 18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev); 19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 20 unsigned long delay); 21 22 static struct hnae3_ae_algo ae_algovf; 23 24 static struct workqueue_struct *hclgevf_wq; 25 26 static const struct pci_device_id ae_algovf_pci_tbl[] = { 27 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, 28 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), 29 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 30 /* required last entry */ 31 {0, } 32 }; 33 34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); 35 36 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG, 37 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG, 38 HCLGE_COMM_NIC_CSQ_DEPTH_REG, 39 HCLGE_COMM_NIC_CSQ_TAIL_REG, 40 HCLGE_COMM_NIC_CSQ_HEAD_REG, 41 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG, 42 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG, 43 HCLGE_COMM_NIC_CRQ_DEPTH_REG, 44 HCLGE_COMM_NIC_CRQ_TAIL_REG, 45 HCLGE_COMM_NIC_CRQ_HEAD_REG, 46 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, 47 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG, 48 HCLGE_COMM_CMDQ_INTR_EN_REG, 49 HCLGE_COMM_CMDQ_INTR_GEN_REG}; 50 51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE, 52 HCLGEVF_RST_ING, 53 HCLGEVF_GRO_EN_REG}; 54 55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG, 56 HCLGEVF_RING_RX_ADDR_H_REG, 57 HCLGEVF_RING_RX_BD_NUM_REG, 58 HCLGEVF_RING_RX_BD_LENGTH_REG, 59 HCLGEVF_RING_RX_MERGE_EN_REG, 60 HCLGEVF_RING_RX_TAIL_REG, 61 HCLGEVF_RING_RX_HEAD_REG, 62 HCLGEVF_RING_RX_FBD_NUM_REG, 63 HCLGEVF_RING_RX_OFFSET_REG, 64 HCLGEVF_RING_RX_FBD_OFFSET_REG, 65 HCLGEVF_RING_RX_STASH_REG, 66 HCLGEVF_RING_RX_BD_ERR_REG, 67 HCLGEVF_RING_TX_ADDR_L_REG, 68 HCLGEVF_RING_TX_ADDR_H_REG, 69 HCLGEVF_RING_TX_BD_NUM_REG, 70 HCLGEVF_RING_TX_PRIORITY_REG, 71 HCLGEVF_RING_TX_TC_REG, 72 HCLGEVF_RING_TX_MERGE_EN_REG, 73 HCLGEVF_RING_TX_TAIL_REG, 74 HCLGEVF_RING_TX_HEAD_REG, 75 HCLGEVF_RING_TX_FBD_NUM_REG, 76 HCLGEVF_RING_TX_OFFSET_REG, 77 HCLGEVF_RING_TX_EBD_NUM_REG, 78 HCLGEVF_RING_TX_EBD_OFFSET_REG, 79 HCLGEVF_RING_TX_BD_ERR_REG, 80 HCLGEVF_RING_EN_REG}; 81 82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG, 83 HCLGEVF_TQP_INTR_GL0_REG, 84 HCLGEVF_TQP_INTR_GL1_REG, 85 HCLGEVF_TQP_INTR_GL2_REG, 86 HCLGEVF_TQP_INTR_RL_REG}; 87 88 /* hclgevf_cmd_send - send command to command queue 89 * @hw: pointer to the hw struct 90 * @desc: prefilled descriptor for describing the command 91 * @num : the number of descriptors to be sent 92 * 93 * This is the main send command for command queue, it 94 * sends the queue, cleans the queue, etc 95 */ 96 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num) 97 { 98 return hclge_comm_cmd_send(&hw->hw, desc, num); 99 } 100 101 void hclgevf_arq_init(struct hclgevf_dev *hdev) 102 { 103 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq; 104 105 spin_lock(&cmdq->crq.lock); 106 /* initialize the pointers of async rx queue of mailbox */ 107 hdev->arq.hdev = hdev; 108 hdev->arq.head = 0; 109 hdev->arq.tail = 0; 110 atomic_set(&hdev->arq.count, 0); 111 spin_unlock(&cmdq->crq.lock); 112 } 113 114 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle) 115 { 116 if (!handle->client) 117 return container_of(handle, struct hclgevf_dev, nic); 118 else if (handle->client->type == HNAE3_CLIENT_ROCE) 119 return container_of(handle, struct hclgevf_dev, roce); 120 else 121 return container_of(handle, struct hclgevf_dev, nic); 122 } 123 124 static void hclgevf_update_stats(struct hnae3_handle *handle) 125 { 126 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 127 int status; 128 129 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 130 if (status) 131 dev_err(&hdev->pdev->dev, 132 "VF update of TQPS stats fail, status = %d.\n", 133 status); 134 } 135 136 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) 137 { 138 if (strset == ETH_SS_TEST) 139 return -EOPNOTSUPP; 140 else if (strset == ETH_SS_STATS) 141 return hclge_comm_tqps_get_sset_count(handle); 142 143 return 0; 144 } 145 146 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, 147 u8 *data) 148 { 149 u8 *p = (char *)data; 150 151 if (strset == ETH_SS_STATS) 152 p = hclge_comm_tqps_get_strings(handle, p); 153 } 154 155 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) 156 { 157 hclge_comm_tqps_get_stats(handle, data); 158 } 159 160 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code, 161 u8 subcode) 162 { 163 if (msg) { 164 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg)); 165 msg->code = code; 166 msg->subcode = subcode; 167 } 168 } 169 170 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev) 171 { 172 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 173 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE]; 174 struct hclge_basic_info *basic_info; 175 struct hclge_vf_to_pf_msg send_msg; 176 unsigned long caps; 177 int status; 178 179 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0); 180 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 181 sizeof(resp_msg)); 182 if (status) { 183 dev_err(&hdev->pdev->dev, 184 "failed to get basic info from pf, ret = %d", status); 185 return status; 186 } 187 188 basic_info = (struct hclge_basic_info *)resp_msg; 189 190 hdev->hw_tc_map = basic_info->hw_tc_map; 191 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version); 192 caps = le32_to_cpu(basic_info->pf_caps); 193 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps)) 194 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps); 195 196 return 0; 197 } 198 199 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev) 200 { 201 struct hnae3_handle *nic = &hdev->nic; 202 struct hclge_vf_to_pf_msg send_msg; 203 u8 resp_msg; 204 int ret; 205 206 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 207 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE); 208 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg, 209 sizeof(u8)); 210 if (ret) { 211 dev_err(&hdev->pdev->dev, 212 "VF request to get port based vlan state failed %d", 213 ret); 214 return ret; 215 } 216 217 nic->port_base_vlan_state = resp_msg; 218 219 return 0; 220 } 221 222 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev) 223 { 224 #define HCLGEVF_TQPS_RSS_INFO_LEN 6 225 226 struct hclge_mbx_vf_queue_info *queue_info; 227 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; 228 struct hclge_vf_to_pf_msg send_msg; 229 int status; 230 231 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0); 232 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 233 HCLGEVF_TQPS_RSS_INFO_LEN); 234 if (status) { 235 dev_err(&hdev->pdev->dev, 236 "VF request to get tqp info from PF failed %d", 237 status); 238 return status; 239 } 240 241 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg; 242 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps); 243 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size); 244 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len); 245 246 return 0; 247 } 248 249 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev) 250 { 251 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4 252 253 struct hclge_mbx_vf_queue_depth *queue_depth; 254 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN]; 255 struct hclge_vf_to_pf_msg send_msg; 256 int ret; 257 258 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0); 259 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 260 HCLGEVF_TQPS_DEPTH_INFO_LEN); 261 if (ret) { 262 dev_err(&hdev->pdev->dev, 263 "VF request to get tqp depth info from PF failed %d", 264 ret); 265 return ret; 266 } 267 268 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg; 269 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc); 270 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc); 271 272 return 0; 273 } 274 275 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id) 276 { 277 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 278 struct hclge_vf_to_pf_msg send_msg; 279 u16 qid_in_pf = 0; 280 u8 resp_data[2]; 281 int ret; 282 283 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0); 284 *(__le16 *)send_msg.data = cpu_to_le16(queue_id); 285 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data, 286 sizeof(resp_data)); 287 if (!ret) 288 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data); 289 290 return qid_in_pf; 291 } 292 293 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev) 294 { 295 struct hclge_vf_to_pf_msg send_msg; 296 u8 resp_msg[2]; 297 int ret; 298 299 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0); 300 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 301 sizeof(resp_msg)); 302 if (ret) { 303 dev_err(&hdev->pdev->dev, 304 "VF request to get the pf port media type failed %d", 305 ret); 306 return ret; 307 } 308 309 hdev->hw.mac.media_type = resp_msg[0]; 310 hdev->hw.mac.module_type = resp_msg[1]; 311 312 return 0; 313 } 314 315 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) 316 { 317 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 318 struct hclge_comm_tqp *tqp; 319 int i; 320 321 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 322 sizeof(struct hclge_comm_tqp), GFP_KERNEL); 323 if (!hdev->htqp) 324 return -ENOMEM; 325 326 tqp = hdev->htqp; 327 328 for (i = 0; i < hdev->num_tqps; i++) { 329 tqp->dev = &hdev->pdev->dev; 330 tqp->index = i; 331 332 tqp->q.ae_algo = &ae_algovf; 333 tqp->q.buf_size = hdev->rx_buf_len; 334 tqp->q.tx_desc_num = hdev->num_tx_desc; 335 tqp->q.rx_desc_num = hdev->num_rx_desc; 336 337 /* need an extended offset to configure queues >= 338 * HCLGEVF_TQP_MAX_SIZE_DEV_V2. 339 */ 340 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2) 341 tqp->q.io_base = hdev->hw.hw.io_base + 342 HCLGEVF_TQP_REG_OFFSET + 343 i * HCLGEVF_TQP_REG_SIZE; 344 else 345 tqp->q.io_base = hdev->hw.hw.io_base + 346 HCLGEVF_TQP_REG_OFFSET + 347 HCLGEVF_TQP_EXT_REG_OFFSET + 348 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) * 349 HCLGEVF_TQP_REG_SIZE; 350 351 /* when device supports tx push and has device memory, 352 * the queue can execute push mode or doorbell mode on 353 * device memory. 354 */ 355 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps)) 356 tqp->q.mem_base = hdev->hw.hw.mem_base + 357 HCLGEVF_TQP_MEM_OFFSET(hdev, i); 358 359 tqp++; 360 } 361 362 return 0; 363 } 364 365 static int hclgevf_knic_setup(struct hclgevf_dev *hdev) 366 { 367 struct hnae3_handle *nic = &hdev->nic; 368 struct hnae3_knic_private_info *kinfo; 369 u16 new_tqps = hdev->num_tqps; 370 unsigned int i; 371 u8 num_tc = 0; 372 373 kinfo = &nic->kinfo; 374 kinfo->num_tx_desc = hdev->num_tx_desc; 375 kinfo->num_rx_desc = hdev->num_rx_desc; 376 kinfo->rx_buf_len = hdev->rx_buf_len; 377 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++) 378 if (hdev->hw_tc_map & BIT(i)) 379 num_tc++; 380 381 num_tc = num_tc ? num_tc : 1; 382 kinfo->tc_info.num_tc = num_tc; 383 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc); 384 new_tqps = kinfo->rss_size * num_tc; 385 kinfo->num_tqps = min(new_tqps, hdev->num_tqps); 386 387 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, 388 sizeof(struct hnae3_queue *), GFP_KERNEL); 389 if (!kinfo->tqp) 390 return -ENOMEM; 391 392 for (i = 0; i < kinfo->num_tqps; i++) { 393 hdev->htqp[i].q.handle = &hdev->nic; 394 hdev->htqp[i].q.tqp_index = i; 395 kinfo->tqp[i] = &hdev->htqp[i].q; 396 } 397 398 /* after init the max rss_size and tqps, adjust the default tqp numbers 399 * and rss size with the actual vector numbers 400 */ 401 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps); 402 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc, 403 kinfo->rss_size); 404 405 return 0; 406 } 407 408 static void hclgevf_request_link_info(struct hclgevf_dev *hdev) 409 { 410 struct hclge_vf_to_pf_msg send_msg; 411 int status; 412 413 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0); 414 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 415 if (status) 416 dev_err(&hdev->pdev->dev, 417 "VF failed to fetch link status(%d) from PF", status); 418 } 419 420 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) 421 { 422 struct hnae3_handle *rhandle = &hdev->roce; 423 struct hnae3_handle *handle = &hdev->nic; 424 struct hnae3_client *rclient; 425 struct hnae3_client *client; 426 427 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state)) 428 return; 429 430 client = handle->client; 431 rclient = hdev->roce_client; 432 433 link_state = 434 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state; 435 if (link_state != hdev->hw.mac.link) { 436 hdev->hw.mac.link = link_state; 437 client->ops->link_status_change(handle, !!link_state); 438 if (rclient && rclient->ops->link_status_change) 439 rclient->ops->link_status_change(rhandle, !!link_state); 440 } 441 442 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state); 443 } 444 445 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev) 446 { 447 #define HCLGEVF_ADVERTISING 0 448 #define HCLGEVF_SUPPORTED 1 449 450 struct hclge_vf_to_pf_msg send_msg; 451 452 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0); 453 send_msg.data[0] = HCLGEVF_ADVERTISING; 454 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 455 send_msg.data[0] = HCLGEVF_SUPPORTED; 456 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 457 } 458 459 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) 460 { 461 struct hnae3_handle *nic = &hdev->nic; 462 int ret; 463 464 nic->ae_algo = &ae_algovf; 465 nic->pdev = hdev->pdev; 466 nic->numa_node_mask = hdev->numa_node_mask; 467 nic->flags |= HNAE3_SUPPORT_VF; 468 nic->kinfo.io_base = hdev->hw.hw.io_base; 469 470 ret = hclgevf_knic_setup(hdev); 471 if (ret) 472 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", 473 ret); 474 return ret; 475 } 476 477 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) 478 { 479 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { 480 dev_warn(&hdev->pdev->dev, 481 "vector(vector_id %d) has been freed.