1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/etherdevice.h> 5 #include <linux/iopoll.h> 6 #include <net/rtnetlink.h> 7 #include "hclgevf_cmd.h" 8 #include "hclgevf_main.h" 9 #include "hclgevf_regs.h" 10 #include "hclge_mbx.h" 11 #include "hnae3.h" 12 #include "hclgevf_devlink.h" 13 #include "hclge_comm_rss.h" 14 15 #define HCLGEVF_NAME "hclgevf" 16 17 #define HCLGEVF_RESET_MAX_FAIL_CNT 5 18 19 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev); 20 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 21 unsigned long delay); 22 23 static struct hnae3_ae_algo ae_algovf; 24 25 static struct workqueue_struct *hclgevf_wq; 26 27 static const struct pci_device_id ae_algovf_pci_tbl[] = { 28 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, 29 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), 30 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 31 /* required last entry */ 32 {0, } 33 }; 34 35 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); 36 37 /* hclgevf_cmd_send - send command to command queue 38 * @hw: pointer to the hw struct 39 * @desc: prefilled descriptor for describing the command 40 * @num : the number of descriptors to be sent 41 * 42 * This is the main send command for command queue, it 43 * sends the queue, cleans the queue, etc 44 */ 45 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num) 46 { 47 return hclge_comm_cmd_send(&hw->hw, desc, num); 48 } 49 50 void hclgevf_arq_init(struct hclgevf_dev *hdev) 51 { 52 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq; 53 54 spin_lock(&cmdq->crq.lock); 55 /* initialize the pointers of async rx queue of mailbox */ 56 hdev->arq.hdev = hdev; 57 hdev->arq.head = 0; 58 hdev->arq.tail = 0; 59 atomic_set(&hdev->arq.count, 0); 60 spin_unlock(&cmdq->crq.lock); 61 } 62 63 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle) 64 { 65 if (!handle->client) 66 return container_of(handle, struct hclgevf_dev, nic); 67 else if (handle->client->type == HNAE3_CLIENT_ROCE) 68 return container_of(handle, struct hclgevf_dev, roce); 69 else 70 return container_of(handle, struct hclgevf_dev, nic); 71 } 72 73 static void hclgevf_update_stats(struct hnae3_handle *handle) 74 { 75 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 76 int status; 77 78 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 79 if (status) 80 dev_err(&hdev->pdev->dev, 81 "VF update of TQPS stats fail, status = %d.\n", 82 status); 83 } 84 85 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) 86 { 87 if (strset == ETH_SS_TEST) 88 return -EOPNOTSUPP; 89 else if (strset == ETH_SS_STATS) 90 return hclge_comm_tqps_get_sset_count(handle); 91 92 return 0; 93 } 94 95 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, 96 u8 *data) 97 { 98 u8 *p = (char *)data; 99 100 if (strset == ETH_SS_STATS) 101 p = hclge_comm_tqps_get_strings(handle, p); 102 } 103 104 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) 105 { 106 hclge_comm_tqps_get_stats(handle, data); 107 } 108 109 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code, 110 u8 subcode) 111 { 112 if (msg) { 113 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg)); 114 msg->code = code; 115 msg->subcode = subcode; 116 } 117 } 118 119 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev) 120 { 121 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 122 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE]; 123 struct hclge_basic_info *basic_info; 124 struct hclge_vf_to_pf_msg send_msg; 125 unsigned long caps; 126 int status; 127 128 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0); 129 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 130 sizeof(resp_msg)); 131 if (status) { 132 dev_err(&hdev->pdev->dev, 133 "failed to get basic info from pf, ret = %d", status); 134 return status; 135 } 136 137 basic_info = (struct hclge_basic_info *)resp_msg; 138 139 hdev->hw_tc_map = basic_info->hw_tc_map; 140 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version); 141 caps = le32_to_cpu(basic_info->pf_caps); 142 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps)) 143 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps); 144 145 return 0; 146 } 147 148 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev) 149 { 150 struct hnae3_handle *nic = &hdev->nic; 151 struct hclge_vf_to_pf_msg send_msg; 152 u8 resp_msg; 153 int ret; 154 155 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 156 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE); 157 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg, 158 sizeof(u8)); 159 if (ret) { 160 dev_err(&hdev->pdev->dev, 161 "VF request to get port based vlan state failed %d", 162 ret); 163 return ret; 164 } 165 166 nic->port_base_vlan_state = resp_msg; 167 168 return 0; 169 } 170 171 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev) 172 { 173 #define HCLGEVF_TQPS_RSS_INFO_LEN 6 174 175 struct hclge_mbx_vf_queue_info *queue_info; 176 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; 177 struct hclge_vf_to_pf_msg send_msg; 178 int status; 179 180 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0); 181 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 182 HCLGEVF_TQPS_RSS_INFO_LEN); 183 if (status) { 184 dev_err(&hdev->pdev->dev, 185 "VF request to get tqp info from PF failed %d", 186 status); 187 return status; 188 } 189 190 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg; 191 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps); 192 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size); 193 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len); 194 195 return 0; 196 } 197 198 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev) 199 { 200 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4 201 202 struct hclge_mbx_vf_queue_depth *queue_depth; 203 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN]; 204 struct hclge_vf_to_pf_msg send_msg; 205 int ret; 206 207 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0); 208 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 209 HCLGEVF_TQPS_DEPTH_INFO_LEN); 210 if (ret) { 211 dev_err(&hdev->pdev->dev, 212 "VF request to get tqp depth info from PF failed %d", 213 ret); 214 return ret; 215 } 216 217 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg; 218 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc); 219 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc); 220 221 return 0; 222 } 223 224 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id) 225 { 226 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 227 struct hclge_vf_to_pf_msg send_msg; 228 u16 qid_in_pf = 0; 229 u8 resp_data[2]; 230 int ret; 231 232 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0); 233 *(__le16 *)send_msg.data = cpu_to_le16(queue_id); 234 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data, 235 sizeof(resp_data)); 236 if (!ret) 237 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data); 238 239 return qid_in_pf; 240 } 241 242 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev) 243 { 244 struct hclge_vf_to_pf_msg send_msg; 245 u8 resp_msg[2]; 246 int ret; 247 248 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0); 249 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 250 sizeof(resp_msg)); 251 if (ret) { 252 dev_err(&hdev->pdev->dev, 253 "VF request to get the pf port media type failed %d", 254 ret); 255 return ret; 256 } 257 258 hdev->hw.mac.media_type = resp_msg[0]; 259 hdev->hw.mac.module_type = resp_msg[1]; 260 261 return 0; 262 } 263 264 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) 265 { 266 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 267 struct hclge_comm_tqp *tqp; 268 int i; 269 270 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 271 sizeof(struct hclge_comm_tqp), GFP_KERNEL); 272 if (!hdev->htqp) 273 return -ENOMEM; 274 275 tqp = hdev->htqp; 276 277 for (i = 0; i < hdev->num_tqps; i++) { 278 tqp->dev = &hdev->pdev->dev; 279 tqp->index = i; 280 281 tqp->q.ae_algo = &ae_algovf; 282 tqp->q.buf_size = hdev->rx_buf_len; 283 tqp->q.tx_desc_num = hdev->num_tx_desc; 284 tqp->q.rx_desc_num = hdev->num_rx_desc; 285 286 /* need an extended offset to configure queues >= 287 * HCLGEVF_TQP_MAX_SIZE_DEV_V2. 288 */ 289 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2) 290 tqp->q.io_base = hdev->hw.hw.io_base + 291 HCLGEVF_TQP_REG_OFFSET + 292 i * HCLGEVF_TQP_REG_SIZE; 293 else 294 tqp->q.io_base = hdev->hw.hw.io_base + 295 HCLGEVF_TQP_REG_OFFSET + 296 HCLGEVF_TQP_EXT_REG_OFFSET + 297 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) * 298 HCLGEVF_TQP_REG_SIZE; 299 300 /* when device supports tx push and has device memory, 301 * the queue can execute push mode or doorbell mode on 302 * device memory. 303 */ 304 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps)) 305 tqp->q.mem_base = hdev->hw.hw.mem_base + 306 HCLGEVF_TQP_MEM_OFFSET(hdev, i); 307 308 tqp++; 309 } 310 311 return 0; 312 } 313 314 static int hclgevf_knic_setup(struct hclgevf_dev *hdev) 315 { 316 struct hnae3_handle *nic = &hdev->nic; 317 struct hnae3_knic_private_info *kinfo; 318 u16 new_tqps = hdev->num_tqps; 319 unsigned int i; 320 u8 num_tc = 0; 321 322 kinfo = &nic->kinfo; 323 kinfo->num_tx_desc = hdev->num_tx_desc; 324 kinfo->num_rx_desc = hdev->num_rx_desc; 325 kinfo->rx_buf_len = hdev->rx_buf_len; 326 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++) 327 if (hdev->hw_tc_map & BIT(i)) 328 num_tc++; 329 330 num_tc = num_tc ? num_tc : 1; 331 kinfo->tc_info.num_tc = num_tc; 332 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc); 333 new_tqps = kinfo->rss_size * num_tc; 334 kinfo->num_tqps = min(new_tqps, hdev->num_tqps); 335 336 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, 337 sizeof(struct hnae3_queue *), GFP_KERNEL); 338 if (!kinfo->tqp) 339 return -ENOMEM; 340 341 for (i = 0; i < kinfo->num_tqps; i++) { 342 hdev->htqp[i].q.handle = &hdev->nic; 343 hdev->htqp[i].q.tqp_index = i; 344 kinfo->tqp[i] = &hdev->htqp[i].q; 345 } 346 347 /* after init the max rss_size and tqps, adjust the default tqp numbers 348 * and rss size with the actual vector numbers 349 */ 350 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps); 351 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc, 352 kinfo->rss_size); 353 354 return 0; 355 } 356 357 static void hclgevf_request_link_info(struct hclgevf_dev *hdev) 358 { 359 struct hclge_vf_to_pf_msg send_msg; 360 int status; 361 362 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0); 363 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 364 if (status) 365 dev_err(&hdev->pdev->dev, 366 "VF failed to fetch link status(%d) from PF", status); 367 } 368 369 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) 370 { 371 struct hnae3_handle *rhandle = &hdev->roce; 372 struct hnae3_handle *handle = &hdev->nic; 373 struct hnae3_client *rclient; 374 struct hnae3_client *client; 375 376 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state)) 377 return; 378 379 client = handle->client; 380 rclient = hdev->roce_client; 381 382 link_state = 383 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state; 384 if (link_state != hdev->hw.mac.link) { 385 hdev->hw.mac.link = link_state; 386 client->ops->link_status_change(handle, !!link_state); 387 if (rclient && rclient->ops->link_status_change) 388 rclient->ops->link_status_change(rhandle, !!link_state); 389 } 390 391 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state); 392 } 393 394 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev) 395 { 396 #define HCLGEVF_ADVERTISING 0 397 #define HCLGEVF_SUPPORTED 1 398 399 struct hclge_vf_to_pf_msg send_msg; 400 401 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0); 402 send_msg.data[0] = HCLGEVF_ADVERTISING; 403 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 404 send_msg.data[0] = HCLGEVF_SUPPORTED; 405 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 406 } 407 408 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) 409 { 410 struct hnae3_handle *nic = &hdev->nic; 411 int ret; 412 413 nic->ae_algo = &ae_algovf; 414 nic->pdev = hdev->pdev; 415 nic->numa_node_mask = hdev->numa_node_mask; 416 nic->flags |= HNAE3_SUPPORT_VF; 417 nic->kinfo.io_base = hdev->hw.hw.io_base; 418 419 ret = hclgevf_knic_setup(hdev); 420 if (ret) 421 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", 422 ret); 423 return ret; 424 } 425 426 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) 427 { 428 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { 429 dev_warn(&hdev->pdev->dev, 430 "vector(vector_id %d) has been freed.