1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 #include "hclge_comm_rss.h"
13 
14 #define HCLGEVF_NAME	"hclgevf"
15 
16 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
17 
18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
20 				  unsigned long delay);
21 
22 static struct hnae3_ae_algo ae_algovf;
23 
24 static struct workqueue_struct *hclgevf_wq;
25 
26 static const struct pci_device_id ae_algovf_pci_tbl[] = {
27 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
28 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
29 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
30 	/* required last entry */
31 	{0, }
32 };
33 
34 static const u8 hclgevf_hash_key[] = {
35 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
36 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
37 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
38 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
39 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
40 };
41 
42 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
43 
44 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
45 					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
46 					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
47 					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
48 					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
49 					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
50 					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
51 					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
52 					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
53 					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
54 					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
55 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG,
56 					 HCLGE_COMM_CMDQ_INTR_EN_REG,
57 					 HCLGE_COMM_CMDQ_INTR_GEN_REG};
58 
59 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
60 					   HCLGEVF_RST_ING,
61 					   HCLGEVF_GRO_EN_REG};
62 
63 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
64 					 HCLGEVF_RING_RX_ADDR_H_REG,
65 					 HCLGEVF_RING_RX_BD_NUM_REG,
66 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
67 					 HCLGEVF_RING_RX_MERGE_EN_REG,
68 					 HCLGEVF_RING_RX_TAIL_REG,
69 					 HCLGEVF_RING_RX_HEAD_REG,
70 					 HCLGEVF_RING_RX_FBD_NUM_REG,
71 					 HCLGEVF_RING_RX_OFFSET_REG,
72 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
73 					 HCLGEVF_RING_RX_STASH_REG,
74 					 HCLGEVF_RING_RX_BD_ERR_REG,
75 					 HCLGEVF_RING_TX_ADDR_L_REG,
76 					 HCLGEVF_RING_TX_ADDR_H_REG,
77 					 HCLGEVF_RING_TX_BD_NUM_REG,
78 					 HCLGEVF_RING_TX_PRIORITY_REG,
79 					 HCLGEVF_RING_TX_TC_REG,
80 					 HCLGEVF_RING_TX_MERGE_EN_REG,
81 					 HCLGEVF_RING_TX_TAIL_REG,
82 					 HCLGEVF_RING_TX_HEAD_REG,
83 					 HCLGEVF_RING_TX_FBD_NUM_REG,
84 					 HCLGEVF_RING_TX_OFFSET_REG,
85 					 HCLGEVF_RING_TX_EBD_NUM_REG,
86 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
87 					 HCLGEVF_RING_TX_BD_ERR_REG,
88 					 HCLGEVF_RING_EN_REG};
89 
90 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
91 					     HCLGEVF_TQP_INTR_GL0_REG,
92 					     HCLGEVF_TQP_INTR_GL1_REG,
93 					     HCLGEVF_TQP_INTR_GL2_REG,
94 					     HCLGEVF_TQP_INTR_RL_REG};
95 
96 /* hclgevf_cmd_send - send command to command queue
97  * @hw: pointer to the hw struct
98  * @desc: prefilled descriptor for describing the command
99  * @num : the number of descriptors to be sent
100  *
101  * This is the main send command for command queue, it
102  * sends the queue, cleans the queue, etc
103  */
104 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
105 {
106 	return hclge_comm_cmd_send(&hw->hw, desc, num);
107 }
108 
109 void hclgevf_arq_init(struct hclgevf_dev *hdev)
110 {
111 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
112 
113 	spin_lock(&cmdq->crq.lock);
114 	/* initialize the pointers of async rx queue of mailbox */
115 	hdev->arq.hdev = hdev;
116 	hdev->arq.head = 0;
117 	hdev->arq.tail = 0;
118 	atomic_set(&hdev->arq.count, 0);
119 	spin_unlock(&cmdq->crq.lock);
120 }
121 
122 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
123 {
124 	if (!handle->client)
125 		return container_of(handle, struct hclgevf_dev, nic);
126 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
127 		return container_of(handle, struct hclgevf_dev, roce);
128 	else
129 		return container_of(handle, struct hclgevf_dev, nic);
130 }
131 
132 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
133 {
134 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
135 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
136 	struct hclge_desc desc;
137 	struct hclgevf_tqp *tqp;
138 	int status;
139 	int i;
140 
141 	for (i = 0; i < kinfo->num_tqps; i++) {
142 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
143 		hclgevf_cmd_setup_basic_desc(&desc,
144 					     HCLGEVF_OPC_QUERY_RX_STATUS,
145 					     true);
146 
147 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
148 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
149 		if (status) {
150 			dev_err(&hdev->pdev->dev,
151 				"Query tqp stat fail, status = %d,queue = %d\n",
152 				status,	i);
153 			return status;
154 		}
155 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
156 			le32_to_cpu(desc.data[1]);
157 
158 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
159 					     true);
160 
161 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
162 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
163 		if (status) {
164 			dev_err(&hdev->pdev->dev,
165 				"Query tqp stat fail, status = %d,queue = %d\n",
166 				status, i);
167 			return status;
168 		}
169 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
170 			le32_to_cpu(desc.data[1]);
171 	}
172 
173 	return 0;
174 }
175 
176 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
177 {
178 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
179 	struct hclgevf_tqp *tqp;
180 	u64 *buff = data;
181 	int i;
182 
183 	for (i = 0; i < kinfo->num_tqps; i++) {
184 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
185 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
186 	}
187 	for (i = 0; i < kinfo->num_tqps; i++) {
188 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
189 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
190 	}
191 
192 	return buff;
193 }
194 
195 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
196 {
197 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
198 
199 	return kinfo->num_tqps * 2;
200 }
201 
202 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
203 {
204 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
205 	u8 *buff = data;
206 	int i;
207 
208 	for (i = 0; i < kinfo->num_tqps; i++) {
209 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
210 						       struct hclgevf_tqp, q);
211 		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
212 			 tqp->index);
213 		buff += ETH_GSTRING_LEN;
214 	}
215 
216 	for (i = 0; i < kinfo->num_tqps; i++) {
217 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
218 						       struct hclgevf_tqp, q);
219 		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
220 			 tqp->index);
221 		buff += ETH_GSTRING_LEN;
222 	}
223 
224 	return buff;
225 }
226 
227 static void hclgevf_update_stats(struct hnae3_handle *handle,
228 				 struct net_device_stats *net_stats)
229 {
230 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
231 	int status;
232 
233 	status = hclgevf_tqps_update_stats(handle);
234 	if (status)
235 		dev_err(&hdev->pdev->dev,
236 			"VF update of TQPS stats fail, status = %d.\n",
237 			status);
238 }
239 
240 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
241 {
242 	if (strset == ETH_SS_TEST)
243 		return -EOPNOTSUPP;
244 	else if (strset == ETH_SS_STATS)
245 		return hclgevf_tqps_get_sset_count(handle, strset);
246 
247 	return 0;
248 }
249 
250 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
251 				u8 *data)
252 {
253 	u8 *p = (char *)data;
254 
255 	if (strset == ETH_SS_STATS)
256 		p = hclgevf_tqps_get_strings(handle, p);
257 }
258 
259 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
260 {
261 	hclgevf_tqps_get_stats(handle, data);
262 }
263 
264 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
265 				   u8 subcode)
266 {
267 	if (msg) {
268 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
269 		msg->code = code;
270 		msg->subcode = subcode;
271 	}
272 }
273 
274 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
275 {
276 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
277 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
278 	struct hclge_basic_info *basic_info;
279 	struct hclge_vf_to_pf_msg send_msg;
280 	unsigned long caps;
281 	int status;
282 
283 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
284 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
285 				      sizeof(resp_msg));
286 	if (status) {
287 		dev_err(&hdev->pdev->dev,
288 			"failed to get basic info from pf, ret = %d", status);
289 		return status;
290 	}
291 
292 	basic_info = (struct hclge_basic_info *)resp_msg;
293 
294 	hdev->hw_tc_map = basic_info->hw_tc_map;
295 	hdev->mbx_api_version = basic_info->mbx_api_version;
296 	caps = basic_info->pf_caps;
297 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
298 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
299 
300 	return 0;
301 }
302 
303 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
304 {
305 	struct hnae3_handle *nic = &hdev->nic;
306 	struct hclge_vf_to_pf_msg send_msg;
307 	u8 resp_msg;
308 	int ret;
309 
310 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
311 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
312 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
313 				   sizeof(u8));
314 	if (ret) {
315 		dev_err(&hdev->pdev->dev,
316 			"VF request to get port based vlan state failed %d",
317 			ret);
318 		return ret;
319 	}
320 
321 	nic->port_base_vlan_state = resp_msg;
322 
323 	return 0;
324 }
325 
326 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
327 {
328 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
329 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
330 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
331 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
332 
333 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
334 	struct hclge_vf_to_pf_msg send_msg;
335 	int status;
336 
337 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
338 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
339 				      HCLGEVF_TQPS_RSS_INFO_LEN);
340 	if (status) {
341 		dev_err(&hdev->pdev->dev,
342 			"VF request to get tqp info from PF failed %d",
343 			status);
344 		return status;
345 	}
346 
347 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
348 	       sizeof(u16));
349 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
350 	       sizeof(u16));
351 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
352 	       sizeof(u16));
353 
354 	return 0;
355 }
356 
357 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
358 {
359 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
360 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
361 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
362 
363 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
364 	struct hclge_vf_to_pf_msg send_msg;
365 	int ret;
366 
367 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
368 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
369 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
370 	if (ret) {
371 		dev_err(&hdev->pdev->dev,
372 			"VF request to get tqp depth info from PF failed %d",
373 			ret);
374 		return ret;
375 	}
376 
377 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
378 	       sizeof(u16));
379 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
380 	       sizeof(u16));
381 
382 	return 0;
383 }
384 
385 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
386 {
387 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
388 	struct hclge_vf_to_pf_msg send_msg;
389 	u16 qid_in_pf = 0;
390 	u8 resp_data[2];
391 	int ret;
392 
393 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
394 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
395 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
396 				   sizeof(resp_data));
397 	if (!ret)
398 		qid_in_pf = *(u16 *)resp_data;
399 
400 	return qid_in_pf;
401 }
402 
403 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
404 {
405 	struct hclge_vf_to_pf_msg send_msg;
406 	u8 resp_msg[2];
407 	int ret;
408 
409 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
410 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
411 				   sizeof(resp_msg));
412 	if (ret) {
413 		dev_err(&hdev->pdev->dev,
414 			"VF request to get the pf port media type failed %d",
415 			ret);
416 		return ret;
417 	}
418 
419 	hdev->hw.mac.media_type = resp_msg[0];
420 	hdev->hw.mac.module_type = resp_msg[1];
421 
422 	return 0;
423 }
424 
425 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
426 {
427 	struct hclgevf_tqp *tqp;
428 	int i;
429 
430 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
431 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
432 	if (!hdev->htqp)
433 		return -ENOMEM;
434 
435 	tqp = hdev->htqp;
436 
437 	for (i = 0; i < hdev->num_tqps; i++) {
438 		tqp->dev = &hdev->pdev->dev;
439 		tqp->index = i;
440 
441 		tqp->q.ae_algo = &ae_algovf;
442 		tqp->q.buf_size = hdev->rx_buf_len;
443 		tqp->q.tx_desc_num = hdev->num_tx_desc;
444 		tqp->q.rx_desc_num = hdev->num_rx_desc;
445 
446 		/* need an extended offset to configure queues >=
447 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
448 		 */
449 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
450 			tqp->q.io_base = hdev->hw.hw.io_base +
451 					 HCLGEVF_TQP_REG_OFFSET +
452 					 i * HCLGEVF_TQP_REG_SIZE;
453 		else
454 			tqp->q.io_base = hdev->hw.hw.io_base +
455 					 HCLGEVF_TQP_REG_OFFSET +
456 					 HCLGEVF_TQP_EXT_REG_OFFSET +
457 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
458 					 HCLGEVF_TQP_REG_SIZE;
459 
460 		tqp++;
461 	}
462 
463 	return 0;
464 }
465 
466 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
467 {
468 	struct hnae3_handle *nic = &hdev->nic;
469 	struct hnae3_knic_private_info *kinfo;
470 	u16 new_tqps = hdev->num_tqps;
471 	unsigned int i;
472 	u8 num_tc = 0;
473 
474 	kinfo = &nic->kinfo;
475 	kinfo->num_tx_desc = hdev->num_tx_desc;
476 	kinfo->num_rx_desc = hdev->num_rx_desc;
477 	kinfo->rx_buf_len = hdev->rx_buf_len;
478 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
479 		if (hdev->hw_tc_map & BIT(i))
480 			num_tc++;
481 
482 	num_tc = num_tc ? num_tc : 1;
483 	kinfo->tc_info.num_tc = num_tc;
484 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
485 	new_tqps = kinfo->rss_size * num_tc;
486 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
487 
488 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
489 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
490 	if (!kinfo->tqp)
491 		return -ENOMEM;
492 
493 	for (i = 0; i < kinfo->num_tqps; i++) {
494 		hdev->htqp[i].q.handle = &hdev->nic;
495 		hdev->htqp[i].q.tqp_index = i;
496 		kinfo->tqp[i] = &hdev->htqp[i].q;
497 	}
498 
499 	/* after init the max rss_size and tqps, adjust the default tqp numbers