\n", vector_id); 482 return; 483 } 484 485 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; 486 hdev->num_msi_left += 1; 487 hdev->num_msi_used -= 1; 488 } 489 490 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, 491 struct hnae3_vector_info *vector_info) 492 { 493 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 494 struct hnae3_vector_info *vector = vector_info; 495 int alloc = 0; 496 int i, j; 497 498 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num); 499 vector_num = min(hdev->num_msi_left, vector_num); 500 501 for (j = 0; j < vector_num; j++) { 502 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { 503 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { 504 vector->vector = pci_irq_vector(hdev->pdev, i); 505 vector->io_addr = hdev->hw.hw.io_base + 506 HCLGEVF_VECTOR_REG_BASE + 507 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; 508 hdev->vector_status[i] = 0; 509 hdev->vector_irq[i] = vector->vector; 510 511 vector++; 512 alloc++; 513 514 break; 515 } 516 } 517 } 518 hdev->num_msi_left -= alloc; 519 hdev->num_msi_used += alloc; 520 521 return alloc; 522 } 523 524 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) 525 { 526 int i; 527 528 for (i = 0; i < hdev->num_msi; i++) 529 if (vector == hdev->vector_irq[i]) 530 return i; 531 532 return -EINVAL; 533 } 534 535 /* for revision 0x20, vf shared the same rss config with pf */ 536 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev) 537 { 538 #define HCLGEVF_RSS_MBX_RESP_LEN 8 539 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 540 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN]; 541 struct hclge_vf_to_pf_msg send_msg; 542 u16 msg_num, hash_key_index; 543 u8 index; 544 int ret; 545 546 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0); 547 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) / 548 HCLGEVF_RSS_MBX_RESP_LEN; 549 for (index = 0; index < msg_num; index++) { 550 send_msg.data[0] = index; 551 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 552 HCLGEVF_RSS_MBX_RESP_LEN); 553 if (ret) { 554 dev_err(&hdev->pdev->dev, 555 "VF get rss hash key from PF failed, ret=%d", 556 ret); 557 return ret; 558 } 559 560 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index; 561 if (index == msg_num - 1) 562 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 563 &resp_msg[0], 564 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index); 565 else 566 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 567 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN); 568 } 569 570 return 0; 571 } 572 573 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, 574 u8 *hfunc) 575 { 576 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 577 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 578 int ret; 579 580 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 581 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc); 582 } else { 583 if (hfunc) 584 *hfunc = ETH_RSS_HASH_TOP; 585 if (key) { 586 ret = hclgevf_get_rss_hash_key(hdev); 587 if (ret) 588 return ret; 589 memcpy(key, rss_cfg->rss_hash_key, 590 HCLGE_COMM_RSS_KEY_SIZE); 591 } 592 } 593 594 hclge_comm_get_rss_indir_tbl(rss_cfg, indir, 595 hdev->ae_dev->dev_specs.rss_ind_tbl_size); 596 597 return 0; 598 } 599 600 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, 601 const u8 *key, const u8 hfunc) 602 { 603 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 604 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 605 int ret, i; 606 607 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 608 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, 609 hfunc); 610 if (ret) 611 return ret; 612 } 613 614 /* update the shadow RSS table with user specified qids */ 615 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 616 rss_cfg->rss_indirection_tbl[i] = indir[i]; 617 618 /* update the hardware */ 619 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 620 rss_cfg->rss_indirection_tbl); 621 } 622 623 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle, 624 struct ethtool_rxnfc *nfc) 625 { 626 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 627 int ret; 628 629 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 630 return -EOPNOTSUPP; 631 632 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw, 633 &hdev->rss_cfg, nfc); 634 if (ret) 635 dev_err(&hdev->pdev->dev, 636 "failed to set rss tuple, ret = %d.\n", ret); 637 638 return ret; 639 } 640 641 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle, 642 struct ethtool_rxnfc *nfc) 643 { 644 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 645 u8 tuple_sets; 646 int ret; 647 648 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 649 return -EOPNOTSUPP; 650 651 nfc->data = 0; 652 653 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type, 654 &tuple_sets); 655 if (ret || !tuple_sets) 656 return ret; 657 658 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets); 659 660 return 0; 661 } 662 663 static int hclgevf_get_tc_size(struct hnae3_handle *handle) 664 { 665 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 666 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 667 668 return rss_cfg->rss_size; 669 } 670 671 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, 672 int vector_id, 673 struct hnae3_ring_chain_node *ring_chain) 674 { 675 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 676 struct hclge_vf_to_pf_msg send_msg; 677 struct hnae3_ring_chain_node *node; 678 int status; 679 int i = 0; 680 681 memset(&send_msg, 0, sizeof(send_msg)); 682 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR : 683 HCLGE_MBX_UNMAP_RING_TO_VECTOR; 684 send_msg.vector_id = vector_id; 685 686 for (node = ring_chain; node; node = node->next) { 687 send_msg.param[i].ring_type = 688 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); 689 690 send_msg.param[i].tqp_index = node->tqp_index; 691 send_msg.param[i].int_gl_index = 692 hnae3_get_field(node->int_gl_idx, 693 HNAE3_RING_GL_IDX_M, 694 HNAE3_RING_GL_IDX_S); 695 696 i++; 697 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) { 698 send_msg.ring_num = i; 699 700 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, 701 NULL, 0); 702 if (status) { 703 dev_err(&hdev->pdev->dev, 704 "Map TQP fail, status is %d.\n", 705 status); 706 return status; 707 } 708 i = 0; 709 } 710 } 711 712 return 0; 713 } 714 715 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, 716 struct hnae3_ring_chain_node *ring_chain) 717 { 718 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 719 int vector_id; 720 721 vector_id = hclgevf_get_vector_index(hdev, vector); 722 if (vector_id < 0) { 723 dev_err(&handle->pdev->dev, 724 "Get vector index fail. ret =%d\n", vector_id); 725 return vector_id; 726 } 727 728 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); 729 } 730 731 static int hclgevf_unmap_ring_from_vector( 732 struct hnae3_handle *handle, 733 int vector, 734 struct hnae3_ring_chain_node *ring_chain) 735 { 736 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 737 int ret, vector_id; 738 739 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 740 return 0; 741 742 vector_id = hclgevf_get_vector_index(hdev, vector); 743 if (vector_id < 0) { 744 dev_err(&handle->pdev->dev, 745 "Get vector index fail. ret =%d\n", vector_id); 746 return vector_id; 747 } 748 749 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); 750 if (ret) 751 dev_err(&handle->pdev->dev, 752 "Unmap ring from vector fail. vector=%d, ret =%d\n", 753 vector_id, 754 ret); 755 756 return ret; 757 } 758 759 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) 760 { 761 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 762 int vector_id; 763 764 vector_id = hclgevf_get_vector_index(hdev, vector); 765 if (vector_id < 0) { 766 dev_err(&handle->pdev->dev, 767 "hclgevf_put_vector get vector index fail. ret =%d\n", 768 vector_id); 769 return vector_id; 770 } 771 772 hclgevf_free_vector(hdev, vector_id); 773 774 return 0; 775 } 776 777 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, 778 bool en_uc_pmc, bool en_mc_pmc, 779 bool en_bc_pmc) 780 { 781 struct hnae3_handle *handle = &hdev->nic; 782 struct hclge_vf_to_pf_msg send_msg; 783 int ret; 784 785 memset(&send_msg, 0, sizeof(send_msg)); 786 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE; 787 send_msg.en_bc = en_bc_pmc ? 1 : 0; 788 send_msg.en_uc = en_uc_pmc ? 1 : 0; 789 send_msg.en_mc = en_mc_pmc ? 1 : 0; 790 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC, 791 &handle->priv_flags) ? 1 : 0; 792 793 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 794 if (ret) 795 dev_err(&hdev->pdev->dev, 796 "Set promisc mode fail, status is %d.\n", ret); 797 798 return ret; 799 } 800 801 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, 802 bool en_mc_pmc) 803 { 804 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 805 bool en_bc_pmc; 806 807 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2; 808 809 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc, 810 en_bc_pmc); 811 } 812 813 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle) 814 { 815 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 816 817 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 818 hclgevf_task_schedule(hdev, 0); 819 } 820 821 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev) 822 { 823 struct hnae3_handle *handle = &hdev->nic; 824 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE; 825 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE; 826 int ret; 827 828 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) { 829 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc); 830 if (!ret) 831 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 832 } 833 } 834 835 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id, 836 u16 stream_id, bool enable) 837 { 838 struct hclgevf_cfg_com_tqp_queue_cmd *req; 839 struct hclge_desc desc; 840 841 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; 842 843 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false); 844 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); 845 req->stream_id = cpu_to_le16(stream_id); 846 if (enable) 847 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B; 848 849 return hclgevf_cmd_send(&hdev->hw, &desc, 1); 850 } 851 852 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable) 853 { 854 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 855 int ret; 856 u16 i; 857 858 for (i = 0; i < handle->kinfo.num_tqps; i++) { 859 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable); 860 if (ret) 861 return ret; 862 } 863 864 return 0; 865 } 866 867 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p) 868 { 869 struct hclge_vf_to_pf_msg send_msg; 870 u8 host_mac[ETH_ALEN]; 871 int status; 872 873 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0); 874 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac, 875 ETH_ALEN); 876 if (status) { 877 dev_err(&hdev->pdev->dev, 878 "fail to get VF MAC from host %d", status); 879 return status; 880 } 881 882 ether_addr_copy(p, host_mac); 883 884 return 0; 885 } 886 887 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) 888 { 889 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 890 u8 host_mac_addr[ETH_ALEN]; 891 892 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr)) 893 return; 894 895 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr); 896 if (hdev->has_pf_mac) 897 ether_addr_copy(p, host_mac_addr); 898 else 899 ether_addr_copy(p, hdev->hw.mac.mac_addr); 900 } 901 902 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p, 903 bool is_first) 904 { 905 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 906 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; 907 struct hclge_vf_to_pf_msg send_msg; 908 u8 *new_mac_addr = (u8 *)p; 909 int status; 910 911 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0); 912 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY; 913 ether_addr_copy(send_msg.data, new_mac_addr); 914 if (is_first && !hdev->has_pf_mac) 915 eth_zero_addr(&send_msg.data[ETH_ALEN]); 916 else 917 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr); 918 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 919 if (!status) 920 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); 921 922 return status; 923 } 924 925 static struct hclgevf_mac_addr_node * 926 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr) 927 { 928 struct hclgevf_mac_addr_node *mac_node, *tmp; 929 930 list_for_each_entry_safe(mac_node, tmp, list, node) 931 if (ether_addr_equal(mac_addr, mac_node->mac_addr)) 932 return mac_node; 933 934 return NULL; 935 } 936 937 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node, 938 enum HCLGEVF_MAC_NODE_STATE state) 939 { 940 switch (state) { 941 /* from set_rx_mode or tmp_add_list */ 942 case HCLGEVF_MAC_TO_ADD: 943 if (mac_node->state == HCLGEVF_MAC_TO_DEL) 944 mac_node->state = HCLGEVF_MAC_ACTIVE; 945 break; 946 /* only from set_rx_mode */ 947 case HCLGEVF_MAC_TO_DEL: 948 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 949 list_del(&mac_node->node); 950 kfree(mac_node); 951 } else { 952 mac_node->state = HCLGEVF_MAC_TO_DEL; 953 } 954 break; 955 /* only from tmp_add_list, the mac_node->state won't be 956 * HCLGEVF_MAC_ACTIVE 957 */ 958 case HCLGEVF_MAC_ACTIVE: 959 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 960 mac_node->state = HCLGEVF_MAC_ACTIVE; 961 break; 962 } 963 } 964 965 static int hclgevf_update_mac_list(struct hnae3_handle *handle, 966 enum HCLGEVF_MAC_NODE_STATE state, 967 enum HCLGEVF_MAC_ADDR_TYPE mac_type, 968 const unsigned char *addr) 969 { 970 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 971 struct hclgevf_mac_addr_node *mac_node; 972 struct list_head *list; 973 974 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 975 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 976 977 spin_lock_bh(&hdev->mac_table.mac_list_lock); 978 979 /* if the mac addr is already in the mac list, no need to add a new 980 * one into it, just check the mac addr state, convert it to a new 981 * state, or just remove it, or do nothing. 