1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
27 	struct hnae3_handle *handle)
28 {
29 	return container_of(handle, struct hclgevf_dev, nic);
30 }
31 
32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
33 {
34 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
35 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
36 	struct hclgevf_desc desc;
37 	struct hclgevf_tqp *tqp;
38 	int status;
39 	int i;
40 
41 	for (i = 0; i < kinfo->num_tqps; i++) {
42 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
43 		hclgevf_cmd_setup_basic_desc(&desc,
44 					     HCLGEVF_OPC_QUERY_RX_STATUS,
45 					     true);
46 
47 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
48 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
49 		if (status) {
50 			dev_err(&hdev->pdev->dev,
51 				"Query tqp stat fail, status = %d,queue = %d\n",
52 				status,	i);
53 			return status;
54 		}
55 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
56 			le32_to_cpu(desc.data[1]);
57 
58 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
59 					     true);
60 
61 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
62 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
63 		if (status) {
64 			dev_err(&hdev->pdev->dev,
65 				"Query tqp stat fail, status = %d,queue = %d\n",
66 				status, i);
67 			return status;
68 		}
69 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
70 			le32_to_cpu(desc.data[1]);
71 	}
72 
73 	return 0;
74 }
75 
76 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
77 {
78 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
79 	struct hclgevf_tqp *tqp;
80 	u64 *buff = data;
81 	int i;
82 
83 	for (i = 0; i < kinfo->num_tqps; i++) {
84 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
85 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
86 	}
87 	for (i = 0; i < kinfo->num_tqps; i++) {
88 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
89 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
90 	}
91 
92 	return buff;
93 }
94 
95 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
96 {
97 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
98 
99 	return kinfo->num_tqps * 2;
100 }
101 
102 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
103 {
104 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
105 	u8 *buff = data;
106 	int i = 0;
107 
108 	for (i = 0; i < kinfo->num_tqps; i++) {
109 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
110 						       struct hclgevf_tqp, q);
111 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
112 			 tqp->index);
113 		buff += ETH_GSTRING_LEN;
114 	}
115 
116 	for (i = 0; i < kinfo->num_tqps; i++) {
117 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
118 						       struct hclgevf_tqp, q);
119 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
120 			 tqp->index);
121 		buff += ETH_GSTRING_LEN;
122 	}
123 
124 	return buff;
125 }
126 
127 static void hclgevf_update_stats(struct hnae3_handle *handle,
128 				 struct net_device_stats *net_stats)
129 {
130 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
131 	int status;
132 
133 	status = hclgevf_tqps_update_stats(handle);
134 	if (status)
135 		dev_err(&hdev->pdev->dev,
136 			"VF update of TQPS stats fail, status = %d.\n",
137 			status);
138 }
139 
140 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
141 {
142 	if (strset == ETH_SS_TEST)
143 		return -EOPNOTSUPP;
144 	else if (strset == ETH_SS_STATS)
145 		return hclgevf_tqps_get_sset_count(handle, strset);
146 
147 	return 0;
148 }
149 
150 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
151 				u8 *data)
152 {
153 	u8 *p = (char *)data;
154 
155 	if (strset == ETH_SS_STATS)
156 		p = hclgevf_tqps_get_strings(handle, p);
157 }
158 
159 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
160 {
161 	hclgevf_tqps_get_stats(handle, data);
162 }
163 
164 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
165 {
166 	u8 resp_msg;
167 	int status;
168 
169 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
170 				      true, &resp_msg, sizeof(u8));
171 	if (status) {
172 		dev_err(&hdev->pdev->dev,
173 			"VF request to get TC info from PF failed %d",
174 			status);
175 		return status;
176 	}
177 
178 	hdev->hw_tc_map = resp_msg;
179 
180 	return 0;
181 }
182 
183 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
184 {
185 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
186 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
187 	int status;
188 
189 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
190 				      true, resp_msg,
191 				      HCLGEVF_TQPS_RSS_INFO_LEN);
192 	if (status) {
193 		dev_err(&hdev->pdev->dev,
194 			"VF request to get tqp info from PF failed %d",
195 			status);
196 		return status;
197 	}
198 
199 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
200 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
201 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
202 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
203 
204 	return 0;
205 }
206 
207 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
208 {
209 	struct hclgevf_tqp *tqp;
210 	int i;
211 
212 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
213 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
214 	if (!hdev->htqp)
215 		return -ENOMEM;
216 
217 	tqp = hdev->htqp;
218 
219 	for (i = 0; i < hdev->num_tqps; i++) {
220 		tqp->dev = &hdev->pdev->dev;
221 		tqp->index = i;
222 
223 		tqp->q.ae_algo = &ae_algovf;
224 		tqp->q.buf_size = hdev->rx_buf_len;
225 		tqp->q.desc_num = hdev->num_desc;
226 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
227 			i * HCLGEVF_TQP_REG_SIZE;
228 
229 		tqp++;
230 	}
231 
232 	return 0;
233 }
234 
235 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
236 {
237 	struct hnae3_handle *nic = &hdev->nic;
238 	struct hnae3_knic_private_info *kinfo;
239 	u16 new_tqps = hdev->num_tqps;
240 	int i;
241 
242 	kinfo = &nic->kinfo;
243 	kinfo->num_tc = 0;
244 	kinfo->num_desc = hdev->num_desc;
245 	kinfo->rx_buf_len = hdev->rx_buf_len;
246 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
247 		if (hdev->hw_tc_map & BIT(i))
248 			kinfo->num_tc++;
249 
250 	kinfo->rss_size
251 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
252 	new_tqps = kinfo->rss_size * kinfo->num_tc;
253 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
254 
255 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
256 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
257 	if (!kinfo->tqp)
258 		return -ENOMEM;
259 
260 	for (i = 0; i < kinfo->num_tqps; i++) {
261 		hdev->htqp[i].q.handle = &hdev->nic;
262 		hdev->htqp[i].q.tqp_index = i;
263 		kinfo->tqp[i] = &hdev->htqp[i].q;
264 	}
265 
266 	return 0;
267 }
268 
269 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
270 {
271 	int status;
272 	u8 resp_msg;
273 
274 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
275 				      0, false, &resp_msg, sizeof(u8));
276 	if (status)
277 		dev_err(&hdev->pdev->dev,
278 			"VF failed to fetch link status(%d) from PF", status);
279 }
280 
281 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
282 {
283 	struct hnae3_handle *handle = &hdev->nic;
284 	struct hnae3_client *client;
285 
286 	client = handle->client;
287 
288 	link_state =
289 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
290 
291 	if (link_state != hdev->hw.mac.link) {
292 		client->ops->link_status_change(handle, !!link_state);
293 		hdev->hw.mac.link = link_state;
294 	}
295 }
296 
297 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
298 {
299 	struct hnae3_handle *nic = &hdev->nic;
300 	int ret;
301 
302 	nic->ae_algo = &ae_algovf;
303 	nic->pdev = hdev->pdev;
304 	nic->numa_node_mask = hdev->numa_node_mask;
305 	nic->flags |= HNAE3_SUPPORT_VF;
306 
307 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
308 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
309 			hdev->ae_dev->dev_type);
310 		return -EINVAL;
311 	}
312 
313 	ret = hclgevf_knic_setup(hdev);
314 	if (ret)
315 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
316 			ret);
317 	return ret;
318 }
319 
320 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
321 {
322 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
323 		dev_warn(&hdev->pdev->dev,
324 			 "vector(vector_id %d) has been freed.\n", vector_id);
325 		return;
326 	}
327 
328 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
329 	hdev->num_msi_left += 1;
330 	hdev->num_msi_used -= 1;
331 }
332 
333 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
334 			      struct hnae3_vector_info *vector_info)
335 {
336 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
337 	struct hnae3_vector_info *vector = vector_info;
338 	int alloc = 0;
339 	int i, j;
340 
341 	vector_num = min(hdev->num_msi_left, vector_num);
342 
343 	for (j = 0; j < vector_num; j++) {
344 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