500 	 * and rss size with the actual vector numbers
501 	 */
502 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
503 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
504 				kinfo->rss_size);
505 
506 	return 0;
507 }
508 
509 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
510 {
511 	struct hclge_vf_to_pf_msg send_msg;
512 	int status;
513 
514 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
515 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
516 	if (status)
517 		dev_err(&hdev->pdev->dev,
518 			"VF failed to fetch link status(%d) from PF", status);
519 }
520 
521 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
522 {
523 	struct hnae3_handle *rhandle = &hdev->roce;
524 	struct hnae3_handle *handle = &hdev->nic;
525 	struct hnae3_client *rclient;
526 	struct hnae3_client *client;
527 
528 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
529 		return;
530 
531 	client = handle->client;
532 	rclient = hdev->roce_client;
533 
534 	link_state =
535 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
536 	if (link_state != hdev->hw.mac.link) {
537 		hdev->hw.mac.link = link_state;
538 		client->ops->link_status_change(handle, !!link_state);
539 		if (rclient && rclient->ops->link_status_change)
540 			rclient->ops->link_status_change(rhandle, !!link_state);
541 	}
542 
543 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
544 }
545 
546 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
547 {
548 #define HCLGEVF_ADVERTISING	0
549 #define HCLGEVF_SUPPORTED	1
550 
551 	struct hclge_vf_to_pf_msg send_msg;
552 
553 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
554 	send_msg.data[0] = HCLGEVF_ADVERTISING;
555 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
556 	send_msg.data[0] = HCLGEVF_SUPPORTED;
557 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
558 }
559 
560 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
561 {
562 	struct hnae3_handle *nic = &hdev->nic;
563 	int ret;
564 
565 	nic->ae_algo = &ae_algovf;
566 	nic->pdev = hdev->pdev;
567 	nic->numa_node_mask = hdev->numa_node_mask;
568 	nic->flags |= HNAE3_SUPPORT_VF;
569 	nic->kinfo.io_base = hdev->hw.hw.io_base;
570 
571 	ret = hclgevf_knic_setup(hdev);
572 	if (ret)
573 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
574 			ret);
575 	return ret;
576 }
577 
578 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
579 {
580 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
581 		dev_warn(&hdev->pdev->dev,
582 			 "vector(vector_id %d) has been freed.\n", vector_id);
583 		return;
584 	}
585 
586 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
587 	hdev->num_msi_left += 1;
588 	hdev->num_msi_used -= 1;
589 }
590 
591 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
592 			      struct hnae3_vector_info *vector_info)
593 {
594 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
595 	struct hnae3_vector_info *vector = vector_info;
596 	int alloc = 0;
597 	int i, j;
598 
599 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
600 	vector_num = min(hdev->num_msi_left, vector_num);
601 
602 	for (j = 0; j < vector_num; j++) {
603 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
604 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
605 				vector->vector = pci_irq_vector(hdev->pdev, i);
606 				vector->io_addr = hdev->hw.hw.io_base +
607 					HCLGEVF_VECTOR_REG_BASE +
608 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
609 				hdev->vector_status[i] = 0;
610 				hdev->vector_irq[i] = vector->vector;
611 
612 				vector++;
613 				alloc++;
614 
615 				break;
616 			}
617 		}
618 	}
619 	hdev->num_msi_left -= alloc;
620 	hdev->num_msi_used += alloc;
621 
622 	return alloc;
623 }
624 
625 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
626 {
627 	int i;
628 
629 	for (i = 0; i < hdev->num_msi; i++)
630 		if (vector == hdev->vector_irq[i])
631 			return i;
632 
633 	return -EINVAL;
634 }
635 
636 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
637 {
638 	struct hclgevf_rss_tc_mode_cmd *req;
639 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
640 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
641 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
642 	struct hclge_desc desc;
643 	u16 roundup_size;
644 	unsigned int i;
645 	int status;
646 
647 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
648 
649 	roundup_size = roundup_pow_of_two(rss_size);
650 	roundup_size = ilog2(roundup_size);
651 
652 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
653 		tc_valid[i] = 1;
654 		tc_size[i] = roundup_size;
655 		tc_offset[i] = (hdev->hw_tc_map & BIT(i)) ? rss_size * i : 0;
656 	}
657 
658 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
659 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
660 		u16 mode = 0;
661 
662 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
663 			      (tc_valid[i] & 0x1));
664 		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
665 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
666 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
667 			      tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
668 			      0x1);
669 		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
670 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
671 
672 		req->rss_tc_mode[i] = cpu_to_le16(mode);
673 	}
674 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
675 	if (status)
676 		dev_err(&hdev->pdev->dev,
677 			"VF failed(=%d) to set rss tc mode\n", status);
678 
679 	return status;
680 }
681 
682 /* for revision 0x20, vf shared the same rss config with pf */
683 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
684 {
685 #define HCLGEVF_RSS_MBX_RESP_LEN	8
686 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
687 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
688 	struct hclge_vf_to_pf_msg send_msg;
689 	u16 msg_num, hash_key_index;
690 	u8 index;
691 	int ret;
692 
693 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
694 	msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
695 			HCLGEVF_RSS_MBX_RESP_LEN;
696 	for (index = 0; index < msg_num; index++) {
697 		send_msg.data[0] = index;
698 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
699 					   HCLGEVF_RSS_MBX_RESP_LEN);
700 		if (ret) {
701 			dev_err(&hdev->pdev->dev,
702 				"VF get rss hash key from PF failed, ret=%d",
703 				ret);
704 			return ret;
705 		}
706 
707 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
708 		if (index == msg_num - 1)
709 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
710 			       &resp_msg[0],
711 			       HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
712 		else
713 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
714 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
715 	}
716 
717 	return 0;
718 }
719 
720 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
721 			   u8 *hfunc)
722 {
723 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
724 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
725 	int ret;
726 
727 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
728 		hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
729 	} else {
730 		if (hfunc)
731 			*hfunc = ETH_RSS_HASH_TOP;
732 		if (key) {
733 			ret = hclgevf_get_rss_hash_key(hdev);
734 			if (ret)
735 				return ret;
736 			memcpy(key, rss_cfg->rss_hash_key,
737 			       HCLGE_COMM_RSS_KEY_SIZE);
738 		}
739 	}
740 
741 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
742 				     hdev->ae_dev->dev_specs.rss_ind_tbl_size);
743 
744 	return 0;
745 }
746 
747 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
748 			   const u8 *key, const u8 hfunc)
749 {
750 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
751 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
752 	const u8 *rss_hash_key = rss_cfg->rss_hash_key;
753 	u8 hash_algo;
754 	int ret, i;
755 
756 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
757 		ret = hclge_comm_parse_rss_hfunc(rss_cfg, hfunc, &hash_algo);
758 		if (ret)
759 			return ret;
760 
761 		/* Set the RSS Hash Key if specififed by the user */
762 		if (key) {
763 			ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
764 							  hash_algo, key);
765 			if (ret) {
766 				dev_err(&hdev->pdev->dev,
767 					"invalid hfunc type %u\n", hfunc);
768 				return ret;
769 			}
770 
771 			/* Update the shadow RSS key with user specified qids */
772 			memcpy(rss_cfg->rss_hash_key, key,
773 			       HCLGE_COMM_RSS_KEY_SIZE);
774 		} else {
775 			ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
776 							  hash_algo,
777 							  rss_hash_key);
778 			if (ret)
779 				return ret;
780 		}
781 		rss_cfg->rss_algo = hash_algo;
782 	}
783 
784 	/* update the shadow RSS table with user specified qids */
785 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
786 		rss_cfg->rss_indirection_tbl[i] = indir[i];
787 
788 	/* update the hardware */
789 	return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
790 					      rss_cfg->rss_indirection_tbl);
791 }
792 
793 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
794 				 struct ethtool_rxnfc *nfc)
795 {
796 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
797 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
798 	struct hclge_comm_rss_input_tuple_cmd *req;
799 	struct hclge_desc desc;
800 	int ret;
801 
802 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
803 		return -EOPNOTSUPP;
804 
805 	if (nfc->data &
806 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
807 		return -EINVAL;
808 
809 	req = (struct hclge_comm_rss_input_tuple_cmd *)desc.data;
810 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
811 
812 	ret = hclge_comm_init_rss_tuple_cmd(rss_cfg, nfc, hdev->ae_dev, req);
813 	if (ret) {
814 		dev_err(&hdev->pdev->dev,
815 			"failed to init rss tuple cmd, ret = %d\n", ret);
816 		return ret;
817 	}
818 
819 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
820 	if (ret) {
821 		dev_err(&hdev->pdev->dev,
822 			"Set rss tuple fail, status = %d\n", ret);
823 		return ret;
824 	}
825 
826 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
827 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
828 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
829 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
830 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
831 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
832 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
833 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
834 	return 0;
835 }
836 
837 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
838 				 struct ethtool_rxnfc *nfc)
839 {
840 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
841 	u8 tuple_sets;
842 	int ret;
843 
844 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
845 		return -EOPNOTSUPP;
846 
847 	nfc->data = 0;
848 
849 	ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
850 				       &tuple_sets);
851 	if (ret || !tuple_sets)
852 		return ret;
853 
854 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
855 
856 	return 0;
857 }
858 
859 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
860 {
861 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
862 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
863 
864 	return rss_cfg->rss_size;
865 }
866 
867 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
868 				       int vector_id,
869 				       struct hnae3_ring_chain_node *ring_chain)
870 {
871 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
872 	struct hclge_vf_to_pf_msg send_msg;
873 	struct hnae3_ring_chain_node *node;
874 	int status;
875 	int i = 0;
876 
877 	memset(&send_msg, 0, sizeof(send_msg));
878 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
879 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
880 	send_msg.vector_id = vector_id;
881 
882 	for (node = ring_chain; node; node = node->next) {
883 		send_msg.param[i].ring_type =
884 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
885 
886 		send_msg.param[i].tqp_index = node->tqp_index;
887 		send_msg.param[i].int_gl_index =
888 					hnae3_get_field(node->int_gl_idx,
889 							HNAE3_RING_GL_IDX_M,
890 							HNAE3_RING_GL_IDX_S);
891 
892 		i++;
893 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
894 			send_msg.ring_num = i;
895 
896 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
897 						      NULL, 0);
898 			if (status) {
899 				dev_err(&hdev->pdev->dev,
900 					"Map TQP fail, status is %d.\n",
901 					status);
902 				return status;
903 			}
904 			i = 0;
905 		}
906 	}
907 
908 	return 0;
909 }
910 
911 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
912 				      struct hnae3_ring_chain_node *ring_chain)
913 {
914 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
915 	int vector_id;
916 
917 	vector_id = hclgevf_get_vector_index(hdev, vector);
918 	if (vector_id < 0) {
919 		dev_err(&handle->pdev->dev,
920 			"Get vector index fail. ret =%d\n", vector_id);
921 		return vector_id;
922 	}
923 
924 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
925 }
926 
927 static int hclgevf_unmap_ring_from_vector(
928 				struct hnae3_handle *handle,
929 				int vector,
930 				struct hnae3_ring_chain_node *ring_chain)
931 {
932 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
933 	int ret, vector_id;
934 
935 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
936 		return 0;
937 
938 	vector_id = hclgevf_get_vector_index(hdev, vector);
939 	if (vector_id < 0) {
940 		dev_err(&handle->pdev->dev,
941 			"Get vector index fail. ret =%d\n", vector_id);
942 		return vector_id;
943 	}
944 
945 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
946 	if (ret)
947 		dev_err(&handle->pdev->dev,
948 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
949 			vector_id,
950 			ret);
951 
952 	return ret;
953 }
954 
955 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
956 {
957 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
958 	int vector_id;
959 
960 	vector_id = hclgevf_get_vector_index(hdev, vector);
961 	if (vector_id < 0) {
962 		dev_err(&handle->pdev->dev,
963 			"hclgevf_put_vector get vector index fail. ret =%d\n",
964 			vector_id);
965 		return vector_id;
966 	}
967 
968 	hclgevf_free_vector(hdev, vector_id);
969 
970 	return 0;
971 }
972 
973 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
974 					bool en_uc_pmc, bool en_mc_pmc,
975 					bool en_bc_pmc)
976 {
977 	struct hnae3_handle *handle = &hdev->nic;
978 	struct hclge_vf_to_pf_msg send_msg;
979 	int ret;
980 
981 	memset(&send_msg, 0, sizeof(send_msg));
982 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
983 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
984 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
985 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
986 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
987 					     &handle->priv_flags) ? 1 : 0;
988 
989 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
990 	if (ret)
991 		dev_err(&hdev->pdev->dev,
992 			"Set promisc mode fail, status is %d.\n", ret);
993 
994 	return ret;
995 }
996 
997 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
998 				    bool en_mc_pmc)
999 {
1000 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1001 	bool en_bc_pmc;
1002 
1003 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1004 