982 */ 983 mac_node = hclgevf_find_mac_node(list, addr); 984 if (mac_node) { 985 hclgevf_update_mac_node(mac_node, state); 986 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 987 return 0; 988 } 989 /* if this address is never added, unnecessary to delete */ 990 if (state == HCLGEVF_MAC_TO_DEL) { 991 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 992 return -ENOENT; 993 } 994 995 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); 996 if (!mac_node) { 997 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 998 return -ENOMEM; 999 } 1000 1001 mac_node->state = state; 1002 ether_addr_copy(mac_node->mac_addr, addr); 1003 list_add_tail(&mac_node->node, list); 1004 1005 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1006 return 0; 1007 } 1008 1009 static int hclgevf_add_uc_addr(struct hnae3_handle *handle, 1010 const unsigned char *addr) 1011 { 1012 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1013 HCLGEVF_MAC_ADDR_UC, addr); 1014 } 1015 1016 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, 1017 const unsigned char *addr) 1018 { 1019 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1020 HCLGEVF_MAC_ADDR_UC, addr); 1021 } 1022 1023 static int hclgevf_add_mc_addr(struct hnae3_handle *handle, 1024 const unsigned char *addr) 1025 { 1026 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1027 HCLGEVF_MAC_ADDR_MC, addr); 1028 } 1029 1030 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, 1031 const unsigned char *addr) 1032 { 1033 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1034 HCLGEVF_MAC_ADDR_MC, addr); 1035 } 1036 1037 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev, 1038 struct hclgevf_mac_addr_node *mac_node, 1039 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1040 { 1041 struct hclge_vf_to_pf_msg send_msg; 1042 u8 code, subcode; 1043 1044 if (mac_type == HCLGEVF_MAC_ADDR_UC) { 1045 code = HCLGE_MBX_SET_UNICAST; 1046 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1047 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD; 1048 else 1049 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE; 1050 } else { 1051 code = HCLGE_MBX_SET_MULTICAST; 1052 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1053 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD; 1054 else 1055 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE; 1056 } 1057 1058 hclgevf_build_send_msg(&send_msg, code, subcode); 1059 ether_addr_copy(send_msg.data, mac_node->mac_addr); 1060 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1061 } 1062 1063 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev, 1064 struct list_head *list, 1065 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1066 { 1067 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 1068 struct hclgevf_mac_addr_node *mac_node, *tmp; 1069 int ret; 1070 1071 list_for_each_entry_safe(mac_node, tmp, list, node) { 1072 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type); 1073 if (ret) { 1074 hnae3_format_mac_addr(format_mac_addr, 1075 mac_node->mac_addr); 1076 dev_err(&hdev->pdev->dev, 1077 "failed to configure mac %s, state = %d, ret = %d\n", 1078 format_mac_addr, mac_node->state, ret); 1079 return; 1080 } 1081 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1082 mac_node->state = HCLGEVF_MAC_ACTIVE; 1083 } else { 1084 list_del(&mac_node->node); 1085 kfree(mac_node); 1086 } 1087 } 1088 } 1089 1090 static void hclgevf_sync_from_add_list(struct list_head *add_list, 1091 struct list_head *mac_list) 1092 { 1093 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1094 1095 list_for_each_entry_safe(mac_node, tmp, add_list, node) { 1096 /* if the mac address from tmp_add_list is not in the 1097 * uc/mc_mac_list, it means have received a TO_DEL request 1098 * during the time window of sending mac config request to PF 1099 * If mac_node state is ACTIVE, then change its state to TO_DEL, 1100 * then it will be removed at next time. If is TO_ADD, it means 1101 * send TO_ADD request failed, so just remove the mac node. 1102 */ 1103 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1104 if (new_node) { 1105 hclgevf_update_mac_node(new_node, mac_node->state); 1106 list_del(&mac_node->node); 1107 kfree(mac_node); 1108 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) { 1109 mac_node->state = HCLGEVF_MAC_TO_DEL; 1110 list_move_tail(&mac_node->node, mac_list); 1111 } else { 1112 list_del(&mac_node->node); 1113 kfree(mac_node); 1114 } 1115 } 1116 } 1117 1118 static void hclgevf_sync_from_del_list(struct list_head *del_list, 1119 struct list_head *mac_list) 1120 { 1121 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1122 1123 list_for_each_entry_safe(mac_node, tmp, del_list, node) { 1124 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1125 if (new_node) { 1126 /* If the mac addr is exist in the mac list, it means 1127 * received a new request TO_ADD during the time window 1128 * of sending mac addr configurrequest to PF, so just 1129 * change the mac state to ACTIVE. 1130 */ 1131 new_node->state = HCLGEVF_MAC_ACTIVE; 1132 list_del(&mac_node->node); 1133 kfree(mac_node); 1134 } else { 1135 list_move_tail(&mac_node->node, mac_list); 1136 } 1137 } 1138 } 1139 1140 static void hclgevf_clear_list(struct list_head *list) 1141 { 1142 struct hclgevf_mac_addr_node *mac_node, *tmp; 1143 1144 list_for_each_entry_safe(mac_node, tmp, list, node) { 1145 list_del(&mac_node->node); 1146 kfree(mac_node); 1147 } 1148 } 1149 1150 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev, 1151 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1152 { 1153 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1154 struct list_head tmp_add_list, tmp_del_list; 1155 struct list_head *list; 1156 1157 INIT_LIST_HEAD(&tmp_add_list); 1158 INIT_LIST_HEAD(&tmp_del_list); 1159 1160 /* move the mac addr to the tmp_add_list and tmp_del_list, then 1161 * we can add/delete these mac addr outside the spin lock 1162 */ 1163 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1164 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1165 1166 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1167 1168 list_for_each_entry_safe(mac_node, tmp, list, node) { 1169 switch (mac_node->state) { 1170 case HCLGEVF_MAC_TO_DEL: 1171 list_move_tail(&mac_node->node, &tmp_del_list); 1172 break; 1173 case HCLGEVF_MAC_TO_ADD: 1174 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 1175 if (!new_node) 1176 goto stop_traverse; 1177 1178 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); 1179 new_node->state = mac_node->state; 1180 list_add_tail(&new_node->node, &tmp_add_list); 1181 break; 1182 default: 1183 break; 1184 } 1185 } 1186 1187 stop_traverse: 1188 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1189 1190 /* delete first, in order to get max mac table space for adding */ 1191 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type); 1192 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type); 1193 1194 /* if some mac addresses were added/deleted fail, move back to the 1195 * mac_list, and retry at next time. 1196 */ 1197 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1198 1199 hclgevf_sync_from_del_list(&tmp_del_list, list); 1200 hclgevf_sync_from_add_list(&tmp_add_list, list); 1201 1202 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1203 } 1204 1205 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev) 1206 { 1207 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC); 1208 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC); 1209 } 1210 1211 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev) 1212 { 1213 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1214 1215 hclgevf_clear_list(&hdev->mac_table.uc_mac_list); 1216 hclgevf_clear_list(&hdev->mac_table.mc_mac_list); 1217 1218 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1219 } 1220 1221 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable) 1222 { 1223 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1224 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 1225 struct hclge_vf_to_pf_msg send_msg; 1226 1227 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 1228 return -EOPNOTSUPP; 1229 1230 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1231 HCLGE_MBX_ENABLE_VLAN_FILTER); 1232 send_msg.data[0] = enable ? 1 : 0; 1233 1234 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1235 } 1236 1237 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, 1238 __be16 proto, u16 vlan_id, 1239 bool is_kill) 1240 { 1241 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1242 struct hclge_mbx_vlan_filter *vlan_filter; 1243 struct hclge_vf_to_pf_msg send_msg; 1244 int ret; 1245 1246 if (vlan_id > HCLGEVF_MAX_VLAN_ID) 1247 return -EINVAL; 1248 1249 if (proto != htons(ETH_P_8021Q)) 1250 return -EPROTONOSUPPORT; 1251 1252 /* When device is resetting or reset failed, firmware is unable to 1253 * handle mailbox. Just record the vlan id, and remove it after 1254 * reset finished. 1255 */ 1256 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 1257 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) { 1258 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1259 return -EBUSY; 1260 } 1261 1262 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1263 HCLGE_MBX_VLAN_FILTER); 1264 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data; 1265 vlan_filter->is_kill = is_kill; 1266 vlan_filter->vlan_id = cpu_to_le16(vlan_id); 1267 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto)); 1268 1269 /* when remove hw vlan filter failed, record the vlan id, 1270 * and try to remove it from hw later, to be consistence 1271 * with stack. 1272 */ 1273 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1274 if (is_kill && ret) 1275 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1276 1277 return ret; 1278 } 1279 1280 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev) 1281 { 1282 #define HCLGEVF_MAX_SYNC_COUNT 60 1283 struct hnae3_handle *handle = &hdev->nic; 1284 int ret, sync_cnt = 0; 1285 u16 vlan_id; 1286 1287 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1288 while (vlan_id != VLAN_N_VID) { 1289 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q), 1290 vlan_id, true); 1291 if (ret) 1292 return; 1293 1294 clear_bit(vlan_id, hdev->vlan_del_fail_bmap); 1295 sync_cnt++; 1296 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT) 1297 return; 1298 1299 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1300 } 1301 } 1302 1303 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 1304 { 1305 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1306 struct hclge_vf_to_pf_msg send_msg; 1307 1308 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1309 HCLGE_MBX_VLAN_RX_OFF_CFG); 1310 send_msg.data[0] = enable ? 