1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static const struct pci_device_id ae_algovf_pci_tbl[] = {
20 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
21 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
22 	/* required last entry */
23 	{0, }
24 };
25 
26 static const u8 hclgevf_hash_key[] = {
27 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
28 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
29 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
30 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
31 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
37 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
38 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
39 					 HCLGEVF_CMDQ_TX_TAIL_REG,
40 					 HCLGEVF_CMDQ_TX_HEAD_REG,
41 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
42 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
43 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
44 					 HCLGEVF_CMDQ_RX_TAIL_REG,
45 					 HCLGEVF_CMDQ_RX_HEAD_REG,
46 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGEVF_CMDQ_INTR_STS_REG,
48 					 HCLGEVF_CMDQ_INTR_EN_REG,
49 					 HCLGEVF_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
89 {
90 	if (!handle->client)
91 		return container_of(handle, struct hclgevf_dev, nic);
92 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
93 		return container_of(handle, struct hclgevf_dev, roce);
94 	else
95 		return container_of(handle, struct hclgevf_dev, nic);
96 }
97 
98 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
99 {
100 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
101 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
102 	struct hclgevf_desc desc;
103 	struct hclgevf_tqp *tqp;
104 	int status;
105 	int i;
106 
107 	for (i = 0; i < kinfo->num_tqps; i++) {
108 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
109 		hclgevf_cmd_setup_basic_desc(&desc,
110 					     HCLGEVF_OPC_QUERY_RX_STATUS,
111 					     true);
112 
113 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 		if (status) {
116 			dev_err(&hdev->pdev->dev,
117 				"Query tqp stat fail, status = %d,queue = %d\n",
118 				status,	i);
119 			return status;
120 		}
121 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
122 			le32_to_cpu(desc.data[1]);
123 
124 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
125 					     true);
126 
127 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
128 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
129 		if (status) {
130 			dev_err(&hdev->pdev->dev,
131 				"Query tqp stat fail, status = %d,queue = %d\n",
132 				status, i);
133 			return status;
134 		}
135 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
136 			le32_to_cpu(desc.data[1]);
137 	}
138 
139 	return 0;
140 }
141 
142 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
143 {
144 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
145 	struct hclgevf_tqp *tqp;
146 	u64 *buff = data;
147 	int i;
148 
149 	for (i = 0; i < kinfo->num_tqps; i++) {
150 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
151 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
152 	}
153 	for (i = 0; i < kinfo->num_tqps; i++) {
154 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
155 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
156 	}
157 
158 	return buff;
159 }
160 
161 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
162 {
163 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
164 
165 	return kinfo->num_tqps * 2;
166 }
167 
168 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
169 {
170 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171 	u8 *buff = data;
172 	int i = 0;
173 
174 	for (i = 0; i < kinfo->num_tqps; i++) {
175 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
176 						       struct hclgevf_tqp, q);
177 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
178 			 tqp->index);
179 		buff += ETH_GSTRING_LEN;
180 	}
181 
182 	for (i = 0; i < kinfo->num_tqps; i++) {
183 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
184 						       struct hclgevf_tqp, q);
185 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
186 			 tqp->index);
187 		buff += ETH_GSTRING_LEN;
188 	}
189 
190 	return buff;
191 }
192 
193 static void hclgevf_update_stats(struct hnae3_handle *handle,
194 				 struct net_device_stats *net_stats)
195 {
196 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
197 	int status;
198 
199 	status = hclgevf_tqps_update_stats(handle);
200 	if (status)
201 		dev_err(&hdev->pdev->dev,
202 			"VF update of TQPS stats fail, status = %d.\n",
203 			status);
204 }
205 
206 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
207 {
208 	if (strset == ETH_SS_TEST)
209 		return -EOPNOTSUPP;
210 	else if (strset == ETH_SS_STATS)
211 		return hclgevf_tqps_get_sset_count(handle, strset);
212 
213 	return 0;
214 }
215 
216 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
217 				u8 *data)
218 {
219 	u8 *p = (char *)data;
220 
221 	if (strset == ETH_SS_STATS)
222 		p = hclgevf_tqps_get_strings(handle, p);
223 }
224 
225 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
226 {
227 	hclgevf_tqps_get_stats(handle, data);
228 }
229 
230 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
231 {
232 	u8 resp_msg;
233 	int status;
234 
235 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
236 				      true, &resp_msg, sizeof(resp_msg));
237 	if (status) {
238 		dev_err(&hdev->pdev->dev,
239 			"VF request to get TC info from PF failed %d",
240 			status);
241 		return status;
242 	}
243 
244 	hdev->hw_tc_map = resp_msg;
245 
246 	return 0;
247 }
248 
249 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
250 {
251 	struct hnae3_handle *nic = &hdev->nic;
252 	u8 resp_msg;
253 	int ret;
254 
255 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
256 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
257 				   NULL, 0, true, &resp_msg, sizeof(u8));
258 	if (ret) {
259 		dev_err(&hdev->pdev->dev,
260 			"VF request to get port based vlan state failed %d",
261 			ret);
262 		return ret;
263 	}
264 
265 	nic->port_base_vlan_state = resp_msg;
266 
267 	return 0;
268 }
269 
270 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
271 {
272 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
273 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
274 	int status;
275 
276 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
277 				      true, resp_msg,
278 				      HCLGEVF_TQPS_RSS_INFO_LEN);
279 	if (status) {
280 		dev_err(&hdev->pdev->dev,
281 			"VF request to get tqp info from PF failed %d",
282 			status);
283 		return status;
284 	}
285 
286 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
287 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
288 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
289 
290 	return 0;
291 }
292 
293 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
294 {
295 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
296 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
297 	int ret;
298 
299 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
300 				   true, resp_msg,
301 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
302 	if (ret) {
303 		dev_err(&hdev->pdev->dev,
304 			"VF request to get tqp depth info from PF failed %d",
305 			ret);
306 		return ret;
307 	}
308 
309 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
310 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
311 
312 	return 0;
313 }
314 
315 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
316 {
317 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
318 	u8 msg_data[2], resp_data[2];
319 	u16 qid_in_pf = 0;
320 	int ret;
321 
322 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
323 
324 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
325 				   sizeof(msg_data), true, resp_data,
326 				   sizeof(resp_data));
327 	if (!ret)
328 		qid_in_pf = *(u16 *)resp_data;
329 
330 	return qid_in_pf;
331 }
332 
333 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
334 {
335 	u8 resp_msg[2];
336 	int ret;
337 
338 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
339 				   true, resp_msg, sizeof(resp_msg));
340 	if (ret) {
341 		dev_err(&hdev->pdev->dev,
342 			"VF request to get the pf port media type failed %d",
343 			ret);
344 		return ret;
345 	}
346 
347 	hdev->hw.mac.media_type = resp_msg[0];
348 	hdev->hw.mac.module_type = resp_msg[1];
349 
350 	return 0;
351 }
352 
353 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
354 {
355 	struct hclgevf_tqp *tqp;
356 	int i;
357 
358 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
359 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
360 	if (!hdev->htqp)
361 		return -ENOMEM;
362 
363 	tqp = hdev->htqp;
364 
365 	for (i = 0; i < hdev->num_tqps; i++) {
366 		tqp->dev = &hdev->pdev->dev;
367 		tqp->index = i;
368 
369 		tqp->q.ae_algo = &ae_algovf;
370 		tqp->q.buf_size = hdev->rx_buf_len;
371 		tqp->q.tx_desc_num = hdev->num_tx_desc;
372 		tqp->q.rx_desc_num = hdev->num_rx_desc;
373 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
374 			i * HCLGEVF_TQP_REG_SIZE;
375 
376 		tqp++;
377 	}
378 
379 	return 0;
380 }
381 
382 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
383 {
384 	struct hnae3_handle *nic = &hdev->nic;
385 	struct hnae3_knic_private_info *kinfo;
386 	u16 new_tqps = hdev->num_tqps;
387 	unsigned int i;
388 
389 	kinfo = &nic->kinfo;
390 	kinfo->num_tc = 0;
391 	kinfo->num_tx_desc = hdev->num_tx_desc;
392 	kinfo->num_rx_desc = hdev->num_rx_desc;
393 	kinfo->rx_buf_len = hdev->rx_buf_len;
394 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
395 		if (hdev->hw_tc_map & BIT(i))
396 			kinfo->num_tc++;
397 
398 	kinfo->rss_size
399 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
400 	new_tqps = kinfo->rss_size * kinfo->num_tc;
401 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
402 
403 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
404 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
405 	if (!kinfo->tqp)
406 		return -ENOMEM;
407 
408 	for (i = 0; i < kinfo->num_tqps; i++) {
409 		hdev->htqp[i].q.handle = &hdev->nic;
410 		hdev->htqp[i].q.tqp_index = i;
411 		kinfo->tqp[i] = &hdev->htqp[i].q;
412 	}
413 
414 	return 0;
415 }
416 
417 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
418 {
419 	int status;
420 	u8 resp_msg;
421 
422 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
423 				      0, false, &resp_msg, sizeof(resp_msg));
424 	if (status)
425 		dev_err(&hdev->pdev->dev,
426 			"VF failed to fetch link status(%d) from PF", status);
427 }
428 
429 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
430 {
431 	struct hnae3_handle *rhandle = &hdev->roce;
432 	struct hnae3_handle *handle = &hdev->nic;
433 	struct hnae3_client *rclient;
434 	struct hnae3_client *client;
435 
436 	client = handle->client;
437 	rclient = hdev->roce_client;
438 
439 	link_state =
440 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
441 
442 	if (link_state != hdev->hw.mac.link) {
443 		client->ops->link_status_change(handle, !!link_state);
444 		if (rclient && rclient->ops->link_status_change)
445 			rclient->ops->link_status_change(rhandle, !!link_state);
446 		hdev->hw.mac.link = link_state;
447 	}
448 }
449 
450 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
451 {
452 #define HCLGEVF_ADVERTISING 0
453 #define HCLGEVF_SUPPORTED   1
454 	u8 send_msg;
455 	u8 resp_msg;
456 
457 	send_msg = HCLGEVF_ADVERTISING;
458 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
459 			     &send_msg, sizeof(send_msg), false,
460 			     &resp_msg, sizeof(resp_msg));
461 	send_msg = HCLGEVF_SUPPORTED;
462 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
463 			     &send_msg, sizeof(send_msg), false,
464 			     &resp_msg, sizeof(resp_msg));
465 }
466 
467 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
468 {
469 	struct hnae3_handle *nic = &hdev->nic;
470 	int ret;
471 
472 	nic->ae_algo = &ae_algovf;
473 	nic->pdev = hdev->pdev;
474 	nic->numa_node_mask = hdev->numa_node_mask;
475 	nic->flags |= HNAE3_SUPPORT_VF;
476 
477 	ret = hclgevf_knic_setup(hdev);