1005 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1006 					    en_bc_pmc);
1007 }
1008 
1009 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1010 {
1011 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1012 
1013 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1014 	hclgevf_task_schedule(hdev, 0);
1015 }
1016 
1017 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1018 {
1019 	struct hnae3_handle *handle = &hdev->nic;
1020 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1021 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1022 	int ret;
1023 
1024 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1025 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1026 		if (!ret)
1027 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1028 	}
1029 }
1030 
1031 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
1032 				       u16 stream_id, bool enable)
1033 {
1034 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1035 	struct hclge_desc desc;
1036 
1037 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1038 
1039 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1040 				     false);
1041 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1042 	req->stream_id = cpu_to_le16(stream_id);
1043 	if (enable)
1044 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1045 
1046 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
1047 }
1048 
1049 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
1050 {
1051 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1052 	int ret;
1053 	u16 i;
1054 
1055 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
1056 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
1057 		if (ret)
1058 			return ret;
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1065 {
1066 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1067 	struct hclgevf_tqp *tqp;
1068 	int i;
1069 
1070 	for (i = 0; i < kinfo->num_tqps; i++) {
1071 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1072 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1073 	}
1074 }
1075 
1076 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1077 {
1078 	struct hclge_vf_to_pf_msg send_msg;
1079 	u8 host_mac[ETH_ALEN];
1080 	int status;
1081 
1082 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1083 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1084 				      ETH_ALEN);
1085 	if (status) {
1086 		dev_err(&hdev->pdev->dev,
1087 			"fail to get VF MAC from host %d", status);
1088 		return status;
1089 	}
1090 
1091 	ether_addr_copy(p, host_mac);
1092 
1093 	return 0;
1094 }
1095 
1096 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1097 {
1098 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1099 	u8 host_mac_addr[ETH_ALEN];
1100 
1101 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1102 		return;
1103 
1104 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1105 	if (hdev->has_pf_mac)
1106 		ether_addr_copy(p, host_mac_addr);
1107 	else
1108 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1109 }
1110 
1111 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
1112 				bool is_first)
1113 {
1114 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1115 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1116 	struct hclge_vf_to_pf_msg send_msg;
1117 	u8 *new_mac_addr = (u8 *)p;
1118 	int status;
1119 
1120 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1121 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1122 	ether_addr_copy(send_msg.data, new_mac_addr);
1123 	if (is_first && !hdev->has_pf_mac)
1124 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1125 	else
1126 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1127 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1128 	if (!status)
1129 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1130 
1131 	return status;
1132 }
1133 
1134 static struct hclgevf_mac_addr_node *
1135 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1136 {
1137 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1138 
1139 	list_for_each_entry_safe(mac_node, tmp, list, node)
1140 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1141 			return mac_node;
1142 
1143 	return NULL;
1144 }
1145 
1146 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1147 				    enum HCLGEVF_MAC_NODE_STATE state)
1148 {
1149 	switch (state) {
1150 	/* from set_rx_mode or tmp_add_list */
1151 	case HCLGEVF_MAC_TO_ADD:
1152 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1153 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1154 		break;
1155 	/* only from set_rx_mode */
1156 	case HCLGEVF_MAC_TO_DEL:
1157 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1158 			list_del(&mac_node->node);
1159 			kfree(mac_node);
1160 		} else {
1161 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1162 		}
1163 		break;
1164 	/* only from tmp_add_list, the mac_node->state won't be
1165 	 * HCLGEVF_MAC_ACTIVE
1166 	 */
1167 	case HCLGEVF_MAC_ACTIVE:
1168 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1169 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1170 		break;
1171 	}
1172 }
1173 
1174 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1175 				   enum HCLGEVF_MAC_NODE_STATE state,
1176 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1177 				   const unsigned char *addr)
1178 {
1179 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1180 	struct hclgevf_mac_addr_node *mac_node;
1181 	struct list_head *list;
1182 
1183 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1184 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1185 
1186 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1187 
1188 	/* if the mac addr is already in the mac list, no need to add a new
1189 	 * one into it, just check the mac addr state, convert it to a new
1190 	 * new state, or just remove it, or do nothing.
1191 	 */
1192 	mac_node = hclgevf_find_mac_node(list, addr);
1193 	if (mac_node) {
1194 		hclgevf_update_mac_node(mac_node, state);
1195 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1196 		return 0;
1197 	}
1198 	/* if this address is never added, unnecessary to delete */
1199 	if (state == HCLGEVF_MAC_TO_DEL) {
1200 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1201 		return -ENOENT;
1202 	}
1203 
1204 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1205 	if (!mac_node) {
1206 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1207 		return -ENOMEM;
1208 	}
1209 
1210 	mac_node->state = state;
1211 	ether_addr_copy(mac_node->mac_addr, addr);
1212 	list_add_tail(&mac_node->node, list);
1213 
1214 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1215 	return 0;
1216 }
1217 
1218 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1219 			       const unsigned char *addr)
1220 {
1221 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1222 				       HCLGEVF_MAC_ADDR_UC, addr);
1223 }
1224 
1225 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1226 			      const unsigned char *addr)
1227 {
1228 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1229 				       HCLGEVF_MAC_ADDR_UC, addr);
1230 }
1231 
1232 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1233 			       const unsigned char *addr)
1234 {
1235 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1236 				       HCLGEVF_MAC_ADDR_MC, addr);
1237 }
1238 
1239 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1240 			      const unsigned char *addr)
1241 {
1242 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1243 				       HCLGEVF_MAC_ADDR_MC, addr);
1244 }
1245 
1246 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1247 				    struct hclgevf_mac_addr_node *mac_node,
1248 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1249 {
1250 	struct hclge_vf_to_pf_msg send_msg;
1251 	u8 code, subcode;
1252 
1253 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1254 		code = HCLGE_MBX_SET_UNICAST;
1255 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1256 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1257 		else
1258 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1259 	} else {
1260 		code = HCLGE_MBX_SET_MULTICAST;
1261 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1262 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1263 		else
1264 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1265 	}
1266 
1267 	hclgevf_build_send_msg(&send_msg, code, subcode);
1268 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1269 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1270 }
1271 
1272 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1273 				    struct list_head *list,
1274 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1275 {
1276 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1277 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1278 	int ret;
1279 
1280 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1281 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1282 		if  (ret) {
1283 			hnae3_format_mac_addr(format_mac_addr,
1284 					      mac_node->mac_addr);
1285 			dev_err(&hdev->pdev->dev,
1286 				"failed to configure mac %s, state = %d, ret = %d\n",
1287 				format_mac_addr, mac_node->state, ret);
1288 			return;
1289 		}
1290 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1291 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1292 		} else {
1293 			list_del(&mac_node->node);
1294 			kfree(mac_node);
1295 		}
1296 	}
1297 }
1298 
1299 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1300 				       struct list_head *mac_list)
1301 {
1302 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1303 
1304 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1305 		/* if the mac address from tmp_add_list is not in the
1306 		 * uc/mc_mac_list, it means have received a TO_DEL request
1307 		 * during the time window of sending mac config request to PF
1308 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1309 		 * then it will be removed at next time. If is TO_ADD, it means
1310 		 * send TO_ADD request failed, so just remove the mac node.
1311 		 */
1312 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1313 		if (new_node) {
1314 			hclgevf_update_mac_node(new_node, mac_node->state);
1315 			list_del(&mac_node->node);
1316 			kfree(mac_node);
1317 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1318 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1319 			list_move_tail(&mac_node->node, mac_list);
1320 		} else {
1321 			list_del(&mac_node->node);
1322 			kfree(mac_node);
1323 		}
1324 	}
1325 }
1326 
1327 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1328 				       struct list_head *mac_list)
1329 {
1330 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1331 
1332 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1333 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1334 		if (new_node) {
1335 			/* If the mac addr is exist in the mac list, it means
1336 			 * received a new request TO_ADD during the time window
1337 			 * of sending mac addr configurrequest to PF, so just
1338 			 * change the mac state to ACTIVE.
1339 			 */
1340 			new_node->state = HCLGEVF_MAC_ACTIVE;
1341 			list_del(&mac_node->node);
1342 			kfree(mac_node);
1343 		} else {
1344 			list_move_tail(&mac_node->node, mac_list);
1345 		}
1346 	}
1347 }
1348 
1349 static void hclgevf_clear_list(struct list_head *list)
1350 {
1351 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1352 
1353 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1354 		list_del(&mac_node->node);
1355 		kfree(mac_node);
1356 	}
1357 }
1358 
1359 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1360 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1361 {
1362 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1363 	struct list_head tmp_add_list, tmp_del_list;
1364 	struct list_head *list;
1365 
1366 	INIT_LIST_HEAD(&tmp_add_list);
1367 	INIT_LIST_HEAD(&tmp_del_list);
1368 
1369 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1370 	 * we can add/delete these mac addr outside the spin lock
1371 	 */
1372 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1373 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1374 
1375 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1376 
1377 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1378 		switch (mac_node->state) {
1379 		case HCLGEVF_MAC_TO_DEL:
1380 			list_move_tail(&mac_node->node, &tmp_del_list);
1381 			break;
1382 		case HCLGEVF_MAC_TO_ADD:
1383 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1384 			if (!new_node)
1385 				goto stop_traverse;
1386 
1387 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1388 			new_node->state = mac_node->state;
1389 			list_add_tail(&new_node->node, &tmp_add_list);
1390 			break;
1391 		default:
1392 			break;
1393 		}
1394 	}
1395 
1396 stop_traverse:
1397 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1398 
1399 	/* delete first, in order to get max mac table space for adding */
1400 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1401 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1402 
1403 	/* if some mac addresses were added/deleted fail, move back to the
1404 	 * mac_list, and retry at next time.
1405 	 */
1406 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1407 
1408 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1409 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1410 
1411 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1412 }
1413 
1414 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1415 {
1416 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1417 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1418 }
1419 
1420 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1421 {
1422 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1423 
1424 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1425 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1426 
1427 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1428 }
1429 
1430 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1431 {
1432 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1433 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1434 	struct hclge_vf_to_pf_msg send_msg;
1435 
1436 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1437 		return -EOPNOTSUPP;
1438 
1439 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1440 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1441 	send_msg.data[0] = enable ? 1 : 0;
1442 
1443 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1444 }
1445 
1446 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1447 				   __be16 proto, u16 vlan_id,
1448 				   bool is_kill)
1449 {
1450 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1451 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1452 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1453 
1454 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1455 	struct hclge_vf_to_pf_msg send_msg;
1456 	int ret;
1457 
1458 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1459 		return -EINVAL;
1460 
1461 	if (proto != htons(ETH_P_8021Q))
1462 		return -EPROTONOSUPPORT;
1463 
1464 	/* When device is resetting or reset failed, firmware is unable to
1465 	 * handle mailbox. Just record the vlan id, and remove it after
1466 	 * reset finished.
