1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18 				  unsigned long delay);
19 
20 static struct hnae3_ae_algo ae_algovf;
21 
22 static struct workqueue_struct *hclgevf_wq;
23 
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 	/* required last entry */
29 	{0, }
30 };
31 
32 static const u8 hclgevf_hash_key[] = {
33 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39 
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41 
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
44 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
45 					 HCLGEVF_CMDQ_TX_TAIL_REG,
46 					 HCLGEVF_CMDQ_TX_HEAD_REG,
47 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
48 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
49 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
50 					 HCLGEVF_CMDQ_RX_TAIL_REG,
51 					 HCLGEVF_CMDQ_RX_HEAD_REG,
52 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 					 HCLGEVF_CMDQ_INTR_EN_REG,
55 					 HCLGEVF_CMDQ_INTR_GEN_REG};
56 
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58 					   HCLGEVF_RST_ING,
59 					   HCLGEVF_GRO_EN_REG};
60 
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62 					 HCLGEVF_RING_RX_ADDR_H_REG,
63 					 HCLGEVF_RING_RX_BD_NUM_REG,
64 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
65 					 HCLGEVF_RING_RX_MERGE_EN_REG,
66 					 HCLGEVF_RING_RX_TAIL_REG,
67 					 HCLGEVF_RING_RX_HEAD_REG,
68 					 HCLGEVF_RING_RX_FBD_NUM_REG,
69 					 HCLGEVF_RING_RX_OFFSET_REG,
70 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
71 					 HCLGEVF_RING_RX_STASH_REG,
72 					 HCLGEVF_RING_RX_BD_ERR_REG,
73 					 HCLGEVF_RING_TX_ADDR_L_REG,
74 					 HCLGEVF_RING_TX_ADDR_H_REG,
75 					 HCLGEVF_RING_TX_BD_NUM_REG,
76 					 HCLGEVF_RING_TX_PRIORITY_REG,
77 					 HCLGEVF_RING_TX_TC_REG,
78 					 HCLGEVF_RING_TX_MERGE_EN_REG,
79 					 HCLGEVF_RING_TX_TAIL_REG,
80 					 HCLGEVF_RING_TX_HEAD_REG,
81 					 HCLGEVF_RING_TX_FBD_NUM_REG,
82 					 HCLGEVF_RING_TX_OFFSET_REG,
83 					 HCLGEVF_RING_TX_EBD_NUM_REG,
84 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
85 					 HCLGEVF_RING_TX_BD_ERR_REG,
86 					 HCLGEVF_RING_EN_REG};
87 
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89 					     HCLGEVF_TQP_INTR_GL0_REG,
90 					     HCLGEVF_TQP_INTR_GL1_REG,
91 					     HCLGEVF_TQP_INTR_GL2_REG,
92 					     HCLGEVF_TQP_INTR_RL_REG};
93 
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96 	if (!handle->client)
97 		return container_of(handle, struct hclgevf_dev, nic);
98 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
99 		return container_of(handle, struct hclgevf_dev, roce);
100 	else
101 		return container_of(handle, struct hclgevf_dev, nic);
102 }
103 
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108 	struct hclgevf_desc desc;
109 	struct hclgevf_tqp *tqp;
110 	int status;
111 	int i;
112 
113 	for (i = 0; i < kinfo->num_tqps; i++) {
114 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 		hclgevf_cmd_setup_basic_desc(&desc,
116 					     HCLGEVF_OPC_QUERY_RX_STATUS,
117 					     true);
118 
119 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121 		if (status) {
122 			dev_err(&hdev->pdev->dev,
123 				"Query tqp stat fail, status = %d,queue = %d\n",
124 				status,	i);
125 			return status;
126 		}
127 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128 			le32_to_cpu(desc.data[1]);
129 
130 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131 					     true);
132 
133 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135 		if (status) {
136 			dev_err(&hdev->pdev->dev,
137 				"Query tqp stat fail, status = %d,queue = %d\n",
138 				status, i);
139 			return status;
140 		}
141 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142 			le32_to_cpu(desc.data[1]);
143 	}
144 
145 	return 0;
146 }
147 
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151 	struct hclgevf_tqp *tqp;
152 	u64 *buff = data;
153 	int i;
154 
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158 	}
159 	for (i = 0; i < kinfo->num_tqps; i++) {
160 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162 	}
163 
164 	return buff;
165 }
166 
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 
171 	return kinfo->num_tqps * 2;
172 }
173 
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177 	u8 *buff = data;
178 	int i;
179 
180 	for (i = 0; i < kinfo->num_tqps; i++) {
181 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 						       struct hclgevf_tqp, q);
183 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
184 			 tqp->index);
185 		buff += ETH_GSTRING_LEN;
186 	}
187 
188 	for (i = 0; i < kinfo->num_tqps; i++) {
189 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190 						       struct hclgevf_tqp, q);
191 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
192 			 tqp->index);
193 		buff += ETH_GSTRING_LEN;
194 	}
195 
196 	return buff;
197 }
198 
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200 				 struct net_device_stats *net_stats)
201 {
202 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203 	int status;
204 
205 	status = hclgevf_tqps_update_stats(handle);
206 	if (status)
207 		dev_err(&hdev->pdev->dev,
208 			"VF update of TQPS stats fail, status = %d.\n",
209 			status);
210 }
211 
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214 	if (strset == ETH_SS_TEST)
215 		return -EOPNOTSUPP;
216 	else if (strset == ETH_SS_STATS)
217 		return hclgevf_tqps_get_sset_count(handle, strset);
218 
219 	return 0;
220 }
221 
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223 				u8 *data)
224 {
225 	u8 *p = (char *)data;
226 
227 	if (strset == ETH_SS_STATS)
228 		p = hclgevf_tqps_get_strings(handle, p);
229 }
230 
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233 	hclgevf_tqps_get_stats(handle, data);
234 }
235 
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237 				   u8 subcode)
238 {
239 	if (msg) {
240 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241 		msg->code = code;
242 		msg->subcode = subcode;
243 	}
244 }
245 
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
247 {
248 	struct hclge_vf_to_pf_msg send_msg;
249 	u8 resp_msg;
250 	int status;
251 
252 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254 				      sizeof(resp_msg));
255 	if (status) {
256 		dev_err(&hdev->pdev->dev,
257 			"VF request to get TC info from PF failed %d",
258 			status);
259 		return status;
260 	}
261 
262 	hdev->hw_tc_map = resp_msg;
263 
264 	return 0;
265 }
266 
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
268 {
269 	struct hnae3_handle *nic = &hdev->nic;
270 	struct hclge_vf_to_pf_msg send_msg;
271 	u8 resp_msg;
272 	int ret;
273 
274 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277 				   sizeof(u8));
278 	if (ret) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get port based vlan state failed %d",
281 			ret);
282 		return ret;
283 	}
284 
285 	nic->port_base_vlan_state = resp_msg;
286 
287 	return 0;
288 }
289 
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291 {
292 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
296 
297 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298 	struct hclge_vf_to_pf_msg send_msg;
299 	int status;
300 
301 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303 				      HCLGEVF_TQPS_RSS_INFO_LEN);
304 	if (status) {
305 		dev_err(&hdev->pdev->dev,
306 			"VF request to get tqp info from PF failed %d",
307 			status);
308 		return status;
309 	}
310 
311 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312 	       sizeof(u16));
313 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314 	       sizeof(u16));
315 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316 	       sizeof(u16));
317 
318 	return 0;
319 }
320 
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
322 {
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
326 
327 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328 	struct hclge_vf_to_pf_msg send_msg;
329 	int ret;
330 
331 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
334 	if (ret) {
335 		dev_err(&hdev->pdev->dev,
336 			"VF request to get tqp depth info from PF failed %d",
337 			ret);
338 		return ret;
339 	}
340 
341 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342 	       sizeof(u16));
343 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344 	       sizeof(u16));
345 
346 	return 0;
347 }
348 
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
350 {
351 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352 	struct hclge_vf_to_pf_msg send_msg;
353 	u16 qid_in_pf = 0;
354 	u8 resp_data[2];
355 	int ret;
356 
357 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360 				   sizeof(resp_data));
361 	if (!ret)
362 		qid_in_pf = *(u16 *)resp_data;
363 
364 	return qid_in_pf;
365 }
366 
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
368 {
369 	struct hclge_vf_to_pf_msg send_msg;
370 	u8 resp_msg[2];
371 	int ret;
372 
373 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375 				   sizeof(resp_msg));
376 	if (ret) {
377 		dev_err(&hdev->pdev->dev,
378 			"VF request to get the pf port media type failed %d",
379 			ret);
380 		return ret;
381 	}
382 
383 	hdev->hw.mac.media_type = resp_msg[0];
384 	hdev->hw.mac.module_type = resp_msg[1];
385 
386 	return 0;
387 }
388 
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
390 {
391 	struct hclgevf_tqp *tqp;
392 	int i;
393 
394 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
396 	if (!hdev->htqp)
397 		return -ENOMEM;
398 
399 	tqp = hdev->htqp;
400 
401 	for (i = 0; i < hdev->num_tqps; i++) {
402 		tqp->dev = &hdev->pdev->dev;
403 		tqp->index = i;
404 
405 		tqp->q.ae_algo = &ae_algovf;
406 		tqp->q.buf_size = hdev->rx_buf_len;
407 		tqp->q.tx_desc_num = hdev->num_tx_desc;
408 		tqp->q.rx_desc_num = hdev->num_rx_desc;
409 
410 		/* need an extended offset to configure queues >=
411 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
412 		 */
413 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414 			tqp->q.io_base = hdev->hw.io_base +
415 					 HCLGEVF_TQP_REG_OFFSET +
416 					 i * HCLGEVF_TQP_REG_SIZE;
417 		else
418 			tqp->q.io_base = hdev->hw.io_base +
419 					 HCLGEVF_TQP_REG_OFFSET +
420 					 HCLGEVF_TQP_EXT_REG_OFFSET +
421 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422 					 HCLGEVF_TQP_REG_SIZE;
423 
424 		tqp++;
425 	}
426 
427 	return 0;
428 }
429 
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
431 {
432 	struct hnae3_handle *nic = &hdev->nic;
433 	struct hnae3_knic_private_info *kinfo;
434 	u16 new_tqps = hdev->num_tqps;
435 	unsigned int i;
436 	u8 num_tc = 0;
437 
438 	kinfo = &nic->kinfo;
439 	kinfo->num_tx_desc = hdev->num_tx_desc;
440 	kinfo->num_rx_desc = hdev->num_rx_desc;
441 	kinfo->rx_buf_len = hdev->rx_buf_len;
442 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443 		if (hdev->hw_tc_map & BIT(i))
444 			num_tc++;
445 
446 	num_tc = num_tc ? num_tc : 1;
447 	kinfo->tc_info.num_tc = num_tc;
448 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
449 	new_tqps = kinfo->rss_size * num_tc;
450 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
451 
452 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
453 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
454 	if (!kinfo->tqp)
455 		return -ENOMEM;
456 
457 	for (i = 0; i < kinfo->num_tqps; i++) {
458 		hdev->htqp[i].q.handle = &hdev->nic;
459 		hdev->htqp[i].q.tqp_index = i;
460 		kinfo->tqp[i] = &hdev->htqp[i].q;
461 	}
462 
463 	/* after init the max rss_size and tqps, adjust the default tqp numbers
464 	 * and rss size with the actual vector numbers
465 	 */
466 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468 				kinfo->rss_size);
469 
470 	return 0;
471 }
472 
473 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
474 {
475 	struct hclge_vf_to_pf_msg send_msg;
476 	int status;
477 
478 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
479 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480 	if (status)
481 		dev_err(&hdev->pdev->dev,
482 			"VF failed to fetch link status(%d) from PF", status);
483 }
484 
485 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
486 {
487 	struct hnae3_handle *rhandle = &hdev->roce;
488 	struct hnae3_handle *handle = &hdev->nic;
489 	struct hnae3_client *rclient;
490 	struct hnae3_client *client;
491 
492 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
493 		return;
494 
495 	client = handle->client;
496 	rclient = hdev->roce_client;
497 
498 	link_state =
499 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
500 
501 	if (link_state != hdev->hw.mac.link) {
502 		client->ops->link_status_change(handle, !!link_state);
503 		if (rclient && rclient->ops->link_status_change)
504 			rclient->ops->link_status_change(rhandle, !!link_state);
505 		hdev->hw.mac.link = link_state;
506 	}
507 
508 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
509 }
510 
511 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
512 {
513 #define HCLGEVF_ADVERTISING	0
514 #define HCLGEVF_SUPPORTED	1
515 
516 	struct hclge_vf_to_pf_msg send_msg;
517 
518 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
519 	send_msg.data[0] = HCLGEVF_ADVERTISING;
520 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
521 	send_msg.data[0] = HCLGEVF_SUPPORTED;
522 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
523 }
524 
525 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
526 {
527 	struct hnae3_handle *nic = &hdev->nic;
528 	int ret;
529 
530 	nic->ae_algo = &ae_algovf;
531 	nic->pdev = hdev->pdev;
532 	nic->numa_node_mask = hdev->numa_node_mask;
533 	nic->flags |= HNAE3_SUPPORT_VF;
534 
535 	ret = hclgevf_knic_setup(hdev);
536 	if (ret)
537 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
538 			ret);
539 	return ret;
540 }
541 
542 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
543 {
544 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
545 		dev_warn(&hdev->pdev->dev,
546 			 "vector(vector_id %d) has been freed.\n", vector_id);
547 		return;
548 	}
549 
550 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
551 	hdev->num_msi_left += 1;
552 	hdev->num_msi_used -= 1;
553 }
554 
555 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
556 			      struct hnae3_vector_info *vector_info)
557 {
558 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
559 	struct hnae3_vector_info *vector = vector_info;
560 	int alloc = 0;
561 	int i, j;
562 
563 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
564 	vector_num = min(hdev->num_msi_left, vector_num);
565 
566 	for (j = 0; j < vector_num; j++) {
567 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
568 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