345 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
346 				vector->vector = pci_irq_vector(hdev->pdev, i);
347 				vector->io_addr = hdev->hw.io_base +
348 					HCLGEVF_VECTOR_REG_BASE +
349 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
350 				hdev->vector_status[i] = 0;
351 				hdev->vector_irq[i] = vector->vector;
352 
353 				vector++;
354 				alloc++;
355 
356 				break;
357 			}
358 		}
359 	}
360 	hdev->num_msi_left -= alloc;
361 	hdev->num_msi_used += alloc;
362 
363 	return alloc;
364 }
365 
366 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
367 {
368 	int i;
369 
370 	for (i = 0; i < hdev->num_msi; i++)
371 		if (vector == hdev->vector_irq[i])
372 			return i;
373 
374 	return -EINVAL;
375 }
376 
377 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
378 				    const u8 hfunc, const u8 *key)
379 {
380 	struct hclgevf_rss_config_cmd *req;
381 	struct hclgevf_desc desc;
382 	int key_offset;
383 	int key_size;
384 	int ret;
385 
386 	req = (struct hclgevf_rss_config_cmd *)desc.data;
387 
388 	for (key_offset = 0; key_offset < 3; key_offset++) {
389 		hclgevf_cmd_setup_basic_desc(&desc,
390 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
391 					     false);
392 
393 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
394 		req->hash_config |=
395 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
396 
397 		if (key_offset == 2)
398 			key_size =
399 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
400 		else
401 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
402 
403 		memcpy(req->hash_key,
404 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
405 
406 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
407 		if (ret) {
408 			dev_err(&hdev->pdev->dev,
409 				"Configure RSS config fail, status = %d\n",
410 				ret);
411 			return ret;
412 		}
413 	}
414 
415 	return 0;
416 }
417 
418 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
419 {
420 	return HCLGEVF_RSS_KEY_SIZE;
421 }
422 
423 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
424 {
425 	return HCLGEVF_RSS_IND_TBL_SIZE;
426 }
427 
428 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
429 {
430 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
431 	struct hclgevf_rss_indirection_table_cmd *req;
432 	struct hclgevf_desc desc;
433 	int status;
434 	int i, j;
435 
436 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
437 
438 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
439 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
440 					     false);
441 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
442 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
443 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
444 			req->rss_result[j] =
445 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
446 
447 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
448 		if (status) {
449 			dev_err(&hdev->pdev->dev,
450 				"VF failed(=%d) to set RSS indirection table\n",
451 				status);
452 			return status;
453 		}
454 	}
455 
456 	return 0;
457 }
458 
459 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
460 {
461 	struct hclgevf_rss_tc_mode_cmd *req;
462 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
463 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
464 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
465 	struct hclgevf_desc desc;
466 	u16 roundup_size;
467 	int status;
468 	int i;
469 
470 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
471 
472 	roundup_size = roundup_pow_of_two(rss_size);
473 	roundup_size = ilog2(roundup_size);
474 
475 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
476 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
477 		tc_size[i] = roundup_size;
478 		tc_offset[i] = rss_size * i;
479 	}
480 
481 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
482 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
483 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
484 			      (tc_valid[i] & 0x1));
485 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
486 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
487 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
488 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
489 	}
490 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
491 	if (status)
492 		dev_err(&hdev->pdev->dev,
493 			"VF failed(=%d) to set rss tc mode\n", status);
494 
495 	return status;
496 }
497 
498 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
499 			   u8 *hfunc)
500 {
501 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
502 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
503 	int i;
504 
505 	if (handle->pdev->revision >= 0x21) {
506 		/* Get hash algorithm */
507 		if (hfunc) {
508 			switch (rss_cfg->hash_algo) {
509 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
510 				*hfunc = ETH_RSS_HASH_TOP;
511 				break;
512 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
513 				*hfunc = ETH_RSS_HASH_XOR;
514 				break;
515 			default:
516 				*hfunc = ETH_RSS_HASH_UNKNOWN;
517 				break;
518 			}
519 		}
520 
521 		/* Get the RSS Key required by the user */
522 		if (key)
523 			memcpy(key, rss_cfg->rss_hash_key,
524 			       HCLGEVF_RSS_KEY_SIZE);
525 	}
526 
527 	if (indir)
528 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
529 			indir[i] = rss_cfg->rss_indirection_tbl[i];
530 
531 	return 0;
532 }
533 
534 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
535 			   const  u8 *key, const  u8 hfunc)
536 {
537 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
538 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
539 	int ret, i;
540 
541 	if (handle->pdev->revision >= 0x21) {
542 		/* Set the RSS Hash Key if specififed by the user */
543 		if (key) {
544 			switch (hfunc) {
545 			case ETH_RSS_HASH_TOP:
546 				rss_cfg->hash_algo =
547 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
548 				break;
549 			case ETH_RSS_HASH_XOR:
550 				rss_cfg->hash_algo =
551 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
552 				break;
553 			case ETH_RSS_HASH_NO_CHANGE:
554 				break;
555 			default:
556 				return -EINVAL;
557 			}
558 
559 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
560 						       key);
561 			if (ret)
562 				return ret;
563 
564 			/* Update the shadow RSS key with user specified qids */
565 			memcpy(rss_cfg->rss_hash_key, key,
566 			       HCLGEVF_RSS_KEY_SIZE);
567 		}
568 	}
569 
570 	/* update the shadow RSS table with user specified qids */
571 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
572 		rss_cfg->rss_indirection_tbl[i] = indir[i];
573 
574 	/* update the hardware */
575 	return hclgevf_set_rss_indir_table(hdev);
576 }
577 
578 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
579 {
580 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
581 
582 	if (nfc->data & RXH_L4_B_2_3)
583 		hash_sets |= HCLGEVF_D_PORT_BIT;
584 	else
585 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
586 
587 	if (nfc->data & RXH_IP_SRC)
588 		hash_sets |= HCLGEVF_S_IP_BIT;
589 	else
590 		hash_sets &= ~HCLGEVF_S_IP_BIT;
591 
592 	if (nfc->data & RXH_IP_DST)
593 		hash_sets |= HCLGEVF_D_IP_BIT;
594 	else
595 		hash_sets &= ~HCLGEVF_D_IP_BIT;
596 
597 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
598 		hash_sets |= HCLGEVF_V_TAG_BIT;
599 
600 	return hash_sets;
601 }
602 
603 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
604 				 struct ethtool_rxnfc *nfc)
605 {
606 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
607 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
608 	struct hclgevf_rss_input_tuple_cmd *req;
609 	struct hclgevf_desc desc;
610 	u8 tuple_sets;
611 	int ret;
612 
613 	if (handle->pdev->revision == 0x20)
614 		return -EOPNOTSUPP;
615 
616 	if (nfc->data &
617 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
618 		return -EINVAL;
619 
620 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
621 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
622 
623 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
624 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
625 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
626 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
627 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
628 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
629 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
630 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
631 
632 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
633 	switch (nfc->flow_type) {
634 	case TCP_V4_FLOW:
635 		req->ipv4_tcp_en = tuple_sets;
636 		break;
637 	case TCP_V6_FLOW:
638 		req->ipv6_tcp_en = tuple_sets;
639 		break;
640 	case UDP_V4_FLOW:
641 		req->ipv4_udp_en = tuple_sets;
642 		break;
643 	case UDP_V6_FLOW:
644 		req->ipv6_udp_en = tuple_sets;
645 		break;
646 	case SCTP_V4_FLOW:
647 		req->ipv4_sctp_en = tuple_sets;
648 		break;