1467 	 */
1468 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1469 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1470 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1471 		return -EBUSY;
1472 	}
1473 
1474 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1475 			       HCLGE_MBX_VLAN_FILTER);
1476 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1477 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1478 	       sizeof(vlan_id));
1479 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1480 	       sizeof(proto));
1481 	/* when remove hw vlan filter failed, record the vlan id,
1482 	 * and try to remove it from hw later, to be consistence
1483 	 * with stack.
1484 	 */
1485 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1486 	if (is_kill && ret)
1487 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1488 
1489 	return ret;
1490 }
1491 
1492 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1493 {
1494 #define HCLGEVF_MAX_SYNC_COUNT	60
1495 	struct hnae3_handle *handle = &hdev->nic;
1496 	int ret, sync_cnt = 0;
1497 	u16 vlan_id;
1498 
1499 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1500 	while (vlan_id != VLAN_N_VID) {
1501 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1502 					      vlan_id, true);
1503 		if (ret)
1504 			return;
1505 
1506 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1507 		sync_cnt++;
1508 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1509 			return;
1510 
1511 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1512 	}
1513 }
1514 
1515 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1516 {
1517 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1518 	struct hclge_vf_to_pf_msg send_msg;
1519 
1520 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1521 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1522 	send_msg.data[0] = enable ? 1 : 0;
1523 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1524 }
1525 
1526 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1527 {
1528 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1529 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1530 	struct hclge_vf_to_pf_msg send_msg;
1531 	u8 return_status = 0;
1532 	int ret;
1533 	u16 i;
1534 
1535 	/* disable vf queue before send queue reset msg to PF */
1536 	ret = hclgevf_tqp_enable(handle, false);
1537 	if (ret) {
1538 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1539 			ret);
1540 		return ret;
1541 	}
1542 
1543 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1544 
1545 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1546 				   sizeof(return_status));
1547 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1548 		return ret;
1549 
1550 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1551 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1552 		memcpy(send_msg.data, &i, sizeof(i));
1553 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1554 		if (ret)
1555 			return ret;
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1562 {
1563 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1564 	struct hclge_vf_to_pf_msg send_msg;
1565 
1566 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1567 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1568 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1569 }
1570 
1571 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1572 				 enum hnae3_reset_notify_type type)
1573 {
1574 	struct hnae3_client *client = hdev->nic_client;
1575 	struct hnae3_handle *handle = &hdev->nic;
1576 	int ret;
1577 
1578 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1579 	    !client)
1580 		return 0;
1581 
1582 	if (!client->ops->reset_notify)
1583 		return -EOPNOTSUPP;
1584 
1585 	ret = client->ops->reset_notify(handle, type);
1586 	if (ret)
1587 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1588 			type, ret);
1589 
1590 	return ret;
1591 }
1592 
1593 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1594 				      enum hnae3_reset_notify_type type)
1595 {
1596 	struct hnae3_client *client = hdev->roce_client;
1597 	struct hnae3_handle *handle = &hdev->roce;
1598 	int ret;
1599 
1600 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1601 		return 0;
1602 
1603 	if (!client->ops->reset_notify)
1604 		return -EOPNOTSUPP;
1605 
1606 	ret = client->ops->reset_notify(handle, type);
1607 	if (ret)
1608 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1609 			type, ret);
1610 	return ret;
1611 }
1612 
1613 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1614 {
1615 #define HCLGEVF_RESET_WAIT_US	20000
1616 #define HCLGEVF_RESET_WAIT_CNT	2000
1617 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1618 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1619 
1620 	u32 val;
1621 	int ret;
1622 
1623 	if (hdev->reset_type == HNAE3_VF_RESET)
1624 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1625 					 HCLGEVF_VF_RST_ING, val,
1626 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1627 					 HCLGEVF_RESET_WAIT_US,
1628 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1629 	else
1630 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1631 					 HCLGEVF_RST_ING, val,
1632 					 !(val & HCLGEVF_RST_ING_BITS),
1633 					 HCLGEVF_RESET_WAIT_US,
1634 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1635 
1636 	/* hardware completion status should be available by this time */
1637 	if (ret) {
1638 		dev_err(&hdev->pdev->dev,
1639 			"couldn't get reset done status from h/w, timeout!\n");
1640 		return ret;
1641 	}
1642 
1643 	/* we will wait a bit more to let reset of the stack to complete. This
1644 	 * might happen in case reset assertion was made by PF. Yes, this also
1645 	 * means we might end up waiting bit more even for VF reset.
1646 	 */
1647 	msleep(5000);
1648 
1649 	return 0;
1650 }
1651 
1652 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1653 {
1654 	u32 reg_val;
1655 
1656 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1657 	if (enable)
1658 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1659 	else
1660 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1661 
1662 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1663 			  reg_val);
1664 }
1665 
1666 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1667 {
1668 	int ret;
1669 
1670 	/* uninitialize the nic client */
1671 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1672 	if (ret)
1673 		return ret;
1674 
1675 	/* re-initialize the hclge device */
1676 	ret = hclgevf_reset_hdev(hdev);
1677 	if (ret) {
1678 		dev_err(&hdev->pdev->dev,
1679 			"hclge device re-init failed, VF is disabled!\n");
1680 		return ret;
1681 	}
1682 
1683 	/* bring up the nic client again */
1684 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1685 	if (ret)
1686 		return ret;
1687 
1688 	/* clear handshake status with IMP */
1689 	hclgevf_reset_handshake(hdev, false);
1690 
1691 	/* bring up the nic to enable TX/RX again */
1692 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1693 }
1694 
1695 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1696 {
1697 #define HCLGEVF_RESET_SYNC_TIME 100
1698 
1699 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1700 		struct hclge_vf_to_pf_msg send_msg;
1701 		int ret;
1702 
1703 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1704 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1705 		if (ret) {
1706 			dev_err(&hdev->pdev->dev,
1707 				"failed to assert VF reset, ret = %d\n", ret);
1708 			return ret;
1709 		}
1710 		hdev->rst_stats.vf_func_rst_cnt++;
1711 	}
1712 
1713 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1714 	/* inform hardware that preparatory work is done */
1715 	msleep(HCLGEVF_RESET_SYNC_TIME);
1716 	hclgevf_reset_handshake(hdev, true);
1717 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1718 		 hdev->reset_type);
1719 
1720 	return 0;
1721 }
1722 
1723 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1724 {
1725 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1726 		 hdev->rst_stats.vf_func_rst_cnt);
1727 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1728 		 hdev->rst_stats.flr_rst_cnt);
1729 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1730 		 hdev->rst_stats.vf_rst_cnt);
1731 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1732 		 hdev->rst_stats.rst_done_cnt);
1733 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1734 		 hdev->rst_stats.hw_rst_done_cnt);
1735 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1736 		 hdev->rst_stats.rst_cnt);
1737 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1738 		 hdev->rst_stats.rst_fail_cnt);
1739 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1740 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1741 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1742 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1743 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1744 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1745 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1746 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1747 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1748 }
1749 
1750 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1751 {
1752 	/* recover handshake status with IMP when reset fail */
1753 	hclgevf_reset_handshake(hdev, true);
1754 	hdev->rst_stats.rst_fail_cnt++;
1755 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1756 		hdev->rst_stats.rst_fail_cnt);
1757 
1758 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1759 		set_bit(hdev->reset_type, &hdev->reset_pending);
1760 
1761 	if (hclgevf_is_reset_pending(hdev)) {
1762 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1763 		hclgevf_reset_task_schedule(hdev);
1764 	} else {
1765 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1766 		hclgevf_dump_rst_info(hdev);
1767 	}
1768 }
1769 
1770 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1771 {
1772 	int ret;
1773 
1774 	hdev->rst_stats.rst_cnt++;
1775 
1776 	/* perform reset of the stack & ae device for a client */
1777 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1778 	if (ret)
1779 		return ret;
1780 
1781 	rtnl_lock();
1782 	/* bring down the nic to stop any ongoing TX/RX */
1783 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1784 	rtnl_unlock();
1785 	if (ret)
1786 		return ret;
1787 
1788 	return hclgevf_reset_prepare_wait(hdev);
1789 }
1790 
1791 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1792 {
1793 	int ret;
1794 
1795 	hdev->rst_stats.hw_rst_done_cnt++;
1796 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1797 	if (ret)
1798 		return ret;
1799 
1800 	rtnl_lock();
1801 	/* now, re-initialize the nic client and ae device */
1802 	ret = hclgevf_reset_stack(hdev);
1803 	rtnl_unlock();
1804 	if (ret) {
1805 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1806 		return ret;
1807 	}
1808 
1809 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1810 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1811 	 * times
1812 	 */
1813 	if (ret &&
1814 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1815 		return ret;
1816 
1817 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1818 	if (ret)
1819 		return ret;
1820 
1821 	hdev->last_reset_time = jiffies;
1822 	hdev->rst_stats.rst_done_cnt++;
1823 	hdev->rst_stats.rst_fail_cnt = 0;
1824 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1825 
1826 	return 0;
1827 }
1828 
1829 static void hclgevf_reset(struct hclgevf_dev *hdev)
1830 {
1831 	if (hclgevf_reset_prepare(hdev))
1832 		goto err_reset;
1833 
1834 	/* check if VF could successfully fetch the hardware reset completion
1835 	 * status from the hardware
1836 	 */
1837 	if (hclgevf_reset_wait(hdev)) {
1838 		/* can't do much in this situation, will disable VF */
1839 		dev_err(&hdev->pdev->dev,
1840 			"failed to fetch H/W reset completion status\n");
1841 		goto err_reset;
1842 	}
1843 
1844 	if (hclgevf_reset_rebuild(hdev))
1845 		goto err_reset;
1846 
1847 	return;
1848 
1849 err_reset:
1850 	hclgevf_reset_err_handle(hdev);
1851 }
1852 
1853 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1854 						     unsigned long *addr)
1855 {
1856 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1857 
1858 	/* return the highest priority reset level amongst all */
1859 	if (test_bit(HNAE3_VF_RESET, addr)) {
1860 		rst_level = HNAE3_VF_RESET;
1861 		clear_bit(HNAE3_VF_RESET, addr);
1862 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1863 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1864 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1865 		rst_level = HNAE3_VF_FULL_RESET;
1866 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1867 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1868 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1869 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1870 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1871 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1872 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1873 		rst_level = HNAE3_VF_FUNC_RESET;
1874 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1875 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1876 		rst_level = HNAE3_FLR_RESET;
1877 		clear_bit(HNAE3_FLR_RESET, addr);
1878 	}
1879 
1880 	return rst_level;
1881 }
1882 
1883 static void hclgevf_reset_event(struct pci_dev *pdev,
1884 				struct hnae3_handle *handle)
1885 {
1886 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1887 	struct hclgevf_dev *hdev = ae_dev->priv;
1888 
1889 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1890 
1891 	if (hdev->default_reset_request)
1892 		hdev->reset_level =
1893 			hclgevf_get_reset_level(hdev,
1894 						&hdev->default_reset_request);
1895 	else
1896 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1897 
1898 	/* reset of this VF requested */
1899 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1900 	hclgevf_reset_task_schedule(hdev);
1901 
1902 	hdev->last_reset_time = jiffies;
1903 }
1904 
1905 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1906 					  enum hnae3_reset_type rst_type)
1907 {
1908 	struct hclgevf_dev *hdev = ae_dev->priv;
1909 
1910 	set_bit(rst_type, &hdev->default_reset_request);
1911 }
1912 
1913 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1914 {
1915 	writel(en ? 1 : 0, vector->addr);
1916 }
1917 
1918 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1919 					  enum hnae3_reset_type rst_type)
1920 {
1921 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
1922 #define HCLGEVF_RESET_RETRY_CNT		5
1923 
1924 	struct hclgevf_dev *hdev = ae_dev->priv;
1925 	int retry_cnt = 0;
1926 	int ret;
1927 
1928 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1929 		down(&hdev->reset_sem);
1930 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1931 		hdev->reset_type = rst_type;
1932 		ret = hclgevf_reset_prepare(hdev);
1933 		if (!ret && !hdev->reset_pending)
1934 			break;
1935 
1936 		dev_err(&hdev->pdev->dev,
1937 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1938 			ret, hdev->reset_pending, retry_cnt);
1939 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1940 		up(&hdev->reset_sem);
1941 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1942 	}
1943 
1944 	/* disable misc vector before reset done */
1945 	hclgevf_enable_vector(&hdev->misc_vector, false);
1946 
1947 	if (hdev->reset_type == HNAE3_FLR_RESET)
1948 		hdev->rst_stats.flr_rst_cnt++;
1949 }
1950 
1951 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1952 {
1953 	struct hclgevf_dev *hdev = ae_dev->priv;
1954 	int ret;
1955 
1956 	hclgevf_enable_vector(&hdev->misc_vector, true);
1957 
1958 	ret = hclgevf_reset_rebuild(hdev);
1959 	if (ret)
1960 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1961 			 ret);
1962 
1963 	hdev->reset_type = HNAE3_NONE_RESET;
1964 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1965 	up(&hdev->reset_sem);
1966 }
1967 
1968 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1969 {
1970 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1971 
1972 	return hdev->fw_version;
1973 }
1974 
1975 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1976 {
1977 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1978 
1979 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1980 					    HCLGEVF_MISC_VECTOR_NUM);
1981 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1982 	/* vector status always valid for Vector 0 */
1983 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1984 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1985 
1986 	hdev->num_msi_left -= 1;
1987 	hdev->num_msi_used += 1;
1988 }
1989 
1990 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1991 {
1992 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1993 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1994 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1995 			      &hdev->state))
1996 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1997 }
1998 
1999 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2000 {
2001 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2002 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2003 			      &hdev->state))
2004 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2005 }
2006 
2007 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2008 				  unsigned long delay)
2009 {
2010 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2011 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2012 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2013 }
2014 
2015 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2016 {
2017 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2018 
2019 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2020 		return;
2021 
2022 	down(&hdev->reset_sem);
2023 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2024 
2025 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2026 			       &hdev->reset_state)) {
2027 		/* PF has intimated that it is about to reset the hardware.