569 				vector->vector = pci_irq_vector(hdev->pdev, i);
570 				vector->io_addr = hdev->hw.io_base +
571 					HCLGEVF_VECTOR_REG_BASE +
572 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
573 				hdev->vector_status[i] = 0;
574 				hdev->vector_irq[i] = vector->vector;
575 
576 				vector++;
577 				alloc++;
578 
579 				break;
580 			}
581 		}
582 	}
583 	hdev->num_msi_left -= alloc;
584 	hdev->num_msi_used += alloc;
585 
586 	return alloc;
587 }
588 
589 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
590 {
591 	int i;
592 
593 	for (i = 0; i < hdev->num_msi; i++)
594 		if (vector == hdev->vector_irq[i])
595 			return i;
596 
597 	return -EINVAL;
598 }
599 
600 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
601 				    const u8 hfunc, const u8 *key)
602 {
603 	struct hclgevf_rss_config_cmd *req;
604 	unsigned int key_offset = 0;
605 	struct hclgevf_desc desc;
606 	int key_counts;
607 	int key_size;
608 	int ret;
609 
610 	key_counts = HCLGEVF_RSS_KEY_SIZE;
611 	req = (struct hclgevf_rss_config_cmd *)desc.data;
612 
613 	while (key_counts) {
614 		hclgevf_cmd_setup_basic_desc(&desc,
615 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
616 					     false);
617 
618 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
619 		req->hash_config |=
620 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
621 
622 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
623 		memcpy(req->hash_key,
624 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
625 
626 		key_counts -= key_size;
627 		key_offset++;
628 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
629 		if (ret) {
630 			dev_err(&hdev->pdev->dev,
631 				"Configure RSS config fail, status = %d\n",
632 				ret);
633 			return ret;
634 		}
635 	}
636 
637 	return 0;
638 }
639 
640 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
641 {
642 	return HCLGEVF_RSS_KEY_SIZE;
643 }
644 
645 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
646 {
647 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
648 	struct hclgevf_rss_indirection_table_cmd *req;
649 	struct hclgevf_desc desc;
650 	int rss_cfg_tbl_num;
651 	int status;
652 	int i, j;
653 
654 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
655 	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
656 			  HCLGEVF_RSS_CFG_TBL_SIZE;
657 
658 	for (i = 0; i < rss_cfg_tbl_num; i++) {
659 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
660 					     false);
661 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
662 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
663 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
664 			req->rss_result[j] =
665 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
666 
667 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
668 		if (status) {
669 			dev_err(&hdev->pdev->dev,
670 				"VF failed(=%d) to set RSS indirection table\n",
671 				status);
672 			return status;
673 		}
674 	}
675 
676 	return 0;
677 }
678 
679 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
680 {
681 	struct hclgevf_rss_tc_mode_cmd *req;
682 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
683 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
684 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
685 	struct hclgevf_desc desc;
686 	u16 roundup_size;
687 	unsigned int i;
688 	int status;
689 
690 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
691 
692 	roundup_size = roundup_pow_of_two(rss_size);
693 	roundup_size = ilog2(roundup_size);
694 
695 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
696 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
697 		tc_size[i] = roundup_size;
698 		tc_offset[i] = rss_size * i;
699 	}
700 
701 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
702 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
703 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
704 			      (tc_valid[i] & 0x1));
705 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
706 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
707 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
708 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
709 	}
710 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
711 	if (status)
712 		dev_err(&hdev->pdev->dev,
713 			"VF failed(=%d) to set rss tc mode\n", status);
714 
715 	return status;
716 }
717 
718 /* for revision 0x20, vf shared the same rss config with pf */
719 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
720 {
721 #define HCLGEVF_RSS_MBX_RESP_LEN	8
722 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
723 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
724 	struct hclge_vf_to_pf_msg send_msg;
725 	u16 msg_num, hash_key_index;
726 	u8 index;
727 	int ret;
728 
729 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
730 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
731 			HCLGEVF_RSS_MBX_RESP_LEN;
732 	for (index = 0; index < msg_num; index++) {
733 		send_msg.data[0] = index;
734 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
735 					   HCLGEVF_RSS_MBX_RESP_LEN);
736 		if (ret) {
737 			dev_err(&hdev->pdev->dev,
738 				"VF get rss hash key from PF failed, ret=%d",
739 				ret);
740 			return ret;
741 		}
742 
743 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
744 		if (index == msg_num - 1)
745 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
746 			       &resp_msg[0],
747 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
748 		else
749 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
750 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
751 	}
752 
753 	return 0;
754 }
755 
756 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
757 			   u8 *hfunc)
758 {
759 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
760 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
761 	int i, ret;
762 
763 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
764 		/* Get hash algorithm */
765 		if (hfunc) {
766 			switch (rss_cfg->hash_algo) {
767 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
768 				*hfunc = ETH_RSS_HASH_TOP;
769 				break;
770 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
771 				*hfunc = ETH_RSS_HASH_XOR;
772 				break;
773 			default:
774 				*hfunc = ETH_RSS_HASH_UNKNOWN;
775 				break;
776 			}
777 		}
778 
779 		/* Get the RSS Key required by the user */
780 		if (key)
781 			memcpy(key, rss_cfg->rss_hash_key,
782 			       HCLGEVF_RSS_KEY_SIZE);
783 	} else {
784 		if (hfunc)
785 			*hfunc = ETH_RSS_HASH_TOP;
786 		if (key) {
787 			ret = hclgevf_get_rss_hash_key(hdev);
788 			if (ret)
789 				return ret;
790 			memcpy(key, rss_cfg->rss_hash_key,
791 			       HCLGEVF_RSS_KEY_SIZE);
792 		}
793 	}
794 
795 	if (indir)
796 		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
797 			indir[i] = rss_cfg->rss_indirection_tbl[i];
798 
799 	return 0;
800 }
801 
802 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
803 			   const u8 *key, const u8 hfunc)
804 {
805 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
806 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
807 	int ret, i;
808 
809 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
810 		/* Set the RSS Hash Key if specififed by the user */
811 		if (key) {
812 			switch (hfunc) {
813 			case ETH_RSS_HASH_TOP:
814 				rss_cfg->hash_algo =
815 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
816 				break;
817 			case ETH_RSS_HASH_XOR:
818 				rss_cfg->hash_algo =
819 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
820 				break;
821 			case ETH_RSS_HASH_NO_CHANGE:
822 				break;
823 			default:
824 				return -EINVAL;
825 			}
826 
827 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
828 						       key);
829 			if (ret)
830 				return ret;
831 
832 			/* Update the shadow RSS key with user specified qids */
833 			memcpy(rss_cfg->rss_hash_key, key,
834 			       HCLGEVF_RSS_KEY_SIZE);
835 		}
836 	}
837 
838 	/* update the shadow RSS table with user specified qids */
839 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
840 		rss_cfg->rss_indirection_tbl[i] = indir[i];
841 
842 	/* update the hardware */
843 	return hclgevf_set_rss_indir_table(hdev);
844 }
845 
846 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
847 {
848 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
849 
850 	if (nfc->data & RXH_L4_B_2_3)
851 		hash_sets |= HCLGEVF_D_PORT_BIT;
852 	else
853 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
854 
855 	if (nfc->data & RXH_IP_SRC)
856 		hash_sets |= HCLGEVF_S_IP_BIT;
857 	else
858 		hash_sets &= ~HCLGEVF_S_IP_BIT;
859 
860 	if (nfc->data & RXH_IP_DST)
861 		hash_sets |= HCLGEVF_D_IP_BIT;
862 	else
863 		hash_sets &= ~HCLGEVF_D_IP_BIT;
864 
865 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
866 		hash_sets |= HCLGEVF_V_TAG_BIT;
867 
868 	return hash_sets;
869 }
870 
871 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
872 				 struct ethtool_rxnfc *nfc)
873 {
874 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
875 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
876 	struct hclgevf_rss_input_tuple_cmd *req;
877 	struct hclgevf_desc desc;
878 	u8 tuple_sets;
879 	int ret;
880 
881 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
882 		return -EOPNOTSUPP;
883 
884 	if (nfc->data &
885 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
886 		return -EINVAL;
887 
888 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
889 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
890 
891 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
892 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
893 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
894 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
895 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
896 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
897 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
898 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
899 
900 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
901 	switch (nfc->flow_type) {
902 	case TCP_V4_FLOW:
903 		req->ipv4_tcp_en = tuple_sets;
904 		break;
905 	case TCP_V6_FLOW:
906 		req->ipv6_tcp_en = tuple_sets;
907 		break;
908 	case UDP_V4_FLOW:
909 		req->ipv4_udp_en = tuple_sets;
910 		break;
911 	case UDP_V6_FLOW:
912 		req->ipv6_udp_en = tuple_sets;
913 		break;
914 	case SCTP_V4_FLOW:
915 		req->ipv4_sctp_en = tuple_sets;
916 		break;
917 	case SCTP_V6_FLOW:
918 		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
919 		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
920 			return -EINVAL;
921 
922 		req->ipv6_sctp_en = tuple_sets;
923 		break;
924 	case IPV4_FLOW:
925 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
926 		break;
927 	case IPV6_FLOW:
928 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
929 		break;
930 	default:
931 		return -EINVAL;
932 	}
933 
934 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
935 	if (ret) {
936 		dev_err(&hdev->pdev->dev,
937 			"Set rss tuple fail, status = %d\n", ret);
938 		return ret;
939 	}
940 
941 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
942 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
943 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
944 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
945 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
946 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
947 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
948 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
949 	return 0;
950 }
951 
952 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
953 				 struct ethtool_rxnfc *nfc)
954 {
955 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
956 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
957 	u8 tuple_sets;
958 
959 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
960 		return -EOPNOTSUPP;
961 
962 	nfc->data = 0;
963 
964 	switch (nfc->flow_type) {
965 	case TCP_V4_FLOW:
966 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
967 		break;
968 	case UDP_V4_FLOW:
969 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
970 		break;
971 	case TCP_V6_FLOW:
972 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
973 		break;
974 	case UDP_V6_FLOW:
975 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
976 		break;
977 	case SCTP_V4_FLOW:
978 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
979 		break;
980 	case SCTP_V6_FLOW:
981 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
982 		break;
983 	case IPV4_FLOW:
984 	case IPV6_FLOW:
985 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
986 		break;
987 	default:
988 		return -EINVAL;
989 	}
990 
991 	if (!tuple_sets)
992 		return 0;
993 
994 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
995 		nfc->data |= RXH_L4_B_2_3;
996 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
997 		nfc->data |= RXH_L4_B_0_1;
998 	if (tuple_sets & HCLGEVF_D_IP_BIT)
999 		nfc->data |= RXH_IP_DST;
1000 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1001 		nfc->data |= RXH_IP_SRC;
1002 
1003 	return 0;
1004 }
1005 
1006 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1007 				       struct hclgevf_rss_cfg *rss_cfg)
1008 {
1009 	struct hclgevf_rss_input_tuple_cmd *req;
1010 	struct hclgevf_desc desc;
1011 	int ret;
1012 
1013 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1014 
1015 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1016 
1017 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1018 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1019 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1020 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1021 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1022 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1023 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1024 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1025 
1026 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1027 	if (ret)
1028 		dev_err(&hdev->pdev->dev,
1029 			"Configure rss input fail, status = %d\n", ret);
1030 	return ret;
1031 }
1032 
1033 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1034 {
1035 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1036 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1037 
1038 	return rss_cfg->rss_size;
1039 }
1040 
1041 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1042 				       int vector_id,
1043 				       struct hnae3_ring_chain_node *ring_chain)
1044 {
1045 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1046 	struct hclge_vf_to_pf_msg send_msg;
1047 	struct hnae3_ring_chain_node *node;
1048 	int status;