\n", vector_id); 431 return; 432 } 433 434 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; 435 hdev->num_msi_left += 1; 436 hdev->num_msi_used -= 1; 437 } 438 439 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, 440 struct hnae3_vector_info *vector_info) 441 { 442 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 443 struct hnae3_vector_info *vector = vector_info; 444 int alloc = 0; 445 int i, j; 446 447 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num); 448 vector_num = min(hdev->num_msi_left, vector_num); 449 450 for (j = 0; j < vector_num; j++) { 451 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { 452 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { 453 vector->vector = pci_irq_vector(hdev->pdev, i); 454 vector->io_addr = hdev->hw.hw.io_base + 455 HCLGEVF_VECTOR_REG_BASE + 456 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; 457 hdev->vector_status[i] = 0; 458 hdev->vector_irq[i] = vector->vector; 459 460 vector++; 461 alloc++; 462 463 break; 464 } 465 } 466 } 467 hdev->num_msi_left -= alloc; 468 hdev->num_msi_used += alloc; 469 470 return alloc; 471 } 472 473 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) 474 { 475 int i; 476 477 for (i = 0; i < hdev->num_msi; i++) 478 if (vector == hdev->vector_irq[i]) 479 return i; 480 481 return -EINVAL; 482 } 483 484 /* for revision 0x20, vf shared the same rss config with pf */ 485 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev) 486 { 487 #define HCLGEVF_RSS_MBX_RESP_LEN 8 488 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 489 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN]; 490 struct hclge_vf_to_pf_msg send_msg; 491 u16 msg_num, hash_key_index; 492 u8 index; 493 int ret; 494 495 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0); 496 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) / 497 HCLGEVF_RSS_MBX_RESP_LEN; 498 for (index = 0; index < msg_num; index++) { 499 send_msg.data[0] = index; 500 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 501 HCLGEVF_RSS_MBX_RESP_LEN); 502 if (ret) { 503 dev_err(&hdev->pdev->dev, 504 "VF get rss hash key from PF failed, ret=%d", 505 ret); 506 return ret; 507 } 508 509 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index; 510 if (index == msg_num - 1) 511 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 512 &resp_msg[0], 513 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index); 514 else 515 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 516 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN); 517 } 518 519 return 0; 520 } 521 522 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, 523 u8 *hfunc) 524 { 525 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 526 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 527 int ret; 528 529 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 530 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc); 531 } else { 532 if (hfunc) 533 *hfunc = ETH_RSS_HASH_TOP; 534 if (key) { 535 ret = hclgevf_get_rss_hash_key(hdev); 536 if (ret) 537 return ret; 538 memcpy(key, rss_cfg->rss_hash_key, 539 HCLGE_COMM_RSS_KEY_SIZE); 540 } 541 } 542 543 hclge_comm_get_rss_indir_tbl(rss_cfg, indir, 544 hdev->ae_dev->dev_specs.rss_ind_tbl_size); 545 546 return 0; 547 } 548 549 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, 550 const u8 *key, const u8 hfunc) 551 { 552 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 553 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 554 int ret, i; 555 556 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 557 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, 558 hfunc); 559 if (ret) 560 return ret; 561 } 562 563 /* update the shadow RSS table with user specified qids */ 564 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 565 rss_cfg->rss_indirection_tbl[i] = indir[i]; 566 567 /* update the hardware */ 568 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 569 rss_cfg->rss_indirection_tbl); 570 } 571 572 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle, 573 struct ethtool_rxnfc *nfc) 574 { 575 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 576 int ret; 577 578 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 579 return -EOPNOTSUPP; 580 581 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw, 582 &hdev->rss_cfg, nfc); 583 if (ret) 584 dev_err(&hdev->pdev->dev, 585 "failed to set rss tuple, ret = %d.\n", ret); 586 587 return ret; 588 } 589 590 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle, 591 struct ethtool_rxnfc *nfc) 592 { 593 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 594 u8 tuple_sets; 595 int ret; 596 597 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 598 return -EOPNOTSUPP; 599 600 nfc->data = 0; 601 602 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type, 603 &tuple_sets); 604 if (ret || !tuple_sets) 605 return ret; 606 607 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets); 608 609 return 0; 610 } 611 612 static int hclgevf_get_tc_size(struct hnae3_handle *handle) 613 { 614 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 615 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 616 617 return rss_cfg->rss_size; 618 } 619 620 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, 621 int vector_id, 622 struct hnae3_ring_chain_node *ring_chain) 623 { 624 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 625 struct hclge_vf_to_pf_msg send_msg; 626 struct hnae3_ring_chain_node *node; 627 int status; 628 int i = 0; 629 630 memset(&send_msg, 0, sizeof(send_msg)); 631 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR : 632 HCLGE_MBX_UNMAP_RING_TO_VECTOR; 633 send_msg.vector_id = vector_id; 634 635 for (node = ring_chain; node; node = node->next) { 636 send_msg.param[i].ring_type = 637 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); 638 639 send_msg.param[i].tqp_index = node->tqp_index; 640 send_msg.param[i].int_gl_index = 641 hnae3_get_field(node->int_gl_idx, 642 HNAE3_RING_GL_IDX_M, 643 HNAE3_RING_GL_IDX_S); 644 645 i++; 646 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) { 647 send_msg.ring_num = i; 648 649 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, 650 NULL, 0); 651 if (status) { 652 dev_err(&hdev->pdev->dev, 653 "Map TQP fail, status is %d.\n", 654 status); 655 return status; 656 } 657 i = 0; 658 } 659 } 660 661 return 0; 662 } 663 664 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, 665 struct hnae3_ring_chain_node *ring_chain) 666 { 667 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 668 int vector_id; 669 670 vector_id = hclgevf_get_vector_index(hdev, vector); 671 if (vector_id < 0) { 672 dev_err(&handle->pdev->dev, 673 "Get vector index fail. ret =%d\n", vector_id); 674 return vector_id; 675 } 676 677 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); 678 } 679 680 static int hclgevf_unmap_ring_from_vector( 681 struct hnae3_handle *handle, 682 int vector, 683 struct hnae3_ring_chain_node *ring_chain) 684 { 685 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 686 int ret, vector_id; 687 688 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 689 return 0; 690 691 vector_id = hclgevf_get_vector_index(hdev, vector); 692 if (vector_id < 0) { 693 dev_err(&handle->pdev->dev, 694 "Get vector index fail. ret =%d\n", vector_id); 695 return vector_id; 696 } 697 698 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); 699 if (ret) 700 dev_err(&handle->pdev->dev, 701 "Unmap ring from vector fail. vector=%d, ret =%d\n", 702 vector_id, 703 ret); 704 705 return ret; 706 } 707 708 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) 709 { 710 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 711 int vector_id; 712 713 vector_id = hclgevf_get_vector_index(hdev, vector); 714 if (vector_id < 0) { 715 dev_err(&handle->pdev->dev, 716 "hclgevf_put_vector get vector index fail. ret =%d\n", 717 vector_id); 718 return vector_id; 719 } 720 721 hclgevf_free_vector(hdev, vector_id); 722 723 return 0; 724 } 725 726 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, 727 bool en_uc_pmc, bool en_mc_pmc, 728 bool en_bc_pmc) 729 { 730 struct hnae3_handle *handle = &hdev->nic; 731 struct hclge_vf_to_pf_msg send_msg; 732 int ret; 733 734 memset(&send_msg, 0, sizeof(send_msg)); 735 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE; 736 send_msg.en_bc = en_bc_pmc ? 1 : 0; 737 send_msg.en_uc = en_uc_pmc ? 1 : 0; 738 send_msg.en_mc = en_mc_pmc ? 1 : 0; 739 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC, 740 &handle->priv_flags) ? 1 : 0; 741 742 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 743 if (ret) 744 dev_err(&hdev->pdev->dev, 745 "Set promisc mode fail, status is %d.\n", ret); 746 747 return ret; 748 } 749 750 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, 751 bool en_mc_pmc) 752 { 753 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 754 bool en_bc_pmc; 755 756 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2; 757 758 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc, 759 en_bc_pmc); 760 } 761 762 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle) 763 { 764 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 765 766 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 767 hclgevf_task_schedule(hdev, 0); 768 } 769 770 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev) 771 { 772 struct hnae3_handle *handle = &hdev->nic; 773 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE; 774 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE; 775 int ret; 776 777 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) { 778 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc); 779 if (!ret) 780 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 781 } 782 } 783 784 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id, 785 u16 stream_id, bool enable) 786 { 787 struct hclgevf_cfg_com_tqp_queue_cmd *req; 788 struct hclge_desc desc; 789 790 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; 791 792 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false); 793 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); 794 req->stream_id = cpu_to_le16(stream_id); 795 if (enable) 796 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B; 797 798 return hclgevf_cmd_send(&hdev->hw, &desc, 1); 799 } 800 801 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable) 802 { 803 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 804 int ret; 805 u16 i; 806 807 for (i = 0; i < handle->kinfo.num_tqps; i++) { 808 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable); 809 if (ret) 810 return ret; 811 } 812 813 return 0; 814 } 815 816 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p) 817 { 818 struct hclge_vf_to_pf_msg send_msg; 819 u8 host_mac[ETH_ALEN]; 820 int status; 821 822 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0); 823 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac, 824 ETH_ALEN); 825 if (status) { 826 dev_err(&hdev->pdev->dev, 827 "fail to get VF MAC from host %d", status); 828 return status; 829 } 830 831 ether_addr_copy(p, host_mac); 832 833 return 0; 834 } 835 836 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) 837 { 838 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 839 u8 host_mac_addr[ETH_ALEN]; 840 841 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr)) 842 return; 843 844 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr); 845 if (hdev->has_pf_mac) 846 ether_addr_copy(p, host_mac_addr); 847 else 848 ether_addr_copy(p, hdev->hw.mac.mac_addr); 849 } 850 851 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p, 852 bool is_first) 853 { 854 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 855 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; 856 struct hclge_vf_to_pf_msg send_msg; 857 u8 *new_mac_addr = (u8 *)p; 858 int status; 859 860 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0); 861 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY; 862 ether_addr_copy(send_msg.data, new_mac_addr); 863 if (is_first && !hdev->has_pf_mac) 864 eth_zero_addr(&send_msg.data[ETH_ALEN]); 865 else 866 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr); 867 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 868 if (!status) 869 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); 870 871 return status; 872 } 873 874 static struct hclgevf_mac_addr_node * 875 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr) 876 { 877 struct hclgevf_mac_addr_node *mac_node, *tmp; 878 879 list_for_each_entry_safe(mac_node, tmp, list, node) 880 if (ether_addr_equal(mac_addr, mac_node->mac_addr)) 881 return mac_node; 882 883 return NULL; 884 } 885 886 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node, 887 enum HCLGEVF_MAC_NODE_STATE state) 888 { 889 switch (state) { 890 /* from set_rx_mode or tmp_add_list */ 891 case HCLGEVF_MAC_TO_ADD: 892 if (mac_node->state == HCLGEVF_MAC_TO_DEL) 893 mac_node->state = HCLGEVF_MAC_ACTIVE; 894 break; 895 /* only from set_rx_mode */ 896 case HCLGEVF_MAC_TO_DEL: 897 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 898 list_del(&mac_node->node); 899 kfree(mac_node); 900 } else { 901 mac_node->state = HCLGEVF_MAC_TO_DEL; 902 } 903 break; 904 /* only from tmp_add_list, the mac_node->state won't be 905 * HCLGEVF_MAC_ACTIVE 906 */ 907 case HCLGEVF_MAC_ACTIVE: 908 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 909 mac_node->state = HCLGEVF_MAC_ACTIVE; 910 break; 911 } 912 } 913 914 static int hclgevf_update_mac_list(struct hnae3_handle *handle, 915 enum HCLGEVF_MAC_NODE_STATE state, 916 enum HCLGEVF_MAC_ADDR_TYPE mac_type, 917 const unsigned char *addr) 918 { 919 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 920 struct hclgevf_mac_addr_node *mac_node; 921 struct list_head *list; 922 923 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 924 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 925 926 spin_lock_bh(&hdev->mac_table.mac_list_lock); 927 928 /* if the mac addr is already in the mac list, no need to add a new 929 * one into it, just check the mac addr state, convert it to a new 930 * state, or just remove it, or do nothing. 