2028 		 * We now have to poll & check if hardware has actually
2029 		 * completed the reset sequence. On hardware reset completion,
2030 		 * VF needs to reset the client and ae device.
2031 		 */
2032 		hdev->reset_attempts = 0;
2033 
2034 		hdev->last_reset_time = jiffies;
2035 		hdev->reset_type =
2036 			hclgevf_get_reset_level(hdev, &hdev->reset_pending);
2037 		if (hdev->reset_type != HNAE3_NONE_RESET)
2038 			hclgevf_reset(hdev);
2039 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2040 				      &hdev->reset_state)) {
2041 		/* we could be here when either of below happens:
2042 		 * 1. reset was initiated due to watchdog timeout caused by
2043 		 *    a. IMP was earlier reset and our TX got choked down and
2044 		 *       which resulted in watchdog reacting and inducing VF
2045 		 *       reset. This also means our cmdq would be unreliable.
2046 		 *    b. problem in TX due to other lower layer(example link
2047 		 *       layer not functioning properly etc.)
2048 		 * 2. VF reset might have been initiated due to some config
2049 		 *    change.
2050 		 *
2051 		 * NOTE: Theres no clear way to detect above cases than to react
2052 		 * to the response of PF for this reset request. PF will ack the
2053 		 * 1b and 2. cases but we will not get any intimation about 1a
2054 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2055 		 * communication between PF and VF would be broken.
2056 		 *
2057 		 * if we are never geting into pending state it means either:
2058 		 * 1. PF is not receiving our request which could be due to IMP
2059 		 *    reset
2060 		 * 2. PF is screwed
2061 		 * We cannot do much for 2. but to check first we can try reset
2062 		 * our PCIe + stack and see if it alleviates the problem.
2063 		 */
2064 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2065 			/* prepare for full reset of stack + pcie interface */
2066 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2067 
2068 			/* "defer" schedule the reset task again */
2069 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2070 		} else {
2071 			hdev->reset_attempts++;
2072 
2073 			set_bit(hdev->reset_level, &hdev->reset_pending);
2074 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2075 		}
2076 		hclgevf_reset_task_schedule(hdev);
2077 	}
2078 
2079 	hdev->reset_type = HNAE3_NONE_RESET;
2080 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2081 	up(&hdev->reset_sem);
2082 }
2083 
2084 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2085 {
2086 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2087 		return;
2088 
2089 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2090 		return;
2091 
2092 	hclgevf_mbx_async_handler(hdev);
2093 
2094 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2095 }
2096 
2097 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2098 {
2099 	struct hclge_vf_to_pf_msg send_msg;
2100 	int ret;
2101 
2102 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
2103 		return;
2104 
2105 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2106 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2107 	if (ret)
2108 		dev_err(&hdev->pdev->dev,
2109 			"VF sends keep alive cmd failed(=%d)\n", ret);
2110 }
2111 
2112 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2113 {
2114 	unsigned long delta = round_jiffies_relative(HZ);
2115 	struct hnae3_handle *handle = &hdev->nic;
2116 
2117 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2118 		return;
2119 
2120 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2121 		delta = jiffies - hdev->last_serv_processed;
2122 
2123 		if (delta < round_jiffies_relative(HZ)) {
2124 			delta = round_jiffies_relative(HZ) - delta;
2125 			goto out;
2126 		}
2127 	}
2128 
2129 	hdev->serv_processed_cnt++;
2130 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2131 		hclgevf_keep_alive(hdev);
2132 
2133 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2134 		hdev->last_serv_processed = jiffies;
2135 		goto out;
2136 	}
2137 
2138 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2139 		hclgevf_tqps_update_stats(handle);
2140 
2141 	/* VF does not need to request link status when this bit is set, because
2142 	 * PF will push its link status to VFs when link status changed.
2143 	 */
2144 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
2145 		hclgevf_request_link_info(hdev);
2146 
2147 	hclgevf_update_link_mode(hdev);
2148 
2149 	hclgevf_sync_vlan_filter(hdev);
2150 
2151 	hclgevf_sync_mac_table(hdev);
2152 
2153 	hclgevf_sync_promisc_mode(hdev);
2154 
2155 	hdev->last_serv_processed = jiffies;
2156 
2157 out:
2158 	hclgevf_task_schedule(hdev, delta);
2159 }
2160 
2161 static void hclgevf_service_task(struct work_struct *work)
2162 {
2163 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2164 						service_task.work);
2165 
2166 	hclgevf_reset_service_task(hdev);
2167 	hclgevf_mailbox_service_task(hdev);
2168 	hclgevf_periodic_service_task(hdev);
2169 
2170 	/* Handle reset and mbx again in case periodical task delays the
2171 	 * handling by calling hclgevf_task_schedule() in
2172 	 * hclgevf_periodic_service_task()
2173 	 */
2174 	hclgevf_reset_service_task(hdev);
2175 	hclgevf_mailbox_service_task(hdev);
2176 }
2177 
2178 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2179 {
2180 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
2181 }
2182 
2183 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2184 						      u32 *clearval)
2185 {
2186 	u32 val, cmdq_stat_reg, rst_ing_reg;
2187 
2188 	/* fetch the events from their corresponding regs */
2189 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2190 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
2191 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2192 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2193 		dev_info(&hdev->pdev->dev,
2194 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2195 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2196 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2197 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
2198 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2199 		hdev->rst_stats.vf_rst_cnt++;
2200 		/* set up VF hardware reset status, its PF will clear
2201 		 * this status when PF has initialized done.
2202 		 */
2203 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2204 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2205 				  val | HCLGEVF_VF_RST_ING_BIT);
2206 		return HCLGEVF_VECTOR0_EVENT_RST;
2207 	}
2208 
2209 	/* check for vector0 mailbox(=CMDQ RX) event source */
2210 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2211 		/* for revision 0x21, clearing interrupt is writing bit 0
2212 		 * to the clear register, writing bit 1 means to keep the
2213 		 * old value.
2214 		 * for revision 0x20, the clear register is a read & write
2215 		 * register, so we should just write 0 to the bit we are
2216 		 * handling, and keep other bits as cmdq_stat_reg.
2217 		 */
2218 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2219 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2220 		else
2221 			*clearval = cmdq_stat_reg &
2222 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2223 
2224 		return HCLGEVF_VECTOR0_EVENT_MBX;
2225 	}
2226 
2227 	/* print other vector0 event source */
2228 	dev_info(&hdev->pdev->dev,
2229 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2230 		 cmdq_stat_reg);
2231 
2232 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2233 }
2234 
2235 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2236 {
2237 	enum hclgevf_evt_cause event_cause;
2238 	struct hclgevf_dev *hdev = data;
2239 	u32 clearval;
2240 
2241 	hclgevf_enable_vector(&hdev->misc_vector, false);
2242 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2243 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2244 		hclgevf_clear_event_cause(hdev, clearval);
2245 
2246 	switch (event_cause) {
2247 	case HCLGEVF_VECTOR0_EVENT_RST:
2248 		hclgevf_reset_task_schedule(hdev);
2249 		break;
2250 	case HCLGEVF_VECTOR0_EVENT_MBX:
2251 		hclgevf_mbx_handler(hdev);
2252 		break;
2253 	default:
2254 		break;
2255 	}
2256 
2257 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2258 		hclgevf_enable_vector(&hdev->misc_vector, true);
2259 
2260 	return IRQ_HANDLED;
2261 }
2262 
2263 static int hclgevf_configure(struct hclgevf_dev *hdev)
2264 {
2265 	int ret;
2266 
2267 	hdev->gro_en = true;
2268 
2269 	ret = hclgevf_get_basic_info(hdev);
2270 	if (ret)
2271 		return ret;
2272 
2273 	/* get current port based vlan state from PF */
2274 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2275 	if (ret)
2276 		return ret;
2277 
2278 	/* get queue configuration from PF */
2279 	ret = hclgevf_get_queue_info(hdev);
2280 	if (ret)
2281 		return ret;
2282 
2283 	/* get queue depth info from PF */
2284 	ret = hclgevf_get_queue_depth(hdev);
2285 	if (ret)
2286 		return ret;
2287 
2288 	return hclgevf_get_pf_media_type(hdev);
2289 }
2290 
2291 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2292 {
2293 	struct pci_dev *pdev = ae_dev->pdev;
2294 	struct hclgevf_dev *hdev;
2295 
2296 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2297 	if (!hdev)
2298 		return -ENOMEM;
2299 
2300 	hdev->pdev = pdev;
2301 	hdev->ae_dev = ae_dev;
2302 	ae_dev->priv = hdev;
2303 
2304 	return 0;
2305 }
2306 
2307 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2308 {
2309 	struct hnae3_handle *roce = &hdev->roce;
2310 	struct hnae3_handle *nic = &hdev->nic;
2311 
2312 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2313 
2314 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2315 	    hdev->num_msi_left == 0)
2316 		return -EINVAL;
2317 
2318 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2319 
2320 	roce->rinfo.netdev = nic->kinfo.netdev;
2321 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2322 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2323 
2324 	roce->pdev = nic->pdev;
2325 	roce->ae_algo = nic->ae_algo;
2326 	roce->numa_node_mask = nic->numa_node_mask;
2327 
2328 	return 0;
2329 }
2330 
2331 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2332 {
2333 	struct hclgevf_cfg_gro_status_cmd *req;
2334 	struct hclge_desc desc;
2335 	int ret;
2336 
2337 	if (!hnae3_dev_gro_supported(hdev))
2338 		return 0;
2339 
2340 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2341 				     false);
2342 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2343 
2344 	req->gro_en = hdev->gro_en ? 1 : 0;
2345 
2346 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2347 	if (ret)
2348 		dev_err(&hdev->pdev->dev,
2349 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2350 
2351 	return ret;
2352 }
2353 
2354 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2355 {
2356 	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2357 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2358 	struct hclge_comm_rss_tuple_cfg *tuple_sets;
2359 	u32 i;
2360 
2361 	rss_cfg->rss_algo = HCLGE_COMM_RSS_HASH_ALGO_TOEPLITZ;
2362 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2363 	tuple_sets = &rss_cfg->rss_tuple_sets;
2364 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2365 		u16 *rss_ind_tbl;
2366 
2367 		rss_cfg->rss_algo = HCLGE_COMM_RSS_HASH_ALGO_SIMPLE;
2368 
2369 		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2370 					   sizeof(*rss_ind_tbl), GFP_KERNEL);
2371 		if (!rss_ind_tbl)
2372 			return -ENOMEM;
2373 
2374 		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2375 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2376 		       HCLGE_COMM_RSS_KEY_SIZE);
2377 
2378 		tuple_sets->ipv4_tcp_en = HCLGE_COMM_RSS_INPUT_TUPLE_OTHER;
2379 		tuple_sets->ipv4_udp_en = HCLGE_COMM_RSS_INPUT_TUPLE_OTHER;
2380 		tuple_sets->ipv4_sctp_en = HCLGE_COMM_RSS_INPUT_TUPLE_SCTP;
2381 		tuple_sets->ipv4_fragment_en = HCLGE_COMM_RSS_INPUT_TUPLE_OTHER;
2382 		tuple_sets->ipv6_tcp_en = HCLGE_COMM_RSS_INPUT_TUPLE_OTHER;
2383 		tuple_sets->ipv6_udp_en = HCLGE_COMM_RSS_INPUT_TUPLE_OTHER;
2384 		tuple_sets->ipv6_sctp_en =
2385 			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2386 					HCLGE_COMM_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2387 					HCLGE_COMM_RSS_INPUT_TUPLE_SCTP;
2388 		tuple_sets->ipv6_fragment_en = HCLGE_COMM_RSS_INPUT_TUPLE_OTHER;
2389 	}
2390 
2391 	/* Initialize RSS indirect table */
2392 	for (i = 0; i < rss_ind_tbl_size; i++)
2393 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2394 
2395 	return 0;
2396 }
2397 
2398 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2399 {
2400 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2401 	int ret;
2402 
2403 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2404 		ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2405 						  rss_cfg->rss_algo,
2406 						  rss_cfg->rss_hash_key);
2407 		if (ret)
2408 			return ret;
2409 
2410 		ret = hclge_comm_set_rss_input_tuple(&hdev->nic, &hdev->hw.hw,
2411 						     false, rss_cfg);
2412 		if (ret)
2413 			return ret;
2414 	}
2415 
2416 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2417 					     rss_cfg->rss_indirection_tbl);
2418 	if (ret)
2419 		return ret;
2420 
2421 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2422 }
2423 
2424 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2425 {
2426 	struct hnae3_handle *nic = &hdev->nic;
2427 	int ret;
2428 
2429 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2430 	if (ret) {
2431 		dev_err(&hdev->pdev->dev,
2432 			"failed to enable rx vlan offload, ret = %d\n", ret);
2433 		return ret;
2434 	}
2435 
2436 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2437 				       false);
2438 }
2439 
2440 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2441 {
2442 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2443 
