1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18 				  unsigned long delay);
19 
20 static struct hnae3_ae_algo ae_algovf;
21 
22 static struct workqueue_struct *hclgevf_wq;
23 
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 	/* required last entry */
29 	{0, }
30 };
31 
32 static const u8 hclgevf_hash_key[] = {
33 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39 
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41 
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
44 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
45 					 HCLGEVF_CMDQ_TX_TAIL_REG,
46 					 HCLGEVF_CMDQ_TX_HEAD_REG,
47 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
48 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
49 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
50 					 HCLGEVF_CMDQ_RX_TAIL_REG,
51 					 HCLGEVF_CMDQ_RX_HEAD_REG,
52 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 					 HCLGEVF_CMDQ_INTR_EN_REG,
55 					 HCLGEVF_CMDQ_INTR_GEN_REG};
56 
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58 					   HCLGEVF_RST_ING,
59 					   HCLGEVF_GRO_EN_REG};
60 
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62 					 HCLGEVF_RING_RX_ADDR_H_REG,
63 					 HCLGEVF_RING_RX_BD_NUM_REG,
64 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
65 					 HCLGEVF_RING_RX_MERGE_EN_REG,
66 					 HCLGEVF_RING_RX_TAIL_REG,
67 					 HCLGEVF_RING_RX_HEAD_REG,
68 					 HCLGEVF_RING_RX_FBD_NUM_REG,
69 					 HCLGEVF_RING_RX_OFFSET_REG,
70 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
71 					 HCLGEVF_RING_RX_STASH_REG,
72 					 HCLGEVF_RING_RX_BD_ERR_REG,
73 					 HCLGEVF_RING_TX_ADDR_L_REG,
74 					 HCLGEVF_RING_TX_ADDR_H_REG,
75 					 HCLGEVF_RING_TX_BD_NUM_REG,
76 					 HCLGEVF_RING_TX_PRIORITY_REG,
77 					 HCLGEVF_RING_TX_TC_REG,
78 					 HCLGEVF_RING_TX_MERGE_EN_REG,
79 					 HCLGEVF_RING_TX_TAIL_REG,
80 					 HCLGEVF_RING_TX_HEAD_REG,
81 					 HCLGEVF_RING_TX_FBD_NUM_REG,
82 					 HCLGEVF_RING_TX_OFFSET_REG,
83 					 HCLGEVF_RING_TX_EBD_NUM_REG,
84 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
85 					 HCLGEVF_RING_TX_BD_ERR_REG,
86 					 HCLGEVF_RING_EN_REG};
87 
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89 					     HCLGEVF_TQP_INTR_GL0_REG,
90 					     HCLGEVF_TQP_INTR_GL1_REG,
91 					     HCLGEVF_TQP_INTR_GL2_REG,
92 					     HCLGEVF_TQP_INTR_RL_REG};
93 
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96 	if (!handle->client)
97 		return container_of(handle, struct hclgevf_dev, nic);
98 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
99 		return container_of(handle, struct hclgevf_dev, roce);
100 	else
101 		return container_of(handle, struct hclgevf_dev, nic);
102 }
103 
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108 	struct hclgevf_desc desc;
109 	struct hclgevf_tqp *tqp;
110 	int status;
111 	int i;
112 
113 	for (i = 0; i < kinfo->num_tqps; i++) {
114 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 		hclgevf_cmd_setup_basic_desc(&desc,
116 					     HCLGEVF_OPC_QUERY_RX_STATUS,
117 					     true);
118 
119 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121 		if (status) {
122 			dev_err(&hdev->pdev->dev,
123 				"Query tqp stat fail, status = %d,queue = %d\n",
124 				status,	i);
125 			return status;
126 		}
127 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128 			le32_to_cpu(desc.data[1]);
129 
130 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131 					     true);
132 
133 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135 		if (status) {
136 			dev_err(&hdev->pdev->dev,
137 				"Query tqp stat fail, status = %d,queue = %d\n",
138 				status, i);
139 			return status;
140 		}
141 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142 			le32_to_cpu(desc.data[1]);
143 	}
144 
145 	return 0;
146 }
147 
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151 	struct hclgevf_tqp *tqp;
152 	u64 *buff = data;
153 	int i;
154 
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158 	}
159 	for (i = 0; i < kinfo->num_tqps; i++) {
160 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162 	}
163 
164 	return buff;
165 }
166 
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 
171 	return kinfo->num_tqps * 2;
172 }
173 
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177 	u8 *buff = data;
178 	int i;
179 
180 	for (i = 0; i < kinfo->num_tqps; i++) {
181 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 						       struct hclgevf_tqp, q);
183 		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184 			 tqp->index);
185 		buff += ETH_GSTRING_LEN;
186 	}
187 
188 	for (i = 0; i < kinfo->num_tqps; i++) {
189 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190 						       struct hclgevf_tqp, q);
191 		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192 			 tqp->index);
193 		buff += ETH_GSTRING_LEN;
194 	}
195 
196 	return buff;
197 }
198 
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200 				 struct net_device_stats *net_stats)
201 {
202 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203 	int status;
204 
205 	status = hclgevf_tqps_update_stats(handle);
206 	if (status)
207 		dev_err(&hdev->pdev->dev,
208 			"VF update of TQPS stats fail, status = %d.\n",
209 			status);
210 }
211 
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214 	if (strset == ETH_SS_TEST)
215 		return -EOPNOTSUPP;
216 	else if (strset == ETH_SS_STATS)
217 		return hclgevf_tqps_get_sset_count(handle, strset);
218 
219 	return 0;
220 }
221 
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223 				u8 *data)
224 {
225 	u8 *p = (char *)data;
226 
227 	if (strset == ETH_SS_STATS)
228 		p = hclgevf_tqps_get_strings(handle, p);
229 }
230 
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233 	hclgevf_tqps_get_stats(handle, data);
234 }
235 
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237 				   u8 subcode)
238 {
239 	if (msg) {
240 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241 		msg->code = code;
242 		msg->subcode = subcode;
243 	}
244 }
245 
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
247 {
248 	struct hclge_vf_to_pf_msg send_msg;
249 	u8 resp_msg;
250 	int status;
251 
252 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254 				      sizeof(resp_msg));
255 	if (status) {
256 		dev_err(&hdev->pdev->dev,
257 			"VF request to get TC info from PF failed %d",
258 			status);
259 		return status;
260 	}
261 
262 	hdev->hw_tc_map = resp_msg;
263 
264 	return 0;
265 }
266 
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
268 {
269 	struct hnae3_handle *nic = &hdev->nic;
270 	struct hclge_vf_to_pf_msg send_msg;
271 	u8 resp_msg;
272 	int ret;
273 
274 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277 				   sizeof(u8));
278 	if (ret) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get port based vlan state failed %d",
281 			ret);
282 		return ret;
283 	}
284 
285 	nic->port_base_vlan_state = resp_msg;
286 
287 	return 0;
288 }
289 
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291 {
292 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
296 
297 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298 	struct hclge_vf_to_pf_msg send_msg;
299 	int status;
300 
301 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303 				      HCLGEVF_TQPS_RSS_INFO_LEN);
304 	if (status) {
305 		dev_err(&hdev->pdev->dev,
306 			"VF request to get tqp info from PF failed %d",
307 			status);
308 		return status;
309 	}
310 
311 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312 	       sizeof(u16));
313 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314 	       sizeof(u16));
315 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316 	       sizeof(u16));
317 
318 	return 0;
319 }
320 
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
322 {
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
326 
327 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328 	struct hclge_vf_to_pf_msg send_msg;
329 	int ret;
330 
331 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
334 	if (ret) {
335 		dev_err(&hdev->pdev->dev,
336 			"VF request to get tqp depth info from PF failed %d",
337 			ret);
338 		return ret;
339 	}
340 
341 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342 	       sizeof(u16));
343 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344 	       sizeof(u16));
345 
346 	return 0;
347 }
348 
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
350 {
351 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352 	struct hclge_vf_to_pf_msg send_msg;
353 	u16 qid_in_pf = 0;
354 	u8 resp_data[2];
355 	int ret;
356 
357 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360 				   sizeof(resp_data));
361 	if (!ret)
362 		qid_in_pf = *(u16 *)resp_data;
363 
364 	return qid_in_pf;
365 }
366 
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
368 {
369 	struct hclge_vf_to_pf_msg send_msg;
370 	u8 resp_msg[2];
371 	int ret;
372 
373 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375 				   sizeof(resp_msg));
376 	if (ret) {
377 		dev_err(&hdev->pdev->dev,
378 			"VF request to get the pf port media type failed %d",
379 			ret);
380 		return ret;
381 	}
382 
383 	hdev->hw.mac.media_type = resp_msg[0];
384 	hdev->hw.mac.module_type = resp_msg[1];
385 
386 	return 0;
387 }
388 
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
390 {
391 	struct hclgevf_tqp *tqp;
392 	int i;
393 
394 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
396 	if (!hdev->htqp)
397 		return -ENOMEM;
398 
399 	tqp = hdev->htqp;
400 
401 	for (i = 0; i < hdev->num_tqps; i++) {
402 		tqp->dev = &hdev->pdev->dev;
403 		tqp->index = i;
404 
405 		tqp->q.ae_algo = &ae_algovf;
406 		tqp->q.buf_size = hdev->rx_buf_len;
407 		tqp->q.tx_desc_num = hdev->num_tx_desc;
408 		tqp->q.rx_desc_num = hdev->num_rx_desc;
409 
410 		/* need an extended offset to configure queues >=
411 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
412 		 */
413 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414 			tqp->q.io_base = hdev->hw.io_base +
415 					 HCLGEVF_TQP_REG_OFFSET +
416 					 i * HCLGEVF_TQP_REG_SIZE;
417 		else
418 			tqp->q.io_base = hdev->hw.io_base +
419 					 HCLGEVF_TQP_REG_OFFSET +
420 					 HCLGEVF_TQP_EXT_REG_OFFSET +
421 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422 					 HCLGEVF_TQP_REG_SIZE;
423 
424 		tqp++;
425 	}
426 
427 	return 0;
428 }
429 
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
431 {
432 	struct hnae3_handle *nic = &hdev->nic;
433 	struct hnae3_knic_private_info *kinfo;
434 	u16 new_tqps = hdev->num_tqps;
435 	unsigned int i;
436 	u8 num_tc = 0;
437 
438 	kinfo = &nic->kinfo;
439 	kinfo->num_tx_desc = hdev->num_tx_desc;
440 	kinfo->num_rx_desc = hdev->num_rx_desc;
441 	kinfo->rx_buf_len = hdev->rx_buf_len;
442 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443 		if (hdev->hw_tc_map & BIT(i))
444 			num_tc++;
445 
446 	num_tc = num_tc ? num_tc : 1;
447 	kinfo->tc_info.num_tc = num_tc;
448 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
449 	new_tqps = kinfo->rss_size * num_tc;
450 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
451 
452 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
453 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
454 	if (!kinfo->tqp)
455 		return -ENOMEM;
456 
457 	for (i = 0; i < kinfo->num_tqps; i++) {
458 		hdev->htqp[i].q.handle = &hdev->nic;
459 		hdev->htqp[i].q.tqp_index = i;
460 		kinfo->tqp[i] = &hdev->htqp[i].q;
461 	}
462 
463 	/* after init the max rss_size and tqps, adjust the default tqp numbers
464 	 * and rss size with the actual vector numbers
465 	 */
466 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468 				kinfo->rss_size);
469 
470 	return 0;
471 }
472 
473 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
474 {
475 	struct hclge_vf_to_pf_msg send_msg;
476 	int status;
477 
478 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
479 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480 	if (status)
481 		dev_err(&hdev->pdev->dev,
482 			"VF failed to fetch link status(%d) from PF", status);
483 }
484 
485 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
486 {
487 	struct hnae3_handle *rhandle = &hdev->roce;
488 	struct hnae3_handle *handle = &hdev->nic;
489 	struct hnae3_client *rclient;
490 	struct hnae3_client *client;
491 
492 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
493 		return;
494 
495 	client = handle->client;
496 	rclient = hdev->roce_client;
497 
498 	link_state =
499 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
500 
501 	if (link_state != hdev->hw.mac.link) {
502 		client->ops->link_status_change(handle, !!link_state);
503 		if (rclient && rclient->ops->link_status_change)
504 			rclient->ops->link_status_change(rhandle, !!link_state);
505 		hdev->hw.mac.link = link_state;
506 	}
507 
508 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
509 }
510 
511 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
512 {
513 #define HCLGEVF_ADVERTISING	0
514 #define HCLGEVF_SUPPORTED	1
515 
516 	struct hclge_vf_to_pf_msg send_msg;
517 
518 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
519 	send_msg.data[0] = HCLGEVF_ADVERTISING;
520 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
521 	send_msg.data[0] = HCLGEVF_SUPPORTED;
522 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
523 }
524 
525 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
526 {
527 	struct hnae3_handle *nic = &hdev->nic;
528 	int ret;
529 
530 	nic->ae_algo = &ae_algovf;
531 	nic->pdev = hdev->pdev;
532 	nic->numa_node_mask = hdev->numa_node_mask;
533 	nic->flags |= HNAE3_SUPPORT_VF;
534 
535 	ret = hclgevf_knic_setup(hdev);
536 	if (ret)
537 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
538 			ret);
539 	return ret;
540 }
541 
542 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
543 {
544 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
545 		dev_warn(&hdev->pdev->dev,
546 			 "vector(vector_id %d) has been freed.\n", vector_id);
547 		return;
548 	}
549 
550 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
551 	hdev->num_msi_left += 1;
552 	hdev->num_msi_used -= 1;
553 }
554 
555 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
556 			      struct hnae3_vector_info *vector_info)
557 {
558 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
559 	struct hnae3_vector_info *vector = vector_info;
560 	int alloc = 0;
561 	int i, j;
562 
563 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
564 	vector_num = min(hdev->num_msi_left, vector_num);
565 
566 	for (j = 0; j < vector_num; j++) {
567 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
568 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
569 				vector->vector = pci_irq_vector(hdev->pdev, i);
570 				vector->io_addr = hdev->hw.io_base +
571 					HCLGEVF_VECTOR_REG_BASE +