649 	case SCTP_V6_FLOW:
650 		if ((nfc->data & RXH_L4_B_0_1) ||
651 		    (nfc->data & RXH_L4_B_2_3))
652 			return -EINVAL;
653 
654 		req->ipv6_sctp_en = tuple_sets;
655 		break;
656 	case IPV4_FLOW:
657 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
658 		break;
659 	case IPV6_FLOW:
660 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
661 		break;
662 	default:
663 		return -EINVAL;
664 	}
665 
666 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
667 	if (ret) {
668 		dev_err(&hdev->pdev->dev,
669 			"Set rss tuple fail, status = %d\n", ret);
670 		return ret;
671 	}
672 
673 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
674 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
675 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
676 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
677 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
678 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
679 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
680 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
681 	return 0;
682 }
683 
684 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
685 				 struct ethtool_rxnfc *nfc)
686 {
687 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
688 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
689 	u8 tuple_sets;
690 
691 	if (handle->pdev->revision == 0x20)
692 		return -EOPNOTSUPP;
693 
694 	nfc->data = 0;
695 
696 	switch (nfc->flow_type) {
697 	case TCP_V4_FLOW:
698 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
699 		break;
700 	case UDP_V4_FLOW:
701 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
702 		break;
703 	case TCP_V6_FLOW:
704 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
705 		break;
706 	case UDP_V6_FLOW:
707 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
708 		break;
709 	case SCTP_V4_FLOW:
710 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
711 		break;
712 	case SCTP_V6_FLOW:
713 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
714 		break;
715 	case IPV4_FLOW:
716 	case IPV6_FLOW:
717 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
718 		break;
719 	default:
720 		return -EINVAL;
721 	}
722 
723 	if (!tuple_sets)
724 		return 0;
725 
726 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
727 		nfc->data |= RXH_L4_B_2_3;
728 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
729 		nfc->data |= RXH_L4_B_0_1;
730 	if (tuple_sets & HCLGEVF_D_IP_BIT)
731 		nfc->data |= RXH_IP_DST;
732 	if (tuple_sets & HCLGEVF_S_IP_BIT)
733 		nfc->data |= RXH_IP_SRC;
734 
735 	return 0;
736 }
737 
738 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
739 				       struct hclgevf_rss_cfg *rss_cfg)
740 {
741 	struct hclgevf_rss_input_tuple_cmd *req;
742 	struct hclgevf_desc desc;
743 	int ret;
744 
745 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
746 
747 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
748 
749 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
750 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
751 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
752 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
753 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
754 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
755 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
756 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
757 
758 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
759 	if (ret)
760 		dev_err(&hdev->pdev->dev,
761 			"Configure rss input fail, status = %d\n", ret);
762 	return ret;
763 }
764 
765 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
766 {
767 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
768 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
769 
770 	return rss_cfg->rss_size;
771 }
772 
773 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
774 				       int vector_id,
775 				       struct hnae3_ring_chain_node *ring_chain)
776 {
777 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
778 	struct hnae3_ring_chain_node *node;
779 	struct hclge_mbx_vf_to_pf_cmd *req;
780 	struct hclgevf_desc desc;
781 	int i = 0;
782 	int status;
783 	u8 type;
784 
785 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
786 
787 	for (node = ring_chain; node; node = node->next) {
788 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
789 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
790 
791 		if (i == 0) {
792 			hclgevf_cmd_setup_basic_desc(&desc,
793 						     HCLGEVF_OPC_MBX_VF_TO_PF,
794 						     false);
795 			type = en ?
796 				HCLGE_MBX_MAP_RING_TO_VECTOR :
797 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
798 			req->msg[0] = type;
799 			req->msg[1] = vector_id;
800 		}
801 
802 		req->msg[idx_offset] =
803 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
804 		req->msg[idx_offset + 1] = node->tqp_index;
805 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
806 							   HNAE3_RING_GL_IDX_M,
807 							   HNAE3_RING_GL_IDX_S);
808 
809 		i++;
810 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
811 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
812 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
813 		    !node->next) {
814 			req->msg[2] = i;
815 
816 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
817 			if (status) {
818 				dev_err(&hdev->pdev->dev,
819 					"Map TQP fail, status is %d.\n",
820 					status);
821 				return status;
822 			}
823 			i = 0;
824 			hclgevf_cmd_setup_basic_desc(&desc,
825 						     HCLGEVF_OPC_MBX_VF_TO_PF,
826 						     false);
827 			req->msg[0] = type;
828 			req->msg[1] = vector_id;
829 		}
830 	}
831 
832 	return 0;
833 }
834 
835 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
836 				      struct hnae3_ring_chain_node *ring_chain)
837 {
838 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
839 	int vector_id;
840 
841 	vector_id = hclgevf_get_vector_index(hdev, vector);
842 	if (vector_id < 0) {
843 		dev_err(&handle->pdev->dev,
844 			"Get vector index fail. ret =%d\n", vector_id);
845 		return vector_id;
846 	}
847 
848 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
849 }
850 
851 static int hclgevf_unmap_ring_from_vector(
852 				struct hnae3_handle *handle,
853 				int vector,
854 				struct hnae3_ring_chain_node *ring_chain)
855 {
856 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
857 	int ret, vector_id;
858 
859 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
860 		return 0;
861 
862 	vector_id = hclgevf_get_vector_index(hdev, vector);
863 	if (vector_id < 0) {
864 		dev_err(&handle->pdev->dev,
865 			"Get vector index fail. ret =%d\n", vector_id);
866 		return vector_id;
867 	}
868 
869 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
870 	if (ret)
871 		dev_err(&handle->pdev->dev,
872 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
873 			vector_id,
874 			ret);
875 
876 	return ret;
877 }
878 
879 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
880 {
881 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
882 	int vector_id;
883 
884 	vector_id = hclgevf_get_vector_index(hdev, vector);
885 	if (vector_id < 0) {
886 		dev_err(&handle->pdev->dev,
887 			"hclgevf_put_vector get vector index fail. ret =%d\n",
888 			vector_id);
889 		return vector_id;
890 	}
891 
892 	hclgevf_free_vector(hdev, vector_id);
893 
894 	return 0;
895 }
896 
897 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
898 					bool en_uc_pmc, bool en_mc_pmc)
899 {
900 	struct hclge_mbx_vf_to_pf_cmd *req;
901 	struct hclgevf_desc desc;
902 	int status;
903 
904 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
905 
906 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
907 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
908 	req->msg[1] = en_uc_pmc ? 1 : 0;
909 	req->msg[2] = en_mc_pmc ? 1 : 0;
910 
911 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
912 	if (status)
913 		dev_err(&hdev->pdev->dev,
914 			"Set promisc mode fail, status is %d.\n", status);
915 
916 	return status;
917 }
918 
919 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle,
920 				    bool en_uc_pmc, bool en_mc_pmc)
921 {
922 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
923 
924 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
925 }
926 
927 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
928 			      int stream_id, bool enable)
929 {
930 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
931 	struct hclgevf_desc desc;
932 	int status;
933 
934 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
935 
936 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
937 				     false);
938 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
939 	req->stream_id = cpu_to_le16(stream_id);
940 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
941 
942 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
943 	if (status)
944 		dev_err(&hdev->pdev->dev,