1049 	int i = 0;
1050 
1051 	memset(&send_msg, 0, sizeof(send_msg));
1052 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1053 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1054 	send_msg.vector_id = vector_id;
1055 
1056 	for (node = ring_chain; node; node = node->next) {
1057 		send_msg.param[i].ring_type =
1058 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1059 
1060 		send_msg.param[i].tqp_index = node->tqp_index;
1061 		send_msg.param[i].int_gl_index =
1062 					hnae3_get_field(node->int_gl_idx,
1063 							HNAE3_RING_GL_IDX_M,
1064 							HNAE3_RING_GL_IDX_S);
1065 
1066 		i++;
1067 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1068 			send_msg.ring_num = i;
1069 
1070 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1071 						      NULL, 0);
1072 			if (status) {
1073 				dev_err(&hdev->pdev->dev,
1074 					"Map TQP fail, status is %d.\n",
1075 					status);
1076 				return status;
1077 			}
1078 			i = 0;
1079 		}
1080 	}
1081 
1082 	return 0;
1083 }
1084 
1085 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1086 				      struct hnae3_ring_chain_node *ring_chain)
1087 {
1088 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1089 	int vector_id;
1090 
1091 	vector_id = hclgevf_get_vector_index(hdev, vector);
1092 	if (vector_id < 0) {
1093 		dev_err(&handle->pdev->dev,
1094 			"Get vector index fail. ret =%d\n", vector_id);
1095 		return vector_id;
1096 	}
1097 
1098 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1099 }
1100 
1101 static int hclgevf_unmap_ring_from_vector(
1102 				struct hnae3_handle *handle,
1103 				int vector,
1104 				struct hnae3_ring_chain_node *ring_chain)
1105 {
1106 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1107 	int ret, vector_id;
1108 
1109 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1110 		return 0;
1111 
1112 	vector_id = hclgevf_get_vector_index(hdev, vector);
1113 	if (vector_id < 0) {
1114 		dev_err(&handle->pdev->dev,
1115 			"Get vector index fail. ret =%d\n", vector_id);
1116 		return vector_id;
1117 	}
1118 
1119 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1120 	if (ret)
1121 		dev_err(&handle->pdev->dev,
1122 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1123 			vector_id,
1124 			ret);
1125 
1126 	return ret;
1127 }
1128 
1129 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1130 {
1131 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1132 	int vector_id;
1133 
1134 	vector_id = hclgevf_get_vector_index(hdev, vector);
1135 	if (vector_id < 0) {
1136 		dev_err(&handle->pdev->dev,
1137 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1138 			vector_id);
1139 		return vector_id;
1140 	}
1141 
1142 	hclgevf_free_vector(hdev, vector_id);
1143 
1144 	return 0;
1145 }
1146 
1147 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1148 					bool en_uc_pmc, bool en_mc_pmc,
1149 					bool en_bc_pmc)
1150 {
1151 	struct hnae3_handle *handle = &hdev->nic;
1152 	struct hclge_vf_to_pf_msg send_msg;
1153 	int ret;
1154 
1155 	memset(&send_msg, 0, sizeof(send_msg));
1156 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1157 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1158 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1159 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1160 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1161 					     &handle->priv_flags) ? 1 : 0;
1162 
1163 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1164 	if (ret)
1165 		dev_err(&hdev->pdev->dev,
1166 			"Set promisc mode fail, status is %d.\n", ret);
1167 
1168 	return ret;
1169 }
1170 
1171 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1172 				    bool en_mc_pmc)
1173 {
1174 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1175 	bool en_bc_pmc;
1176 
1177 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1178 
1179 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1180 					    en_bc_pmc);
1181 }
1182 
1183 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1184 {
1185 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1186 
1187 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1188 	hclgevf_task_schedule(hdev, 0);
1189 }
1190 
1191 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1192 {
1193 	struct hnae3_handle *handle = &hdev->nic;
1194 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1195 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1196 	int ret;
1197 
1198 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1199 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1200 		if (!ret)
1201 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1202 	}
1203 }
1204 
1205 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1206 			      int stream_id, bool enable)
1207 {
1208 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1209 	struct hclgevf_desc desc;
1210 	int status;
1211 
1212 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1213 
1214 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1215 				     false);
1216 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1217 	req->stream_id = cpu_to_le16(stream_id);
1218 	if (enable)
1219 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1220 
1221 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1222 	if (status)
1223 		dev_err(&hdev->pdev->dev,
1224 			"TQP enable fail, status =%d.\n", status);
1225 
1226 	return status;
1227 }
1228 
1229 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1230 {
1231 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1232 	struct hclgevf_tqp *tqp;
1233 	int i;
1234 
1235 	for (i = 0; i < kinfo->num_tqps; i++) {
1236 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1237 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1238 	}
1239 }
1240 
1241 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1242 {
1243 	struct hclge_vf_to_pf_msg send_msg;
1244 	u8 host_mac[ETH_ALEN];
1245 	int status;
1246 
1247 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1248 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1249 				      ETH_ALEN);
1250 	if (status) {
1251 		dev_err(&hdev->pdev->dev,
1252 			"fail to get VF MAC from host %d", status);
1253 		return status;
1254 	}
1255 
1256 	ether_addr_copy(p, host_mac);
1257 
1258 	return 0;
1259 }
1260 
1261 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1262 {
1263 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1264 	u8 host_mac_addr[ETH_ALEN];
1265 
1266 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1267 		return;
1268 
1269 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1270 	if (hdev->has_pf_mac)
1271 		ether_addr_copy(p, host_mac_addr);
1272 	else
1273 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1274 }
1275 
1276 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1277 				bool is_first)
1278 {
1279 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1280 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1281 	struct hclge_vf_to_pf_msg send_msg;
1282 	u8 *new_mac_addr = (u8 *)p;
1283 	int status;
1284 
1285 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1286 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1287 	ether_addr_copy(send_msg.data, new_mac_addr);
1288 	if (is_first && !hdev->has_pf_mac)
1289 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1290 	else
1291 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1292 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1293 	if (!status)
1294 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1295 
1296 	return status;
1297 }
1298 
1299 static struct hclgevf_mac_addr_node *
1300 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1301 {
1302 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1303 
1304 	list_for_each_entry_safe(mac_node, tmp, list, node)
1305 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1306 			return mac_node;
1307 
1308 	return NULL;
1309 }
1310 
1311 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1312 				    enum HCLGEVF_MAC_NODE_STATE state)
1313 {
1314 	switch (state) {
1315 	/* from set_rx_mode or tmp_add_list */
1316 	case HCLGEVF_MAC_TO_ADD:
1317 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1318 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1319 		break;
1320 	/* only from set_rx_mode */
1321 	case HCLGEVF_MAC_TO_DEL:
1322 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1323 			list_del(&mac_node->node);
1324 			kfree(mac_node);
1325 		} else {
1326 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1327 		}
1328 		break;
1329 	/* only from tmp_add_list, the mac_node->state won't be
1330 	 * HCLGEVF_MAC_ACTIVE
1331 	 */
1332 	case HCLGEVF_MAC_ACTIVE:
1333 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1334 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1335 		break;
1336 	}
1337 }
1338 
1339 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1340 				   enum HCLGEVF_MAC_NODE_STATE state,
1341 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1342 				   const unsigned char *addr)
1343 {
1344 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1345 	struct hclgevf_mac_addr_node *mac_node;
1346 	struct list_head *list;
1347 
1348 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1349 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1350 
1351 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1352 
1353 	/* if the mac addr is already in the mac list, no need to add a new
1354 	 * one into it, just check the mac addr state, convert it to a new
1355 	 * new state, or just remove it, or do nothing.
1356 	 */
1357 	mac_node = hclgevf_find_mac_node(list, addr);
1358 	if (mac_node) {
1359 		hclgevf_update_mac_node(mac_node, state);
1360 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1361 		return 0;
1362 	}
1363 	/* if this address is never added, unnecessary to delete */
1364 	if (state == HCLGEVF_MAC_TO_DEL) {
1365 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1366 		return -ENOENT;
1367 	}
1368 
1369 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1370 	if (!mac_node) {
1371 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1372 		return -ENOMEM;
1373 	}
1374 
1375 	mac_node->state = state;
1376 	ether_addr_copy(mac_node->mac_addr, addr);
1377 	list_add_tail(&mac_node->node, list);
1378 
1379 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1380 	return 0;
1381 }
1382 
1383 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1384 			       const unsigned char *addr)
1385 {
1386 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1387 				       HCLGEVF_MAC_ADDR_UC, addr);
1388 }
1389 
1390 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1391 			      const unsigned char *addr)
1392 {
1393 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1394 				       HCLGEVF_MAC_ADDR_UC, addr);
1395 }
1396 
1397 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1398 			       const unsigned char *addr)
1399 {
1400 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1401 				       HCLGEVF_MAC_ADDR_MC, addr);
1402 }
1403 
1404 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1405 			      const unsigned char *addr)
1406 {
1407 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1408 				       HCLGEVF_MAC_ADDR_MC, addr);
1409 }
1410 
1411 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1412 				    struct hclgevf_mac_addr_node *mac_node,
1413 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1414 {
1415 	struct hclge_vf_to_pf_msg send_msg;
1416 	u8 code, subcode;
1417 
1418 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1419 		code = HCLGE_MBX_SET_UNICAST;
1420 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1421 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1422 		else
1423 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1424 	} else {
1425 		code = HCLGE_MBX_SET_MULTICAST;
1426 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1427 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1428 		else
1429 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1430 	}
1431 
1432 	hclgevf_build_send_msg(&send_msg, code, subcode);
1433 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1434 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1435 }
1436 
1437 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1438 				    struct list_head *list,
1439 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1440 {
1441 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1442 	int ret;
1443 
1444 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1445 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1446 		if  (ret) {
1447 			dev_err(&hdev->pdev->dev,
1448 				"failed to configure mac %pM, state = %d, ret = %d\n",
1449 				mac_node->mac_addr, mac_node->state, ret);
1450 			return;
1451 		}
1452 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1453 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1454 		} else {
1455 			list_del(&mac_node->node);
1456 			kfree(mac_node);
1457 		}
1458 	}
1459 }
1460 
1461 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1462 				       struct list_head *mac_list)
1463 {
1464 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1465 
1466 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1467 		/* if the mac address from tmp_add_list is not in the
1468 		 * uc/mc_mac_list, it means have received a TO_DEL request
1469 		 * during the time window of sending mac config request to PF
1470 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1471 		 * then it will be removed at next time. If is TO_ADD, it means
1472 		 * send TO_ADD request failed, so just remove the mac node.
1473 		 */
1474 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1475 		if (new_node) {
1476 			hclgevf_update_mac_node(new_node, mac_node->state);
1477 			list_del(&mac_node->node);
1478 			kfree(mac_node);
1479 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1480 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1481 			list_del(&mac_node->node);
1482 			list_add_tail(&mac_node->node, mac_list);
1483 		} else {
1484 			list_del(&mac_node->node);
1485 			kfree(mac_node);
1486 		}
1487 	}
1488 }
1489 
1490 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1491 				       struct list_head *mac_list)
1492 {
1493 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1494 
1495 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1496 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1497 		if (new_node) {
1498 			/* If the mac addr is exist in the mac list, it means
1499 			 * received a new request TO_ADD during the time window
1500 			 * of sending mac addr configurrequest to PF, so just
1501 			 * change the mac state to ACTIVE.