478 	if (ret)
479 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
480 			ret);
481 	return ret;
482 }
483 
484 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
485 {
486 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
487 		dev_warn(&hdev->pdev->dev,
488 			 "vector(vector_id %d) has been freed.\n", vector_id);
489 		return;
490 	}
491 
492 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
493 	hdev->num_msi_left += 1;
494 	hdev->num_msi_used -= 1;
495 }
496 
497 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
498 			      struct hnae3_vector_info *vector_info)
499 {
500 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
501 	struct hnae3_vector_info *vector = vector_info;
502 	int alloc = 0;
503 	int i, j;
504 
505 	vector_num = min(hdev->num_msi_left, vector_num);
506 
507 	for (j = 0; j < vector_num; j++) {
508 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
509 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
510 				vector->vector = pci_irq_vector(hdev->pdev, i);
511 				vector->io_addr = hdev->hw.io_base +
512 					HCLGEVF_VECTOR_REG_BASE +
513 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
514 				hdev->vector_status[i] = 0;
515 				hdev->vector_irq[i] = vector->vector;
516 
517 				vector++;
518 				alloc++;
519 
520 				break;
521 			}
522 		}
523 	}
524 	hdev->num_msi_left -= alloc;
525 	hdev->num_msi_used += alloc;
526 
527 	return alloc;
528 }
529 
530 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
531 {
532 	int i;
533 
534 	for (i = 0; i < hdev->num_msi; i++)
535 		if (vector == hdev->vector_irq[i])
536 			return i;
537 
538 	return -EINVAL;
539 }
540 
541 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
542 				    const u8 hfunc, const u8 *key)
543 {
544 	struct hclgevf_rss_config_cmd *req;
545 	unsigned int key_offset = 0;
546 	struct hclgevf_desc desc;
547 	int key_counts;
548 	int key_size;
549 	int ret;
550 
551 	key_counts = HCLGEVF_RSS_KEY_SIZE;
552 	req = (struct hclgevf_rss_config_cmd *)desc.data;
553 
554 	while (key_counts) {
555 		hclgevf_cmd_setup_basic_desc(&desc,
556 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
557 					     false);
558 
559 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
560 		req->hash_config |=
561 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
562 
563 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
564 		memcpy(req->hash_key,
565 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
566 
567 		key_counts -= key_size;
568 		key_offset++;
569 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
570 		if (ret) {
571 			dev_err(&hdev->pdev->dev,
572 				"Configure RSS config fail, status = %d\n",
573 				ret);
574 			return ret;
575 		}
576 	}
577 
578 	return 0;
579 }
580 
581 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
582 {
583 	return HCLGEVF_RSS_KEY_SIZE;
584 }
585 
586 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
587 {
588 	return HCLGEVF_RSS_IND_TBL_SIZE;
589 }
590 
591 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
592 {
593 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
594 	struct hclgevf_rss_indirection_table_cmd *req;
595 	struct hclgevf_desc desc;
596 	int status;
597 	int i, j;
598 
599 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
600 
601 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
602 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
603 					     false);
604 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
605 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
606 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
607 			req->rss_result[j] =
608 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
609 
610 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
611 		if (status) {
612 			dev_err(&hdev->pdev->dev,
613 				"VF failed(=%d) to set RSS indirection table\n",
614 				status);
615 			return status;
616 		}
617 	}
618 
619 	return 0;
620 }
621 
622 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
623 {
624 	struct hclgevf_rss_tc_mode_cmd *req;
625 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
626 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
627 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
628 	struct hclgevf_desc desc;
629 	u16 roundup_size;
630 	int status;
631 	unsigned int i;
632 
633 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
634 
635 	roundup_size = roundup_pow_of_two(rss_size);
636 	roundup_size = ilog2(roundup_size);
637 
638 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
639 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
640 		tc_size[i] = roundup_size;
641 		tc_offset[i] = rss_size * i;
642 	}
643 
644 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
645 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
646 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
647 			      (tc_valid[i] & 0x1));
648 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
649 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
650 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
651 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
652 	}
653 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
654 	if (status)
655 		dev_err(&hdev->pdev->dev,
656 			"VF failed(=%d) to set rss tc mode\n", status);
657 
658 	return status;
659 }
660 
661 /* for revision 0x20, vf shared the same rss config with pf */
662 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
663 {
664 #define HCLGEVF_RSS_MBX_RESP_LEN	8
665 
666 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
667 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
668 	u16 msg_num, hash_key_index;
669 	u8 index;
670 	int ret;
671 
672 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
673 			HCLGEVF_RSS_MBX_RESP_LEN;
674 	for (index = 0; index < msg_num; index++) {
675 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
676 					   &index, sizeof(index),
677 					   true, resp_msg,
678 					   HCLGEVF_RSS_MBX_RESP_LEN);
679 		if (ret) {
680 			dev_err(&hdev->pdev->dev,
681 				"VF get rss hash key from PF failed, ret=%d",
682 				ret);
683 			return ret;
684 		}
685 
686 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
687 		if (index == msg_num - 1)
688 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
689 			       &resp_msg[0],
690 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
691 		else
692 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
693 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
694 	}
695 
696 	return 0;
697 }
698 
699 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
700 			   u8 *hfunc)
701 {
702 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
703 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
704 	int i, ret;
705 
706 	if (handle->pdev->revision >= 0x21) {
707 		/* Get hash algorithm */
708 		if (hfunc) {
709 			switch (rss_cfg->hash_algo) {
710 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
711 				*hfunc = ETH_RSS_HASH_TOP;
712 				break;
713 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
714 				*hfunc = ETH_RSS_HASH_XOR;
715 				break;
716 			default:
717 				*hfunc = ETH_RSS_HASH_UNKNOWN;
718 				break;
719 			}
720 		}
721 
722 		/* Get the RSS Key required by the user */
723 		if (key)
724 			memcpy(key, rss_cfg->rss_hash_key,
725 			       HCLGEVF_RSS_KEY_SIZE);
726 	} else {
727 		if (hfunc)
728 			*hfunc = ETH_RSS_HASH_TOP;
729 		if (key) {
730 			ret = hclgevf_get_rss_hash_key(hdev);
731 			if (ret)
732 				return ret;
733 			memcpy(key, rss_cfg->rss_hash_key,
734 			       HCLGEVF_RSS_KEY_SIZE);
735 		}
736 	}
737 
738 	if (indir)
739 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
740 			indir[i] = rss_cfg->rss_indirection_tbl[i];
741 
742 	return 0;
743 }
744 
745 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
746 			   const  u8 *key, const  u8 hfunc)
747 {
748 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
749 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
750 	int ret, i;
751 
752 	if (handle->pdev->revision >= 0x21) {
753 		/* Set the RSS Hash Key if specififed by the user */
754 		if (key) {
755 			switch (hfunc) {
756 			case ETH_RSS_HASH_TOP:
757 				rss_cfg->hash_algo =
758 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
759 				break;
760 			case ETH_RSS_HASH_XOR:
761 				rss_cfg->hash_algo =
762 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
763 				break;
764 			case ETH_RSS_HASH_NO_CHANGE:
765 				break;
766 			default:
767 				return -EINVAL;
768 			}
769 
770 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
771 						       key);
772 			if (ret)
773 				return ret;
774 
775 			/* Update the shadow RSS key with user specified qids */
776 			memcpy(rss_cfg->rss_hash_key, key,
777 			       HCLGEVF_RSS_KEY_SIZE);
778 		}
779 	}
780 
781 	/* update the shadow RSS table with user specified qids */
782 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
783 		rss_cfg->rss_indirection_tbl[i] = indir[i];
784 
785 	/* update the hardware */
786 	return hclgevf_set_rss_indir_table(hdev);
787 }
788 
789 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
790 {
791 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
792 
793 	if (nfc->data & RXH_L4_B_2_3)
794 		hash_sets |= HCLGEVF_D_PORT_BIT;
795 	else
796 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
797 
798 	if (nfc->data & RXH_IP_SRC)
799 		hash_sets |= HCLGEVF_S_IP_BIT;
800 	else
801 		hash_sets &= ~HCLGEVF_S_IP_BIT;
802 
803 	if (nfc->data & RXH_IP_DST)
804 		hash_sets |= HCLGEVF_D_IP_BIT;
805 	else
806 		hash_sets &= ~HCLGEVF_D_IP_BIT;
807 
808 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
809 		hash_sets |= HCLGEVF_V_TAG_BIT;
810 
811 	return hash_sets;
812 }
813 
814 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
815 				 struct ethtool_rxnfc *nfc)
816 {
817 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
818 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
819 	struct hclgevf_rss_input_tuple_cmd *req;
820 	struct hclgevf_desc desc;
821 	u8 tuple_sets;
822 	int ret;
823 
824 	if (handle->pdev->revision == 0x20)
825 		return -EOPNOTSUPP;
826 
827 	if (nfc->data &
828 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
829 		return -EINVAL;
830 
831 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
832 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
833 
834 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
835 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
836 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
837 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
838 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
839 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
840 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
841 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
842 
843 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
844 	switch (nfc->flow_type) {
845 	case TCP_V4_FLOW:
846 		req->ipv4_tcp_en = tuple_sets;
847 		break;
848 	case TCP_V6_FLOW:
849 		req->ipv6_tcp_en = tuple_sets;
850 		break;
851 	case UDP_V4_FLOW:
852 		req->ipv4_udp_en = tuple_sets;
853 		break;
854 	case UDP_V6_FLOW:
855 		req->ipv6_udp_en = tuple_sets;
856 		break;
857 	case SCTP_V4_FLOW:
858 		req->ipv4_sctp_en = tuple_sets;
859 		break;
860 	case SCTP_V6_FLOW:
861 		if ((nfc->data & RXH_L4_B_0_1) ||
862 		    (nfc->data & RXH_L4_B_2_3))
863 			return -EINVAL;
864 
865 		req->ipv6_sctp_en = tuple_sets;
866 		break;
867 	case IPV4_FLOW:
868 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
869 		break;
870 	case IPV6_FLOW:
871 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
872 		break;
873 	default:
874 		return -EINVAL;
875 	}
876 
877 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
878 	if (ret) {
879 		dev_err(&hdev->pdev->dev,
880 			"Set rss tuple fail, status = %d\n", ret);
881 		return ret;
882 	}
883 
884 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
885 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
886 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
887 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
