1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 #include "hclge_comm_rss.h"
13 
14 #define HCLGEVF_NAME	"hclgevf"
15 
16 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
17 
18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
20 				  unsigned long delay);
21 
22 static struct hnae3_ae_algo ae_algovf;
23 
24 static struct workqueue_struct *hclgevf_wq;
25 
26 static const struct pci_device_id ae_algovf_pci_tbl[] = {
27 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
28 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
29 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
30 	/* required last entry */
31 	{0, }
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
37 					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
38 					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
39 					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
40 					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
41 					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
42 					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
43 					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
44 					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
45 					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
46 					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG,
48 					 HCLGE_COMM_CMDQ_INTR_EN_REG,
49 					 HCLGE_COMM_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 /* hclgevf_cmd_send - send command to command queue
89  * @hw: pointer to the hw struct
90  * @desc: prefilled descriptor for describing the command
91  * @num : the number of descriptors to be sent
92  *
93  * This is the main send command for command queue, it
94  * sends the queue, cleans the queue, etc
95  */
96 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
97 {
98 	return hclge_comm_cmd_send(&hw->hw, desc, num);
99 }
100 
101 void hclgevf_arq_init(struct hclgevf_dev *hdev)
102 {
103 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
104 
105 	spin_lock(&cmdq->crq.lock);
106 	/* initialize the pointers of async rx queue of mailbox */
107 	hdev->arq.hdev = hdev;
108 	hdev->arq.head = 0;
109 	hdev->arq.tail = 0;
110 	atomic_set(&hdev->arq.count, 0);
111 	spin_unlock(&cmdq->crq.lock);
112 }
113 
114 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
115 {
116 	if (!handle->client)
117 		return container_of(handle, struct hclgevf_dev, nic);
118 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
119 		return container_of(handle, struct hclgevf_dev, roce);
120 	else
121 		return container_of(handle, struct hclgevf_dev, nic);
122 }
123 
124 static void hclgevf_update_stats(struct hnae3_handle *handle,
125 				 struct net_device_stats *net_stats)
126 {
127 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
128 	int status;
129 
130 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
131 	if (status)
132 		dev_err(&hdev->pdev->dev,
133 			"VF update of TQPS stats fail, status = %d.\n",
134 			status);
135 }
136 
137 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
138 {
139 	if (strset == ETH_SS_TEST)
140 		return -EOPNOTSUPP;
141 	else if (strset == ETH_SS_STATS)
142 		return hclge_comm_tqps_get_sset_count(handle);
143 
144 	return 0;
145 }
146 
147 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
148 				u8 *data)
149 {
150 	u8 *p = (char *)data;
151 
152 	if (strset == ETH_SS_STATS)
153 		p = hclge_comm_tqps_get_strings(handle, p);
154 }
155 
156 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
157 {
158 	hclge_comm_tqps_get_stats(handle, data);
159 }
160 
161 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
162 				   u8 subcode)
163 {
164 	if (msg) {
165 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
166 		msg->code = code;
167 		msg->subcode = subcode;
168 	}
169 }
170 
171 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
172 {
173 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
174 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
175 	struct hclge_basic_info *basic_info;
176 	struct hclge_vf_to_pf_msg send_msg;
177 	unsigned long caps;
178 	int status;
179 
180 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
181 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
182 				      sizeof(resp_msg));
183 	if (status) {
184 		dev_err(&hdev->pdev->dev,
185 			"failed to get basic info from pf, ret = %d", status);
186 		return status;
187 	}
188 
189 	basic_info = (struct hclge_basic_info *)resp_msg;
190 
191 	hdev->hw_tc_map = basic_info->hw_tc_map;
192 	hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
193 	caps = le32_to_cpu(basic_info->pf_caps);
194 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
195 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
196 
197 	return 0;
198 }
199 
200 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
201 {
202 	struct hnae3_handle *nic = &hdev->nic;
203 	struct hclge_vf_to_pf_msg send_msg;
204 	u8 resp_msg;
205 	int ret;
206 
207 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
208 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
209 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
210 				   sizeof(u8));
211 	if (ret) {
212 		dev_err(&hdev->pdev->dev,
213 			"VF request to get port based vlan state failed %d",
214 			ret);
215 		return ret;
216 	}
217 
218 	nic->port_base_vlan_state = resp_msg;
219 
220 	return 0;
221 }
222 
223 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
224 {
225 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
226 
227 	struct hclge_mbx_vf_queue_info *queue_info;
228 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
229 	struct hclge_vf_to_pf_msg send_msg;