1502 			 */
1503 			new_node->state = HCLGEVF_MAC_ACTIVE;
1504 			list_del(&mac_node->node);
1505 			kfree(mac_node);
1506 		} else {
1507 			list_del(&mac_node->node);
1508 			list_add_tail(&mac_node->node, mac_list);
1509 		}
1510 	}
1511 }
1512 
1513 static void hclgevf_clear_list(struct list_head *list)
1514 {
1515 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1516 
1517 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1518 		list_del(&mac_node->node);
1519 		kfree(mac_node);
1520 	}
1521 }
1522 
1523 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1524 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1525 {
1526 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1527 	struct list_head tmp_add_list, tmp_del_list;
1528 	struct list_head *list;
1529 
1530 	INIT_LIST_HEAD(&tmp_add_list);
1531 	INIT_LIST_HEAD(&tmp_del_list);
1532 
1533 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1534 	 * we can add/delete these mac addr outside the spin lock
1535 	 */
1536 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1537 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1538 
1539 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1540 
1541 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1542 		switch (mac_node->state) {
1543 		case HCLGEVF_MAC_TO_DEL:
1544 			list_del(&mac_node->node);
1545 			list_add_tail(&mac_node->node, &tmp_del_list);
1546 			break;
1547 		case HCLGEVF_MAC_TO_ADD:
1548 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1549 			if (!new_node)
1550 				goto stop_traverse;
1551 
1552 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1553 			new_node->state = mac_node->state;
1554 			list_add_tail(&new_node->node, &tmp_add_list);
1555 			break;
1556 		default:
1557 			break;
1558 		}
1559 	}
1560 
1561 stop_traverse:
1562 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1563 
1564 	/* delete first, in order to get max mac table space for adding */
1565 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1566 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1567 
1568 	/* if some mac addresses were added/deleted fail, move back to the
1569 	 * mac_list, and retry at next time.
1570 	 */
1571 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1572 
1573 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1574 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1575 
1576 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1577 }
1578 
1579 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1580 {
1581 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1582 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1583 }
1584 
1585 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1586 {
1587 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1588 
1589 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1590 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1591 
1592 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1593 }
1594 
1595 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1596 				   __be16 proto, u16 vlan_id,
1597 				   bool is_kill)
1598 {
1599 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1600 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1601 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1602 
1603 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1604 	struct hclge_vf_to_pf_msg send_msg;
1605 	int ret;
1606 
1607 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1608 		return -EINVAL;
1609 
1610 	if (proto != htons(ETH_P_8021Q))
1611 		return -EPROTONOSUPPORT;
1612 
1613 	/* When device is resetting or reset failed, firmware is unable to
1614 	 * handle mailbox. Just record the vlan id, and remove it after
1615 	 * reset finished.
1616 	 */
1617 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1618 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1619 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1620 		return -EBUSY;
1621 	}
1622 
1623 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1624 			       HCLGE_MBX_VLAN_FILTER);
1625 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1626 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1627 	       sizeof(vlan_id));
1628 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1629 	       sizeof(proto));
1630 	/* when remove hw vlan filter failed, record the vlan id,
1631 	 * and try to remove it from hw later, to be consistence
1632 	 * with stack.
1633 	 */
1634 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1635 	if (is_kill && ret)
1636 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1637 
1638 	return ret;
1639 }
1640 
1641 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1642 {
1643 #define HCLGEVF_MAX_SYNC_COUNT	60
1644 	struct hnae3_handle *handle = &hdev->nic;
1645 	int ret, sync_cnt = 0;
1646 	u16 vlan_id;
1647 
1648 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1649 	while (vlan_id != VLAN_N_VID) {
1650 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1651 					      vlan_id, true);
1652 		if (ret)
1653 			return;
1654 
1655 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1656 		sync_cnt++;
1657 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1658 			return;
1659 
1660 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1661 	}
1662 }
1663 
1664 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1665 {
1666 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1667 	struct hclge_vf_to_pf_msg send_msg;
1668 
1669 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1670 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1671 	send_msg.data[0] = enable ? 1 : 0;
1672 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1673 }
1674 
1675 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1676 {
1677 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1678 	struct hclge_vf_to_pf_msg send_msg;
1679 	int ret;
1680 
1681 	/* disable vf queue before send queue reset msg to PF */
1682 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1683 	if (ret)
1684 		return ret;
1685 
1686 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1687 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1688 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1689 }
1690 
1691 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1692 {
1693 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1694 	struct hclge_vf_to_pf_msg send_msg;
1695 
1696 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1697 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1698 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1699 }
1700 
1701 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1702 				 enum hnae3_reset_notify_type type)
1703 {
1704 	struct hnae3_client *client = hdev->nic_client;
1705 	struct hnae3_handle *handle = &hdev->nic;
1706 	int ret;
1707 
1708 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1709 	    !client)
1710 		return 0;
1711 
1712 	if (!client->ops->reset_notify)
1713 		return -EOPNOTSUPP;
1714 
1715 	ret = client->ops->reset_notify(handle, type);
1716 	if (ret)
1717 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1718 			type, ret);
1719 
1720 	return ret;
1721 }
1722 
1723 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1724 				      enum hnae3_reset_notify_type type)
1725 {
1726 	struct hnae3_client *client = hdev->roce_client;
1727 	struct hnae3_handle *handle = &hdev->roce;
1728 	int ret;
1729 
1730 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1731 		return 0;
1732 
1733 	if (!client->ops->reset_notify)
1734 		return -EOPNOTSUPP;
1735 
1736 	ret = client->ops->reset_notify(handle, type);
1737 	if (ret)
1738 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1739 			type, ret);
1740 	return ret;
1741 }
1742 
1743 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1744 {
1745 #define HCLGEVF_RESET_WAIT_US	20000
1746 #define HCLGEVF_RESET_WAIT_CNT	2000
1747 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1748 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1749 
1750 	u32 val;
1751 	int ret;
1752 
1753 	if (hdev->reset_type == HNAE3_VF_RESET)
1754 		ret = readl_poll_timeout(hdev->hw.io_base +
1755 					 HCLGEVF_VF_RST_ING, val,
1756 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1757 					 HCLGEVF_RESET_WAIT_US,
1758 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1759 	else
1760 		ret = readl_poll_timeout(hdev->hw.io_base +
1761 					 HCLGEVF_RST_ING, val,
1762 					 !(val & HCLGEVF_RST_ING_BITS),
1763 					 HCLGEVF_RESET_WAIT_US,
1764 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1765 
1766 	/* hardware completion status should be available by this time */
1767 	if (ret) {
1768 		dev_err(&hdev->pdev->dev,
1769 			"couldn't get reset done status from h/w, timeout!\n");
1770 		return ret;
1771 	}
1772 
1773 	/* we will wait a bit more to let reset of the stack to complete. This
1774 	 * might happen in case reset assertion was made by PF. Yes, this also
1775 	 * means we might end up waiting bit more even for VF reset.
1776 	 */
1777 	msleep(5000);
1778 
1779 	return 0;
1780 }
1781 
1782 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1783 {
1784 	u32 reg_val;
1785 
1786 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1787 	if (enable)
1788 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1789 	else
1790 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1791 
1792 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1793 			  reg_val);
1794 }
1795 
1796 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1797 {
1798 	int ret;
1799 
1800 	/* uninitialize the nic client */
1801 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1802 	if (ret)
1803 		return ret;
1804 
1805 	/* re-initialize the hclge device */
1806 	ret = hclgevf_reset_hdev(hdev);
1807 	if (ret) {
1808 		dev_err(&hdev->pdev->dev,
1809 			"hclge device re-init failed, VF is disabled!\n");
1810 		return ret;
1811 	}
1812 
1813 	/* bring up the nic client again */
1814 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1815 	if (ret)
1816 		return ret;
1817 
1818 	/* clear handshake status with IMP */
1819 	hclgevf_reset_handshake(hdev, false);
1820 
1821 	/* bring up the nic to enable TX/RX again */
1822 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1823 }
1824 
1825 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1826 {
1827 #define HCLGEVF_RESET_SYNC_TIME 100
1828 
1829 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1830 		struct hclge_vf_to_pf_msg send_msg;
1831 		int ret;
1832 
1833 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1834 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1835 		if (ret) {
1836 			dev_err(&hdev->pdev->dev,
1837 				"failed to assert VF reset, ret = %d\n", ret);
1838 			return ret;
1839 		}
1840 		hdev->rst_stats.vf_func_rst_cnt++;
1841 	}
1842 
1843 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1844 	/* inform hardware that preparatory work is done */
1845 	msleep(HCLGEVF_RESET_SYNC_TIME);
1846 	hclgevf_reset_handshake(hdev, true);
1847 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1848 		 hdev->reset_type);
1849 
1850 	return 0;
1851 }
1852 
1853 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1854 {
1855 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1856 		 hdev->rst_stats.vf_func_rst_cnt);
1857 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1858 		 hdev->rst_stats.flr_rst_cnt);
1859 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1860 		 hdev->rst_stats.vf_rst_cnt);
1861 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1862 		 hdev->rst_stats.rst_done_cnt);
1863 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1864 		 hdev->rst_stats.hw_rst_done_cnt);
1865 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1866 		 hdev->rst_stats.rst_cnt);
1867 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1868 		 hdev->rst_stats.rst_fail_cnt);
1869 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1870 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1871 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1872 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1873 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1874 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1875 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1876 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1877 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1878 }
1879 
1880 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1881 {
1882 	/* recover handshake status with IMP when reset fail */
1883 	hclgevf_reset_handshake(hdev, true);
1884 	hdev->rst_stats.rst_fail_cnt++;
1885 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1886 		hdev->rst_stats.rst_fail_cnt);
1887 
1888 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1889 		set_bit(hdev->reset_type, &hdev->reset_pending);
1890 
1891 	if (hclgevf_is_reset_pending(hdev)) {
1892 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1893 		hclgevf_reset_task_schedule(hdev);
1894 	} else {
1895 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1896 		hclgevf_dump_rst_info(hdev);
1897 	}
1898 }
1899 
1900 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1901 {
1902 	int ret;
1903 
1904 	hdev->rst_stats.rst_cnt++;
1905 
1906 	/* perform reset of the stack & ae device for a client */
1907 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1908 	if (ret)
1909 		return ret;
1910 
1911 	rtnl_lock();
1912 	/* bring down the nic to stop any ongoing TX/RX */
1913 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1914 	rtnl_unlock();
1915 	if (ret)
1916 		return ret;
1917 
1918 	return hclgevf_reset_prepare_wait(hdev);
1919 }
1920 
1921 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1922 {
1923 	int ret;
1924 
1925 	hdev->rst_stats.hw_rst_done_cnt++;
1926 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1927 	if (ret)
1928 		return ret;
1929 
1930 	rtnl_lock();
1931 	/* now, re-initialize the nic client and ae device */
1932 	ret = hclgevf_reset_stack(hdev);
1933 	rtnl_unlock();
1934 	if (ret) {