1 : 0; 1311 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1312 } 1313 1314 static int hclgevf_reset_tqp(struct hnae3_handle *handle) 1315 { 1316 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U 1317 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1318 struct hclge_vf_to_pf_msg send_msg; 1319 u8 return_status = 0; 1320 int ret; 1321 u16 i; 1322 1323 /* disable vf queue before send queue reset msg to PF */ 1324 ret = hclgevf_tqp_enable(handle, false); 1325 if (ret) { 1326 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n", 1327 ret); 1328 return ret; 1329 } 1330 1331 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1332 1333 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status, 1334 sizeof(return_status)); 1335 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE) 1336 return ret; 1337 1338 for (i = 1; i < handle->kinfo.num_tqps; i++) { 1339 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1340 *(__le16 *)send_msg.data = cpu_to_le16(i); 1341 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1342 if (ret) 1343 return ret; 1344 } 1345 1346 return 0; 1347 } 1348 1349 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu) 1350 { 1351 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1352 struct hclge_mbx_mtu_info *mtu_info; 1353 struct hclge_vf_to_pf_msg send_msg; 1354 1355 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0); 1356 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data; 1357 mtu_info->mtu = cpu_to_le32(new_mtu); 1358 1359 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1360 } 1361 1362 static int hclgevf_notify_client(struct hclgevf_dev *hdev, 1363 enum hnae3_reset_notify_type type) 1364 { 1365 struct hnae3_client *client = hdev->nic_client; 1366 struct hnae3_handle *handle = &hdev->nic; 1367 int ret; 1368 1369 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) || 1370 !client) 1371 return 0; 1372 1373 if (!client->ops->reset_notify) 1374 return -EOPNOTSUPP; 1375 1376 ret = client->ops->reset_notify(handle, type); 1377 if (ret) 1378 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", 1379 type, ret); 1380 1381 return ret; 1382 } 1383 1384 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev, 1385 enum hnae3_reset_notify_type type) 1386 { 1387 struct hnae3_client *client = hdev->roce_client; 1388 struct hnae3_handle *handle = &hdev->roce; 1389 int ret; 1390 1391 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client) 1392 return 0; 1393 1394 if (!client->ops->reset_notify) 1395 return -EOPNOTSUPP; 1396 1397 ret = client->ops->reset_notify(handle, type); 1398 if (ret) 1399 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", 1400 type, ret); 1401 return ret; 1402 } 1403 1404 static int hclgevf_reset_wait(struct hclgevf_dev *hdev) 1405 { 1406 #define HCLGEVF_RESET_WAIT_US 20000 1407 #define HCLGEVF_RESET_WAIT_CNT 2000 1408 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \ 1409 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT) 1410 1411 u32 val; 1412 int ret; 1413 1414 if (hdev->reset_type == HNAE3_VF_RESET) 1415 ret = readl_poll_timeout(hdev->hw.hw.io_base + 1416 HCLGEVF_VF_RST_ING, val, 1417 !(val & HCLGEVF_VF_RST_ING_BIT), 1418 HCLGEVF_RESET_WAIT_US, 1419 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1420 else 1421 ret = readl_poll_timeout(hdev->hw.hw.io_base + 1422 HCLGEVF_RST_ING, val, 1423 !(val & HCLGEVF_RST_ING_BITS), 1424 HCLGEVF_RESET_WAIT_US, 1425 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1426 1427 /* hardware completion status should be available by this time */ 1428 if (ret) { 1429 dev_err(&hdev->pdev->dev, 1430 "couldn't get reset done status from h/w, timeout!\n"); 1431 return ret; 1432 } 1433 1434 /* we will wait a bit more to let reset of the stack to complete. This 1435 * might happen in case reset assertion was made by PF. Yes, this also 1436 * means we might end up waiting bit more even for VF reset. 1437 */ 1438 if (hdev->reset_type == HNAE3_VF_FULL_RESET) 1439 msleep(5000); 1440 else 1441 msleep(500); 1442 1443 return 0; 1444 } 1445 1446 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable) 1447 { 1448 u32 reg_val; 1449 1450 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG); 1451 if (enable) 1452 reg_val |= HCLGEVF_NIC_SW_RST_RDY; 1453 else 1454 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY; 1455 1456 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, 1457 reg_val); 1458 } 1459 1460 static int hclgevf_reset_stack(struct hclgevf_dev *hdev) 1461 { 1462 int ret; 1463 1464 /* uninitialize the nic client */ 1465 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 1466 if (ret) 1467 return ret; 1468 1469 /* re-initialize the hclge device */ 1470 ret = hclgevf_reset_hdev(hdev); 1471 if (ret) { 1472 dev_err(&hdev->pdev->dev, 1473 "hclge device re-init failed, VF is disabled!\n"); 1474 return ret; 1475 } 1476 1477 /* bring up the nic client again */ 1478 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); 1479 if (ret) 1480 return ret; 1481 1482 /* clear handshake status with IMP */ 1483 hclgevf_reset_handshake(hdev, false); 1484 1485 /* bring up the nic to enable TX/RX again */ 1486 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 1487 } 1488 1489 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev) 1490 { 1491 #define HCLGEVF_RESET_SYNC_TIME 100 1492 1493 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) { 1494 struct hclge_vf_to_pf_msg send_msg; 1495 int ret; 1496 1497 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0); 1498 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1499 if (ret) { 1500 dev_err(&hdev->pdev->dev, 1501 "failed to assert VF reset, ret = %d\n", ret); 1502 return ret; 1503 } 1504 hdev->rst_stats.vf_func_rst_cnt++; 1505 } 1506 1507 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 1508 /* inform hardware that preparatory work is done */ 1509 msleep(HCLGEVF_RESET_SYNC_TIME); 1510 hclgevf_reset_handshake(hdev, true); 1511 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n", 1512 hdev->reset_type); 1513 1514 return 0; 1515 } 1516 1517 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev) 1518 { 1519 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n", 1520 hdev->rst_stats.vf_func_rst_cnt); 1521 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n", 1522 hdev->rst_stats.flr_rst_cnt); 1523 dev_info(&hdev->pdev->dev, "VF reset count: %u\n", 1524 hdev->rst_stats.vf_rst_cnt); 1525 dev_info(&hdev->pdev->dev, "reset done count: %u\n", 1526 hdev->rst_stats.rst_done_cnt); 1527 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n", 1528 hdev->rst_stats.hw_rst_done_cnt); 1529 dev_info(&hdev->pdev->dev, "reset count: %u\n", 1530 hdev->rst_stats.rst_cnt); 1531 dev_info(&hdev->pdev->dev, "reset fail count: %u\n", 1532 hdev->rst_stats.rst_fail_cnt); 1533 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n", 1534 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE)); 1535 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n", 1536 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG)); 1537 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n", 1538 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG)); 1539 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n", 1540 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING)); 1541 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state); 1542 } 1543 1544 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev) 1545 { 1546 /* recover handshake status with IMP when reset fail */ 1547 hclgevf_reset_handshake(hdev, true); 1548 hdev->rst_stats.rst_fail_cnt++; 1549 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n", 1550 hdev->rst_stats.rst_fail_cnt); 1551 1552 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT) 1553 set_bit(hdev->reset_type, &hdev->reset_pending); 1554 1555 if (hclgevf_is_reset_pending(hdev)) { 1556 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1557 hclgevf_reset_task_schedule(hdev); 1558 } else { 1559 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1560 hclgevf_dump_rst_info(hdev); 1561 } 1562 } 1563 1564 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev) 1565 { 1566 int ret; 1567 1568 hdev->rst_stats.rst_cnt++; 1569 1570 /* perform reset of the stack & ae device for a client */ 1571 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); 1572 if (ret) 1573 return ret; 1574 1575 rtnl_lock(); 1576 /* bring down the nic to stop any ongoing TX/RX */ 1577 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 1578 rtnl_unlock(); 1579 if (ret) 1580 return ret; 1581 1582 return hclgevf_reset_prepare_wait(hdev); 1583 } 1584 1585 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev) 1586 { 1587 int ret; 1588 1589 hdev->rst_stats.hw_rst_done_cnt++; 1590 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); 1591 if (ret) 1592 return ret; 1593 1594 rtnl_lock(); 1595 /* now, re-initialize the nic client and ae device */ 1596 ret = hclgevf_reset_stack(hdev); 1597 rtnl_unlock(); 1598 if (ret) { 1599 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); 1600 return ret; 1601 } 1602 1603 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT); 1604 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1 1605 * times 1606 */ 1607 if (ret && 1608 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1) 1609 return ret; 1610 1611 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT); 1612 if (ret) 1613 return ret; 1614 1615 hdev->last_reset_time = jiffies; 1616 hdev->rst_stats.rst_done_cnt++; 1617 hdev->rst_stats.rst_fail_cnt = 0; 1618 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1619 1620 return 0; 1621 } 1622 1623 static void hclgevf_reset(struct hclgevf_dev *hdev) 1624 { 1625 if (hclgevf_reset_prepare(hdev)) 1626 goto err_reset; 1627 1628 /* check if VF could successfully fetch the hardware reset completion 1629 * status from the hardware 1630 */ 1631 if (hclgevf_reset_wait(hdev)) { 1632 /* can't do much in this situation, will disable VF */ 1633 dev_err(&hdev->pdev->dev, 1634 "failed to fetch H/W reset completion status\n"); 1635 goto err_reset; 1636 } 1637 1638 if (hclgevf_reset_rebuild(hdev)) 1639 goto err_reset; 1640 1641 return; 1642 1643 err_reset: 1644 hclgevf_reset_err_handle(hdev); 1645 } 1646 1647 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr) 1648 { 1649 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; 1650 1651 /* return the highest priority reset level amongst all */ 1652 if (test_bit(HNAE3_VF_RESET, addr)) { 1653 rst_level = HNAE3_VF_RESET; 1654 clear_bit(HNAE3_VF_RESET, addr); 1655 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1656 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1657 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) { 1658 rst_level = HNAE3_VF_FULL_RESET; 1659 clear_bit(HNAE3_VF_FULL_RESET, addr); 1660 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1661 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) { 1662 rst_level = HNAE3_VF_PF_FUNC_RESET; 1663 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1664 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1665 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) { 1666 rst_level = HNAE3_VF_FUNC_RESET; 1667 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1668 } else if (test_bit(HNAE3_FLR_RESET, addr)) { 1669 rst_level = HNAE3_FLR_RESET; 1670 clear_bit(HNAE3_FLR_RESET, addr); 1671 } 1672 1673 return rst_level; 1674 } 1675 1676 static void hclgevf_reset_event(struct pci_dev *pdev, 1677 struct hnae3_handle *handle) 1678 { 1679 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 1680 struct hclgevf_dev *hdev = ae_dev->priv; 1681 1682 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); 1683 1684 if (hdev->default_reset_request) 1685 hdev->reset_level = 1686 hclgevf_get_reset_level(&hdev->default_reset_request); 1687 else 1688 hdev->reset_level = HNAE3_VF_FUNC_RESET; 1689 1690 /* reset of this VF requested */ 1691 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); 1692 hclgevf_reset_task_schedule(hdev); 1693 1694 hdev->last_reset_time = jiffies; 1695 } 1696 1697 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev, 1698 enum hnae3_reset_type rst_type) 1699 { 1700 struct hclgevf_dev *hdev = ae_dev->priv; 1701 1702 set_bit(rst_type, &hdev->default_reset_request); 1703 } 1704 1705 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) 1706 { 1707 writel(en ? 