230 	int status;
231 
232 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
233 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
234 				      HCLGEVF_TQPS_RSS_INFO_LEN);
235 	if (status) {
236 		dev_err(&hdev->pdev->dev,
237 			"VF request to get tqp info from PF failed %d",
238 			status);
239 		return status;
240 	}
241 
242 	queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
243 	hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
244 	hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
245 	hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
246 
247 	return 0;
248 }
249 
250 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
251 {
252 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
253 
254 	struct hclge_mbx_vf_queue_depth *queue_depth;
255 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
256 	struct hclge_vf_to_pf_msg send_msg;
257 	int ret;
258 
259 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
260 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
261 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
262 	if (ret) {
263 		dev_err(&hdev->pdev->dev,
264 			"VF request to get tqp depth info from PF failed %d",
265 			ret);
266 		return ret;
267 	}
268 
269 	queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
270 	hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
271 	hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
272 
273 	return 0;
274 }
275 
276 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
277 {
278 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
279 	struct hclge_vf_to_pf_msg send_msg;
280 	u16 qid_in_pf = 0;
281 	u8 resp_data[2];
282 	int ret;
283 
284 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
285 	*(__le16 *)send_msg.data = cpu_to_le16(queue_id);
286 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
287 				   sizeof(resp_data));
288 	if (!ret)
289 		qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
290 
291 	return qid_in_pf;
292 }
293 
294 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
295 {
296 	struct hclge_vf_to_pf_msg send_msg;
297 	u8 resp_msg[2];
298 	int ret;
299 
300 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
301 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
302 				   sizeof(resp_msg));
303 	if (ret) {
304 		dev_err(&hdev->pdev->dev,
305 			"VF request to get the pf port media type failed %d",
306 			ret);
307 		return ret;
308 	}
309 
310 	hdev->hw.mac.media_type = resp_msg[0];
311 	hdev->hw.mac.module_type = resp_msg[1];
312 
313 	return 0;
314 }
315 
316 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
317 {
318 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
319 	struct hclge_comm_tqp *tqp;
320 	int i;
321 
322 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
323 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
324 	if (!hdev->htqp)
325 		return -ENOMEM;
326 
327 	tqp = hdev->htqp;
328 
329 	for (i = 0; i < hdev->num_tqps; i++) {
330 		tqp->dev = &hdev->pdev->dev;
331 		tqp->index = i;
332 
333 		tqp->q.ae_algo = &ae_algovf;
334 		tqp->q.buf_size = hdev->rx_buf_len;
335 		tqp->q.tx_desc_num = hdev->num_tx_desc;
336 		tqp->q.rx_desc_num = hdev->num_rx_desc;
337 
338 		/* need an extended offset to configure queues >=
339 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
340 		 */
341 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
342 			tqp->q.io_base = hdev->hw.hw.io_base +
343 					 HCLGEVF_TQP_REG_OFFSET +
344 					 i * HCLGEVF_TQP_REG_SIZE;
345 		else
346 			tqp->q.io_base = hdev->hw.hw.io_base +
347 					 HCLGEVF_TQP_REG_OFFSET +
348 					 HCLGEVF_TQP_EXT_REG_OFFSET +
349 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
350 					 HCLGEVF_TQP_REG_SIZE;
351 
352 		/* when device supports tx push and has device memory,
353 		 * the queue can execute push mode or doorbell mode on
354 		 * device memory.
355 		 */
356 		if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
357 			tqp->q.mem_base = hdev->hw.hw.mem_base +
358 					  HCLGEVF_TQP_MEM_OFFSET(hdev, i);
359 
360 		tqp++;
361 	}
362 
363 	return 0;
364 }
365 
366 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
367 {
368 	struct hnae3_handle *nic = &hdev->nic;
369 	struct hnae3_knic_private_info *kinfo;
370 	u16 new_tqps = hdev->num_tqps;
371 	unsigned int i;
372 	u8 num_tc = 0;
373 
374 	kinfo = &nic->kinfo;
375 	kinfo->num_tx_desc = hdev->num_tx_desc;
376 	kinfo->num_rx_desc = hdev->num_rx_desc;
377 	kinfo->rx_buf_len = hdev->rx_buf_len;
378 	for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
379 		if (hdev->hw_tc_map & BIT(i))
380 			num_tc++;
381 
382 	num_tc = num_tc ? num_tc : 1;
383 	kinfo->tc_info.num_tc = num_tc;
384 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
385 	new_tqps = kinfo->rss_size * num_tc;
386 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
387 
388 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
389 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
390 	if (!kinfo->tqp)
391 		return -ENOMEM;
392 
393 	for (i = 0; i < kinfo->num_tqps; i++) {
394 		hdev->htqp[i].q.handle = &hdev->nic;
395 		hdev->htqp[i].q.tqp_index = i;
396 		kinfo->tqp[i] = &hdev->htqp[i].q;
397 	}
398 
399 	/* after init the max rss_size and tqps, adjust the default tqp numbers
400 	 * and rss size with the actual vector numbers
401 	 */
402 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
403 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
404 				kinfo->rss_size);
405 
406 	return 0;
407 }
408 
409 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
410 {
411 	struct hclge_vf_to_pf_msg send_msg;
412 	int status;
413 
414 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