888 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
889 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
890 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
891 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
892 	return 0;
893 }
894 
895 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
896 				 struct ethtool_rxnfc *nfc)
897 {
898 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
899 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
900 	u8 tuple_sets;
901 
902 	if (handle->pdev->revision == 0x20)
903 		return -EOPNOTSUPP;
904 
905 	nfc->data = 0;
906 
907 	switch (nfc->flow_type) {
908 	case TCP_V4_FLOW:
909 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
910 		break;
911 	case UDP_V4_FLOW:
912 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
913 		break;
914 	case TCP_V6_FLOW:
915 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
916 		break;
917 	case UDP_V6_FLOW:
918 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
919 		break;
920 	case SCTP_V4_FLOW:
921 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
922 		break;
923 	case SCTP_V6_FLOW:
924 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
925 		break;
926 	case IPV4_FLOW:
927 	case IPV6_FLOW:
928 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
929 		break;
930 	default:
931 		return -EINVAL;
932 	}
933 
934 	if (!tuple_sets)
935 		return 0;
936 
937 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
938 		nfc->data |= RXH_L4_B_2_3;
939 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
940 		nfc->data |= RXH_L4_B_0_1;
941 	if (tuple_sets & HCLGEVF_D_IP_BIT)
942 		nfc->data |= RXH_IP_DST;
943 	if (tuple_sets & HCLGEVF_S_IP_BIT)
944 		nfc->data |= RXH_IP_SRC;
945 
946 	return 0;
947 }
948 
949 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
950 				       struct hclgevf_rss_cfg *rss_cfg)
951 {
952 	struct hclgevf_rss_input_tuple_cmd *req;
953 	struct hclgevf_desc desc;
954 	int ret;
955 
956 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
957 
958 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
959 
960 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
961 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
962 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
963 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
964 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
965 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
966 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
967 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
968 
969 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
970 	if (ret)
971 		dev_err(&hdev->pdev->dev,
972 			"Configure rss input fail, status = %d\n", ret);
973 	return ret;
974 }
975 
976 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
977 {
978 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
979 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
980 
981 	return rss_cfg->rss_size;
982 }
983 
984 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
985 				       int vector_id,
986 				       struct hnae3_ring_chain_node *ring_chain)
987 {
988 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
989 	struct hnae3_ring_chain_node *node;
990 	struct hclge_mbx_vf_to_pf_cmd *req;
991 	struct hclgevf_desc desc;
992 	int i = 0;
993 	int status;
994 	u8 type;
995 
996 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
997 	type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
998 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
999 
1000 	for (node = ring_chain; node; node = node->next) {
1001 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1002 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1003 
1004 		if (i == 0) {
1005 			hclgevf_cmd_setup_basic_desc(&desc,
1006 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1007 						     false);
1008 			req->msg[0] = type;
1009 			req->msg[1] = vector_id;
1010 		}
1011 
1012 		req->msg[idx_offset] =
1013 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1014 		req->msg[idx_offset + 1] = node->tqp_index;
1015 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1016 							   HNAE3_RING_GL_IDX_M,
1017 							   HNAE3_RING_GL_IDX_S);
1018 
1019 		i++;
1020 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1021 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1022 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1023 		    !node->next) {
1024 			req->msg[2] = i;
1025 
1026 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1027 			if (status) {
1028 				dev_err(&hdev->pdev->dev,
1029 					"Map TQP fail, status is %d.\n",
1030 					status);
1031 				return status;
1032 			}
1033 			i = 0;
1034 			hclgevf_cmd_setup_basic_desc(&desc,
1035 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1036 						     false);
1037 			req->msg[0] = type;
1038 			req->msg[1] = vector_id;
1039 		}
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1046 				      struct hnae3_ring_chain_node *ring_chain)
1047 {
1048 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1049 	int vector_id;
1050 
1051 	vector_id = hclgevf_get_vector_index(hdev, vector);
1052 	if (vector_id < 0) {
1053 		dev_err(&handle->pdev->dev,
1054 			"Get vector index fail. ret =%d\n", vector_id);
1055 		return vector_id;
1056 	}
1057 
1058 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1059 }
1060 
1061 static int hclgevf_unmap_ring_from_vector(
1062 				struct hnae3_handle *handle,
1063 				int vector,
1064 				struct hnae3_ring_chain_node *ring_chain)
1065 {
1066 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1067 	int ret, vector_id;
1068 
1069 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1070 		return 0;
1071 
1072 	vector_id = hclgevf_get_vector_index(hdev, vector);
1073 	if (vector_id < 0) {
1074 		dev_err(&handle->pdev->dev,
1075 			"Get vector index fail. ret =%d\n", vector_id);
1076 		return vector_id;
1077 	}
1078 
1079 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1080 	if (ret)
1081 		dev_err(&handle->pdev->dev,
1082 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1083 			vector_id,
1084 			ret);
1085 
1086 	return ret;
1087 }
1088 
1089 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1090 {
1091 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1092 	int vector_id;
1093 
1094 	vector_id = hclgevf_get_vector_index(hdev, vector);
1095 	if (vector_id < 0) {
1096 		dev_err(&handle->pdev->dev,
1097 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1098 			vector_id);
1099 		return vector_id;
1100 	}
1101 
1102 	hclgevf_free_vector(hdev, vector_id);
1103 
1104 	return 0;
1105 }
1106 
1107 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1108 					bool en_bc_pmc)
1109 {
1110 	struct hclge_mbx_vf_to_pf_cmd *req;
1111 	struct hclgevf_desc desc;
1112 	int ret;
1113 
1114 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1115 
1116 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1117 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1118 	req->msg[1] = en_bc_pmc ? 1 : 0;
1119 
1120 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1121 	if (ret)
1122 		dev_err(&hdev->pdev->dev,
1123 			"Set promisc mode fail, status is %d.\n", ret);
1124 
1125 	return ret;
1126 }
1127 
1128 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1129 {
1130 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1131 }
1132 
1133 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1134 			      int stream_id, bool enable)
1135 {
1136 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1137 	struct hclgevf_desc desc;
1138 	int status;
1139 
1140 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1141 
1142 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1143 				     false);
1144 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1145 	req->stream_id = cpu_to_le16(stream_id);
1146 	if (enable)
1147 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1148 
1149 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1150 	if (status)
1151 		dev_err(&hdev->pdev->dev,
1152 			"TQP enable fail, status =%d.\n", status);
1153 
1154 	return status;
1155 }
1156 
1157 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1158 {
1159 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1160 	struct hclgevf_tqp *tqp;
1161 	int i;
1162 
1163 	for (i = 0; i < kinfo->num_tqps; i++) {
1164 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1165 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1166 	}
1167 }
1168 
1169 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1170 {
1171 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1172 
1173 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1174 }
1175 
1176 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1177 				bool is_first)
1178 {
1179 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1180 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1181 	u8 *new_mac_addr = (u8 *)p;
1182 	u8 msg_data[ETH_ALEN * 2];
1183 	u16 subcode;
1184 	int status;
1185 
1186 	ether_addr_copy(msg_data, new_mac_addr);
1187 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1188 
1189 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1190 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1191 
1192 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1193 				      subcode, msg_data, sizeof(msg_data),
1194 				      true, NULL, 0);
1195 	if (!status)
1196 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1197 
1198 	return status;
1199 }
1200 
1201 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1202 			       const unsigned char *addr)
1203 {
1204 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1205 
1206 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1207 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1208 				    addr, ETH_ALEN, false, NULL, 0);
1209 }
1210 
1211 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1212 			      const unsigned char *addr)
1213 {
1214 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1215 
1216 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1217 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1218 				    addr, ETH_ALEN, false, NULL, 0);
1219 }
1220 
1221 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1222 			       const unsigned char *addr)
1223 {
1224 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1225 
1226 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1227 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1228 				    addr, ETH_ALEN, false, NULL, 0);
1229 }
1230 
1231 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1232 			      const unsigned char *addr)
1233 {
1234 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1235 
1236 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1237 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1238 				    addr, ETH_ALEN, false, NULL, 0);
1239 }
1240 
1241 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1242 				   __be16 proto, u16 vlan_id,
1243 				   bool is_kill)
1244 {
1245 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1246 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1247 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1248 	int ret;
1249 
1250 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1251 		return -EINVAL;
1252 
1253 	if (proto != htons(ETH_P_8021Q))
1254 		return -EPROTONOSUPPORT;
1255 
1256 	/* When device is resetting, firmware is unable to handle
1257 	 * mailbox. Just record the vlan id, and remove it after
1258 	 * reset finished.
1259 	 */
1260 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1261 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1262 		return -EBUSY;
1263 	}
1264 
1265 	msg_data[0] = is_kill;
1266 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1267 	memcpy(&msg_data[3], &proto, sizeof(proto));
1268 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1269 				   HCLGE_MBX_VLAN_FILTER, msg_data,
1270 				   HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1271 
1272 	/* When remove hw vlan filter failed, record the vlan id,
1273 	 * and try to remove it from hw later, to be consistence
1274 	 * with stack.