2444 	unsigned long last = hdev->serv_processed_cnt;
2445 	int i = 0;
2446 
2447 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2448 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2449 	       last == hdev->serv_processed_cnt)
2450 		usleep_range(1, 1);
2451 }
2452 
2453 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2454 {
2455 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2456 
2457 	if (enable) {
2458 		hclgevf_task_schedule(hdev, 0);
2459 	} else {
2460 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2461 
2462 		/* flush memory to make sure DOWN is seen by service task */
2463 		smp_mb__before_atomic();
2464 		hclgevf_flush_link_update(hdev);
2465 	}
2466 }
2467 
2468 static int hclgevf_ae_start(struct hnae3_handle *handle)
2469 {
2470 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2471 
2472 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2473 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2474 
2475 	hclgevf_reset_tqp_stats(handle);
2476 
2477 	hclgevf_request_link_info(hdev);
2478 
2479 	hclgevf_update_link_mode(hdev);
2480 
2481 	return 0;
2482 }
2483 
2484 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2485 {
2486 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2487 
2488 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2489 
2490 	if (hdev->reset_type != HNAE3_VF_RESET)
2491 		hclgevf_reset_tqp(handle);
2492 
2493 	hclgevf_reset_tqp_stats(handle);
2494 	hclgevf_update_link_status(hdev, 0);
2495 }
2496 
2497 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2498 {
2499 #define HCLGEVF_STATE_ALIVE	1
2500 #define HCLGEVF_STATE_NOT_ALIVE	0
2501 
2502 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2503 	struct hclge_vf_to_pf_msg send_msg;
2504 
2505 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2506 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2507 				HCLGEVF_STATE_NOT_ALIVE;
2508 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2509 }
2510 
2511 static int hclgevf_client_start(struct hnae3_handle *handle)
2512 {
2513 	return hclgevf_set_alive(handle, true);
2514 }
2515 
2516 static void hclgevf_client_stop(struct hnae3_handle *handle)
2517 {
2518 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2519 	int ret;
2520 
2521 	ret = hclgevf_set_alive(handle, false);
2522 	if (ret)
2523 		dev_warn(&hdev->pdev->dev,
2524 			 "%s failed %d\n", __func__, ret);
2525 }
2526 
2527 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2528 {
2529 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2530 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2531 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2532 
2533 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2534 
2535 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2536 	sema_init(&hdev->reset_sem, 1);
2537 
2538 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2539 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2540 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2541 
2542 	/* bring the device down */
2543 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2544 }
2545 
2546 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2547 {
2548 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2549 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2550 
2551 	if (hdev->service_task.work.func)
2552 		cancel_delayed_work_sync(&hdev->service_task);
2553 
2554 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2555 }
2556 
2557 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2558 {
2559 	struct pci_dev *pdev = hdev->pdev;
2560 	int vectors;
2561 	int i;
2562 
2563 	if (hnae3_dev_roce_supported(hdev))
2564 		vectors = pci_alloc_irq_vectors(pdev,
2565 						hdev->roce_base_msix_offset + 1,
2566 						hdev->num_msi,
2567 						PCI_IRQ_MSIX);
2568 	else
2569 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2570 						hdev->num_msi,
2571 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2572 
2573 	if (vectors < 0) {
2574 		dev_err(&pdev->dev,
2575 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2576 			vectors);
2577 		return vectors;
2578 	}
2579 	if (vectors < hdev->num_msi)
2580 		dev_warn(&hdev->pdev->dev,
2581 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2582 			 hdev->num_msi, vectors);
2583 
2584 	hdev->num_msi = vectors;
2585 	hdev->num_msi_left = vectors;
2586 
2587 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2588 					   sizeof(u16), GFP_KERNEL);
2589 	if (!hdev->vector_status) {
2590 		pci_free_irq_vectors(pdev);
2591 		return -ENOMEM;
2592 	}
2593 
2594 	for (i = 0; i < hdev->num_msi; i++)
2595 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2596 
2597 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2598 					sizeof(int), GFP_KERNEL);
2599 	if (!hdev->vector_irq) {
2600 		devm_kfree(&pdev->dev, hdev->vector_status);
2601 		pci_free_irq_vectors(pdev);
2602 		return -ENOMEM;
2603 	}
2604 
2605 	return 0;
2606 }
2607 
2608 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2609 {
2610 	struct pci_dev *pdev = hdev->pdev;
2611 
2612 	devm_kfree(&pdev->dev, hdev->vector_status);
2613 	devm_kfree(&pdev->dev, hdev->vector_irq);
2614 	pci_free_irq_vectors(pdev);
2615 }
2616 
2617 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2618 {
2619 	int ret;
2620 
2621 	hclgevf_get_misc_vector(hdev);
2622 
2623 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2624 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2625 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2626 			  0, hdev->misc_vector.name, hdev);
2627 	if (ret) {
2628 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2629 			hdev->misc_vector.vector_irq);
2630 		return ret;
2631 	}
2632 
2633 	hclgevf_clear_event_cause(hdev, 0);
2634 
2635 	/* enable misc. vector(vector 0) */
2636 	hclgevf_enable_vector(&hdev->misc_vector, true);
2637 
2638 	return ret;
2639 }
2640 
2641 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2642 {
2643 	/* disable misc vector(vector 0) */
2644 	hclgevf_enable_vector(&hdev->misc_vector, false);
2645 	synchronize_irq(hdev->misc_vector.vector_irq);
2646 	free_irq(hdev->misc_vector.vector_irq, hdev);
2647 	hclgevf_free_vector(hdev, 0);
2648 }
2649 
2650 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2651 {
2652 	struct device *dev = &hdev->pdev->dev;
2653 
2654 	dev_info(dev, "VF info begin:\n");
2655 
2656 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2657 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2658 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2659 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2660 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2661 	dev_info(dev, "PF media type of this VF: %u\n",
2662 		 hdev->hw.mac.media_type);
2663 
2664 	dev_info(dev, "VF info end.\n");
2665 }
2666 
2667 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2668 					    struct hnae3_client *client)
2669 {
2670 	struct hclgevf_dev *hdev = ae_dev->priv;
2671 	int rst_cnt = hdev->rst_stats.rst_cnt;
2672 	int ret;
2673 
2674 	ret = client->ops->init_instance(&hdev->nic);
2675 	if (ret)
2676 		return ret;
2677 
2678 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2679 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2680 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2681 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2682 
2683 		client->ops->uninit_instance(&hdev->nic, 0);
2684 		return -EBUSY;
2685 	}
2686 
2687 	hnae3_set_client_init_flag(client, ae_dev, 1);
2688 
2689 	if (netif_msg_drv(&hdev->nic))
2690 		hclgevf_info_show(hdev);
2691 
2692 	return 0;
2693 }
2694 
2695 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2696 					     struct hnae3_client *client)
2697 {
2698 	struct hclgevf_dev *hdev = ae_dev->priv;
2699 	int ret;
2700 
2701 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2702 	    !hdev->nic_client)
2703 		return 0;
2704 
2705 	ret = hclgevf_init_roce_base_info(hdev);
2706 	if (ret)
2707 		return ret;
2708 
2709 	ret = client->ops->init_instance(&hdev->roce);
2710 	if (ret)
2711 		return ret;
2712 
2713 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2714 	hnae3_set_client_init_flag(client, ae_dev, 1);
2715 
2716 	return 0;
2717 }
2718 
2719 static int hclgevf_init_client_instance(struct hnae3_client *client,
2720 					struct hnae3_ae_dev *ae_dev)
2721 {
2722 	struct hclgevf_dev *hdev = ae_dev->priv;
2723 	int ret;
2724 
2725 	switch (client->type) {
2726 	case HNAE3_CLIENT_KNIC:
2727 		hdev->nic_client = client;
2728 		hdev->nic.client = client;
2729 
2730 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2731 		if (ret)
2732 			goto clear_nic;
2733 
2734 		ret = hclgevf_init_roce_client_instance(ae_dev,
2735 							hdev->roce_client);
2736 		if (ret)
2737 			goto clear_roce;
2738 
2739 		break;
2740 	case HNAE3_CLIENT_ROCE:
2741 		if (hnae3_dev_roce_supported(hdev)) {
2742 			hdev->roce_client = client;
2743 			hdev->roce.client = client;
2744 		}
2745 
2746 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2747 		if (ret)
2748 			goto clear_roce;
2749 
2750 		break;
2751 	default:
2752 		return -EINVAL;
2753 	}
2754 
2755 	return 0;
2756 
2757 clear_nic:
2758 	hdev->nic_client = NULL;
2759 	hdev->nic.client = NULL;
2760 	return ret;
2761 clear_roce:
2762 	hdev->roce_client = NULL;
2763 	hdev->roce.client = NULL;
2764 	return ret;
2765 }
2766 
2767 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2768 					   struct hnae3_ae_dev *ae_dev)
2769 {
2770 	struct hclgevf_dev *hdev = ae_dev->priv;
2771 
2772 	/* un-init roce, if it exists */
2773 	if (hdev->roce_client) {
2774 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2775 			msleep(HCLGEVF_WAIT_RESET_DONE);
2776 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2777 
2778 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2779 		hdev->roce_client = NULL;
2780 		hdev->roce.client = NULL;
2781 	}
2782 
2783 	/* un-init nic/unic, if this was not called by roce client */
2784 	if (client->ops->uninit_instance && hdev->nic_client &&
2785 	    client->type != HNAE3_CLIENT_ROCE) {
2786 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2787 			msleep(HCLGEVF_WAIT_RESET_DONE);
2788 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2789 
2790 		client->ops->uninit_instance(&hdev->nic, 0);
2791 		hdev->nic_client = NULL;
2792 		hdev->nic.client = NULL;
2793 	}
2794 }
2795 
2796 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2797 {
2798 #define HCLGEVF_MEM_BAR		4
2799 
2800 	struct pci_dev *pdev = hdev->pdev;
2801 	struct hclgevf_hw *hw = &hdev->hw;
2802 
2803 	/* for device does not have device memory, return directly */
2804 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2805 		return 0;
2806 
2807 	hw->hw.mem_base =
2808 		devm_ioremap_wc(&pdev->dev,
2809 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2810 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2811 	if (!hw->hw.mem_base) {
2812 		dev_err(&pdev->dev, "failed to map device memory\n");
2813 		return -EFAULT;
2814 	}
2815 
2816 	return 0;
2817 }
2818 
2819 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2820 {
2821 	struct pci_dev *pdev = hdev->pdev;
2822 	struct hclgevf_hw *hw;
2823 	int ret;
2824 
2825 	ret = pci_enable_device(pdev);
2826 	if (ret) {
2827 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2828 		return ret;
2829 	}
2830 
2831 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2832 	if (ret) {
2833 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2834 		goto err_disable_device;
2835 	}
2836 
2837 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2838 	if (ret) {
2839 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2840 		goto err_disable_device;
2841 	}
2842 
2843 	pci_set_master(pdev);
2844 	hw = &hdev->hw;
2845 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
2846 	if (!hw->hw.io_base) {
2847 		dev_err(&pdev->dev, "can't map configuration register space\n");
2848 		ret = -ENOMEM;
2849 		goto err_clr_master;
2850 	}
2851 
2852 	ret = hclgevf_dev_mem_map(hdev);
2853 	if (ret)
2854 		goto err_unmap_io_base;
2855 
2856 	return 0;
2857 
2858 err_unmap_io_base:
2859 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2860 err_clr_master:
2861 	pci_clear_master(pdev);
2862 	pci_release_regions(pdev);
2863 err_disable_device:
2864 	pci_disable_device(pdev);
2865 
2866 	return ret;
2867 }
2868 
2869 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2870 {
2871 	struct pci_dev *pdev = hdev->pdev;
2872 
2873 	if (hdev->hw.hw.mem_base)
2874 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2875 
2876 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2877 	pci_clear_master(pdev);
2878 	pci_release_regions(pdev);
2879 	pci_disable_device(pdev);
2880 }
2881 
2882 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2883 {
2884 	struct hclgevf_query_res_cmd *req;
2885 	struct hclge_desc desc;
2886 	int ret;
2887 
2888 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2889 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2890 	if (ret) {
2891 		dev_err(&hdev->pdev->dev,
2892 			"query vf resource failed, ret = %d.\n", ret);
2893 		return ret;
2894 	}
2895 
2896 	req = (struct hclgevf_query_res_cmd *)desc.data;
2897 
2898 	if (hnae3_dev_roce_supported(hdev)) {
2899 		hdev->roce_base_msix_offset =
2900 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2901 				HCLGEVF_MSIX_OFT_ROCEE_M,
2902 				HCLGEVF_MSIX_OFT_ROCEE_S);
2903 		hdev->num_roce_msix =
2904 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2905 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2906 
2907 		/* nic's msix numbers is always equals to the roce's. */
2908 		hdev->num_nic_msix = hdev->num_roce_msix;
2909 
2910 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2911 		 * are queued before Roce vectors. The offset is fixed to 64.