415 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
416 	if (status)
417 		dev_err(&hdev->pdev->dev,
418 			"VF failed to fetch link status(%d) from PF", status);
419 }
420 
421 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
422 {
423 	struct hnae3_handle *rhandle = &hdev->roce;
424 	struct hnae3_handle *handle = &hdev->nic;
425 	struct hnae3_client *rclient;
426 	struct hnae3_client *client;
427 
428 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
429 		return;
430 
431 	client = handle->client;
432 	rclient = hdev->roce_client;
433 
434 	link_state =
435 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
436 	if (link_state != hdev->hw.mac.link) {
437 		hdev->hw.mac.link = link_state;
438 		client->ops->link_status_change(handle, !!link_state);
439 		if (rclient && rclient->ops->link_status_change)
440 			rclient->ops->link_status_change(rhandle, !!link_state);
441 	}
442 
443 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
444 }
445 
446 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
447 {
448 #define HCLGEVF_ADVERTISING	0
449 #define HCLGEVF_SUPPORTED	1
450 
451 	struct hclge_vf_to_pf_msg send_msg;
452 
453 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
454 	send_msg.data[0] = HCLGEVF_ADVERTISING;
455 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
456 	send_msg.data[0] = HCLGEVF_SUPPORTED;
457 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
458 }
459 
460 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
461 {
462 	struct hnae3_handle *nic = &hdev->nic;
463 	int ret;
464 
465 	nic->ae_algo = &ae_algovf;
466 	nic->pdev = hdev->pdev;
467 	nic->numa_node_mask = hdev->numa_node_mask;
468 	nic->flags |= HNAE3_SUPPORT_VF;
469 	nic->kinfo.io_base = hdev->hw.hw.io_base;
470 
471 	ret = hclgevf_knic_setup(hdev);
472 	if (ret)
473 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
474 			ret);
475 	return ret;
476 }
477 
478 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
479 {
480 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
481 		dev_warn(&hdev->pdev->dev,
482 			 "vector(vector_id %d) has been freed.\n", vector_id);
483 		return;
484 	}
485 
486 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
487 	hdev->num_msi_left += 1;
488 	hdev->num_msi_used -= 1;
489 }
490 
491 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
492 			      struct hnae3_vector_info *vector_info)
493 {
494 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
495 	struct hnae3_vector_info *vector = vector_info;
496 	int alloc = 0;
497 	int i, j;
498 
499 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
500 	vector_num = min(hdev->num_msi_left, vector_num);
501 
502 	for (j = 0; j < vector_num; j++) {
503 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
504 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
505 				vector->vector = pci_irq_vector(hdev->pdev, i);
506 				vector->io_addr = hdev->hw.hw.io_base +
507 					HCLGEVF_VECTOR_REG_BASE +
508 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
509 				hdev->vector_status[i] = 0;
510 				hdev->vector_irq[i] = vector->vector;
511 
512 				vector++;
513 				alloc++;
514 
515 				break;
516 			}
517 		}
518 	}
519 	hdev->num_msi_left -= alloc;
520 	hdev->num_msi_used += alloc;
521 
522 	return alloc;
523 }
524 
525 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
526 {
527 	int i;
528 
529 	for (i = 0; i < hdev->num_msi; i++)
530 		if (vector == hdev->vector_irq[i])
531 			return i;
532 
533 	return -EINVAL;
534 }
535 
536 /* for revision 0x20, vf shared the same rss config with pf */
537 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
538 {
539 #define HCLGEVF_RSS_MBX_RESP_LEN	8
540 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
541 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
542 	struct hclge_vf_to_pf_msg send_msg;
543 	u16 msg_num, hash_key_index;
544 	u8 index;
545 	int ret;
546 
547 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
548 	msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
549 			HCLGEVF_RSS_MBX_RESP_LEN;
550 	for (index = 0; index < msg_num; index++) {
551 		send_msg.data[0] = index;
552 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
553 					   HCLGEVF_RSS_MBX_RESP_LEN);
554 		if (ret) {
555 			dev_err(&hdev->pdev->dev,
556 				"VF get rss hash key from PF failed, ret=%d",
557 				ret);
558 			return ret;
559 		}
560 
561 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
562 		if (index == msg_num - 1)
563 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
564 			       &resp_msg[0],
565 			       HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
566 		else
567 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
568 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
569 	}
570 
571 	return 0;
572 }
573 
574 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
575 			   u8 *hfunc)
576 {
577 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
578 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
579 	int ret;
580 
581 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
582 		hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
583 	} else {
584 		if (hfunc)
585 			*hfunc = ETH_RSS_HASH_TOP;
586 		if (key) {
587 			ret = hclgevf_get_rss_hash_key(hdev);
588 			if (ret)
589 				return ret;
590 			memcpy(key, rss_cfg->rss_hash_key,
591 			       HCLGE_COMM_RSS_KEY_SIZE);
592 		}
593 	}
594 
595 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
596 				     hdev->ae_dev->dev_specs.rss_ind_tbl_size);
597 
598 	return 0;
599 }
600 
601 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
602 			   const u8 *key, const u8 hfunc)