1275 	 */
1276 	if (is_kill && ret)
1277 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1278 
1279 	return ret;
1280 }
1281 
1282 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1283 {
1284 #define HCLGEVF_MAX_SYNC_COUNT	60
1285 	struct hnae3_handle *handle = &hdev->nic;
1286 	int ret, sync_cnt = 0;
1287 	u16 vlan_id;
1288 
1289 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1290 	while (vlan_id != VLAN_N_VID) {
1291 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1292 					      vlan_id, true);
1293 		if (ret)
1294 			return;
1295 
1296 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1297 		sync_cnt++;
1298 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1299 			return;
1300 
1301 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1302 	}
1303 }
1304 
1305 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1306 {
1307 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1308 	u8 msg_data;
1309 
1310 	msg_data = enable ? 1 : 0;
1311 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1312 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1313 				    1, false, NULL, 0);
1314 }
1315 
1316 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1317 {
1318 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1319 	u8 msg_data[2];
1320 	int ret;
1321 
1322 	memcpy(msg_data, &queue_id, sizeof(queue_id));
1323 
1324 	/* disable vf queue before send queue reset msg to PF */
1325 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1326 	if (ret)
1327 		return ret;
1328 
1329 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1330 				    sizeof(msg_data), true, NULL, 0);
1331 }
1332 
1333 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1334 {
1335 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1336 
1337 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1338 				    sizeof(new_mtu), true, NULL, 0);
1339 }
1340 
1341 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1342 				 enum hnae3_reset_notify_type type)
1343 {
1344 	struct hnae3_client *client = hdev->nic_client;
1345 	struct hnae3_handle *handle = &hdev->nic;
1346 	int ret;
1347 
1348 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1349 	    !client)
1350 		return 0;
1351 
1352 	if (!client->ops->reset_notify)
1353 		return -EOPNOTSUPP;
1354 
1355 	ret = client->ops->reset_notify(handle, type);
1356 	if (ret)
1357 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1358 			type, ret);
1359 
1360 	return ret;
1361 }
1362 
1363 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1364 {
1365 	struct hclgevf_dev *hdev = ae_dev->priv;
1366 
1367 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1368 }
1369 
1370 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1371 				    unsigned long delay_us,
1372 				    unsigned long wait_cnt)
1373 {
1374 	unsigned long cnt = 0;
1375 
1376 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1377 	       cnt++ < wait_cnt)
1378 		usleep_range(delay_us, delay_us * 2);
1379 
1380 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1381 		dev_err(&hdev->pdev->dev,
1382 			"flr wait timeout\n");
1383 		return -ETIMEDOUT;
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1390 {
1391 #define HCLGEVF_RESET_WAIT_US	20000
1392 #define HCLGEVF_RESET_WAIT_CNT	2000
1393 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1394 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1395 
1396 	u32 val;
1397 	int ret;
1398 
1399 	/* wait to check the hardware reset completion status */
1400 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1401 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1402 
1403 	if (hdev->reset_type == HNAE3_FLR_RESET)
1404 		return hclgevf_flr_poll_timeout(hdev,
1405 						HCLGEVF_RESET_WAIT_US,
1406 						HCLGEVF_RESET_WAIT_CNT);
1407 
1408 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1409 				 !(val & HCLGEVF_RST_ING_BITS),
1410 				 HCLGEVF_RESET_WAIT_US,
1411 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1412 
1413 	/* hardware completion status should be available by this time */
1414 	if (ret) {
1415 		dev_err(&hdev->pdev->dev,
1416 			"could'nt get reset done status from h/w, timeout!\n");
1417 		return ret;
1418 	}
1419 
1420 	/* we will wait a bit more to let reset of the stack to complete. This
1421 	 * might happen in case reset assertion was made by PF. Yes, this also
1422 	 * means we might end up waiting bit more even for VF reset.
1423 	 */
1424 	msleep(5000);
1425 
1426 	return 0;
1427 }
1428 
1429 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1430 {
1431 	u32 reg_val;
1432 
1433 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1434 	if (enable)
1435 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1436 	else
1437 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1438 
1439 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1440 			  reg_val);
1441 }
1442 
1443 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1444 {
1445 	int ret;
1446 
1447 	/* uninitialize the nic client */
1448 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1449 	if (ret)
1450 		return ret;
1451 
1452 	/* re-initialize the hclge device */
1453 	ret = hclgevf_reset_hdev(hdev);
1454 	if (ret) {
1455 		dev_err(&hdev->pdev->dev,
1456 			"hclge device re-init failed, VF is disabled!\n");
1457 		return ret;
1458 	}
1459 
1460 	/* bring up the nic client again */
1461 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1462 	if (ret)
1463 		return ret;
1464 
1465 	ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1466 	if (ret)
1467 		return ret;
1468 
1469 	/* clear handshake status with IMP */
1470 	hclgevf_reset_handshake(hdev, false);
1471 
1472 	return 0;
1473 }
1474 
1475 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1476 {
1477 #define HCLGEVF_RESET_SYNC_TIME 100
1478 
1479 	int ret = 0;
1480 
1481 	switch (hdev->reset_type) {
1482 	case HNAE3_VF_FUNC_RESET:
1483 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1484 					   0, true, NULL, sizeof(u8));
1485 		hdev->rst_stats.vf_func_rst_cnt++;
1486 		break;
1487 	case HNAE3_FLR_RESET:
1488 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1489 		hdev->rst_stats.flr_rst_cnt++;
1490 		break;
1491 	default:
1492 		break;
1493 	}
1494 
1495 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1496 	/* inform hardware that preparatory work is done */
1497 	msleep(HCLGEVF_RESET_SYNC_TIME);
1498 	hclgevf_reset_handshake(hdev, true);
1499 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1500 		 hdev->reset_type, ret);
1501 
1502 	return ret;
1503 }
1504 
1505 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1506 {
1507 	/* recover handshake status with IMP when reset fail */
1508 	hclgevf_reset_handshake(hdev, true);
1509 	hdev->rst_stats.rst_fail_cnt++;
1510 	dev_err(&hdev->pdev->dev, "failed to reset VF(%d)\n",
1511 		hdev->rst_stats.rst_fail_cnt);
1512 
1513 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1514 		set_bit(hdev->reset_type, &hdev->reset_pending);
1515 
1516 	if (hclgevf_is_reset_pending(hdev)) {
1517 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1518 		hclgevf_reset_task_schedule(hdev);
1519 	}
1520 }
1521 
1522 static int hclgevf_reset(struct hclgevf_dev *hdev)
1523 {
1524 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1525 	int ret;
1526 
1527 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1528 	 * know if device is undergoing reset
1529 	 */
1530 	ae_dev->reset_type = hdev->reset_type;
1531 	hdev->rst_stats.rst_cnt++;
1532 	rtnl_lock();
1533 
1534 	/* bring down the nic to stop any ongoing TX/RX */
1535 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1536 	if (ret)
1537 		goto err_reset_lock;
1538 
1539 	rtnl_unlock();
1540 
1541 	ret = hclgevf_reset_prepare_wait(hdev);
1542 	if (ret)
1543 		goto err_reset;
1544 
1545 	/* check if VF could successfully fetch the hardware reset completion
1546 	 * status from the hardware
1547 	 */
1548 	ret = hclgevf_reset_wait(hdev);
1549 	if (ret) {
1550 		/* can't do much in this situation, will disable VF */
1551 		dev_err(&hdev->pdev->dev,
1552 			"VF failed(=%d) to fetch H/W reset completion status\n",
1553 			ret);
1554 		goto err_reset;
1555 	}
1556 
1557 	hdev->rst_stats.hw_rst_done_cnt++;
1558 
1559 	rtnl_lock();
1560 
1561 	/* now, re-initialize the nic client and ae device*/
1562 	ret = hclgevf_reset_stack(hdev);
1563 	if (ret) {
1564 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1565 		goto err_reset_lock;
1566 	}
1567 
1568 	/* bring up the nic to enable TX/RX again */
1569 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1570 	if (ret)
1571 		goto err_reset_lock;
1572 
1573 	rtnl_unlock();
1574 
1575 	hdev->last_reset_time = jiffies;
1576 	ae_dev->reset_type = HNAE3_NONE_RESET;
1577 	hdev->rst_stats.rst_done_cnt++;
1578 	hdev->rst_stats.rst_fail_cnt = 0;
1579 
1580 	return ret;
1581 err_reset_lock:
1582 	rtnl_unlock();
1583 err_reset:
1584 	hclgevf_reset_err_handle(hdev);
1585 
1586 	return ret;
1587 }
1588 
1589 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1590 						     unsigned long *addr)
1591 {
1592 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1593 
1594 	/* return the highest priority reset level amongst all */
1595 	if (test_bit(HNAE3_VF_RESET, addr)) {
1596 		rst_level = HNAE3_VF_RESET;
1597 		clear_bit(HNAE3_VF_RESET, addr);
1598 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1599 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1600 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1601 		rst_level = HNAE3_VF_FULL_RESET;
1602 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1603 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1604 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1605 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1606 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1607 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1608 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1609 		rst_level = HNAE3_VF_FUNC_RESET;
1610 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1611 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1612 		rst_level = HNAE3_FLR_RESET;
1613 		clear_bit(HNAE3_FLR_RESET, addr);
1614 	}
1615 
1616 	return rst_level;
1617 }
1618 
1619 static void hclgevf_reset_event(struct pci_dev *pdev,
1620 				struct hnae3_handle *handle)
1621 {
1622 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1623 	struct hclgevf_dev *hdev = ae_dev->priv;
1624 
1625 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1626 
1627 	if (hdev->default_reset_request)
1628 		hdev->reset_level =
1629 			hclgevf_get_reset_level(hdev,
1630 						&hdev->default_reset_request);
1631 	else
1632 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1633 
1634 	/* reset of this VF requested */
1635 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1636 	hclgevf_reset_task_schedule(hdev);
1637 
1638 	hdev->last_reset_time = jiffies;
1639 }
1640 
1641 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1642 					  enum hnae3_reset_type rst_type)
1643 {
1644 	struct hclgevf_dev *hdev = ae_dev->priv;
1645 
1646 	set_bit(rst_type, &hdev->default_reset_request);
1647 }
1648 
1649 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1650 {
1651 #define HCLGEVF_FLR_WAIT_MS	100
1652 #define HCLGEVF_FLR_WAIT_CNT	50
1653 	struct hclgevf_dev *hdev = ae_dev->priv;
1654 	int cnt = 0;
1655 
1656 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1657 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1658 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1659 	hclgevf_reset_event(hdev->pdev, NULL);
1660 
1661 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1662 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1663 		msleep(HCLGEVF_FLR_WAIT_MS);
1664 
1665 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1666 		dev_err(&hdev->pdev->dev,
1667 			"flr wait down timeout: %d\n", cnt);
1668 }
1669 
1670 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1671 {
1672 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1673 
1674 	return hdev->fw_version;
1675 }
1676 
1677 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1678 {
1679 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1680 
1681 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1682 					    HCLGEVF_MISC_VECTOR_NUM);
1683 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1684 	/* vector status always valid for Vector 0 */
1685 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1686 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1687 
1688 	hdev->num_msi_left -= 1;
1689 	hdev->num_msi_used += 1;
1690 }
1691 
1692 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1693 {
1694 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1695 	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1696 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1697 		schedule_work(&hdev->rst_service_task);
1698 	}
1699 }
1700 
1701 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1702 {
1703 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1704 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1705 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1706 		schedule_work(&hdev->mbx_service_task);
1707 	}
1708 }
1709 
1710 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1711 {
1712 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1713 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1714 		schedule_work(&hdev->service_task);
1715 }
1716 
1717 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1718 {
1719 	/* if we have any pending mailbox event then schedule the mbx task */
1720 	if (hdev->mbx_event_pending)
1721 		hclgevf_mbx_task_schedule(hdev);
1722 
1723 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1724 		hclgevf_reset_task_schedule(hdev);
1725 }
1726 
1727 static void hclgevf_service_timer(struct timer_list *t)
1728 {
1729 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1730 
1731 	mod_timer(&hdev->service_timer, jiffies +
1732 		  HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1733 
1734 	hdev->stats_timer++;
1735 	hclgevf_task_schedule(hdev);
1736 }
1737 
1738 static void hclgevf_reset_service_task(struct work_struct *work)
1739 {
1740 	struct hclgevf_dev *hdev =
1741 		container_of(work, struct hclgevf_dev, rst_service_task);
1742 	int ret;
1743 
1744 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1745 		return;
1746 
1747 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1748 
1749 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1750 			       &hdev->reset_state)) {
1751 		/* PF has initmated that it is about to reset the hardware.