1935 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1936 		return ret;
1937 	}
1938 
1939 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1940 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1941 	 * times
1942 	 */
1943 	if (ret &&
1944 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1945 		return ret;
1946 
1947 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1948 	if (ret)
1949 		return ret;
1950 
1951 	hdev->last_reset_time = jiffies;
1952 	hdev->rst_stats.rst_done_cnt++;
1953 	hdev->rst_stats.rst_fail_cnt = 0;
1954 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1955 
1956 	return 0;
1957 }
1958 
1959 static void hclgevf_reset(struct hclgevf_dev *hdev)
1960 {
1961 	if (hclgevf_reset_prepare(hdev))
1962 		goto err_reset;
1963 
1964 	/* check if VF could successfully fetch the hardware reset completion
1965 	 * status from the hardware
1966 	 */
1967 	if (hclgevf_reset_wait(hdev)) {
1968 		/* can't do much in this situation, will disable VF */
1969 		dev_err(&hdev->pdev->dev,
1970 			"failed to fetch H/W reset completion status\n");
1971 		goto err_reset;
1972 	}
1973 
1974 	if (hclgevf_reset_rebuild(hdev))
1975 		goto err_reset;
1976 
1977 	return;
1978 
1979 err_reset:
1980 	hclgevf_reset_err_handle(hdev);
1981 }
1982 
1983 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1984 						     unsigned long *addr)
1985 {
1986 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1987 
1988 	/* return the highest priority reset level amongst all */
1989 	if (test_bit(HNAE3_VF_RESET, addr)) {
1990 		rst_level = HNAE3_VF_RESET;
1991 		clear_bit(HNAE3_VF_RESET, addr);
1992 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1993 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1994 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1995 		rst_level = HNAE3_VF_FULL_RESET;
1996 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1997 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1998 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1999 		rst_level = HNAE3_VF_PF_FUNC_RESET;
2000 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2001 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2002 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2003 		rst_level = HNAE3_VF_FUNC_RESET;
2004 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2005 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2006 		rst_level = HNAE3_FLR_RESET;
2007 		clear_bit(HNAE3_FLR_RESET, addr);
2008 	}
2009 
2010 	return rst_level;
2011 }
2012 
2013 static void hclgevf_reset_event(struct pci_dev *pdev,
2014 				struct hnae3_handle *handle)
2015 {
2016 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2017 	struct hclgevf_dev *hdev = ae_dev->priv;
2018 
2019 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2020 
2021 	if (hdev->default_reset_request)
2022 		hdev->reset_level =
2023 			hclgevf_get_reset_level(hdev,
2024 						&hdev->default_reset_request);
2025 	else
2026 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2027 
2028 	/* reset of this VF requested */
2029 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2030 	hclgevf_reset_task_schedule(hdev);
2031 
2032 	hdev->last_reset_time = jiffies;
2033 }
2034 
2035 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2036 					  enum hnae3_reset_type rst_type)
2037 {
2038 	struct hclgevf_dev *hdev = ae_dev->priv;
2039 
2040 	set_bit(rst_type, &hdev->default_reset_request);
2041 }
2042 
2043 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2044 {
2045 	writel(en ? 1 : 0, vector->addr);
2046 }
2047 
2048 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2049 {
2050 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
2051 #define HCLGEVF_FLR_RETRY_CNT		5
2052 
2053 	struct hclgevf_dev *hdev = ae_dev->priv;
2054 	int retry_cnt = 0;
2055 	int ret;
2056 
2057 retry:
2058 	down(&hdev->reset_sem);
2059 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2060 	hdev->reset_type = HNAE3_FLR_RESET;
2061 	ret = hclgevf_reset_prepare(hdev);
2062 	if (ret) {
2063 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2064 			ret);
2065 		if (hdev->reset_pending ||
2066 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2067 			dev_err(&hdev->pdev->dev,
2068 				"reset_pending:0x%lx, retry_cnt:%d\n",
2069 				hdev->reset_pending, retry_cnt);
2070 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2071 			up(&hdev->reset_sem);
2072 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2073 			goto retry;
2074 		}
2075 	}
2076 
2077 	/* disable misc vector before FLR done */
2078 	hclgevf_enable_vector(&hdev->misc_vector, false);
2079 	hdev->rst_stats.flr_rst_cnt++;
2080 }
2081 
2082 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2083 {
2084 	struct hclgevf_dev *hdev = ae_dev->priv;
2085 	int ret;
2086 
2087 	hclgevf_enable_vector(&hdev->misc_vector, true);
2088 
2089 	ret = hclgevf_reset_rebuild(hdev);
2090 	if (ret)
2091 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2092 			 ret);
2093 
2094 	hdev->reset_type = HNAE3_NONE_RESET;
2095 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2096 	up(&hdev->reset_sem);
2097 }
2098 
2099 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2100 {
2101 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2102 
2103 	return hdev->fw_version;
2104 }
2105 
2106 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2107 {
2108 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2109 
2110 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2111 					    HCLGEVF_MISC_VECTOR_NUM);
2112 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2113 	/* vector status always valid for Vector 0 */
2114 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2115 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2116 
2117 	hdev->num_msi_left -= 1;
2118 	hdev->num_msi_used += 1;
2119 }
2120 
2121 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2122 {
2123 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2124 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2125 			      &hdev->state))
2126 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2127 }
2128 
2129 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2130 {
2131 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2132 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2133 			      &hdev->state))
2134 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2135 }
2136 
2137 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2138 				  unsigned long delay)
2139 {
2140 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2141 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2142 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2143 }
2144 
2145 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2146 {
2147 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2148 
2149 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2150 		return;
2151 
2152 	down(&hdev->reset_sem);
2153 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2154 
2155 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2156 			       &hdev->reset_state)) {
2157 		/* PF has initmated that it is about to reset the hardware.
2158 		 * We now have to poll & check if hardware has actually
2159 		 * completed the reset sequence. On hardware reset completion,
2160 		 * VF needs to reset the client and ae device.
2161 		 */
2162 		hdev->reset_attempts = 0;
2163 
2164 		hdev->last_reset_time = jiffies;
2165 		while ((hdev->reset_type =
2166 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2167 		       != HNAE3_NONE_RESET)
2168 			hclgevf_reset(hdev);
2169 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2170 				      &hdev->reset_state)) {
2171 		/* we could be here when either of below happens:
2172 		 * 1. reset was initiated due to watchdog timeout caused by
2173 		 *    a. IMP was earlier reset and our TX got choked down and
2174 		 *       which resulted in watchdog reacting and inducing VF
2175 		 *       reset. This also means our cmdq would be unreliable.
2176 		 *    b. problem in TX due to other lower layer(example link
2177 		 *       layer not functioning properly etc.)
2178 		 * 2. VF reset might have been initiated due to some config
2179 		 *    change.
2180 		 *
2181 		 * NOTE: Theres no clear way to detect above cases than to react
2182 		 * to the response of PF for this reset request. PF will ack the
2183 		 * 1b and 2. cases but we will not get any intimation about 1a
2184 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2185 		 * communication between PF and VF would be broken.
2186 		 *
2187 		 * if we are never geting into pending state it means either:
2188 		 * 1. PF is not receiving our request which could be due to IMP
2189 		 *    reset
2190 		 * 2. PF is screwed
2191 		 * We cannot do much for 2. but to check first we can try reset
2192 		 * our PCIe + stack and see if it alleviates the problem.
2193 		 */
2194 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2195 			/* prepare for full reset of stack + pcie interface */
2196 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2197 
2198 			/* "defer" schedule the reset task again */
2199 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2200 		} else {
2201 			hdev->reset_attempts++;
2202 
2203 			set_bit(hdev->reset_level, &hdev->reset_pending);
2204 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2205 		}
2206 		hclgevf_reset_task_schedule(hdev);
2207 	}
2208 
2209 	hdev->reset_type = HNAE3_NONE_RESET;
2210 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2211 	up(&hdev->reset_sem);
2212 }
2213 
2214 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2215 {
2216 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2217 		return;
2218 
2219 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2220 		return;
2221 
2222 	hclgevf_mbx_async_handler(hdev);
2223 
2224 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2225 }
2226 
2227 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2228 {
2229 	struct hclge_vf_to_pf_msg send_msg;
2230 	int ret;
2231 
2232 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2233 		return;
2234 
2235 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2236 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2237 	if (ret)
2238 		dev_err(&hdev->pdev->dev,
2239 			"VF sends keep alive cmd failed(=%d)\n", ret);
2240 }
2241 
2242 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2243 {
2244 	unsigned long delta = round_jiffies_relative(HZ);
2245 	struct hnae3_handle *handle = &hdev->nic;
2246 
2247 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2248 		return;
2249 
2250 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2251 		delta = jiffies - hdev->last_serv_processed;
2252 
2253 		if (delta < round_jiffies_relative(HZ)) {
2254 			delta = round_jiffies_relative(HZ) - delta;
2255 			goto out;
2256 		}
2257 	}
2258 
2259 	hdev->serv_processed_cnt++;
2260 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2261 		hclgevf_keep_alive(hdev);
2262 
2263 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2264 		hdev->last_serv_processed = jiffies;
2265 		goto out;
2266 	}
2267 
2268 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2269 		hclgevf_tqps_update_stats(handle);
2270 
2271 	/* request the link status from the PF. PF would be able to tell VF
2272 	 * about such updates in future so we might remove this later
2273 	 */
2274 	hclgevf_request_link_info(hdev);
2275 
2276 	hclgevf_update_link_mode(hdev);
2277 
2278 	hclgevf_sync_vlan_filter(hdev);
2279 
2280 	hclgevf_sync_mac_table(hdev);
2281 
2282 	hclgevf_sync_promisc_mode(hdev);
2283 
2284 	hdev->last_serv_processed = jiffies;
2285 
2286 out:
2287 	hclgevf_task_schedule(hdev, delta);
2288 }
2289 
2290 static void hclgevf_service_task(struct work_struct *work)
2291 {
2292 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2293 						service_task.work);
2294 
2295 	hclgevf_reset_service_task(hdev);
2296 	hclgevf_mailbox_service_task(hdev);
2297 	hclgevf_periodic_service_task(hdev);
2298 
2299 	/* Handle reset and mbx again in case periodical task delays the
2300 	 * handling by calling hclgevf_task_schedule() in
2301 	 * hclgevf_periodic_service_task()
2302 	 */
2303 	hclgevf_reset_service_task(hdev);
2304 	hclgevf_mailbox_service_task(hdev);
2305 }
2306 
2307 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2308 {
2309 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2310 }
2311 
2312 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2313 						      u32 *clearval)
2314 {
2315 	u32 val, cmdq_stat_reg, rst_ing_reg;
2316 
2317 	/* fetch the events from their corresponding regs */
2318 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2319 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2320 
2321 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2322 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2323 		dev_info(&hdev->pdev->dev,
2324 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2325 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2326 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2327 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2328 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2329 		hdev->rst_stats.vf_rst_cnt++;
2330 		/* set up VF hardware reset status, its PF will clear
2331 		 * this status when PF has initialized done.
2332 		 */
2333 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2334 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2335 				  val | HCLGEVF_VF_RST_ING_BIT);
2336 		return HCLGEVF_VECTOR0_EVENT_RST;
2337 	}
2338 
2339 	/* check for vector0 mailbox(=CMDQ RX) event source */
2340 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2341 		/* for revision 0x21, clearing interrupt is writing bit 0
2342 		 * to the clear register, writing bit 1 means to keep the
2343 		 * old value.
2344 		 * for revision 0x20, the clear register is a read & write
2345 		 * register, so we should just write 0 to the bit we are
2346 		 * handling, and keep other bits as cmdq_stat_reg.