603 {
604 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
605 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
606 	int ret, i;
607 
608 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
609 		ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
610 						  hfunc);
611 		if (ret)
612 			return ret;
613 	}
614 
615 	/* update the shadow RSS table with user specified qids */
616 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
617 		rss_cfg->rss_indirection_tbl[i] = indir[i];
618 
619 	/* update the hardware */
620 	return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
621 					      rss_cfg->rss_indirection_tbl);
622 }
623 
624 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
625 				 struct ethtool_rxnfc *nfc)
626 {
627 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
628 	int ret;
629 
630 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
631 		return -EOPNOTSUPP;
632 
633 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
634 				       &hdev->rss_cfg, nfc);
635 	if (ret)
636 		dev_err(&hdev->pdev->dev,
637 		"failed to set rss tuple, ret = %d.\n", ret);
638 
639 	return ret;
640 }
641 
642 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
643 				 struct ethtool_rxnfc *nfc)
644 {
645 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
646 	u8 tuple_sets;
647 	int ret;
648 
649 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
650 		return -EOPNOTSUPP;
651 
652 	nfc->data = 0;
653 
654 	ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
655 				       &tuple_sets);
656 	if (ret || !tuple_sets)
657 		return ret;
658 
659 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
660 
661 	return 0;
662 }
663 
664 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
665 {
666 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
667 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
668 
669 	return rss_cfg->rss_size;
670 }
671 
672 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
673 				       int vector_id,
674 				       struct hnae3_ring_chain_node *ring_chain)
675 {
676 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
677 	struct hclge_vf_to_pf_msg send_msg;
678 	struct hnae3_ring_chain_node *node;
679 	int status;
680 	int i = 0;
681 
682 	memset(&send_msg, 0, sizeof(send_msg));
683 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
684 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
685 	send_msg.vector_id = vector_id;
686 
687 	for (node = ring_chain; node; node = node->next) {
688 		send_msg.param[i].ring_type =
689 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
690 
691 		send_msg.param[i].tqp_index = node->tqp_index;
692 		send_msg.param[i].int_gl_index =
693 					hnae3_get_field(node->int_gl_idx,
694 							HNAE3_RING_GL_IDX_M,
695 							HNAE3_RING_GL_IDX_S);
696 
697 		i++;
698 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
699 			send_msg.ring_num = i;
700 
701 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
702 						      NULL, 0);
703 			if (status) {
704 				dev_err(&hdev->pdev->dev,
705 					"Map TQP fail, status is %d.\n",
706 					status);
707 				return status;
708 			}
709 			i = 0;
710 		}
711 	}
712 
713 	return 0;
714 }
715 
716 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
717 				      struct hnae3_ring_chain_node *ring_chain)
718 {
719 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
720 	int vector_id;
721 
722 	vector_id = hclgevf_get_vector_index(hdev, vector);
723 	if (vector_id < 0) {
724 		dev_err(&handle->pdev->dev,
725 			"Get vector index fail. ret =%d\n", vector_id);
726 		return vector_id;
727 	}
728 
729 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
730 }
731 
732 static int hclgevf_unmap_ring_from_vector(
733 				struct hnae3_handle *handle,
734 				int vector,
735 				struct hnae3_ring_chain_node *ring_chain)
736 {
737 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
738 	int ret, vector_id;
739 
740 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
741 		return 0;
742 
743 	vector_id = hclgevf_get_vector_index(hdev, vector);
744 	if (vector_id < 0) {
745 		dev_err(&handle->pdev->dev,
746 			"Get vector index fail. ret =%d\n", vector_id);
747 		return vector_id;
748 	}
749 
750 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
751 	if (ret)
752 		dev_err(&handle->pdev->dev,
753 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
754 			vector_id,
755 			ret);
756 
757 	return ret;
758 }
759 
760 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
761 {
762 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
763 	int vector_id;
764 
765 	vector_id = hclgevf_get_vector_index(hdev, vector);
766 	if (vector_id < 0) {
767 		dev_err(&handle->pdev->dev,
768 			"hclgevf_put_vector get vector index fail. ret =%d\n",
769 			vector_id);
770 		return vector_id;
771 	}
772 
773 	hclgevf_free_vector(hdev, vector_id);
774 
775 	return 0;
776 }
777 
778 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
779 					bool en_uc_pmc, bool en_mc_pmc,
780 					bool en_bc_pmc)
781 {
782 	struct hnae3_handle *handle = &hdev->nic;
783 	struct hclge_vf_to_pf_msg send_msg;
784 	int ret;
785 
786 	memset(&send_msg, 0, sizeof(send_msg));
787 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
788 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
789 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
790 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
791 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
792 					     &handle->priv_flags) ? 1 : 0;
793 
794 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
795 	if (ret)
796 		dev_err(&hdev->pdev->dev,