945 			"TQP enable fail, status =%d.\n", status);
946 
947 	return status;
948 }
949 
950 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
951 {
952 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
953 	struct hclgevf_tqp *tqp;
954 	int i;
955 
956 	for (i = 0; i < kinfo->num_tqps; i++) {
957 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
958 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
959 	}
960 }
961 
962 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
963 {
964 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
965 
966 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
967 }
968 
969 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
970 				bool is_first)
971 {
972 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
973 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
974 	u8 *new_mac_addr = (u8 *)p;
975 	u8 msg_data[ETH_ALEN * 2];
976 	u16 subcode;
977 	int status;
978 
979 	ether_addr_copy(msg_data, new_mac_addr);
980 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
981 
982 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
983 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
984 
985 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
986 				      subcode, msg_data, ETH_ALEN * 2,
987 				      true, NULL, 0);
988 	if (!status)
989 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
990 
991 	return status;
992 }
993 
994 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
995 			       const unsigned char *addr)
996 {
997 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
998 
999 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1000 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1001 				    addr, ETH_ALEN, false, NULL, 0);
1002 }
1003 
1004 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1005 			      const unsigned char *addr)
1006 {
1007 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1008 
1009 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1010 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1011 				    addr, ETH_ALEN, false, NULL, 0);
1012 }
1013 
1014 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1015 			       const unsigned char *addr)
1016 {
1017 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1018 
1019 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1020 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1021 				    addr, ETH_ALEN, false, NULL, 0);
1022 }
1023 
1024 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1025 			      const unsigned char *addr)
1026 {
1027 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1028 
1029 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1030 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1031 				    addr, ETH_ALEN, false, NULL, 0);
1032 }
1033 
1034 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1035 				   __be16 proto, u16 vlan_id,
1036 				   bool is_kill)
1037 {
1038 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1039 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1040 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1041 
1042 	if (vlan_id > 4095)
1043 		return -EINVAL;
1044 
1045 	if (proto != htons(ETH_P_8021Q))
1046 		return -EPROTONOSUPPORT;
1047 
1048 	msg_data[0] = is_kill;
1049 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1050 	memcpy(&msg_data[3], &proto, sizeof(proto));
1051 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1052 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1053 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1054 }
1055 
1056 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1057 {
1058 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1059 	u8 msg_data;
1060 
1061 	msg_data = enable ? 1 : 0;
1062 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1063 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1064 				    1, false, NULL, 0);
1065 }
1066 
1067 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1068 {
1069 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1070 	u8 msg_data[2];
1071 	int ret;
1072 
1073 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1074 
1075 	/* disable vf queue before send queue reset msg to PF */
1076 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1077 	if (ret)
1078 		return ret;
1079 
1080 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1081 				    2, true, NULL, 0);
1082 }
1083 
1084 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1085 				 enum hnae3_reset_notify_type type)
1086 {
1087 	struct hnae3_client *client = hdev->nic_client;
1088 	struct hnae3_handle *handle = &hdev->nic;
1089 	int ret;
1090 
1091 	if (!client->ops->reset_notify)
1092 		return -EOPNOTSUPP;
1093 
1094 	ret = client->ops->reset_notify(handle, type);
1095 	if (ret)
1096 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1097 			type, ret);
1098 
1099 	return ret;
1100 }
1101 
1102 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1103 {
1104 #define HCLGEVF_RESET_WAIT_US	20000
1105 #define HCLGEVF_RESET_WAIT_CNT	2000
1106 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1107 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1108 
1109 	u32 val;
1110 	int ret;
1111 
1112 	/* wait to check the hardware reset completion status */
1113 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1114 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1115 
1116 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1117 				 !(val & HCLGEVF_RST_ING_BITS),
1118 				 HCLGEVF_RESET_WAIT_US,
1119 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1120 
1121 	/* hardware completion status should be available by this time */
1122 	if (ret) {
1123 		dev_err(&hdev->pdev->dev,
1124 			"could'nt get reset done status from h/w, timeout!\n");
1125 		return ret;
1126 	}
1127 
1128 	/* we will wait a bit more to let reset of the stack to complete. This
1129 	 * might happen in case reset assertion was made by PF. Yes, this also
1130 	 * means we might end up waiting bit more even for VF reset.
1131 	 */
1132 	msleep(5000);
1133 
1134 	return 0;
1135 }
1136 
1137 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1138 {
1139 	int ret;
1140 
1141 	/* uninitialize the nic client */
1142 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1143 	if (ret)
1144 		return ret;
1145 
1146 	/* re-initialize the hclge device */
1147 	ret = hclgevf_reset_hdev(hdev);
1148 	if (ret) {
1149 		dev_err(&hdev->pdev->dev,
1150 			"hclge device re-init failed, VF is disabled!\n");
1151 		return ret;
1152 	}
1153 
1154 	/* bring up the nic client again */
1155 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1156 	if (ret)
1157 		return ret;
1158 
1159 	return 0;
1160 }
1161 
1162 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1163 {
1164 	int ret = 0;
1165 
1166 	switch (hdev->reset_type) {
1167 	case HNAE3_VF_FUNC_RESET:
1168 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1169 					   0, true, NULL, sizeof(u8));
1170 		break;
1171 	default:
1172 		break;
1173 	}
1174 
1175 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1176 
1177 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1178 		 hdev->reset_type, ret);
1179 
1180 	return ret;
1181 }
1182 
1183 static int hclgevf_reset(struct hclgevf_dev *hdev)
1184 {
1185 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1186 	int ret;
1187 
1188 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1189 	 * know if device is undergoing reset
1190 	 */
1191 	ae_dev->reset_type = hdev->reset_type;
1192 	hdev->reset_count++;
1193 	rtnl_lock();
1194 
1195 	/* bring down the nic to stop any ongoing TX/RX */
1196 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1197 	if (ret)
1198 		goto err_reset_lock;
1199 
1200 	rtnl_unlock();
1201 
1202 	ret = hclgevf_reset_prepare_wait(hdev);
1203 	if (ret)
1204 		goto err_reset;
1205 
1206 	/* check if VF could successfully fetch the hardware reset completion
1207 	 * status from the hardware
1208 	 */
1209 	ret = hclgevf_reset_wait(hdev);
1210 	if (ret) {
1211 		/* can't do much in this situation, will disable VF */
1212 		dev_err(&hdev->pdev->dev,
1213 			"VF failed(=%d) to fetch H/W reset completion status\n",
1214 			ret);
1215 		goto err_reset;
1216 	}
1217 
1218 	rtnl_lock();
1219 
1220 	/* now, re-initialize the nic client and ae device*/
1221 	ret = hclgevf_reset_stack(hdev);
1222 	if (ret) {
1223 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1224 		goto err_reset_lock;
1225 	}
1226 
1227 	/* bring up the nic to enable TX/RX again */
1228 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1229 	if (ret)
1230 		goto err_reset_lock;
1231 
1232 	rtnl_unlock();
1233 
1234 	return ret;
1235 err_reset_lock:
1236 	rtnl_unlock();
1237 err_reset:
1238 	/* When VF reset failed, only the higher level reset asserted by PF
1239 	 * can restore it, so re-initialize the command queue to receive
1240 	 * this higher reset event.