1 : 0, vector->addr); 1708 } 1709 1710 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev, 1711 enum hnae3_reset_type rst_type) 1712 { 1713 #define HCLGEVF_RESET_RETRY_WAIT_MS 500 1714 #define HCLGEVF_RESET_RETRY_CNT 5 1715 1716 struct hclgevf_dev *hdev = ae_dev->priv; 1717 int retry_cnt = 0; 1718 int ret; 1719 1720 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) { 1721 down(&hdev->reset_sem); 1722 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1723 hdev->reset_type = rst_type; 1724 ret = hclgevf_reset_prepare(hdev); 1725 if (!ret && !hdev->reset_pending) 1726 break; 1727 1728 dev_err(&hdev->pdev->dev, 1729 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n", 1730 ret, hdev->reset_pending, retry_cnt); 1731 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1732 up(&hdev->reset_sem); 1733 msleep(HCLGEVF_RESET_RETRY_WAIT_MS); 1734 } 1735 1736 /* disable misc vector before reset done */ 1737 hclgevf_enable_vector(&hdev->misc_vector, false); 1738 1739 if (hdev->reset_type == HNAE3_FLR_RESET) 1740 hdev->rst_stats.flr_rst_cnt++; 1741 } 1742 1743 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev) 1744 { 1745 struct hclgevf_dev *hdev = ae_dev->priv; 1746 int ret; 1747 1748 hclgevf_enable_vector(&hdev->misc_vector, true); 1749 1750 ret = hclgevf_reset_rebuild(hdev); 1751 if (ret) 1752 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", 1753 ret); 1754 1755 hdev->reset_type = HNAE3_NONE_RESET; 1756 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1757 up(&hdev->reset_sem); 1758 } 1759 1760 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) 1761 { 1762 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1763 1764 return hdev->fw_version; 1765 } 1766 1767 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) 1768 { 1769 struct hclgevf_misc_vector *vector = &hdev->misc_vector; 1770 1771 vector->vector_irq = pci_irq_vector(hdev->pdev, 1772 HCLGEVF_MISC_VECTOR_NUM); 1773 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; 1774 /* vector status always valid for Vector 0 */ 1775 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; 1776 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; 1777 1778 hdev->num_msi_left -= 1; 1779 hdev->num_msi_used += 1; 1780 } 1781 1782 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) 1783 { 1784 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1785 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) && 1786 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, 1787 &hdev->state)) 1788 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 1789 } 1790 1791 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) 1792 { 1793 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1794 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, 1795 &hdev->state)) 1796 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 1797 } 1798 1799 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 1800 unsigned long delay) 1801 { 1802 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1803 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 1804 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay); 1805 } 1806 1807 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev) 1808 { 1809 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3 1810 1811 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) 1812 return; 1813 1814 down(&hdev->reset_sem); 1815 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1816 1817 if (test_and_clear_bit(HCLGEVF_RESET_PENDING, 1818 &hdev->reset_state)) { 1819 /* PF has intimated that it is about to reset the hardware. 1820 * We now have to poll & check if hardware has actually 1821 * completed the reset sequence. On hardware reset completion, 1822 * VF needs to reset the client and ae device. 1823 */ 1824 hdev->reset_attempts = 0; 1825 1826 hdev->last_reset_time = jiffies; 1827 hdev->reset_type = 1828 hclgevf_get_reset_level(&hdev->reset_pending); 1829 if (hdev->reset_type != HNAE3_NONE_RESET) 1830 hclgevf_reset(hdev); 1831 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, 1832 &hdev->reset_state)) { 1833 /* we could be here when either of below happens: 1834 * 1. reset was initiated due to watchdog timeout caused by 1835 * a. IMP was earlier reset and our TX got choked down and 1836 * which resulted in watchdog reacting and inducing VF 1837 * reset. This also means our cmdq would be unreliable. 1838 * b. problem in TX due to other lower layer(example link 1839 * layer not functioning properly etc.) 1840 * 2. VF reset might have been initiated due to some config 1841 * change. 1842 * 1843 * NOTE: Theres no clear way to detect above cases than to react 1844 * to the response of PF for this reset request. PF will ack the 1845 * 1b and 2. cases but we will not get any intimation about 1a 1846 * from PF as cmdq would be in unreliable state i.e. mailbox 1847 * communication between PF and VF would be broken. 1848 * 1849 * if we are never geting into pending state it means either: 1850 * 1. PF is not receiving our request which could be due to IMP 1851 * reset 1852 * 2. PF is screwed 1853 * We cannot do much for 2. but to check first we can try reset 1854 * our PCIe + stack and see if it alleviates the problem. 1855 */ 1856 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) { 1857 /* prepare for full reset of stack + pcie interface */ 1858 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending); 1859 1860 /* "defer" schedule the reset task again */ 1861 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1862 } else { 1863 hdev->reset_attempts++; 1864 1865 set_bit(hdev->reset_level, &hdev->reset_pending); 1866 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1867 } 1868 hclgevf_reset_task_schedule(hdev); 1869 } 1870 1871 hdev->reset_type = HNAE3_NONE_RESET; 1872 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1873 up(&hdev->reset_sem); 1874 } 1875 1876 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev) 1877 { 1878 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state)) 1879 return; 1880 1881 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) 1882 return; 1883 1884 hclgevf_mbx_async_handler(hdev); 1885 1886 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 1887 } 1888 1889 static void hclgevf_keep_alive(struct hclgevf_dev *hdev) 1890 { 1891 struct hclge_vf_to_pf_msg send_msg; 1892 int ret; 1893 1894 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state)) 1895 return; 1896 1897 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0); 1898 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1899 if (ret) 1900 dev_err(&hdev->pdev->dev, 1901 "VF sends keep alive cmd failed(=%d)\n", ret); 1902 } 1903 1904 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev) 1905 { 1906 unsigned long delta = round_jiffies_relative(HZ); 1907 struct hnae3_handle *handle = &hdev->nic; 1908 1909 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 1910 return; 1911 1912 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { 1913 delta = jiffies - hdev->last_serv_processed; 1914 1915 if (delta < round_jiffies_relative(HZ)) { 1916 delta = round_jiffies_relative(HZ) - delta; 1917 goto out; 1918 } 1919 } 1920 1921 hdev->serv_processed_cnt++; 1922 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL)) 1923 hclgevf_keep_alive(hdev); 1924 1925 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) { 1926 hdev->last_serv_processed = jiffies; 1927 goto out; 1928 } 1929 1930 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL)) 1931 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 1932 1933 /* VF does not need to request link status when this bit is set, because 1934 * PF will push its link status to VFs when link status changed. 1935 */ 1936 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state)) 1937 hclgevf_request_link_info(hdev); 1938 1939 hclgevf_update_link_mode(hdev); 1940 1941 hclgevf_sync_vlan_filter(hdev); 1942 1943 hclgevf_sync_mac_table(hdev); 1944 1945 hclgevf_sync_promisc_mode(hdev); 1946 1947 hdev->last_serv_processed = jiffies; 1948 1949 out: 1950 hclgevf_task_schedule(hdev, delta); 1951 } 1952 1953 static void hclgevf_service_task(struct work_struct *work) 1954 { 1955 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev, 1956 service_task.work); 1957 1958 hclgevf_reset_service_task(hdev); 1959 hclgevf_mailbox_service_task(hdev); 1960 hclgevf_periodic_service_task(hdev); 1961 1962 /* Handle reset and mbx again in case periodical task delays the 1963 * handling by calling hclgevf_task_schedule() in 1964 * hclgevf_periodic_service_task() 1965 */ 1966 hclgevf_reset_service_task(hdev); 1967 hclgevf_mailbox_service_task(hdev); 1968 } 1969 1970 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) 1971 { 1972 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr); 1973 } 1974 1975 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev, 1976 u32 *clearval) 1977 { 1978 u32 val, cmdq_stat_reg, rst_ing_reg; 1979 1980 /* fetch the events from their corresponding regs */ 1981 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw, 1982 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG); 1983 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) { 1984 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 1985 dev_info(&hdev->pdev->dev, 1986 "receive reset interrupt 0x%x!\n", rst_ing_reg); 1987 set_bit(HNAE3_VF_RESET, &hdev->reset_pending); 1988 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1989 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 1990 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B); 1991 hdev->rst_stats.vf_rst_cnt++; 1992 /* set up VF hardware reset status, its PF will clear 1993 * this status when PF has initialized done. 1994 */ 1995 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING); 1996 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING, 1997 val | HCLGEVF_VF_RST_ING_BIT); 1998 return HCLGEVF_VECTOR0_EVENT_RST; 1999 } 2000 2001 /* check for vector0 mailbox(=CMDQ RX) event source */ 2002 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) { 2003 /* for revision 0x21, clearing interrupt is writing bit 0 2004 * to the clear register, writing bit 1 means to keep the 2005 * old value. 2006 * for revision 0x20, the clear register is a read & write 2007 * register, so we should just write 0 to the bit we are 2008 * handling, and keep other bits as cmdq_stat_reg. 2009 */ 2010 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) 2011 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2012 else 2013 *clearval = cmdq_stat_reg & 2014 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2015 2016 return HCLGEVF_VECTOR0_EVENT_MBX; 2017 } 2018 2019 /* print other vector0 event source */ 2020 dev_info(&hdev->pdev->dev, 2021 "vector 0 interrupt from unknown source, cmdq_src = %#x\n", 2022 cmdq_stat_reg); 2023 2024 return HCLGEVF_VECTOR0_EVENT_OTHER; 2025 } 2026 2027 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) 2028 { 2029 enum hclgevf_evt_cause event_cause; 2030 struct hclgevf_dev *hdev = data; 2031 u32 clearval; 2032 2033 hclgevf_enable_vector(&hdev->misc_vector, false); 2034 event_cause = hclgevf_check_evt_cause(hdev, &clearval); 2035 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) 2036 hclgevf_clear_event_cause(hdev, clearval); 2037 2038 switch (event_cause) { 2039 case HCLGEVF_VECTOR0_EVENT_RST: 2040 hclgevf_reset_task_schedule(hdev); 2041 break; 2042 case HCLGEVF_VECTOR0_EVENT_MBX: 2043 hclgevf_mbx_handler(hdev); 2044 break; 2045 default: 2046 break; 2047 } 2048 2049 hclgevf_enable_vector(&hdev->misc_vector, true); 2050 2051 return IRQ_HANDLED; 2052 } 2053 2054 static int hclgevf_configure(struct hclgevf_dev *hdev) 2055 { 2056 int ret; 2057 2058 hdev->gro_en = true; 2059 2060 ret = hclgevf_get_basic_info(hdev); 2061 if (ret) 2062 return ret; 2063 2064 /* get current port based vlan state from PF */ 2065 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2066 if (ret) 2067 return ret; 2068 2069 /* get queue configuration from PF */ 2070 ret = hclgevf_get_queue_info(hdev); 2071 if (ret) 2072 return ret; 2073 2074 /* get queue depth info from PF */ 2075 ret = hclgevf_get_queue_depth(hdev); 2076 if (ret) 2077 return ret; 2078 2079 return hclgevf_get_pf_media_type(hdev); 2080 } 2081 2082 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) 2083 { 2084 struct pci_dev *pdev = ae_dev->pdev; 2085 struct hclgevf_dev *hdev; 2086 2087 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 2088 if (!hdev) 2089 return -ENOMEM; 2090 2091 hdev->pdev = pdev; 2092 hdev->ae_dev = ae_dev; 2093 ae_dev->priv = hdev; 2094 2095 return 0; 2096 } 2097 2098 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) 2099 { 2100 struct hnae3_handle *roce = &hdev->roce; 2101 struct hnae3_handle *nic = &hdev->nic; 2102 2103 roce->rinfo.num_vectors = hdev->num_roce_msix; 2104 2105 if (hdev->num_msi_left < roce->rinfo.num_vectors || 2106 hdev->num_msi_left == 0) 2107 return -EINVAL; 2108 2109 roce->rinfo.base_vector = hdev->roce_base_msix_offset; 2110 2111 roce->rinfo.netdev = nic->kinfo.netdev; 2112 roce->rinfo.roce_io_base = hdev->hw.hw.io_base; 2113 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base; 2114 2115 roce->pdev = nic->pdev; 2116 roce->ae_algo = nic->ae_algo; 2117 roce->numa_node_mask = nic->numa_node_mask; 2118 2119 return 0; 2120 } 2121 2122 static int hclgevf_config_gro(struct hclgevf_dev *hdev) 2123 { 2124 struct hclgevf_cfg_gro_status_cmd *req; 2125 struct hclge_desc desc; 2126 int ret; 2127 2128 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev)) 2129 return 0; 2130 2131 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, 2132 false); 2133 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data; 2134 2135 req->gro_en = hdev->gro_en ? 1 : 0; 2136 2137 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2138 if (ret) 2139 dev_err(&hdev->pdev->dev, 2140 "VF GRO hardware config cmd failed, ret = %d.