797 			"Set promisc mode fail, status is %d.\n", ret);
798 
799 	return ret;
800 }
801 
802 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
803 				    bool en_mc_pmc)
804 {
805 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
806 	bool en_bc_pmc;
807 
808 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
809 
810 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
811 					    en_bc_pmc);
812 }
813 
814 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
815 {
816 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
817 
818 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
819 	hclgevf_task_schedule(hdev, 0);
820 }
821 
822 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
823 {
824 	struct hnae3_handle *handle = &hdev->nic;
825 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
826 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
827 	int ret;
828 
829 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
830 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
831 		if (!ret)
832 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
833 	}
834 }
835 
836 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
837 				       u16 stream_id, bool enable)
838 {
839 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
840 	struct hclge_desc desc;
841 
842 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
843 
844 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
845 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
846 	req->stream_id = cpu_to_le16(stream_id);
847 	if (enable)
848 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
849 
850 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
851 }
852 
853 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
854 {
855 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
856 	int ret;
857 	u16 i;
858 
859 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
860 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
861 		if (ret)
862 			return ret;
863 	}
864 
865 	return 0;
866 }
867 
868 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
869 {
870 	struct hclge_vf_to_pf_msg send_msg;
871 	u8 host_mac[ETH_ALEN];
872 	int status;
873 
874 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
875 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
876 				      ETH_ALEN);
877 	if (status) {
878 		dev_err(&hdev->pdev->dev,
879 			"fail to get VF MAC from host %d", status);
880 		return status;
881 	}
882 
883 	ether_addr_copy(p, host_mac);
884 
885 	return 0;
886 }
887 
888 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
889 {
890 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891 	u8 host_mac_addr[ETH_ALEN];
892 
893 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
894 		return;
895 
896 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
897 	if (hdev->has_pf_mac)
898 		ether_addr_copy(p, host_mac_addr);
899 	else
900 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
901 }
902 
903 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
904 				bool is_first)
905 {
906 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
907 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
908 	struct hclge_vf_to_pf_msg send_msg;
909 	u8 *new_mac_addr = (u8 *)p;
910 	int status;
911 
912 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
913 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
914 	ether_addr_copy(send_msg.data, new_mac_addr);
915 	if (is_first && !hdev->has_pf_mac)
916 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
917 	else
918 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
919 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
920 	if (!status)
921 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
922 
923 	return status;
924 }
925 
926 static struct hclgevf_mac_addr_node *
927 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
928 {
929 	struct hclgevf_mac_addr_node *mac_node, *tmp;
930 
931 	list_for_each_entry_safe(mac_node, tmp, list, node)
932 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
933 			return mac_node;
934 
935 	return NULL;
936 }
937 
938 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
939 				    enum HCLGEVF_MAC_NODE_STATE state)
940 {
941 	switch (state) {
942 	/* from set_rx_mode or tmp_add_list */
943 	case HCLGEVF_MAC_TO_ADD:
944 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
945 			mac_node->state = HCLGEVF_MAC_ACTIVE;
946 		break;
947 	/* only from set_rx_mode */
948 	case HCLGEVF_MAC_TO_DEL:
949 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
950 			list_del(&mac_node->node);
951 			kfree(mac_node);
952 		} else {
953 			mac_node->state = HCLGEVF_MAC_TO_DEL;
954 		}
955 		break;
956 	/* only from tmp_add_list, the mac_node->state won't be
957 	 * HCLGEVF_MAC_ACTIVE
958 	 */
959 	case HCLGEVF_MAC_ACTIVE:
960 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
961 			mac_node->state = HCLGEVF_MAC_ACTIVE;
962 		break;
963 	}
964 }
965 
966 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
967 				   enum HCLGEVF_MAC_NODE_STATE state,
968 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
969 				   const unsigned char *addr)
970 {
971 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
972 	struct hclgevf_mac_addr_node *mac_node;
973 	struct list_head *list;
974 
975 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
976 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
977 
978 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
979 
980 	/* if the mac addr is already in the mac list, no need to add a new
981 	 * one into it, just check the mac addr state, convert it to a new
982 	 * state, or just remove it, or do nothing.