1241 	 */
1242 	hclgevf_cmd_init(hdev);
1243 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1244 
1245 	return ret;
1246 }
1247 
1248 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1249 						     unsigned long *addr)
1250 {
1251 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1252 
1253 	/* return the highest priority reset level amongst all */
1254 	if (test_bit(HNAE3_VF_RESET, addr)) {
1255 		rst_level = HNAE3_VF_RESET;
1256 		clear_bit(HNAE3_VF_RESET, addr);
1257 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1258 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1259 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1260 		rst_level = HNAE3_VF_FULL_RESET;
1261 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1262 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1263 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1264 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1265 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1266 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1267 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1268 		rst_level = HNAE3_VF_FUNC_RESET;
1269 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1270 	}
1271 
1272 	return rst_level;
1273 }
1274 
1275 static void hclgevf_reset_event(struct pci_dev *pdev,
1276 				struct hnae3_handle *handle)
1277 {
1278 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1279 
1280 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1281 
1282 	if (!hdev->default_reset_request)
1283 		hdev->reset_level =
1284 			hclgevf_get_reset_level(hdev,
1285 						&hdev->default_reset_request);
1286 	else
1287 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1288 
1289 	/* reset of this VF requested */
1290 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1291 	hclgevf_reset_task_schedule(hdev);
1292 
1293 	hdev->last_reset_time = jiffies;
1294 }
1295 
1296 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1297 					  enum hnae3_reset_type rst_type)
1298 {
1299 	struct hclgevf_dev *hdev = ae_dev->priv;
1300 
1301 	set_bit(rst_type, &hdev->default_reset_request);
1302 }
1303 
1304 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1305 {
1306 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1307 
1308 	return hdev->fw_version;
1309 }
1310 
1311 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1312 {
1313 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1314 
1315 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1316 					    HCLGEVF_MISC_VECTOR_NUM);
1317 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1318 	/* vector status always valid for Vector 0 */
1319 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1320 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1321 
1322 	hdev->num_msi_left -= 1;
1323 	hdev->num_msi_used += 1;
1324 }
1325 
1326 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1327 {
1328 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1329 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1330 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1331 		schedule_work(&hdev->rst_service_task);
1332 	}
1333 }
1334 
1335 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1336 {
1337 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1338 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1339 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1340 		schedule_work(&hdev->mbx_service_task);
1341 	}
1342 }
1343 
1344 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1345 {
1346 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1347 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1348 		schedule_work(&hdev->service_task);
1349 }
1350 
1351 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1352 {
1353 	/* if we have any pending mailbox event then schedule the mbx task */
1354 	if (hdev->mbx_event_pending)
1355 		hclgevf_mbx_task_schedule(hdev);
1356 
1357 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1358 		hclgevf_reset_task_schedule(hdev);
1359 }
1360 
1361 static void hclgevf_service_timer(struct timer_list *t)
1362 {
1363 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1364 
1365 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1366 
1367 	hclgevf_task_schedule(hdev);
1368 }
1369 
1370 static void hclgevf_reset_service_task(struct work_struct *work)
1371 {
1372 	struct hclgevf_dev *hdev =
1373 		container_of(work, struct hclgevf_dev, rst_service_task);
1374 	int ret;
1375 
1376 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1377 		return;
1378 
1379 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1380 
1381 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1382 			       &hdev->reset_state)) {
1383 		/* PF has initmated that it is about to reset the hardware.
1384 		 * We now have to poll & check if harware has actually completed
1385 		 * the reset sequence. On hardware reset completion, VF needs to
1386 		 * reset the client and ae device.
1387 		 */
1388 		hdev->reset_attempts = 0;
1389 
1390 		hdev->last_reset_time = jiffies;
1391 		while ((hdev->reset_type =
1392 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1393 		       != HNAE3_NONE_RESET) {
1394 			ret = hclgevf_reset(hdev);
1395 			if (ret)
1396 				dev_err(&hdev->pdev->dev,
1397 					"VF stack reset failed %d.\n", ret);
1398 		}
1399 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1400 				      &hdev->reset_state)) {
1401 		/* we could be here when either of below happens:
1402 		 * 1. reset was initiated due to watchdog timeout due to
1403 		 *    a. IMP was earlier reset and our TX got choked down and
1404 		 *       which resulted in watchdog reacting and inducing VF
1405 		 *       reset. This also means our cmdq would be unreliable.
1406 		 *    b. problem in TX due to other lower layer(example link
1407 		 *       layer not functioning properly etc.)
1408 		 * 2. VF reset might have been initiated due to some config
1409 		 *    change.
1410 		 *
1411 		 * NOTE: Theres no clear way to detect above cases than to react
1412 		 * to the response of PF for this reset request. PF will ack the
1413 		 * 1b and 2. cases but we will not get any intimation about 1a
1414 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1415 		 * communication between PF and VF would be broken.
1416 		 */
1417 
1418 		/* if we are never geting into pending state it means either:
1419 		 * 1. PF is not receiving our request which could be due to IMP
1420 		 *    reset
1421 		 * 2. PF is screwed
1422 		 * We cannot do much for 2. but to check first we can try reset
1423 		 * our PCIe + stack and see if it alleviates the problem.
1424 		 */
1425 		if (hdev->reset_attempts > 3) {
1426 			/* prepare for full reset of stack + pcie interface */
1427 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1428 
1429 			/* "defer" schedule the reset task again */
1430 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1431 		} else {
1432 			hdev->reset_attempts++;
1433 
1434 			set_bit(hdev->reset_level, &hdev->reset_pending);
1435 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1436 		}
1437 		hclgevf_reset_task_schedule(hdev);
1438 	}
1439 
1440 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1441 }
1442 
1443 static void hclgevf_mailbox_service_task(struct work_struct *work)
1444 {
1445 	struct hclgevf_dev *hdev;
1446 
1447 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1448 
1449 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1450 		return;
1451 
1452 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1453 
1454 	hclgevf_mbx_async_handler(hdev);
1455 
1456 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1457 }
1458 
1459 static void hclgevf_service_task(struct work_struct *work)
1460 {
1461 	struct hclgevf_dev *hdev;
1462 
1463 	hdev = container_of(work, struct hclgevf_dev, service_task);
1464 
1465 	/* request the link status from the PF. PF would be able to tell VF
1466 	 * about such updates in future so we might remove this later
1467 	 */
1468 	hclgevf_request_link_info(hdev);
1469 
1470 	hclgevf_deferred_task_schedule(hdev);
1471 
1472 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1473 }
1474 
1475 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1476 {
1477 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1478 }
1479 
1480 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1481 						      u32 *clearval)
1482 {