\n", ret); 2141 2142 return ret; 2143 } 2144 2145 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) 2146 { 2147 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 2148 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM]; 2149 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM]; 2150 u16 tc_size[HCLGE_COMM_MAX_TC_NUM]; 2151 int ret; 2152 2153 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 2154 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, 2155 rss_cfg->rss_algo, 2156 rss_cfg->rss_hash_key); 2157 if (ret) 2158 return ret; 2159 2160 ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg); 2161 if (ret) 2162 return ret; 2163 } 2164 2165 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 2166 rss_cfg->rss_indirection_tbl); 2167 if (ret) 2168 return ret; 2169 2170 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map, 2171 tc_offset, tc_valid, tc_size); 2172 2173 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, 2174 tc_valid, tc_size); 2175 } 2176 2177 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) 2178 { 2179 struct hnae3_handle *nic = &hdev->nic; 2180 int ret; 2181 2182 ret = hclgevf_en_hw_strip_rxvtag(nic, true); 2183 if (ret) { 2184 dev_err(&hdev->pdev->dev, 2185 "failed to enable rx vlan offload, ret = %d\n", ret); 2186 return ret; 2187 } 2188 2189 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, 2190 false); 2191 } 2192 2193 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev) 2194 { 2195 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000 2196 2197 unsigned long last = hdev->serv_processed_cnt; 2198 int i = 0; 2199 2200 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) && 2201 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT && 2202 last == hdev->serv_processed_cnt) 2203 usleep_range(1, 1); 2204 } 2205 2206 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable) 2207 { 2208 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2209 2210 if (enable) { 2211 hclgevf_task_schedule(hdev, 0); 2212 } else { 2213 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2214 2215 /* flush memory to make sure DOWN is seen by service task */ 2216 smp_mb__before_atomic(); 2217 hclgevf_flush_link_update(hdev); 2218 } 2219 } 2220 2221 static int hclgevf_ae_start(struct hnae3_handle *handle) 2222 { 2223 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2224 2225 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2226 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state); 2227 2228 hclge_comm_reset_tqp_stats(handle); 2229 2230 hclgevf_request_link_info(hdev); 2231 2232 hclgevf_update_link_mode(hdev); 2233 2234 return 0; 2235 } 2236 2237 static void hclgevf_ae_stop(struct hnae3_handle *handle) 2238 { 2239 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2240 2241 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2242 2243 if (hdev->reset_type != HNAE3_VF_RESET) 2244 hclgevf_reset_tqp(handle); 2245 2246 hclge_comm_reset_tqp_stats(handle); 2247 hclgevf_update_link_status(hdev, 0); 2248 } 2249 2250 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive) 2251 { 2252 #define HCLGEVF_STATE_ALIVE 1 2253 #define HCLGEVF_STATE_NOT_ALIVE 0 2254 2255 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2256 struct hclge_vf_to_pf_msg send_msg; 2257 2258 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0); 2259 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE : 2260 HCLGEVF_STATE_NOT_ALIVE; 2261 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2262 } 2263 2264 static int hclgevf_client_start(struct hnae3_handle *handle) 2265 { 2266 return hclgevf_set_alive(handle, true); 2267 } 2268 2269 static void hclgevf_client_stop(struct hnae3_handle *handle) 2270 { 2271 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2272 int ret; 2273 2274 ret = hclgevf_set_alive(handle, false); 2275 if (ret) 2276 dev_warn(&hdev->pdev->dev, 2277 "%s failed %d\n", __func__, ret); 2278 } 2279 2280 static void hclgevf_state_init(struct hclgevf_dev *hdev) 2281 { 2282 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 2283 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2284 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 2285 2286 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task); 2287 2288 mutex_init(&hdev->mbx_resp.mbx_mutex); 2289 sema_init(&hdev->reset_sem, 1); 2290 2291 spin_lock_init(&hdev->mac_table.mac_list_lock); 2292 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list); 2293 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list); 2294 2295 /* bring the device down */ 2296 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2297 } 2298 2299 static void hclgevf_state_uninit(struct hclgevf_dev *hdev) 2300 { 2301 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2302 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state); 2303 2304 if (hdev->service_task.work.func) 2305 cancel_delayed_work_sync(&hdev->service_task); 2306 2307 mutex_destroy(&hdev->mbx_resp.mbx_mutex); 2308 } 2309 2310 static int hclgevf_init_msi(struct hclgevf_dev *hdev) 2311 { 2312 struct pci_dev *pdev = hdev->pdev; 2313 int vectors; 2314 int i; 2315 2316 if (hnae3_dev_roce_supported(hdev)) 2317 vectors = pci_alloc_irq_vectors(pdev, 2318 hdev->roce_base_msix_offset + 1, 2319 hdev->num_msi, 2320 PCI_IRQ_MSIX); 2321 else 2322 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, 2323 hdev->num_msi, 2324 PCI_IRQ_MSI | PCI_IRQ_MSIX); 2325 2326 if (vectors < 0) { 2327 dev_err(&pdev->dev, 2328 "failed(%d) to allocate MSI/MSI-X vectors\n", 2329 vectors); 2330 return vectors; 2331 } 2332 if (vectors < hdev->num_msi) 2333 dev_warn(&hdev->pdev->dev, 2334 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", 2335 hdev->num_msi, vectors); 2336 2337 hdev->num_msi = vectors; 2338 hdev->num_msi_left = vectors; 2339 2340 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 2341 sizeof(u16), GFP_KERNEL); 2342 if (!hdev->vector_status) { 2343 pci_free_irq_vectors(pdev); 2344 return -ENOMEM; 2345 } 2346 2347 for (i = 0; i < hdev->num_msi; i++) 2348 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; 2349 2350 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 2351 sizeof(int), GFP_KERNEL); 2352 if (!hdev->vector_irq) { 2353 devm_kfree(&pdev->dev, hdev->vector_status); 2354 pci_free_irq_vectors(pdev); 2355 return -ENOMEM; 2356 } 2357 2358 return 0; 2359 } 2360 2361 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) 2362 { 2363 struct pci_dev *pdev = hdev->pdev; 2364 2365 devm_kfree(&pdev->dev, hdev->vector_status); 2366 devm_kfree(&pdev->dev, hdev->vector_irq); 2367 pci_free_irq_vectors(pdev); 2368 } 2369 2370 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) 2371 { 2372 int ret; 2373 2374 hclgevf_get_misc_vector(hdev); 2375 2376 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", 2377 HCLGEVF_NAME, pci_name(hdev->pdev)); 2378 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 2379 0, hdev->misc_vector.name, hdev); 2380 if (ret) { 2381 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", 2382 hdev->misc_vector.vector_irq); 2383 return ret; 2384 } 2385 2386 hclgevf_clear_event_cause(hdev, 0); 2387 2388 /* enable misc. vector(vector 0) */ 2389 hclgevf_enable_vector(&hdev->misc_vector, true); 2390 2391 return ret; 2392 } 2393 2394 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) 2395 { 2396 /* disable misc vector(vector 0) */ 2397 hclgevf_enable_vector(&hdev->misc_vector, false); 2398 synchronize_irq(hdev->misc_vector.vector_irq); 2399 free_irq(hdev->misc_vector.vector_irq, hdev); 2400 hclgevf_free_vector(hdev, 0); 2401 } 2402 2403 static void hclgevf_info_show(struct hclgevf_dev *hdev) 2404 { 2405 struct device *dev = &hdev->pdev->dev; 2406 2407 dev_info(dev, "VF info begin:\n"); 2408 2409 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); 2410 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); 2411 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); 2412 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); 2413 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); 2414 dev_info(dev, "PF media type of this VF: %u\n", 2415 hdev->hw.mac.media_type); 2416 2417 dev_info(dev, "VF info end.\n"); 2418 } 2419 2420 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, 2421 struct hnae3_client *client) 2422 { 2423 struct hclgevf_dev *hdev = ae_dev->priv; 2424 int rst_cnt = hdev->rst_stats.rst_cnt; 2425 int ret; 2426 2427 ret = client->ops->init_instance(&hdev->nic); 2428 if (ret) 2429 return ret; 2430 2431 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2432 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 2433 rst_cnt != hdev->rst_stats.rst_cnt) { 2434 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2435 2436 client->ops->uninit_instance(&hdev->nic, 0); 2437 return -EBUSY; 2438 } 2439 2440 hnae3_set_client_init_flag(client, ae_dev, 1); 2441 2442 if (netif_msg_drv(&hdev->nic)) 2443 hclgevf_info_show(hdev); 2444 2445 return 0; 2446 } 2447 2448 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, 2449 struct hnae3_client *client) 2450 { 2451 struct hclgevf_dev *hdev = ae_dev->priv; 2452 int ret; 2453 2454 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || 2455 !hdev->nic_client) 2456 return 0; 2457 2458 ret = hclgevf_init_roce_base_info(hdev); 2459 if (ret) 2460 return ret; 2461 2462 ret = client->ops->init_instance(&hdev->roce); 2463 if (ret) 2464 return ret; 2465 2466 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2467 hnae3_set_client_init_flag(client, ae_dev, 1); 2468 2469 return 0; 2470 } 2471 2472 static int hclgevf_init_client_instance(struct hnae3_client *client, 2473 struct hnae3_ae_dev *ae_dev) 2474 { 2475 struct hclgevf_dev *hdev = ae_dev->priv; 2476 int ret; 2477 2478 switch (client->type) { 2479 case HNAE3_CLIENT_KNIC: 2480 hdev->nic_client = client; 2481 hdev->nic.client = client; 2482 2483 ret = hclgevf_init_nic_client_instance(ae_dev, client); 2484 if (ret) 2485 goto clear_nic; 2486 2487 ret = hclgevf_init_roce_client_instance(ae_dev, 2488 hdev->roce_client); 2489 if (ret) 2490 goto clear_roce; 2491 2492 break; 2493 case HNAE3_CLIENT_ROCE: 2494 if (hnae3_dev_roce_supported(hdev)) { 2495 hdev->roce_client = client; 2496 hdev->roce.client = client; 2497 } 2498 2499 ret = hclgevf_init_roce_client_instance(ae_dev, client); 2500 if (ret) 2501 goto clear_roce; 2502 2503 break; 2504 default: 2505 return -EINVAL; 2506 } 2507 2508 return 0; 2509 2510 clear_nic: 2511 hdev->nic_client = NULL; 2512 hdev->nic.client = NULL; 2513 return ret; 2514 clear_roce: 2515 hdev->roce_client = NULL; 2516 hdev->roce.client = NULL; 2517 return ret; 2518 } 2519 2520 static void hclgevf_uninit_client_instance(struct hnae3_client *client, 2521 struct hnae3_ae_dev *ae_dev) 2522 { 2523 struct hclgevf_dev *hdev = ae_dev->priv; 2524 2525 /* un-init roce, if it exists */ 2526 if (hdev->roce_client) { 2527 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 2528 msleep(HCLGEVF_WAIT_RESET_DONE); 2529 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2530 2531 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); 2532 hdev->roce_client = NULL; 2533 hdev->roce.client = NULL; 2534 } 2535 2536 /* un-init nic/unic, if this was not called by roce client */ 2537 if (client->ops->uninit_instance && hdev->nic_client && 2538 client->type != HNAE3_CLIENT_ROCE) { 2539 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 2540 msleep(HCLGEVF_WAIT_RESET_DONE); 2541 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2542 2543 client->ops->uninit_instance(&hdev->nic, 0); 2544 hdev->nic_client = NULL; 2545 hdev->nic.client = NULL; 2546 } 2547 } 2548 2549 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev) 2550 { 2551 struct pci_dev *pdev = hdev->pdev; 2552 struct hclgevf_hw *hw = &hdev->hw; 2553 2554 /* for device does not have device memory, return directly */ 2555 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR))) 2556 return 0; 2557 2558 hw->hw.mem_base = 2559 devm_ioremap_wc(&pdev->dev, 2560 pci_resource_start(pdev, HCLGEVF_MEM_BAR), 2561 pci_resource_len(pdev, HCLGEVF_MEM_BAR)); 2562 if (!hw->hw.mem_base) { 2563 dev_err(&pdev->dev, "failed to map device memory\n"); 2564 return -EFAULT; 2565 } 2566 2567 return 0; 2568 } 2569 2570 static int hclgevf_pci_init(struct hclgevf_dev *hdev) 2571 { 2572 struct pci_dev *pdev = hdev->pdev; 2573 struct hclgevf_hw *hw; 2574 int ret; 2575 2576 ret = pci_enable_device(pdev); 2577 if (ret) { 2578 dev_err(&pdev->dev, "failed to enable PCI device\n"); 2579 return ret; 2580 } 2581 2582 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2583 if (ret) { 2584 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); 2585 goto err_disable_device; 2586 } 2587 2588 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); 2589 if (ret) { 2590 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 2591 goto err_disable_device; 2592 } 2593 2594 pci_set_master(pdev); 2595 hw = &hdev->hw; 2596 hw->hw.io_base = pci_iomap(pdev, 2, 0); 2597 if (!hw->hw.io_base) { 2598 dev_err(&pdev->dev, "can't map configuration register space\n"); 2599 ret = -ENOMEM; 2600 goto err_release_regions; 2601 } 2602 2603 ret = hclgevf_dev_mem_map(hdev); 2604 if (ret) 2605 goto err_unmap_io_base; 2606 2607 return 0; 2608 2609 err_unmap_io_base: 2610 pci_iounmap(pdev, hdev->hw.hw.io_base); 2611 err_release_regions: 2612 pci_release_regions(pdev); 2613 err_disable_device: 2614 pci_disable_device(pdev); 2615 2616 return ret; 2617 } 2618 2619 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) 2620 { 2621 struct pci_dev *pdev = hdev->pdev; 2622 2623 if (hdev->hw.hw.mem_base) 2624 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base); 2625 2626 pci_iounmap(pdev, hdev->hw.hw.io_base); 2627 pci_release_regions(pdev); 2628 pci_disable_device(pdev); 2629 } 2630 2631 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev) 2632 { 2633 struct hclgevf_query_res_cmd *req; 2634 struct hclge_desc desc; 2635 int ret; 2636 2637 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true); 2638 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2639 if (ret) { 2640 dev_err(&hdev->pdev->dev, 2641 "query vf resource failed, ret = %d.