983 	 */
984 	mac_node = hclgevf_find_mac_node(list, addr);
985 	if (mac_node) {
986 		hclgevf_update_mac_node(mac_node, state);
987 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
988 		return 0;
989 	}
990 	/* if this address is never added, unnecessary to delete */
991 	if (state == HCLGEVF_MAC_TO_DEL) {
992 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
993 		return -ENOENT;
994 	}
995 
996 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
997 	if (!mac_node) {
998 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
999 		return -ENOMEM;
1000 	}
1001 
1002 	mac_node->state = state;
1003 	ether_addr_copy(mac_node->mac_addr, addr);
1004 	list_add_tail(&mac_node->node, list);
1005 
1006 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1007 	return 0;
1008 }
1009 
1010 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1011 			       const unsigned char *addr)
1012 {
1013 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1014 				       HCLGEVF_MAC_ADDR_UC, addr);
1015 }
1016 
1017 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1018 			      const unsigned char *addr)
1019 {
1020 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1021 				       HCLGEVF_MAC_ADDR_UC, addr);
1022 }
1023 
1024 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1025 			       const unsigned char *addr)
1026 {
1027 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1028 				       HCLGEVF_MAC_ADDR_MC, addr);
1029 }
1030 
1031 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1032 			      const unsigned char *addr)
1033 {
1034 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1035 				       HCLGEVF_MAC_ADDR_MC, addr);
1036 }
1037 
1038 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1039 				    struct hclgevf_mac_addr_node *mac_node,
1040 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1041 {
1042 	struct hclge_vf_to_pf_msg send_msg;
1043 	u8 code, subcode;
1044 
1045 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1046 		code = HCLGE_MBX_SET_UNICAST;
1047 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1048 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1049 		else
1050 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1051 	} else {
1052 		code = HCLGE_MBX_SET_MULTICAST;
1053 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1054 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1055 		else
1056 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1057 	}
1058 
1059 	hclgevf_build_send_msg(&send_msg, code, subcode);
1060 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1061 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1062 }
1063 
1064 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1065 				    struct list_head *list,
1066 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1067 {
1068 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1069 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1070 	int ret;
1071 
1072 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1073 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1074 		if  (ret) {
1075 			hnae3_format_mac_addr(format_mac_addr,
1076 					      mac_node->mac_addr);
1077 			dev_err(&hdev->pdev->dev,
1078 				"failed to configure mac %s, state = %d, ret = %d\n",
1079 				format_mac_addr, mac_node->state, ret);
1080 			return;
1081 		}
1082 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1083 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1084 		} else {
1085 			list_del(&mac_node->node);
1086 			kfree(mac_node);
1087 		}
1088 	}
1089 }
1090 
1091 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1092 				       struct list_head *mac_list)
1093 {
1094 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1095 
1096 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1097 		/* if the mac address from tmp_add_list is not in the
1098 		 * uc/mc_mac_list, it means have received a TO_DEL request
1099 		 * during the time window of sending mac config request to PF
1100 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1101 		 * then it will be removed at next time. If is TO_ADD, it means
1102 		 * send TO_ADD request failed, so just remove the mac node.
1103 		 */
1104 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1105 		if (new_node) {
1106 			hclgevf_update_mac_node(new_node, mac_node->state);
1107 			list_del(&mac_node->node);
1108 			kfree(mac_node);
1109 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1110 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1111 			list_move_tail(&mac_node->node, mac_list);
1112 		} else {
1113 			list_del(&mac_node->node);
1114 			kfree(mac_node);
1115 		}
1116 	}
1117 }
1118 
1119 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1120 				       struct list_head *mac_list)
1121 {
1122 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1123 
1124 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1125 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1126 		if (new_node) {
1127 			/* If the mac addr is exist in the mac list, it means
1128 			 * received a new request TO_ADD during the time window
1129 			 * of sending mac addr configurrequest to PF, so just
1130 			 * change the mac state to ACTIVE.
1131 			 */
1132 			new_node->state = HCLGEVF_MAC_ACTIVE;
1133 			list_del(&mac_node->node);
1134 			kfree(mac_node);
1135 		} else {
1136 			list_move_tail(&mac_node->node, mac_list);
1137 		}
1138 	}
1139 }
1140 
1141 static void hclgevf_clear_list(struct list_head *list)
1142 {
1143 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1144 
1145 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1146 		list_del(&mac_node->node);
1147 		kfree(mac_node);
1148 	}
1149 }
1150 
1151 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1152 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1153 {
1154 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1155 	struct list_head tmp_add_list, tmp_del_list;
1156 	struct list_head *list;
1157 
1158 	INIT_LIST_HEAD(&tmp_add_list);
1159 	INIT_LIST_HEAD(&tmp_del_list);
1160 
1161 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1162 	 * we can add/delete these mac addr outside the spin lock
1163 	 */
1164 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1165 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1166 
1167 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1168 
1169 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1170 		switch (mac_node->state) {
1171 		case HCLGEVF_MAC_TO_DEL:
1172 			list_move_tail(&mac_node->node, &tmp_del_list);
1173 			break;
1174 		case HCLGEVF_MAC_TO_ADD:
1175 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1176 			if (!new_node)
1177 				goto stop_traverse;
1178 
1179 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1180 			new_node->state = mac_node->state;
1181 			list_add_tail(&new_node->node, &tmp_add_list);
1182 			break;
1183 		default:
1184 			break;
1185 		}
1186 	}
1187 
1188 stop_traverse:
1189 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1190 
1191 	/* delete first, in order to get max mac table space for adding */
1192 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1193 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1194 
1195 	/* if some mac addresses were added/deleted fail, move back to the
1196 	 * mac_list, and retry at next time.
1197 	 */
1198 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1199 
1200 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1201 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1202 
1203 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1204 }
1205 
1206 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1207 {
1208 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1209 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1210 }
1211 
1212 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1213 {
1214 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1215 
1216 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1217 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1218 
1219 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1220 }
1221 
1222 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1223 {
1224 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1225 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1226 	struct hclge_vf_to_pf_msg send_msg;
1227 
1228 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1229 		return -EOPNOTSUPP;
1230 
1231 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1232 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1233 	send_msg.data[0] = enable ? 1 : 0;
1234 
1235 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1236 }
1237 
1238 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1239 				   __be16 proto, u16 vlan_id,
1240 				   bool is_kill)
1241 {
1242 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1243 	struct hclge_mbx_vlan_filter *vlan_filter;
1244 	struct hclge_vf_to_pf_msg send_msg;
1245 	int ret;
1246 
1247 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1248 		return -EINVAL;
1249 
1250 	if (proto != htons(ETH_P_8021Q))
1251 		return -EPROTONOSUPPORT;
1252 
1253 	/* When device is resetting or reset failed, firmware is unable to
1254 	 * handle mailbox. Just record the vlan id, and remove it after
1255 	 * reset finished.