572 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
573 				hdev->vector_status[i] = 0;
574 				hdev->vector_irq[i] = vector->vector;
575 
576 				vector++;
577 				alloc++;
578 
579 				break;
580 			}
581 		}
582 	}
583 	hdev->num_msi_left -= alloc;
584 	hdev->num_msi_used += alloc;
585 
586 	return alloc;
587 }
588 
589 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
590 {
591 	int i;
592 
593 	for (i = 0; i < hdev->num_msi; i++)
594 		if (vector == hdev->vector_irq[i])
595 			return i;
596 
597 	return -EINVAL;
598 }
599 
600 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
601 				    const u8 hfunc, const u8 *key)
602 {
603 	struct hclgevf_rss_config_cmd *req;
604 	unsigned int key_offset = 0;
605 	struct hclgevf_desc desc;
606 	int key_counts;
607 	int key_size;
608 	int ret;
609 
610 	key_counts = HCLGEVF_RSS_KEY_SIZE;
611 	req = (struct hclgevf_rss_config_cmd *)desc.data;
612 
613 	while (key_counts) {
614 		hclgevf_cmd_setup_basic_desc(&desc,
615 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
616 					     false);
617 
618 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
619 		req->hash_config |=
620 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
621 
622 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
623 		memcpy(req->hash_key,
624 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
625 
626 		key_counts -= key_size;
627 		key_offset++;
628 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
629 		if (ret) {
630 			dev_err(&hdev->pdev->dev,
631 				"Configure RSS config fail, status = %d\n",
632 				ret);
633 			return ret;
634 		}
635 	}
636 
637 	return 0;
638 }
639 
640 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
641 {
642 	return HCLGEVF_RSS_KEY_SIZE;
643 }
644 
645 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
646 {
647 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
648 	struct hclgevf_rss_indirection_table_cmd *req;
649 	struct hclgevf_desc desc;
650 	int rss_cfg_tbl_num;
651 	int status;
652 	int i, j;
653 
654 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
655 	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
656 			  HCLGEVF_RSS_CFG_TBL_SIZE;
657 
658 	for (i = 0; i < rss_cfg_tbl_num; i++) {
659 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
660 					     false);
661 		req->start_table_index =
662 			cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
663 		req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
664 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
665 			req->rss_result[j] =
666 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
667 
668 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
669 		if (status) {
670 			dev_err(&hdev->pdev->dev,
671 				"VF failed(=%d) to set RSS indirection table\n",
672 				status);
673 			return status;
674 		}
675 	}
676 
677 	return 0;
678 }
679 
680 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
681 {
682 	struct hclgevf_rss_tc_mode_cmd *req;
683 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
684 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
685 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
686 	struct hclgevf_desc desc;
687 	u16 roundup_size;
688 	unsigned int i;
689 	int status;
690 
691 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
692 
693 	roundup_size = roundup_pow_of_two(rss_size);
694 	roundup_size = ilog2(roundup_size);
695 
696 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
697 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
698 		tc_size[i] = roundup_size;
699 		tc_offset[i] = rss_size * i;
700 	}
701 
702 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
703 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
704 		u16 mode = 0;
705 
706 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
707 			      (tc_valid[i] & 0x1));
708 		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
709 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
710 		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
711 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
712 
713 		req->rss_tc_mode[i] = cpu_to_le16(mode);
714 	}
715 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
716 	if (status)
717 		dev_err(&hdev->pdev->dev,
718 			"VF failed(=%d) to set rss tc mode\n", status);
719 
720 	return status;
721 }
722 
723 /* for revision 0x20, vf shared the same rss config with pf */
724 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
725 {
726 #define HCLGEVF_RSS_MBX_RESP_LEN	8
727 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
728 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
729 	struct hclge_vf_to_pf_msg send_msg;
730 	u16 msg_num, hash_key_index;
731 	u8 index;
732 	int ret;
733 
734 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
735 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
736 			HCLGEVF_RSS_MBX_RESP_LEN;
737 	for (index = 0; index < msg_num; index++) {
738 		send_msg.data[0] = index;
739 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
740 					   HCLGEVF_RSS_MBX_RESP_LEN);
741 		if (ret) {
742 			dev_err(&hdev->pdev->dev,
743 				"VF get rss hash key from PF failed, ret=%d",
744 				ret);
745 			return ret;
746 		}
747 
748 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
749 		if (index == msg_num - 1)
750 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
751 			       &resp_msg[0],
752 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
753 		else
754 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
755 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
756 	}
757 
758 	return 0;
759 }
760 
761 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
762 			   u8 *hfunc)
763 {
764 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
765 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
766 	int i, ret;
767 
768 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
769 		/* Get hash algorithm */
770 		if (hfunc) {
771 			switch (rss_cfg->hash_algo) {
772 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
773 				*hfunc = ETH_RSS_HASH_TOP;
774 				break;
775 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
776 				*hfunc = ETH_RSS_HASH_XOR;
777 				break;
778 			default:
779 				*hfunc = ETH_RSS_HASH_UNKNOWN;
780 				break;
781 			}
782 		}
783 
784 		/* Get the RSS Key required by the user */
785 		if (key)
786 			memcpy(key, rss_cfg->rss_hash_key,
787 			       HCLGEVF_RSS_KEY_SIZE);
788 	} else {
789 		if (hfunc)
790 			*hfunc = ETH_RSS_HASH_TOP;
791 		if (key) {
792 			ret = hclgevf_get_rss_hash_key(hdev);
793 			if (ret)
794 				return ret;
795 			memcpy(key, rss_cfg->rss_hash_key,
796 			       HCLGEVF_RSS_KEY_SIZE);
797 		}
798 	}
799 
800 	if (indir)
801 		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
802 			indir[i] = rss_cfg->rss_indirection_tbl[i];
803 
804 	return 0;
805 }
806 
807 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
808 			   const u8 *key, const u8 hfunc)
809 {
810 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
811 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
812 	int ret, i;
813 
814 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
815 		/* Set the RSS Hash Key if specififed by the user */
816 		if (key) {
817 			switch (hfunc) {
818 			case ETH_RSS_HASH_TOP:
819 				rss_cfg->hash_algo =
820 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
821 				break;
822 			case ETH_RSS_HASH_XOR:
823 				rss_cfg->hash_algo =
824 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
825 				break;
826 			case ETH_RSS_HASH_NO_CHANGE:
827 				break;
828 			default:
829 				return -EINVAL;
830 			}
831 
832 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
833 						       key);
834 			if (ret)
835 				return ret;
836 
837 			/* Update the shadow RSS key with user specified qids */
838 			memcpy(rss_cfg->rss_hash_key, key,
839 			       HCLGEVF_RSS_KEY_SIZE);
840 		}
841 	}
842 
843 	/* update the shadow RSS table with user specified qids */
844 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
845 		rss_cfg->rss_indirection_tbl[i] = indir[i];
846 
847 	/* update the hardware */
848 	return hclgevf_set_rss_indir_table(hdev);
849 }
850 
851 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
852 {
853 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
854 
855 	if (nfc->data & RXH_L4_B_2_3)
856 		hash_sets |= HCLGEVF_D_PORT_BIT;
857 	else
858 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
859 
860 	if (nfc->data & RXH_IP_SRC)
861 		hash_sets |= HCLGEVF_S_IP_BIT;
862 	else
863 		hash_sets &= ~HCLGEVF_S_IP_BIT;
864 
865 	if (nfc->data & RXH_IP_DST)
866 		hash_sets |= HCLGEVF_D_IP_BIT;
867 	else
868 		hash_sets &= ~HCLGEVF_D_IP_BIT;
869 
870 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
871 		hash_sets |= HCLGEVF_V_TAG_BIT;
872 
873 	return hash_sets;
874 }
875 
876 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
877 				 struct ethtool_rxnfc *nfc)
878 {
879 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
880 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
881 	struct hclgevf_rss_input_tuple_cmd *req;
882 	struct hclgevf_desc desc;
883 	u8 tuple_sets;
884 	int ret;
885 
886 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
887 		return -EOPNOTSUPP;
888 
889 	if (nfc->data &
890 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
891 		return -EINVAL;
892 
893 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
894 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
895 
896 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
897 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
898 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
899 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
900 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
901 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
902 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
903 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
904 
905 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
906 	switch (nfc->flow_type) {
907 	case TCP_V4_FLOW:
908 		req->ipv4_tcp_en = tuple_sets;
909 		break;
910 	case TCP_V6_FLOW:
911 		req->ipv6_tcp_en = tuple_sets;
912 		break;
913 	case UDP_V4_FLOW:
914 		req->ipv4_udp_en = tuple_sets;
915 		break;
916 	case UDP_V6_FLOW:
917 		req->ipv6_udp_en = tuple_sets;
918 		break;
919 	case SCTP_V4_FLOW:
920 		req->ipv4_sctp_en = tuple_sets;
921 		break;
922 	case SCTP_V6_FLOW:
923 		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
924 		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
925 			return -EINVAL;
926 
927 		req->ipv6_sctp_en = tuple_sets;
928 		break;
929 	case IPV4_FLOW:
930 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
931 		break;
932 	case IPV6_FLOW:
933 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
934 		break;
935 	default:
936 		return -EINVAL;
937 	}
938 
939 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
940 	if (ret) {
941 		dev_err(&hdev->pdev->dev,
942 			"Set rss tuple fail, status = %d\n", ret);
943 		return ret;
944 	}
945 
946 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
947 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
948 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
949 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
950 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
951 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
952 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
953 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
954 	return 0;
955 }
956 
957 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
958 					      int flow_type, u8 *tuple_sets)
959 {
960 	switch (flow_type) {
961 	case TCP_V4_FLOW:
962 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
963 		break;
964 	case UDP_V4_FLOW:
965 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
966 		break;
967 	case TCP_V6_FLOW:
968 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
969 		break;
970 	case UDP_V6_FLOW:
971 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
972 		break;
973 	case SCTP_V4_FLOW:
974 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
975 		break;
976 	case SCTP_V6_FLOW:
977 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
978 		break;
979 	case IPV4_FLOW:
980 	case IPV6_FLOW:
981 		*tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
982 		break;
983 	default:
984 		return -EINVAL;
985 	}
986 
987 	return 0;
988 }
989 
990 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
991 {
992 	u64 tuple_data = 0;
993 
994 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
995 		tuple_data |= RXH_L4_B_2_3;
996 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
997 		tuple_data |= RXH_L4_B_0_1;
998 	if (tuple_sets & HCLGEVF_D_IP_BIT)
999 		tuple_data |= RXH_IP_DST;
1000 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1001 		tuple_data |= RXH_IP_SRC;
1002 
1003 	return tuple_data;
1004 }
1005 
1006 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1007 				 struct ethtool_rxnfc *nfc)
1008 {
1009 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1010 	u8 tuple_sets;
1011 	int ret;
1012 
1013 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1014 		return -EOPNOTSUPP;
1015 
1016 	nfc->data = 0;
1017 
1018 	ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1019 						 &tuple_sets);
1020 	if (ret || !tuple_sets)
1021 		return ret;
1022 
1023 	nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1024 
1025 	return 0;
1026 }
1027 
1028 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1029 				       struct hclgevf_rss_cfg *rss_cfg)
1030 {
1031 	struct hclgevf_rss_input_tuple_cmd *req;
1032 	struct hclgevf_desc desc;
1033 	int ret;
1034 
1035 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1036 
1037 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1038 
1039 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1040 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1041 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1042 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1043 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1044 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1045 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1046 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1047 
1048 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1049 	if (ret)
1050 		dev_err(&hdev->pdev->dev,
1051 			"Configure rss input fail, status = %d\n", ret);
1052 	return ret;
1053 }
1054 
1055 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1056 {
1057 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1058 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1059 
1060 	return rss_cfg->rss_size;
1061 }
1062 
1063 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1064 				       int vector_id,
