1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/etherdevice.h> 5 #include <linux/iopoll.h> 6 #include <net/rtnetlink.h> 7 #include "hclgevf_cmd.h" 8 #include "hclgevf_main.h" 9 #include "hclge_mbx.h" 10 #include "hnae3.h" 11 12 #define HCLGEVF_NAME "hclgevf" 13 14 #define HCLGEVF_RESET_MAX_FAIL_CNT 5 15 16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev); 17 static struct hnae3_ae_algo ae_algovf; 18 19 static struct workqueue_struct *hclgevf_wq; 20 21 static const struct pci_device_id ae_algovf_pci_tbl[] = { 22 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, 23 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), 24 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 25 /* required last entry */ 26 {0, } 27 }; 28 29 static const u8 hclgevf_hash_key[] = { 30 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2, 31 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0, 32 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4, 33 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C, 34 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA 35 }; 36 37 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); 38 39 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG, 40 HCLGEVF_CMDQ_TX_ADDR_H_REG, 41 HCLGEVF_CMDQ_TX_DEPTH_REG, 42 HCLGEVF_CMDQ_TX_TAIL_REG, 43 HCLGEVF_CMDQ_TX_HEAD_REG, 44 HCLGEVF_CMDQ_RX_ADDR_L_REG, 45 HCLGEVF_CMDQ_RX_ADDR_H_REG, 46 HCLGEVF_CMDQ_RX_DEPTH_REG, 47 HCLGEVF_CMDQ_RX_TAIL_REG, 48 HCLGEVF_CMDQ_RX_HEAD_REG, 49 HCLGEVF_VECTOR0_CMDQ_SRC_REG, 50 HCLGEVF_VECTOR0_CMDQ_STATE_REG, 51 HCLGEVF_CMDQ_INTR_EN_REG, 52 HCLGEVF_CMDQ_INTR_GEN_REG}; 53 54 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE, 55 HCLGEVF_RST_ING, 56 HCLGEVF_GRO_EN_REG}; 57 58 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG, 59 HCLGEVF_RING_RX_ADDR_H_REG, 60 HCLGEVF_RING_RX_BD_NUM_REG, 61 HCLGEVF_RING_RX_BD_LENGTH_REG, 62 HCLGEVF_RING_RX_MERGE_EN_REG, 63 HCLGEVF_RING_RX_TAIL_REG, 64 HCLGEVF_RING_RX_HEAD_REG, 65 HCLGEVF_RING_RX_FBD_NUM_REG, 66 HCLGEVF_RING_RX_OFFSET_REG, 67 HCLGEVF_RING_RX_FBD_OFFSET_REG, 68 HCLGEVF_RING_RX_STASH_REG, 69 HCLGEVF_RING_RX_BD_ERR_REG, 70 HCLGEVF_RING_TX_ADDR_L_REG, 71 HCLGEVF_RING_TX_ADDR_H_REG, 72 HCLGEVF_RING_TX_BD_NUM_REG, 73 HCLGEVF_RING_TX_PRIORITY_REG, 74 HCLGEVF_RING_TX_TC_REG, 75 HCLGEVF_RING_TX_MERGE_EN_REG, 76 HCLGEVF_RING_TX_TAIL_REG, 77 HCLGEVF_RING_TX_HEAD_REG, 78 HCLGEVF_RING_TX_FBD_NUM_REG, 79 HCLGEVF_RING_TX_OFFSET_REG, 80 HCLGEVF_RING_TX_EBD_NUM_REG, 81 HCLGEVF_RING_TX_EBD_OFFSET_REG, 82 HCLGEVF_RING_TX_BD_ERR_REG, 83 HCLGEVF_RING_EN_REG}; 84 85 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG, 86 HCLGEVF_TQP_INTR_GL0_REG, 87 HCLGEVF_TQP_INTR_GL1_REG, 88 HCLGEVF_TQP_INTR_GL2_REG, 89 HCLGEVF_TQP_INTR_RL_REG}; 90 91 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle) 92 { 93 if (!handle->client) 94 return container_of(handle, struct hclgevf_dev, nic); 95 else if (handle->client->type == HNAE3_CLIENT_ROCE) 96 return container_of(handle, struct hclgevf_dev, roce); 97 else 98 return container_of(handle, struct hclgevf_dev, nic); 99 } 100 101 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle) 102 { 103 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 104 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 105 struct hclgevf_desc desc; 106 struct hclgevf_tqp *tqp; 107 int status; 108 int i; 109 110 for (i = 0; i < kinfo->num_tqps; i++) { 111 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 112 hclgevf_cmd_setup_basic_desc(&desc, 113 HCLGEVF_OPC_QUERY_RX_STATUS, 114 true); 115 116 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); 117 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 118 if (status) { 119 dev_err(&hdev->pdev->dev, 120 "Query tqp stat fail, status = %d,queue = %d\n", 121 status, i); 122 return status; 123 } 124 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd += 125 le32_to_cpu(desc.data[1]); 126 127 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS, 128 true); 129 130 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); 131 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 132 if (status) { 133 dev_err(&hdev->pdev->dev, 134 "Query tqp stat fail, status = %d,queue = %d\n", 135 status, i); 136 return status; 137 } 138 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd += 139 le32_to_cpu(desc.data[1]); 140 } 141 142 return 0; 143 } 144 145 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data) 146 { 147 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 148 struct hclgevf_tqp *tqp; 149 u64 *buff = data; 150 int i; 151 152 for (i = 0; i < kinfo->num_tqps; i++) { 153 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 154 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd; 155 } 156 for (i = 0; i < kinfo->num_tqps; i++) { 157 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 158 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd; 159 } 160 161 return buff; 162 } 163 164 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset) 165 { 166 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 167 168 return kinfo->num_tqps * 2; 169 } 170 171 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data) 172 { 173 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 174 u8 *buff = data; 175 int i; 176 177 for (i = 0; i < kinfo->num_tqps; i++) { 178 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i], 179 struct hclgevf_tqp, q); 180 snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd", 181 tqp->index); 182 buff += ETH_GSTRING_LEN; 183 } 184 185 for (i = 0; i < kinfo->num_tqps; i++) { 186 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i], 187 struct hclgevf_tqp, q); 188 snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd", 189 tqp->index); 190 buff += ETH_GSTRING_LEN; 191 } 192 193 return buff; 194 } 195 196 static void hclgevf_update_stats(struct hnae3_handle *handle, 197 struct net_device_stats *net_stats) 198 { 199 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 200 int status; 201 202 status = hclgevf_tqps_update_stats(handle); 203 if (status) 204 dev_err(&hdev->pdev->dev, 205 "VF update of TQPS stats fail, status = %d.\n", 206 status); 207 } 208 209 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) 210 { 211 if (strset == ETH_SS_TEST) 212 return -EOPNOTSUPP; 213 else if (strset == ETH_SS_STATS) 214 return hclgevf_tqps_get_sset_count(handle, strset); 215 216 return 0; 217 } 218 219 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, 220 u8 *data) 221 { 222 u8 *p = (char *)data; 223 224 if (strset == ETH_SS_STATS) 225 p = hclgevf_tqps_get_strings(handle, p); 226 } 227 228 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) 229 { 230 hclgevf_tqps_get_stats(handle, data); 231 } 232 233 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code, 234 u8 subcode) 235 { 236 if (msg) { 237 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg)); 238 msg->code = code; 239 msg->subcode = subcode; 240 } 241 } 242 243 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev) 244 { 245 struct hclge_vf_to_pf_msg send_msg; 246 u8 resp_msg; 247 int status; 248 249 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0); 250 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg, 251 sizeof(resp_msg)); 252 if (status) { 253 dev_err(&hdev->pdev->dev, 254 "VF request to get TC info from PF failed %d", 255 status); 256 return status; 257 } 258 259 hdev->hw_tc_map = resp_msg; 260 261 return 0; 262 } 263 264 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev) 265 { 266 struct hnae3_handle *nic = &hdev->nic; 267 struct hclge_vf_to_pf_msg send_msg; 268 u8 resp_msg; 269 int ret; 270 271 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 272 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE); 273 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg, 274 sizeof(u8)); 275 if (ret) { 276 dev_err(&hdev->pdev->dev, 277 "VF request to get port based vlan state failed %d", 278 ret); 279 return ret; 280 } 281 282 nic->port_base_vlan_state = resp_msg; 283 284 return 0; 285 } 286 287 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev) 288 { 289 #define HCLGEVF_TQPS_RSS_INFO_LEN 6 290 #define HCLGEVF_TQPS_ALLOC_OFFSET 0 291 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET 2 292 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET 4 293 294 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; 295 struct hclge_vf_to_pf_msg send_msg; 296 int status; 297 298 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0); 299 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 300 HCLGEVF_TQPS_RSS_INFO_LEN); 301 if (status) { 302 dev_err(&hdev->pdev->dev, 303 "VF request to get tqp info from PF failed %d", 304 status); 305 return status; 306 } 307 308 memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET], 309 sizeof(u16)); 310 memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET], 311 sizeof(u16)); 312 memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET], 313 sizeof(u16)); 314 315 return 0; 316 } 317 318 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev) 319 { 320 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4 321 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0 322 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2 323 324 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN]; 325 struct hclge_vf_to_pf_msg send_msg; 326 int ret; 327 328 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0); 329 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 330 HCLGEVF_TQPS_DEPTH_INFO_LEN); 331 if (ret) { 332 dev_err(&hdev->pdev->dev, 333 "VF request to get tqp depth info from PF failed %d", 334 ret); 335 return ret; 336 } 337 338 memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET], 339 sizeof(u16)); 340 memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET], 341 sizeof(u16)); 342 343 return 0; 344 } 345 346 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id) 347 { 348 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 349 struct hclge_vf_to_pf_msg send_msg; 350 u16 qid_in_pf = 0; 351 u8 resp_data[2]; 352 int ret; 353 354 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0); 355 memcpy(send_msg.data, &queue_id, sizeof(queue_id)); 356 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data, 357 sizeof(resp_data)); 358 if (!ret) 359 qid_in_pf = *(u16 *)resp_data; 360 361 return qid_in_pf; 362 } 363 364 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev) 365 { 366 struct hclge_vf_to_pf_msg send_msg; 367 u8 resp_msg[2]; 368 int ret; 369 370 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0); 371 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 372 sizeof(resp_msg)); 373 if (ret) { 374 dev_err(&hdev->pdev->dev, 375 "VF request to get the pf port media type failed %d", 376 ret); 377 return ret; 378 } 379 380 hdev->hw.mac.media_type = resp_msg[0]; 381 hdev->hw.mac.module_type = resp_msg[1]; 382 383 return 0; 384 } 385 386 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) 387 { 388 struct hclgevf_tqp *tqp; 389 int i; 390 391 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 392 sizeof(struct hclgevf_tqp), GFP_KERNEL); 393 if (!hdev->htqp) 394 return -ENOMEM; 395 396 tqp = hdev->htqp; 397 398 for (i = 0; i < hdev->num_tqps; i++) { 399 tqp->dev = &hdev->pdev->dev; 400 tqp->index = i; 401 402 tqp->q.ae_algo = &ae_algovf; 403 tqp->q.buf_size = hdev->rx_buf_len; 404 tqp->q.tx_desc_num = hdev->num_tx_desc; 405 tqp->q.rx_desc_num = hdev->num_rx_desc; 406 tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET + 407 i * HCLGEVF_TQP_REG_SIZE; 408 409 tqp++; 410 } 411 412 return 0; 413 } 414 415 static int hclgevf_knic_setup(struct hclgevf_dev *hdev) 416 { 417 struct hnae3_handle *nic = &hdev->nic; 418 struct hnae3_knic_private_info *kinfo; 419 u16 new_tqps = hdev->num_tqps; 420 unsigned int i; 421 422 kinfo = &nic->kinfo; 423 kinfo->num_tc = 0; 424 kinfo->num_tx_desc = hdev->num_tx_desc; 425 kinfo->num_rx_desc = hdev->num_rx_desc; 426 kinfo->rx_buf_len = hdev->rx_buf_len; 427 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) 428 if (hdev->hw_tc_map & BIT(i)) 429 kinfo->num_tc++; 430 431 kinfo->rss_size 432 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc); 433 new_tqps = kinfo->rss_size * kinfo->num_tc; 434 kinfo->num_tqps = min(new_tqps, hdev->num_tqps); 435 436 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, 437 sizeof(struct hnae3_queue *), GFP_KERNEL); 438 if (!kinfo->tqp) 439 return -ENOMEM; 440 441 for (i = 0; i < kinfo->num_tqps; i++) { 442 hdev->htqp[i].q.handle = &hdev->nic; 443 hdev->htqp[i].q.tqp_index = i; 444 kinfo->tqp[i] = &hdev->htqp[i].q; 445 } 446 447 /* after init the max rss_size and tqps, adjust the default tqp numbers 448 * and rss size with the actual vector numbers 449 */ 450 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps); 451 kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc, 452 kinfo->rss_size); 453 454 return 0; 455 } 456 457 static void hclgevf_request_link_info(struct hclgevf_dev *hdev) 458 { 459 struct hclge_vf_to_pf_msg send_msg; 460 int status; 461 462 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0); 463 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 464 if (status) 465 dev_err(&hdev->pdev->dev, 466 "VF failed to fetch link status(%d) from PF", status); 467 } 468 469 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) 470 { 471 struct hnae3_handle *rhandle = &hdev->roce; 472 struct hnae3_handle *handle = &hdev->nic; 473 struct hnae3_client *rclient; 474 struct hnae3_client *client; 475 476 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state)) 477 return; 478 479 client = handle->client; 480 rclient = hdev->roce_client; 481 482 link_state = 483 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state; 484 485 if (link_state != hdev->hw.mac.link) { 486 client->ops->link_status_change(handle, !!link_state); 487 if (rclient && rclient->ops->link_status_change) 488 rclient->ops->link_status_change(rhandle, !!link_state); 489 hdev->hw.mac.link = link_state; 490 } 491 492 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state); 493 } 494 495 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev) 496 { 497 #define HCLGEVF_ADVERTISING 0 498 #define HCLGEVF_SUPPORTED 1 499 500 struct hclge_vf_to_pf_msg send_msg; 501 502 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0); 503 send_msg.data[0] = HCLGEVF_ADVERTISING; 504 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 505 send_msg.data[0] = HCLGEVF_SUPPORTED; 506 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 507 } 508 509 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) 510 { 511 struct hnae3_handle *nic = &hdev->nic; 512 int ret; 513 514 nic->ae_algo = &ae_algovf; 515 nic->pdev = hdev->pdev; 516 nic->numa_node_mask = hdev->numa_node_mask; 517 nic->flags |= HNAE3_SUPPORT_VF; 518 519 ret = hclgevf_knic_setup(hdev); 520 if (ret) 521 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", 522 ret); 523 return ret; 524 } 525 526 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) 527 { 528 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { 529 dev_warn(&hdev->pdev->dev, 530 "vector(vector_id %d) has been freed.