1256 	 */
1257 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1258 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1259 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1260 		return -EBUSY;
1261 	}
1262 
1263 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1264 			       HCLGE_MBX_VLAN_FILTER);
1265 	vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1266 	vlan_filter->is_kill = is_kill;
1267 	vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1268 	vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1269 
1270 	/* when remove hw vlan filter failed, record the vlan id,
1271 	 * and try to remove it from hw later, to be consistence
1272 	 * with stack.
1273 	 */
1274 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1275 	if (is_kill && ret)
1276 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1277 
1278 	return ret;
1279 }
1280 
1281 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1282 {
1283 #define HCLGEVF_MAX_SYNC_COUNT	60
1284 	struct hnae3_handle *handle = &hdev->nic;
1285 	int ret, sync_cnt = 0;
1286 	u16 vlan_id;
1287 
1288 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1289 	while (vlan_id != VLAN_N_VID) {
1290 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1291 					      vlan_id, true);
1292 		if (ret)
1293 			return;
1294 
1295 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1296 		sync_cnt++;
1297 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1298 			return;
1299 
1300 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1301 	}
1302 }
1303 
1304 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1305 {
1306 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1307 	struct hclge_vf_to_pf_msg send_msg;
1308 
1309 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1310 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1311 	send_msg.data[0] = enable ? 1 : 0;
1312 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1313 }
1314 
1315 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1316 {
1317 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1318 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1319 	struct hclge_vf_to_pf_msg send_msg;
1320 	u8 return_status = 0;
1321 	int ret;
1322 	u16 i;
1323 
1324 	/* disable vf queue before send queue reset msg to PF */
1325 	ret = hclgevf_tqp_enable(handle, false);
1326 	if (ret) {
1327 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1328 			ret);
1329 		return ret;
1330 	}
1331 
1332 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1333 
1334 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1335 				   sizeof(return_status));
1336 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1337 		return ret;
1338 
1339 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1340 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1341 		*(__le16 *)send_msg.data = cpu_to_le16(i);
1342 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1343 		if (ret)
1344 			return ret;
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1351 {
1352 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1353 	struct hclge_mbx_mtu_info *mtu_info;
1354 	struct hclge_vf_to_pf_msg send_msg;
1355 
1356 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1357 	mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1358 	mtu_info->mtu = cpu_to_le32(new_mtu);
1359 
1360 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1361 }
1362 
1363 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1364 				 enum hnae3_reset_notify_type type)
1365 {
1366 	struct hnae3_client *client = hdev->nic_client;
1367 	struct hnae3_handle *handle = &hdev->nic;
1368 	int ret;
1369 
1370 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1371 	    !client)
1372 		return 0;
1373 
1374 	if (!client->ops->reset_notify)
1375 		return -EOPNOTSUPP;
1376 
1377 	ret = client->ops->reset_notify(handle, type);
1378 	if (ret)
1379 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1380 			type, ret);
1381 
1382 	return ret;
1383 }
1384 
1385 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1386 				      enum hnae3_reset_notify_type type)
1387 {
1388 	struct hnae3_client *client = hdev->roce_client;
1389 	struct hnae3_handle *handle = &hdev->roce;
1390 	int ret;
1391 
1392 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1393 		return 0;
1394 
1395 	if (!client->ops->reset_notify)
1396 		return -EOPNOTSUPP;
1397 
1398 	ret = client->ops->reset_notify(handle, type);
1399 	if (ret)
1400 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1401 			type, ret);
1402 	return ret;
1403 }
1404 
1405 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1406 {
1407 #define HCLGEVF_RESET_WAIT_US	20000
1408 #define HCLGEVF_RESET_WAIT_CNT	2000
1409 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1410 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1411 
1412 	u32 val;
1413 	int ret;
1414 
1415 	if (hdev->reset_type == HNAE3_VF_RESET)
1416 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1417 					 HCLGEVF_VF_RST_ING, val,
1418 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1419 					 HCLGEVF_RESET_WAIT_US,
1420 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1421 	else
1422 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1423 					 HCLGEVF_RST_ING, val,
1424 					 !(val & HCLGEVF_RST_ING_BITS),
1425 					 HCLGEVF_RESET_WAIT_US,
1426 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1427 
1428 	/* hardware completion status should be available by this time */
1429 	if (ret) {
1430 		dev_err(&hdev->pdev->dev,
1431 			"couldn't get reset done status from h/w, timeout!\n");
1432 		return ret;
1433 	}
1434 
1435 	/* we will wait a bit more to let reset of the stack to complete. This
1436 	 * might happen in case reset assertion was made by PF. Yes, this also
1437 	 * means we might end up waiting bit more even for VF reset.