2347 		 */
2348 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2349 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2350 		else
2351 			*clearval = cmdq_stat_reg &
2352 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2353 
2354 		return HCLGEVF_VECTOR0_EVENT_MBX;
2355 	}
2356 
2357 	/* print other vector0 event source */
2358 	dev_info(&hdev->pdev->dev,
2359 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2360 		 cmdq_stat_reg);
2361 
2362 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2363 }
2364 
2365 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2366 {
2367 	enum hclgevf_evt_cause event_cause;
2368 	struct hclgevf_dev *hdev = data;
2369 	u32 clearval;
2370 
2371 	hclgevf_enable_vector(&hdev->misc_vector, false);
2372 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2373 
2374 	switch (event_cause) {
2375 	case HCLGEVF_VECTOR0_EVENT_RST:
2376 		hclgevf_reset_task_schedule(hdev);
2377 		break;
2378 	case HCLGEVF_VECTOR0_EVENT_MBX:
2379 		hclgevf_mbx_handler(hdev);
2380 		break;
2381 	default:
2382 		break;
2383 	}
2384 
2385 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2386 		hclgevf_clear_event_cause(hdev, clearval);
2387 		hclgevf_enable_vector(&hdev->misc_vector, true);
2388 	}
2389 
2390 	return IRQ_HANDLED;
2391 }
2392 
2393 static int hclgevf_configure(struct hclgevf_dev *hdev)
2394 {
2395 	int ret;
2396 
2397 	/* get current port based vlan state from PF */
2398 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2399 	if (ret)
2400 		return ret;
2401 
2402 	/* get queue configuration from PF */
2403 	ret = hclgevf_get_queue_info(hdev);
2404 	if (ret)
2405 		return ret;
2406 
2407 	/* get queue depth info from PF */
2408 	ret = hclgevf_get_queue_depth(hdev);
2409 	if (ret)
2410 		return ret;
2411 
2412 	ret = hclgevf_get_pf_media_type(hdev);
2413 	if (ret)
2414 		return ret;
2415 
2416 	/* get tc configuration from PF */
2417 	return hclgevf_get_tc_info(hdev);
2418 }
2419 
2420 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2421 {
2422 	struct pci_dev *pdev = ae_dev->pdev;
2423 	struct hclgevf_dev *hdev;
2424 
2425 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2426 	if (!hdev)
2427 		return -ENOMEM;
2428 
2429 	hdev->pdev = pdev;
2430 	hdev->ae_dev = ae_dev;
2431 	ae_dev->priv = hdev;
2432 
2433 	return 0;
2434 }
2435 
2436 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2437 {
2438 	struct hnae3_handle *roce = &hdev->roce;
2439 	struct hnae3_handle *nic = &hdev->nic;
2440 
2441 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2442 
2443 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2444 	    hdev->num_msi_left == 0)
2445 		return -EINVAL;
2446 
2447 	roce->rinfo.base_vector = hdev->roce_base_vector;
2448 
2449 	roce->rinfo.netdev = nic->kinfo.netdev;
2450 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2451 	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2452 
2453 	roce->pdev = nic->pdev;
2454 	roce->ae_algo = nic->ae_algo;
2455 	roce->numa_node_mask = nic->numa_node_mask;
2456 
2457 	return 0;
2458 }
2459 
2460 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2461 {
2462 	struct hclgevf_cfg_gro_status_cmd *req;
2463 	struct hclgevf_desc desc;
2464 	int ret;
2465 
2466 	if (!hnae3_dev_gro_supported(hdev))
2467 		return 0;
2468 
2469 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2470 				     false);
2471 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2472 
2473 	req->gro_en = en ? 1 : 0;
2474 
2475 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2476 	if (ret)
2477 		dev_err(&hdev->pdev->dev,
2478 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2479 
2480 	return ret;
2481 }
2482 
2483 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2484 {
2485 	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2486 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2487 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2488 	u32 i;
2489 
2490 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2491 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2492 	tuple_sets = &rss_cfg->rss_tuple_sets;
2493 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2494 		u8 *rss_ind_tbl;
2495 
2496 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2497 
2498 		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2499 					   sizeof(*rss_ind_tbl), GFP_KERNEL);
2500 		if (!rss_ind_tbl)
2501 			return -ENOMEM;
2502 
2503 		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2504 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2505 		       HCLGEVF_RSS_KEY_SIZE);
2506 
2507 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2508 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2509 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2510 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2511 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2512 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2513 		tuple_sets->ipv6_sctp_en =
2514 			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2515 					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2516 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2517 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2518 	}
2519 
2520 	/* Initialize RSS indirect table */
2521 	for (i = 0; i < rss_ind_tbl_size; i++)
2522 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2523 
2524 	return 0;
2525 }
2526 
2527 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2528 {
2529 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2530 	int ret;
2531 
2532 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2533 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2534 					       rss_cfg->rss_hash_key);
2535 		if (ret)
2536 			return ret;
2537 
2538 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2539 		if (ret)
2540 			return ret;
2541 	}
2542 
2543 	ret = hclgevf_set_rss_indir_table(hdev);
2544 	if (ret)
2545 		return ret;
2546 
2547 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2548 }
2549 
2550 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2551 {
2552 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2553 				       false);
2554 }
2555 
2556 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2557 {
2558 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2559 
2560 	unsigned long last = hdev->serv_processed_cnt;
2561 	int i = 0;
2562 
2563 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2564 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2565 	       last == hdev->serv_processed_cnt)
2566 		usleep_range(1, 1);
2567 }
2568 
2569 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2570 {
2571 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2572 
2573 	if (enable) {
2574 		hclgevf_task_schedule(hdev, 0);
2575 	} else {
2576 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2577 
2578 		/* flush memory to make sure DOWN is seen by service task */
2579 		smp_mb__before_atomic();
2580 		hclgevf_flush_link_update(hdev);
2581 	}
2582 }
2583 
2584 static int hclgevf_ae_start(struct hnae3_handle *handle)
2585 {
2586 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2587 
2588 	hclgevf_reset_tqp_stats(handle);
2589 
2590 	hclgevf_request_link_info(hdev);
2591 
2592 	hclgevf_update_link_mode(hdev);
2593 
2594 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2595 
2596 	return 0;
2597 }
2598 
2599 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2600 {
2601 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2602 	int i;
2603 
2604 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2605 
2606 	if (hdev->reset_type != HNAE3_VF_RESET)
2607 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2608 			if (hclgevf_reset_tqp(handle, i))
2609 				break;
2610 
2611 	hclgevf_reset_tqp_stats(handle);
2612 	hclgevf_update_link_status(hdev, 0);
2613 }
2614 
2615 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2616 {
2617 #define HCLGEVF_STATE_ALIVE	1
2618 #define HCLGEVF_STATE_NOT_ALIVE	0
2619 
2620 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2621 	struct hclge_vf_to_pf_msg send_msg;
2622 
2623 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2624 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2625 				HCLGEVF_STATE_NOT_ALIVE;
2626 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2627 }
2628 
2629 static int hclgevf_client_start(struct hnae3_handle *handle)
2630 {
2631 	return hclgevf_set_alive(handle, true);
2632 }
2633 
2634 static void hclgevf_client_stop(struct hnae3_handle *handle)
2635 {
2636 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2637 	int ret;
2638 
2639 	ret = hclgevf_set_alive(handle, false);
2640 	if (ret)
2641 		dev_warn(&hdev->pdev->dev,
2642 			 "%s failed %d\n", __func__, ret);
2643 }
2644 
2645 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2646 {
2647 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2648 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2649 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2650 
2651 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2652 
2653 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2654 	sema_init(&hdev->reset_sem, 1);
2655 
2656 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2657 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2658 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2659 
2660 	/* bring the device down */
2661 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2662 }
2663 
2664 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2665 {
2666 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2667 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2668 
2669 	if (hdev->service_task.work.func)
2670 		cancel_delayed_work_sync(&hdev->service_task);
2671 
2672 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2673 }
2674 
2675 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2676 {
2677 	struct pci_dev *pdev = hdev->pdev;
2678 	int vectors;
2679 	int i;
2680 
2681 	if (hnae3_dev_roce_supported(hdev))
2682 		vectors = pci_alloc_irq_vectors(pdev,
2683 						hdev->roce_base_msix_offset + 1,
2684 						hdev->num_msi,
2685 						PCI_IRQ_MSIX);
2686 	else
2687 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2688 						hdev->num_msi,
2689 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2690 
2691 	if (vectors < 0) {
2692 		dev_err(&pdev->dev,
2693 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2694 			vectors);
2695 		return vectors;
2696 	}
2697 	if (vectors < hdev->num_msi)
2698 		dev_warn(&hdev->pdev->dev,
2699 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2700 			 hdev->num_msi, vectors);
2701 
2702 	hdev->num_msi = vectors;
2703 	hdev->num_msi_left = vectors;
2704 
2705 	hdev->base_msi_vector = pdev->irq;
2706 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2707 
2708 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2709 					   sizeof(u16), GFP_KERNEL);
2710 	if (!hdev->vector_status) {
2711 		pci_free_irq_vectors(pdev);
2712 		return -ENOMEM;
2713 	}
2714 
2715 	for (i = 0; i < hdev->num_msi; i++)
2716 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2717 
2718 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2719 					sizeof(int), GFP_KERNEL);
2720 	if (!hdev->vector_irq) {
2721 		devm_kfree(&pdev->dev, hdev->vector_status);
2722 		pci_free_irq_vectors(pdev);
2723 		return -ENOMEM;
2724 	}
2725 
2726 	return 0;
2727 }
2728 
2729 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2730 {
2731 	struct pci_dev *pdev = hdev->pdev;
2732 
2733 	devm_kfree(&pdev->dev, hdev->vector_status);
2734 	devm_kfree(&pdev->dev, hdev->vector_irq);
2735 	pci_free_irq_vectors(pdev);
2736 }
2737 
2738 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2739 {
2740 	int ret;
2741 
2742 	hclgevf_get_misc_vector(hdev);
2743 
2744 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2745 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2746 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2747 			  0, hdev->misc_vector.name, hdev);
2748 	if (ret) {
2749 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2750 			hdev->misc_vector.vector_irq);
2751 		return ret;
2752 	}
2753 
2754 	hclgevf_clear_event_cause(hdev, 0);
2755 
2756 	/* enable misc. vector(vector 0) */
2757 	hclgevf_enable_vector(&hdev->misc_vector, true);
2758 
2759 	return ret;
2760 }
2761 
2762 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2763 {
2764 	/* disable misc vector(vector 0) */
2765 	hclgevf_enable_vector(&hdev->misc_vector, false);
2766 	synchronize_irq(hdev->misc_vector.vector_irq);
2767 	free_irq(hdev->misc_vector.vector_irq, hdev);
2768 	hclgevf_free_vector(hdev, 0);
2769 }
2770 
2771 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2772 {
2773 	struct device *dev = &hdev->pdev->dev;
2774 
2775 	dev_info(dev, "VF info begin:\n");
2776 
2777 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2778 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2779 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2780 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2781 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2782 	dev_info(dev, "PF media type of this VF: %u\n",
2783 		 hdev->hw.mac.media_type);
2784 
2785 	dev_info(dev, "VF info end.\n");
2786 }
2787 
2788 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2789 					    struct hnae3_client *client)
2790 {
2791 	struct hclgevf_dev *hdev = ae_dev->priv;
2792 	int rst_cnt = hdev->rst_stats.rst_cnt;
2793 	int ret;
2794 
2795 	ret = client->ops->init_instance(&hdev->nic);
2796 	if (ret)
2797 		return ret;
2798 
2799 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2800 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2801 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2802 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2803 
2804 		client->ops->uninit_instance(&hdev->nic, 0);
2805 		return -EBUSY;
2806 	}
2807 
2808 	hnae3_set_client_init_flag(client, ae_dev, 1);
2809 
2810 	if (netif_msg_drv(&hdev->nic))
2811 		hclgevf_info_show(hdev);
2812 
2813 	return 0;
2814 }
2815 
2816 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2817 					     struct hnae3_client *client)
2818 {
2819 	struct hclgevf_dev *hdev = ae_dev->priv;
2820 	int ret;
2821 
2822 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2823 	    !hdev->nic_client)
2824 		return 0;
2825 
2826 	ret = hclgevf_init_roce_base_info(hdev);
2827 	if (ret)
2828 		return ret;
2829 
2830 	ret = client->ops->init_instance(&hdev->roce);
2831 	if (ret)
2832 		return ret;
2833 
2834 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2835 	hnae3_set_client_init_flag(client, ae_dev, 1);
2836 
2837 	return 0;
2838 }
2839 
2840 static int hclgevf_init_client_instance(struct hnae3_client *client,
2841 					struct hnae3_ae_dev *ae_dev)
2842 {
2843 	struct hclgevf_dev *hdev = ae_dev->priv;
2844 	int ret;
2845 
2846 	switch (client->type) {
2847 	case HNAE3_CLIENT_KNIC:
2848 		hdev->nic_client = client;
2849 		hdev->nic.client = client;
2850 
2851 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2852 		if (ret)