931 */ 932 mac_node = hclgevf_find_mac_node(list, addr); 933 if (mac_node) { 934 hclgevf_update_mac_node(mac_node, state); 935 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 936 return 0; 937 } 938 /* if this address is never added, unnecessary to delete */ 939 if (state == HCLGEVF_MAC_TO_DEL) { 940 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 941 return -ENOENT; 942 } 943 944 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); 945 if (!mac_node) { 946 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 947 return -ENOMEM; 948 } 949 950 mac_node->state = state; 951 ether_addr_copy(mac_node->mac_addr, addr); 952 list_add_tail(&mac_node->node, list); 953 954 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 955 return 0; 956 } 957 958 static int hclgevf_add_uc_addr(struct hnae3_handle *handle, 959 const unsigned char *addr) 960 { 961 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 962 HCLGEVF_MAC_ADDR_UC, addr); 963 } 964 965 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, 966 const unsigned char *addr) 967 { 968 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 969 HCLGEVF_MAC_ADDR_UC, addr); 970 } 971 972 static int hclgevf_add_mc_addr(struct hnae3_handle *handle, 973 const unsigned char *addr) 974 { 975 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 976 HCLGEVF_MAC_ADDR_MC, addr); 977 } 978 979 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, 980 const unsigned char *addr) 981 { 982 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 983 HCLGEVF_MAC_ADDR_MC, addr); 984 } 985 986 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev, 987 struct hclgevf_mac_addr_node *mac_node, 988 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 989 { 990 struct hclge_vf_to_pf_msg send_msg; 991 u8 code, subcode; 992 993 if (mac_type == HCLGEVF_MAC_ADDR_UC) { 994 code = HCLGE_MBX_SET_UNICAST; 995 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 996 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD; 997 else 998 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE; 999 } else { 1000 code = HCLGE_MBX_SET_MULTICAST; 1001 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1002 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD; 1003 else 1004 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE; 1005 } 1006 1007 hclgevf_build_send_msg(&send_msg, code, subcode); 1008 ether_addr_copy(send_msg.data, mac_node->mac_addr); 1009 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1010 } 1011 1012 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev, 1013 struct list_head *list, 1014 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1015 { 1016 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 1017 struct hclgevf_mac_addr_node *mac_node, *tmp; 1018 int ret; 1019 1020 list_for_each_entry_safe(mac_node, tmp, list, node) { 1021 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type); 1022 if (ret) { 1023 hnae3_format_mac_addr(format_mac_addr, 1024 mac_node->mac_addr); 1025 dev_err(&hdev->pdev->dev, 1026 "failed to configure mac %s, state = %d, ret = %d\n", 1027 format_mac_addr, mac_node->state, ret); 1028 return; 1029 } 1030 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1031 mac_node->state = HCLGEVF_MAC_ACTIVE; 1032 } else { 1033 list_del(&mac_node->node); 1034 kfree(mac_node); 1035 } 1036 } 1037 } 1038 1039 static void hclgevf_sync_from_add_list(struct list_head *add_list, 1040 struct list_head *mac_list) 1041 { 1042 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1043 1044 list_for_each_entry_safe(mac_node, tmp, add_list, node) { 1045 /* if the mac address from tmp_add_list is not in the 1046 * uc/mc_mac_list, it means have received a TO_DEL request 1047 * during the time window of sending mac config request to PF 1048 * If mac_node state is ACTIVE, then change its state to TO_DEL, 1049 * then it will be removed at next time. If is TO_ADD, it means 1050 * send TO_ADD request failed, so just remove the mac node. 1051 */ 1052 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1053 if (new_node) { 1054 hclgevf_update_mac_node(new_node, mac_node->state); 1055 list_del(&mac_node->node); 1056 kfree(mac_node); 1057 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) { 1058 mac_node->state = HCLGEVF_MAC_TO_DEL; 1059 list_move_tail(&mac_node->node, mac_list); 1060 } else { 1061 list_del(&mac_node->node); 1062 kfree(mac_node); 1063 } 1064 } 1065 } 1066 1067 static void hclgevf_sync_from_del_list(struct list_head *del_list, 1068 struct list_head *mac_list) 1069 { 1070 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1071 1072 list_for_each_entry_safe(mac_node, tmp, del_list, node) { 1073 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1074 if (new_node) { 1075 /* If the mac addr is exist in the mac list, it means 1076 * received a new request TO_ADD during the time window 1077 * of sending mac addr configurrequest to PF, so just 1078 * change the mac state to ACTIVE. 1079 */ 1080 new_node->state = HCLGEVF_MAC_ACTIVE; 1081 list_del(&mac_node->node); 1082 kfree(mac_node); 1083 } else { 1084 list_move_tail(&mac_node->node, mac_list); 1085 } 1086 } 1087 } 1088 1089 static void hclgevf_clear_list(struct list_head *list) 1090 { 1091 struct hclgevf_mac_addr_node *mac_node, *tmp; 1092 1093 list_for_each_entry_safe(mac_node, tmp, list, node) { 1094 list_del(&mac_node->node); 1095 kfree(mac_node); 1096 } 1097 } 1098 1099 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev, 1100 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1101 { 1102 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1103 struct list_head tmp_add_list, tmp_del_list; 1104 struct list_head *list; 1105 1106 INIT_LIST_HEAD(&tmp_add_list); 1107 INIT_LIST_HEAD(&tmp_del_list); 1108 1109 /* move the mac addr to the tmp_add_list and tmp_del_list, then 1110 * we can add/delete these mac addr outside the spin lock 1111 */ 1112 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1113 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1114 1115 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1116 1117 list_for_each_entry_safe(mac_node, tmp, list, node) { 1118 switch (mac_node->state) { 1119 case HCLGEVF_MAC_TO_DEL: 1120 list_move_tail(&mac_node->node, &tmp_del_list); 1121 break; 1122 case HCLGEVF_MAC_TO_ADD: 1123 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 1124 if (!new_node) 1125 goto stop_traverse; 1126 1127 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); 1128 new_node->state = mac_node->state; 1129 list_add_tail(&new_node->node, &tmp_add_list); 1130 break; 1131 default: 1132 break; 1133 } 1134 } 1135 1136 stop_traverse: 1137 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1138 1139 /* delete first, in order to get max mac table space for adding */ 1140 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type); 1141 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type); 1142 1143 /* if some mac addresses were added/deleted fail, move back to the 1144 * mac_list, and retry at next time. 1145 */ 1146 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1147 1148 hclgevf_sync_from_del_list(&tmp_del_list, list); 1149 hclgevf_sync_from_add_list(&tmp_add_list, list); 1150 1151 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1152 } 1153 1154 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev) 1155 { 1156 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC); 1157 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC); 1158 } 1159 1160 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev) 1161 { 1162 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1163 1164 hclgevf_clear_list(&hdev->mac_table.uc_mac_list); 1165 hclgevf_clear_list(&hdev->mac_table.mc_mac_list); 1166 1167 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1168 } 1169 1170 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable) 1171 { 1172 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1173 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 1174 struct hclge_vf_to_pf_msg send_msg; 1175 1176 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 1177 return -EOPNOTSUPP; 1178 1179 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1180 HCLGE_MBX_ENABLE_VLAN_FILTER); 1181 send_msg.data[0] = enable ? 1 : 0; 1182 1183 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1184 } 1185 1186 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, 1187 __be16 proto, u16 vlan_id, 1188 bool is_kill) 1189 { 1190 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1191 struct hclge_mbx_vlan_filter *vlan_filter; 1192 struct hclge_vf_to_pf_msg send_msg; 1193 int ret; 1194 1195 if (vlan_id > HCLGEVF_MAX_VLAN_ID) 1196 return -EINVAL; 1197 1198 if (proto != htons(ETH_P_8021Q)) 1199 return -EPROTONOSUPPORT; 1200 1201 /* When device is resetting or reset failed, firmware is unable to 1202 * handle mailbox. Just record the vlan id, and remove it after 1203 * reset finished. 1204 */ 1205 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 1206 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) { 1207 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1208 return -EBUSY; 1209 } 1210 1211 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1212 HCLGE_MBX_VLAN_FILTER); 1213 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data; 1214 vlan_filter->is_kill = is_kill; 1215 vlan_filter->vlan_id = cpu_to_le16(vlan_id); 1216 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto)); 1217 1218 /* when remove hw vlan filter failed, record the vlan id, 1219 * and try to remove it from hw later, to be consistence 1220 * with stack. 1221 */ 1222 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1223 if (is_kill && ret) 1224 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1225 1226 return ret; 1227 } 1228 1229 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev) 1230 { 1231 #define HCLGEVF_MAX_SYNC_COUNT 60 1232 struct hnae3_handle *handle = &hdev->nic; 1233 int ret, sync_cnt = 0; 1234 u16 vlan_id; 1235 1236 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1237 while (vlan_id != VLAN_N_VID) { 1238 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q), 1239 vlan_id, true); 1240 if (ret) 1241 return; 1242 1243 clear_bit(vlan_id, hdev->vlan_del_fail_bmap); 1244 sync_cnt++; 1245 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT) 1246 return; 1247 1248 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1249 } 1250 } 1251 1252 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 1253 { 1254 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1255 struct hclge_vf_to_pf_msg send_msg; 1256 1257 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1258 HCLGE_MBX_VLAN_RX_OFF_CFG); 1259 send_msg.data[0] = enable ? 