1065 				       struct hnae3_ring_chain_node *ring_chain)
1066 {
1067 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1068 	struct hclge_vf_to_pf_msg send_msg;
1069 	struct hnae3_ring_chain_node *node;
1070 	int status;
1071 	int i = 0;
1072 
1073 	memset(&send_msg, 0, sizeof(send_msg));
1074 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1075 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1076 	send_msg.vector_id = vector_id;
1077 
1078 	for (node = ring_chain; node; node = node->next) {
1079 		send_msg.param[i].ring_type =
1080 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1081 
1082 		send_msg.param[i].tqp_index = node->tqp_index;
1083 		send_msg.param[i].int_gl_index =
1084 					hnae3_get_field(node->int_gl_idx,
1085 							HNAE3_RING_GL_IDX_M,
1086 							HNAE3_RING_GL_IDX_S);
1087 
1088 		i++;
1089 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1090 			send_msg.ring_num = i;
1091 
1092 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1093 						      NULL, 0);
1094 			if (status) {
1095 				dev_err(&hdev->pdev->dev,
1096 					"Map TQP fail, status is %d.\n",
1097 					status);
1098 				return status;
1099 			}
1100 			i = 0;
1101 		}
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1108 				      struct hnae3_ring_chain_node *ring_chain)
1109 {
1110 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1111 	int vector_id;
1112 
1113 	vector_id = hclgevf_get_vector_index(hdev, vector);
1114 	if (vector_id < 0) {
1115 		dev_err(&handle->pdev->dev,
1116 			"Get vector index fail. ret =%d\n", vector_id);
1117 		return vector_id;
1118 	}
1119 
1120 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1121 }
1122 
1123 static int hclgevf_unmap_ring_from_vector(
1124 				struct hnae3_handle *handle,
1125 				int vector,
1126 				struct hnae3_ring_chain_node *ring_chain)
1127 {
1128 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1129 	int ret, vector_id;
1130 
1131 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1132 		return 0;
1133 
1134 	vector_id = hclgevf_get_vector_index(hdev, vector);
1135 	if (vector_id < 0) {
1136 		dev_err(&handle->pdev->dev,
1137 			"Get vector index fail. ret =%d\n", vector_id);
1138 		return vector_id;
1139 	}
1140 
1141 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1142 	if (ret)
1143 		dev_err(&handle->pdev->dev,
1144 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1145 			vector_id,
1146 			ret);
1147 
1148 	return ret;
1149 }
1150 
1151 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1152 {
1153 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1154 	int vector_id;
1155 
1156 	vector_id = hclgevf_get_vector_index(hdev, vector);
1157 	if (vector_id < 0) {
1158 		dev_err(&handle->pdev->dev,
1159 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1160 			vector_id);
1161 		return vector_id;
1162 	}
1163 
1164 	hclgevf_free_vector(hdev, vector_id);
1165 
1166 	return 0;
1167 }
1168 
1169 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1170 					bool en_uc_pmc, bool en_mc_pmc,
1171 					bool en_bc_pmc)
1172 {
1173 	struct hnae3_handle *handle = &hdev->nic;
1174 	struct hclge_vf_to_pf_msg send_msg;
1175 	int ret;
1176 
1177 	memset(&send_msg, 0, sizeof(send_msg));
1178 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1179 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1180 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1181 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1182 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1183 					     &handle->priv_flags) ? 1 : 0;
1184 
1185 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1186 	if (ret)
1187 		dev_err(&hdev->pdev->dev,
1188 			"Set promisc mode fail, status is %d.\n", ret);
1189 
1190 	return ret;
1191 }
1192 
1193 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1194 				    bool en_mc_pmc)
1195 {
1196 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1197 	bool en_bc_pmc;
1198 
1199 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1200 
1201 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1202 					    en_bc_pmc);
1203 }
1204 
1205 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1206 {
1207 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1208 
1209 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1210 	hclgevf_task_schedule(hdev, 0);
1211 }
1212 
1213 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1214 {
1215 	struct hnae3_handle *handle = &hdev->nic;
1216 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1217 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1218 	int ret;
1219 
1220 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1221 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1222 		if (!ret)
1223 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1224 	}
1225 }
1226 
1227 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1228 			      int stream_id, bool enable)
1229 {
1230 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1231 	struct hclgevf_desc desc;
1232 	int status;
1233 
1234 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1235 
1236 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1237 				     false);
1238 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1239 	req->stream_id = cpu_to_le16(stream_id);
1240 	if (enable)
1241 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1242 
1243 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1244 	if (status)
1245 		dev_err(&hdev->pdev->dev,
1246 			"TQP enable fail, status =%d.\n", status);
1247 
1248 	return status;
1249 }
1250 
1251 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1252 {
1253 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1254 	struct hclgevf_tqp *tqp;
1255 	int i;
1256 
1257 	for (i = 0; i < kinfo->num_tqps; i++) {
1258 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1259 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1260 	}
1261 }
1262 
1263 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1264 {
1265 	struct hclge_vf_to_pf_msg send_msg;
1266 	u8 host_mac[ETH_ALEN];
1267 	int status;
1268 
1269 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1270 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1271 				      ETH_ALEN);
1272 	if (status) {
1273 		dev_err(&hdev->pdev->dev,
1274 			"fail to get VF MAC from host %d", status);
1275 		return status;
1276 	}
1277 
1278 	ether_addr_copy(p, host_mac);
1279 
1280 	return 0;
1281 }
1282 
1283 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1284 {
1285 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1286 	u8 host_mac_addr[ETH_ALEN];
1287 
1288 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1289 		return;
1290 
1291 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1292 	if (hdev->has_pf_mac)
1293 		ether_addr_copy(p, host_mac_addr);
1294 	else
1295 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1296 }
1297 
1298 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1299 				bool is_first)
1300 {
1301 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1302 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1303 	struct hclge_vf_to_pf_msg send_msg;
1304 	u8 *new_mac_addr = (u8 *)p;
1305 	int status;
1306 
1307 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1308 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1309 	ether_addr_copy(send_msg.data, new_mac_addr);
1310 	if (is_first && !hdev->has_pf_mac)
1311 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1312 	else
1313 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1314 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1315 	if (!status)
1316 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1317 
1318 	return status;
1319 }
1320 
1321 static struct hclgevf_mac_addr_node *
1322 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1323 {
1324 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1325 
1326 	list_for_each_entry_safe(mac_node, tmp, list, node)
1327 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1328 			return mac_node;
1329 
1330 	return NULL;
1331 }
1332 
1333 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1334 				    enum HCLGEVF_MAC_NODE_STATE state)
1335 {
1336 	switch (state) {
1337 	/* from set_rx_mode or tmp_add_list */
1338 	case HCLGEVF_MAC_TO_ADD:
1339 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1340 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1341 		break;
1342 	/* only from set_rx_mode */
1343 	case HCLGEVF_MAC_TO_DEL:
1344 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1345 			list_del(&mac_node->node);
1346 			kfree(mac_node);
1347 		} else {
1348 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1349 		}
1350 		break;
1351 	/* only from tmp_add_list, the mac_node->state won't be
1352 	 * HCLGEVF_MAC_ACTIVE
1353 	 */
1354 	case HCLGEVF_MAC_ACTIVE:
1355 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1356 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1357 		break;
1358 	}
1359 }
1360 
1361 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1362 				   enum HCLGEVF_MAC_NODE_STATE state,
1363 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1364 				   const unsigned char *addr)
1365 {
1366 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1367 	struct hclgevf_mac_addr_node *mac_node;
1368 	struct list_head *list;
1369 
1370 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1371 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1372 
1373 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1374 
1375 	/* if the mac addr is already in the mac list, no need to add a new
1376 	 * one into it, just check the mac addr state, convert it to a new
1377 	 * new state, or just remove it, or do nothing.
1378 	 */
1379 	mac_node = hclgevf_find_mac_node(list, addr);
1380 	if (mac_node) {
1381 		hclgevf_update_mac_node(mac_node, state);
1382 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1383 		return 0;
1384 	}
1385 	/* if this address is never added, unnecessary to delete */
1386 	if (state == HCLGEVF_MAC_TO_DEL) {
1387 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1388 		return -ENOENT;
1389 	}
1390 
1391 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1392 	if (!mac_node) {
1393 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1394 		return -ENOMEM;
1395 	}
1396 
1397 	mac_node->state = state;
1398 	ether_addr_copy(mac_node->mac_addr, addr);
1399 	list_add_tail(&mac_node->node, list);
1400 
1401 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1402 	return 0;
1403 }
1404 
1405 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1406 			       const unsigned char *addr)
1407 {
1408 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1409 				       HCLGEVF_MAC_ADDR_UC, addr);
1410 }
1411 
1412 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1413 			      const unsigned char *addr)
1414 {
1415 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1416 				       HCLGEVF_MAC_ADDR_UC, addr);
1417 }
1418 
1419 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1420 			       const unsigned char *addr)
1421 {
1422 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1423 				       HCLGEVF_MAC_ADDR_MC, addr);
1424 }
1425 
1426 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1427 			      const unsigned char *addr)
1428 {
1429 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1430 				       HCLGEVF_MAC_ADDR_MC, addr);
1431 }
1432 
1433 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1434 				    struct hclgevf_mac_addr_node *mac_node,
1435 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1436 {
1437 	struct hclge_vf_to_pf_msg send_msg;
1438 	u8 code, subcode;
1439 
1440 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1441 		code = HCLGE_MBX_SET_UNICAST;
1442 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1443 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1444 		else
1445 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1446 	} else {
1447 		code = HCLGE_MBX_SET_MULTICAST;
1448 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1449 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1450 		else
1451 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1452 	}
1453 
1454 	hclgevf_build_send_msg(&send_msg, code, subcode);
1455 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1456 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1457 }
1458 
1459 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1460 				    struct list_head *list,
1461 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1462 {
1463 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1464 	int ret;
1465 
1466 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1467 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1468 		if  (ret) {
1469 			dev_err(&hdev->pdev->dev,
1470 				"failed to configure mac %pM, state = %d, ret = %d\n",
1471 				mac_node->mac_addr, mac_node->state, ret);
1472 			return;
1473 		}
1474 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1475 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1476 		} else {
1477 			list_del(&mac_node->node);
1478 			kfree(mac_node);
1479 		}
1480 	}
1481 }
1482 
1483 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1484 				       struct list_head *mac_list)
1485 {
1486 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1487 
1488 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1489 		/* if the mac address from tmp_add_list is not in the
1490 		 * uc/mc_mac_list, it means have received a TO_DEL request
1491 		 * during the time window of sending mac config request to PF
1492 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1493 		 * then it will be removed at next time. If is TO_ADD, it means
1494 		 * send TO_ADD request failed, so just remove the mac node.
1495 		 */
1496 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1497 		if (new_node) {
1498 			hclgevf_update_mac_node(new_node, mac_node->state);
1499 			list_del(&mac_node->node);
1500 			kfree(mac_node);
1501 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1502 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1503 			list_del(&mac_node->node);
1504 			list_add_tail(&mac_node->node, mac_list);
1505 		} else {
1506 			list_del(&mac_node->node);
1507 			kfree(mac_node);
1508 		}
1509 	}
1510 }
1511 
1512 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1513 				       struct list_head *mac_list)
1514 {
1515 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1516 
1517 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1518 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1519 		if (new_node) {
1520 			/* If the mac addr is exist in the mac list, it means
1521 			 * received a new request TO_ADD during the time window
1522 			 * of sending mac addr configurrequest to PF, so just
1523 			 * change the mac state to ACTIVE.