1752 		 * We now have to poll & check if hardware has actually
1753 		 * completed the reset sequence. On hardware reset completion,
1754 		 * VF needs to reset the client and ae device.
1755 		 */
1756 		hdev->reset_attempts = 0;
1757 
1758 		hdev->last_reset_time = jiffies;
1759 		while ((hdev->reset_type =
1760 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1761 		       != HNAE3_NONE_RESET) {
1762 			ret = hclgevf_reset(hdev);
1763 			if (ret)
1764 				dev_err(&hdev->pdev->dev,
1765 					"VF stack reset failed %d.\n", ret);
1766 		}
1767 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1768 				      &hdev->reset_state)) {
1769 		/* we could be here when either of below happens:
1770 		 * 1. reset was initiated due to watchdog timeout caused by
1771 		 *    a. IMP was earlier reset and our TX got choked down and
1772 		 *       which resulted in watchdog reacting and inducing VF
1773 		 *       reset. This also means our cmdq would be unreliable.
1774 		 *    b. problem in TX due to other lower layer(example link
1775 		 *       layer not functioning properly etc.)
1776 		 * 2. VF reset might have been initiated due to some config
1777 		 *    change.
1778 		 *
1779 		 * NOTE: Theres no clear way to detect above cases than to react
1780 		 * to the response of PF for this reset request. PF will ack the
1781 		 * 1b and 2. cases but we will not get any intimation about 1a
1782 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1783 		 * communication between PF and VF would be broken.
1784 		 */
1785 
1786 		/* if we are never geting into pending state it means either:
1787 		 * 1. PF is not receiving our request which could be due to IMP
1788 		 *    reset
1789 		 * 2. PF is screwed
1790 		 * We cannot do much for 2. but to check first we can try reset
1791 		 * our PCIe + stack and see if it alleviates the problem.
1792 		 */
1793 		if (hdev->reset_attempts > 3) {
1794 			/* prepare for full reset of stack + pcie interface */
1795 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1796 
1797 			/* "defer" schedule the reset task again */
1798 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1799 		} else {
1800 			hdev->reset_attempts++;
1801 
1802 			set_bit(hdev->reset_level, &hdev->reset_pending);
1803 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1804 		}
1805 		hclgevf_reset_task_schedule(hdev);
1806 	}
1807 
1808 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1809 }
1810 
1811 static void hclgevf_mailbox_service_task(struct work_struct *work)
1812 {
1813 	struct hclgevf_dev *hdev;
1814 
1815 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1816 
1817 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1818 		return;
1819 
1820 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1821 
1822 	hclgevf_mbx_async_handler(hdev);
1823 
1824 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1825 }
1826 
1827 static void hclgevf_keep_alive_timer(struct timer_list *t)
1828 {
1829 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1830 
1831 	schedule_work(&hdev->keep_alive_task);
1832 	mod_timer(&hdev->keep_alive_timer, jiffies +
1833 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1834 }
1835 
1836 static void hclgevf_keep_alive_task(struct work_struct *work)
1837 {
1838 	struct hclgevf_dev *hdev;
1839 	u8 respmsg;
1840 	int ret;
1841 
1842 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1843 
1844 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1845 		return;
1846 
1847 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1848 				   0, false, &respmsg, sizeof(respmsg));
1849 	if (ret)
1850 		dev_err(&hdev->pdev->dev,
1851 			"VF sends keep alive cmd failed(=%d)\n", ret);
1852 }
1853 
1854 static void hclgevf_service_task(struct work_struct *work)
1855 {
1856 	struct hnae3_handle *handle;
1857 	struct hclgevf_dev *hdev;
1858 
1859 	hdev = container_of(work, struct hclgevf_dev, service_task);
1860 	handle = &hdev->nic;
1861 
1862 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1863 		hclgevf_tqps_update_stats(handle);
1864 		hdev->stats_timer = 0;
1865 	}
1866 
1867 	/* request the link status from the PF. PF would be able to tell VF
1868 	 * about such updates in future so we might remove this later
1869 	 */
1870 	hclgevf_request_link_info(hdev);
1871 
1872 	hclgevf_update_link_mode(hdev);
1873 
1874 	hclgevf_sync_vlan_filter(hdev);
1875 
1876 	hclgevf_deferred_task_schedule(hdev);
1877 
1878 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1879 }
1880 
1881 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1882 {
1883 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1884 }
1885 
1886 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1887 						      u32 *clearval)
1888 {
1889 	u32 cmdq_src_reg, rst_ing_reg;
1890 
1891 	/* fetch the events from their corresponding regs */
1892 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1893 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1894 
1895 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1896 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1897 		dev_info(&hdev->pdev->dev,
1898 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1899 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1900 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1901 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1902 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1903 		*clearval = cmdq_src_reg;
1904 		hdev->rst_stats.vf_rst_cnt++;
1905 		return HCLGEVF_VECTOR0_EVENT_RST;
1906 	}
1907 
1908 	/* check for vector0 mailbox(=CMDQ RX) event source */
1909 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1910 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1911 		*clearval = cmdq_src_reg;
1912 		return HCLGEVF_VECTOR0_EVENT_MBX;
1913 	}
1914 
1915 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1916 
1917 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1918 }
1919 
1920 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1921 {
1922 	writel(en ? 1 : 0, vector->addr);
1923 }
1924 
1925 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1926 {
1927 	enum hclgevf_evt_cause event_cause;
1928 	struct hclgevf_dev *hdev = data;
1929 	u32 clearval;
1930 
1931 	hclgevf_enable_vector(&hdev->misc_vector, false);
1932 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1933 
1934 	switch (event_cause) {
1935 	case HCLGEVF_VECTOR0_EVENT_RST:
1936 		hclgevf_reset_task_schedule(hdev);
1937 		break;
1938 	case HCLGEVF_VECTOR0_EVENT_MBX:
1939 		hclgevf_mbx_handler(hdev);
1940 		break;
1941 	default:
1942 		break;
1943 	}
1944 
1945 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1946 		hclgevf_clear_event_cause(hdev, clearval);
1947 		hclgevf_enable_vector(&hdev->misc_vector, true);
1948 	}
1949 
1950 	return IRQ_HANDLED;
1951 }
1952 
1953 static int hclgevf_configure(struct hclgevf_dev *hdev)
1954 {
1955 	int ret;
1956 
1957 	/* get current port based vlan state from PF */
1958 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1959 	if (ret)
1960 		return ret;
1961 
1962 	/* get queue configuration from PF */
1963 	ret = hclgevf_get_queue_info(hdev);
1964 	if (ret)
1965 		return ret;
1966 
1967 	/* get queue depth info from PF */
1968 	ret = hclgevf_get_queue_depth(hdev);
1969 	if (ret)
1970 		return ret;
1971 
1972 	ret = hclgevf_get_pf_media_type(hdev);
1973 	if (ret)
1974 		return ret;
1975 
1976 	/* get tc configuration from PF */
1977 	return hclgevf_get_tc_info(hdev);
1978 }
1979 
1980 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1981 {
1982 	struct pci_dev *pdev = ae_dev->pdev;
1983 	struct hclgevf_dev *hdev;
1984 
1985 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1986 	if (!hdev)
1987 		return -ENOMEM;
1988 
1989 	hdev->pdev = pdev;
1990 	hdev->ae_dev = ae_dev;
1991 	ae_dev->priv = hdev;
1992 
1993 	return 0;
1994 }
1995 
1996 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1997 {
1998 	struct hnae3_handle *roce = &hdev->roce;
1999 	struct hnae3_handle *nic = &hdev->nic;
2000 
2001 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2002 
2003 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2004 	    hdev->num_msi_left == 0)
2005 		return -EINVAL;
2006 
2007 	roce->rinfo.base_vector = hdev->roce_base_vector;
2008 
2009 	roce->rinfo.netdev = nic->kinfo.netdev;
2010 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2011 
2012 	roce->pdev = nic->pdev;
2013 	roce->ae_algo = nic->ae_algo;
2014 	roce->numa_node_mask = nic->numa_node_mask;
2015 
2016 	return 0;
2017 }
2018 
2019 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2020 {
2021 	struct hclgevf_cfg_gro_status_cmd *req;
2022 	struct hclgevf_desc desc;
2023 	int ret;
2024 
2025 	if (!hnae3_dev_gro_supported(hdev))
2026 		return 0;
2027 
2028 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2029 				     false);
2030 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2031 
2032 	req->gro_en = cpu_to_le16(en ? 1 : 0);
2033 
2034 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2035 	if (ret)
2036 		dev_err(&hdev->pdev->dev,
2037 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2038 
2039 	return ret;
2040 }
2041 
2042 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2043 {
2044 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2045 	int i, ret;
2046 
2047 	rss_cfg->rss_size = hdev->rss_size_max;
2048 
2049 	if (hdev->pdev->revision >= 0x21) {
2050 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2051 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2052 		       HCLGEVF_RSS_KEY_SIZE);
2053 
2054 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2055 					       rss_cfg->rss_hash_key);
2056 		if (ret)
2057 			return ret;
2058 
2059 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
2060 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2061 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
2062 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2063 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
2064 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2065 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
2066 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2067 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