\n", vector_id); 531 return; 532 } 533 534 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; 535 hdev->num_msi_left += 1; 536 hdev->num_msi_used -= 1; 537 } 538 539 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, 540 struct hnae3_vector_info *vector_info) 541 { 542 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 543 struct hnae3_vector_info *vector = vector_info; 544 int alloc = 0; 545 int i, j; 546 547 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num); 548 vector_num = min(hdev->num_msi_left, vector_num); 549 550 for (j = 0; j < vector_num; j++) { 551 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { 552 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { 553 vector->vector = pci_irq_vector(hdev->pdev, i); 554 vector->io_addr = hdev->hw.io_base + 555 HCLGEVF_VECTOR_REG_BASE + 556 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; 557 hdev->vector_status[i] = 0; 558 hdev->vector_irq[i] = vector->vector; 559 560 vector++; 561 alloc++; 562 563 break; 564 } 565 } 566 } 567 hdev->num_msi_left -= alloc; 568 hdev->num_msi_used += alloc; 569 570 return alloc; 571 } 572 573 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) 574 { 575 int i; 576 577 for (i = 0; i < hdev->num_msi; i++) 578 if (vector == hdev->vector_irq[i]) 579 return i; 580 581 return -EINVAL; 582 } 583 584 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev, 585 const u8 hfunc, const u8 *key) 586 { 587 struct hclgevf_rss_config_cmd *req; 588 unsigned int key_offset = 0; 589 struct hclgevf_desc desc; 590 int key_counts; 591 int key_size; 592 int ret; 593 594 key_counts = HCLGEVF_RSS_KEY_SIZE; 595 req = (struct hclgevf_rss_config_cmd *)desc.data; 596 597 while (key_counts) { 598 hclgevf_cmd_setup_basic_desc(&desc, 599 HCLGEVF_OPC_RSS_GENERIC_CONFIG, 600 false); 601 602 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK); 603 req->hash_config |= 604 (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B); 605 606 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts); 607 memcpy(req->hash_key, 608 key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size); 609 610 key_counts -= key_size; 611 key_offset++; 612 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 613 if (ret) { 614 dev_err(&hdev->pdev->dev, 615 "Configure RSS config fail, status = %d\n", 616 ret); 617 return ret; 618 } 619 } 620 621 return 0; 622 } 623 624 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle) 625 { 626 return HCLGEVF_RSS_KEY_SIZE; 627 } 628 629 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle) 630 { 631 return HCLGEVF_RSS_IND_TBL_SIZE; 632 } 633 634 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev) 635 { 636 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl; 637 struct hclgevf_rss_indirection_table_cmd *req; 638 struct hclgevf_desc desc; 639 int status; 640 int i, j; 641 642 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data; 643 644 for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) { 645 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE, 646 false); 647 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE; 648 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK; 649 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++) 650 req->rss_result[j] = 651 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j]; 652 653 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 654 if (status) { 655 dev_err(&hdev->pdev->dev, 656 "VF failed(=%d) to set RSS indirection table\n", 657 status); 658 return status; 659 } 660 } 661 662 return 0; 663 } 664 665 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size) 666 { 667 struct hclgevf_rss_tc_mode_cmd *req; 668 u16 tc_offset[HCLGEVF_MAX_TC_NUM]; 669 u16 tc_valid[HCLGEVF_MAX_TC_NUM]; 670 u16 tc_size[HCLGEVF_MAX_TC_NUM]; 671 struct hclgevf_desc desc; 672 u16 roundup_size; 673 unsigned int i; 674 int status; 675 676 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data; 677 678 roundup_size = roundup_pow_of_two(rss_size); 679 roundup_size = ilog2(roundup_size); 680 681 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { 682 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i)); 683 tc_size[i] = roundup_size; 684 tc_offset[i] = rss_size * i; 685 } 686 687 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false); 688 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { 689 hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B, 690 (tc_valid[i] & 0x1)); 691 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M, 692 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]); 693 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M, 694 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]); 695 } 696 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 697 if (status) 698 dev_err(&hdev->pdev->dev, 699 "VF failed(=%d) to set rss tc mode\n", status); 700 701 return status; 702 } 703 704 /* for revision 0x20, vf shared the same rss config with pf */ 705 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev) 706 { 707 #define HCLGEVF_RSS_MBX_RESP_LEN 8 708 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 709 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN]; 710 struct hclge_vf_to_pf_msg send_msg; 711 u16 msg_num, hash_key_index; 712 u8 index; 713 int ret; 714 715 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0); 716 msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) / 717 HCLGEVF_RSS_MBX_RESP_LEN; 718 for (index = 0; index < msg_num; index++) { 719 send_msg.data[0] = index; 720 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 721 HCLGEVF_RSS_MBX_RESP_LEN); 722 if (ret) { 723 dev_err(&hdev->pdev->dev, 724 "VF get rss hash key from PF failed, ret=%d", 725 ret); 726 return ret; 727 } 728 729 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index; 730 if (index == msg_num - 1) 731 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 732 &resp_msg[0], 733 HCLGEVF_RSS_KEY_SIZE - hash_key_index); 734 else 735 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 736 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN); 737 } 738 739 return 0; 740 } 741 742 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, 743 u8 *hfunc) 744 { 745 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 746 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 747 int i, ret; 748 749 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 750 /* Get hash algorithm */ 751 if (hfunc) { 752 switch (rss_cfg->hash_algo) { 753 case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ: 754 *hfunc = ETH_RSS_HASH_TOP; 755 break; 756 case HCLGEVF_RSS_HASH_ALGO_SIMPLE: 757 *hfunc = ETH_RSS_HASH_XOR; 758 break; 759 default: 760 *hfunc = ETH_RSS_HASH_UNKNOWN; 761 break; 762 } 763 } 764 765 /* Get the RSS Key required by the user */ 766 if (key) 767 memcpy(key, rss_cfg->rss_hash_key, 768 HCLGEVF_RSS_KEY_SIZE); 769 } else { 770 if (hfunc) 771 *hfunc = ETH_RSS_HASH_TOP; 772 if (key) { 773 ret = hclgevf_get_rss_hash_key(hdev); 774 if (ret) 775 return ret; 776 memcpy(key, rss_cfg->rss_hash_key, 777 HCLGEVF_RSS_KEY_SIZE); 778 } 779 } 780 781 if (indir) 782 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 783 indir[i] = rss_cfg->rss_indirection_tbl[i]; 784 785 return 0; 786 } 787 788 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, 789 const u8 *key, const u8 hfunc) 790 { 791 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 792 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 793 int ret, i; 794 795 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 796 /* Set the RSS Hash Key if specififed by the user */ 797 if (key) { 798 switch (hfunc) { 799 case ETH_RSS_HASH_TOP: 800 rss_cfg->hash_algo = 801 HCLGEVF_RSS_HASH_ALGO_TOEPLITZ; 802 break; 803 case ETH_RSS_HASH_XOR: 804 rss_cfg->hash_algo = 805 HCLGEVF_RSS_HASH_ALGO_SIMPLE; 806 break; 807 case ETH_RSS_HASH_NO_CHANGE: 808 break; 809 default: 810 return -EINVAL; 811 } 812 813 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo, 814 key); 815 if (ret) 816 return ret; 817 818 /* Update the shadow RSS key with user specified qids */ 819 memcpy(rss_cfg->rss_hash_key, key, 820 HCLGEVF_RSS_KEY_SIZE); 821 } 822 } 823 824 /* update the shadow RSS table with user specified qids */ 825 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 826 rss_cfg->rss_indirection_tbl[i] = indir[i]; 827 828 /* update the hardware */ 829 return hclgevf_set_rss_indir_table(hdev); 830 } 831 832 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc) 833 { 834 u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0; 835 836 if (nfc->data & RXH_L4_B_2_3) 837 hash_sets |= HCLGEVF_D_PORT_BIT; 838 else 839 hash_sets &= ~HCLGEVF_D_PORT_BIT; 840 841 if (nfc->data & RXH_IP_SRC) 842 hash_sets |= HCLGEVF_S_IP_BIT; 843 else 844 hash_sets &= ~HCLGEVF_S_IP_BIT; 845 846 if (nfc->data & RXH_IP_DST) 847 hash_sets |= HCLGEVF_D_IP_BIT; 848 else 849 hash_sets &= ~HCLGEVF_D_IP_BIT; 850 851 if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW) 852 hash_sets |= HCLGEVF_V_TAG_BIT; 853 854 return hash_sets; 855 } 856 857 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle, 858 struct ethtool_rxnfc *nfc) 859 { 860 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 861 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 862 struct hclgevf_rss_input_tuple_cmd *req; 863 struct hclgevf_desc desc; 864 u8 tuple_sets; 865 int ret; 866 867 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 868 return -EOPNOTSUPP; 869 870 if (nfc->data & 871 ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3)) 872 return -EINVAL; 873 874 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data; 875 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false); 876 877 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en; 878 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en; 879 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en; 880 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en; 881 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en; 882 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en; 883 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en; 884 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en; 885 886 tuple_sets = hclgevf_get_rss_hash_bits(nfc); 887 switch (nfc->flow_type) { 888 case TCP_V4_FLOW: 889 req->ipv4_tcp_en = tuple_sets; 890 break; 891 case TCP_V6_FLOW: 892 req->ipv6_tcp_en = tuple_sets; 893 break; 894 case UDP_V4_FLOW: 895 req->ipv4_udp_en = tuple_sets; 896 break; 897 case UDP_V6_FLOW: 898 req->ipv6_udp_en = tuple_sets; 899 break; 900 case SCTP_V4_FLOW: 901 req->ipv4_sctp_en = tuple_sets; 902 break; 903 case SCTP_V6_FLOW: 904 if ((nfc->data & RXH_L4_B_0_1) || 905 (nfc->data & RXH_L4_B_2_3)) 906 return -EINVAL; 907 908 req->ipv6_sctp_en = tuple_sets; 909 break; 910 case IPV4_FLOW: 911 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 912 break; 913 case IPV6_FLOW: 914 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 915 break; 916 default: 917 return -EINVAL; 918 } 919 920 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 921 if (ret) { 922 dev_err(&hdev->pdev->dev, 923 "Set rss tuple fail, status = %d\n", ret); 924 return ret; 925 } 926 927 rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en; 928 rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en; 929 rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en; 930 rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en; 931 rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en; 932 rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en; 933 rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en; 934 rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en; 935 return 0; 936 } 937 938 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle, 939 struct ethtool_rxnfc *nfc) 940 { 941 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 942 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 943 u8 tuple_sets; 944 945 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 946 return -EOPNOTSUPP; 947 948 nfc->data = 0; 949 950 switch (nfc->flow_type) { 951 case TCP_V4_FLOW: 952 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en; 953 break; 954 case UDP_V4_FLOW: 955 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en; 956 break; 957 case TCP_V6_FLOW: 958 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en; 959 break; 960 case UDP_V6_FLOW: 961 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en; 962 break; 963 case SCTP_V4_FLOW: 964 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en; 965 break; 966 case SCTP_V6_FLOW: 967 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en; 968 