\n", ret); 2642 return ret; 2643 } 2644 2645 req = (struct hclgevf_query_res_cmd *)desc.data; 2646 2647 if (hnae3_dev_roce_supported(hdev)) { 2648 hdev->roce_base_msix_offset = 2649 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee), 2650 HCLGEVF_MSIX_OFT_ROCEE_M, 2651 HCLGEVF_MSIX_OFT_ROCEE_S); 2652 hdev->num_roce_msix = 2653 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2654 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2655 2656 /* nic's msix numbers is always equals to the roce's. */ 2657 hdev->num_nic_msix = hdev->num_roce_msix; 2658 2659 /* VF should have NIC vectors and Roce vectors, NIC vectors 2660 * are queued before Roce vectors. The offset is fixed to 64. 2661 */ 2662 hdev->num_msi = hdev->num_roce_msix + 2663 hdev->roce_base_msix_offset; 2664 } else { 2665 hdev->num_msi = 2666 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2667 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2668 2669 hdev->num_nic_msix = hdev->num_msi; 2670 } 2671 2672 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) { 2673 dev_err(&hdev->pdev->dev, 2674 "Just %u msi resources, not enough for vf(min:2).\n", 2675 hdev->num_nic_msix); 2676 return -EINVAL; 2677 } 2678 2679 return 0; 2680 } 2681 2682 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev) 2683 { 2684 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U 2685 2686 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2687 2688 ae_dev->dev_specs.max_non_tso_bd_num = 2689 HCLGEVF_MAX_NON_TSO_BD_NUM; 2690 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 2691 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 2692 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 2693 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME; 2694 } 2695 2696 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev, 2697 struct hclge_desc *desc) 2698 { 2699 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2700 struct hclgevf_dev_specs_0_cmd *req0; 2701 struct hclgevf_dev_specs_1_cmd *req1; 2702 2703 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data; 2704 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data; 2705 2706 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num; 2707 ae_dev->dev_specs.rss_ind_tbl_size = 2708 le16_to_cpu(req0->rss_ind_tbl_size); 2709 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max); 2710 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size); 2711 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl); 2712 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size); 2713 } 2714 2715 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev) 2716 { 2717 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs; 2718 2719 if (!dev_specs->max_non_tso_bd_num) 2720 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM; 2721 if (!dev_specs->rss_ind_tbl_size) 2722 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 2723 if (!dev_specs->rss_key_size) 2724 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 2725 if (!dev_specs->max_int_gl) 2726 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 2727 if (!dev_specs->max_frm_size) 2728 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME; 2729 } 2730 2731 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev) 2732 { 2733 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM]; 2734 int ret; 2735 int i; 2736 2737 /* set default specifications as devices lower than version V3 do not 2738 * support querying specifications from firmware. 2739 */ 2740 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 2741 hclgevf_set_default_dev_specs(hdev); 2742 return 0; 2743 } 2744 2745 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) { 2746 hclgevf_cmd_setup_basic_desc(&desc[i], 2747 HCLGE_OPC_QUERY_DEV_SPECS, true); 2748 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2749 } 2750 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true); 2751 2752 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM); 2753 if (ret) 2754 return ret; 2755 2756 hclgevf_parse_dev_specs(hdev, desc); 2757 hclgevf_check_dev_specs(hdev); 2758 2759 return 0; 2760 } 2761 2762 static int hclgevf_pci_reset(struct hclgevf_dev *hdev) 2763 { 2764 struct pci_dev *pdev = hdev->pdev; 2765 int ret = 0; 2766 2767 if ((hdev->reset_type == HNAE3_VF_FULL_RESET || 2768 hdev->reset_type == HNAE3_FLR_RESET) && 2769 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2770 hclgevf_misc_irq_uninit(hdev); 2771 hclgevf_uninit_msi(hdev); 2772 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2773 } 2774 2775 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2776 pci_set_master(pdev); 2777 ret = hclgevf_init_msi(hdev); 2778 if (ret) { 2779 dev_err(&pdev->dev, 2780 "failed(%d) to init MSI/MSI-X\n", ret); 2781 return ret; 2782 } 2783 2784 ret = hclgevf_misc_irq_init(hdev); 2785 if (ret) { 2786 hclgevf_uninit_msi(hdev); 2787 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", 2788 ret); 2789 return ret; 2790 } 2791 2792 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2793 } 2794 2795 return ret; 2796 } 2797 2798 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev) 2799 { 2800 struct hclge_vf_to_pf_msg send_msg; 2801 2802 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL, 2803 HCLGE_MBX_VPORT_LIST_CLEAR); 2804 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2805 } 2806 2807 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev) 2808 { 2809 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 2810 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1); 2811 } 2812 2813 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev) 2814 { 2815 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 2816 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0); 2817 } 2818 2819 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev) 2820 { 2821 struct pci_dev *pdev = hdev->pdev; 2822 int ret; 2823 2824 ret = hclgevf_pci_reset(hdev); 2825 if (ret) { 2826 dev_err(&pdev->dev, "pci reset failed %d\n", ret); 2827 return ret; 2828 } 2829 2830 hclgevf_arq_init(hdev); 2831 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, 2832 &hdev->fw_version, false, 2833 hdev->reset_pending); 2834 if (ret) { 2835 dev_err(&pdev->dev, "cmd failed %d\n", ret); 2836 return ret; 2837 } 2838 2839 ret = hclgevf_rss_init_hw(hdev); 2840 if (ret) { 2841 dev_err(&hdev->pdev->dev, 2842 "failed(%d) to initialize RSS\n", ret); 2843 return ret; 2844 } 2845 2846 ret = hclgevf_config_gro(hdev); 2847 if (ret) 2848 return ret; 2849 2850 ret = hclgevf_init_vlan_config(hdev); 2851 if (ret) { 2852 dev_err(&hdev->pdev->dev, 2853 "failed(%d) to initialize VLAN config\n", ret); 2854 return ret; 2855 } 2856 2857 /* get current port based vlan state from PF */ 2858 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2859 if (ret) 2860 return ret; 2861 2862 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 2863 2864 hclgevf_init_rxd_adv_layout(hdev); 2865 2866 dev_info(&hdev->pdev->dev, "Reset done\n"); 2867 2868 return 0; 2869 } 2870 2871 static int hclgevf_init_hdev(struct hclgevf_dev *hdev) 2872 { 2873 struct pci_dev *pdev = hdev->pdev; 2874 int ret; 2875 2876 ret = hclgevf_pci_init(hdev); 2877 if (ret) 2878 return ret; 2879 2880 ret = hclgevf_devlink_init(hdev); 2881 if (ret) 2882 goto err_devlink_init; 2883 2884 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw); 2885 if (ret) 2886 goto err_cmd_queue_init; 2887 2888 hclgevf_arq_init(hdev); 2889 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, 2890 &hdev->fw_version, false, 2891 hdev->reset_pending); 2892 if (ret) 2893 goto err_cmd_init; 2894 2895 /* Get vf resource */ 2896 ret = hclgevf_query_vf_resource(hdev); 2897 if (ret) 2898 goto err_cmd_init; 2899 2900 ret = hclgevf_query_dev_specs(hdev); 2901 if (ret) { 2902 dev_err(&pdev->dev, 2903 "failed to query dev specifications, ret = %d\n", ret); 2904 goto err_cmd_init; 2905 } 2906 2907 ret = hclgevf_init_msi(hdev); 2908 if (ret) { 2909 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); 2910 goto err_cmd_init; 2911 } 2912 2913 hclgevf_state_init(hdev); 2914 hdev->reset_level = HNAE3_VF_FUNC_RESET; 2915 hdev->reset_type = HNAE3_NONE_RESET; 2916 2917 ret = hclgevf_misc_irq_init(hdev); 2918 if (ret) 2919 goto err_misc_irq_init; 2920 2921 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2922 2923 ret = hclgevf_configure(hdev); 2924 if (ret) { 2925 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); 2926 goto err_config; 2927 } 2928 2929 ret = hclgevf_alloc_tqps(hdev); 2930 if (ret) { 2931 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); 2932 goto err_config; 2933 } 2934 2935 ret = hclgevf_set_handle_info(hdev); 2936 if (ret) 2937 goto err_config; 2938 2939 ret = hclgevf_config_gro(hdev); 2940 if (ret) 2941 goto err_config; 2942 2943 /* Initialize RSS for this VF */ 2944 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev, 2945 &hdev->rss_cfg); 2946 if (ret) { 2947 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret); 2948 goto err_config; 2949 } 2950 2951 ret = hclgevf_rss_init_hw(hdev); 2952 if (ret) { 2953 dev_err(&hdev->pdev->dev, 2954 "failed(%d) to initialize RSS\n", ret); 2955 goto err_config; 2956 } 2957 2958 /* ensure vf tbl list as empty before init */ 2959 ret = hclgevf_clear_vport_list(hdev); 2960 if (ret) { 2961 dev_err(&pdev->dev, 2962 "failed to clear tbl list configuration, ret = %d.\n", 2963 ret); 2964 goto err_config; 2965 } 2966 2967 ret = hclgevf_init_vlan_config(hdev); 2968 if (ret) { 2969 dev_err(&hdev->pdev->dev, 2970 "failed(%d) to initialize VLAN config\n", ret); 2971 goto err_config; 2972 } 2973 2974 hclgevf_init_rxd_adv_layout(hdev); 2975 2976 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state); 2977 2978 hdev->last_reset_time = jiffies; 2979 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n", 2980 HCLGEVF_DRIVER_NAME); 2981 2982 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ)); 2983 2984 return 0; 2985 2986 err_config: 2987 hclgevf_misc_irq_uninit(hdev); 2988 err_misc_irq_init: 2989 hclgevf_state_uninit(hdev); 2990 hclgevf_uninit_msi(hdev); 2991 err_cmd_init: 2992 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 2993 err_cmd_queue_init: 2994 hclgevf_devlink_uninit(hdev); 2995 err_devlink_init: 2996 hclgevf_pci_uninit(hdev); 2997 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2998 return ret; 2999 } 3000 3001 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) 3002 { 3003 struct hclge_vf_to_pf_msg send_msg; 3004 3005 hclgevf_state_uninit(hdev); 3006 hclgevf_uninit_rxd_adv_layout(hdev); 3007 3008 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0); 3009 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3010 3011 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3012 hclgevf_misc_irq_uninit(hdev); 3013 hclgevf_uninit_msi(hdev); 3014 } 3015 3016 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 3017 hclgevf_devlink_uninit(hdev); 3018 hclgevf_pci_uninit(hdev); 3019 hclgevf_uninit_mac_list(hdev); 3020 } 3021 3022 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) 3023 { 3024 struct pci_dev *pdev = ae_dev->pdev; 3025 int ret; 3026 3027 ret = hclgevf_alloc_hdev(ae_dev); 3028 if (ret) { 3029 dev_err(&pdev->dev, "hclge device allocation failed\n"); 3030 return ret; 3031 } 3032 3033 ret = hclgevf_init_hdev(ae_dev->priv); 3034 if (ret) { 3035 dev_err(&pdev->dev, "hclge device initialization failed\n"); 3036 return ret; 3037 } 3038 3039 return 0; 3040 } 3041 3042 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 3043 { 3044 struct hclgevf_dev *hdev = ae_dev->priv; 3045 3046 hclgevf_uninit_hdev(hdev); 3047 ae_dev->priv = NULL; 3048 } 3049 3050 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) 3051 { 3052 struct hnae3_handle *nic = &hdev->nic; 3053 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 3054 3055 return min_t(u32, hdev->rss_size_max, 3056 hdev->num_tqps / kinfo->tc_info.num_tc); 3057 } 3058 3059 /** 3060 * hclgevf_get_channels - Get the current channels enabled and max supported. 3061 * @handle: hardware information for network interface 3062 * @ch: ethtool channels structure 3063 * 3064 * We don't support separate tx and rx queues as channels. The other count 3065 * represents how many queues are being used for control. max_combined counts 3066 * how many queue pairs we can support. They may not be mapped 1 to 1 with 3067 * q_vectors since we support a lot more queue pairs than q_vectors. 