2912 		 */
2913 		hdev->num_msi = hdev->num_roce_msix +
2914 				hdev->roce_base_msix_offset;
2915 	} else {
2916 		hdev->num_msi =
2917 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2918 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2919 
2920 		hdev->num_nic_msix = hdev->num_msi;
2921 	}
2922 
2923 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2924 		dev_err(&hdev->pdev->dev,
2925 			"Just %u msi resources, not enough for vf(min:2).\n",
2926 			hdev->num_nic_msix);
2927 		return -EINVAL;
2928 	}
2929 
2930 	return 0;
2931 }
2932 
2933 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2934 {
2935 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
2936 
2937 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2938 
2939 	ae_dev->dev_specs.max_non_tso_bd_num =
2940 					HCLGEVF_MAX_NON_TSO_BD_NUM;
2941 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2942 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2943 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2944 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2945 }
2946 
2947 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2948 				    struct hclge_desc *desc)
2949 {
2950 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2951 	struct hclgevf_dev_specs_0_cmd *req0;
2952 	struct hclgevf_dev_specs_1_cmd *req1;
2953 
2954 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2955 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2956 
2957 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2958 	ae_dev->dev_specs.rss_ind_tbl_size =
2959 					le16_to_cpu(req0->rss_ind_tbl_size);
2960 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2961 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2962 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2963 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2964 }
2965 
2966 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2967 {
2968 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2969 
2970 	if (!dev_specs->max_non_tso_bd_num)
2971 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2972 	if (!dev_specs->rss_ind_tbl_size)
2973 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2974 	if (!dev_specs->rss_key_size)
2975 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2976 	if (!dev_specs->max_int_gl)
2977 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2978 	if (!dev_specs->max_frm_size)
2979 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2980 }
2981 
2982 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2983 {
2984 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2985 	int ret;
2986 	int i;
2987 
2988 	/* set default specifications as devices lower than version V3 do not
2989 	 * support querying specifications from firmware.
2990 	 */
2991 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2992 		hclgevf_set_default_dev_specs(hdev);
2993 		return 0;
2994 	}
2995 
2996 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2997 		hclgevf_cmd_setup_basic_desc(&desc[i],
2998 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
2999 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
3000 	}
3001 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3002 				     true);
3003 
3004 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3005 	if (ret)
3006 		return ret;
3007 
3008 	hclgevf_parse_dev_specs(hdev, desc);
3009 	hclgevf_check_dev_specs(hdev);
3010 
3011 	return 0;
3012 }
3013 
3014 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3015 {
3016 	struct pci_dev *pdev = hdev->pdev;
3017 	int ret = 0;
3018 
3019 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3020 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3021 		hclgevf_misc_irq_uninit(hdev);
3022 		hclgevf_uninit_msi(hdev);
3023 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3024 	}
3025 
3026 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3027 		pci_set_master(pdev);
3028 		ret = hclgevf_init_msi(hdev);
3029 		if (ret) {
3030 			dev_err(&pdev->dev,
3031 				"failed(%d) to init MSI/MSI-X\n", ret);
3032 			return ret;
3033 		}
3034 
3035 		ret = hclgevf_misc_irq_init(hdev);
3036 		if (ret) {
3037 			hclgevf_uninit_msi(hdev);
3038 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3039 				ret);
3040 			return ret;
3041 		}
3042 
3043 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3044 	}
3045 
3046 	return ret;
3047 }
3048 
3049 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3050 {
3051 	struct hclge_vf_to_pf_msg send_msg;
3052 
3053 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3054 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3055 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3056 }
3057 
3058 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
3059 {
3060 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3061 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
3062 }
3063 
3064 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
3065 {
3066 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3067 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
3068 }
3069 
3070 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3071 {
3072 	struct pci_dev *pdev = hdev->pdev;
3073 	int ret;
3074 
3075 	ret = hclgevf_pci_reset(hdev);
3076 	if (ret) {
3077 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3078 		return ret;
3079 	}
3080 
3081 	hclgevf_arq_init(hdev);
3082 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
3083 				  &hdev->fw_version, false,
3084 				  hdev->reset_pending);
3085 	if (ret) {
3086 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3087 		return ret;
3088 	}
3089 
3090 	ret = hclgevf_rss_init_hw(hdev);
3091 	if (ret) {
3092 		dev_err(&hdev->pdev->dev,
3093 			"failed(%d) to initialize RSS\n", ret);
3094 		return ret;
3095 	}
3096 
3097 	ret = hclgevf_config_gro(hdev);
3098 	if (ret)
3099 		return ret;
3100 
3101 	ret = hclgevf_init_vlan_config(hdev);
3102 	if (ret) {
3103 		dev_err(&hdev->pdev->dev,
3104 			"failed(%d) to initialize VLAN config\n", ret);
3105 		return ret;
3106 	}
3107 
3108 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3109 
3110 	hclgevf_init_rxd_adv_layout(hdev);
3111 
3112 	dev_info(&hdev->pdev->dev, "Reset done\n");
3113 
3114 	return 0;
3115 }
3116 
3117 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3118 {
3119 	struct pci_dev *pdev = hdev->pdev;
3120 	int ret;
3121 
3122 	ret = hclgevf_pci_init(hdev);
3123 	if (ret)
3124 		return ret;
3125 
3126 	ret = hclgevf_devlink_init(hdev);
3127 	if (ret)
3128 		goto err_devlink_init;
3129 
3130 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
3131 	if (ret)
3132 		goto err_cmd_queue_init;
3133 
3134 	hclgevf_arq_init(hdev);
3135 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
3136 				  &hdev->fw_version, false,
3137 				  hdev->reset_pending);
3138 	if (ret)
3139 		goto err_cmd_init;
3140 
3141 	/* Get vf resource */
3142 	ret = hclgevf_query_vf_resource(hdev);
3143 	if (ret)
3144 		goto err_cmd_init;
3145 
3146 	ret = hclgevf_query_dev_specs(hdev);
3147 	if (ret) {
3148 		dev_err(&pdev->dev,
3149 			"failed to query dev specifications, ret = %d\n", ret);
3150 		goto err_cmd_init;
3151 	}
3152 
3153 	ret = hclgevf_init_msi(hdev);
3154 	if (ret) {
3155 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3156 		goto err_cmd_init;
3157 	}
3158 
3159 	hclgevf_state_init(hdev);
3160 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3161 	hdev->reset_type = HNAE3_NONE_RESET;
3162 
3163 	ret = hclgevf_misc_irq_init(hdev);
3164 	if (ret)
3165 		goto err_misc_irq_init;
3166 
3167 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3168 
3169 	ret = hclgevf_configure(hdev);
3170 	if (ret) {
3171 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3172 		goto err_config;
3173 	}
3174 
3175 	ret = hclgevf_alloc_tqps(hdev);
3176 	if (ret) {
3177 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3178 		goto err_config;
3179 	}
3180 
3181 	ret = hclgevf_set_handle_info(hdev);
3182 	if (ret)
3183 		goto err_config;
3184 
3185 	ret = hclgevf_config_gro(hdev);
3186 	if (ret)
3187 		goto err_config;
3188 
3189 	/* Initialize RSS for this VF */
3190 	ret = hclgevf_rss_init_cfg(hdev);
3191 	if (ret) {
3192 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3193 		goto err_config;
3194 	}
3195 
3196 	ret = hclgevf_rss_init_hw(hdev);
3197 	if (ret) {
3198 		dev_err(&hdev->pdev->dev,
3199 			"failed(%d) to initialize RSS\n", ret);
3200 		goto err_config;
3201 	}
3202 
3203 	/* ensure vf tbl list as empty before init*/
3204 	ret = hclgevf_clear_vport_list(hdev);
3205 	if (ret) {
3206 		dev_err(&pdev->dev,
3207 			"failed to clear tbl list configuration, ret = %d.\n",
3208 			ret);
3209 		goto err_config;
3210 	}
3211 
3212 	ret = hclgevf_init_vlan_config(hdev);
3213 	if (ret) {
3214 		dev_err(&hdev->pdev->dev,
3215 			"failed(%d) to initialize VLAN config\n", ret);
3216 		goto err_config;
3217 	}
3218 
3219 	hclgevf_init_rxd_adv_layout(hdev);
3220 
3221 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
3222 
3223 	hdev->last_reset_time = jiffies;
3224 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3225 		 HCLGEVF_DRIVER_NAME);
3226 
3227 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3228 
3229 	return 0;
3230 
3231 err_config:
3232 	hclgevf_misc_irq_uninit(hdev);
3233 err_misc_irq_init:
3234 	hclgevf_state_uninit(hdev);
3235 	hclgevf_uninit_msi(hdev);
3236 err_cmd_init:
3237 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3238 err_cmd_queue_init:
3239 	hclgevf_devlink_uninit(hdev);
3240 err_devlink_init:
3241 	hclgevf_pci_uninit(hdev);
3242 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3243 	return ret;
3244 }
3245 
3246 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3247 {
3248 	struct hclge_vf_to_pf_msg send_msg;
3249 
3250 	hclgevf_state_uninit(hdev);
3251 	hclgevf_uninit_rxd_adv_layout(hdev);
3252 
3253 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3254 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3255 
3256 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3257 		hclgevf_misc_irq_uninit(hdev);
3258 		hclgevf_uninit_msi(hdev);
3259 	}
3260 
3261 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3262 	hclgevf_devlink_uninit(hdev);
3263 	hclgevf_pci_uninit(hdev);
3264 	hclgevf_uninit_mac_list(hdev);
3265 }
3266 
3267 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3268 {
3269 	struct pci_dev *pdev = ae_dev->pdev;
3270 	int ret;
3271 
3272 	ret = hclgevf_alloc_hdev(ae_dev);
3273 	if (ret) {
3274 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3275 		return ret;
3276 	}
3277 
3278 	ret = hclgevf_init_hdev(ae_dev->priv);
3279 	if (ret) {
3280 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3281 		return ret;
3282 	}
3283 
3284 	return 0;
3285 }
3286 
3287 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3288 {
3289 	struct hclgevf_dev *hdev = ae_dev->priv;
3290 
3291 	hclgevf_uninit_hdev(hdev);
3292 	ae_dev->priv = NULL;
3293 }
3294 
3295 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3296 {
3297 	struct hnae3_handle *nic = &hdev->nic;
3298 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3299 
3300 	return min_t(u32, hdev->rss_size_max,
3301 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3302 }
3303 
3304 /**
3305  * hclgevf_get_channels - Get the current channels enabled and max supported.