break; 969 case IPV4_FLOW: 970 case IPV6_FLOW: 971 tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT; 972 break; 973 default: 974 return -EINVAL; 975 } 976 977 if (!tuple_sets) 978 return 0; 979 980 if (tuple_sets & HCLGEVF_D_PORT_BIT) 981 nfc->data |= RXH_L4_B_2_3; 982 if (tuple_sets & HCLGEVF_S_PORT_BIT) 983 nfc->data |= RXH_L4_B_0_1; 984 if (tuple_sets & HCLGEVF_D_IP_BIT) 985 nfc->data |= RXH_IP_DST; 986 if (tuple_sets & HCLGEVF_S_IP_BIT) 987 nfc->data |= RXH_IP_SRC; 988 989 return 0; 990 } 991 992 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev, 993 struct hclgevf_rss_cfg *rss_cfg) 994 { 995 struct hclgevf_rss_input_tuple_cmd *req; 996 struct hclgevf_desc desc; 997 int ret; 998 999 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false); 1000 1001 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data; 1002 1003 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en; 1004 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en; 1005 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en; 1006 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en; 1007 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en; 1008 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en; 1009 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en; 1010 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en; 1011 1012 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 1013 if (ret) 1014 dev_err(&hdev->pdev->dev, 1015 "Configure rss input fail, status = %d\n", ret); 1016 return ret; 1017 } 1018 1019 static int hclgevf_get_tc_size(struct hnae3_handle *handle) 1020 { 1021 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1022 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 1023 1024 return rss_cfg->rss_size; 1025 } 1026 1027 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, 1028 int vector_id, 1029 struct hnae3_ring_chain_node *ring_chain) 1030 { 1031 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1032 struct hclge_vf_to_pf_msg send_msg; 1033 struct hnae3_ring_chain_node *node; 1034 int status; 1035 int i = 0; 1036 1037 memset(&send_msg, 0, sizeof(send_msg)); 1038 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR : 1039 HCLGE_MBX_UNMAP_RING_TO_VECTOR; 1040 send_msg.vector_id = vector_id; 1041 1042 for (node = ring_chain; node; node = node->next) { 1043 send_msg.param[i].ring_type = 1044 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); 1045 1046 send_msg.param[i].tqp_index = node->tqp_index; 1047 send_msg.param[i].int_gl_index = 1048 hnae3_get_field(node->int_gl_idx, 1049 HNAE3_RING_GL_IDX_M, 1050 HNAE3_RING_GL_IDX_S); 1051 1052 i++; 1053 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) { 1054 send_msg.ring_num = i; 1055 1056 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, 1057 NULL, 0); 1058 if (status) { 1059 dev_err(&hdev->pdev->dev, 1060 "Map TQP fail, status is %d.\n", 1061 status); 1062 return status; 1063 } 1064 i = 0; 1065 } 1066 } 1067 1068 return 0; 1069 } 1070 1071 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, 1072 struct hnae3_ring_chain_node *ring_chain) 1073 { 1074 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1075 int vector_id; 1076 1077 vector_id = hclgevf_get_vector_index(hdev, vector); 1078 if (vector_id < 0) { 1079 dev_err(&handle->pdev->dev, 1080 "Get vector index fail. ret =%d\n", vector_id); 1081 return vector_id; 1082 } 1083 1084 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); 1085 } 1086 1087 static int hclgevf_unmap_ring_from_vector( 1088 struct hnae3_handle *handle, 1089 int vector, 1090 struct hnae3_ring_chain_node *ring_chain) 1091 { 1092 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1093 int ret, vector_id; 1094 1095 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 1096 return 0; 1097 1098 vector_id = hclgevf_get_vector_index(hdev, vector); 1099 if (vector_id < 0) { 1100 dev_err(&handle->pdev->dev, 1101 "Get vector index fail. ret =%d\n", vector_id); 1102 return vector_id; 1103 } 1104 1105 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); 1106 if (ret) 1107 dev_err(&handle->pdev->dev, 1108 "Unmap ring from vector fail. vector=%d, ret =%d\n", 1109 vector_id, 1110 ret); 1111 1112 return ret; 1113 } 1114 1115 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) 1116 { 1117 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1118 int vector_id; 1119 1120 vector_id = hclgevf_get_vector_index(hdev, vector); 1121 if (vector_id < 0) { 1122 dev_err(&handle->pdev->dev, 1123 "hclgevf_put_vector get vector index fail. ret =%d\n", 1124 vector_id); 1125 return vector_id; 1126 } 1127 1128 hclgevf_free_vector(hdev, vector_id); 1129 1130 return 0; 1131 } 1132 1133 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, 1134 bool en_uc_pmc, bool en_mc_pmc, 1135 bool en_bc_pmc) 1136 { 1137 struct hclge_vf_to_pf_msg send_msg; 1138 int ret; 1139 1140 memset(&send_msg, 0, sizeof(send_msg)); 1141 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE; 1142 send_msg.en_bc = en_bc_pmc ? 1 : 0; 1143 send_msg.en_uc = en_uc_pmc ? 1 : 0; 1144 send_msg.en_mc = en_mc_pmc ? 1 : 0; 1145 1146 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1147 if (ret) 1148 dev_err(&hdev->pdev->dev, 1149 "Set promisc mode fail, status is %d.\n", ret); 1150 1151 return ret; 1152 } 1153 1154 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, 1155 bool en_mc_pmc) 1156 { 1157 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1158 bool en_bc_pmc; 1159 1160 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2; 1161 1162 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc, 1163 en_bc_pmc); 1164 } 1165 1166 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle) 1167 { 1168 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1169 1170 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 1171 } 1172 1173 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev) 1174 { 1175 struct hnae3_handle *handle = &hdev->nic; 1176 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE; 1177 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE; 1178 int ret; 1179 1180 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) { 1181 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc); 1182 if (!ret) 1183 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 1184 } 1185 } 1186 1187 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id, 1188 int stream_id, bool enable) 1189 { 1190 struct hclgevf_cfg_com_tqp_queue_cmd *req; 1191 struct hclgevf_desc desc; 1192 int status; 1193 1194 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; 1195 1196 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE, 1197 false); 1198 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); 1199 req->stream_id = cpu_to_le16(stream_id); 1200 if (enable) 1201 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B; 1202 1203 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 1204 if (status) 1205 dev_err(&hdev->pdev->dev, 1206 "TQP enable fail, status =%d.\n", status); 1207 1208 return status; 1209 } 1210 1211 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle) 1212 { 1213 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 1214 struct hclgevf_tqp *tqp; 1215 int i; 1216 1217 for (i = 0; i < kinfo->num_tqps; i++) { 1218 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 1219 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats)); 1220 } 1221 } 1222 1223 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p) 1224 { 1225 struct hclge_vf_to_pf_msg send_msg; 1226 u8 host_mac[ETH_ALEN]; 1227 int status; 1228 1229 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0); 1230 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac, 1231 ETH_ALEN); 1232 if (status) { 1233 dev_err(&hdev->pdev->dev, 1234 "fail to get VF MAC from host %d", status); 1235 return status; 1236 } 1237 1238 ether_addr_copy(p, host_mac); 1239 1240 return 0; 1241 } 1242 1243 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) 1244 { 1245 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1246 u8 host_mac_addr[ETH_ALEN]; 1247 1248 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr)) 1249 return; 1250 1251 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr); 1252 if (hdev->has_pf_mac) 1253 ether_addr_copy(p, host_mac_addr); 1254 else 1255 ether_addr_copy(p, hdev->hw.mac.mac_addr); 1256 } 1257 1258 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p, 1259 bool is_first) 1260 { 1261 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1262 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; 1263 struct hclge_vf_to_pf_msg send_msg; 1264 u8 *new_mac_addr = (u8 *)p; 1265 int status; 1266 1267 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0); 1268 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY; 1269 ether_addr_copy(send_msg.data, new_mac_addr); 1270 if (is_first && !hdev->has_pf_mac) 1271 eth_zero_addr(&send_msg.data[ETH_ALEN]); 1272 else 1273 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr); 1274 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1275 if (!status) 1276 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); 1277 1278 return status; 1279 } 1280 1281 static struct hclgevf_mac_addr_node * 1282 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr) 1283 { 1284 struct hclgevf_mac_addr_node *mac_node, *tmp; 1285 1286 list_for_each_entry_safe(mac_node, tmp, list, node) 1287 if (ether_addr_equal(mac_addr, mac_node->mac_addr)) 1288 return mac_node; 1289 1290 return NULL; 1291 } 1292 1293 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node, 1294 enum HCLGEVF_MAC_NODE_STATE state) 1295 { 1296 switch (state) { 1297 /* from set_rx_mode or tmp_add_list */ 1298 case HCLGEVF_MAC_TO_ADD: 1299 if (mac_node->state == HCLGEVF_MAC_TO_DEL) 1300 mac_node->state = HCLGEVF_MAC_ACTIVE; 1301 break; 1302 /* only from set_rx_mode */ 1303 case HCLGEVF_MAC_TO_DEL: 1304 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1305 list_del(&mac_node->node); 1306 kfree(mac_node); 1307 } else { 1308 mac_node->state = HCLGEVF_MAC_TO_DEL; 1309 } 1310 break; 1311 /* only from tmp_add_list, the mac_node->state won't be 1312 * HCLGEVF_MAC_ACTIVE 1313 */ 1314 case HCLGEVF_MAC_ACTIVE: 1315 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1316 mac_node->state = HCLGEVF_MAC_ACTIVE; 1317 break; 1318 } 1319 } 1320 1321 static int hclgevf_update_mac_list(struct hnae3_handle *handle, 1322 enum HCLGEVF_MAC_NODE_STATE state, 1323 enum HCLGEVF_MAC_ADDR_TYPE mac_type, 1324 const unsigned char *addr) 1325 { 1326 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1327 struct hclgevf_mac_addr_node *mac_node; 1328 struct list_head *list; 1329 1330 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1331 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1332 1333 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1334 1335 /* if the mac addr is already in the mac list, no need to add a new 1336 * one into it, just check the mac addr state, convert it to a new 1337 * new state, or just remove it, or do nothing. 1338 */ 1339 mac_node = hclgevf_find_mac_node(list, addr); 1340 if (mac_node) { 1341 hclgevf_update_mac_node(mac_node, state); 1342 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1343 return 0; 1344 } 1345 /* if this address is never added, unnecessary to delete */ 1346 if (state == HCLGEVF_MAC_TO_DEL) { 1347 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1348 return -ENOENT; 1349 } 1350 1351 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); 1352 if (!mac_node) { 1353 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1354 return -ENOMEM; 1355 } 1356 1357 mac_node->state = state; 1358 ether_addr_copy(mac_node->mac_addr, addr); 1359 list_add_tail(&mac_node->node, list); 1360 1361 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1362 return 0; 1363 } 1364 1365 static int hclgevf_add_uc_addr(struct hnae3_handle *handle, 1366 const unsigned char *addr) 1367 { 1368 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1369 HCLGEVF_MAC_ADDR_UC, addr); 1370 } 1371 1372 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, 1373 const unsigned char *addr) 1374 { 1375 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1376 HCLGEVF_MAC_ADDR_UC, addr); 1377 } 1378 1379 static int hclgevf_add_mc_addr(struct hnae3_handle *handle, 1380 const unsigned char *addr) 1381 { 1382 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1383 HCLGEVF_MAC_ADDR_MC, addr); 1384 } 1385 1386 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, 1387 const unsigned char *addr) 1388 { 1389 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1390 HCLGEVF_MAC_ADDR_MC, addr); 1391 } 1392 1393 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev, 1394 struct hclgevf_mac_addr_node *mac_node, 1395 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1396 { 1397 struct hclge_vf_to_pf_msg send_msg; 1398 u8 code, subcode; 1399 1400 if (mac_type == HCLGEVF_MAC_ADDR_UC) { 1401 code = HCLGE_MBX_SET_UNICAST; 1402 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1403 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD; 1404 else 1405 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE; 1406 } else { 1407 code = HCLGE_MBX_SET_MULTICAST; 1408 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1409 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD; 1410 else 1411 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE; 1412 } 1413 1414 hclgevf_build_send_msg(&send_msg, code, subcode); 1415 ether_addr_copy(send_msg.data, mac_node->mac_addr); 1416 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1417 } 1418 1419 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev, 1420 struct list_head *list, 1421 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1422 { 1423 struct hclgevf_mac_addr_node *mac_node, *tmp; 1424 int ret; 1425 1426 list_for_each_entry_safe(mac_node, tmp, list, node) { 1427 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type); 1428 if (ret) { 1429 dev_err(&hdev->pdev->dev, 1430 "failed to configure mac %pM, state = %d, ret = %d\n", 1431 mac_node->mac_addr, mac_node->state, ret); 1432 return; 1433 } 1434 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1435 mac_node->state = HCLGEVF_MAC_ACTIVE; 1436 } else { 1437 list_del(&mac_node->node); 1438 kfree(mac_node); 1439 } 1440 } 1441 } 1442 1443 static void hclgevf_sync_from_add_list(struct list_head *add_list, 1444 struct list_head *mac_list) 1445 { 1446 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1447 1448 list_for_each_entry_safe(mac_node, tmp, add_list, node) { 1449 /* if the mac address from tmp_add_list is not in the 1450 * uc/mc_mac_list, it means have received a TO_DEL request 1451 * during the time window of sending mac config request to PF 1452 * If mac_node state is ACTIVE, then change its state to TO_DEL, 1453 * then it will be removed at next time. If is TO_ADD, it means 1454 * send TO_ADD request failed, so just remove the mac node. 1455 */ 1456 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1457 if (new_node) { 1458 hclgevf_update_mac_node(new_node, mac_node->state); 1459 list_del(&mac_node->node); 1460 kfree(mac_node); 1461 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) { 1462 mac_node->state = HCLGEVF_MAC_TO_DEL; 1463 list_del(&mac_node->node); 1464 list_add_tail(&mac_node->node, mac_list); 1465 } else { 1466 list_del(&mac_node->node); 1467 kfree(mac_node); 1468 } 1469 } 1470 } 1471 1472 static void hclgevf_sync_from_del_list(struct list_head *del_list, 1473 struct list_head *mac_list) 1474 { 1475 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1476 1477 list_for_each_entry_safe(mac_node, tmp, del_list, node) { 1478 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1479 if (new_node) { 1480 /* If the mac addr is exist in the mac list, it means 1481 * received a new request TO_ADD during the time window 1482 * of sending mac addr configurrequest to PF, so just 1483 * change the mac state to ACTIVE. 