1524 			 */
1525 			new_node->state = HCLGEVF_MAC_ACTIVE;
1526 			list_del(&mac_node->node);
1527 			kfree(mac_node);
1528 		} else {
1529 			list_del(&mac_node->node);
1530 			list_add_tail(&mac_node->node, mac_list);
1531 		}
1532 	}
1533 }
1534 
1535 static void hclgevf_clear_list(struct list_head *list)
1536 {
1537 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1538 
1539 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1540 		list_del(&mac_node->node);
1541 		kfree(mac_node);
1542 	}
1543 }
1544 
1545 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1546 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1547 {
1548 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1549 	struct list_head tmp_add_list, tmp_del_list;
1550 	struct list_head *list;
1551 
1552 	INIT_LIST_HEAD(&tmp_add_list);
1553 	INIT_LIST_HEAD(&tmp_del_list);
1554 
1555 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1556 	 * we can add/delete these mac addr outside the spin lock
1557 	 */
1558 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1559 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1560 
1561 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1562 
1563 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1564 		switch (mac_node->state) {
1565 		case HCLGEVF_MAC_TO_DEL:
1566 			list_del(&mac_node->node);
1567 			list_add_tail(&mac_node->node, &tmp_del_list);
1568 			break;
1569 		case HCLGEVF_MAC_TO_ADD:
1570 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1571 			if (!new_node)
1572 				goto stop_traverse;
1573 
1574 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1575 			new_node->state = mac_node->state;
1576 			list_add_tail(&new_node->node, &tmp_add_list);
1577 			break;
1578 		default:
1579 			break;
1580 		}
1581 	}
1582 
1583 stop_traverse:
1584 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1585 
1586 	/* delete first, in order to get max mac table space for adding */
1587 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1588 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1589 
1590 	/* if some mac addresses were added/deleted fail, move back to the
1591 	 * mac_list, and retry at next time.
1592 	 */
1593 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1594 
1595 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1596 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1597 
1598 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1599 }
1600 
1601 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1602 {
1603 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1604 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1605 }
1606 
1607 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1608 {
1609 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1610 
1611 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1612 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1613 
1614 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1615 }
1616 
1617 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1618 				   __be16 proto, u16 vlan_id,
1619 				   bool is_kill)
1620 {
1621 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1622 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1623 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1624 
1625 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1626 	struct hclge_vf_to_pf_msg send_msg;
1627 	int ret;
1628 
1629 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1630 		return -EINVAL;
1631 
1632 	if (proto != htons(ETH_P_8021Q))
1633 		return -EPROTONOSUPPORT;
1634 
1635 	/* When device is resetting or reset failed, firmware is unable to
1636 	 * handle mailbox. Just record the vlan id, and remove it after
1637 	 * reset finished.
1638 	 */
1639 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1640 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1641 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1642 		return -EBUSY;
1643 	}
1644 
1645 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1646 			       HCLGE_MBX_VLAN_FILTER);
1647 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1648 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1649 	       sizeof(vlan_id));
1650 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1651 	       sizeof(proto));
1652 	/* when remove hw vlan filter failed, record the vlan id,
1653 	 * and try to remove it from hw later, to be consistence
1654 	 * with stack.
1655 	 */
1656 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1657 	if (is_kill && ret)
1658 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1659 
1660 	return ret;
1661 }
1662 
1663 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1664 {
1665 #define HCLGEVF_MAX_SYNC_COUNT	60
1666 	struct hnae3_handle *handle = &hdev->nic;
1667 	int ret, sync_cnt = 0;
1668 	u16 vlan_id;
1669 
1670 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1671 	while (vlan_id != VLAN_N_VID) {
1672 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1673 					      vlan_id, true);
1674 		if (ret)
1675 			return;
1676 
1677 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1678 		sync_cnt++;
1679 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1680 			return;
1681 
1682 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1683 	}
1684 }
1685 
1686 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1687 {
1688 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1689 	struct hclge_vf_to_pf_msg send_msg;
1690 
1691 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1692 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1693 	send_msg.data[0] = enable ? 1 : 0;
1694 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1695 }
1696 
1697 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1698 {
1699 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1700 	struct hclge_vf_to_pf_msg send_msg;
1701 	int ret;
1702 
1703 	/* disable vf queue before send queue reset msg to PF */
1704 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1705 	if (ret)
1706 		return ret;
1707 
1708 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1709 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1710 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1711 }
1712 
1713 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1714 {
1715 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1716 	struct hclge_vf_to_pf_msg send_msg;
1717 
1718 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1719 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1720 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1721 }
1722 
1723 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1724 				 enum hnae3_reset_notify_type type)
1725 {
1726 	struct hnae3_client *client = hdev->nic_client;
1727 	struct hnae3_handle *handle = &hdev->nic;
1728 	int ret;
1729 
1730 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1731 	    !client)
1732 		return 0;
1733 
1734 	if (!client->ops->reset_notify)
1735 		return -EOPNOTSUPP;
1736 
1737 	ret = client->ops->reset_notify(handle, type);
1738 	if (ret)
1739 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1740 			type, ret);
1741 
1742 	return ret;
1743 }
1744 
1745 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1746 				      enum hnae3_reset_notify_type type)
1747 {
1748 	struct hnae3_client *client = hdev->roce_client;
1749 	struct hnae3_handle *handle = &hdev->roce;
1750 	int ret;
1751 
1752 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1753 		return 0;
1754 
1755 	if (!client->ops->reset_notify)
1756 		return -EOPNOTSUPP;
1757 
1758 	ret = client->ops->reset_notify(handle, type);
1759 	if (ret)
1760 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1761 			type, ret);
1762 	return ret;
1763 }
1764 
1765 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1766 {
1767 #define HCLGEVF_RESET_WAIT_US	20000
1768 #define HCLGEVF_RESET_WAIT_CNT	2000
1769 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1770 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1771 
1772 	u32 val;
1773 	int ret;
1774 
1775 	if (hdev->reset_type == HNAE3_VF_RESET)
1776 		ret = readl_poll_timeout(hdev->hw.io_base +
1777 					 HCLGEVF_VF_RST_ING, val,
1778 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1779 					 HCLGEVF_RESET_WAIT_US,
1780 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1781 	else
1782 		ret = readl_poll_timeout(hdev->hw.io_base +
1783 					 HCLGEVF_RST_ING, val,
1784 					 !(val & HCLGEVF_RST_ING_BITS),
1785 					 HCLGEVF_RESET_WAIT_US,
1786 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1787 
1788 	/* hardware completion status should be available by this time */
1789 	if (ret) {
1790 		dev_err(&hdev->pdev->dev,
1791 			"couldn't get reset done status from h/w, timeout!\n");
1792 		return ret;
1793 	}
1794 
1795 	/* we will wait a bit more to let reset of the stack to complete. This
1796 	 * might happen in case reset assertion was made by PF. Yes, this also
1797 	 * means we might end up waiting bit more even for VF reset.
1798 	 */
1799 	msleep(5000);
1800 
1801 	return 0;
1802 }
1803 
1804 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1805 {
1806 	u32 reg_val;
1807 
1808 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1809 	if (enable)
1810 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1811 	else
1812 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1813 
1814 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1815 			  reg_val);
1816 }
1817 
1818 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1819 {
1820 	int ret;
1821 
1822 	/* uninitialize the nic client */
1823 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1824 	if (ret)
1825 		return ret;
1826 
1827 	/* re-initialize the hclge device */
1828 	ret = hclgevf_reset_hdev(hdev);
1829 	if (ret) {
1830 		dev_err(&hdev->pdev->dev,
1831 			"hclge device re-init failed, VF is disabled!\n");
1832 		return ret;
1833 	}
1834 
1835 	/* bring up the nic client again */
1836 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1837 	if (ret)
1838 		return ret;
1839 
1840 	/* clear handshake status with IMP */
1841 	hclgevf_reset_handshake(hdev, false);
1842 
1843 	/* bring up the nic to enable TX/RX again */
1844 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1845 }
1846 
1847 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1848 {
1849 #define HCLGEVF_RESET_SYNC_TIME 100
1850 
1851 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1852 		struct hclge_vf_to_pf_msg send_msg;
1853 		int ret;
1854 
1855 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1856 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1857 		if (ret) {
1858 			dev_err(&hdev->pdev->dev,
1859 				"failed to assert VF reset, ret = %d\n", ret);
1860 			return ret;
1861 		}
1862 		hdev->rst_stats.vf_func_rst_cnt++;
1863 	}
1864 
1865 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1866 	/* inform hardware that preparatory work is done */
1867 	msleep(HCLGEVF_RESET_SYNC_TIME);
1868 	hclgevf_reset_handshake(hdev, true);
1869 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1870 		 hdev->reset_type);
1871 
1872 	return 0;
1873 }
1874 
1875 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1876 {
1877 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1878 		 hdev->rst_stats.vf_func_rst_cnt);
1879 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1880 		 hdev->rst_stats.flr_rst_cnt);
1881 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1882 		 hdev->rst_stats.vf_rst_cnt);
1883 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1884 		 hdev->rst_stats.rst_done_cnt);
1885 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1886 		 hdev->rst_stats.hw_rst_done_cnt);
1887 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1888 		 hdev->rst_stats.rst_cnt);
1889 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1890 		 hdev->rst_stats.rst_fail_cnt);
1891 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1892 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1893 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1894 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1895 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1896 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1897 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1898 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1899 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1900 }
1901 
1902 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1903 {
1904 	/* recover handshake status with IMP when reset fail */
1905 	hclgevf_reset_handshake(hdev, true);
1906 	hdev->rst_stats.rst_fail_cnt++;
1907 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1908 		hdev->rst_stats.rst_fail_cnt);
1909 
1910 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1911 		set_bit(hdev->reset_type, &hdev->reset_pending);
1912 
1913 	if (hclgevf_is_reset_pending(hdev)) {
1914 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1915 		hclgevf_reset_task_schedule(hdev);
1916 	} else {
1917 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1918 		hclgevf_dump_rst_info(hdev);
1919 	}
1920 }
1921 
1922 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1923 {
1924 	int ret;
1925 
1926 	hdev->rst_stats.rst_cnt++;
1927 
1928 	/* perform reset of the stack & ae device for a client */
1929 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1930 	if (ret)
1931 		return ret;
1932 
1933 	rtnl_lock();
1934 	/* bring down the nic to stop any ongoing TX/RX */
1935 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1936 	rtnl_unlock();
1937 	if (ret)
1938 		return ret;
1939 
1940 	return hclgevf_reset_prepare_wait(hdev);
1941 }
1942 
1943 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1944 {
1945 	int ret;
1946 
1947 	hdev->rst_stats.hw_rst_done_cnt++;
1948 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1949 	if (ret)
1950 		return ret;
1951 
1952 	rtnl_lock();
1953 	/* now, re-initialize the nic client and ae device */
1954 	ret = hclgevf_reset_stack(hdev);
1955 	rtnl_unlock();
1956 	if (ret) {