1483 	u32 cmdq_src_reg, rst_ing_reg;
1484 
1485 	/* fetch the events from their corresponding regs */
1486 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1487 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1488 
1489 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1490 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1491 		dev_info(&hdev->pdev->dev,
1492 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1493 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1494 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1495 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1496 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1497 		*clearval = cmdq_src_reg;
1498 		return HCLGEVF_VECTOR0_EVENT_RST;
1499 	}
1500 
1501 	/* check for vector0 mailbox(=CMDQ RX) event source */
1502 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1503 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1504 		*clearval = cmdq_src_reg;
1505 		return HCLGEVF_VECTOR0_EVENT_MBX;
1506 	}
1507 
1508 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1509 
1510 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1511 }
1512 
1513 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1514 {
1515 	writel(en ? 1 : 0, vector->addr);
1516 }
1517 
1518 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1519 {
1520 	enum hclgevf_evt_cause event_cause;
1521 	struct hclgevf_dev *hdev = data;
1522 	u32 clearval;
1523 
1524 	hclgevf_enable_vector(&hdev->misc_vector, false);
1525 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1526 
1527 	switch (event_cause) {
1528 	case HCLGEVF_VECTOR0_EVENT_RST:
1529 		hclgevf_reset_task_schedule(hdev);
1530 		break;
1531 	case HCLGEVF_VECTOR0_EVENT_MBX:
1532 		hclgevf_mbx_handler(hdev);
1533 		break;
1534 	default:
1535 		break;
1536 	}
1537 
1538 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1539 		hclgevf_clear_event_cause(hdev, clearval);
1540 		hclgevf_enable_vector(&hdev->misc_vector, true);
1541 	}
1542 
1543 	return IRQ_HANDLED;
1544 }
1545 
1546 static int hclgevf_configure(struct hclgevf_dev *hdev)
1547 {
1548 	int ret;
1549 
1550 	hdev->hw.mac.media_type = HNAE3_MEDIA_TYPE_NONE;
1551 
1552 	/* get queue configuration from PF */
1553 	ret = hclgevf_get_queue_info(hdev);
1554 	if (ret)
1555 		return ret;
1556 	/* get tc configuration from PF */
1557 	return hclgevf_get_tc_info(hdev);
1558 }
1559 
1560 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1561 {
1562 	struct pci_dev *pdev = ae_dev->pdev;
1563 	struct hclgevf_dev *hdev = ae_dev->priv;
1564 
1565 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1566 	if (!hdev)
1567 		return -ENOMEM;
1568 
1569 	hdev->pdev = pdev;
1570 	hdev->ae_dev = ae_dev;
1571 	ae_dev->priv = hdev;
1572 
1573 	return 0;
1574 }
1575 
1576 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1577 {
1578 	struct hnae3_handle *roce = &hdev->roce;
1579 	struct hnae3_handle *nic = &hdev->nic;
1580 
1581 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1582 
1583 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1584 	    hdev->num_msi_left == 0)
1585 		return -EINVAL;
1586 
1587 	roce->rinfo.base_vector = hdev->roce_base_vector;
1588 
1589 	roce->rinfo.netdev = nic->kinfo.netdev;
1590 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1591 
1592 	roce->pdev = nic->pdev;
1593 	roce->ae_algo = nic->ae_algo;
1594 	roce->numa_node_mask = nic->numa_node_mask;
1595 
1596 	return 0;
1597 }
1598 
1599 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1600 {
1601 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1602 	int i, ret;
1603 
1604 	rss_cfg->rss_size = hdev->rss_size_max;
1605 
1606 	if (hdev->pdev->revision >= 0x21) {
1607 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
1608 		netdev_rss_key_fill(rss_cfg->rss_hash_key,
1609 				    HCLGEVF_RSS_KEY_SIZE);
1610 
1611 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1612 					       rss_cfg->rss_hash_key);
1613 		if (ret)
1614 			return ret;
1615 
1616 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1617 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1618 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1619 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1620 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1621 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1622 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1623 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1624 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1625 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1626 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1627 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1628 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1629 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1630 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1631 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1632 
1633 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1634 		if (ret)
1635 			return ret;
1636 
1637 	}
1638 
1639 	/* Initialize RSS indirect table for each vport */
1640 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1641 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1642 
1643 	ret = hclgevf_set_rss_indir_table(hdev);
1644 	if (ret)
1645 		return ret;
1646 
1647 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1648 }
1649 
1650 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1651 {
1652 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1653 	 * here later
1654 	 */
1655 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1656 				       false);
1657 }
1658 
1659 static int hclgevf_ae_start(struct hnae3_handle *handle)
1660 {
1661 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1662 
1663 	/* reset tqp stats */
1664 	hclgevf_reset_tqp_stats(handle);
1665 
1666 	hclgevf_request_link_info(hdev);
1667 
1668 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1669 	mod_timer(&hdev->service_timer, jiffies + HZ);
1670 
1671 	return 0;
1672 }
1673 
1674 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1675 {
1676 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1677 
1678 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1679 
1680 	/* reset tqp stats */
1681 	hclgevf_reset_tqp_stats(handle);
1682 	del_timer_sync(&hdev->service_timer);
1683 	cancel_work_sync(&hdev->service_task);
1684 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1685 	hclgevf_update_link_status(hdev, 0);
1686 }
1687 
1688 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1689 {
1690 	/* setup tasks for the MBX */
1691 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1692 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1693 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1694 
1695 	/* setup tasks for service timer */
1696 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1697 
1698 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1699 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1700 
1701 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1702 
1703 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1704 
1705 	/* bring the device down */
1706 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1707 }
1708 
1709 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1710 {
1711 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1712 
1713 	if (hdev->service_timer.function)
1714 		del_timer_sync(&hdev->service_timer);
1715 	if (hdev->service_task.func)
1716 		cancel_work_sync(&hdev->service_task);
1717 	if (hdev->mbx_service_task.func)
1718 		cancel_work_sync(&hdev->mbx_service_task);
1719 	if (hdev->rst_service_task.func)
1720 		cancel_work_sync(&hdev->rst_service_task);
1721 
1722 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1723 }
1724 
1725 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1726 {
1727 	struct pci_dev *pdev = hdev->pdev;
1728 	int vectors;
1729 	int i;
1730 
1731 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1732 		vectors = pci_alloc_irq_vectors(pdev,
1733 						hdev->roce_base_msix_offset + 1,
1734 						hdev->num_msi,
1735 						PCI_IRQ_MSIX);
1736 	else
1737 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1738 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
1739 
1740 	if (vectors < 0) {
1741 		dev_err(&pdev->dev,
1742 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1743 			vectors);
1744 		return vectors;
1745 	}
1746 	if (vectors < hdev->num_msi)