1 : 0; 1260 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1261 } 1262 1263 static int hclgevf_reset_tqp(struct hnae3_handle *handle) 1264 { 1265 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U 1266 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1267 struct hclge_vf_to_pf_msg send_msg; 1268 u8 return_status = 0; 1269 int ret; 1270 u16 i; 1271 1272 /* disable vf queue before send queue reset msg to PF */ 1273 ret = hclgevf_tqp_enable(handle, false); 1274 if (ret) { 1275 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n", 1276 ret); 1277 return ret; 1278 } 1279 1280 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1281 1282 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status, 1283 sizeof(return_status)); 1284 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE) 1285 return ret; 1286 1287 for (i = 1; i < handle->kinfo.num_tqps; i++) { 1288 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1289 *(__le16 *)send_msg.data = cpu_to_le16(i); 1290 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1291 if (ret) 1292 return ret; 1293 } 1294 1295 return 0; 1296 } 1297 1298 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu) 1299 { 1300 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1301 struct hclge_mbx_mtu_info *mtu_info; 1302 struct hclge_vf_to_pf_msg send_msg; 1303 1304 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0); 1305 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data; 1306 mtu_info->mtu = cpu_to_le32(new_mtu); 1307 1308 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1309 } 1310 1311 static int hclgevf_notify_client(struct hclgevf_dev *hdev, 1312 enum hnae3_reset_notify_type type) 1313 { 1314 struct hnae3_client *client = hdev->nic_client; 1315 struct hnae3_handle *handle = &hdev->nic; 1316 int ret; 1317 1318 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) || 1319 !client) 1320 return 0; 1321 1322 if (!client->ops->reset_notify) 1323 return -EOPNOTSUPP; 1324 1325 ret = client->ops->reset_notify(handle, type); 1326 if (ret) 1327 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", 1328 type, ret); 1329 1330 return ret; 1331 } 1332 1333 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev, 1334 enum hnae3_reset_notify_type type) 1335 { 1336 struct hnae3_client *client = hdev->roce_client; 1337 struct hnae3_handle *handle = &hdev->roce; 1338 int ret; 1339 1340 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client) 1341 return 0; 1342 1343 if (!client->ops->reset_notify) 1344 return -EOPNOTSUPP; 1345 1346 ret = client->ops->reset_notify(handle, type); 1347 if (ret) 1348 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", 1349 type, ret); 1350 return ret; 1351 } 1352 1353 static int hclgevf_reset_wait(struct hclgevf_dev *hdev) 1354 { 1355 #define HCLGEVF_RESET_WAIT_US 20000 1356 #define HCLGEVF_RESET_WAIT_CNT 2000 1357 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \ 1358 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT) 1359 1360 u32 val; 1361 int ret; 1362 1363 if (hdev->reset_type == HNAE3_VF_RESET) 1364 ret = readl_poll_timeout(hdev->hw.hw.io_base + 1365 HCLGEVF_VF_RST_ING, val, 1366 !(val & HCLGEVF_VF_RST_ING_BIT), 1367 HCLGEVF_RESET_WAIT_US, 1368 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1369 else 1370 ret = readl_poll_timeout(hdev->hw.hw.io_base + 1371 HCLGEVF_RST_ING, val, 1372 !(val & HCLGEVF_RST_ING_BITS), 1373 HCLGEVF_RESET_WAIT_US, 1374 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1375 1376 /* hardware completion status should be available by this time */ 1377 if (ret) { 1378 dev_err(&hdev->pdev->dev, 1379 "couldn't get reset done status from h/w, timeout!\n"); 1380 return ret; 1381 } 1382 1383 /* we will wait a bit more to let reset of the stack to complete. This 1384 * might happen in case reset assertion was made by PF. Yes, this also 1385 * means we might end up waiting bit more even for VF reset. 1386 */ 1387 if (hdev->reset_type == HNAE3_VF_FULL_RESET) 1388 msleep(5000); 1389 else 1390 msleep(500); 1391 1392 return 0; 1393 } 1394 1395 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable) 1396 { 1397 u32 reg_val; 1398 1399 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG); 1400 if (enable) 1401 reg_val |= HCLGEVF_NIC_SW_RST_RDY; 1402 else 1403 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY; 1404 1405 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, 1406 reg_val); 1407 } 1408 1409 static int hclgevf_reset_stack(struct hclgevf_dev *hdev) 1410 { 1411 int ret; 1412 1413 /* uninitialize the nic client */ 1414 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 1415 if (ret) 1416 return ret; 1417 1418 /* re-initialize the hclge device */ 1419 ret = hclgevf_reset_hdev(hdev); 1420 if (ret) { 1421 dev_err(&hdev->pdev->dev, 1422 "hclge device re-init failed, VF is disabled!\n"); 1423 return ret; 1424 } 1425 1426 /* bring up the nic client again */ 1427 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); 1428 if (ret) 1429 return ret; 1430 1431 /* clear handshake status with IMP */ 1432 hclgevf_reset_handshake(hdev, false); 1433 1434 /* bring up the nic to enable TX/RX again */ 1435 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 1436 } 1437 1438 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev) 1439 { 1440 #define HCLGEVF_RESET_SYNC_TIME 100 1441 1442 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) { 1443 struct hclge_vf_to_pf_msg send_msg; 1444 int ret; 1445 1446 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0); 1447 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1448 if (ret) { 1449 dev_err(&hdev->pdev->dev, 1450 "failed to assert VF reset, ret = %d\n", ret); 1451 return ret; 1452 } 1453 hdev->rst_stats.vf_func_rst_cnt++; 1454 } 1455 1456 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 1457 /* inform hardware that preparatory work is done */ 1458 msleep(HCLGEVF_RESET_SYNC_TIME); 1459 hclgevf_reset_handshake(hdev, true); 1460 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n", 1461 hdev->reset_type); 1462 1463 return 0; 1464 } 1465 1466 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev) 1467 { 1468 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n", 1469 hdev->rst_stats.vf_func_rst_cnt); 1470 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n", 1471 hdev->rst_stats.flr_rst_cnt); 1472 dev_info(&hdev->pdev->dev, "VF reset count: %u\n", 1473 hdev->rst_stats.vf_rst_cnt); 1474 dev_info(&hdev->pdev->dev, "reset done count: %u\n", 1475 hdev->rst_stats.rst_done_cnt); 1476 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n", 1477 hdev->rst_stats.hw_rst_done_cnt); 1478 dev_info(&hdev->pdev->dev, "reset count: %u\n", 1479 hdev->rst_stats.rst_cnt); 1480 dev_info(&hdev->pdev->dev, "reset fail count: %u\n", 1481 hdev->rst_stats.rst_fail_cnt); 1482 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n", 1483 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE)); 1484 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n", 1485 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG)); 1486 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n", 1487 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG)); 1488 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n", 1489 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING)); 1490 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state); 1491 } 1492 1493 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev) 1494 { 1495 /* recover handshake status with IMP when reset fail */ 1496 hclgevf_reset_handshake(hdev, true); 1497 hdev->rst_stats.rst_fail_cnt++; 1498 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n", 1499 hdev->rst_stats.rst_fail_cnt); 1500 1501 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT) 1502 set_bit(hdev->reset_type, &hdev->reset_pending); 1503 1504 if (hclgevf_is_reset_pending(hdev)) { 1505 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1506 hclgevf_reset_task_schedule(hdev); 1507 } else { 1508 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1509 hclgevf_dump_rst_info(hdev); 1510 } 1511 } 1512 1513 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev) 1514 { 1515 int ret; 1516 1517 hdev->rst_stats.rst_cnt++; 1518 1519 /* perform reset of the stack & ae device for a client */ 1520 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); 1521 if (ret) 1522 return ret; 1523 1524 rtnl_lock(); 1525 /* bring down the nic to stop any ongoing TX/RX */ 1526 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 1527 rtnl_unlock(); 1528 if (ret) 1529 return ret; 1530 1531 return hclgevf_reset_prepare_wait(hdev); 1532 } 1533 1534 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev) 1535 { 1536 int ret; 1537 1538 hdev->rst_stats.hw_rst_done_cnt++; 1539 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); 1540 if (ret) 1541 return ret; 1542 1543 rtnl_lock(); 1544 /* now, re-initialize the nic client and ae device */ 1545 ret = hclgevf_reset_stack(hdev); 1546 rtnl_unlock(); 1547 if (ret) { 1548 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); 1549 return ret; 1550 } 1551 1552 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT); 1553 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1 1554 * times 1555 */ 1556 if (ret && 1557 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1) 1558 return ret; 1559 1560 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT); 1561 if (ret) 1562 return ret; 1563 1564 hdev->last_reset_time = jiffies; 1565 hdev->rst_stats.rst_done_cnt++; 1566 hdev->rst_stats.rst_fail_cnt = 0; 1567 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1568 1569 return 0; 1570 } 1571 1572 static void hclgevf_reset(struct hclgevf_dev *hdev) 1573 { 1574 if (hclgevf_reset_prepare(hdev)) 1575 goto err_reset; 1576 1577 /* check if VF could successfully fetch the hardware reset completion 1578 * status from the hardware 1579 */ 1580 if (hclgevf_reset_wait(hdev)) { 1581 /* can't do much in this situation, will disable VF */ 1582 dev_err(&hdev->pdev->dev, 1583 "failed to fetch H/W reset completion status\n"); 1584 goto err_reset; 1585 } 1586 1587 if (hclgevf_reset_rebuild(hdev)) 1588 goto err_reset; 1589 1590 return; 1591 1592 err_reset: 1593 hclgevf_reset_err_handle(hdev); 1594 } 1595 1596 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr) 1597 { 1598 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; 1599 1600 /* return the highest priority reset level amongst all */ 1601 if (test_bit(HNAE3_VF_RESET, addr)) { 1602 rst_level = HNAE3_VF_RESET; 1603 clear_bit(HNAE3_VF_RESET, addr); 1604 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1605 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1606 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) { 1607 rst_level = HNAE3_VF_FULL_RESET; 1608 clear_bit(HNAE3_VF_FULL_RESET, addr); 1609 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1610 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) { 1611 rst_level = HNAE3_VF_PF_FUNC_RESET; 1612 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1613 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1614 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) { 1615 rst_level = HNAE3_VF_FUNC_RESET; 1616 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1617 } else if (test_bit(HNAE3_FLR_RESET, addr)) { 1618 rst_level = HNAE3_FLR_RESET; 1619 clear_bit(HNAE3_FLR_RESET, addr); 1620 } 1621 1622 return rst_level; 1623 } 1624 1625 static void hclgevf_reset_event(struct pci_dev *pdev, 1626 struct hnae3_handle *handle) 1627 { 1628 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 1629 struct hclgevf_dev *hdev = ae_dev->priv; 1630 1631 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); 1632 1633 if (hdev->default_reset_request) 1634 hdev->reset_level = 1635 hclgevf_get_reset_level(&hdev->default_reset_request); 1636 else 1637 hdev->reset_level = HNAE3_VF_FUNC_RESET; 1638 1639 /* reset of this VF requested */ 1640 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); 1641 hclgevf_reset_task_schedule(hdev); 1642 1643 hdev->last_reset_time = jiffies; 1644 } 1645 1646 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev, 1647 enum hnae3_reset_type rst_type) 1648 { 1649 struct hclgevf_dev *hdev = ae_dev->priv; 1650 1651 set_bit(rst_type, &hdev->default_reset_request); 1652 } 1653 1654 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) 1655 { 1656 writel(en ? 