2068 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2069 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
2070 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2071 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
2072 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2073 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2074 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2075 
2076 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2077 		if (ret)
2078 			return ret;
2079 
2080 	}
2081 
2082 	/* Initialize RSS indirect table */
2083 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2084 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
2085 
2086 	ret = hclgevf_set_rss_indir_table(hdev);
2087 	if (ret)
2088 		return ret;
2089 
2090 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
2091 }
2092 
2093 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2094 {
2095 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2096 				       false);
2097 }
2098 
2099 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2100 {
2101 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2102 
2103 	if (enable) {
2104 		mod_timer(&hdev->service_timer, jiffies + HZ);
2105 	} else {
2106 		del_timer_sync(&hdev->service_timer);
2107 		cancel_work_sync(&hdev->service_task);
2108 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2109 	}
2110 }
2111 
2112 static int hclgevf_ae_start(struct hnae3_handle *handle)
2113 {
2114 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2115 
2116 	hclgevf_reset_tqp_stats(handle);
2117 
2118 	hclgevf_request_link_info(hdev);
2119 
2120 	hclgevf_update_link_mode(hdev);
2121 
2122 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2123 
2124 	return 0;
2125 }
2126 
2127 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2128 {
2129 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2130 	int i;
2131 
2132 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2133 
2134 	if (hdev->reset_type != HNAE3_VF_RESET)
2135 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2136 			if (hclgevf_reset_tqp(handle, i))
2137 				break;
2138 
2139 	hclgevf_reset_tqp_stats(handle);
2140 	hclgevf_update_link_status(hdev, 0);
2141 }
2142 
2143 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2144 {
2145 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2146 	u8 msg_data;
2147 
2148 	msg_data = alive ? 1 : 0;
2149 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2150 				    0, &msg_data, 1, false, NULL, 0);
2151 }
2152 
2153 static int hclgevf_client_start(struct hnae3_handle *handle)
2154 {
2155 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2156 	int ret;
2157 
2158 	ret = hclgevf_set_alive(handle, true);
2159 	if (ret)
2160 		return ret;
2161 
2162 	mod_timer(&hdev->keep_alive_timer, jiffies +
2163 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2164 
2165 	return 0;
2166 }
2167 
2168 static void hclgevf_client_stop(struct hnae3_handle *handle)
2169 {
2170 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2171 	int ret;
2172 
2173 	ret = hclgevf_set_alive(handle, false);
2174 	if (ret)
2175 		dev_warn(&hdev->pdev->dev,
2176 			 "%s failed %d\n", __func__, ret);
2177 
2178 	del_timer_sync(&hdev->keep_alive_timer);
2179 	cancel_work_sync(&hdev->keep_alive_task);
2180 }
2181 
2182 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2183 {
2184 	/* setup tasks for the MBX */
2185 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2186 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2187 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2188 
2189 	/* setup tasks for service timer */
2190 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2191 
2192 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2193 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2194 
2195 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2196 
2197 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2198 
2199 	/* bring the device down */
2200 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2201 }
2202 
2203 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2204 {
2205 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2206 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2207 
2208 	if (hdev->keep_alive_timer.function)
2209 		del_timer_sync(&hdev->keep_alive_timer);
2210 	if (hdev->keep_alive_task.func)
2211 		cancel_work_sync(&hdev->keep_alive_task);
2212 	if (hdev->service_timer.function)
2213 		del_timer_sync(&hdev->service_timer);
2214 	if (hdev->service_task.func)
2215 		cancel_work_sync(&hdev->service_task);
2216 	if (hdev->mbx_service_task.func)
2217 		cancel_work_sync(&hdev->mbx_service_task);
2218 	if (hdev->rst_service_task.func)
2219 		cancel_work_sync(&hdev->rst_service_task);
2220 
2221 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2222 }
2223 
2224 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2225 {
2226 	struct pci_dev *pdev = hdev->pdev;
2227 	int vectors;
2228 	int i;
2229 
2230 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2231 		vectors = pci_alloc_irq_vectors(pdev,
2232 						hdev->roce_base_msix_offset + 1,
2233 						hdev->num_msi,
2234 						PCI_IRQ_MSIX);
2235 	else
2236 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2237 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2238 
2239 	if (vectors < 0) {
2240 		dev_err(&pdev->dev,
2241 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2242 			vectors);
2243 		return vectors;
2244 	}
2245 	if (vectors < hdev->num_msi)
2246 		dev_warn(&hdev->pdev->dev,
2247 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2248 			 hdev->num_msi, vectors);
2249 
2250 	hdev->num_msi = vectors;
2251 	hdev->num_msi_left = vectors;
2252 	hdev->base_msi_vector = pdev->irq;
2253 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2254 
2255 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2256 					   sizeof(u16), GFP_KERNEL);
2257 	if (!hdev->vector_status) {
2258 		pci_free_irq_vectors(pdev);
2259 		return -ENOMEM;
2260 	}
2261 
2262 	for (i = 0; i < hdev->num_msi; i++)
2263 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2264 
2265 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2266 					sizeof(int), GFP_KERNEL);
2267 	if (!hdev->vector_irq) {
2268 		devm_kfree(&pdev->dev, hdev->vector_status);
2269 		pci_free_irq_vectors(pdev);
2270 		return -ENOMEM;
2271 	}
2272 
2273 	return 0;
2274 }
2275 
2276 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2277 {
2278 	struct pci_dev *pdev = hdev->pdev;
2279 
2280 	devm_kfree(&pdev->dev, hdev->vector_status);
2281 	devm_kfree(&pdev->dev, hdev->vector_irq);
2282 	pci_free_irq_vectors(pdev);
2283 }
2284 
2285 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2286 {
2287 	int ret = 0;
2288 
2289 	hclgevf_get_misc_vector(hdev);
2290 
2291 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2292 			  0, "hclgevf_cmd", hdev);
2293 	if (ret) {
2294 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2295 			hdev->misc_vector.vector_irq);
2296 		return ret;
2297 	}
2298 
2299 	hclgevf_clear_event_cause(hdev, 0);
2300 
2301 	/* enable misc. vector(vector 0) */
2302 	hclgevf_enable_vector(&hdev->misc_vector, true);
2303 
2304 	return ret;
2305 }
2306 
2307 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2308 {
2309 	/* disable misc vector(vector 0) */
2310 	hclgevf_enable_vector(&hdev->misc_vector, false);
2311 	synchronize_irq(hdev->misc_vector.vector_irq);
2312 	free_irq(hdev->misc_vector.vector_irq, hdev);
2313 	hclgevf_free_vector(hdev, 0);
2314 }
2315 
2316 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2317 {
2318 	struct device *dev = &hdev->pdev->dev;
2319 
2320 	dev_info(dev, "VF info begin:\n");
2321 
2322 	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2323 	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2324 	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2325 	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2326 	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2327 	dev_info(dev, "PF media type of this VF: %d\n",
2328 		 hdev->hw.mac.media_type);
2329 
2330 	dev_info(dev, "VF info end.\n");
2331 }
2332 
2333 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2334 					    struct hnae3_client *client)
2335 {
2336 	struct hclgevf_dev *hdev = ae_dev->priv;
2337 	int ret;
2338 
2339 	ret = client->ops->init_instance(&hdev->nic);
2340 	if (ret)
2341 		return ret;
2342 
2343 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2344 	hnae3_set_client_init_flag(client, ae_dev, 1);
2345 
2346 	if (netif_msg_drv(&hdev->nic))
2347 		hclgevf_info_show(hdev);
2348 
2349 	return 0;
2350 }
2351 
2352 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2353 					     struct hnae3_client *client)
2354 {
2355 	struct hclgevf_dev *hdev = ae_dev->priv;
2356 	int ret;
2357 
2358 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2359 	    !hdev->nic_client)
2360 		return 0;
2361 
2362 	ret = hclgevf_init_roce_base_info(hdev);
2363 	if (ret)
2364 		return ret;
2365 
2366 	ret = client->ops->init_instance(&hdev->roce);
2367 	if (ret)
2368 		return ret;
2369 
2370 	hnae3_set_client_init_flag(client, ae_dev, 1);
2371 
2372 	return 0;
2373 }
2374 
2375 static int hclgevf_init_client_instance(struct hnae3_client *client,
2376 					struct hnae3_ae_dev *ae_dev)
2377 {
2378 	struct hclgevf_dev *hdev = ae_dev->priv;
2379 	int ret;
2380 
2381 	switch (client->type) {
2382 	case HNAE3_CLIENT_KNIC:
2383 		hdev->nic_client = client;
2384 		hdev->nic.client = client;
2385 
2386 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2387 		if (ret)
2388 			goto clear_nic;
2389 
2390 		ret = hclgevf_init_roce_client_instance(ae_dev,
2391 							hdev->roce_client);
2392 		if (ret)
2393 			goto clear_roce;
2394 
2395 		break;
2396 	case HNAE3_CLIENT_ROCE:
2397 		if (hnae3_dev_roce_supported(hdev)) {
2398 			hdev->roce_client = client;
2399 			hdev->roce.client = client;
2400 		}
2401 
2402 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2403 		if (ret)
2404 			goto clear_roce;
2405 
2406 		break;
2407 	default:
2408 		return -EINVAL;
2409 	}
2410 
2411 	return 0;
2412 