1747 		dev_warn(&hdev->pdev->dev,
1748 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1749 			 hdev->num_msi, vectors);
1750 
1751 	hdev->num_msi = vectors;
1752 	hdev->num_msi_left = vectors;
1753 	hdev->base_msi_vector = pdev->irq;
1754 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
1755 
1756 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1757 					   sizeof(u16), GFP_KERNEL);
1758 	if (!hdev->vector_status) {
1759 		pci_free_irq_vectors(pdev);
1760 		return -ENOMEM;
1761 	}
1762 
1763 	for (i = 0; i < hdev->num_msi; i++)
1764 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1765 
1766 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1767 					sizeof(int), GFP_KERNEL);
1768 	if (!hdev->vector_irq) {
1769 		pci_free_irq_vectors(pdev);
1770 		return -ENOMEM;
1771 	}
1772 
1773 	return 0;
1774 }
1775 
1776 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1777 {
1778 	struct pci_dev *pdev = hdev->pdev;
1779 
1780 	pci_free_irq_vectors(pdev);
1781 }
1782 
1783 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1784 {
1785 	int ret = 0;
1786 
1787 	hclgevf_get_misc_vector(hdev);
1788 
1789 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1790 			  0, "hclgevf_cmd", hdev);
1791 	if (ret) {
1792 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1793 			hdev->misc_vector.vector_irq);
1794 		return ret;
1795 	}
1796 
1797 	hclgevf_clear_event_cause(hdev, 0);
1798 
1799 	/* enable misc. vector(vector 0) */
1800 	hclgevf_enable_vector(&hdev->misc_vector, true);
1801 
1802 	return ret;
1803 }
1804 
1805 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
1806 {
1807 	/* disable misc vector(vector 0) */
1808 	hclgevf_enable_vector(&hdev->misc_vector, false);
1809 	synchronize_irq(hdev->misc_vector.vector_irq);
1810 	free_irq(hdev->misc_vector.vector_irq, hdev);
1811 	hclgevf_free_vector(hdev, 0);
1812 }
1813 
1814 static int hclgevf_init_client_instance(struct hnae3_client *client,
1815 					struct hnae3_ae_dev *ae_dev)
1816 {
1817 	struct hclgevf_dev *hdev = ae_dev->priv;
1818 	int ret;
1819 
1820 	switch (client->type) {
1821 	case HNAE3_CLIENT_KNIC:
1822 		hdev->nic_client = client;
1823 		hdev->nic.client = client;
1824 
1825 		ret = client->ops->init_instance(&hdev->nic);
1826 		if (ret)
1827 			goto clear_nic;
1828 
1829 		hnae3_set_client_init_flag(client, ae_dev, 1);
1830 
1831 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1832 			struct hnae3_client *rc = hdev->roce_client;
1833 
1834 			ret = hclgevf_init_roce_base_info(hdev);
1835 			if (ret)
1836 				goto clear_roce;
1837 			ret = rc->ops->init_instance(&hdev->roce);
1838 			if (ret)
1839 				goto clear_roce;
1840 
1841 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
1842 						   1);
1843 		}
1844 		break;
1845 	case HNAE3_CLIENT_UNIC:
1846 		hdev->nic_client = client;
1847 		hdev->nic.client = client;
1848 
1849 		ret = client->ops->init_instance(&hdev->nic);
1850 		if (ret)
1851 			goto clear_nic;
1852 
1853 		hnae3_set_client_init_flag(client, ae_dev, 1);
1854 		break;
1855 	case HNAE3_CLIENT_ROCE:
1856 		if (hnae3_dev_roce_supported(hdev)) {
1857 			hdev->roce_client = client;
1858 			hdev->roce.client = client;
1859 		}
1860 
1861 		if (hdev->roce_client && hdev->nic_client) {
1862 			ret = hclgevf_init_roce_base_info(hdev);
1863 			if (ret)
1864 				goto clear_roce;
1865 
1866 			ret = client->ops->init_instance(&hdev->roce);
1867 			if (ret)
1868 				goto clear_roce;
1869 		}
1870 
1871 		hnae3_set_client_init_flag(client, ae_dev, 1);
1872 		break;
1873 	default:
1874 		return -EINVAL;
1875 	}
1876 
1877 	return 0;
1878 
1879 clear_nic:
1880 	hdev->nic_client = NULL;
1881 	hdev->nic.client = NULL;
1882 	return ret;
1883 clear_roce:
1884 	hdev->roce_client = NULL;
1885 	hdev->roce.client = NULL;
1886 	return ret;
1887 }
1888 
1889 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
1890 					   struct hnae3_ae_dev *ae_dev)
1891 {
1892 	struct hclgevf_dev *hdev = ae_dev->priv;
1893 
1894 	/* un-init roce, if it exists */
1895 	if (hdev->roce_client) {
1896 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
1897 		hdev->roce_client = NULL;
1898 		hdev->roce.client = NULL;
1899 	}
1900 
1901 	/* un-init nic/unic, if this was not called by roce client */
1902 	if (client->ops->uninit_instance && hdev->nic_client &&
1903 	    client->type != HNAE3_CLIENT_ROCE) {
1904 		client->ops->uninit_instance(&hdev->nic, 0);
1905 		hdev->nic_client = NULL;
1906 		hdev->nic.client = NULL;
1907 	}
1908 }
1909 
1910 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
1911 {
1912 	struct pci_dev *pdev = hdev->pdev;
1913 	struct hclgevf_hw *hw;
1914 	int ret;
1915 
1916 	ret = pci_enable_device(pdev);
1917 	if (ret) {
1918 		dev_err(&pdev->dev, "failed to enable PCI device\n");
1919 		return ret;
1920 	}
1921 
1922 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1923 	if (ret) {
1924 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
1925 		goto err_disable_device;
1926 	}
1927 
1928 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
1929 	if (ret) {
1930 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
1931 		goto err_disable_device;
1932 	}
1933 
1934 	pci_set_master(pdev);
1935 	hw = &hdev->hw;
1936 	hw->hdev = hdev;
1937 	hw->io_base = pci_iomap(pdev, 2, 0);
1938 	if (!hw->io_base) {
1939 		dev_err(&pdev->dev, "can't map configuration register space\n");
1940 		ret = -ENOMEM;
1941 		goto err_clr_master;
1942 	}
1943 
1944 	return 0;
1945 
1946 err_clr_master:
1947 	pci_clear_master(pdev);
1948 	pci_release_regions(pdev);
1949 err_disable_device:
1950 	pci_disable_device(pdev);
1951 
1952 	return ret;
1953 }
1954 
1955 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
1956 {
1957 	struct pci_dev *pdev = hdev->pdev;
1958 
1959 	pci_iounmap(pdev, hdev->hw.io_base);
1960 	pci_clear_master(pdev);
1961 	pci_release_regions(pdev);
1962 	pci_disable_device(pdev);
1963 }
1964 
1965 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
1966 {
1967 	struct hclgevf_query_res_cmd *req;
1968 	struct hclgevf_desc desc;
1969 	int ret;
1970 
1971 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
1972 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1973 	if (ret) {
1974 		dev_err(&hdev->pdev->dev,
1975 			"query vf resource failed, ret = %d.\n", ret);
1976 		return ret;
1977 	}
1978 
1979 	req = (struct hclgevf_query_res_cmd *)desc.data;
1980 
1981 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
1982 		hdev->roce_base_msix_offset =
1983 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
1984 				HCLGEVF_MSIX_OFT_ROCEE_M,
1985 				HCLGEVF_MSIX_OFT_ROCEE_S);
1986 		hdev->num_roce_msix =
1987 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
1988 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
1989 
1990 		/* VF should have NIC vectors and Roce vectors, NIC vectors
1991 		 * are queued before Roce vectors. The offset is fixed to 64.
1992 		 */
1993 		hdev->num_msi = hdev->num_roce_msix +
1994 				hdev->roce_base_msix_offset;
1995 	} else {
1996 		hdev->num_msi =
1997 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
1998 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
1999 	}
2000 
2001 	return 0;
2002 }
2003 
2004 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2005 {
2006 	struct pci_dev *pdev = hdev->pdev;
2007 	int ret;
2008 
2009 	ret = hclgevf_cmd_init(hdev);
2010 	if (ret) {
2011 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2012 		return ret;
2013 	}
2014 
2015 	ret = hclgevf_rss_init_hw(hdev);
2016 	if (ret) {
2017 		dev_err(&hdev->pdev->dev,
2018 			"failed(%d) to initialize RSS\n", ret);
2019 		return ret;
2020 	}
2021 
2022 	ret = hclgevf_init_vlan_config(hdev);
2023 	if (ret) {
2024 		dev_err(&hdev->pdev->dev,
2025 			"failed(%d) to initialize VLAN config\n", ret);
2026 		return ret;
2027 	}
2028 
2029 	dev_info(&hdev->pdev->dev, "Reset done\n");
2030 
2031 	return 0;
2032 }
2033 
2034 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2035 {
2036 	struct pci_dev *pdev = hdev->pdev;
2037 	int ret;
2038 
2039 	ret = hclgevf_pci_init(hdev);
2040 	if (ret) {
2041 		dev_err(&pdev->dev, "PCI initialization failed\n");
2042 		return ret;
2043 	}
2044 
2045 	ret = hclgevf_cmd_queue_init(hdev);
2046 	if (ret) {
2047 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2048 		goto err_cmd_queue_init;
2049 	}
2050 
2051 	ret = hclgevf_cmd_init(hdev);
2052 	if (ret)
2053 		goto err_cmd_init;