1 : 0, vector->addr); 1657 } 1658 1659 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev, 1660 enum hnae3_reset_type rst_type) 1661 { 1662 #define HCLGEVF_RESET_RETRY_WAIT_MS 500 1663 #define HCLGEVF_RESET_RETRY_CNT 5 1664 1665 struct hclgevf_dev *hdev = ae_dev->priv; 1666 int retry_cnt = 0; 1667 int ret; 1668 1669 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) { 1670 down(&hdev->reset_sem); 1671 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1672 hdev->reset_type = rst_type; 1673 ret = hclgevf_reset_prepare(hdev); 1674 if (!ret && !hdev->reset_pending) 1675 break; 1676 1677 dev_err(&hdev->pdev->dev, 1678 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n", 1679 ret, hdev->reset_pending, retry_cnt); 1680 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1681 up(&hdev->reset_sem); 1682 msleep(HCLGEVF_RESET_RETRY_WAIT_MS); 1683 } 1684 1685 /* disable misc vector before reset done */ 1686 hclgevf_enable_vector(&hdev->misc_vector, false); 1687 1688 if (hdev->reset_type == HNAE3_FLR_RESET) 1689 hdev->rst_stats.flr_rst_cnt++; 1690 } 1691 1692 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev) 1693 { 1694 struct hclgevf_dev *hdev = ae_dev->priv; 1695 int ret; 1696 1697 hclgevf_enable_vector(&hdev->misc_vector, true); 1698 1699 ret = hclgevf_reset_rebuild(hdev); 1700 if (ret) 1701 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", 1702 ret); 1703 1704 hdev->reset_type = HNAE3_NONE_RESET; 1705 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1706 up(&hdev->reset_sem); 1707 } 1708 1709 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) 1710 { 1711 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1712 1713 return hdev->fw_version; 1714 } 1715 1716 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) 1717 { 1718 struct hclgevf_misc_vector *vector = &hdev->misc_vector; 1719 1720 vector->vector_irq = pci_irq_vector(hdev->pdev, 1721 HCLGEVF_MISC_VECTOR_NUM); 1722 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; 1723 /* vector status always valid for Vector 0 */ 1724 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; 1725 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; 1726 1727 hdev->num_msi_left -= 1; 1728 hdev->num_msi_used += 1; 1729 } 1730 1731 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) 1732 { 1733 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1734 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) && 1735 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, 1736 &hdev->state)) 1737 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 1738 } 1739 1740 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) 1741 { 1742 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1743 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, 1744 &hdev->state)) 1745 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 1746 } 1747 1748 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 1749 unsigned long delay) 1750 { 1751 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1752 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 1753 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay); 1754 } 1755 1756 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev) 1757 { 1758 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3 1759 1760 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) 1761 return; 1762 1763 down(&hdev->reset_sem); 1764 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1765 1766 if (test_and_clear_bit(HCLGEVF_RESET_PENDING, 1767 &hdev->reset_state)) { 1768 /* PF has intimated that it is about to reset the hardware. 1769 * We now have to poll & check if hardware has actually 1770 * completed the reset sequence. On hardware reset completion, 1771 * VF needs to reset the client and ae device. 1772 */ 1773 hdev->reset_attempts = 0; 1774 1775 hdev->last_reset_time = jiffies; 1776 hdev->reset_type = 1777 hclgevf_get_reset_level(&hdev->reset_pending); 1778 if (hdev->reset_type != HNAE3_NONE_RESET) 1779 hclgevf_reset(hdev); 1780 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, 1781 &hdev->reset_state)) { 1782 /* we could be here when either of below happens: 1783 * 1. reset was initiated due to watchdog timeout caused by 1784 * a. IMP was earlier reset and our TX got choked down and 1785 * which resulted in watchdog reacting and inducing VF 1786 * reset. This also means our cmdq would be unreliable. 1787 * b. problem in TX due to other lower layer(example link 1788 * layer not functioning properly etc.) 1789 * 2. VF reset might have been initiated due to some config 1790 * change. 1791 * 1792 * NOTE: Theres no clear way to detect above cases than to react 1793 * to the response of PF for this reset request. PF will ack the 1794 * 1b and 2. cases but we will not get any intimation about 1a 1795 * from PF as cmdq would be in unreliable state i.e. mailbox 1796 * communication between PF and VF would be broken. 1797 * 1798 * if we are never geting into pending state it means either: 1799 * 1. PF is not receiving our request which could be due to IMP 1800 * reset 1801 * 2. PF is screwed 1802 * We cannot do much for 2. but to check first we can try reset 1803 * our PCIe + stack and see if it alleviates the problem. 1804 */ 1805 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) { 1806 /* prepare for full reset of stack + pcie interface */ 1807 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending); 1808 1809 /* "defer" schedule the reset task again */ 1810 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1811 } else { 1812 hdev->reset_attempts++; 1813 1814 set_bit(hdev->reset_level, &hdev->reset_pending); 1815 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1816 } 1817 hclgevf_reset_task_schedule(hdev); 1818 } 1819 1820 hdev->reset_type = HNAE3_NONE_RESET; 1821 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1822 up(&hdev->reset_sem); 1823 } 1824 1825 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev) 1826 { 1827 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state)) 1828 return; 1829 1830 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) 1831 return; 1832 1833 hclgevf_mbx_async_handler(hdev); 1834 1835 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 1836 } 1837 1838 static void hclgevf_keep_alive(struct hclgevf_dev *hdev) 1839 { 1840 struct hclge_vf_to_pf_msg send_msg; 1841 int ret; 1842 1843 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state)) 1844 return; 1845 1846 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0); 1847 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1848 if (ret) 1849 dev_err(&hdev->pdev->dev, 1850 "VF sends keep alive cmd failed(=%d)\n", ret); 1851 } 1852 1853 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev) 1854 { 1855 unsigned long delta = round_jiffies_relative(HZ); 1856 struct hnae3_handle *handle = &hdev->nic; 1857 1858 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) || 1859 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state)) 1860 return; 1861 1862 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { 1863 delta = jiffies - hdev->last_serv_processed; 1864 1865 if (delta < round_jiffies_relative(HZ)) { 1866 delta = round_jiffies_relative(HZ) - delta; 1867 goto out; 1868 } 1869 } 1870 1871 hdev->serv_processed_cnt++; 1872 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL)) 1873 hclgevf_keep_alive(hdev); 1874 1875 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) { 1876 hdev->last_serv_processed = jiffies; 1877 goto out; 1878 } 1879 1880 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL)) 1881 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 1882 1883 /* VF does not need to request link status when this bit is set, because 1884 * PF will push its link status to VFs when link status changed. 1885 */ 1886 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state)) 1887 hclgevf_request_link_info(hdev); 1888 1889 hclgevf_update_link_mode(hdev); 1890 1891 hclgevf_sync_vlan_filter(hdev); 1892 1893 hclgevf_sync_mac_table(hdev); 1894 1895 hclgevf_sync_promisc_mode(hdev); 1896 1897 hdev->last_serv_processed = jiffies; 1898 1899 out: 1900 hclgevf_task_schedule(hdev, delta); 1901 } 1902 1903 static void hclgevf_service_task(struct work_struct *work) 1904 { 1905 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev, 1906 service_task.work); 1907 1908 hclgevf_reset_service_task(hdev); 1909 hclgevf_mailbox_service_task(hdev); 1910 hclgevf_periodic_service_task(hdev); 1911 1912 /* Handle reset and mbx again in case periodical task delays the 1913 * handling by calling hclgevf_task_schedule() in 1914 * hclgevf_periodic_service_task() 1915 */ 1916 hclgevf_reset_service_task(hdev); 1917 hclgevf_mailbox_service_task(hdev); 1918 } 1919 1920 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) 1921 { 1922 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr); 1923 } 1924 1925 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev, 1926 u32 *clearval) 1927 { 1928 u32 val, cmdq_stat_reg, rst_ing_reg; 1929 1930 /* fetch the events from their corresponding regs */ 1931 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw, 1932 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG); 1933 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) { 1934 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 1935 dev_info(&hdev->pdev->dev, 1936 "receive reset interrupt 0x%x!\n", rst_ing_reg); 1937 set_bit(HNAE3_VF_RESET, &hdev->reset_pending); 1938 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1939 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 1940 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B); 1941 hdev->rst_stats.vf_rst_cnt++; 1942 /* set up VF hardware reset status, its PF will clear 1943 * this status when PF has initialized done. 1944 */ 1945 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING); 1946 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING, 1947 val | HCLGEVF_VF_RST_ING_BIT); 1948 return HCLGEVF_VECTOR0_EVENT_RST; 1949 } 1950 1951 /* check for vector0 mailbox(=CMDQ RX) event source */ 1952 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) { 1953 /* for revision 0x21, clearing interrupt is writing bit 0 1954 * to the clear register, writing bit 1 means to keep the 1955 * old value. 1956 * for revision 0x20, the clear register is a read & write 1957 * register, so we should just write 0 to the bit we are 1958 * handling, and keep other bits as cmdq_stat_reg. 1959 */ 1960 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) 1961 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 1962 else 1963 *clearval = cmdq_stat_reg & 1964 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 1965 1966 return HCLGEVF_VECTOR0_EVENT_MBX; 1967 } 1968 1969 /* print other vector0 event source */ 1970 dev_info(&hdev->pdev->dev, 1971 "vector 0 interrupt from unknown source, cmdq_src = %#x\n", 1972 cmdq_stat_reg); 1973 1974 return HCLGEVF_VECTOR0_EVENT_OTHER; 1975 } 1976 1977 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) 1978 { 1979 enum hclgevf_evt_cause event_cause; 1980 struct hclgevf_dev *hdev = data; 1981 u32 clearval; 1982 1983 hclgevf_enable_vector(&hdev->misc_vector, false); 1984 event_cause = hclgevf_check_evt_cause(hdev, &clearval); 1985 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) 1986 hclgevf_clear_event_cause(hdev, clearval); 1987 1988 switch (event_cause) { 1989 case HCLGEVF_VECTOR0_EVENT_RST: 1990 hclgevf_reset_task_schedule(hdev); 1991 break; 1992 case HCLGEVF_VECTOR0_EVENT_MBX: 1993 hclgevf_mbx_handler(hdev); 1994 break; 1995 default: 1996 break; 1997 } 1998 1999 hclgevf_enable_vector(&hdev->misc_vector, true); 2000 2001 return IRQ_HANDLED; 2002 } 2003 2004 static int hclgevf_configure(struct hclgevf_dev *hdev) 2005 { 2006 int ret; 2007 2008 hdev->gro_en = true; 2009 2010 ret = hclgevf_get_basic_info(hdev); 2011 if (ret) 2012 return ret; 2013 2014 /* get current port based vlan state from PF */ 2015 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2016 if (ret) 2017 return ret; 2018 2019 /* get queue configuration from PF */ 2020 ret = hclgevf_get_queue_info(hdev); 2021 if (ret) 2022 return ret; 2023 2024 /* get queue depth info from PF */ 2025 ret = hclgevf_get_queue_depth(hdev); 2026 if (ret) 2027 return ret; 2028 2029 return hclgevf_get_pf_media_type(hdev); 2030 } 2031 2032 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) 2033 { 2034 struct pci_dev *pdev = ae_dev->pdev; 2035 struct hclgevf_dev *hdev; 2036 2037 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 2038 if (!hdev) 2039 return -ENOMEM; 2040 2041 hdev->pdev = pdev; 2042 hdev->ae_dev = ae_dev; 2043 ae_dev->priv = hdev; 2044 2045 return 0; 2046 } 2047 2048 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) 2049 { 2050 struct hnae3_handle *roce = &hdev->roce; 2051 struct hnae3_handle *nic = &hdev->nic; 2052 2053 roce->rinfo.num_vectors = hdev->num_roce_msix; 2054 2055 if (hdev->num_msi_left < roce->rinfo.num_vectors || 2056 hdev->num_msi_left == 0) 2057 return -EINVAL; 2058 2059 roce->rinfo.base_vector = hdev->roce_base_msix_offset; 2060 2061 roce->rinfo.netdev = nic->kinfo.netdev; 2062 roce->rinfo.roce_io_base = hdev->hw.hw.io_base; 2063 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base; 2064 2065 roce->pdev = nic->pdev; 2066 roce->ae_algo = nic->ae_algo; 2067 roce->numa_node_mask = nic->numa_node_mask; 2068 2069 return 0; 2070 } 2071 2072 static int hclgevf_config_gro(struct hclgevf_dev *hdev) 2073 { 2074 struct hclgevf_cfg_gro_status_cmd *req; 2075 struct hclge_desc desc; 2076 int ret; 2077 2078 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev)) 2079 return 0; 2080 2081 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, 2082 false); 2083 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data; 2084 2085 req->gro_en = hdev->gro_en ? 