2853 			goto clear_nic;
2854 
2855 		ret = hclgevf_init_roce_client_instance(ae_dev,
2856 							hdev->roce_client);
2857 		if (ret)
2858 			goto clear_roce;
2859 
2860 		break;
2861 	case HNAE3_CLIENT_ROCE:
2862 		if (hnae3_dev_roce_supported(hdev)) {
2863 			hdev->roce_client = client;
2864 			hdev->roce.client = client;
2865 		}
2866 
2867 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2868 		if (ret)
2869 			goto clear_roce;
2870 
2871 		break;
2872 	default:
2873 		return -EINVAL;
2874 	}
2875 
2876 	return 0;
2877 
2878 clear_nic:
2879 	hdev->nic_client = NULL;
2880 	hdev->nic.client = NULL;
2881 	return ret;
2882 clear_roce:
2883 	hdev->roce_client = NULL;
2884 	hdev->roce.client = NULL;
2885 	return ret;
2886 }
2887 
2888 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2889 					   struct hnae3_ae_dev *ae_dev)
2890 {
2891 	struct hclgevf_dev *hdev = ae_dev->priv;
2892 
2893 	/* un-init roce, if it exists */
2894 	if (hdev->roce_client) {
2895 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2896 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2897 		hdev->roce_client = NULL;
2898 		hdev->roce.client = NULL;
2899 	}
2900 
2901 	/* un-init nic/unic, if this was not called by roce client */
2902 	if (client->ops->uninit_instance && hdev->nic_client &&
2903 	    client->type != HNAE3_CLIENT_ROCE) {
2904 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2905 
2906 		client->ops->uninit_instance(&hdev->nic, 0);
2907 		hdev->nic_client = NULL;
2908 		hdev->nic.client = NULL;
2909 	}
2910 }
2911 
2912 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2913 {
2914 #define HCLGEVF_MEM_BAR		4
2915 
2916 	struct pci_dev *pdev = hdev->pdev;
2917 	struct hclgevf_hw *hw = &hdev->hw;
2918 
2919 	/* for device does not have device memory, return directly */
2920 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2921 		return 0;
2922 
2923 	hw->mem_base = devm_ioremap_wc(&pdev->dev,
2924 				       pci_resource_start(pdev,
2925 							  HCLGEVF_MEM_BAR),
2926 				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2927 	if (!hw->mem_base) {
2928 		dev_err(&pdev->dev, "failed to map device memory\n");
2929 		return -EFAULT;
2930 	}
2931 
2932 	return 0;
2933 }
2934 
2935 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2936 {
2937 	struct pci_dev *pdev = hdev->pdev;
2938 	struct hclgevf_hw *hw;
2939 	int ret;
2940 
2941 	ret = pci_enable_device(pdev);
2942 	if (ret) {
2943 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2944 		return ret;
2945 	}
2946 
2947 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2948 	if (ret) {
2949 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2950 		goto err_disable_device;
2951 	}
2952 
2953 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2954 	if (ret) {
2955 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2956 		goto err_disable_device;
2957 	}
2958 
2959 	pci_set_master(pdev);
2960 	hw = &hdev->hw;
2961 	hw->hdev = hdev;
2962 	hw->io_base = pci_iomap(pdev, 2, 0);
2963 	if (!hw->io_base) {
2964 		dev_err(&pdev->dev, "can't map configuration register space\n");
2965 		ret = -ENOMEM;
2966 		goto err_clr_master;
2967 	}
2968 
2969 	ret = hclgevf_dev_mem_map(hdev);
2970 	if (ret)
2971 		goto err_unmap_io_base;
2972 
2973 	return 0;
2974 
2975 err_unmap_io_base:
2976 	pci_iounmap(pdev, hdev->hw.io_base);
2977 err_clr_master:
2978 	pci_clear_master(pdev);
2979 	pci_release_regions(pdev);
2980 err_disable_device:
2981 	pci_disable_device(pdev);
2982 
2983 	return ret;
2984 }
2985 
2986 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2987 {
2988 	struct pci_dev *pdev = hdev->pdev;
2989 
2990 	if (hdev->hw.mem_base)
2991 		devm_iounmap(&pdev->dev, hdev->hw.mem_base);
2992 
2993 	pci_iounmap(pdev, hdev->hw.io_base);
2994 	pci_clear_master(pdev);
2995 	pci_release_regions(pdev);
2996 	pci_disable_device(pdev);
2997 }
2998 
2999 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3000 {
3001 	struct hclgevf_query_res_cmd *req;
3002 	struct hclgevf_desc desc;
3003 	int ret;
3004 
3005 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3006 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3007 	if (ret) {
3008 		dev_err(&hdev->pdev->dev,
3009 			"query vf resource failed, ret = %d.\n", ret);
3010 		return ret;
3011 	}
3012 
3013 	req = (struct hclgevf_query_res_cmd *)desc.data;
3014 
3015 	if (hnae3_dev_roce_supported(hdev)) {
3016 		hdev->roce_base_msix_offset =
3017 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3018 				HCLGEVF_MSIX_OFT_ROCEE_M,
3019 				HCLGEVF_MSIX_OFT_ROCEE_S);
3020 		hdev->num_roce_msix =
3021 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3022 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3023 
3024 		/* nic's msix numbers is always equals to the roce's. */
3025 		hdev->num_nic_msix = hdev->num_roce_msix;
3026 
3027 		/* VF should have NIC vectors and Roce vectors, NIC vectors
3028 		 * are queued before Roce vectors. The offset is fixed to 64.
3029 		 */
3030 		hdev->num_msi = hdev->num_roce_msix +
3031 				hdev->roce_base_msix_offset;
3032 	} else {
3033 		hdev->num_msi =
3034 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3035 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3036 
3037 		hdev->num_nic_msix = hdev->num_msi;
3038 	}
3039 
3040 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3041 		dev_err(&hdev->pdev->dev,
3042 			"Just %u msi resources, not enough for vf(min:2).\n",
3043 			hdev->num_nic_msix);
3044 		return -EINVAL;
3045 	}
3046 
3047 	return 0;
3048 }
3049 
3050 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3051 {
3052 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3053 
3054 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3055 
3056 	ae_dev->dev_specs.max_non_tso_bd_num =
3057 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3058 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3059 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3060 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3061 }
3062 
3063 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3064 				    struct hclgevf_desc *desc)
3065 {
3066 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3067 	struct hclgevf_dev_specs_0_cmd *req0;
3068 	struct hclgevf_dev_specs_1_cmd *req1;
3069 
3070 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3071 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3072 
3073 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3074 	ae_dev->dev_specs.rss_ind_tbl_size =
3075 					le16_to_cpu(req0->rss_ind_tbl_size);
3076 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3077 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3078 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3079 }
3080 
3081 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3082 {
3083 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3084 
3085 	if (!dev_specs->max_non_tso_bd_num)
3086 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3087 	if (!dev_specs->rss_ind_tbl_size)
3088 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3089 	if (!dev_specs->rss_key_size)
3090 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3091 	if (!dev_specs->max_int_gl)
3092 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3093 }
3094 
3095 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3096 {
3097 	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3098 	int ret;
3099 	int i;
3100 
3101 	/* set default specifications as devices lower than version V3 do not
3102 	 * support querying specifications from firmware.
3103 	 */
3104 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3105 		hclgevf_set_default_dev_specs(hdev);
3106 		return 0;
3107 	}
3108 
3109 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3110 		hclgevf_cmd_setup_basic_desc(&desc[i],
3111 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3112 		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3113 	}
3114 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3115 				     true);
3116 
3117 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3118 	if (ret)
3119 		return ret;
3120 
3121 	hclgevf_parse_dev_specs(hdev, desc);
3122 	hclgevf_check_dev_specs(hdev);
3123 
3124 	return 0;
3125 }
3126 
3127 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3128 {
3129 	struct pci_dev *pdev = hdev->pdev;
3130 	int ret = 0;
3131 
3132 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3133 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3134 		hclgevf_misc_irq_uninit(hdev);
3135 		hclgevf_uninit_msi(hdev);
3136 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3137 	}
3138 
3139 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3140 		pci_set_master(pdev);
3141 		ret = hclgevf_init_msi(hdev);
3142 		if (ret) {
3143 			dev_err(&pdev->dev,
3144 				"failed(%d) to init MSI/MSI-X\n", ret);
3145 			return ret;
3146 		}
3147 
3148 		ret = hclgevf_misc_irq_init(hdev);
3149 		if (ret) {
3150 			hclgevf_uninit_msi(hdev);
3151 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3152 				ret);
3153 			return ret;
3154 		}
3155 
3156 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3157 	}
3158 
3159 	return ret;
3160 }
3161 
3162 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3163 {
3164 	struct hclge_vf_to_pf_msg send_msg;
3165 
3166 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3167 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3168 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3169 }
3170 
3171 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3172 {
3173 	struct pci_dev *pdev = hdev->pdev;
3174 	int ret;
3175 
3176 	ret = hclgevf_pci_reset(hdev);
3177 	if (ret) {
3178 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3179 		return ret;
3180 	}
3181 
3182 	ret = hclgevf_cmd_init(hdev);
3183 	if (ret) {
3184 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3185 		return ret;
3186 	}
3187 
3188 	ret = hclgevf_rss_init_hw(hdev);
3189 	if (ret) {
3190 		dev_err(&hdev->pdev->dev,
3191 			"failed(%d) to initialize RSS\n", ret);
3192 		return ret;
3193 	}
3194 
3195 	ret = hclgevf_config_gro(hdev, true);
3196 	if (ret)
3197 		return ret;
3198 
3199 	ret = hclgevf_init_vlan_config(hdev);
3200 	if (ret) {
3201 		dev_err(&hdev->pdev->dev,
3202 			"failed(%d) to initialize VLAN config\n", ret);
3203 		return ret;
3204 	}
3205 
3206 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3207 
3208 	dev_info(&hdev->pdev->dev, "Reset done\n");
3209 
3210 	return 0;
3211 }
3212 
3213 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3214 {
3215 	struct pci_dev *pdev = hdev->pdev;
3216 	int ret;
3217 
3218 	ret = hclgevf_pci_init(hdev);
3219 	if (ret)
3220 		return ret;
3221 
3222 	ret = hclgevf_cmd_queue_init(hdev);
3223 	if (ret)
3224 		goto err_cmd_queue_init;
3225 
3226 	ret = hclgevf_cmd_init(hdev);
3227 	if (ret)
3228 		goto err_cmd_init;
3229 
3230 	/* Get vf resource */
3231 	ret = hclgevf_query_vf_resource(hdev);
3232 	if (ret)
3233 		goto err_cmd_init;
3234 
3235 	ret = hclgevf_query_dev_specs(hdev);
3236 	if (ret) {
3237 		dev_err(&pdev->dev,
3238 			"failed to query dev specifications, ret = %d\n", ret);
3239 		goto err_cmd_init;
3240 	}
3241 
3242 	ret = hclgevf_init_msi(hdev);
3243 	if (ret) {
3244 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3245 		goto err_cmd_init;
3246 	}
3247 
3248 	hclgevf_state_init(hdev);
3249 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3250 	hdev->reset_type = HNAE3_NONE_RESET;
3251 
3252 	ret = hclgevf_misc_irq_init(hdev);
3253 	if (ret)
3254 		goto err_misc_irq_init;
3255 
3256 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3257 
3258 	ret = hclgevf_configure(hdev);
3259 	if (ret) {
3260 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3261 		goto err_config;
3262 	}
3263 
3264 	ret = hclgevf_alloc_tqps(hdev);
3265 	if (ret) {
3266 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3267 		goto err_config;
3268 	}
3269 
3270 	ret = hclgevf_set_handle_info(hdev);
3271 	if (ret)
3272 		goto err_config;
3273 
3274 	ret = hclgevf_config_gro(hdev, true);
3275 	if (ret)
3276 		goto err_config;
3277 
3278 	/* Initialize RSS for this VF */
3279 	ret = hclgevf_rss_init_cfg(hdev);
3280 	if (ret) {
3281 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3282 		goto err_config;
3283 	}
3284 
3285 	ret = hclgevf_rss_init_hw(hdev);
3286 	if (ret) {
3287 		dev_err(&hdev->pdev->dev,
3288 			"failed(%d) to initialize RSS\n", ret);
3289 		goto err_config;
3290 	}
3291 
3292 	/* ensure vf tbl list as empty before init*/
3293 	ret = hclgevf_clear_vport_list(hdev);
3294 	if (ret) {
3295 		dev_err(&pdev->dev,
3296 			"failed to clear tbl list configuration, ret = %d.\n",
3297 			ret);
3298 		goto err_config;
3299 	}
3300 
3301 	ret = hclgevf_init_vlan_config(hdev);
3302 	if (ret) {
3303 		dev_err(&hdev->pdev->dev,
3304 			"failed(%d) to initialize VLAN config\n", ret);
3305 		goto err_config;
3306 	}
3307 
3308 	hdev->last_reset_time = jiffies;
3309 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3310 		 HCLGEVF_DRIVER_NAME);
3311 
3312 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3313 
3314 	return 0;
3315 
3316 err_config:
3317 	hclgevf_misc_irq_uninit(hdev);
3318 err_misc_irq_init:
3319 	hclgevf_state_uninit(hdev);
3320 	hclgevf_uninit_msi(hdev);
3321 err_cmd_init:
3322 	hclgevf_cmd_uninit(hdev);
3323 err_cmd_queue_init:
3324 	hclgevf_pci_uninit(hdev);
3325 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3326 	return ret;
3327 }
3328 
3329 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3330 {
3331 	struct hclge_vf_to_pf_msg send_msg;
3332 
3333 	hclgevf_state_uninit(hdev);
3334 
3335 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3336 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3337 
3338 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3339 		hclgevf_misc_irq_uninit(hdev);
3340 		hclgevf_uninit_msi(hdev);
3341 	}
3342 
3343 	hclgevf_cmd_uninit(hdev);
3344 	hclgevf_pci_uninit(hdev);
3345 	hclgevf_uninit_mac_list(hdev);
3346 }
3347 
3348 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3349 {
3350 	struct pci_dev *pdev = ae_dev->pdev;
3351 	int ret;
3352 
3353 	ret = hclgevf_alloc_hdev(ae_dev);
3354 	if (ret) {
3355 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3356 		return ret;
3357 	}
3358 
3359 	ret = hclgevf_init_hdev(ae_dev->priv);
3360 	if (ret) {
3361 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3362 		return ret;
3363 	}
3364 
3365 	return 0;
3366 }
3367 
3368 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3369 {
3370 	struct hclgevf_dev *hdev = ae_dev->priv;
3371 
3372 	hclgevf_uninit_hdev(hdev);
3373 	ae_dev->priv = NULL;
3374 }
3375 
3376 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3377 {
3378 	struct hnae3_handle *nic = &hdev->nic;
3379 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3380 
3381 	return min_t(u32, hdev->rss_size_max,
3382 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3383 }
3384 
3385 /**
3386  * hclgevf_get_channels - Get the current channels enabled and max supported.