1484 */ 1485 new_node->state = HCLGEVF_MAC_ACTIVE; 1486 list_del(&mac_node->node); 1487 kfree(mac_node); 1488 } else { 1489 list_del(&mac_node->node); 1490 list_add_tail(&mac_node->node, mac_list); 1491 } 1492 } 1493 } 1494 1495 static void hclgevf_clear_list(struct list_head *list) 1496 { 1497 struct hclgevf_mac_addr_node *mac_node, *tmp; 1498 1499 list_for_each_entry_safe(mac_node, tmp, list, node) { 1500 list_del(&mac_node->node); 1501 kfree(mac_node); 1502 } 1503 } 1504 1505 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev, 1506 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1507 { 1508 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1509 struct list_head tmp_add_list, tmp_del_list; 1510 struct list_head *list; 1511 1512 INIT_LIST_HEAD(&tmp_add_list); 1513 INIT_LIST_HEAD(&tmp_del_list); 1514 1515 /* move the mac addr to the tmp_add_list and tmp_del_list, then 1516 * we can add/delete these mac addr outside the spin lock 1517 */ 1518 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1519 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1520 1521 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1522 1523 list_for_each_entry_safe(mac_node, tmp, list, node) { 1524 switch (mac_node->state) { 1525 case HCLGEVF_MAC_TO_DEL: 1526 list_del(&mac_node->node); 1527 list_add_tail(&mac_node->node, &tmp_del_list); 1528 break; 1529 case HCLGEVF_MAC_TO_ADD: 1530 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 1531 if (!new_node) 1532 goto stop_traverse; 1533 1534 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); 1535 new_node->state = mac_node->state; 1536 list_add_tail(&new_node->node, &tmp_add_list); 1537 break; 1538 default: 1539 break; 1540 } 1541 } 1542 1543 stop_traverse: 1544 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1545 1546 /* delete first, in order to get max mac table space for adding */ 1547 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type); 1548 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type); 1549 1550 /* if some mac addresses were added/deleted fail, move back to the 1551 * mac_list, and retry at next time. 1552 */ 1553 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1554 1555 hclgevf_sync_from_del_list(&tmp_del_list, list); 1556 hclgevf_sync_from_add_list(&tmp_add_list, list); 1557 1558 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1559 } 1560 1561 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev) 1562 { 1563 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC); 1564 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC); 1565 } 1566 1567 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev) 1568 { 1569 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1570 1571 hclgevf_clear_list(&hdev->mac_table.uc_mac_list); 1572 hclgevf_clear_list(&hdev->mac_table.mc_mac_list); 1573 1574 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1575 } 1576 1577 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, 1578 __be16 proto, u16 vlan_id, 1579 bool is_kill) 1580 { 1581 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0 1582 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1 1583 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET 3 1584 1585 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1586 struct hclge_vf_to_pf_msg send_msg; 1587 int ret; 1588 1589 if (vlan_id > HCLGEVF_MAX_VLAN_ID) 1590 return -EINVAL; 1591 1592 if (proto != htons(ETH_P_8021Q)) 1593 return -EPROTONOSUPPORT; 1594 1595 /* When device is resetting or reset failed, firmware is unable to 1596 * handle mailbox. Just record the vlan id, and remove it after 1597 * reset finished. 1598 */ 1599 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 1600 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) { 1601 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1602 return -EBUSY; 1603 } 1604 1605 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1606 HCLGE_MBX_VLAN_FILTER); 1607 send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill; 1608 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id, 1609 sizeof(vlan_id)); 1610 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto, 1611 sizeof(proto)); 1612 /* when remove hw vlan filter failed, record the vlan id, 1613 * and try to remove it from hw later, to be consistence 1614 * with stack. 1615 */ 1616 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1617 if (is_kill && ret) 1618 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1619 1620 return ret; 1621 } 1622 1623 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev) 1624 { 1625 #define HCLGEVF_MAX_SYNC_COUNT 60 1626 struct hnae3_handle *handle = &hdev->nic; 1627 int ret, sync_cnt = 0; 1628 u16 vlan_id; 1629 1630 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1631 while (vlan_id != VLAN_N_VID) { 1632 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q), 1633 vlan_id, true); 1634 if (ret) 1635 return; 1636 1637 clear_bit(vlan_id, hdev->vlan_del_fail_bmap); 1638 sync_cnt++; 1639 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT) 1640 return; 1641 1642 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1643 } 1644 } 1645 1646 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 1647 { 1648 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1649 struct hclge_vf_to_pf_msg send_msg; 1650 1651 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1652 HCLGE_MBX_VLAN_RX_OFF_CFG); 1653 send_msg.data[0] = enable ? 1 : 0; 1654 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1655 } 1656 1657 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id) 1658 { 1659 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1660 struct hclge_vf_to_pf_msg send_msg; 1661 int ret; 1662 1663 /* disable vf queue before send queue reset msg to PF */ 1664 ret = hclgevf_tqp_enable(hdev, queue_id, 0, false); 1665 if (ret) 1666 return ret; 1667 1668 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1669 memcpy(send_msg.data, &queue_id, sizeof(queue_id)); 1670 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1671 } 1672 1673 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu) 1674 { 1675 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1676 struct hclge_vf_to_pf_msg send_msg; 1677 1678 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0); 1679 memcpy(send_msg.data, &new_mtu, sizeof(new_mtu)); 1680 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1681 } 1682 1683 static int hclgevf_notify_client(struct hclgevf_dev *hdev, 1684 enum hnae3_reset_notify_type type) 1685 { 1686 struct hnae3_client *client = hdev->nic_client; 1687 struct hnae3_handle *handle = &hdev->nic; 1688 int ret; 1689 1690 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) || 1691 !client) 1692 return 0; 1693 1694 if (!client->ops->reset_notify) 1695 return -EOPNOTSUPP; 1696 1697 ret = client->ops->reset_notify(handle, type); 1698 if (ret) 1699 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", 1700 type, ret); 1701 1702 return ret; 1703 } 1704 1705 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev, 1706 enum hnae3_reset_notify_type type) 1707 { 1708 struct hnae3_client *client = hdev->roce_client; 1709 struct hnae3_handle *handle = &hdev->roce; 1710 int ret; 1711 1712 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client) 1713 return 0; 1714 1715 if (!client->ops->reset_notify) 1716 return -EOPNOTSUPP; 1717 1718 ret = client->ops->reset_notify(handle, type); 1719 if (ret) 1720 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", 1721 type, ret); 1722 return ret; 1723 } 1724 1725 static int hclgevf_reset_wait(struct hclgevf_dev *hdev) 1726 { 1727 #define HCLGEVF_RESET_WAIT_US 20000 1728 #define HCLGEVF_RESET_WAIT_CNT 2000 1729 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \ 1730 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT) 1731 1732 u32 val; 1733 int ret; 1734 1735 if (hdev->reset_type == HNAE3_VF_RESET) 1736 ret = readl_poll_timeout(hdev->hw.io_base + 1737 HCLGEVF_VF_RST_ING, val, 1738 !(val & HCLGEVF_VF_RST_ING_BIT), 1739 HCLGEVF_RESET_WAIT_US, 1740 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1741 else 1742 ret = readl_poll_timeout(hdev->hw.io_base + 1743 HCLGEVF_RST_ING, val, 1744 !(val & HCLGEVF_RST_ING_BITS), 1745 HCLGEVF_RESET_WAIT_US, 1746 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1747 1748 /* hardware completion status should be available by this time */ 1749 if (ret) { 1750 dev_err(&hdev->pdev->dev, 1751 "couldn't get reset done status from h/w, timeout!\n"); 1752 return ret; 1753 } 1754 1755 /* we will wait a bit more to let reset of the stack to complete. This 1756 * might happen in case reset assertion was made by PF. Yes, this also 1757 * means we might end up waiting bit more even for VF reset. 1758 */ 1759 msleep(5000); 1760 1761 return 0; 1762 } 1763 1764 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable) 1765 { 1766 u32 reg_val; 1767 1768 reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG); 1769 if (enable) 1770 reg_val |= HCLGEVF_NIC_SW_RST_RDY; 1771 else 1772 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY; 1773 1774 hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG, 1775 reg_val); 1776 } 1777 1778 static int hclgevf_reset_stack(struct hclgevf_dev *hdev) 1779 { 1780 int ret; 1781 1782 /* uninitialize the nic client */ 1783 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 1784 if (ret) 1785 return ret; 1786 1787 /* re-initialize the hclge device */ 1788 ret = hclgevf_reset_hdev(hdev); 1789 if (ret) { 1790 dev_err(&hdev->pdev->dev, 1791 "hclge device re-init failed, VF is disabled!\n"); 1792 return ret; 1793 } 1794 1795 /* bring up the nic client again */ 1796 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); 1797 if (ret) 1798 return ret; 1799 1800 /* clear handshake status with IMP */ 1801 hclgevf_reset_handshake(hdev, false); 1802 1803 /* bring up the nic to enable TX/RX again */ 1804 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 1805 } 1806 1807 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev) 1808 { 1809 #define HCLGEVF_RESET_SYNC_TIME 100 1810 1811 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) { 1812 struct hclge_vf_to_pf_msg send_msg; 1813 int ret; 1814 1815 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0); 1816 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1817 if (ret) { 1818 dev_err(&hdev->pdev->dev, 1819 "failed to assert VF reset, ret = %d\n", ret); 1820 return ret; 1821 } 1822 hdev->rst_stats.vf_func_rst_cnt++; 1823 } 1824 1825 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); 1826 /* inform hardware that preparatory work is done */ 1827 msleep(HCLGEVF_RESET_SYNC_TIME); 1828 hclgevf_reset_handshake(hdev, true); 1829 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n", 1830 hdev->reset_type); 1831 1832 return 0; 1833 } 1834 1835 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev) 1836 { 1837 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n", 1838 hdev->rst_stats.vf_func_rst_cnt); 1839 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n", 1840 hdev->rst_stats.flr_rst_cnt); 1841 dev_info(&hdev->pdev->dev, "VF reset count: %u\n", 1842 hdev->rst_stats.vf_rst_cnt); 1843 dev_info(&hdev->pdev->dev, "reset done count: %u\n", 1844 hdev->rst_stats.rst_done_cnt); 1845 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n", 1846 hdev->rst_stats.hw_rst_done_cnt); 1847 dev_info(&hdev->pdev->dev, "reset count: %u\n", 1848 hdev->rst_stats.rst_cnt); 1849 dev_info(&hdev->pdev->dev, "reset fail count: %u\n", 1850 hdev->rst_stats.rst_fail_cnt); 1851 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n", 1852 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE)); 1853 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n", 1854 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG)); 1855 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n", 