1 : 0; 2086 2087 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2088 if (ret) 2089 dev_err(&hdev->pdev->dev, 2090 "VF GRO hardware config cmd failed, ret = %d.\n", ret); 2091 2092 return ret; 2093 } 2094 2095 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) 2096 { 2097 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 2098 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM]; 2099 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM]; 2100 u16 tc_size[HCLGE_COMM_MAX_TC_NUM]; 2101 int ret; 2102 2103 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 2104 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, 2105 rss_cfg->rss_algo, 2106 rss_cfg->rss_hash_key); 2107 if (ret) 2108 return ret; 2109 2110 ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg); 2111 if (ret) 2112 return ret; 2113 } 2114 2115 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 2116 rss_cfg->rss_indirection_tbl); 2117 if (ret) 2118 return ret; 2119 2120 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map, 2121 tc_offset, tc_valid, tc_size); 2122 2123 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, 2124 tc_valid, tc_size); 2125 } 2126 2127 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) 2128 { 2129 struct hnae3_handle *nic = &hdev->nic; 2130 int ret; 2131 2132 ret = hclgevf_en_hw_strip_rxvtag(nic, true); 2133 if (ret) { 2134 dev_err(&hdev->pdev->dev, 2135 "failed to enable rx vlan offload, ret = %d\n", ret); 2136 return ret; 2137 } 2138 2139 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, 2140 false); 2141 } 2142 2143 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev) 2144 { 2145 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000 2146 2147 unsigned long last = hdev->serv_processed_cnt; 2148 int i = 0; 2149 2150 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) && 2151 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT && 2152 last == hdev->serv_processed_cnt) 2153 usleep_range(1, 1); 2154 } 2155 2156 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable) 2157 { 2158 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2159 2160 if (enable) { 2161 hclgevf_task_schedule(hdev, 0); 2162 } else { 2163 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2164 2165 /* flush memory to make sure DOWN is seen by service task */ 2166 smp_mb__before_atomic(); 2167 hclgevf_flush_link_update(hdev); 2168 } 2169 } 2170 2171 static int hclgevf_ae_start(struct hnae3_handle *handle) 2172 { 2173 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2174 2175 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2176 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state); 2177 2178 hclge_comm_reset_tqp_stats(handle); 2179 2180 hclgevf_request_link_info(hdev); 2181 2182 hclgevf_update_link_mode(hdev); 2183 2184 return 0; 2185 } 2186 2187 static void hclgevf_ae_stop(struct hnae3_handle *handle) 2188 { 2189 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2190 2191 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2192 2193 if (hdev->reset_type != HNAE3_VF_RESET) 2194 hclgevf_reset_tqp(handle); 2195 2196 hclge_comm_reset_tqp_stats(handle); 2197 hclgevf_update_link_status(hdev, 0); 2198 } 2199 2200 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive) 2201 { 2202 #define HCLGEVF_STATE_ALIVE 1 2203 #define HCLGEVF_STATE_NOT_ALIVE 0 2204 2205 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2206 struct hclge_vf_to_pf_msg send_msg; 2207 2208 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0); 2209 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE : 2210 HCLGEVF_STATE_NOT_ALIVE; 2211 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2212 } 2213 2214 static int hclgevf_client_start(struct hnae3_handle *handle) 2215 { 2216 return hclgevf_set_alive(handle, true); 2217 } 2218 2219 static void hclgevf_client_stop(struct hnae3_handle *handle) 2220 { 2221 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2222 int ret; 2223 2224 ret = hclgevf_set_alive(handle, false); 2225 if (ret) 2226 dev_warn(&hdev->pdev->dev, 2227 "%s failed %d\n", __func__, ret); 2228 } 2229 2230 static void hclgevf_state_init(struct hclgevf_dev *hdev) 2231 { 2232 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 2233 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2234 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 2235 2236 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task); 2237 2238 mutex_init(&hdev->mbx_resp.mbx_mutex); 2239 sema_init(&hdev->reset_sem, 1); 2240 2241 spin_lock_init(&hdev->mac_table.mac_list_lock); 2242 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list); 2243 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list); 2244 2245 /* bring the device down */ 2246 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2247 } 2248 2249 static void hclgevf_state_uninit(struct hclgevf_dev *hdev) 2250 { 2251 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2252 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state); 2253 2254 if (hdev->service_task.work.func) 2255 cancel_delayed_work_sync(&hdev->service_task); 2256 2257 mutex_destroy(&hdev->mbx_resp.mbx_mutex); 2258 } 2259 2260 static int hclgevf_init_msi(struct hclgevf_dev *hdev) 2261 { 2262 struct pci_dev *pdev = hdev->pdev; 2263 int vectors; 2264 int i; 2265 2266 if (hnae3_dev_roce_supported(hdev)) 2267 vectors = pci_alloc_irq_vectors(pdev, 2268 hdev->roce_base_msix_offset + 1, 2269 hdev->num_msi, 2270 PCI_IRQ_MSIX); 2271 else 2272 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, 2273 hdev->num_msi, 2274 PCI_IRQ_MSI | PCI_IRQ_MSIX); 2275 2276 if (vectors < 0) { 2277 dev_err(&pdev->dev, 2278 "failed(%d) to allocate MSI/MSI-X vectors\n", 2279 vectors); 2280 return vectors; 2281 } 2282 if (vectors < hdev->num_msi) 2283 dev_warn(&hdev->pdev->dev, 2284 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", 2285 hdev->num_msi, vectors); 2286 2287 hdev->num_msi = vectors; 2288 hdev->num_msi_left = vectors; 2289 2290 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 2291 sizeof(u16), GFP_KERNEL); 2292 if (!hdev->vector_status) { 2293 pci_free_irq_vectors(pdev); 2294 return -ENOMEM; 2295 } 2296 2297 for (i = 0; i < hdev->num_msi; i++) 2298 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; 2299 2300 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 2301 sizeof(int), GFP_KERNEL); 2302 if (!hdev->vector_irq) { 2303 devm_kfree(&pdev->dev, hdev->vector_status); 2304 pci_free_irq_vectors(pdev); 2305 return -ENOMEM; 2306 } 2307 2308 return 0; 2309 } 2310 2311 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) 2312 { 2313 struct pci_dev *pdev = hdev->pdev; 2314 2315 devm_kfree(&pdev->dev, hdev->vector_status); 2316 devm_kfree(&pdev->dev, hdev->vector_irq); 2317 pci_free_irq_vectors(pdev); 2318 } 2319 2320 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) 2321 { 2322 int ret; 2323 2324 hclgevf_get_misc_vector(hdev); 2325 2326 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", 2327 HCLGEVF_NAME, pci_name(hdev->pdev)); 2328 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 2329 0, hdev->misc_vector.name, hdev); 2330 if (ret) { 2331 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", 2332 hdev->misc_vector.vector_irq); 2333 return ret; 2334 } 2335 2336 hclgevf_clear_event_cause(hdev, 0); 2337 2338 /* enable misc. vector(vector 0) */ 2339 hclgevf_enable_vector(&hdev->misc_vector, true); 2340 2341 return ret; 2342 } 2343 2344 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) 2345 { 2346 /* disable misc vector(vector 0) */ 2347 hclgevf_enable_vector(&hdev->misc_vector, false); 2348 synchronize_irq(hdev->misc_vector.vector_irq); 2349 free_irq(hdev->misc_vector.vector_irq, hdev); 2350 hclgevf_free_vector(hdev, 0); 2351 } 2352 2353 static void hclgevf_info_show(struct hclgevf_dev *hdev) 2354 { 2355 struct device *dev = &hdev->pdev->dev; 2356 2357 dev_info(dev, "VF info begin:\n"); 2358 2359 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); 2360 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); 2361 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); 2362 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); 2363 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); 2364 dev_info(dev, "PF media type of this VF: %u\n", 2365 hdev->hw.mac.media_type); 2366 2367 dev_info(dev, "VF info end.\n"); 2368 } 2369 2370 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, 2371 struct hnae3_client *client) 2372 { 2373 struct hclgevf_dev *hdev = ae_dev->priv; 2374 int rst_cnt = hdev->rst_stats.rst_cnt; 2375 int ret; 2376 2377 ret = client->ops->init_instance(&hdev->nic); 2378 if (ret) 2379 return ret; 2380 2381 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2382 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 2383 rst_cnt != hdev->rst_stats.rst_cnt) { 2384 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2385 2386 client->ops->uninit_instance(&hdev->nic, 0); 2387 return -EBUSY; 2388 } 2389 2390 hnae3_set_client_init_flag(client, ae_dev, 1); 2391 2392 if (netif_msg_drv(&hdev->nic)) 2393 hclgevf_info_show(hdev); 2394 2395 return 0; 2396 } 2397 2398 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, 2399 struct hnae3_client *client) 2400 { 2401 struct hclgevf_dev *hdev = ae_dev->priv; 2402 int ret; 2403 2404 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || 2405 !hdev->nic_client) 2406 return 0; 2407 2408 ret = hclgevf_init_roce_base_info(hdev); 2409 if (ret) 2410 return ret; 2411 2412 ret = client->ops->init_instance(&hdev->roce); 2413 if (ret) 2414 return ret; 2415 2416 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2417 hnae3_set_client_init_flag(client, ae_dev, 1); 2418 2419 return 0; 2420 } 2421 2422 static int hclgevf_init_client_instance(struct hnae3_client *client, 2423 struct hnae3_ae_dev *ae_dev) 2424 { 2425 struct hclgevf_dev *hdev = ae_dev->priv; 2426 int ret; 2427 2428 switch (client->type) { 2429 case HNAE3_CLIENT_KNIC: 2430 hdev->nic_client = client; 2431 hdev->nic.client = client; 2432 2433 ret = hclgevf_init_nic_client_instance(ae_dev, client); 2434 if (ret) 2435 goto clear_nic; 2436 2437 ret = hclgevf_init_roce_client_instance(ae_dev, 2438 hdev->roce_client); 2439 if (ret) 2440 goto clear_roce; 2441 2442 break; 2443 case HNAE3_CLIENT_ROCE: 2444 if (hnae3_dev_roce_supported(hdev)) { 2445 hdev->roce_client = client; 2446 hdev->roce.client = client; 2447 } 2448 2449 ret = hclgevf_init_roce_client_instance(ae_dev, client); 2450 if (ret) 2451 goto clear_roce; 2452 2453 break; 2454 default: 2455 return -EINVAL; 2456 } 2457 2458 return 0; 2459 2460 clear_nic: 2461 hdev->nic_client = NULL; 2462 hdev->nic.client = NULL; 2463 return ret; 2464 clear_roce: 2465 hdev->roce_client = NULL; 2466 hdev->roce.client = NULL; 2467 return ret; 2468 } 2469 2470 static void hclgevf_uninit_client_instance(struct hnae3_client *client, 2471 struct hnae3_ae_dev *ae_dev) 2472 { 2473 struct hclgevf_dev *hdev = ae_dev->priv; 2474 2475 /* un-init roce, if it exists */ 2476 if (hdev->roce_client) { 2477 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 2478 msleep(HCLGEVF_WAIT_RESET_DONE); 2479 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2480 2481 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); 2482 hdev->roce_client = NULL; 2483 hdev->roce.client = NULL; 2484 } 2485 2486 /* un-init nic/unic, if this was not called by roce client */ 2487 if (client->ops->uninit_instance && hdev->nic_client && 2488 client->type != HNAE3_CLIENT_ROCE) { 2489 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 2490 msleep(HCLGEVF_WAIT_RESET_DONE); 2491 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2492 2493 client->ops->uninit_instance(&hdev->nic, 0); 2494 hdev->nic_client = NULL; 2495 hdev->nic.client = NULL; 2496 } 2497 } 2498 2499 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev) 2500 { 2501 struct pci_dev *pdev = hdev->pdev; 2502 struct hclgevf_hw *hw = &hdev->hw; 2503 2504 /* for device does not