3387  * @handle: hardware information for network interface
3388  * @ch: ethtool channels structure
3389  *
3390  * We don't support separate tx and rx queues as channels. The other count
3391  * represents how many queues are being used for control. max_combined counts
3392  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3393  * q_vectors since we support a lot more queue pairs than q_vectors.
3394  **/
3395 static void hclgevf_get_channels(struct hnae3_handle *handle,
3396 				 struct ethtool_channels *ch)
3397 {
3398 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3399 
3400 	ch->max_combined = hclgevf_get_max_channels(hdev);
3401 	ch->other_count = 0;
3402 	ch->max_other = 0;
3403 	ch->combined_count = handle->kinfo.rss_size;
3404 }
3405 
3406 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3407 					  u16 *alloc_tqps, u16 *max_rss_size)
3408 {
3409 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3410 
3411 	*alloc_tqps = hdev->num_tqps;
3412 	*max_rss_size = hdev->rss_size_max;
3413 }
3414 
3415 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3416 				    u32 new_tqps_num)
3417 {
3418 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3419 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3420 	u16 max_rss_size;
3421 
3422 	kinfo->req_rss_size = new_tqps_num;
3423 
3424 	max_rss_size = min_t(u16, hdev->rss_size_max,
3425 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3426 
3427 	/* Use the user's configuration when it is not larger than
3428 	 * max_rss_size, otherwise, use the maximum specification value.
3429 	 */
3430 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3431 	    kinfo->req_rss_size <= max_rss_size)
3432 		kinfo->rss_size = kinfo->req_rss_size;
3433 	else if (kinfo->rss_size > max_rss_size ||
3434 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3435 		kinfo->rss_size = max_rss_size;
3436 
3437 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3438 }
3439 
3440 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3441 				bool rxfh_configured)
3442 {
3443 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3444 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3445 	u16 cur_rss_size = kinfo->rss_size;
3446 	u16 cur_tqps = kinfo->num_tqps;
3447 	u32 *rss_indir;
3448 	unsigned int i;
3449 	int ret;
3450 
3451 	hclgevf_update_rss_size(handle, new_tqps_num);
3452 
3453 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3454 	if (ret)
3455 		return ret;
3456 
3457 	/* RSS indirection table has been configuared by user */
3458 	if (rxfh_configured)
3459 		goto out;
3460 
3461 	/* Reinitializes the rss indirect table according to the new RSS size */
3462 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3463 			    sizeof(u32), GFP_KERNEL);
3464 	if (!rss_indir)
3465 		return -ENOMEM;
3466 
3467 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3468 		rss_indir[i] = i % kinfo->rss_size;
3469 
3470 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3471 
3472 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3473 	if (ret)
3474 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3475 			ret);
3476 
3477 	kfree(rss_indir);
3478 
3479 out:
3480 	if (!ret)
3481 		dev_info(&hdev->pdev->dev,
3482 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3483 			 cur_rss_size, kinfo->rss_size,
3484 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3485 
3486 	return ret;
3487 }
3488 
3489 static int hclgevf_get_status(struct hnae3_handle *handle)
3490 {
3491 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3492 
3493 	return hdev->hw.mac.link;
3494 }
3495 
3496 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3497 					    u8 *auto_neg, u32 *speed,
3498 					    u8 *duplex)
3499 {
3500 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3501 
3502 	if (speed)
3503 		*speed = hdev->hw.mac.speed;
3504 	if (duplex)
3505 		*duplex = hdev->hw.mac.duplex;
3506 	if (auto_neg)
3507 		*auto_neg = AUTONEG_DISABLE;
3508 }
3509 
3510 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3511 				 u8 duplex)
3512 {
3513 	hdev->hw.mac.speed = speed;
3514 	hdev->hw.mac.duplex = duplex;
3515 }
3516 
3517 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3518 {
3519 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3520 
3521 	return hclgevf_config_gro(hdev, enable);
3522 }
3523 
3524 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3525 				   u8 *module_type)
3526 {
3527 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3528 
3529 	if (media_type)
3530 		*media_type = hdev->hw.mac.media_type;
3531 
3532 	if (module_type)
3533 		*module_type = hdev->hw.mac.module_type;
3534 }
3535 
3536 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3537 {
3538 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3539 
3540 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3541 }
3542 
3543 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3544 {
3545 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3546 
3547 	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3548 }
3549 
3550 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3551 {
3552 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3553 
3554 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3555 }
3556 
3557 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3558 {
3559 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3560 
3561 	return hdev->rst_stats.hw_rst_done_cnt;
3562 }
3563 
3564 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3565 				  unsigned long *supported,
3566 				  unsigned long *advertising)
3567 {
3568 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3569 
3570 	*supported = hdev->hw.mac.supported;
3571 	*advertising = hdev->hw.mac.advertising;
3572 }
3573 
3574 #define MAX_SEPARATE_NUM	4
3575 #define SEPARATOR_VALUE		0xFFFFFFFF
3576 #define REG_NUM_PER_LINE	4
3577 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3578 
3579 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3580 {
3581 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3582 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3583 
3584 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3585 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3586 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3587 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3588 
3589 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3590 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3591 }
3592 
3593 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3594 			     void *data)
3595 {
3596 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3597 	int i, j, reg_um, separator_num;
3598 	u32 *reg = data;
3599 
3600 	*version = hdev->fw_version;
3601 
3602 	/* fetching per-VF registers values from VF PCIe register space */
3603 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3604 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3605 	for (i = 0; i < reg_um; i++)
3606 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3607 	for (i = 0; i < separator_num; i++)
3608 		*reg++ = SEPARATOR_VALUE;
3609 
3610 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3611 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3612 	for (i = 0; i < reg_um; i++)
3613 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3614 	for (i = 0; i < separator_num; i++)
3615 		*reg++ = SEPARATOR_VALUE;
3616 
3617 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3618 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3619 	for (j = 0; j < hdev->num_tqps; j++) {
3620 		for (i = 0; i < reg_um; i++)
3621 			*reg++ = hclgevf_read_dev(&hdev->hw,
3622 						  ring_reg_addr_list[i] +
3623 						  0x200 * j);
3624 		for (i = 0; i < separator_num; i++)
3625 			*reg++ = SEPARATOR_VALUE;
3626 	}
3627 
3628 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3629 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3630 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3631 		for (i = 0; i < reg_um; i++)
3632 			*reg++ = hclgevf_read_dev(&hdev->hw,
3633 						  tqp_intr_reg_addr_list[i] +
3634 						  4 * j);
3635 		for (i = 0; i < separator_num; i++)
3636 			*reg++ = SEPARATOR_VALUE;
3637 	}
3638 }
3639 
3640 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3641 					u8 *port_base_vlan_info, u8 data_size)
3642 {
3643 	struct hnae3_handle *nic = &hdev->nic;
3644 	struct hclge_vf_to_pf_msg send_msg;
3645 	int ret;
3646 
3647 	rtnl_lock();
3648 
3649 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3650 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3651 		dev_warn(&hdev->pdev->dev,
3652 			 "is resetting when updating port based vlan info\n");
3653 		rtnl_unlock();
3654 		return;
3655 	}
3656 
3657 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3658 	if (ret) {
3659 		rtnl_unlock();
3660 		return;
3661 	}
3662 
3663 	/* send msg to PF and wait update port based vlan info */
3664 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3665 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3666 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3667 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3668 	if (!ret) {
3669 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3670 			nic->port_base_vlan_state = state;
3671 		else
3672 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3673 	}
3674 
3675 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3676 	rtnl_unlock();
3677 }
3678 
3679 static const struct hnae3_ae_ops hclgevf_ops = {
3680 	.init_ae_dev = hclgevf_init_ae_dev,
3681 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3682 	.flr_prepare = hclgevf_flr_prepare,
3683 	.flr_done = hclgevf_flr_done,
3684 	.init_client_instance = hclgevf_init_client_instance,
3685 	.uninit_client_instance = hclgevf_uninit_client_instance,
3686 	.start = hclgevf_ae_start,
3687 	.stop = hclgevf_ae_stop,
3688 	.client_start = hclgevf_client_start,
3689 	.client_stop = hclgevf_client_stop,
3690 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3691 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3692 	.get_vector = hclgevf_get_vector,
3693 	.put_vector = hclgevf_put_vector,
3694 	.reset_queue = hclgevf_reset_tqp,
3695 	.get_mac_addr = hclgevf_get_mac_addr,
3696 	.set_mac_addr = hclgevf_set_mac_addr,
3697 	.add_uc_addr = hclgevf_add_uc_addr,
3698 	.rm_uc_addr = hclgevf_rm_uc_addr,
3699 	.add_mc_addr = hclgevf_add_mc_addr,
3700 	.rm_mc_addr = hclgevf_rm_mc_addr,
3701 	.get_stats = hclgevf_get_stats,
3702 	.update_stats = hclgevf_update_stats,
3703 	.get_strings = hclgevf_get_strings,
3704 	.get_sset_count = hclgevf_get_sset_count,
3705 	.get_rss_key_size = hclgevf_get_rss_key_size,
3706 	.get_rss = hclgevf_get_rss,
3707 	.set_rss = hclgevf_set_rss,
3708 	.get_rss_tuple = hclgevf_get_rss_tuple,
3709 	.set_rss_tuple = hclgevf_set_rss_tuple,
3710 	.get_tc_size = hclgevf_get_tc_size,
3711 	.get_fw_version = hclgevf_get_fw_version,
3712 	.set_vlan_filter = hclgevf_set_vlan_filter,
3713 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3714 	.reset_event = hclgevf_reset_event,
3715 	.set_default_reset_request = hclgevf_set_def_reset_request,
3716 	.set_channels = hclgevf_set_channels,
3717 	.get_channels = hclgevf_get_channels,
3718 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3719 	.get_regs_len = hclgevf_get_regs_len,
3720 	.get_regs = hclgevf_get_regs,
3721 	.get_status = hclgevf_get_status,
3722 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3723 	.get_media_type = hclgevf_get_media_type,
3724 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3725 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3726 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3727 	.set_gro_en = hclgevf_gro_en,
3728 	.set_mtu = hclgevf_set_mtu,
3729 	.get_global_queue_id = hclgevf_get_qid_global,
3730 	.set_timer_task = hclgevf_set_timer_task,
3731 	.get_link_mode = hclgevf_get_link_mode,
3732 	.set_promisc_mode = hclgevf_set_promisc_mode,
3733 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3734 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3735 };
3736 
3737 static struct hnae3_ae_algo ae_algovf = {
3738 	.ops = &hclgevf_ops,
3739 	.pdev_id_table = ae_algovf_pci_tbl,
3740 };
3741 
3742 static int hclgevf_init(void)
3743 {
3744 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3745 
3746 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3747 	if (!hclgevf_wq) {
3748 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3749 		return -ENOMEM;
3750 	}
3751 
3752 	hnae3_register_ae_algo(&ae_algovf);
3753 
3754 	return 0;
3755 }
3756 
3757 static void hclgevf_exit(void)
3758 {
3759 	hnae3_unregister_ae_algo(&ae_algovf);
3760 	destroy_workqueue(hclgevf_wq);
3761 }
3762 module_init(hclgevf_init);
3763 module_exit(hclgevf_exit);
3764 
3765 MODULE_LICENSE("GPL");
3766 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3767 MODULE_DESCRIPTION("HCLGEVF Driver");
3768 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3769