2413 clear_nic:
2414 	hdev->nic_client = NULL;
2415 	hdev->nic.client = NULL;
2416 	return ret;
2417 clear_roce:
2418 	hdev->roce_client = NULL;
2419 	hdev->roce.client = NULL;
2420 	return ret;
2421 }
2422 
2423 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2424 					   struct hnae3_ae_dev *ae_dev)
2425 {
2426 	struct hclgevf_dev *hdev = ae_dev->priv;
2427 
2428 	/* un-init roce, if it exists */
2429 	if (hdev->roce_client) {
2430 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2431 		hdev->roce_client = NULL;
2432 		hdev->roce.client = NULL;
2433 	}
2434 
2435 	/* un-init nic/unic, if this was not called by roce client */
2436 	if (client->ops->uninit_instance && hdev->nic_client &&
2437 	    client->type != HNAE3_CLIENT_ROCE) {
2438 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2439 
2440 		client->ops->uninit_instance(&hdev->nic, 0);
2441 		hdev->nic_client = NULL;
2442 		hdev->nic.client = NULL;
2443 	}
2444 }
2445 
2446 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2447 {
2448 	struct pci_dev *pdev = hdev->pdev;
2449 	struct hclgevf_hw *hw;
2450 	int ret;
2451 
2452 	ret = pci_enable_device(pdev);
2453 	if (ret) {
2454 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2455 		return ret;
2456 	}
2457 
2458 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2459 	if (ret) {
2460 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2461 		goto err_disable_device;
2462 	}
2463 
2464 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2465 	if (ret) {
2466 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2467 		goto err_disable_device;
2468 	}
2469 
2470 	pci_set_master(pdev);
2471 	hw = &hdev->hw;
2472 	hw->hdev = hdev;
2473 	hw->io_base = pci_iomap(pdev, 2, 0);
2474 	if (!hw->io_base) {
2475 		dev_err(&pdev->dev, "can't map configuration register space\n");
2476 		ret = -ENOMEM;
2477 		goto err_clr_master;
2478 	}
2479 
2480 	return 0;
2481 
2482 err_clr_master:
2483 	pci_clear_master(pdev);
2484 	pci_release_regions(pdev);
2485 err_disable_device:
2486 	pci_disable_device(pdev);
2487 
2488 	return ret;
2489 }
2490 
2491 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2492 {
2493 	struct pci_dev *pdev = hdev->pdev;
2494 
2495 	pci_iounmap(pdev, hdev->hw.io_base);
2496 	pci_clear_master(pdev);
2497 	pci_release_regions(pdev);
2498 	pci_disable_device(pdev);
2499 }
2500 
2501 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2502 {
2503 	struct hclgevf_query_res_cmd *req;
2504 	struct hclgevf_desc desc;
2505 	int ret;
2506 
2507 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2508 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2509 	if (ret) {
2510 		dev_err(&hdev->pdev->dev,
2511 			"query vf resource failed, ret = %d.\n", ret);
2512 		return ret;
2513 	}
2514 
2515 	req = (struct hclgevf_query_res_cmd *)desc.data;
2516 
2517 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2518 		hdev->roce_base_msix_offset =
2519 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2520 				HCLGEVF_MSIX_OFT_ROCEE_M,
2521 				HCLGEVF_MSIX_OFT_ROCEE_S);
2522 		hdev->num_roce_msix =
2523 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2524 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2525 
2526 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2527 		 * are queued before Roce vectors. The offset is fixed to 64.
2528 		 */
2529 		hdev->num_msi = hdev->num_roce_msix +
2530 				hdev->roce_base_msix_offset;
2531 	} else {
2532 		hdev->num_msi =
2533 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2534 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2541 {
2542 	struct pci_dev *pdev = hdev->pdev;
2543 	int ret = 0;
2544 
2545 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2546 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2547 		hclgevf_misc_irq_uninit(hdev);
2548 		hclgevf_uninit_msi(hdev);
2549 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2550 	}
2551 
2552 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2553 		pci_set_master(pdev);
2554 		ret = hclgevf_init_msi(hdev);
2555 		if (ret) {
2556 			dev_err(&pdev->dev,
2557 				"failed(%d) to init MSI/MSI-X\n", ret);
2558 			return ret;
2559 		}
2560 
2561 		ret = hclgevf_misc_irq_init(hdev);
2562 		if (ret) {
2563 			hclgevf_uninit_msi(hdev);
2564 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2565 				ret);
2566 			return ret;
2567 		}
2568 
2569 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2570 	}
2571 
2572 	return ret;
2573 }
2574 
2575 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2576 {
2577 	struct pci_dev *pdev = hdev->pdev;
2578 	int ret;
2579 
2580 	ret = hclgevf_pci_reset(hdev);
2581 	if (ret) {
2582 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2583 		return ret;
2584 	}
2585 
2586 	ret = hclgevf_cmd_init(hdev);
2587 	if (ret) {
2588 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2589 		return ret;
2590 	}
2591 
2592 	ret = hclgevf_rss_init_hw(hdev);
2593 	if (ret) {
2594 		dev_err(&hdev->pdev->dev,
2595 			"failed(%d) to initialize RSS\n", ret);
2596 		return ret;
2597 	}
2598 
2599 	ret = hclgevf_config_gro(hdev, true);
2600 	if (ret)
2601 		return ret;
2602 
2603 	ret = hclgevf_init_vlan_config(hdev);
2604 	if (ret) {
2605 		dev_err(&hdev->pdev->dev,
2606 			"failed(%d) to initialize VLAN config\n", ret);
2607 		return ret;
2608 	}
2609 
2610 	if (pdev->revision >= 0x21) {
2611 		ret = hclgevf_set_promisc_mode(hdev, true);
2612 		if (ret)
2613 			return ret;
2614 	}
2615 
2616 	dev_info(&hdev->pdev->dev, "Reset done\n");
2617 
2618 	return 0;
2619 }
2620 
2621 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2622 {
2623 	struct pci_dev *pdev = hdev->pdev;
2624 	int ret;
2625 
2626 	ret = hclgevf_pci_init(hdev);
2627 	if (ret) {
2628 		dev_err(&pdev->dev, "PCI initialization failed\n");
2629 		return ret;
2630 	}
2631 
2632 	ret = hclgevf_cmd_queue_init(hdev);
2633 	if (ret) {
2634 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2635 		goto err_cmd_queue_init;
2636 	}
2637 
2638 	ret = hclgevf_cmd_init(hdev);
2639 	if (ret)
2640 		goto err_cmd_init;
2641 
2642 	/* Get vf resource */
2643 	ret = hclgevf_query_vf_resource(hdev);
2644 	if (ret) {
2645 		dev_err(&hdev->pdev->dev,
2646 			"Query vf status error, ret = %d.\n", ret);
2647 		goto err_cmd_init;
2648 	}
2649 
2650 	ret = hclgevf_init_msi(hdev);
2651 	if (ret) {
2652 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2653 		goto err_cmd_init;
2654 	}
2655 
2656 	hclgevf_state_init(hdev);
2657 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2658 
2659 	ret = hclgevf_misc_irq_init(hdev);
2660 	if (ret) {
2661 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2662 			ret);
2663 		goto err_misc_irq_init;
2664 	}
2665 
2666 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2667 
2668 	ret = hclgevf_configure(hdev);
2669 	if (ret) {
2670 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2671 		goto err_config;
2672 	}
2673 
2674 	ret = hclgevf_alloc_tqps(hdev);
2675 	if (ret) {
2676 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2677 		goto err_config;
2678 	}
2679 
2680 	ret = hclgevf_set_handle_info(hdev);
2681 	if (ret) {
2682 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2683 		goto err_config;
2684 	}
2685 
2686 	ret = hclgevf_config_gro(hdev, true);
2687 	if (ret)
2688 		goto err_config;
2689 
2690 	/* vf is not allowed to enable unicast/multicast promisc mode.
2691 	 * For revision 0x20, default to disable broadcast promisc mode,
2692 	 * firmware makes sure broadcast packets can be accepted.
2693 	 * For revision 0x21, default to enable broadcast promisc mode.
2694 	 */
2695 	if (pdev->revision >= 0x21) {
2696 		ret = hclgevf_set_promisc_mode(hdev, true);
2697 		if (ret)
2698 			goto err_config;
2699 	}
2700 
2701 	/* Initialize RSS for this VF */
2702 	ret = hclgevf_rss_init_hw(hdev);
2703 	if (ret) {
2704 		dev_err(&hdev->pdev->dev,
2705 			"failed(%d) to initialize RSS\n", ret);
2706 		goto err_config;
2707 	}
2708 
2709 	ret = hclgevf_init_vlan_config(hdev);
2710 	if (ret) {
2711 		dev_err(&hdev->pdev->dev,
2712 			"failed(%d) to initialize VLAN config\n", ret);
2713 		goto err_config;
2714 	}
2715 
2716 	hdev->last_reset_time = jiffies;
2717 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2718 		 HCLGEVF_DRIVER_NAME);
2719 
2720 	return 0;
2721 
2722 err_config:
2723 	hclgevf_misc_irq_uninit(hdev);
2724 err_misc_irq_init:
2725 	hclgevf_state_uninit(hdev);
2726 	hclgevf_uninit_msi(hdev);
2727 err_cmd_init:
2728 	hclgevf_cmd_uninit(hdev);
2729 err_cmd_queue_init:
2730 	hclgevf_pci_uninit(hdev);
2731 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2732 	return ret;
2733 }
2734 
2735 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2736 {
2737 	hclgevf_state_uninit(hdev);
2738 
2739 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2740 		hclgevf_misc_irq_uninit(hdev);
2741 		hclgevf_uninit_msi(hdev);
2742 	}
2743 
2744 	hclgevf_pci_uninit(hdev);
2745 	hclgevf_cmd_uninit(hdev);
2746 }
2747 
2748 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2749 {
2750 	struct pci_dev *pdev = ae_dev->pdev;
2751 	struct hclgevf_dev *hdev;
2752 	int ret;
2753 
2754 	ret = hclgevf_alloc_hdev(ae_dev);
2755 	if (ret) {
2756 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2757 		return ret;
2758 	}
2759 
2760 	ret = hclgevf_init_hdev(ae_dev->priv);
2761 	if (ret) {
2762 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2763 		return ret;
2764 	}
2765 
2766 	hdev = ae_dev->priv;
2767 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2768 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2769 
2770 	return 0;
2771 }
2772 
2773 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2774 {
2775 	struct hclgevf_dev *hdev = ae_dev->priv;
2776 
2777 	hclgevf_uninit_hdev(hdev);
2778 	ae_dev->priv = NULL;
2779 }
2780 
2781 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2782 {
2783 	struct hnae3_handle *nic = &hdev->nic;
2784 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2785 
2786 	return min_t(u32, hdev->rss_size_max,
2787 		     hdev->num_tqps / kinfo->num_tc);
2788 }
2789 
2790 /**
2791  * hclgevf_get_channels - Get the current channels enabled and max supported.