have device memory, return directly */ 2505 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR))) 2506 return 0; 2507 2508 hw->hw.mem_base = 2509 devm_ioremap_wc(&pdev->dev, 2510 pci_resource_start(pdev, HCLGEVF_MEM_BAR), 2511 pci_resource_len(pdev, HCLGEVF_MEM_BAR)); 2512 if (!hw->hw.mem_base) { 2513 dev_err(&pdev->dev, "failed to map device memory\n"); 2514 return -EFAULT; 2515 } 2516 2517 return 0; 2518 } 2519 2520 static int hclgevf_pci_init(struct hclgevf_dev *hdev) 2521 { 2522 struct pci_dev *pdev = hdev->pdev; 2523 struct hclgevf_hw *hw; 2524 int ret; 2525 2526 ret = pci_enable_device(pdev); 2527 if (ret) { 2528 dev_err(&pdev->dev, "failed to enable PCI device\n"); 2529 return ret; 2530 } 2531 2532 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2533 if (ret) { 2534 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); 2535 goto err_disable_device; 2536 } 2537 2538 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); 2539 if (ret) { 2540 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 2541 goto err_disable_device; 2542 } 2543 2544 pci_set_master(pdev); 2545 hw = &hdev->hw; 2546 hw->hw.io_base = pci_iomap(pdev, 2, 0); 2547 if (!hw->hw.io_base) { 2548 dev_err(&pdev->dev, "can't map configuration register space\n"); 2549 ret = -ENOMEM; 2550 goto err_release_regions; 2551 } 2552 2553 ret = hclgevf_dev_mem_map(hdev); 2554 if (ret) 2555 goto err_unmap_io_base; 2556 2557 return 0; 2558 2559 err_unmap_io_base: 2560 pci_iounmap(pdev, hdev->hw.hw.io_base); 2561 err_release_regions: 2562 pci_release_regions(pdev); 2563 err_disable_device: 2564 pci_disable_device(pdev); 2565 2566 return ret; 2567 } 2568 2569 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) 2570 { 2571 struct pci_dev *pdev = hdev->pdev; 2572 2573 if (hdev->hw.hw.mem_base) 2574 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base); 2575 2576 pci_iounmap(pdev, hdev->hw.hw.io_base); 2577 pci_release_regions(pdev); 2578 pci_disable_device(pdev); 2579 } 2580 2581 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev) 2582 { 2583 struct hclgevf_query_res_cmd *req; 2584 struct hclge_desc desc; 2585 int ret; 2586 2587 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true); 2588 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2589 if (ret) { 2590 dev_err(&hdev->pdev->dev, 2591 "query vf resource failed, ret = %d.\n", ret); 2592 return ret; 2593 } 2594 2595 req = (struct hclgevf_query_res_cmd *)desc.data; 2596 2597 if (hnae3_dev_roce_supported(hdev)) { 2598 hdev->roce_base_msix_offset = 2599 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee), 2600 HCLGEVF_MSIX_OFT_ROCEE_M, 2601 HCLGEVF_MSIX_OFT_ROCEE_S); 2602 hdev->num_roce_msix = 2603 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2604 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2605 2606 /* nic's msix numbers is always equals to the roce's. */ 2607 hdev->num_nic_msix = hdev->num_roce_msix; 2608 2609 /* VF should have NIC vectors and Roce vectors, NIC vectors 2610 * are queued before Roce vectors. The offset is fixed to 64. 2611 */ 2612 hdev->num_msi = hdev->num_roce_msix + 2613 hdev->roce_base_msix_offset; 2614 } else { 2615 hdev->num_msi = 2616 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2617 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2618 2619 hdev->num_nic_msix = hdev->num_msi; 2620 } 2621 2622 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) { 2623 dev_err(&hdev->pdev->dev, 2624 "Just %u msi resources, not enough for vf(min:2).\n", 2625 hdev->num_nic_msix); 2626 return -EINVAL; 2627 } 2628 2629 return 0; 2630 } 2631 2632 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev) 2633 { 2634 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U 2635 2636 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2637 2638 ae_dev->dev_specs.max_non_tso_bd_num = 2639 HCLGEVF_MAX_NON_TSO_BD_NUM; 2640 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 2641 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 2642 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 2643 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME; 2644 } 2645 2646 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev, 2647 struct hclge_desc *desc) 2648 { 2649 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2650 struct hclgevf_dev_specs_0_cmd *req0; 2651 struct hclgevf_dev_specs_1_cmd *req1; 2652 2653 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data; 2654 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data; 2655 2656 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num; 2657 ae_dev->dev_specs.rss_ind_tbl_size = 2658 le16_to_cpu(req0->rss_ind_tbl_size); 2659 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max); 2660 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size); 2661 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl); 2662 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size); 2663 } 2664 2665 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev) 2666 { 2667 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs; 2668 2669 if (!dev_specs->max_non_tso_bd_num) 2670 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM; 2671 if (!dev_specs->rss_ind_tbl_size) 2672 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 2673 if (!dev_specs->rss_key_size) 2674 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 2675 if (!dev_specs->max_int_gl) 2676 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 2677 if (!dev_specs->max_frm_size) 2678 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME; 2679 } 2680 2681 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev) 2682 { 2683 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM]; 2684 int ret; 2685 int i; 2686 2687 /* set default specifications as devices lower than version V3 do not 2688 * support querying specifications from firmware. 2689 */ 2690 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 2691 hclgevf_set_default_dev_specs(hdev); 2692 return 0; 2693 } 2694 2695 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) { 2696 hclgevf_cmd_setup_basic_desc(&desc[i], 2697 HCLGE_OPC_QUERY_DEV_SPECS, true); 2698 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2699 } 2700 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true); 2701 2702 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM); 2703 if (ret) 2704 return ret; 2705 2706 hclgevf_parse_dev_specs(hdev, desc); 2707 hclgevf_check_dev_specs(hdev); 2708 2709 return 0; 2710 } 2711 2712 static int hclgevf_pci_reset(struct hclgevf_dev *hdev) 2713 { 2714 struct pci_dev *pdev = hdev->pdev; 2715 int ret = 0; 2716 2717 if ((hdev->reset_type == HNAE3_VF_FULL_RESET || 2718 hdev->reset_type == HNAE3_FLR_RESET) && 2719 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2720 hclgevf_misc_irq_uninit(hdev); 2721 hclgevf_uninit_msi(hdev); 2722 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2723 } 2724 2725 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2726 pci_set_master(pdev); 2727 ret = hclgevf_init_msi(hdev); 2728 if (ret) { 2729 dev_err(&pdev->dev, 2730 "failed(%d) to init MSI/MSI-X\n", ret); 2731 return ret; 2732 } 2733 2734 ret = hclgevf_misc_irq_init(hdev); 2735 if (ret) { 2736 hclgevf_uninit_msi(hdev); 2737 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", 2738 ret); 2739 return ret; 2740 } 2741 2742 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2743 } 2744 2745 return ret; 2746 } 2747 2748 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev) 2749 { 2750 struct hclge_vf_to_pf_msg send_msg; 2751 2752 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL, 2753 HCLGE_MBX_VPORT_LIST_CLEAR); 2754 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2755 } 2756 2757 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev) 2758 { 2759 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 2760 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1); 2761 } 2762 2763 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev) 2764 { 2765 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 2766 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0); 2767 } 2768 2769 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev) 2770 { 2771 struct pci_dev *pdev = hdev->pdev; 2772 int ret; 2773 2774 ret = hclgevf_pci_reset(hdev); 2775 if (ret) { 2776 dev_err(&pdev->dev, "pci reset failed %d\n", ret); 2777 return ret; 2778 } 2779 2780 hclgevf_arq_init(hdev); 2781 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, 2782 &hdev->fw_version, false, 2783 hdev->reset_pending); 2784 if (ret) { 2785 dev_err(&pdev->dev, "cmd failed %d\n", ret); 2786 return ret; 2787 } 2788 2789 ret = hclgevf_rss_init_hw(hdev); 2790 if (ret) { 2791 dev_err(&hdev->pdev->dev, 2792 "failed(%d) to initialize RSS\n", ret); 2793 return ret; 2794 } 2795 2796 ret = hclgevf_config_gro(hdev); 2797 if (ret) 2798 return ret; 2799 2800 ret = hclgevf_init_vlan_config(hdev); 2801 if (ret) { 2802 dev_err(&hdev->pdev->dev, 2803 "failed(%d) to initialize VLAN config\n", ret); 2804 return ret; 2805 } 2806 2807 /* get current port based vlan state from PF */ 2808 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2809 if (ret) 2810 return ret; 2811 2812 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 2813 2814 hclgevf_init_rxd_adv_layout(hdev); 2815 2816 dev_info(&hdev->pdev->dev, "Reset done\n"); 2817 2818 return 0; 2819 } 2820 2821 static int hclgevf_init_hdev(struct hclgevf_dev *hdev) 2822 { 2823 struct pci_dev *pdev = hdev->pdev; 2824 int ret; 2825 2826 ret = hclgevf_pci_init(hdev); 2827 if (ret) 2828 return ret; 2829 2830 ret = hclgevf_devlink_init(hdev); 2831 if (ret) 2832 goto err_devlink_init; 2833 2834 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw); 2835 if (ret) 2836 goto err_cmd_queue_init; 2837 2838 hclgevf_arq_init(hdev); 2839 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, 2840 &hdev->fw_version, false, 2841 hdev->reset_pending); 2842 if (ret) 2843 goto err_cmd_init; 2844 2845 /* Get vf resource */ 2846 ret = hclgevf_query_vf_resource(hdev); 2847 if (ret) 2848 goto err_cmd_init; 2849 2850 ret = hclgevf_query_dev_specs(hdev); 2851 if (ret) { 2852 dev_err(&pdev->dev, 2853 "failed to query dev specifications, ret = %d\n", ret); 2854 goto err_cmd_init; 2855 } 2856 2857 ret = hclgevf_init_msi(hdev); 2858 if (ret) { 2859 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); 2860 goto err_cmd_init; 2861 } 2862 2863 hclgevf_state_init(hdev); 2864 hdev->reset_level = HNAE3_VF_FUNC_RESET; 2865 hdev->reset_type = HNAE3_NONE_RESET; 2866 2867 ret = hclgevf_misc_irq_init(hdev); 2868 if (ret) 2869 goto err_misc_irq_init; 2870 2871 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2872 2873 ret = hclgevf_configure(hdev); 2874 if (ret) { 2875 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); 2876 goto err_config; 2877 } 2878 2879 ret = hclgevf_alloc_tqps(hdev); 2880 if (ret) { 2881 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); 2882 goto err_config; 2883 } 2884 2885 ret = hclgevf_set_handle_info(hdev); 2886 if (ret) 2887 goto err_config; 2888 2889 ret = hclgevf_config_gro(hdev); 2890 if (ret) 2891 goto err_config; 2892 2893 /* Initialize RSS for this VF */ 2894 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev, 2895 &hdev->rss_cfg); 2896 if (ret) { 2897 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret); 2898 goto err_config; 2899 } 2900 2901 ret = hclgevf_rss_init_hw(hdev); 2902 if (ret) { 2903 dev_err(&hdev->pdev->dev, 2904 "failed(%d) to initialize RSS\n", ret); 2905 goto err_config; 2906 } 2907 2908 /* ensure vf tbl list as empty before init */ 2909 ret = hclgevf_clear_vport_list(hdev); 2910 if (ret) { 2911 dev_err(&pdev->dev, 2912 "failed to clear tbl list configuration, ret = %d.