2054 
2055 	/* Get vf resource */
2056 	ret = hclgevf_query_vf_resource(hdev);
2057 	if (ret) {
2058 		dev_err(&hdev->pdev->dev,
2059 			"Query vf status error, ret = %d.\n", ret);
2060 		goto err_cmd_init;
2061 	}
2062 
2063 	ret = hclgevf_init_msi(hdev);
2064 	if (ret) {
2065 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2066 		goto err_cmd_init;
2067 	}
2068 
2069 	hclgevf_state_init(hdev);
2070 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2071 
2072 	ret = hclgevf_misc_irq_init(hdev);
2073 	if (ret) {
2074 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2075 			ret);
2076 		goto err_misc_irq_init;
2077 	}
2078 
2079 	ret = hclgevf_configure(hdev);
2080 	if (ret) {
2081 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2082 		goto err_config;
2083 	}
2084 
2085 	ret = hclgevf_alloc_tqps(hdev);
2086 	if (ret) {
2087 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2088 		goto err_config;
2089 	}
2090 
2091 	ret = hclgevf_set_handle_info(hdev);
2092 	if (ret) {
2093 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2094 		goto err_config;
2095 	}
2096 
2097 	/* Initialize RSS for this VF */
2098 	ret = hclgevf_rss_init_hw(hdev);
2099 	if (ret) {
2100 		dev_err(&hdev->pdev->dev,
2101 			"failed(%d) to initialize RSS\n", ret);
2102 		goto err_config;
2103 	}
2104 
2105 	ret = hclgevf_init_vlan_config(hdev);
2106 	if (ret) {
2107 		dev_err(&hdev->pdev->dev,
2108 			"failed(%d) to initialize VLAN config\n", ret);
2109 		goto err_config;
2110 	}
2111 
2112 	hdev->last_reset_time = jiffies;
2113 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2114 
2115 	return 0;
2116 
2117 err_config:
2118 	hclgevf_misc_irq_uninit(hdev);
2119 err_misc_irq_init:
2120 	hclgevf_state_uninit(hdev);
2121 	hclgevf_uninit_msi(hdev);
2122 err_cmd_init:
2123 	hclgevf_cmd_uninit(hdev);
2124 err_cmd_queue_init:
2125 	hclgevf_pci_uninit(hdev);
2126 	return ret;
2127 }
2128 
2129 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2130 {
2131 	hclgevf_state_uninit(hdev);
2132 	hclgevf_misc_irq_uninit(hdev);
2133 	hclgevf_cmd_uninit(hdev);
2134 	hclgevf_uninit_msi(hdev);
2135 	hclgevf_pci_uninit(hdev);
2136 }
2137 
2138 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2139 {
2140 	struct pci_dev *pdev = ae_dev->pdev;
2141 	int ret;
2142 
2143 	ret = hclgevf_alloc_hdev(ae_dev);
2144 	if (ret) {
2145 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2146 		return ret;
2147 	}
2148 
2149 	ret = hclgevf_init_hdev(ae_dev->priv);
2150 	if (ret)
2151 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2152 
2153 	return ret;
2154 }
2155 
2156 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2157 {
2158 	struct hclgevf_dev *hdev = ae_dev->priv;
2159 
2160 	hclgevf_uninit_hdev(hdev);
2161 	ae_dev->priv = NULL;
2162 }
2163 
2164 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2165 {
2166 	struct hnae3_handle *nic = &hdev->nic;
2167 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2168 
2169 	return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
2170 }
2171 
2172 /**
2173  * hclgevf_get_channels - Get the current channels enabled and max supported.
2174  * @handle: hardware information for network interface
2175  * @ch: ethtool channels structure
2176  *
2177  * We don't support separate tx and rx queues as channels. The other count
2178  * represents how many queues are being used for control. max_combined counts
2179  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2180  * q_vectors since we support a lot more queue pairs than q_vectors.
2181  **/
2182 static void hclgevf_get_channels(struct hnae3_handle *handle,
2183 				 struct ethtool_channels *ch)
2184 {
2185 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2186 
2187 	ch->max_combined = hclgevf_get_max_channels(hdev);
2188 	ch->other_count = 0;
2189 	ch->max_other = 0;
2190 	ch->combined_count = hdev->num_tqps;
2191 }
2192 
2193 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2194 					  u16 *alloc_tqps, u16 *max_rss_size)
2195 {
2196 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2197 
2198 	*alloc_tqps = hdev->num_tqps;
2199 	*max_rss_size = hdev->rss_size_max;
2200 }
2201 
2202 static int hclgevf_get_status(struct hnae3_handle *handle)
2203 {
2204 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2205 
2206 	return hdev->hw.mac.link;
2207 }
2208 
2209 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2210 					    u8 *auto_neg, u32 *speed,
2211 					    u8 *duplex)
2212 {
2213 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2214 
2215 	if (speed)
2216 		*speed = hdev->hw.mac.speed;
2217 	if (duplex)
2218 		*duplex = hdev->hw.mac.duplex;
2219 	if (auto_neg)
2220 		*auto_neg = AUTONEG_DISABLE;
2221 }
2222 
2223 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2224 				 u8 duplex)
2225 {
2226 	hdev->hw.mac.speed = speed;
2227 	hdev->hw.mac.duplex = duplex;
2228 }
2229 
2230 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2231 				  u8 *media_type)
2232 {
2233 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2234 	if (media_type)
2235 		*media_type = hdev->hw.mac.media_type;
2236 }
2237 
2238 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2239 {
2240 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2241 
2242 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2243 }
2244 
2245 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2246 {
2247 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2248 
2249 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2250 }
2251 
2252 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2253 {
2254 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2255 
2256 	return hdev->reset_count;
2257 }
2258 
2259 static const struct hnae3_ae_ops hclgevf_ops = {
2260 	.init_ae_dev = hclgevf_init_ae_dev,
2261 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2262 	.init_client_instance = hclgevf_init_client_instance,
2263 	.uninit_client_instance = hclgevf_uninit_client_instance,
2264 	.start = hclgevf_ae_start,
2265 	.stop = hclgevf_ae_stop,
2266 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2267 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2268 	.get_vector = hclgevf_get_vector,
2269 	.put_vector = hclgevf_put_vector,
2270 	.reset_queue = hclgevf_reset_tqp,
2271 	.set_promisc_mode = hclgevf_set_promisc_mode,
2272 	.get_mac_addr = hclgevf_get_mac_addr,
2273 	.set_mac_addr = hclgevf_set_mac_addr,
2274 	.add_uc_addr = hclgevf_add_uc_addr,
2275 	.rm_uc_addr = hclgevf_rm_uc_addr,
2276 	.add_mc_addr = hclgevf_add_mc_addr,
2277 	.rm_mc_addr = hclgevf_rm_mc_addr,
2278 	.get_stats = hclgevf_get_stats,
2279 	.update_stats = hclgevf_update_stats,
2280 	.get_strings = hclgevf_get_strings,
2281 	.get_sset_count = hclgevf_get_sset_count,
2282 	.get_rss_key_size = hclgevf_get_rss_key_size,
2283 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2284 	.get_rss = hclgevf_get_rss,
2285 	.set_rss = hclgevf_set_rss,
2286 	.get_rss_tuple = hclgevf_get_rss_tuple,
2287 	.set_rss_tuple = hclgevf_set_rss_tuple,
2288 	.get_tc_size = hclgevf_get_tc_size,
2289 	.get_fw_version = hclgevf_get_fw_version,
2290 	.set_vlan_filter = hclgevf_set_vlan_filter,
2291 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2292 	.reset_event = hclgevf_reset_event,
2293 	.set_default_reset_request = hclgevf_set_def_reset_request,
2294 	.get_channels = hclgevf_get_channels,
2295 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2296 	.get_status = hclgevf_get_status,
2297 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2298 	.get_media_type = hclgevf_get_media_type,
2299 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2300 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2301 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2302 };
2303 
2304 static struct hnae3_ae_algo ae_algovf = {
2305 	.ops = &hclgevf_ops,
2306 	.pdev_id_table = ae_algovf_pci_tbl,
2307 };
2308 
2309 static int hclgevf_init(void)
2310 {
2311 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2312 
2313 	hnae3_register_ae_algo(&ae_algovf);
2314 
2315 	return 0;
2316 }
2317 
2318 static void hclgevf_exit(void)
2319 {
2320 	hnae3_unregister_ae_algo(&ae_algovf);
2321 }
2322 module_init(hclgevf_init);
2323 module_exit(hclgevf_exit);
2324 
2325 MODULE_LICENSE("GPL");
2326 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2327 MODULE_DESCRIPTION("HCLGEVF Driver");
2328 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2329