3306  * @handle: hardware information for network interface
3307  * @ch: ethtool channels structure
3308  *
3309  * We don't support separate tx and rx queues as channels. The other count
3310  * represents how many queues are being used for control. max_combined counts
3311  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3312  * q_vectors since we support a lot more queue pairs than q_vectors.
3313  **/
3314 static void hclgevf_get_channels(struct hnae3_handle *handle,
3315 				 struct ethtool_channels *ch)
3316 {
3317 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3318 
3319 	ch->max_combined = hclgevf_get_max_channels(hdev);
3320 	ch->other_count = 0;
3321 	ch->max_other = 0;
3322 	ch->combined_count = handle->kinfo.rss_size;
3323 }
3324 
3325 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3326 					  u16 *alloc_tqps, u16 *max_rss_size)
3327 {
3328 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3329 
3330 	*alloc_tqps = hdev->num_tqps;
3331 	*max_rss_size = hdev->rss_size_max;
3332 }
3333 
3334 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3335 				    u32 new_tqps_num)
3336 {
3337 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3338 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3339 	u16 max_rss_size;
3340 
3341 	kinfo->req_rss_size = new_tqps_num;
3342 
3343 	max_rss_size = min_t(u16, hdev->rss_size_max,
3344 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3345 
3346 	/* Use the user's configuration when it is not larger than
3347 	 * max_rss_size, otherwise, use the maximum specification value.
3348 	 */
3349 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3350 	    kinfo->req_rss_size <= max_rss_size)
3351 		kinfo->rss_size = kinfo->req_rss_size;
3352 	else if (kinfo->rss_size > max_rss_size ||
3353 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3354 		kinfo->rss_size = max_rss_size;
3355 
3356 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3357 }
3358 
3359 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3360 				bool rxfh_configured)
3361 {
3362 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3363 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3364 	u16 cur_rss_size = kinfo->rss_size;
3365 	u16 cur_tqps = kinfo->num_tqps;
3366 	u32 *rss_indir;
3367 	unsigned int i;
3368 	int ret;
3369 
3370 	hclgevf_update_rss_size(handle, new_tqps_num);
3371 
3372 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3373 	if (ret)
3374 		return ret;
3375 
3376 	/* RSS indirection table has been configured by user */
3377 	if (rxfh_configured)
3378 		goto out;
3379 
3380 	/* Reinitializes the rss indirect table according to the new RSS size */
3381 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3382 			    sizeof(u32), GFP_KERNEL);
3383 	if (!rss_indir)
3384 		return -ENOMEM;
3385 
3386 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3387 		rss_indir[i] = i % kinfo->rss_size;
3388 
3389 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3390 
3391 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3392 	if (ret)
3393 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3394 			ret);
3395 
3396 	kfree(rss_indir);
3397 
3398 out:
3399 	if (!ret)
3400 		dev_info(&hdev->pdev->dev,
3401 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3402 			 cur_rss_size, kinfo->rss_size,
3403 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3404 
3405 	return ret;
3406 }
3407 
3408 static int hclgevf_get_status(struct hnae3_handle *handle)
3409 {
3410 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3411 
3412 	return hdev->hw.mac.link;
3413 }
3414 
3415 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3416 					    u8 *auto_neg, u32 *speed,
3417 					    u8 *duplex)
3418 {
3419 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3420 
3421 	if (speed)
3422 		*speed = hdev->hw.mac.speed;
3423 	if (duplex)
3424 		*duplex = hdev->hw.mac.duplex;
3425 	if (auto_neg)
3426 		*auto_neg = AUTONEG_DISABLE;
3427 }
3428 
3429 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3430 				 u8 duplex)
3431 {
3432 	hdev->hw.mac.speed = speed;
3433 	hdev->hw.mac.duplex = duplex;
3434 }
3435 
3436 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3437 {
3438 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3439 	bool gro_en_old = hdev->gro_en;
3440 	int ret;
3441 
3442 	hdev->gro_en = enable;
3443 	ret = hclgevf_config_gro(hdev);
3444 	if (ret)
3445 		hdev->gro_en = gro_en_old;
3446 
3447 	return ret;
3448 }
3449 
3450 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3451 				   u8 *module_type)
3452 {
3453 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3454 
3455 	if (media_type)
3456 		*media_type = hdev->hw.mac.media_type;
3457 
3458 	if (module_type)
3459 		*module_type = hdev->hw.mac.module_type;
3460 }
3461 
3462 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3463 {
3464 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3465 
3466 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3467 }
3468 
3469 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3470 {
3471 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3472 
3473 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3474 }
3475 
3476 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3477 {
3478 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3479 
3480 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3481 }
3482 
3483 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3484 {
3485 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3486 
3487 	return hdev->rst_stats.hw_rst_done_cnt;
3488 }
3489 
3490 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3491 				  unsigned long *supported,
3492 				  unsigned long *advertising)
3493 {
3494 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3495 
3496 	*supported = hdev->hw.mac.supported;
3497 	*advertising = hdev->hw.mac.advertising;
3498 }
3499 
3500 #define MAX_SEPARATE_NUM	4
3501 #define SEPARATOR_VALUE		0xFDFCFBFA
3502 #define REG_NUM_PER_LINE	4
3503 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3504 
3505 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3506 {
3507 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3508 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3509 
3510 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3511 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3512 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3513 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3514 
3515 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3516 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3517 }
3518 
3519 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3520 			     void *data)
3521 {
3522 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3523 	int i, j, reg_um, separator_num;
3524 	u32 *reg = data;
3525 
3526 	*version = hdev->fw_version;
3527 
3528 	/* fetching per-VF registers values from VF PCIe register space */
3529 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3530 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3531 	for (i = 0; i < reg_um; i++)
3532 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3533 	for (i = 0; i < separator_num; i++)
3534 		*reg++ = SEPARATOR_VALUE;
3535 
3536 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3537 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3538 	for (i = 0; i < reg_um; i++)
3539 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3540 	for (i = 0; i < separator_num; i++)
3541 		*reg++ = SEPARATOR_VALUE;
3542 
3543 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3544 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3545 	for (j = 0; j < hdev->num_tqps; j++) {
3546 		for (i = 0; i < reg_um; i++)
3547 			*reg++ = hclgevf_read_dev(&hdev->hw,
3548 						  ring_reg_addr_list[i] +
3549 						  0x200 * j);
3550 		for (i = 0; i < separator_num; i++)
3551 			*reg++ = SEPARATOR_VALUE;
3552 	}
3553 
3554 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3555 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3556 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3557 		for (i = 0; i < reg_um; i++)
3558 			*reg++ = hclgevf_read_dev(&hdev->hw,
3559 						  tqp_intr_reg_addr_list[i] +
3560 						  4 * j);
3561 		for (i = 0; i < separator_num; i++)
3562 			*reg++ = SEPARATOR_VALUE;
3563 	}
3564 }
3565 
3566 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3567 					u8 *port_base_vlan_info, u8 data_size)
3568 {
3569 	struct hnae3_handle *nic = &hdev->nic;
3570 	struct hclge_vf_to_pf_msg send_msg;
3571 	int ret;
3572 
3573 	rtnl_lock();
3574 
3575 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3576 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3577 		dev_warn(&hdev->pdev->dev,
3578 			 "is resetting when updating port based vlan info\n");
3579 		rtnl_unlock();
3580 		return;
3581 	}
3582 
3583 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3584 	if (ret) {
3585 		rtnl_unlock();
3586 		return;
3587 	}
3588 
3589 	/* send msg to PF and wait update port based vlan info */
3590 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3591 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3592 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3593 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3594 	if (!ret) {
3595 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3596 			nic->port_base_vlan_state = state;
3597 		else
3598 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3599 	}
3600 
3601 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3602 	rtnl_unlock();
3603 }
3604 
3605 static const struct hnae3_ae_ops hclgevf_ops = {
3606 	.init_ae_dev = hclgevf_init_ae_dev,
3607 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3608 	.reset_prepare = hclgevf_reset_prepare_general,
3609 	.reset_done = hclgevf_reset_done,
3610 	.init_client_instance = hclgevf_init_client_instance,
3611 	.uninit_client_instance = hclgevf_uninit_client_instance,
3612 	.start = hclgevf_ae_start,
3613 	.stop = hclgevf_ae_stop,
3614 	.client_start = hclgevf_client_start,
3615 	.client_stop = hclgevf_client_stop,
3616 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3617 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3618 	.get_vector = hclgevf_get_vector,
3619 	.put_vector = hclgevf_put_vector,
3620 	.reset_queue = hclgevf_reset_tqp,
3621 	.get_mac_addr = hclgevf_get_mac_addr,
3622 	.set_mac_addr = hclgevf_set_mac_addr,
3623 	.add_uc_addr = hclgevf_add_uc_addr,
3624 	.rm_uc_addr = hclgevf_rm_uc_addr,
3625 	.add_mc_addr = hclgevf_add_mc_addr,
3626 	.rm_mc_addr = hclgevf_rm_mc_addr,
3627 	.get_stats = hclgevf_get_stats,
3628 	.update_stats = hclgevf_update_stats,
3629 	.get_strings = hclgevf_get_strings,
3630 	.get_sset_count = hclgevf_get_sset_count,
3631 	.get_rss_key_size = hclge_comm_get_rss_key_size,
3632 	.get_rss = hclgevf_get_rss,
3633 	.set_rss = hclgevf_set_rss,
3634 	.get_rss_tuple = hclgevf_get_rss_tuple,
3635 	.set_rss_tuple = hclgevf_set_rss_tuple,
3636 	.get_tc_size = hclgevf_get_tc_size,
3637 	.get_fw_version = hclgevf_get_fw_version,
3638 	.set_vlan_filter = hclgevf_set_vlan_filter,
3639 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3640 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3641 	.reset_event = hclgevf_reset_event,
3642 	.set_default_reset_request = hclgevf_set_def_reset_request,
3643 	.set_channels = hclgevf_set_channels,
3644 	.get_channels = hclgevf_get_channels,
3645 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3646 	.get_regs_len = hclgevf_get_regs_len,
3647 	.get_regs = hclgevf_get_regs,
3648 	.get_status = hclgevf_get_status,
3649 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3650 	.get_media_type = hclgevf_get_media_type,
3651 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3652 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3653 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3654 	.set_gro_en = hclgevf_gro_en,
3655 	.set_mtu = hclgevf_set_mtu,
3656 	.get_global_queue_id = hclgevf_get_qid_global,
3657 	.set_timer_task = hclgevf_set_timer_task,
3658 	.get_link_mode = hclgevf_get_link_mode,
3659 	.set_promisc_mode = hclgevf_set_promisc_mode,
3660 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3661 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3662 };
3663 
3664 static struct hnae3_ae_algo ae_algovf = {
3665 	.ops = &hclgevf_ops,
3666 	.pdev_id_table = ae_algovf_pci_tbl,
3667 };
3668 
3669 static int hclgevf_init(void)
3670 {
3671 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3672 
3673 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3674 	if (!hclgevf_wq) {
3675 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3676 		return -ENOMEM;
3677 	}
3678 
3679 	hnae3_register_ae_algo(&ae_algovf);
3680 
3681 	return 0;
3682 }
3683 
3684 static void hclgevf_exit(void)
3685 {
3686 	hnae3_unregister_ae_algo(&ae_algovf);
3687 	destroy_workqueue(hclgevf_wq);
3688 }
3689 module_init(hclgevf_init);
3690 module_exit(hclgevf_exit);
3691 
3692 MODULE_LICENSE("GPL");
3693 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3694 MODULE_DESCRIPTION("HCLGEVF Driver");
3695 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3696