1957 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1958 		return ret;
1959 	}
1960 
1961 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1962 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1963 	 * times
1964 	 */
1965 	if (ret &&
1966 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1967 		return ret;
1968 
1969 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1970 	if (ret)
1971 		return ret;
1972 
1973 	hdev->last_reset_time = jiffies;
1974 	hdev->rst_stats.rst_done_cnt++;
1975 	hdev->rst_stats.rst_fail_cnt = 0;
1976 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1977 
1978 	return 0;
1979 }
1980 
1981 static void hclgevf_reset(struct hclgevf_dev *hdev)
1982 {
1983 	if (hclgevf_reset_prepare(hdev))
1984 		goto err_reset;
1985 
1986 	/* check if VF could successfully fetch the hardware reset completion
1987 	 * status from the hardware
1988 	 */
1989 	if (hclgevf_reset_wait(hdev)) {
1990 		/* can't do much in this situation, will disable VF */
1991 		dev_err(&hdev->pdev->dev,
1992 			"failed to fetch H/W reset completion status\n");
1993 		goto err_reset;
1994 	}
1995 
1996 	if (hclgevf_reset_rebuild(hdev))
1997 		goto err_reset;
1998 
1999 	return;
2000 
2001 err_reset:
2002 	hclgevf_reset_err_handle(hdev);
2003 }
2004 
2005 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2006 						     unsigned long *addr)
2007 {
2008 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2009 
2010 	/* return the highest priority reset level amongst all */
2011 	if (test_bit(HNAE3_VF_RESET, addr)) {
2012 		rst_level = HNAE3_VF_RESET;
2013 		clear_bit(HNAE3_VF_RESET, addr);
2014 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2015 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2016 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2017 		rst_level = HNAE3_VF_FULL_RESET;
2018 		clear_bit(HNAE3_VF_FULL_RESET, addr);
2019 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2020 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2021 		rst_level = HNAE3_VF_PF_FUNC_RESET;
2022 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2023 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2024 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2025 		rst_level = HNAE3_VF_FUNC_RESET;
2026 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2027 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2028 		rst_level = HNAE3_FLR_RESET;
2029 		clear_bit(HNAE3_FLR_RESET, addr);
2030 	}
2031 
2032 	return rst_level;
2033 }
2034 
2035 static void hclgevf_reset_event(struct pci_dev *pdev,
2036 				struct hnae3_handle *handle)
2037 {
2038 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2039 	struct hclgevf_dev *hdev = ae_dev->priv;
2040 
2041 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2042 
2043 	if (hdev->default_reset_request)
2044 		hdev->reset_level =
2045 			hclgevf_get_reset_level(hdev,
2046 						&hdev->default_reset_request);
2047 	else
2048 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2049 
2050 	/* reset of this VF requested */
2051 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2052 	hclgevf_reset_task_schedule(hdev);
2053 
2054 	hdev->last_reset_time = jiffies;
2055 }
2056 
2057 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2058 					  enum hnae3_reset_type rst_type)
2059 {
2060 	struct hclgevf_dev *hdev = ae_dev->priv;
2061 
2062 	set_bit(rst_type, &hdev->default_reset_request);
2063 }
2064 
2065 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2066 {
2067 	writel(en ? 1 : 0, vector->addr);
2068 }
2069 
2070 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2071 {
2072 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
2073 #define HCLGEVF_FLR_RETRY_CNT		5
2074 
2075 	struct hclgevf_dev *hdev = ae_dev->priv;
2076 	int retry_cnt = 0;
2077 	int ret;
2078 
2079 retry:
2080 	down(&hdev->reset_sem);
2081 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2082 	hdev->reset_type = HNAE3_FLR_RESET;
2083 	ret = hclgevf_reset_prepare(hdev);
2084 	if (ret) {
2085 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2086 			ret);
2087 		if (hdev->reset_pending ||
2088 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2089 			dev_err(&hdev->pdev->dev,
2090 				"reset_pending:0x%lx, retry_cnt:%d\n",
2091 				hdev->reset_pending, retry_cnt);
2092 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2093 			up(&hdev->reset_sem);
2094 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2095 			goto retry;
2096 		}
2097 	}
2098 
2099 	/* disable misc vector before FLR done */
2100 	hclgevf_enable_vector(&hdev->misc_vector, false);
2101 	hdev->rst_stats.flr_rst_cnt++;
2102 }
2103 
2104 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2105 {
2106 	struct hclgevf_dev *hdev = ae_dev->priv;
2107 	int ret;
2108 
2109 	hclgevf_enable_vector(&hdev->misc_vector, true);
2110 
2111 	ret = hclgevf_reset_rebuild(hdev);
2112 	if (ret)
2113 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2114 			 ret);
2115 
2116 	hdev->reset_type = HNAE3_NONE_RESET;
2117 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2118 	up(&hdev->reset_sem);
2119 }
2120 
2121 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2122 {
2123 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2124 
2125 	return hdev->fw_version;
2126 }
2127 
2128 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2129 {
2130 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2131 
2132 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2133 					    HCLGEVF_MISC_VECTOR_NUM);
2134 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2135 	/* vector status always valid for Vector 0 */
2136 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2137 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2138 
2139 	hdev->num_msi_left -= 1;
2140 	hdev->num_msi_used += 1;
2141 }
2142 
2143 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2144 {
2145 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2146 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2147 			      &hdev->state))
2148 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2149 }
2150 
2151 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2152 {
2153 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2154 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2155 			      &hdev->state))
2156 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2157 }
2158 
2159 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2160 				  unsigned long delay)
2161 {
2162 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2163 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2164 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2165 }
2166 
2167 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2168 {
2169 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2170 
2171 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2172 		return;
2173 
2174 	down(&hdev->reset_sem);
2175 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2176 
2177 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2178 			       &hdev->reset_state)) {
2179 		/* PF has initmated that it is about to reset the hardware.
2180 		 * We now have to poll & check if hardware has actually
2181 		 * completed the reset sequence. On hardware reset completion,
2182 		 * VF needs to reset the client and ae device.
2183 		 */
2184 		hdev->reset_attempts = 0;
2185 
2186 		hdev->last_reset_time = jiffies;
2187 		while ((hdev->reset_type =
2188 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2189 		       != HNAE3_NONE_RESET)
2190 			hclgevf_reset(hdev);
2191 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2192 				      &hdev->reset_state)) {
2193 		/* we could be here when either of below happens:
2194 		 * 1. reset was initiated due to watchdog timeout caused by
2195 		 *    a. IMP was earlier reset and our TX got choked down and
2196 		 *       which resulted in watchdog reacting and inducing VF
2197 		 *       reset. This also means our cmdq would be unreliable.
2198 		 *    b. problem in TX due to other lower layer(example link
2199 		 *       layer not functioning properly etc.)
2200 		 * 2. VF reset might have been initiated due to some config
2201 		 *    change.
2202 		 *
2203 		 * NOTE: Theres no clear way to detect above cases than to react
2204 		 * to the response of PF for this reset request. PF will ack the
2205 		 * 1b and 2. cases but we will not get any intimation about 1a
2206 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2207 		 * communication between PF and VF would be broken.
2208 		 *
2209 		 * if we are never geting into pending state it means either:
2210 		 * 1. PF is not receiving our request which could be due to IMP
2211 		 *    reset
2212 		 * 2. PF is screwed
2213 		 * We cannot do much for 2. but to check first we can try reset
2214 		 * our PCIe + stack and see if it alleviates the problem.
2215 		 */
2216 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2217 			/* prepare for full reset of stack + pcie interface */
2218 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2219 
2220 			/* "defer" schedule the reset task again */
2221 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2222 		} else {
2223 			hdev->reset_attempts++;
2224 
2225 			set_bit(hdev->reset_level, &hdev->reset_pending);
2226 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2227 		}
2228 		hclgevf_reset_task_schedule(hdev);
2229 	}
2230 
2231 	hdev->reset_type = HNAE3_NONE_RESET;
2232 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2233 	up(&hdev->reset_sem);
2234 }
2235 
2236 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2237 {
2238 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2239 		return;
2240 
2241 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2242 		return;
2243 
2244 	hclgevf_mbx_async_handler(hdev);
2245 
2246 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2247 }
2248 
2249 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2250 {
2251 	struct hclge_vf_to_pf_msg send_msg;
2252 	int ret;
2253 
2254 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2255 		return;
2256 
2257 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2258 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2259 	if (ret)
2260 		dev_err(&hdev->pdev->dev,
2261 			"VF sends keep alive cmd failed(=%d)\n", ret);
2262 }
2263 
2264 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2265 {
2266 	unsigned long delta = round_jiffies_relative(HZ);
2267 	struct hnae3_handle *handle = &hdev->nic;
2268 
2269 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2270 		return;
2271 
2272 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2273 		delta = jiffies - hdev->last_serv_processed;
2274 
2275 		if (delta < round_jiffies_relative(HZ)) {
2276 			delta = round_jiffies_relative(HZ) - delta;
2277 			goto out;
2278 		}
2279 	}
2280 
2281 	hdev->serv_processed_cnt++;
2282 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2283 		hclgevf_keep_alive(hdev);
2284 
2285 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2286 		hdev->last_serv_processed = jiffies;
2287 		goto out;
2288 	}
2289 
2290 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2291 		hclgevf_tqps_update_stats(handle);
2292 
2293 	/* request the link status from the PF. PF would be able to tell VF
2294 	 * about such updates in future so we might remove this later
2295 	 */
2296 	hclgevf_request_link_info(hdev);
2297 
2298 	hclgevf_update_link_mode(hdev);
2299 
2300 	hclgevf_sync_vlan_filter(hdev);
2301 
2302 	hclgevf_sync_mac_table(hdev);
2303 
2304 	hclgevf_sync_promisc_mode(hdev);
2305 
2306 	hdev->last_serv_processed = jiffies;
2307 
2308 out:
2309 	hclgevf_task_schedule(hdev, delta);
2310 }
2311 
2312 static void hclgevf_service_task(struct work_struct *work)
2313 {
2314 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2315 						service_task.work);
2316 
2317 	hclgevf_reset_service_task(hdev);
2318 	hclgevf_mailbox_service_task(hdev);
2319 	hclgevf_periodic_service_task(hdev);
2320 
2321 	/* Handle reset and mbx again in case periodical task delays the
2322 	 * handling by calling hclgevf_task_schedule() in
2323 	 * hclgevf_periodic_service_task()
2324 	 */
2325 	hclgevf_reset_service_task(hdev);
2326 	hclgevf_mailbox_service_task(hdev);
2327 }
2328 
2329 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2330 {
2331 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2332 }
2333 
2334 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2335 						      u32 *clearval)
2336 {
2337 	u32 val, cmdq_stat_reg, rst_ing_reg;
2338 
2339 	/* fetch the events from their corresponding regs */
2340 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2341 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2342 
2343 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2344 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2345 		dev_info(&hdev->pdev->dev,
2346 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2347 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2348 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2349 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2350 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2351 		hdev->rst_stats.vf_rst_cnt++;
2352 		/* set up VF hardware reset status, its PF will clear
2353 		 * this status when PF has initialized done.
2354 		 */
2355 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2356 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2357 				  val | HCLGEVF_VF_RST_ING_BIT);
2358 		return HCLGEVF_VECTOR0_EVENT_RST;
2359 	}
2360 
2361 	/* check for vector0 mailbox(=CMDQ RX) event source */
2362 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2363 		/* for revision 0x21, clearing interrupt is writing bit 0
2364 		 * to the clear register, writing bit 1 means to keep the
2365 		 * old value.
2366 		 * for revision 0x20, the clear register is a read & write
2367 		 * register, so we should just write 0 to the bit we are
2368 		 * handling, and keep other bits as cmdq_stat_reg.