2792  * @handle: hardware information for network interface
2793  * @ch: ethtool channels structure
2794  *
2795  * We don't support separate tx and rx queues as channels. The other count
2796  * represents how many queues are being used for control. max_combined counts
2797  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2798  * q_vectors since we support a lot more queue pairs than q_vectors.
2799  **/
2800 static void hclgevf_get_channels(struct hnae3_handle *handle,
2801 				 struct ethtool_channels *ch)
2802 {
2803 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2804 
2805 	ch->max_combined = hclgevf_get_max_channels(hdev);
2806 	ch->other_count = 0;
2807 	ch->max_other = 0;
2808 	ch->combined_count = handle->kinfo.rss_size;
2809 }
2810 
2811 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2812 					  u16 *alloc_tqps, u16 *max_rss_size)
2813 {
2814 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2815 
2816 	*alloc_tqps = hdev->num_tqps;
2817 	*max_rss_size = hdev->rss_size_max;
2818 }
2819 
2820 static int hclgevf_get_status(struct hnae3_handle *handle)
2821 {
2822 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2823 
2824 	return hdev->hw.mac.link;
2825 }
2826 
2827 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2828 					    u8 *auto_neg, u32 *speed,
2829 					    u8 *duplex)
2830 {
2831 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2832 
2833 	if (speed)
2834 		*speed = hdev->hw.mac.speed;
2835 	if (duplex)
2836 		*duplex = hdev->hw.mac.duplex;
2837 	if (auto_neg)
2838 		*auto_neg = AUTONEG_DISABLE;
2839 }
2840 
2841 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2842 				 u8 duplex)
2843 {
2844 	hdev->hw.mac.speed = speed;
2845 	hdev->hw.mac.duplex = duplex;
2846 }
2847 
2848 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2849 {
2850 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2851 
2852 	return hclgevf_config_gro(hdev, enable);
2853 }
2854 
2855 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2856 				   u8 *module_type)
2857 {
2858 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2859 
2860 	if (media_type)
2861 		*media_type = hdev->hw.mac.media_type;
2862 
2863 	if (module_type)
2864 		*module_type = hdev->hw.mac.module_type;
2865 }
2866 
2867 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2868 {
2869 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2870 
2871 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2872 }
2873 
2874 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2875 {
2876 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2877 
2878 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2879 }
2880 
2881 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2882 {
2883 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2884 
2885 	return hdev->rst_stats.hw_rst_done_cnt;
2886 }
2887 
2888 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2889 				  unsigned long *supported,
2890 				  unsigned long *advertising)
2891 {
2892 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2893 
2894 	*supported = hdev->hw.mac.supported;
2895 	*advertising = hdev->hw.mac.advertising;
2896 }
2897 
2898 #define MAX_SEPARATE_NUM	4
2899 #define SEPARATOR_VALUE		0xFFFFFFFF
2900 #define REG_NUM_PER_LINE	4
2901 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2902 
2903 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2904 {
2905 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2906 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2907 
2908 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2909 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2910 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2911 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2912 
2913 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2914 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2915 }
2916 
2917 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2918 			     void *data)
2919 {
2920 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2921 	int i, j, reg_um, separator_num;
2922 	u32 *reg = data;
2923 
2924 	*version = hdev->fw_version;
2925 
2926 	/* fetching per-VF registers values from VF PCIe register space */
2927 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2928 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2929 	for (i = 0; i < reg_um; i++)
2930 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2931 	for (i = 0; i < separator_num; i++)
2932 		*reg++ = SEPARATOR_VALUE;
2933 
2934 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2935 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2936 	for (i = 0; i < reg_um; i++)
2937 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2938 	for (i = 0; i < separator_num; i++)
2939 		*reg++ = SEPARATOR_VALUE;
2940 
2941 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2942 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2943 	for (j = 0; j < hdev->num_tqps; j++) {
2944 		for (i = 0; i < reg_um; i++)
2945 			*reg++ = hclgevf_read_dev(&hdev->hw,
2946 						  ring_reg_addr_list[i] +
2947 						  0x200 * j);
2948 		for (i = 0; i < separator_num; i++)
2949 			*reg++ = SEPARATOR_VALUE;
2950 	}
2951 
2952 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2953 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2954 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2955 		for (i = 0; i < reg_um; i++)
2956 			*reg++ = hclgevf_read_dev(&hdev->hw,
2957 						  tqp_intr_reg_addr_list[i] +
2958 						  4 * j);
2959 		for (i = 0; i < separator_num; i++)
2960 			*reg++ = SEPARATOR_VALUE;
2961 	}
2962 }
2963 
2964 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
2965 					u8 *port_base_vlan_info, u8 data_size)
2966 {
2967 	struct hnae3_handle *nic = &hdev->nic;
2968 
2969 	rtnl_lock();
2970 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2971 	rtnl_unlock();
2972 
2973 	/* send msg to PF and wait update port based vlan info */
2974 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
2975 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
2976 			     port_base_vlan_info, data_size,
2977 			     false, NULL, 0);
2978 
2979 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
2980 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
2981 	else
2982 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
2983 
2984 	rtnl_lock();
2985 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
2986 	rtnl_unlock();
2987 }
2988 
2989 static const struct hnae3_ae_ops hclgevf_ops = {
2990 	.init_ae_dev = hclgevf_init_ae_dev,
2991 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2992 	.flr_prepare = hclgevf_flr_prepare,
2993 	.flr_done = hclgevf_flr_done,
2994 	.init_client_instance = hclgevf_init_client_instance,
2995 	.uninit_client_instance = hclgevf_uninit_client_instance,
2996 	.start = hclgevf_ae_start,
2997 	.stop = hclgevf_ae_stop,
2998 	.client_start = hclgevf_client_start,
2999 	.client_stop = hclgevf_client_stop,
3000 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3001 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3002 	.get_vector = hclgevf_get_vector,
3003 	.put_vector = hclgevf_put_vector,
3004 	.reset_queue = hclgevf_reset_tqp,
3005 	.get_mac_addr = hclgevf_get_mac_addr,
3006 	.set_mac_addr = hclgevf_set_mac_addr,
3007 	.add_uc_addr = hclgevf_add_uc_addr,
3008 	.rm_uc_addr = hclgevf_rm_uc_addr,
3009 	.add_mc_addr = hclgevf_add_mc_addr,
3010 	.rm_mc_addr = hclgevf_rm_mc_addr,
3011 	.get_stats = hclgevf_get_stats,
3012 	.update_stats = hclgevf_update_stats,
3013 	.get_strings = hclgevf_get_strings,
3014 	.get_sset_count = hclgevf_get_sset_count,
3015 	.get_rss_key_size = hclgevf_get_rss_key_size,
3016 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3017 	.get_rss = hclgevf_get_rss,
3018 	.set_rss = hclgevf_set_rss,
3019 	.get_rss_tuple = hclgevf_get_rss_tuple,
3020 	.set_rss_tuple = hclgevf_set_rss_tuple,
3021 	.get_tc_size = hclgevf_get_tc_size,
3022 	.get_fw_version = hclgevf_get_fw_version,
3023 	.set_vlan_filter = hclgevf_set_vlan_filter,
3024 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3025 	.reset_event = hclgevf_reset_event,
3026 	.set_default_reset_request = hclgevf_set_def_reset_request,
3027 	.get_channels = hclgevf_get_channels,
3028 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3029 	.get_regs_len = hclgevf_get_regs_len,
3030 	.get_regs = hclgevf_get_regs,
3031 	.get_status = hclgevf_get_status,
3032 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3033 	.get_media_type = hclgevf_get_media_type,
3034 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3035 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3036 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3037 	.set_gro_en = hclgevf_gro_en,
3038 	.set_mtu = hclgevf_set_mtu,
3039 	.get_global_queue_id = hclgevf_get_qid_global,
3040 	.set_timer_task = hclgevf_set_timer_task,
3041 	.get_link_mode = hclgevf_get_link_mode,
3042 };
3043 
3044 static struct hnae3_ae_algo ae_algovf = {
3045 	.ops = &hclgevf_ops,
3046 	.pdev_id_table = ae_algovf_pci_tbl,
3047 };
3048 
3049 static int hclgevf_init(void)
3050 {
3051 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3052 
3053 	hnae3_register_ae_algo(&ae_algovf);
3054 
3055 	return 0;
3056 }
3057 
3058 static void hclgevf_exit(void)
3059 {
3060 	hnae3_unregister_ae_algo(&ae_algovf);
3061 }
3062 module_init(hclgevf_init);
3063 module_exit(hclgevf_exit);
3064 
3065 MODULE_LICENSE("GPL");
3066 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3067 MODULE_DESCRIPTION("HCLGEVF Driver");
3068 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3069