1856 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG)); 1857 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n", 1858 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING)); 1859 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state); 1860 } 1861 1862 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev) 1863 { 1864 /* recover handshake status with IMP when reset fail */ 1865 hclgevf_reset_handshake(hdev, true); 1866 hdev->rst_stats.rst_fail_cnt++; 1867 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n", 1868 hdev->rst_stats.rst_fail_cnt); 1869 1870 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT) 1871 set_bit(hdev->reset_type, &hdev->reset_pending); 1872 1873 if (hclgevf_is_reset_pending(hdev)) { 1874 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1875 hclgevf_reset_task_schedule(hdev); 1876 } else { 1877 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1878 hclgevf_dump_rst_info(hdev); 1879 } 1880 } 1881 1882 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev) 1883 { 1884 int ret; 1885 1886 hdev->rst_stats.rst_cnt++; 1887 1888 /* perform reset of the stack & ae device for a client */ 1889 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); 1890 if (ret) 1891 return ret; 1892 1893 rtnl_lock(); 1894 /* bring down the nic to stop any ongoing TX/RX */ 1895 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 1896 rtnl_unlock(); 1897 if (ret) 1898 return ret; 1899 1900 return hclgevf_reset_prepare_wait(hdev); 1901 } 1902 1903 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev) 1904 { 1905 int ret; 1906 1907 hdev->rst_stats.hw_rst_done_cnt++; 1908 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); 1909 if (ret) 1910 return ret; 1911 1912 rtnl_lock(); 1913 /* now, re-initialize the nic client and ae device */ 1914 ret = hclgevf_reset_stack(hdev); 1915 rtnl_unlock(); 1916 if (ret) { 1917 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); 1918 return ret; 1919 } 1920 1921 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT); 1922 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1 1923 * times 1924 */ 1925 if (ret && 1926 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1) 1927 return ret; 1928 1929 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT); 1930 if (ret) 1931 return ret; 1932 1933 hdev->last_reset_time = jiffies; 1934 hdev->rst_stats.rst_done_cnt++; 1935 hdev->rst_stats.rst_fail_cnt = 0; 1936 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1937 1938 return 0; 1939 } 1940 1941 static void hclgevf_reset(struct hclgevf_dev *hdev) 1942 { 1943 if (hclgevf_reset_prepare(hdev)) 1944 goto err_reset; 1945 1946 /* check if VF could successfully fetch the hardware reset completion 1947 * status from the hardware 1948 */ 1949 if (hclgevf_reset_wait(hdev)) { 1950 /* can't do much in this situation, will disable VF */ 1951 dev_err(&hdev->pdev->dev, 1952 "failed to fetch H/W reset completion status\n"); 1953 goto err_reset; 1954 } 1955 1956 if (hclgevf_reset_rebuild(hdev)) 1957 goto err_reset; 1958 1959 return; 1960 1961 err_reset: 1962 hclgevf_reset_err_handle(hdev); 1963 } 1964 1965 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev, 1966 unsigned long *addr) 1967 { 1968 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; 1969 1970 /* return the highest priority reset level amongst all */ 1971 if (test_bit(HNAE3_VF_RESET, addr)) { 1972 rst_level = HNAE3_VF_RESET; 1973 clear_bit(HNAE3_VF_RESET, addr); 1974 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1975 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1976 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) { 1977 rst_level = HNAE3_VF_FULL_RESET; 1978 clear_bit(HNAE3_VF_FULL_RESET, addr); 1979 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1980 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) { 1981 rst_level = HNAE3_VF_PF_FUNC_RESET; 1982 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1983 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1984 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) { 1985 rst_level = HNAE3_VF_FUNC_RESET; 1986 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1987 } else if (test_bit(HNAE3_FLR_RESET, addr)) { 1988 rst_level = HNAE3_FLR_RESET; 1989 clear_bit(HNAE3_FLR_RESET, addr); 1990 } 1991 1992 return rst_level; 1993 } 1994 1995 static void hclgevf_reset_event(struct pci_dev *pdev, 1996 struct hnae3_handle *handle) 1997 { 1998 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 1999 struct hclgevf_dev *hdev = ae_dev->priv; 2000 2001 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); 2002 2003 if (hdev->default_reset_request) 2004 hdev->reset_level = 2005 hclgevf_get_reset_level(hdev, 2006 &hdev->default_reset_request); 2007 else 2008 hdev->reset_level = HNAE3_VF_FUNC_RESET; 2009 2010 /* reset of this VF requested */ 2011 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); 2012 hclgevf_reset_task_schedule(hdev); 2013 2014 hdev->last_reset_time = jiffies; 2015 } 2016 2017 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev, 2018 enum hnae3_reset_type rst_type) 2019 { 2020 struct hclgevf_dev *hdev = ae_dev->priv; 2021 2022 set_bit(rst_type, &hdev->default_reset_request); 2023 } 2024 2025 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) 2026 { 2027 writel(en ? 1 : 0, vector->addr); 2028 } 2029 2030 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev) 2031 { 2032 #define HCLGEVF_FLR_RETRY_WAIT_MS 500 2033 #define HCLGEVF_FLR_RETRY_CNT 5 2034 2035 struct hclgevf_dev *hdev = ae_dev->priv; 2036 int retry_cnt = 0; 2037 int ret; 2038 2039 retry: 2040 down(&hdev->reset_sem); 2041 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2042 hdev->reset_type = HNAE3_FLR_RESET; 2043 ret = hclgevf_reset_prepare(hdev); 2044 if (ret) { 2045 dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n", 2046 ret); 2047 if (hdev->reset_pending || 2048 retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) { 2049 dev_err(&hdev->pdev->dev, 2050 "reset_pending:0x%lx, retry_cnt:%d\n", 2051 hdev->reset_pending, retry_cnt); 2052 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2053 up(&hdev->reset_sem); 2054 msleep(HCLGEVF_FLR_RETRY_WAIT_MS); 2055 goto retry; 2056 } 2057 } 2058 2059 /* disable misc vector before FLR done */ 2060 hclgevf_enable_vector(&hdev->misc_vector, false); 2061 hdev->rst_stats.flr_rst_cnt++; 2062 } 2063 2064 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev) 2065 { 2066 struct hclgevf_dev *hdev = ae_dev->priv; 2067 int ret; 2068 2069 hclgevf_enable_vector(&hdev->misc_vector, true); 2070 2071 ret = hclgevf_reset_rebuild(hdev); 2072 if (ret) 2073 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", 2074 ret); 2075 2076 hdev->reset_type = HNAE3_NONE_RESET; 2077 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2078 up(&hdev->reset_sem); 2079 } 2080 2081 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) 2082 { 2083 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2084 2085 return hdev->fw_version; 2086 } 2087 2088 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) 2089 { 2090 struct hclgevf_misc_vector *vector = &hdev->misc_vector; 2091 2092 vector->vector_irq = pci_irq_vector(hdev->pdev, 2093 HCLGEVF_MISC_VECTOR_NUM); 2094 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; 2095 /* vector status always valid for Vector 0 */ 2096 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; 2097 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; 2098 2099 hdev->num_msi_left -= 1; 2100 hdev->num_msi_used += 1; 2101 } 2102 2103 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) 2104 { 2105 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 2106 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, 2107 &hdev->state)) 2108 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 2109 } 2110 2111 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) 2112 { 2113 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 2114 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, 2115 &hdev->state)) 2116 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 2117 } 2118 2119 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 2120 unsigned long delay) 2121 { 2122 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 2123 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 2124 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay); 2125 } 2126 2127 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev) 2128 { 2129 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3 2130 2131 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) 2132 return; 2133 2134 down(&hdev->reset_sem); 2135 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2136 2137 if (test_and_clear_bit(HCLGEVF_RESET_PENDING, 2138 &hdev->reset_state)) { 2139 /* PF has initmated that it is about to reset the hardware. 2140 * We now have to poll & check if hardware has actually 2141 * completed the reset sequence. On hardware reset completion, 2142 * VF needs to reset the client and ae device. 2143 */ 2144 hdev->reset_attempts = 0; 2145 2146 hdev->last_reset_time = jiffies; 2147 while ((hdev->reset_type = 2148 hclgevf_get_reset_level(hdev, &hdev->reset_pending)) 2149 != HNAE3_NONE_RESET) 2150 hclgevf_reset(hdev); 2151 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, 2152 &hdev->reset_state)) { 2153 /* we could be here when either of below happens: 2154 * 1. reset was initiated due to watchdog timeout caused by 2155 * a. IMP was earlier reset and our TX got choked down and 2156 * which resulted in watchdog reacting and inducing VF 2157 * reset. This also means our cmdq would be unreliable. 2158 * b. problem in TX due to other lower layer(example link 2159 * layer not functioning properly etc.) 2160 * 2. VF reset might have been initiated due to some config 2161 * change. 2162 * 2163 * NOTE: Theres no clear way to detect above cases than to react 2164 * to the response of PF for this reset request. PF will ack the 2165 * 1b and 2. cases but we will not get any intimation about 1a 2166 * from PF as cmdq would be in unreliable state i.e. mailbox 2167 * communication between PF and VF would be broken. 2168 * 2169 * if we are never geting into pending state it means either: 2170 * 1. PF is not receiving our request which could be due to IMP 2171 * reset 2172 * 2. PF is screwed 2173 * We cannot do much for 2. but to check first we can try reset 2174 * our PCIe + stack and see if it alleviates the problem. 2175 */ 2176 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) { 2177 /* prepare for full reset of stack + pcie interface */ 2178 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending); 2179 2180 /* "defer" schedule the reset task again */ 2181 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2182 } else { 2183 hdev->reset_attempts++; 2184 2185 set_bit(hdev->reset_level, &hdev->reset_pending); 2186 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2187 } 2188 hclgevf_reset_task_schedule(hdev); 2189 } 2190 2191 hdev->reset_type = HNAE3_NONE_RESET; 2192 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2193 up(&hdev->reset_sem); 2194 } 2195 2196 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev) 2197 { 2198 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state)) 2199 return; 2200 2201 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) 2202 return; 2203 2204 hclgevf_mbx_async_handler(hdev); 2205 2206 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2207 } 2208 2209 static void hclgevf_keep_alive(struct hclgevf_dev *hdev) 2210 { 2211 struct hclge_vf_to_pf_msg send_msg; 2212 int ret; 2213 2214 if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) 2215 return; 2216 2217 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0); 2218 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2219 if (ret) 2220 dev_err(&hdev->pdev->dev, 2221 "VF sends keep alive cmd failed(=%d)\n", ret); 2222 } 2223 2224 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev) 2225 { 2226 unsigned long delta = round_jiffies_relative(HZ); 2227 struct hnae3_handle *handle = &hdev->nic; 2228 2229 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 2230 return; 2231 2232 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { 2233 delta = jiffies - hdev->last_serv_processed; 2234 2235 if (delta < round_jiffies_relative(HZ)) { 2236 delta = round_jiffies_relative(HZ) - delta; 2237 goto out; 2238 } 2239 } 2240 2241 hdev->serv_processed_cnt++; 2242 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL)) 2243 hclgevf_keep_alive(hdev); 2244 2245 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) { 2246 hdev->last_serv_processed = jiffies; 2247 goto out; 2248 } 2249 2250 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL)) 2251 hclgevf_tqps_update_stats(handle); 2252 2253 /* request the link status from the PF. PF would be able to tell VF 2254 * about such updates in future so we might remove this later 2255 */ 2256 hclgevf_request_link_info(hdev); 2257 2258 hclgevf_update_link_mode(hdev); 2259 2260 hclgevf_sync_vlan_filter(hdev); 2261 2262 hclgevf_sync_mac_table(hdev); 2263 2264 hclgevf_sync_promisc_mode(hdev); 2265 2266 hdev->last_serv_processed = jiffies; 2267 2268 out: 2269 hclgevf_task_schedule(hdev, delta); 2270 } 2271 2272 static void hclgevf_service_task(struct work_struct *work) 2273 { 2274 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev, 2275 service_task.work); 2276 2277 hclgevf_reset_service_task(hdev); 2278 hclgevf_mailbox_service_task(hdev); 2279 hclgevf_periodic_service_task(hdev); 2280 2281 /* Handle reset and mbx again in case periodical task delays the 2282 * handling by calling hclgevf_task_schedule() in 2283 * hclgevf_periodic_service_task() 2284 */ 2285 hclgevf_reset_service_task(hdev); 2286 hclgevf_mailbox_service_task(hdev); 2287 } 2288 2289 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) 2290 { 2291 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr); 2292 } 2293 2294 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev, 2295 u32 *clearval) 2296 { 2297 u32 val, cmdq_stat_reg, rst_ing_reg; 2298 2299 /* fetch the events from their corresponding regs */ 2300 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw, 2301 HCLGEVF_VECTOR0_CMDQ_STATE_REG); 2302 2303 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) { 2304 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 2305 dev_info(&hdev->pdev->dev, 2306 "receive reset interrupt 0x%x!