2369 		 */
2370 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2371 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2372 		else
2373 			*clearval = cmdq_stat_reg &
2374 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2375 
2376 		return HCLGEVF_VECTOR0_EVENT_MBX;
2377 	}
2378 
2379 	/* print other vector0 event source */
2380 	dev_info(&hdev->pdev->dev,
2381 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2382 		 cmdq_stat_reg);
2383 
2384 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2385 }
2386 
2387 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2388 {
2389 	enum hclgevf_evt_cause event_cause;
2390 	struct hclgevf_dev *hdev = data;
2391 	u32 clearval;
2392 
2393 	hclgevf_enable_vector(&hdev->misc_vector, false);
2394 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2395 
2396 	switch (event_cause) {
2397 	case HCLGEVF_VECTOR0_EVENT_RST:
2398 		hclgevf_reset_task_schedule(hdev);
2399 		break;
2400 	case HCLGEVF_VECTOR0_EVENT_MBX:
2401 		hclgevf_mbx_handler(hdev);
2402 		break;
2403 	default:
2404 		break;
2405 	}
2406 
2407 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2408 		hclgevf_clear_event_cause(hdev, clearval);
2409 		hclgevf_enable_vector(&hdev->misc_vector, true);
2410 	}
2411 
2412 	return IRQ_HANDLED;
2413 }
2414 
2415 static int hclgevf_configure(struct hclgevf_dev *hdev)
2416 {
2417 	int ret;
2418 
2419 	/* get current port based vlan state from PF */
2420 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2421 	if (ret)
2422 		return ret;
2423 
2424 	/* get queue configuration from PF */
2425 	ret = hclgevf_get_queue_info(hdev);
2426 	if (ret)
2427 		return ret;
2428 
2429 	/* get queue depth info from PF */
2430 	ret = hclgevf_get_queue_depth(hdev);
2431 	if (ret)
2432 		return ret;
2433 
2434 	ret = hclgevf_get_pf_media_type(hdev);
2435 	if (ret)
2436 		return ret;
2437 
2438 	/* get tc configuration from PF */
2439 	return hclgevf_get_tc_info(hdev);
2440 }
2441 
2442 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2443 {
2444 	struct pci_dev *pdev = ae_dev->pdev;
2445 	struct hclgevf_dev *hdev;
2446 
2447 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2448 	if (!hdev)
2449 		return -ENOMEM;
2450 
2451 	hdev->pdev = pdev;
2452 	hdev->ae_dev = ae_dev;
2453 	ae_dev->priv = hdev;
2454 
2455 	return 0;
2456 }
2457 
2458 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2459 {
2460 	struct hnae3_handle *roce = &hdev->roce;
2461 	struct hnae3_handle *nic = &hdev->nic;
2462 
2463 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2464 
2465 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2466 	    hdev->num_msi_left == 0)
2467 		return -EINVAL;
2468 
2469 	roce->rinfo.base_vector = hdev->roce_base_vector;
2470 
2471 	roce->rinfo.netdev = nic->kinfo.netdev;
2472 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2473 	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2474 
2475 	roce->pdev = nic->pdev;
2476 	roce->ae_algo = nic->ae_algo;
2477 	roce->numa_node_mask = nic->numa_node_mask;
2478 
2479 	return 0;
2480 }
2481 
2482 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2483 {
2484 	struct hclgevf_cfg_gro_status_cmd *req;
2485 	struct hclgevf_desc desc;
2486 	int ret;
2487 
2488 	if (!hnae3_dev_gro_supported(hdev))
2489 		return 0;
2490 
2491 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2492 				     false);
2493 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2494 
2495 	req->gro_en = en ? 1 : 0;
2496 
2497 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2498 	if (ret)
2499 		dev_err(&hdev->pdev->dev,
2500 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2501 
2502 	return ret;
2503 }
2504 
2505 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2506 {
2507 	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2508 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2509 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2510 	u32 i;
2511 
2512 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2513 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2514 	tuple_sets = &rss_cfg->rss_tuple_sets;
2515 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2516 		u8 *rss_ind_tbl;
2517 
2518 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2519 
2520 		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2521 					   sizeof(*rss_ind_tbl), GFP_KERNEL);
2522 		if (!rss_ind_tbl)
2523 			return -ENOMEM;
2524 
2525 		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2526 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2527 		       HCLGEVF_RSS_KEY_SIZE);
2528 
2529 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2530 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2531 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2532 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2533 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2534 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2535 		tuple_sets->ipv6_sctp_en =
2536 			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2537 					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2538 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2539 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2540 	}
2541 
2542 	/* Initialize RSS indirect table */
2543 	for (i = 0; i < rss_ind_tbl_size; i++)
2544 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2545 
2546 	return 0;
2547 }
2548 
2549 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2550 {
2551 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2552 	int ret;
2553 
2554 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2555 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2556 					       rss_cfg->rss_hash_key);
2557 		if (ret)
2558 			return ret;
2559 
2560 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2561 		if (ret)
2562 			return ret;
2563 	}
2564 
2565 	ret = hclgevf_set_rss_indir_table(hdev);
2566 	if (ret)
2567 		return ret;
2568 
2569 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2570 }
2571 
2572 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2573 {
2574 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2575 				       false);
2576 }
2577 
2578 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2579 {
2580 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2581 
2582 	unsigned long last = hdev->serv_processed_cnt;
2583 	int i = 0;
2584 
2585 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2586 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2587 	       last == hdev->serv_processed_cnt)
2588 		usleep_range(1, 1);
2589 }
2590 
2591 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2592 {
2593 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2594 
2595 	if (enable) {
2596 		hclgevf_task_schedule(hdev, 0);
2597 	} else {
2598 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2599 
2600 		/* flush memory to make sure DOWN is seen by service task */
2601 		smp_mb__before_atomic();
2602 		hclgevf_flush_link_update(hdev);
2603 	}
2604 }
2605 
2606 static int hclgevf_ae_start(struct hnae3_handle *handle)
2607 {
2608 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2609 
2610 	hclgevf_reset_tqp_stats(handle);
2611 
2612 	hclgevf_request_link_info(hdev);
2613 
2614 	hclgevf_update_link_mode(hdev);
2615 
2616 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2617 
2618 	return 0;
2619 }
2620 
2621 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2622 {
2623 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2624 	int i;
2625 
2626 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2627 
2628 	if (hdev->reset_type != HNAE3_VF_RESET)
2629 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2630 			if (hclgevf_reset_tqp(handle, i))
2631 				break;
2632 
2633 	hclgevf_reset_tqp_stats(handle);
2634 	hclgevf_update_link_status(hdev, 0);
2635 }
2636 
2637 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2638 {
2639 #define HCLGEVF_STATE_ALIVE	1
2640 #define HCLGEVF_STATE_NOT_ALIVE	0
2641 
2642 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2643 	struct hclge_vf_to_pf_msg send_msg;
2644 
2645 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2646 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2647 				HCLGEVF_STATE_NOT_ALIVE;
2648 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2649 }
2650 
2651 static int hclgevf_client_start(struct hnae3_handle *handle)
2652 {
2653 	return hclgevf_set_alive(handle, true);
2654 }
2655 
2656 static void hclgevf_client_stop(struct hnae3_handle *handle)
2657 {
2658 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2659 	int ret;
2660 
2661 	ret = hclgevf_set_alive(handle, false);
2662 	if (ret)
2663 		dev_warn(&hdev->pdev->dev,
2664 			 "%s failed %d\n", __func__, ret);
2665 }
2666 
2667 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2668 {
2669 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2670 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2671 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2672 
2673 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2674 
2675 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2676 	sema_init(&hdev->reset_sem, 1);
2677 
2678 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2679 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2680 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2681 
2682 	/* bring the device down */
2683 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2684 }
2685 
2686 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2687 {
2688 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2689 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2690 
2691 	if (hdev->service_task.work.func)
2692 		cancel_delayed_work_sync(&hdev->service_task);
2693 
2694 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2695 }
2696 
2697 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2698 {
2699 	struct pci_dev *pdev = hdev->pdev;
2700 	int vectors;
2701 	int i;
2702 
2703 	if (hnae3_dev_roce_supported(hdev))
2704 		vectors = pci_alloc_irq_vectors(pdev,
2705 						hdev->roce_base_msix_offset + 1,
2706 						hdev->num_msi,
2707 						PCI_IRQ_MSIX);
2708 	else
2709 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2710 						hdev->num_msi,
2711 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2712 
2713 	if (vectors < 0) {
2714 		dev_err(&pdev->dev,
2715 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2716 			vectors);
2717 		return vectors;
2718 	}
2719 	if (vectors < hdev->num_msi)
2720 		dev_warn(&hdev->pdev->dev,
2721 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2722 			 hdev->num_msi, vectors);
2723 
2724 	hdev->num_msi = vectors;
2725 	hdev->num_msi_left = vectors;
2726 
2727 	hdev->base_msi_vector = pdev->irq;
2728 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2729 
2730 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2731 					   sizeof(u16), GFP_KERNEL);
2732 	if (!hdev->vector_status) {
2733 		pci_free_irq_vectors(pdev);
2734 		return -ENOMEM;
2735 	}
2736 
2737 	for (i = 0; i < hdev->num_msi; i++)
2738 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2739 
2740 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2741 					sizeof(int), GFP_KERNEL);
2742 	if (!hdev->vector_irq) {
2743 		devm_kfree(&pdev->dev, hdev->vector_status);
2744 		pci_free_irq_vectors(pdev);
2745 		return -ENOMEM;
2746 	}
2747 
2748 	return 0;
2749 }
2750 
2751 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2752 {
2753 	struct pci_dev *pdev = hdev->pdev;
2754 
2755 	devm_kfree(&pdev->dev, hdev->vector_status);
2756 	devm_kfree(&pdev->dev, hdev->vector_irq);
2757 	pci_free_irq_vectors(pdev);
2758 }
2759 
2760 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2761 {
2762 	int ret;
2763 
2764 	hclgevf_get_misc_vector(hdev);
2765 
2766 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2767 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2768 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2769 			  0, hdev->misc_vector.name, hdev);
2770 	if (ret) {
2771 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2772 			hdev->misc_vector.vector_irq);
2773 		return ret;
2774 	}
2775 
2776 	hclgevf_clear_event_cause(hdev, 0);
2777 
2778 	/* enable misc. vector(vector 0) */
2779 	hclgevf_enable_vector(&hdev->misc_vector, true);
2780 
2781 	return ret;
2782 }
2783 
2784 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2785 {
2786 	/* disable misc vector(vector 0) */
2787 	hclgevf_enable_vector(&hdev->misc_vector, false);
2788 	synchronize_irq(hdev->misc_vector.vector_irq);
2789 	free_irq(hdev->misc_vector.vector_irq, hdev);
2790 	hclgevf_free_vector(hdev, 0);
2791 }
2792 
2793 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2794 {
2795 	struct device *dev = &hdev->pdev->dev;
2796 
2797 	dev_info(dev, "VF info begin:\n");
2798 
2799 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2800 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2801 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2802 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2803 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2804 	dev_info(dev, "PF media type of this VF: %u\n",
2805 		 hdev->hw.mac.media_type);
2806 
2807 	dev_info(dev, "VF info end.\n");
2808 }
2809 
2810 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2811 					    struct hnae3_client *client)
2812 {
2813 	struct hclgevf_dev *hdev = ae_dev->priv;
2814 	int rst_cnt = hdev->rst_stats.rst_cnt;
2815 	int ret;
2816 
2817 	ret = client->ops->init_instance(&hdev->nic);
2818 	if (ret)
2819 		return ret;
2820 
2821 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2822 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2823 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2824 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2825 
2826 		client->ops->uninit_instance(&hdev->nic, 0);
2827 		return -EBUSY;
2828 	}
2829 
2830 	hnae3_set_client_init_flag(client, ae_dev, 1);
2831 
2832 	if (netif_msg_drv(&hdev->nic))
2833 		hclgevf_info_show(hdev);
2834 
2835 	return 0;
2836 }
2837 
2838 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2839 					     struct hnae3_client *client)
2840 {
2841 	struct hclgevf_dev *hdev = ae_dev->priv;
2842 	int ret;
2843 
2844 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2845 	    !hdev->nic_client)
2846 		return 0;
2847 
2848 	ret = hclgevf_init_roce_base_info(hdev);
2849 	if (ret)
2850 		return ret;
2851 
2852 	ret = client->ops->init_instance(&hdev->roce);
2853 	if (ret)
2854 		return ret;
2855 
2856 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2857 	hnae3_set_client_init_flag(client, ae_dev, 1);
2858 
2859 	return 0;
2860 }
2861 
2862 static int hclgevf_init_client_instance(struct hnae3_client *client,
2863 					struct hnae3_ae_dev *ae_dev)
2864 {
2865 	struct hclgevf_dev *hdev = ae_dev->priv;
2866 	int ret;
2867 
2868 	switch (client->type) {
2869 	case HNAE3_CLIENT_KNIC:
2870 		hdev->nic_client = client;
2871 		hdev->nic.client = client;
2872 
2873 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2874 		if (ret)
2875 			goto clear_nic;
2876 
2877 		ret = hclgevf_init_roce_client_instance(ae_dev,