3068 **/ 3069 static void hclgevf_get_channels(struct hnae3_handle *handle, 3070 struct ethtool_channels *ch) 3071 { 3072 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3073 3074 ch->max_combined = hclgevf_get_max_channels(hdev); 3075 ch->other_count = 0; 3076 ch->max_other = 0; 3077 ch->combined_count = handle->kinfo.rss_size; 3078 } 3079 3080 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, 3081 u16 *alloc_tqps, u16 *max_rss_size) 3082 { 3083 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3084 3085 *alloc_tqps = hdev->num_tqps; 3086 *max_rss_size = hdev->rss_size_max; 3087 } 3088 3089 static void hclgevf_update_rss_size(struct hnae3_handle *handle, 3090 u32 new_tqps_num) 3091 { 3092 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3093 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3094 u16 max_rss_size; 3095 3096 kinfo->req_rss_size = new_tqps_num; 3097 3098 max_rss_size = min_t(u16, hdev->rss_size_max, 3099 hdev->num_tqps / kinfo->tc_info.num_tc); 3100 3101 /* Use the user's configuration when it is not larger than 3102 * max_rss_size, otherwise, use the maximum specification value. 3103 */ 3104 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size && 3105 kinfo->req_rss_size <= max_rss_size) 3106 kinfo->rss_size = kinfo->req_rss_size; 3107 else if (kinfo->rss_size > max_rss_size || 3108 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size)) 3109 kinfo->rss_size = max_rss_size; 3110 3111 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size; 3112 } 3113 3114 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, 3115 bool rxfh_configured) 3116 { 3117 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3118 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3119 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM]; 3120 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM]; 3121 u16 tc_size[HCLGE_COMM_MAX_TC_NUM]; 3122 u16 cur_rss_size = kinfo->rss_size; 3123 u16 cur_tqps = kinfo->num_tqps; 3124 u32 *rss_indir; 3125 unsigned int i; 3126 int ret; 3127 3128 hclgevf_update_rss_size(handle, new_tqps_num); 3129 3130 hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map, 3131 tc_offset, tc_valid, tc_size); 3132 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, 3133 tc_valid, tc_size); 3134 if (ret) 3135 return ret; 3136 3137 /* RSS indirection table has been configured by user */ 3138 if (rxfh_configured) 3139 goto out; 3140 3141 /* Reinitializes the rss indirect table according to the new RSS size */ 3142 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size, 3143 sizeof(u32), GFP_KERNEL); 3144 if (!rss_indir) 3145 return -ENOMEM; 3146 3147 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 3148 rss_indir[i] = i % kinfo->rss_size; 3149 3150 hdev->rss_cfg.rss_size = kinfo->rss_size; 3151 3152 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0); 3153 if (ret) 3154 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", 3155 ret); 3156 3157 kfree(rss_indir); 3158 3159 out: 3160 if (!ret) 3161 dev_info(&hdev->pdev->dev, 3162 "Channels changed, rss_size from %u to %u, tqps from %u to %u", 3163 cur_rss_size, kinfo->rss_size, 3164 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc); 3165 3166 return ret; 3167 } 3168 3169 static int hclgevf_get_status(struct hnae3_handle *handle) 3170 { 3171 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3172 3173 return hdev->hw.mac.link; 3174 } 3175 3176 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, 3177 u8 *auto_neg, u32 *speed, 3178 u8 *duplex, u32 *lane_num) 3179 { 3180 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3181 3182 if (speed) 3183 *speed = hdev->hw.mac.speed; 3184 if (duplex) 3185 *duplex = hdev->hw.mac.duplex; 3186 if (auto_neg) 3187 *auto_neg = AUTONEG_DISABLE; 3188 } 3189 3190 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, 3191 u8 duplex) 3192 { 3193 hdev->hw.mac.speed = speed; 3194 hdev->hw.mac.duplex = duplex; 3195 } 3196 3197 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable) 3198 { 3199 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3200 bool gro_en_old = hdev->gro_en; 3201 int ret; 3202 3203 hdev->gro_en = enable; 3204 ret = hclgevf_config_gro(hdev); 3205 if (ret) 3206 hdev->gro_en = gro_en_old; 3207 3208 return ret; 3209 } 3210 3211 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type, 3212 u8 *module_type) 3213 { 3214 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3215 3216 if (media_type) 3217 *media_type = hdev->hw.mac.media_type; 3218 3219 if (module_type) 3220 *module_type = hdev->hw.mac.module_type; 3221 } 3222 3223 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle) 3224 { 3225 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3226 3227 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 3228 } 3229 3230 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle) 3231 { 3232 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3233 3234 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 3235 } 3236 3237 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle) 3238 { 3239 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3240 3241 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 3242 } 3243 3244 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle) 3245 { 3246 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3247 3248 return hdev->rst_stats.hw_rst_done_cnt; 3249 } 3250 3251 static void hclgevf_get_link_mode(struct hnae3_handle *handle, 3252 unsigned long *supported, 3253 unsigned long *advertising) 3254 { 3255 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3256 3257 *supported = hdev->hw.mac.supported; 3258 *advertising = hdev->hw.mac.advertising; 3259 } 3260 3261 #define MAX_SEPARATE_NUM 4 3262 #define SEPARATOR_VALUE 0xFDFCFBFA 3263 #define REG_NUM_PER_LINE 4 3264 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32)) 3265 3266 static int hclgevf_get_regs_len(struct hnae3_handle *handle) 3267 { 3268 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines; 3269 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3270 3271 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1; 3272 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1; 3273 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1; 3274 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1; 3275 3276 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps + 3277 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE; 3278 } 3279 3280 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version, 3281 void *data) 3282 { 3283 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3284 int i, j, reg_um, separator_num; 3285 u32 *reg = data; 3286 3287 *version = hdev->fw_version; 3288 3289 /* fetching per-VF registers values from VF PCIe register space */ 3290 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32); 3291 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3292 for (i = 0; i < reg_um; i++) 3293 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]); 3294 for (i = 0; i < separator_num; i++) 3295 *reg++ = SEPARATOR_VALUE; 3296 3297 reg_um = sizeof(common_reg_addr_list) / sizeof(u32); 3298 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3299 for (i = 0; i < reg_um; i++) 3300 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]); 3301 for (i = 0; i < separator_num; i++) 3302 *reg++ = SEPARATOR_VALUE; 3303 3304 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32); 3305 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3306 for (j = 0; j < hdev->num_tqps; j++) { 3307 for (i = 0; i < reg_um; i++) 3308 *reg++ = hclgevf_read_dev(&hdev->hw, 3309 ring_reg_addr_list[i] + 3310 HCLGEVF_TQP_REG_SIZE * j); 3311 for (i = 0; i < separator_num; i++) 3312 *reg++ = SEPARATOR_VALUE; 3313 } 3314 3315 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32); 3316 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3317 for (j = 0; j < hdev->num_msi_used - 1; j++) { 3318 for (i = 0; i < reg_um; i++) 3319 *reg++ = hclgevf_read_dev(&hdev->hw, 3320 tqp_intr_reg_addr_list[i] + 3321 4 * j); 3322 for (i = 0; i < separator_num; i++) 3323 *reg++ = SEPARATOR_VALUE; 3324 } 3325 } 3326 3327 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state, 3328 struct hclge_mbx_port_base_vlan *port_base_vlan) 3329 { 3330 struct hnae3_handle *nic = &hdev->nic; 3331 struct hclge_vf_to_pf_msg send_msg; 3332 int ret; 3333 3334 rtnl_lock(); 3335 3336 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 3337 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) { 3338 dev_warn(&hdev->pdev->dev, 3339 "is resetting when updating port based vlan info\n"); 3340 rtnl_unlock(); 3341 return; 3342 } 3343 3344 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 3345 if (ret) { 3346 rtnl_unlock(); 3347 return; 3348 } 3349 3350 /* send msg to PF and wait update port based vlan info */ 3351 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 3352 HCLGE_MBX_PORT_BASE_VLAN_CFG); 3353 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan)); 3354 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3355 if (!ret) { 3356 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) 3357 nic->port_base_vlan_state = state; 3358 else 3359 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; 3360 } 3361 3362 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 3363 rtnl_unlock(); 3364 } 3365 3366 static const struct hnae3_ae_ops hclgevf_ops = { 3367 .init_ae_dev = hclgevf_init_ae_dev, 3368 .uninit_ae_dev = hclgevf_uninit_ae_dev, 3369 .reset_prepare = hclgevf_reset_prepare_general, 3370 .reset_done = hclgevf_reset_done, 3371 .init_client_instance = hclgevf_init_client_instance, 3372 .uninit_client_instance = hclgevf_uninit_client_instance, 3373 .start = hclgevf_ae_start, 3374 .stop = hclgevf_ae_stop, 3375 .client_start = hclgevf_client_start, 3376 .client_stop = hclgevf_client_stop, 3377 .map_ring_to_vector = hclgevf_map_ring_to_vector, 3378 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, 3379 .get_vector = hclgevf_get_vector, 3380 .put_vector = hclgevf_put_vector, 3381 .reset_queue = hclgevf_reset_tqp, 3382 .get_mac_addr = hclgevf_get_mac_addr, 3383 .set_mac_addr = hclgevf_set_mac_addr, 3384 .add_uc_addr = hclgevf_add_uc_addr, 3385 .rm_uc_addr = hclgevf_rm_uc_addr, 3386 .add_mc_addr = hclgevf_add_mc_addr, 3387 .rm_mc_addr = hclgevf_rm_mc_addr, 3388 .get_stats = hclgevf_get_stats, 3389 .update_stats = hclgevf_update_stats, 3390 .get_strings = hclgevf_get_strings, 3391 .get_sset_count = hclgevf_get_sset_count, 3392 .get_rss_key_size = hclge_comm_get_rss_key_size, 3393 .get_rss = hclgevf_get_rss, 3394 .set_rss = hclgevf_set_rss, 3395 .get_rss_tuple = hclgevf_get_rss_tuple, 3396 .set_rss_tuple = hclgevf_set_rss_tuple, 3397 .get_tc_size = hclgevf_get_tc_size, 3398 .get_fw_version = hclgevf_get_fw_version, 3399 .set_vlan_filter = hclgevf_set_vlan_filter, 3400 .enable_vlan_filter = hclgevf_enable_vlan_filter, 3401 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, 3402 .reset_event = hclgevf_reset_event, 3403 .set_default_reset_request = hclgevf_set_def_reset_request, 3404 .set_channels = hclgevf_set_channels, 3405 .get_channels = hclgevf_get_channels, 3406 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, 3407 .get_regs_len = hclgevf_get_regs_len, 3408 .get_regs = hclgevf_get_regs, 3409 .get_status = hclgevf_get_status, 3410 .get_ksettings_an_result = hclgevf_get_ksettings_an_result, 3411 .get_media_type = hclgevf_get_media_type, 3412 .get_hw_reset_stat = hclgevf_get_hw_reset_stat, 3413 .ae_dev_resetting = hclgevf_ae_dev_resetting, 3414 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt, 3415 .set_gro_en = hclgevf_gro_en, 3416 .set_mtu = hclgevf_set_mtu, 3417 .get_global_queue_id = hclgevf_get_qid_global, 3418 .set_timer_task = hclgevf_set_timer_task, 3419 .get_link_mode = hclgevf_get_link_mode, 3420 .set_promisc_mode = hclgevf_set_promisc_mode, 3421 .request_update_promisc_mode = hclgevf_request_update_promisc_mode, 3422 .get_cmdq_stat = hclgevf_get_cmdq_stat, 3423 }; 3424 3425 static struct hnae3_ae_algo ae_algovf = { 3426 .ops = &hclgevf_ops, 3427 .pdev_id_table = ae_algovf_pci_tbl, 3428 }; 3429 3430 static int __init hclgevf_init(void) 3431 { 3432 pr_info("%s is initializing\n", HCLGEVF_NAME); 3433 3434 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME); 3435 if (!hclgevf_wq) { 3436 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME); 3437 return -ENOMEM; 3438 } 3439 3440 hnae3_register_ae_algo(&ae_algovf); 3441 3442 return 0; 3443 } 3444 3445 static void __exit hclgevf_exit(void) 3446 { 3447 hnae3_unregister_ae_algo(&ae_algovf); 3448 destroy_workqueue(hclgevf_wq); 3449 } 3450 module_init(hclgevf_init); 3451 module_exit(hclgevf_exit); 3452 3453 MODULE_LICENSE("GPL"); 3454 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 3455 MODULE_DESCRIPTION("HCLGEVF Driver"); 3456 MODULE_VERSION(HCLGEVF_MOD_VERSION); 3457