\n", rst_ing_reg); 2307 set_bit(HNAE3_VF_RESET, &hdev->reset_pending); 2308 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2309 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); 2310 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B); 2311 hdev->rst_stats.vf_rst_cnt++; 2312 /* set up VF hardware reset status, its PF will clear 2313 * this status when PF has initialized done. 2314 */ 2315 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING); 2316 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING, 2317 val | HCLGEVF_VF_RST_ING_BIT); 2318 return HCLGEVF_VECTOR0_EVENT_RST; 2319 } 2320 2321 /* check for vector0 mailbox(=CMDQ RX) event source */ 2322 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) { 2323 /* for revision 0x21, clearing interrupt is writing bit 0 2324 * to the clear register, writing bit 1 means to keep the 2325 * old value. 2326 * for revision 0x20, the clear register is a read & write 2327 * register, so we should just write 0 to the bit we are 2328 * handling, and keep other bits as cmdq_stat_reg. 2329 */ 2330 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) 2331 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2332 else 2333 *clearval = cmdq_stat_reg & 2334 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2335 2336 return HCLGEVF_VECTOR0_EVENT_MBX; 2337 } 2338 2339 /* print other vector0 event source */ 2340 dev_info(&hdev->pdev->dev, 2341 "vector 0 interrupt from unknown source, cmdq_src = %#x\n", 2342 cmdq_stat_reg); 2343 2344 return HCLGEVF_VECTOR0_EVENT_OTHER; 2345 } 2346 2347 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) 2348 { 2349 enum hclgevf_evt_cause event_cause; 2350 struct hclgevf_dev *hdev = data; 2351 u32 clearval; 2352 2353 hclgevf_enable_vector(&hdev->misc_vector, false); 2354 event_cause = hclgevf_check_evt_cause(hdev, &clearval); 2355 2356 switch (event_cause) { 2357 case HCLGEVF_VECTOR0_EVENT_RST: 2358 hclgevf_reset_task_schedule(hdev); 2359 break; 2360 case HCLGEVF_VECTOR0_EVENT_MBX: 2361 hclgevf_mbx_handler(hdev); 2362 break; 2363 default: 2364 break; 2365 } 2366 2367 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) { 2368 hclgevf_clear_event_cause(hdev, clearval); 2369 hclgevf_enable_vector(&hdev->misc_vector, true); 2370 } 2371 2372 return IRQ_HANDLED; 2373 } 2374 2375 static int hclgevf_configure(struct hclgevf_dev *hdev) 2376 { 2377 int ret; 2378 2379 /* get current port based vlan state from PF */ 2380 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2381 if (ret) 2382 return ret; 2383 2384 /* get queue configuration from PF */ 2385 ret = hclgevf_get_queue_info(hdev); 2386 if (ret) 2387 return ret; 2388 2389 /* get queue depth info from PF */ 2390 ret = hclgevf_get_queue_depth(hdev); 2391 if (ret) 2392 return ret; 2393 2394 ret = hclgevf_get_pf_media_type(hdev); 2395 if (ret) 2396 return ret; 2397 2398 /* get tc configuration from PF */ 2399 return hclgevf_get_tc_info(hdev); 2400 } 2401 2402 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) 2403 { 2404 struct pci_dev *pdev = ae_dev->pdev; 2405 struct hclgevf_dev *hdev; 2406 2407 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 2408 if (!hdev) 2409 return -ENOMEM; 2410 2411 hdev->pdev = pdev; 2412 hdev->ae_dev = ae_dev; 2413 ae_dev->priv = hdev; 2414 2415 return 0; 2416 } 2417 2418 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) 2419 { 2420 struct hnae3_handle *roce = &hdev->roce; 2421 struct hnae3_handle *nic = &hdev->nic; 2422 2423 roce->rinfo.num_vectors = hdev->num_roce_msix; 2424 2425 if (hdev->num_msi_left < roce->rinfo.num_vectors || 2426 hdev->num_msi_left == 0) 2427 return -EINVAL; 2428 2429 roce->rinfo.base_vector = hdev->roce_base_vector; 2430 2431 roce->rinfo.netdev = nic->kinfo.netdev; 2432 roce->rinfo.roce_io_base = hdev->hw.io_base; 2433 2434 roce->pdev = nic->pdev; 2435 roce->ae_algo = nic->ae_algo; 2436 roce->numa_node_mask = nic->numa_node_mask; 2437 2438 return 0; 2439 } 2440 2441 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en) 2442 { 2443 struct hclgevf_cfg_gro_status_cmd *req; 2444 struct hclgevf_desc desc; 2445 int ret; 2446 2447 if (!hnae3_dev_gro_supported(hdev)) 2448 return 0; 2449 2450 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG, 2451 false); 2452 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data; 2453 2454 req->gro_en = en ? 1 : 0; 2455 2456 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2457 if (ret) 2458 dev_err(&hdev->pdev->dev, 2459 "VF GRO hardware config cmd failed, ret = %d.\n", ret); 2460 2461 return ret; 2462 } 2463 2464 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev) 2465 { 2466 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 2467 struct hclgevf_rss_tuple_cfg *tuple_sets; 2468 u32 i; 2469 2470 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ; 2471 rss_cfg->rss_size = hdev->nic.kinfo.rss_size; 2472 tuple_sets = &rss_cfg->rss_tuple_sets; 2473 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 2474 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE; 2475 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key, 2476 HCLGEVF_RSS_KEY_SIZE); 2477 2478 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2479 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2480 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP; 2481 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2482 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2483 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2484 tuple_sets->ipv6_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP; 2485 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2486 } 2487 2488 /* Initialize RSS indirect table */ 2489 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 2490 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size; 2491 } 2492 2493 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) 2494 { 2495 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 2496 int ret; 2497 2498 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 2499 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo, 2500 rss_cfg->rss_hash_key); 2501 if (ret) 2502 return ret; 2503 2504 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg); 2505 if (ret) 2506 return ret; 2507 } 2508 2509 ret = hclgevf_set_rss_indir_table(hdev); 2510 if (ret) 2511 return ret; 2512 2513 return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size); 2514 } 2515 2516 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) 2517 { 2518 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, 2519 false); 2520 } 2521 2522 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev) 2523 { 2524 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000 2525 2526 unsigned long last = hdev->serv_processed_cnt; 2527 int i = 0; 2528 2529 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) && 2530 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT && 2531 last == hdev->serv_processed_cnt) 2532 usleep_range(1, 1); 2533 } 2534 2535 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable) 2536 { 2537 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2538 2539 if (enable) { 2540 hclgevf_task_schedule(hdev, 0); 2541 } else { 2542 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2543 2544 /* flush memory to make sure DOWN is seen by service task */ 2545 smp_mb__before_atomic(); 2546 hclgevf_flush_link_update(hdev); 2547 } 2548 } 2549 2550 static int hclgevf_ae_start(struct hnae3_handle *handle) 2551 { 2552 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2553 2554 hclgevf_reset_tqp_stats(handle); 2555 2556 hclgevf_request_link_info(hdev); 2557 2558 hclgevf_update_link_mode(hdev); 2559 2560 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2561 2562 return 0; 2563 } 2564 2565 static void hclgevf_ae_stop(struct hnae3_handle *handle) 2566 { 2567 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2568 int i; 2569 2570 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2571 2572 if (hdev->reset_type != HNAE3_VF_RESET) 2573 for (i = 0; i < handle->kinfo.num_tqps; i++) 2574 if (hclgevf_reset_tqp(handle, i)) 2575 break; 2576 2577 hclgevf_reset_tqp_stats(handle); 2578 hclgevf_update_link_status(hdev, 0); 2579 } 2580 2581 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive) 2582 { 2583 #define HCLGEVF_STATE_ALIVE 1 2584 #define HCLGEVF_STATE_NOT_ALIVE 0 2585 2586 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2587 struct hclge_vf_to_pf_msg send_msg; 2588 2589 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0); 2590 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE : 2591 HCLGEVF_STATE_NOT_ALIVE; 2592 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2593 } 2594 2595 static int hclgevf_client_start(struct hnae3_handle *handle) 2596 { 2597 return hclgevf_set_alive(handle, true); 2598 } 2599 2600 static void hclgevf_client_stop(struct hnae3_handle *handle) 2601 { 2602 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2603 int ret; 2604 2605 ret = hclgevf_set_alive(handle, false); 2606 if (ret) 2607 dev_warn(&hdev->pdev->dev, 2608 "%s failed %d\n", __func__, ret); 2609 } 2610 2611 static void hclgevf_state_init(struct hclgevf_dev *hdev) 2612 { 2613 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 2614 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2615 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 2616 2617 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task); 2618 2619 mutex_init(&hdev->mbx_resp.mbx_mutex); 2620 sema_init(&hdev->reset_sem, 1); 2621 2622 spin_lock_init(&hdev->mac_table.mac_list_lock); 2623 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list); 2624 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list); 2625 2626 /* bring the device down */ 2627 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2628 } 2629 2630 static void hclgevf_state_uninit(struct hclgevf_dev *hdev) 2631 { 2632 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2633 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state); 2634 2635 if (hdev->service_task.work.func) 2636 cancel_delayed_work_sync(&hdev->service_task); 2637 2638 mutex_destroy(&hdev->mbx_resp.mbx_mutex); 2639 } 2640 2641 static int hclgevf_init_msi(struct hclgevf_dev *hdev) 2642 { 2643 struct pci_dev *pdev = hdev->pdev; 2644 int vectors; 2645 int i; 2646 2647 if (hnae3_dev_roce_supported(hdev)) 2648 vectors = pci_alloc_irq_vectors(pdev, 2649 hdev->roce_base_msix_offset + 1, 2650 hdev->num_msi, 2651 PCI_IRQ_MSIX); 2652 else 2653 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, 2654 hdev->num_msi, 2655 PCI_IRQ_MSI | PCI_IRQ_MSIX); 2656 2657 if (vectors < 0) { 2658 dev_err(&pdev->dev, 2659 "failed(%d) to allocate MSI/MSI-X vectors\n", 2660 vectors); 2661 return vectors; 2662 } 2663 if (vectors < hdev->num_msi) 2664 dev_warn(&hdev->pdev->dev, 2665 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", 2666 hdev->num_msi, vectors); 2667 2668 hdev->num_msi = vectors; 2669 hdev->num_msi_left = vectors; 2670 2671 hdev->base_msi_vector = pdev->irq; 2672 hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset; 2673 2674 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 2675 sizeof(u16), GFP_KERNEL); 2676 if (!hdev->vector_status) { 2677 pci_free_irq_vectors(pdev); 2678 return -ENOMEM; 2679 } 2680 2681 for (i = 0; i < hdev->num_msi; i++) 2682 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; 2683 2684 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 2685 sizeof(int), GFP_KERNEL); 2686 if (!hdev->vector_irq) { 2687 devm_kfree(&pdev->dev, hdev->vector_status); 2688 pci_free_irq_vectors(pdev); 2689 return -ENOMEM; 2690 } 2691 2692 return 0; 2693 } 2694 2695 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) 2696 { 2697 struct pci_dev *pdev = hdev->pdev; 2698 2699 devm_kfree(&pdev->dev, hdev->vector_status); 2700 devm_kfree(&pdev->dev, hdev->vector_irq); 2701 pci_free_irq_vectors(pdev); 2702 } 2703 2704 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) 2705 { 2706 int ret; 2707 2708 hclgevf_get_misc_vector(hdev); 2709 2710 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", 2711 HCLGEVF_NAME, pci_name(hdev->pdev)); 2712 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 2713 0, hdev->misc_vector.name, hdev); 2714 if (ret) { 2715 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", 2716 hdev->misc_vector.vector_irq); 2717 return ret; 2718 } 2719 2720 hclgevf_clear_event_cause(hdev, 0); 2721 2722 /* enable misc. vector(vector 0) */ 2723 hclgevf_enable_vector(&hdev->misc_vector, true); 2724 2725 return ret; 2726 } 2727 2728 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) 2729 { 2730 /* disable misc vector(vector 0) */ 2731 hclgevf_enable_vector(&hdev->misc_vector, false); 2732 synchronize_irq(hdev->misc_vector.vector_irq); 2733 free_irq(hdev->misc_vector.vector_irq, hdev); 2734 hclgevf_free_vector(hdev, 0); 2735 } 2736 2737 static void hclgevf_info_show(struct hclgevf_dev *hdev) 2738 { 2739 struct device *dev = &hdev->pdev->dev; 2740 2741 dev_info(dev, "VF info begin:\n"); 2742 2743 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); 2744 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); 2745 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); 2746 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); 2747 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); 2748 dev_info(dev, "PF media type of this VF: %u\n", 2749 hdev->hw.mac.media_type); 2750 2751 dev_info(dev, "VF info end.