2878 							hdev->roce_client);
2879 		if (ret)
2880 			goto clear_roce;
2881 
2882 		break;
2883 	case HNAE3_CLIENT_ROCE:
2884 		if (hnae3_dev_roce_supported(hdev)) {
2885 			hdev->roce_client = client;
2886 			hdev->roce.client = client;
2887 		}
2888 
2889 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2890 		if (ret)
2891 			goto clear_roce;
2892 
2893 		break;
2894 	default:
2895 		return -EINVAL;
2896 	}
2897 
2898 	return 0;
2899 
2900 clear_nic:
2901 	hdev->nic_client = NULL;
2902 	hdev->nic.client = NULL;
2903 	return ret;
2904 clear_roce:
2905 	hdev->roce_client = NULL;
2906 	hdev->roce.client = NULL;
2907 	return ret;
2908 }
2909 
2910 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2911 					   struct hnae3_ae_dev *ae_dev)
2912 {
2913 	struct hclgevf_dev *hdev = ae_dev->priv;
2914 
2915 	/* un-init roce, if it exists */
2916 	if (hdev->roce_client) {
2917 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2918 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2919 		hdev->roce_client = NULL;
2920 		hdev->roce.client = NULL;
2921 	}
2922 
2923 	/* un-init nic/unic, if this was not called by roce client */
2924 	if (client->ops->uninit_instance && hdev->nic_client &&
2925 	    client->type != HNAE3_CLIENT_ROCE) {
2926 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2927 
2928 		client->ops->uninit_instance(&hdev->nic, 0);
2929 		hdev->nic_client = NULL;
2930 		hdev->nic.client = NULL;
2931 	}
2932 }
2933 
2934 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2935 {
2936 #define HCLGEVF_MEM_BAR		4
2937 
2938 	struct pci_dev *pdev = hdev->pdev;
2939 	struct hclgevf_hw *hw = &hdev->hw;
2940 
2941 	/* for device does not have device memory, return directly */
2942 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2943 		return 0;
2944 
2945 	hw->mem_base = devm_ioremap_wc(&pdev->dev,
2946 				       pci_resource_start(pdev,
2947 							  HCLGEVF_MEM_BAR),
2948 				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2949 	if (!hw->mem_base) {
2950 		dev_err(&pdev->dev, "failed to map device memory\n");
2951 		return -EFAULT;
2952 	}
2953 
2954 	return 0;
2955 }
2956 
2957 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2958 {
2959 	struct pci_dev *pdev = hdev->pdev;
2960 	struct hclgevf_hw *hw;
2961 	int ret;
2962 
2963 	ret = pci_enable_device(pdev);
2964 	if (ret) {
2965 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2966 		return ret;
2967 	}
2968 
2969 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2970 	if (ret) {
2971 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2972 		goto err_disable_device;
2973 	}
2974 
2975 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2976 	if (ret) {
2977 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2978 		goto err_disable_device;
2979 	}
2980 
2981 	pci_set_master(pdev);
2982 	hw = &hdev->hw;
2983 	hw->hdev = hdev;
2984 	hw->io_base = pci_iomap(pdev, 2, 0);
2985 	if (!hw->io_base) {
2986 		dev_err(&pdev->dev, "can't map configuration register space\n");
2987 		ret = -ENOMEM;
2988 		goto err_clr_master;
2989 	}
2990 
2991 	ret = hclgevf_dev_mem_map(hdev);
2992 	if (ret)
2993 		goto err_unmap_io_base;
2994 
2995 	return 0;
2996 
2997 err_unmap_io_base:
2998 	pci_iounmap(pdev, hdev->hw.io_base);
2999 err_clr_master:
3000 	pci_clear_master(pdev);
3001 	pci_release_regions(pdev);
3002 err_disable_device:
3003 	pci_disable_device(pdev);
3004 
3005 	return ret;
3006 }
3007 
3008 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3009 {
3010 	struct pci_dev *pdev = hdev->pdev;
3011 
3012 	if (hdev->hw.mem_base)
3013 		devm_iounmap(&pdev->dev, hdev->hw.mem_base);
3014 
3015 	pci_iounmap(pdev, hdev->hw.io_base);
3016 	pci_clear_master(pdev);
3017 	pci_release_regions(pdev);
3018 	pci_disable_device(pdev);
3019 }
3020 
3021 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3022 {
3023 	struct hclgevf_query_res_cmd *req;
3024 	struct hclgevf_desc desc;
3025 	int ret;
3026 
3027 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3028 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3029 	if (ret) {
3030 		dev_err(&hdev->pdev->dev,
3031 			"query vf resource failed, ret = %d.\n", ret);
3032 		return ret;
3033 	}
3034 
3035 	req = (struct hclgevf_query_res_cmd *)desc.data;
3036 
3037 	if (hnae3_dev_roce_supported(hdev)) {
3038 		hdev->roce_base_msix_offset =
3039 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3040 				HCLGEVF_MSIX_OFT_ROCEE_M,
3041 				HCLGEVF_MSIX_OFT_ROCEE_S);
3042 		hdev->num_roce_msix =
3043 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3044 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3045 
3046 		/* nic's msix numbers is always equals to the roce's. */
3047 		hdev->num_nic_msix = hdev->num_roce_msix;
3048 
3049 		/* VF should have NIC vectors and Roce vectors, NIC vectors
3050 		 * are queued before Roce vectors. The offset is fixed to 64.
3051 		 */
3052 		hdev->num_msi = hdev->num_roce_msix +
3053 				hdev->roce_base_msix_offset;
3054 	} else {
3055 		hdev->num_msi =
3056 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3057 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3058 
3059 		hdev->num_nic_msix = hdev->num_msi;
3060 	}
3061 
3062 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3063 		dev_err(&hdev->pdev->dev,
3064 			"Just %u msi resources, not enough for vf(min:2).\n",
3065 			hdev->num_nic_msix);
3066 		return -EINVAL;
3067 	}
3068 
3069 	return 0;
3070 }
3071 
3072 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3073 {
3074 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3075 
3076 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3077 
3078 	ae_dev->dev_specs.max_non_tso_bd_num =
3079 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3080 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3081 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3082 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3083 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3084 }
3085 
3086 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3087 				    struct hclgevf_desc *desc)
3088 {
3089 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3090 	struct hclgevf_dev_specs_0_cmd *req0;
3091 	struct hclgevf_dev_specs_1_cmd *req1;
3092 
3093 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3094 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3095 
3096 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3097 	ae_dev->dev_specs.rss_ind_tbl_size =
3098 					le16_to_cpu(req0->rss_ind_tbl_size);
3099 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3100 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3101 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3102 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3103 }
3104 
3105 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3106 {
3107 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3108 
3109 	if (!dev_specs->max_non_tso_bd_num)
3110 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3111 	if (!dev_specs->rss_ind_tbl_size)
3112 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3113 	if (!dev_specs->rss_key_size)
3114 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3115 	if (!dev_specs->max_int_gl)
3116 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3117 	if (!dev_specs->max_frm_size)
3118 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3119 }
3120 
3121 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3122 {
3123 	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3124 	int ret;
3125 	int i;
3126 
3127 	/* set default specifications as devices lower than version V3 do not
3128 	 * support querying specifications from firmware.
3129 	 */
3130 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3131 		hclgevf_set_default_dev_specs(hdev);
3132 		return 0;
3133 	}
3134 
3135 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3136 		hclgevf_cmd_setup_basic_desc(&desc[i],
3137 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3138 		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3139 	}
3140 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3141 				     true);
3142 
3143 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3144 	if (ret)
3145 		return ret;
3146 
3147 	hclgevf_parse_dev_specs(hdev, desc);
3148 	hclgevf_check_dev_specs(hdev);
3149 
3150 	return 0;
3151 }
3152 
3153 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3154 {
3155 	struct pci_dev *pdev = hdev->pdev;
3156 	int ret = 0;
3157 
3158 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3159 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3160 		hclgevf_misc_irq_uninit(hdev);
3161 		hclgevf_uninit_msi(hdev);
3162 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3163 	}
3164 
3165 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3166 		pci_set_master(pdev);
3167 		ret = hclgevf_init_msi(hdev);
3168 		if (ret) {
3169 			dev_err(&pdev->dev,
3170 				"failed(%d) to init MSI/MSI-X\n", ret);
3171 			return ret;
3172 		}
3173 
3174 		ret = hclgevf_misc_irq_init(hdev);
3175 		if (ret) {
3176 			hclgevf_uninit_msi(hdev);
3177 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3178 				ret);
3179 			return ret;
3180 		}
3181 
3182 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3183 	}
3184 
3185 	return ret;
3186 }
3187 
3188 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3189 {
3190 	struct hclge_vf_to_pf_msg send_msg;
3191 
3192 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3193 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3194 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3195 }
3196 
3197 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3198 {
3199 	struct pci_dev *pdev = hdev->pdev;
3200 	int ret;
3201 
3202 	ret = hclgevf_pci_reset(hdev);
3203 	if (ret) {
3204 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3205 		return ret;
3206 	}
3207 
3208 	ret = hclgevf_cmd_init(hdev);
3209 	if (ret) {
3210 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3211 		return ret;
3212 	}
3213 
3214 	ret = hclgevf_rss_init_hw(hdev);
3215 	if (ret) {
3216 		dev_err(&hdev->pdev->dev,
3217 			"failed(%d) to initialize RSS\n", ret);
3218 		return ret;
3219 	}
3220 
3221 	ret = hclgevf_config_gro(hdev, true);
3222 	if (ret)
3223 		return ret;
3224 
3225 	ret = hclgevf_init_vlan_config(hdev);
3226 	if (ret) {
3227 		dev_err(&hdev->pdev->dev,
3228 			"failed(%d) to initialize VLAN config\n", ret);
3229 		return ret;
3230 	}
3231 
3232 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3233 
3234 	dev_info(&hdev->pdev->dev, "Reset done\n");
3235 
3236 	return 0;
3237 }
3238 
3239 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3240 {
3241 	struct pci_dev *pdev = hdev->pdev;
3242 	int ret;
3243 
3244 	ret = hclgevf_pci_init(hdev);
3245 	if (ret)
3246 		return ret;
3247 
3248 	ret = hclgevf_cmd_queue_init(hdev);
3249 	if (ret)
3250 		goto err_cmd_queue_init;
3251 
3252 	ret = hclgevf_cmd_init(hdev);
3253 	if (ret)
3254 		goto err_cmd_init;
3255 
3256 	/* Get vf resource */
3257 	ret = hclgevf_query_vf_resource(hdev);
3258 	if (ret)
3259 		goto err_cmd_init;
3260 
3261 	ret = hclgevf_query_dev_specs(hdev);
3262 	if (ret) {
3263 		dev_err(&pdev->dev,
3264 			"failed to query dev specifications, ret = %d\n", ret);
3265 		goto err_cmd_init;
3266 	}
3267 
3268 	ret = hclgevf_init_msi(hdev);
3269 	if (ret) {
3270 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3271 		goto err_cmd_init;
3272 	}
3273 
3274 	hclgevf_state_init(hdev);
3275 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3276 	hdev->reset_type = HNAE3_NONE_RESET;
3277 
3278 	ret = hclgevf_misc_irq_init(hdev);
3279 	if (ret)
3280 		goto err_misc_irq_init;
3281 
3282 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3283 
3284 	ret = hclgevf_configure(hdev);
3285 	if (ret) {
3286 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3287 		goto err_config;
3288 	}
3289 
3290 	ret = hclgevf_alloc_tqps(hdev);
3291 	if (ret) {
3292 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3293 		goto err_config;
3294 	}
3295 
3296 	ret = hclgevf_set_handle_info(hdev);
3297 	if (ret)
3298 		goto err_config;
3299 
3300 	ret = hclgevf_config_gro(hdev, true);
3301 	if (ret)
3302 		goto err_config;
3303 
3304 	/* Initialize RSS for this VF */
3305 	ret = hclgevf_rss_init_cfg(hdev);
3306 	if (ret) {
3307 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3308 		goto err_config;
3309 	}
3310 
3311 	ret = hclgevf_rss_init_hw(hdev);
3312 	if (ret) {
3313 		dev_err(&hdev->pdev->dev,
3314 			"failed(%d) to initialize RSS\n", ret);
3315 		goto err_config;
3316 	}
3317 
3318 	/* ensure vf tbl list as empty before init*/
3319 	ret = hclgevf_clear_vport_list(hdev);
3320 	if (ret) {
3321 		dev_err(&pdev->dev,
3322 			"failed to clear tbl list configuration, ret = %d.\n",
3323 			ret);
3324 		goto err_config;
3325 	}
3326 
3327 	ret = hclgevf_init_vlan_config(hdev);
3328 	if (ret) {
3329 		dev_err(&hdev->pdev->dev,
3330 			"failed(%d) to initialize VLAN config\n", ret);
3331 		goto err_config;
3332 	}
3333 
3334 	hdev->last_reset_time = jiffies;
3335 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3336 		 HCLGEVF_DRIVER_NAME);
3337 
3338 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3339 
3340 	return 0;
3341 
3342 err_config:
3343 	hclgevf_misc_irq_uninit(hdev);
3344 err_misc_irq_init:
3345 	hclgevf_state_uninit(hdev);
3346 	hclgevf_uninit_msi(hdev);
3347 err_cmd_init:
3348 	hclgevf_cmd_uninit(hdev);
3349 err_cmd_queue_init:
3350 	hclgevf_pci_uninit(hdev);
3351 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3352 	return ret;
3353 }
3354 
3355 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3356 {
3357 	struct hclge_vf_to_pf_msg send_msg;
3358 
3359 	hclgevf_state_uninit(hdev);
3360 
3361 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3362 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3363 
3364 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3365 		hclgevf_misc_irq_uninit(hdev);
3366 		hclgevf_uninit_msi(hdev);
3367 	}
3368 
3369 	hclgevf_cmd_uninit(hdev);
3370 	hclgevf_pci_uninit(hdev);
3371 	hclgevf_uninit_mac_list(hdev);
3372 }
3373 
3374 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3375 {
3376 	struct pci_dev *pdev = ae_dev->pdev;
3377 	int ret;
3378 
3379 	ret = hclgevf_alloc_hdev(ae_dev);
3380 	if (ret) {
3381 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3382 		return ret;
3383 	}
3384 
3385 	ret = hclgevf_init_hdev(ae_dev->priv);
3386 	if (ret) {
3387 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3388 		return ret;
3389 	}
3390 
3391 	return 0;
3392 }
3393 
3394 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3395 {
3396 	struct hclgevf_dev *hdev = ae_dev->priv;
3397 
3398 	hclgevf_uninit_hdev(hdev);
3399 	ae_dev->priv = NULL;
3400 }
3401 
3402 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3403 {
3404 	struct hnae3_handle *nic = &hdev->nic;
3405 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3406 
3407 	return min_t(u32, hdev->rss_size_max,
3408 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3409 }
3410 
3411 /**
3412  * hclgevf_get_channels - Get the current channels enabled and max supported.