\n", 2913 ret); 2914 goto err_config; 2915 } 2916 2917 ret = hclgevf_init_vlan_config(hdev); 2918 if (ret) { 2919 dev_err(&hdev->pdev->dev, 2920 "failed(%d) to initialize VLAN config\n", ret); 2921 goto err_config; 2922 } 2923 2924 hclgevf_init_rxd_adv_layout(hdev); 2925 2926 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state); 2927 2928 hdev->last_reset_time = jiffies; 2929 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n", 2930 HCLGEVF_DRIVER_NAME); 2931 2932 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ)); 2933 2934 return 0; 2935 2936 err_config: 2937 hclgevf_misc_irq_uninit(hdev); 2938 err_misc_irq_init: 2939 hclgevf_state_uninit(hdev); 2940 hclgevf_uninit_msi(hdev); 2941 err_cmd_init: 2942 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 2943 err_cmd_queue_init: 2944 hclgevf_devlink_uninit(hdev); 2945 err_devlink_init: 2946 hclgevf_pci_uninit(hdev); 2947 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2948 return ret; 2949 } 2950 2951 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) 2952 { 2953 struct hclge_vf_to_pf_msg send_msg; 2954 2955 hclgevf_state_uninit(hdev); 2956 hclgevf_uninit_rxd_adv_layout(hdev); 2957 2958 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0); 2959 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2960 2961 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2962 hclgevf_misc_irq_uninit(hdev); 2963 hclgevf_uninit_msi(hdev); 2964 } 2965 2966 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 2967 hclgevf_devlink_uninit(hdev); 2968 hclgevf_pci_uninit(hdev); 2969 hclgevf_uninit_mac_list(hdev); 2970 } 2971 2972 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) 2973 { 2974 struct pci_dev *pdev = ae_dev->pdev; 2975 int ret; 2976 2977 ret = hclgevf_alloc_hdev(ae_dev); 2978 if (ret) { 2979 dev_err(&pdev->dev, "hclge device allocation failed\n"); 2980 return ret; 2981 } 2982 2983 ret = hclgevf_init_hdev(ae_dev->priv); 2984 if (ret) { 2985 dev_err(&pdev->dev, "hclge device initialization failed\n"); 2986 return ret; 2987 } 2988 2989 return 0; 2990 } 2991 2992 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 2993 { 2994 struct hclgevf_dev *hdev = ae_dev->priv; 2995 2996 hclgevf_uninit_hdev(hdev); 2997 ae_dev->priv = NULL; 2998 } 2999 3000 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) 3001 { 3002 struct hnae3_handle *nic = &hdev->nic; 3003 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 3004 3005 return min_t(u32, hdev->rss_size_max, 3006 hdev->num_tqps / kinfo->tc_info.num_tc); 3007 } 3008 3009 /** 3010 * hclgevf_get_channels - Get the current channels enabled and max supported. 3011 * @handle: hardware information for network interface 3012 * @ch: ethtool channels structure 3013 * 3014 * We don't support separate tx and rx queues as channels. The other count 3015 * represents how many queues are being used for control. max_combined counts 3016 * how many queue pairs we can support. They may not be mapped 1 to 1 with 3017 * q_vectors since we support a lot more queue pairs than q_vectors. 3018 **/ 3019 static void hclgevf_get_channels(struct hnae3_handle *handle, 3020 struct ethtool_channels *ch) 3021 { 3022 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3023 3024 ch->max_combined = hclgevf_get_max_channels(hdev); 3025 ch->other_count = 0; 3026 ch->max_other = 0; 3027 ch->combined_count = handle->kinfo.rss_size; 3028 } 3029 3030 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, 3031 u16 *alloc_tqps, u16 *max_rss_size) 3032 { 3033 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3034 3035 *alloc_tqps = hdev->num_tqps; 3036 *max_rss_size = hdev->rss_size_max; 3037 } 3038 3039 static void hclgevf_update_rss_size(struct hnae3_handle *handle, 3040 u32 new_tqps_num) 3041 { 3042 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3043 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3044 u16 max_rss_size; 3045 3046 kinfo->req_rss_size = new_tqps_num; 3047 3048 max_rss_size = min_t(u16, hdev->rss_size_max, 3049 hdev->num_tqps / kinfo->tc_info.num_tc); 3050 3051 /* Use the user's configuration when it is not larger than 3052 * max_rss_size, otherwise, use the maximum specification value. 3053 */ 3054 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size && 3055 kinfo->req_rss_size <= max_rss_size) 3056 kinfo->rss_size = kinfo->req_rss_size; 3057 else if (kinfo->rss_size > max_rss_size || 3058 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size)) 3059 kinfo->rss_size = max_rss_size; 3060 3061 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size; 3062 } 3063 3064 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, 3065 bool rxfh_configured) 3066 { 3067 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3068 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3069 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM]; 3070 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM]; 3071 u16 tc_size[HCLGE_COMM_MAX_TC_NUM]; 3072 u16 cur_rss_size = kinfo->rss_size; 3073 u16 cur_tqps = kinfo->num_tqps; 3074 u32 *rss_indir; 3075 unsigned int i; 3076 int ret; 3077 3078 hclgevf_update_rss_size(handle, new_tqps_num); 3079 3080 hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map, 3081 tc_offset, tc_valid, tc_size); 3082 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, 3083 tc_valid, tc_size); 3084 if (ret) 3085 return ret; 3086 3087 /* RSS indirection table has been configured by user */ 3088 if (rxfh_configured) 3089 goto out; 3090 3091 /* Reinitializes the rss indirect table according to the new RSS size */ 3092 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size, 3093 sizeof(u32), GFP_KERNEL); 3094 if (!rss_indir) 3095 return -ENOMEM; 3096 3097 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 3098 rss_indir[i] = i % kinfo->rss_size; 3099 3100 hdev->rss_cfg.rss_size = kinfo->rss_size; 3101 3102 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0); 3103 if (ret) 3104 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", 3105 ret); 3106 3107 kfree(rss_indir); 3108 3109 out: 3110 if (!ret) 3111 dev_info(&hdev->pdev->dev, 3112 "Channels changed, rss_size from %u to %u, tqps from %u to %u", 3113 cur_rss_size, kinfo->rss_size, 3114 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc); 3115 3116 return ret; 3117 } 3118 3119 static int hclgevf_get_status(struct hnae3_handle *handle) 3120 { 3121 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3122 3123 return hdev->hw.mac.link; 3124 } 3125 3126 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, 3127 u8 *auto_neg, u32 *speed, 3128 u8 *duplex, u32 *lane_num) 3129 { 3130 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3131 3132 if (speed) 3133 *speed = hdev->hw.mac.speed; 3134 if (duplex) 3135 *duplex = hdev->hw.mac.duplex; 3136 if (auto_neg) 3137 *auto_neg = AUTONEG_DISABLE; 3138 } 3139 3140 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, 3141 u8 duplex) 3142 { 3143 hdev->hw.mac.speed = speed; 3144 hdev->hw.mac.duplex = duplex; 3145 } 3146 3147 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable) 3148 { 3149 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3150 bool gro_en_old = hdev->gro_en; 3151 int ret; 3152 3153 hdev->gro_en = enable; 3154 ret = hclgevf_config_gro(hdev); 3155 if (ret) 3156 hdev->gro_en = gro_en_old; 3157 3158 return ret; 3159 } 3160 3161 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type, 3162 u8 *module_type) 3163 { 3164 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3165 3166 if (media_type) 3167 *media_type = hdev->hw.mac.media_type; 3168 3169 if (module_type) 3170 *module_type = hdev->hw.mac.module_type; 3171 } 3172 3173 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle) 3174 { 3175 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3176 3177 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 3178 } 3179 3180 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle) 3181 { 3182 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3183 3184 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 3185 } 3186 3187 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle) 3188 { 3189 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3190 3191 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 3192 } 3193 3194 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle) 3195 { 3196 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3197 3198 return hdev->rst_stats.hw_rst_done_cnt; 3199 } 3200 3201 static void hclgevf_get_link_mode(struct hnae3_handle *handle, 3202 unsigned long *supported, 3203 unsigned long *advertising) 3204 { 3205 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3206 3207 *supported = hdev->hw.mac.supported; 3208 *advertising = hdev->hw.mac.advertising; 3209 } 3210 3211 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state, 3212 struct hclge_mbx_port_base_vlan *port_base_vlan) 3213 { 3214 struct hnae3_handle *nic = &hdev->nic; 3215 struct hclge_vf_to_pf_msg send_msg; 3216 int ret; 3217 3218 rtnl_lock(); 3219 3220 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 3221 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) { 3222 dev_warn(&hdev->pdev->dev, 3223 "is resetting when updating port based vlan info\n"); 3224 rtnl_unlock(); 3225 return; 3226 } 3227 3228 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 3229 if (ret) { 3230 rtnl_unlock(); 3231 return; 3232 } 3233 3234 /* send msg to PF and wait update port based vlan info */ 3235 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 3236 HCLGE_MBX_PORT_BASE_VLAN_CFG); 3237 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan)); 3238 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3239 if (!ret) { 3240 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) 3241 nic->port_base_vlan_state = state; 3242 else 3243 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; 3244 } 3245 3246 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 3247 rtnl_unlock(); 3248 } 3249 3250 static const struct hnae3_ae_ops hclgevf_ops = { 3251 .init_ae_dev = hclgevf_init_ae_dev, 3252 .uninit_ae_dev = hclgevf_uninit_ae_dev, 3253 .reset_prepare = hclgevf_reset_prepare_general, 3254 .reset_done = hclgevf_reset_done, 3255 .init_client_instance = hclgevf_init_client_instance, 3256 .uninit_client_instance = hclgevf_uninit_client_instance, 3257 .start = hclgevf_ae_start, 3258 .stop = hclgevf_ae_stop, 3259 .client_start = hclgevf_client_start, 3260 .client_stop = hclgevf_client_stop, 3261 .map_ring_to_vector = hclgevf_map_ring_to_vector, 3262 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, 3263 .get_vector = hclgevf_get_vector, 3264 .put_vector = hclgevf_put_vector, 3265 .reset_queue = hclgevf_reset_tqp, 3266 .get_mac_addr = hclgevf_get_mac_addr, 3267 .set_mac_addr = hclgevf_set_mac_addr, 3268 .add_uc_addr = hclgevf_add_uc_addr, 3269 .rm_uc_addr = hclgevf_rm_uc_addr, 3270 .add_mc_addr = hclgevf_add_mc_addr, 3271 .rm_mc_addr = hclgevf_rm_mc_addr, 3272 .get_stats = hclgevf_get_stats, 3273 .update_stats = hclgevf_update_stats, 3274 .get_strings = hclgevf_get_strings, 3275 .get_sset_count = hclgevf_get_sset_count, 3276 .get_rss_key_size = hclge_comm_get_rss_key_size, 3277 .get_rss = hclgevf_get_rss, 3278 .set_rss = hclgevf_set_rss, 3279 .get_rss_tuple = hclgevf_get_rss_tuple, 3280 .set_rss_tuple = hclgevf_set_rss_tuple, 3281 .get_tc_size = hclgevf_get_tc_size, 3282 .get_fw_version = hclgevf_get_fw_version, 3283 .set_vlan_filter = hclgevf_set_vlan_filter, 3284 .enable_vlan_filter = hclgevf_enable_vlan_filter, 3285 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, 3286 .reset_event = hclgevf_reset_event, 3287 .set_default_reset_request = hclgevf_set_def_reset_request, 3288 .set_channels = hclgevf_set_channels, 3289 .get_channels = hclgevf_get_channels, 3290 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, 3291 .get_regs_len = hclgevf_get_regs_len, 3292 .get_regs = hclgevf_get_regs, 3293 .get_status = hclgevf_get_status, 3294 .get_ksettings_an_result = hclgevf_get_ksettings_an_result, 3295 .get_media_type = hclgevf_get_media_type, 3296 .get_hw_reset_stat = hclgevf_get_hw_reset_stat, 3297 .ae_dev_resetting = hclgevf_ae_dev_resetting, 3298 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt, 3299 .set_gro_en = hclgevf_gro_en, 3300 .set_mtu = hclgevf_set_mtu, 3301 .get_global_queue_id = hclgevf_get_qid_global, 3302 .set_timer_task = hclgevf_set_timer_task, 3303 .get_link_mode = hclgevf_get_link_mode, 3304 .set_promisc_mode = hclgevf_set_promisc_mode, 3305 .request_update_promisc_mode = hclgevf_request_update_promisc_mode, 3306 .get_cmdq_stat = hclgevf_get_cmdq_stat, 3307 }; 3308 3309 static struct hnae3_ae_algo ae_algovf = { 3310 .ops = &hclgevf_ops, 3311 .pdev_id_table = ae_algovf_pci_tbl, 3312 }; 3313 3314 static int __init hclgevf_init(void) 3315 { 3316 pr_info("%s is initializing\n", HCLGEVF_NAME); 3317 3318 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME); 3319 if (!hclgevf_wq) { 3320 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME); 3321 return -ENOMEM; 3322 } 3323 3324 hnae3_register_ae_algo(&ae_algovf); 3325 3326 return 0; 3327 } 3328 3329 static void __exit hclgevf_exit(void) 3330 { 3331 hnae3_unregister_ae_algo(&ae_algovf); 3332 destroy_workqueue(hclgevf_wq); 3333 } 3334 module_init(hclgevf_init); 3335 module_exit(hclgevf_exit); 3336 3337 MODULE_LICENSE("GPL"); 3338 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 3339 MODULE_DESCRIPTION("HCLGEVF Driver"); 3340 MODULE_VERSION(HCLGEVF_MOD_VERSION); 3341