\n"); 2752 } 2753 2754 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, 2755 struct hnae3_client *client) 2756 { 2757 struct hclgevf_dev *hdev = ae_dev->priv; 2758 int rst_cnt = hdev->rst_stats.rst_cnt; 2759 int ret; 2760 2761 ret = client->ops->init_instance(&hdev->nic); 2762 if (ret) 2763 return ret; 2764 2765 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2766 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 2767 rst_cnt != hdev->rst_stats.rst_cnt) { 2768 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2769 2770 client->ops->uninit_instance(&hdev->nic, 0); 2771 return -EBUSY; 2772 } 2773 2774 hnae3_set_client_init_flag(client, ae_dev, 1); 2775 2776 if (netif_msg_drv(&hdev->nic)) 2777 hclgevf_info_show(hdev); 2778 2779 return 0; 2780 } 2781 2782 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, 2783 struct hnae3_client *client) 2784 { 2785 struct hclgevf_dev *hdev = ae_dev->priv; 2786 int ret; 2787 2788 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || 2789 !hdev->nic_client) 2790 return 0; 2791 2792 ret = hclgevf_init_roce_base_info(hdev); 2793 if (ret) 2794 return ret; 2795 2796 ret = client->ops->init_instance(&hdev->roce); 2797 if (ret) 2798 return ret; 2799 2800 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2801 hnae3_set_client_init_flag(client, ae_dev, 1); 2802 2803 return 0; 2804 } 2805 2806 static int hclgevf_init_client_instance(struct hnae3_client *client, 2807 struct hnae3_ae_dev *ae_dev) 2808 { 2809 struct hclgevf_dev *hdev = ae_dev->priv; 2810 int ret; 2811 2812 switch (client->type) { 2813 case HNAE3_CLIENT_KNIC: 2814 hdev->nic_client = client; 2815 hdev->nic.client = client; 2816 2817 ret = hclgevf_init_nic_client_instance(ae_dev, client); 2818 if (ret) 2819 goto clear_nic; 2820 2821 ret = hclgevf_init_roce_client_instance(ae_dev, 2822 hdev->roce_client); 2823 if (ret) 2824 goto clear_roce; 2825 2826 break; 2827 case HNAE3_CLIENT_ROCE: 2828 if (hnae3_dev_roce_supported(hdev)) { 2829 hdev->roce_client = client; 2830 hdev->roce.client = client; 2831 } 2832 2833 ret = hclgevf_init_roce_client_instance(ae_dev, client); 2834 if (ret) 2835 goto clear_roce; 2836 2837 break; 2838 default: 2839 return -EINVAL; 2840 } 2841 2842 return 0; 2843 2844 clear_nic: 2845 hdev->nic_client = NULL; 2846 hdev->nic.client = NULL; 2847 return ret; 2848 clear_roce: 2849 hdev->roce_client = NULL; 2850 hdev->roce.client = NULL; 2851 return ret; 2852 } 2853 2854 static void hclgevf_uninit_client_instance(struct hnae3_client *client, 2855 struct hnae3_ae_dev *ae_dev) 2856 { 2857 struct hclgevf_dev *hdev = ae_dev->priv; 2858 2859 /* un-init roce, if it exists */ 2860 if (hdev->roce_client) { 2861 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2862 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); 2863 hdev->roce_client = NULL; 2864 hdev->roce.client = NULL; 2865 } 2866 2867 /* un-init nic/unic, if this was not called by roce client */ 2868 if (client->ops->uninit_instance && hdev->nic_client && 2869 client->type != HNAE3_CLIENT_ROCE) { 2870 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2871 2872 client->ops->uninit_instance(&hdev->nic, 0); 2873 hdev->nic_client = NULL; 2874 hdev->nic.client = NULL; 2875 } 2876 } 2877 2878 static int hclgevf_pci_init(struct hclgevf_dev *hdev) 2879 { 2880 struct pci_dev *pdev = hdev->pdev; 2881 struct hclgevf_hw *hw; 2882 int ret; 2883 2884 ret = pci_enable_device(pdev); 2885 if (ret) { 2886 dev_err(&pdev->dev, "failed to enable PCI device\n"); 2887 return ret; 2888 } 2889 2890 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2891 if (ret) { 2892 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); 2893 goto err_disable_device; 2894 } 2895 2896 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); 2897 if (ret) { 2898 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 2899 goto err_disable_device; 2900 } 2901 2902 pci_set_master(pdev); 2903 hw = &hdev->hw; 2904 hw->hdev = hdev; 2905 hw->io_base = pci_iomap(pdev, 2, 0); 2906 if (!hw->io_base) { 2907 dev_err(&pdev->dev, "can't map configuration register space\n"); 2908 ret = -ENOMEM; 2909 goto err_clr_master; 2910 } 2911 2912 return 0; 2913 2914 err_clr_master: 2915 pci_clear_master(pdev); 2916 pci_release_regions(pdev); 2917 err_disable_device: 2918 pci_disable_device(pdev); 2919 2920 return ret; 2921 } 2922 2923 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) 2924 { 2925 struct pci_dev *pdev = hdev->pdev; 2926 2927 pci_iounmap(pdev, hdev->hw.io_base); 2928 pci_clear_master(pdev); 2929 pci_release_regions(pdev); 2930 pci_disable_device(pdev); 2931 } 2932 2933 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev) 2934 { 2935 struct hclgevf_query_res_cmd *req; 2936 struct hclgevf_desc desc; 2937 int ret; 2938 2939 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true); 2940 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2941 if (ret) { 2942 dev_err(&hdev->pdev->dev, 2943 "query vf resource failed, ret = %d.\n", ret); 2944 return ret; 2945 } 2946 2947 req = (struct hclgevf_query_res_cmd *)desc.data; 2948 2949 if (hnae3_dev_roce_supported(hdev)) { 2950 hdev->roce_base_msix_offset = 2951 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee), 2952 HCLGEVF_MSIX_OFT_ROCEE_M, 2953 HCLGEVF_MSIX_OFT_ROCEE_S); 2954 hdev->num_roce_msix = 2955 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2956 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2957 2958 /* nic's msix numbers is always equals to the roce's. */ 2959 hdev->num_nic_msix = hdev->num_roce_msix; 2960 2961 /* VF should have NIC vectors and Roce vectors, NIC vectors 2962 * are queued before Roce vectors. The offset is fixed to 64. 2963 */ 2964 hdev->num_msi = hdev->num_roce_msix + 2965 hdev->roce_base_msix_offset; 2966 } else { 2967 hdev->num_msi = 2968 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2969 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2970 2971 hdev->num_nic_msix = hdev->num_msi; 2972 } 2973 2974 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) { 2975 dev_err(&hdev->pdev->dev, 2976 "Just %u msi resources, not enough for vf(min:2).\n", 2977 hdev->num_nic_msix); 2978 return -EINVAL; 2979 } 2980 2981 return 0; 2982 } 2983 2984 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev) 2985 { 2986 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U 2987 2988 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2989 2990 ae_dev->dev_specs.max_non_tso_bd_num = 2991 HCLGEVF_MAX_NON_TSO_BD_NUM; 2992 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 2993 ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE; 2994 } 2995 2996 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev, 2997 struct hclgevf_desc *desc) 2998 { 2999 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 3000 struct hclgevf_dev_specs_0_cmd *req0; 3001 3002 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data; 3003 3004 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num; 3005 ae_dev->dev_specs.rss_ind_tbl_size = 3006 le16_to_cpu(req0->rss_ind_tbl_size); 3007 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size); 3008 } 3009 3010 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev) 3011 { 3012 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs; 3013 3014 if (!dev_specs->max_non_tso_bd_num) 3015 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM; 3016 if (!dev_specs->rss_ind_tbl_size) 3017 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 3018 if (!dev_specs->rss_key_size) 3019 dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE; 3020 } 3021 3022 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev) 3023 { 3024 struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM]; 3025 int ret; 3026 int i; 3027 3028 /* set default specifications as devices lower than version V3 do not 3029 * support querying specifications from firmware. 3030 */ 3031 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 3032 hclgevf_set_default_dev_specs(hdev); 3033 return 0; 3034 } 3035 3036 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) { 3037 hclgevf_cmd_setup_basic_desc(&desc[i], 3038 HCLGEVF_OPC_QUERY_DEV_SPECS, true); 3039 desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT); 3040 } 3041 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS, 3042 true); 3043 3044 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM); 3045 if (ret) 3046 return ret; 3047 3048 hclgevf_parse_dev_specs(hdev, desc); 3049 hclgevf_check_dev_specs(hdev); 3050 3051 return 0; 3052 } 3053 3054 static int hclgevf_pci_reset(struct hclgevf_dev *hdev) 3055 { 3056 struct pci_dev *pdev = hdev->pdev; 3057 int ret = 0; 3058 3059 if (hdev->reset_type == HNAE3_VF_FULL_RESET && 3060 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3061 hclgevf_misc_irq_uninit(hdev); 3062 hclgevf_uninit_msi(hdev); 3063 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3064 } 3065 3066 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3067 pci_set_master(pdev); 3068 ret = hclgevf_init_msi(hdev); 3069 if (ret) { 3070 dev_err(&pdev->dev, 3071 "failed(%d) to init MSI/MSI-X\n", ret); 3072 return ret; 3073 } 3074 3075 ret = hclgevf_misc_irq_init(hdev); 3076 if (ret) { 3077 hclgevf_uninit_msi(hdev); 3078 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", 3079 ret); 3080 return ret; 3081 } 3082 3083 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3084 } 3085 3086 return ret; 3087 } 3088 3089 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev) 3090 { 3091 struct hclge_vf_to_pf_msg send_msg; 3092 3093 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL, 3094 HCLGE_MBX_VPORT_LIST_CLEAR); 3095 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3096 } 3097 3098 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev) 3099 { 3100 struct pci_dev *pdev = hdev->pdev; 3101 int ret; 3102 3103 ret = hclgevf_pci_reset(hdev); 3104 if (ret) { 3105 dev_err(&pdev->dev, "pci reset failed %d\n", ret); 3106 return ret; 3107 } 3108 3109 ret = hclgevf_cmd_init(hdev); 3110 if (ret) { 3111 dev_err(&pdev->dev, "cmd failed %d\n", ret); 3112 return ret; 3113 } 3114 3115 ret = hclgevf_rss_init_hw(hdev); 3116 if (ret) { 3117 dev_err(&hdev->pdev->dev, 3118 "failed(%d) to initialize RSS\n", ret); 3119 return ret; 3120 } 3121 3122 ret = hclgevf_config_gro(hdev, true); 3123 if (ret) 3124 return ret; 3125 3126 ret = hclgevf_init_vlan_config(hdev); 3127 if (ret) { 3128 dev_err(&hdev->pdev->dev, 3129 "failed(%d) to initialize VLAN config\n", ret); 3130 return ret; 3131 } 3132 3133 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 3134 3135 dev_info(&hdev->pdev->dev, "Reset done\n"); 3136 3137 return 0; 3138 } 3139 3140 static int hclgevf_init_hdev(struct hclgevf_dev *hdev) 3141 { 3142 struct pci_dev *pdev = hdev->pdev; 3143 int ret; 3144 3145 ret = hclgevf_pci_init(hdev); 3146 if (ret) 3147 return ret; 3148 3149 ret = hclgevf_cmd_queue_init(hdev); 3150 if (ret) 3151 goto err_cmd_queue_init; 3152 3153 ret = hclgevf_cmd_init(hdev); 3154 if (ret) 3155 goto err_cmd_init; 3156 3157 /* Get vf resource */ 3158 ret = hclgevf_query_vf_resource(hdev); 3159 if (ret) 3160 goto err_cmd_init; 3161 3162 ret = hclgevf_query_dev_specs(hdev); 3163 if (ret) { 3164 dev_err(&pdev->dev, 3165 "failed to query dev specifications, ret = %d\n", ret); 3166 goto err_cmd_init; 3167 } 3168 3169 ret = hclgevf_init_msi(hdev); 3170 if (ret) { 3171 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); 3172 goto err_cmd_init; 3173 } 3174 3175 hclgevf_state_init(hdev); 3176 hdev->reset_level = HNAE3_VF_FUNC_RESET; 3177 hdev->reset_type = HNAE3_NONE_RESET; 3178 3179 ret = hclgevf_misc_irq_init(hdev); 3180 if (ret) 3181 goto err_misc_irq_init; 3182 3183 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3184 3185 ret = hclgevf_configure(hdev); 3186 if (ret) { 3187 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); 3188 goto err_config; 3189 } 3190 3191 ret = hclgevf_alloc_tqps(hdev); 3192 if (ret) { 3193 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); 3194 goto err_config; 3195 } 3196 3197 ret = hclgevf_set_handle_info(hdev); 3198 if (ret) 3199 goto err_config; 3200 3201 ret = hclgevf_config_gro(hdev, true); 3202 if (ret) 3203 goto err_config; 3204 3205 /* Initialize RSS for this VF */ 3206 hclgevf_rss_init_cfg(hdev); 3207 ret = hclgevf_rss_init_hw(hdev); 3208 if (ret) { 3209 dev_err(&hdev->pdev->dev, 3210 "failed(%d) to initialize RSS\n", ret); 3211 goto err_config; 3212 } 3213 3214 /* ensure vf tbl list as empty before init*/ 3215 ret = hclgevf_clear_vport_list(hdev); 3216 if (ret) { 3217 dev_err(&pdev->dev, 3218 "failed to clear tbl list configuration, ret = %d.\n", 3219 ret); 3220 goto err_config; 3221 } 3222 3223 ret = hclgevf_init_vlan_config(hdev); 3224 if (ret) { 3225 dev_err(&hdev->pdev->dev, 3226 "failed(%d) to initialize VLAN config\n", ret); 3227 goto err_config; 3228 } 3229 3230 hdev->last_reset_time = jiffies; 3231 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n", 3232 HCLGEVF_DRIVER_NAME); 3233 3234 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ)); 3235 3236 return 0; 3237 3238 err_config: 3239 hclgevf_misc_irq_uninit(hdev); 3240 err_misc_irq_init: 3241 hclgevf_state_uninit(hdev); 3242 hclgevf_uninit_msi(hdev); 3243 err_cmd_init: 3244 hclgevf_cmd_uninit(hdev); 3245 err_cmd_queue_init: 3246 hclgevf_pci_uninit(hdev); 3247 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3248 return ret; 3249 } 3250 3251 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) 3252 { 3253 struct hclge_vf_to_pf_msg send_msg; 3254 3255 hclgevf_state_uninit(hdev); 3256 3257 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0); 3258 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3259 3260 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3261 hclgevf_misc_irq_uninit(hdev); 3262 hclgevf_uninit_msi(hdev); 3263 } 3264 3265 hclgevf_pci_uninit(hdev); 3266 hclgevf_cmd_uninit(hdev); 3267 hclgevf_uninit_mac_list(hdev); 3268 } 3269 3270 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) 3271 { 3272 struct pci_dev *pdev = ae_dev->pdev; 3273 int ret; 3274 3275 ret = hclgevf_alloc_hdev(ae_dev); 3276 if (ret) { 3277 dev_err(&pdev->dev, "hclge device allocation failed\n"); 3278 return ret; 3279 } 3280 3281 ret = hclgevf_init_hdev(ae_dev->priv); 3282 if (ret) { 3283 dev_err(&pdev->dev, "hclge device initialization failed\n"); 3284 return ret; 3285 } 3286 3287 return 0; 3288 } 3289 3290 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 3291 { 3292 struct hclgevf_dev *hdev = ae_dev->priv; 3293 3294 hclgevf_uninit_hdev(hdev); 3295 ae_dev->priv = NULL; 3296 } 3297 3298 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) 3299 { 3300 struct hnae3_handle *nic = &hdev->nic; 3301 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 3302 3303 return min_t(u32, hdev->rss_size_max, 3304 hdev->num_tqps / kinfo->num_tc); 3305 } 3306 3307 /** 3308 * hclgevf_get_channels - Get the current channels enabled and max supported. 