3413  * @handle: hardware information for network interface
3414  * @ch: ethtool channels structure
3415  *
3416  * We don't support separate tx and rx queues as channels. The other count
3417  * represents how many queues are being used for control. max_combined counts
3418  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3419  * q_vectors since we support a lot more queue pairs than q_vectors.
3420  **/
3421 static void hclgevf_get_channels(struct hnae3_handle *handle,
3422 				 struct ethtool_channels *ch)
3423 {
3424 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3425 
3426 	ch->max_combined = hclgevf_get_max_channels(hdev);
3427 	ch->other_count = 0;
3428 	ch->max_other = 0;
3429 	ch->combined_count = handle->kinfo.rss_size;
3430 }
3431 
3432 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3433 					  u16 *alloc_tqps, u16 *max_rss_size)
3434 {
3435 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3436 
3437 	*alloc_tqps = hdev->num_tqps;
3438 	*max_rss_size = hdev->rss_size_max;
3439 }
3440 
3441 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3442 				    u32 new_tqps_num)
3443 {
3444 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3445 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3446 	u16 max_rss_size;
3447 
3448 	kinfo->req_rss_size = new_tqps_num;
3449 
3450 	max_rss_size = min_t(u16, hdev->rss_size_max,
3451 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3452 
3453 	/* Use the user's configuration when it is not larger than
3454 	 * max_rss_size, otherwise, use the maximum specification value.
3455 	 */
3456 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3457 	    kinfo->req_rss_size <= max_rss_size)
3458 		kinfo->rss_size = kinfo->req_rss_size;
3459 	else if (kinfo->rss_size > max_rss_size ||
3460 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3461 		kinfo->rss_size = max_rss_size;
3462 
3463 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3464 }
3465 
3466 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3467 				bool rxfh_configured)
3468 {
3469 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3470 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3471 	u16 cur_rss_size = kinfo->rss_size;
3472 	u16 cur_tqps = kinfo->num_tqps;
3473 	u32 *rss_indir;
3474 	unsigned int i;
3475 	int ret;
3476 
3477 	hclgevf_update_rss_size(handle, new_tqps_num);
3478 
3479 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3480 	if (ret)
3481 		return ret;
3482 
3483 	/* RSS indirection table has been configuared by user */
3484 	if (rxfh_configured)
3485 		goto out;
3486 
3487 	/* Reinitializes the rss indirect table according to the new RSS size */
3488 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3489 			    sizeof(u32), GFP_KERNEL);
3490 	if (!rss_indir)
3491 		return -ENOMEM;
3492 
3493 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3494 		rss_indir[i] = i % kinfo->rss_size;
3495 
3496 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3497 
3498 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3499 	if (ret)
3500 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3501 			ret);
3502 
3503 	kfree(rss_indir);
3504 
3505 out:
3506 	if (!ret)
3507 		dev_info(&hdev->pdev->dev,
3508 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3509 			 cur_rss_size, kinfo->rss_size,
3510 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3511 
3512 	return ret;
3513 }
3514 
3515 static int hclgevf_get_status(struct hnae3_handle *handle)
3516 {
3517 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3518 
3519 	return hdev->hw.mac.link;
3520 }
3521 
3522 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3523 					    u8 *auto_neg, u32 *speed,
3524 					    u8 *duplex)
3525 {
3526 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3527 
3528 	if (speed)
3529 		*speed = hdev->hw.mac.speed;
3530 	if (duplex)
3531 		*duplex = hdev->hw.mac.duplex;
3532 	if (auto_neg)
3533 		*auto_neg = AUTONEG_DISABLE;
3534 }
3535 
3536 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3537 				 u8 duplex)
3538 {
3539 	hdev->hw.mac.speed = speed;
3540 	hdev->hw.mac.duplex = duplex;
3541 }
3542 
3543 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3544 {
3545 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3546 
3547 	return hclgevf_config_gro(hdev, enable);
3548 }
3549 
3550 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3551 				   u8 *module_type)
3552 {
3553 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3554 
3555 	if (media_type)
3556 		*media_type = hdev->hw.mac.media_type;
3557 
3558 	if (module_type)
3559 		*module_type = hdev->hw.mac.module_type;
3560 }
3561 
3562 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3563 {
3564 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3565 
3566 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3567 }
3568 
3569 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3570 {
3571 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3572 
3573 	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3574 }
3575 
3576 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3577 {
3578 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3579 
3580 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3581 }
3582 
3583 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3584 {
3585 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3586 
3587 	return hdev->rst_stats.hw_rst_done_cnt;
3588 }
3589 
3590 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3591 				  unsigned long *supported,
3592 				  unsigned long *advertising)
3593 {
3594 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3595 
3596 	*supported = hdev->hw.mac.supported;
3597 	*advertising = hdev->hw.mac.advertising;
3598 }
3599 
3600 #define MAX_SEPARATE_NUM	4
3601 #define SEPARATOR_VALUE		0xFFFFFFFF
3602 #define REG_NUM_PER_LINE	4
3603 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3604 
3605 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3606 {
3607 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3608 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3609 
3610 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3611 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3612 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3613 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3614 
3615 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3616 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3617 }
3618 
3619 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3620 			     void *data)
3621 {
3622 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3623 	int i, j, reg_um, separator_num;
3624 	u32 *reg = data;
3625 
3626 	*version = hdev->fw_version;
3627 
3628 	/* fetching per-VF registers values from VF PCIe register space */
3629 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3630 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3631 	for (i = 0; i < reg_um; i++)
3632 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3633 	for (i = 0; i < separator_num; i++)
3634 		*reg++ = SEPARATOR_VALUE;
3635 
3636 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3637 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3638 	for (i = 0; i < reg_um; i++)
3639 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3640 	for (i = 0; i < separator_num; i++)
3641 		*reg++ = SEPARATOR_VALUE;
3642 
3643 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3644 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3645 	for (j = 0; j < hdev->num_tqps; j++) {
3646 		for (i = 0; i < reg_um; i++)
3647 			*reg++ = hclgevf_read_dev(&hdev->hw,
3648 						  ring_reg_addr_list[i] +
3649 						  0x200 * j);
3650 		for (i = 0; i < separator_num; i++)
3651 			*reg++ = SEPARATOR_VALUE;
3652 	}
3653 
3654 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3655 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3656 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3657 		for (i = 0; i < reg_um; i++)
3658 			*reg++ = hclgevf_read_dev(&hdev->hw,
3659 						  tqp_intr_reg_addr_list[i] +
3660 						  4 * j);
3661 		for (i = 0; i < separator_num; i++)
3662 			*reg++ = SEPARATOR_VALUE;
3663 	}
3664 }
3665 
3666 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3667 					u8 *port_base_vlan_info, u8 data_size)
3668 {
3669 	struct hnae3_handle *nic = &hdev->nic;
3670 	struct hclge_vf_to_pf_msg send_msg;
3671 	int ret;
3672 
3673 	rtnl_lock();
3674 
3675 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3676 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3677 		dev_warn(&hdev->pdev->dev,
3678 			 "is resetting when updating port based vlan info\n");
3679 		rtnl_unlock();
3680 		return;
3681 	}
3682 
3683 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3684 	if (ret) {
3685 		rtnl_unlock();
3686 		return;
3687 	}
3688 
3689 	/* send msg to PF and wait update port based vlan info */
3690 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3691 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3692 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3693 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3694 	if (!ret) {
3695 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3696 			nic->port_base_vlan_state = state;
3697 		else
3698 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3699 	}
3700 
3701 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3702 	rtnl_unlock();
3703 }
3704 
3705 static const struct hnae3_ae_ops hclgevf_ops = {
3706 	.init_ae_dev = hclgevf_init_ae_dev,
3707 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3708 	.flr_prepare = hclgevf_flr_prepare,
3709 	.flr_done = hclgevf_flr_done,
3710 	.init_client_instance = hclgevf_init_client_instance,
3711 	.uninit_client_instance = hclgevf_uninit_client_instance,
3712 	.start = hclgevf_ae_start,
3713 	.stop = hclgevf_ae_stop,
3714 	.client_start = hclgevf_client_start,
3715 	.client_stop = hclgevf_client_stop,
3716 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3717 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3718 	.get_vector = hclgevf_get_vector,
3719 	.put_vector = hclgevf_put_vector,
3720 	.reset_queue = hclgevf_reset_tqp,
3721 	.get_mac_addr = hclgevf_get_mac_addr,
3722 	.set_mac_addr = hclgevf_set_mac_addr,
3723 	.add_uc_addr = hclgevf_add_uc_addr,
3724 	.rm_uc_addr = hclgevf_rm_uc_addr,
3725 	.add_mc_addr = hclgevf_add_mc_addr,
3726 	.rm_mc_addr = hclgevf_rm_mc_addr,
3727 	.get_stats = hclgevf_get_stats,
3728 	.update_stats = hclgevf_update_stats,
3729 	.get_strings = hclgevf_get_strings,
3730 	.get_sset_count = hclgevf_get_sset_count,
3731 	.get_rss_key_size = hclgevf_get_rss_key_size,
3732 	.get_rss = hclgevf_get_rss,
3733 	.set_rss = hclgevf_set_rss,
3734 	.get_rss_tuple = hclgevf_get_rss_tuple,
3735 	.set_rss_tuple = hclgevf_set_rss_tuple,
3736 	.get_tc_size = hclgevf_get_tc_size,
3737 	.get_fw_version = hclgevf_get_fw_version,
3738 	.set_vlan_filter = hclgevf_set_vlan_filter,
3739 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3740 	.reset_event = hclgevf_reset_event,
3741 	.set_default_reset_request = hclgevf_set_def_reset_request,
3742 	.set_channels = hclgevf_set_channels,
3743 	.get_channels = hclgevf_get_channels,
3744 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3745 	.get_regs_len = hclgevf_get_regs_len,
3746 	.get_regs = hclgevf_get_regs,
3747 	.get_status = hclgevf_get_status,
3748 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3749 	.get_media_type = hclgevf_get_media_type,
3750 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3751 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3752 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3753 	.set_gro_en = hclgevf_gro_en,
3754 	.set_mtu = hclgevf_set_mtu,
3755 	.get_global_queue_id = hclgevf_get_qid_global,
3756 	.set_timer_task = hclgevf_set_timer_task,
3757 	.get_link_mode = hclgevf_get_link_mode,
3758 	.set_promisc_mode = hclgevf_set_promisc_mode,
3759 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3760 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3761 };
3762 
3763 static struct hnae3_ae_algo ae_algovf = {
3764 	.ops = &hclgevf_ops,
3765 	.pdev_id_table = ae_algovf_pci_tbl,
3766 };
3767 
3768 static int hclgevf_init(void)
3769 {
3770 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3771 
3772 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3773 	if (!hclgevf_wq) {
3774 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3775 		return -ENOMEM;
3776 	}
3777 
3778 	hnae3_register_ae_algo(&ae_algovf);
3779 
3780 	return 0;
3781 }
3782 
3783 static void hclgevf_exit(void)
3784 {
3785 	hnae3_unregister_ae_algo(&ae_algovf);
3786 	destroy_workqueue(hclgevf_wq);
3787 }
3788 module_init(hclgevf_init);
3789 module_exit(hclgevf_exit);
3790 
3791 MODULE_LICENSE("GPL");
3792 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3793 MODULE_DESCRIPTION("HCLGEVF Driver");
3794 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3795