3309 * @handle: hardware information for network interface 3310 * @ch: ethtool channels structure 3311 * 3312 * We don't support separate tx and rx queues as channels. The other count 3313 * represents how many queues are being used for control. max_combined counts 3314 * how many queue pairs we can support. They may not be mapped 1 to 1 with 3315 * q_vectors since we support a lot more queue pairs than q_vectors. 3316 **/ 3317 static void hclgevf_get_channels(struct hnae3_handle *handle, 3318 struct ethtool_channels *ch) 3319 { 3320 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3321 3322 ch->max_combined = hclgevf_get_max_channels(hdev); 3323 ch->other_count = 0; 3324 ch->max_other = 0; 3325 ch->combined_count = handle->kinfo.rss_size; 3326 } 3327 3328 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, 3329 u16 *alloc_tqps, u16 *max_rss_size) 3330 { 3331 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3332 3333 *alloc_tqps = hdev->num_tqps; 3334 *max_rss_size = hdev->rss_size_max; 3335 } 3336 3337 static void hclgevf_update_rss_size(struct hnae3_handle *handle, 3338 u32 new_tqps_num) 3339 { 3340 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3341 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3342 u16 max_rss_size; 3343 3344 kinfo->req_rss_size = new_tqps_num; 3345 3346 max_rss_size = min_t(u16, hdev->rss_size_max, 3347 hdev->num_tqps / kinfo->num_tc); 3348 3349 /* Use the user's configuration when it is not larger than 3350 * max_rss_size, otherwise, use the maximum specification value. 3351 */ 3352 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size && 3353 kinfo->req_rss_size <= max_rss_size) 3354 kinfo->rss_size = kinfo->req_rss_size; 3355 else if (kinfo->rss_size > max_rss_size || 3356 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size)) 3357 kinfo->rss_size = max_rss_size; 3358 3359 kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size; 3360 } 3361 3362 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, 3363 bool rxfh_configured) 3364 { 3365 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3366 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3367 u16 cur_rss_size = kinfo->rss_size; 3368 u16 cur_tqps = kinfo->num_tqps; 3369 u32 *rss_indir; 3370 unsigned int i; 3371 int ret; 3372 3373 hclgevf_update_rss_size(handle, new_tqps_num); 3374 3375 ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size); 3376 if (ret) 3377 return ret; 3378 3379 /* RSS indirection table has been configuared by user */ 3380 if (rxfh_configured) 3381 goto out; 3382 3383 /* Reinitializes the rss indirect table according to the new RSS size */ 3384 rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL); 3385 if (!rss_indir) 3386 return -ENOMEM; 3387 3388 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 3389 rss_indir[i] = i % kinfo->rss_size; 3390 3391 hdev->rss_cfg.rss_size = kinfo->rss_size; 3392 3393 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0); 3394 if (ret) 3395 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", 3396 ret); 3397 3398 kfree(rss_indir); 3399 3400 out: 3401 if (!ret) 3402 dev_info(&hdev->pdev->dev, 3403 "Channels changed, rss_size from %u to %u, tqps from %u to %u", 3404 cur_rss_size, kinfo->rss_size, 3405 cur_tqps, kinfo->rss_size * kinfo->num_tc); 3406 3407 return ret; 3408 } 3409 3410 static int hclgevf_get_status(struct hnae3_handle *handle) 3411 { 3412 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3413 3414 return hdev->hw.mac.link; 3415 } 3416 3417 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, 3418 u8 *auto_neg, u32 *speed, 3419 u8 *duplex) 3420 { 3421 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3422 3423 if (speed) 3424 *speed = hdev->hw.mac.speed; 3425 if (duplex) 3426 *duplex = hdev->hw.mac.duplex; 3427 if (auto_neg) 3428 *auto_neg = AUTONEG_DISABLE; 3429 } 3430 3431 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, 3432 u8 duplex) 3433 { 3434 hdev->hw.mac.speed = speed; 3435 hdev->hw.mac.duplex = duplex; 3436 } 3437 3438 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable) 3439 { 3440 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3441 3442 return hclgevf_config_gro(hdev, enable); 3443 } 3444 3445 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type, 3446 u8 *module_type) 3447 { 3448 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3449 3450 if (media_type) 3451 *media_type = hdev->hw.mac.media_type; 3452 3453 if (module_type) 3454 *module_type = hdev->hw.mac.module_type; 3455 } 3456 3457 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle) 3458 { 3459 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3460 3461 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 3462 } 3463 3464 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle) 3465 { 3466 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3467 3468 return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); 3469 } 3470 3471 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle) 3472 { 3473 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3474 3475 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 3476 } 3477 3478 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle) 3479 { 3480 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3481 3482 return hdev->rst_stats.hw_rst_done_cnt; 3483 } 3484 3485 static void hclgevf_get_link_mode(struct hnae3_handle *handle, 3486 unsigned long *supported, 3487 unsigned long *advertising) 3488 { 3489 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3490 3491 *supported = hdev->hw.mac.supported; 3492 *advertising = hdev->hw.mac.advertising; 3493 } 3494 3495 #define MAX_SEPARATE_NUM 4 3496 #define SEPARATOR_VALUE 0xFFFFFFFF 3497 #define REG_NUM_PER_LINE 4 3498 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32)) 3499 3500 static int hclgevf_get_regs_len(struct hnae3_handle *handle) 3501 { 3502 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines; 3503 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3504 3505 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1; 3506 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1; 3507 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1; 3508 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1; 3509 3510 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps + 3511 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE; 3512 } 3513 3514 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version, 3515 void *data) 3516 { 3517 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3518 int i, j, reg_um, separator_num; 3519 u32 *reg = data; 3520 3521 *version = hdev->fw_version; 3522 3523 /* fetching per-VF registers values from VF PCIe register space */ 3524 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32); 3525 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3526 for (i = 0; i < reg_um; i++) 3527 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]); 3528 for (i = 0; i < separator_num; i++) 3529 *reg++ = SEPARATOR_VALUE; 3530 3531 reg_um = sizeof(common_reg_addr_list) / sizeof(u32); 3532 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3533 for (i = 0; i < reg_um; i++) 3534 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]); 3535 for (i = 0; i < separator_num; i++) 3536 *reg++ = SEPARATOR_VALUE; 3537 3538 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32); 3539 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3540 for (j = 0; j < hdev->num_tqps; j++) { 3541 for (i = 0; i < reg_um; i++) 3542 *reg++ = hclgevf_read_dev(&hdev->hw, 3543 ring_reg_addr_list[i] + 3544 0x200 * j); 3545 for (i = 0; i < separator_num; i++) 3546 *reg++ = SEPARATOR_VALUE; 3547 } 3548 3549 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32); 3550 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3551 for (j = 0; j < hdev->num_msi_used - 1; j++) { 3552 for (i = 0; i < reg_um; i++) 3553 *reg++ = hclgevf_read_dev(&hdev->hw, 3554 tqp_intr_reg_addr_list[i] + 3555 4 * j); 3556 for (i = 0; i < separator_num; i++) 3557 *reg++ = SEPARATOR_VALUE; 3558 } 3559 } 3560 3561 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state, 3562 u8 *port_base_vlan_info, u8 data_size) 3563 { 3564 struct hnae3_handle *nic = &hdev->nic; 3565 struct hclge_vf_to_pf_msg send_msg; 3566 int ret; 3567 3568 rtnl_lock(); 3569 3570 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 3571 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) { 3572 dev_warn(&hdev->pdev->dev, 3573 "is resetting when updating port based vlan info\n"); 3574 rtnl_unlock(); 3575 return; 3576 } 3577 3578 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 3579 if (ret) { 3580 rtnl_unlock(); 3581 return; 3582 } 3583 3584 /* send msg to PF and wait update port based vlan info */ 3585 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 3586 HCLGE_MBX_PORT_BASE_VLAN_CFG); 3587 memcpy(send_msg.data, port_base_vlan_info, data_size); 3588 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3589 if (!ret) { 3590 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) 3591 nic->port_base_vlan_state = state; 3592 else 3593 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; 3594 } 3595 3596 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 3597 rtnl_unlock(); 3598 } 3599 3600 static const struct hnae3_ae_ops hclgevf_ops = { 3601 .init_ae_dev = hclgevf_init_ae_dev, 3602 .uninit_ae_dev = hclgevf_uninit_ae_dev, 3603 .flr_prepare = hclgevf_flr_prepare, 3604 .flr_done = hclgevf_flr_done, 3605 .init_client_instance = hclgevf_init_client_instance, 3606 .uninit_client_instance = hclgevf_uninit_client_instance, 3607 .start = hclgevf_ae_start, 3608 .stop = hclgevf_ae_stop, 3609 .client_start = hclgevf_client_start, 3610 .client_stop = hclgevf_client_stop, 3611 .map_ring_to_vector = hclgevf_map_ring_to_vector, 3612 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, 3613 .get_vector = hclgevf_get_vector, 3614 .put_vector = hclgevf_put_vector, 3615 .reset_queue = hclgevf_reset_tqp, 3616 .get_mac_addr = hclgevf_get_mac_addr, 3617 .set_mac_addr = hclgevf_set_mac_addr, 3618 .add_uc_addr = hclgevf_add_uc_addr, 3619 .rm_uc_addr = hclgevf_rm_uc_addr, 3620 .add_mc_addr = hclgevf_add_mc_addr, 3621 .rm_mc_addr = hclgevf_rm_mc_addr, 3622 .get_stats = hclgevf_get_stats, 3623 .update_stats = hclgevf_update_stats, 3624 .get_strings = hclgevf_get_strings, 3625 .get_sset_count = hclgevf_get_sset_count, 3626 .get_rss_key_size = hclgevf_get_rss_key_size, 3627 .get_rss_indir_size = hclgevf_get_rss_indir_size, 3628 .get_rss = hclgevf_get_rss, 3629 .set_rss = hclgevf_set_rss, 3630 .get_rss_tuple = hclgevf_get_rss_tuple, 3631 .set_rss_tuple = hclgevf_set_rss_tuple, 3632 .get_tc_size = hclgevf_get_tc_size, 3633 .get_fw_version = hclgevf_get_fw_version, 3634 .set_vlan_filter = hclgevf_set_vlan_filter, 3635 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, 3636 .reset_event = hclgevf_reset_event, 3637 .set_default_reset_request = hclgevf_set_def_reset_request, 3638 .set_channels = hclgevf_set_channels, 3639 .get_channels = hclgevf_get_channels, 3640 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, 3641 .get_regs_len = hclgevf_get_regs_len, 3642 .get_regs = hclgevf_get_regs, 3643 .get_status = hclgevf_get_status, 3644 .get_ksettings_an_result = hclgevf_get_ksettings_an_result, 3645 .get_media_type = hclgevf_get_media_type, 3646 .get_hw_reset_stat = hclgevf_get_hw_reset_stat, 3647 .ae_dev_resetting = hclgevf_ae_dev_resetting, 3648 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt, 3649 .set_gro_en = hclgevf_gro_en, 3650 .set_mtu = hclgevf_set_mtu, 3651 .get_global_queue_id = hclgevf_get_qid_global, 3652 .set_timer_task = hclgevf_set_timer_task, 3653 .get_link_mode = hclgevf_get_link_mode, 3654 .set_promisc_mode = hclgevf_set_promisc_mode, 3655 .request_update_promisc_mode = hclgevf_request_update_promisc_mode, 3656 .get_cmdq_stat = hclgevf_get_cmdq_stat, 3657 }; 3658 3659 static struct hnae3_ae_algo ae_algovf = { 3660 .ops = &hclgevf_ops, 3661 .pdev_id_table = ae_algovf_pci_tbl, 3662 }; 3663 3664 static int hclgevf_init(void) 3665 { 3666 pr_info("%s is initializing\n", HCLGEVF_NAME); 3667 3668 hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME); 3669 if (!hclgevf_wq) { 3670 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME); 3671 return -ENOMEM; 3672 } 3673 3674 hnae3_register_ae_algo(&ae_algovf); 3675 3676 return 0; 3677 } 3678 3679 static void hclgevf_exit(void) 3680 { 3681 hnae3_unregister_ae_algo(&ae_algovf); 3682 destroy_workqueue(hclgevf_wq); 3683 } 3684 module_init(hclgevf_init); 3685 module_exit(hclgevf_exit); 3686 3687 MODULE_LICENSE("GPL"); 3688 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 3689 MODULE_DESCRIPTION("HCLGEVF Driver"); 3690 MODULE_VERSION(HCLGEVF_MOD_VERSION); 3691