1438 	 */
1439 	msleep(5000);
1440 
1441 	return 0;
1442 }
1443 
1444 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1445 {
1446 	u32 reg_val;
1447 
1448 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1449 	if (enable)
1450 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1451 	else
1452 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1453 
1454 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1455 			  reg_val);
1456 }
1457 
1458 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1459 {
1460 	int ret;
1461 
1462 	/* uninitialize the nic client */
1463 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1464 	if (ret)
1465 		return ret;
1466 
1467 	/* re-initialize the hclge device */
1468 	ret = hclgevf_reset_hdev(hdev);
1469 	if (ret) {
1470 		dev_err(&hdev->pdev->dev,
1471 			"hclge device re-init failed, VF is disabled!\n");
1472 		return ret;
1473 	}
1474 
1475 	/* bring up the nic client again */
1476 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1477 	if (ret)
1478 		return ret;
1479 
1480 	/* clear handshake status with IMP */
1481 	hclgevf_reset_handshake(hdev, false);
1482 
1483 	/* bring up the nic to enable TX/RX again */
1484 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1485 }
1486 
1487 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1488 {
1489 #define HCLGEVF_RESET_SYNC_TIME 100
1490 
1491 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1492 		struct hclge_vf_to_pf_msg send_msg;
1493 		int ret;
1494 
1495 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1496 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1497 		if (ret) {
1498 			dev_err(&hdev->pdev->dev,
1499 				"failed to assert VF reset, ret = %d\n", ret);
1500 			return ret;
1501 		}
1502 		hdev->rst_stats.vf_func_rst_cnt++;
1503 	}
1504 
1505 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1506 	/* inform hardware that preparatory work is done */
1507 	msleep(HCLGEVF_RESET_SYNC_TIME);
1508 	hclgevf_reset_handshake(hdev, true);
1509 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1510 		 hdev->reset_type);
1511 
1512 	return 0;
1513 }
1514 
1515 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1516 {
1517 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1518 		 hdev->rst_stats.vf_func_rst_cnt);
1519 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1520 		 hdev->rst_stats.flr_rst_cnt);
1521 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1522 		 hdev->rst_stats.vf_rst_cnt);
1523 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1524 		 hdev->rst_stats.rst_done_cnt);
1525 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1526 		 hdev->rst_stats.hw_rst_done_cnt);
1527 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1528 		 hdev->rst_stats.rst_cnt);
1529 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1530 		 hdev->rst_stats.rst_fail_cnt);
1531 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1532 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1533 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1534 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1535 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1536 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1537 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1538 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1539 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1540 }
1541 
1542 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1543 {
1544 	/* recover handshake status with IMP when reset fail */
1545 	hclgevf_reset_handshake(hdev, true);
1546 	hdev->rst_stats.rst_fail_cnt++;
1547 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1548 		hdev->rst_stats.rst_fail_cnt);
1549 
1550 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1551 		set_bit(hdev->reset_type, &hdev->reset_pending);
1552 
1553 	if (hclgevf_is_reset_pending(hdev)) {
1554 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1555 		hclgevf_reset_task_schedule(hdev);
1556 	} else {
1557 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1558 		hclgevf_dump_rst_info(hdev);
1559 	}
1560 }
1561 
1562 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1563 {
1564 	int ret;
1565 
1566 	hdev->rst_stats.rst_cnt++;
1567 
1568 	/* perform reset of the stack & ae device for a client */
1569 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1570 	if (ret)
1571 		return ret;
1572 
1573 	rtnl_lock();
1574 	/* bring down the nic to stop any ongoing TX/RX */
1575 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1576 	rtnl_unlock();
1577 	if (ret)
1578 		return ret;
1579 
1580 	return hclgevf_reset_prepare_wait(hdev);
1581 }
1582 
1583 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1584 {
1585 	int ret;
1586 
1587 	hdev->rst_stats.hw_rst_done_cnt++;
1588 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1589 	if (ret)
1590 		return ret;
1591 
1592 	rtnl_lock();
1593 	/* now, re-initialize the nic client and ae device */
1594 	ret = hclgevf_reset_stack(hdev);
1595 	rtnl_unlock();
1596 	if (ret) {
1597 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1598 		return ret;
1599 	}
1600 
1601 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1602 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1603 	 * times
1604 	 */
1605 	if (ret &&
1606 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1607 		return ret;
1608 
1609 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1610 	if (ret)
1611 		return ret;
1612 
1613 	hdev->last_reset_time = jiffies;
1614 	hdev->rst_stats.rst_done_cnt++;
1615 	hdev->rst_stats.rst_fail_cnt = 0;
1616 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1617 
1618 	return 0;
1619 }
1620 
1621 static void hclgevf_reset(struct hclgevf_dev *hdev)
1622 {
1623 	if (hclgevf_reset_prepare(hdev))
1624 		goto err_reset;
1625 
1626 	/* check if VF could successfully fetch the hardware reset completion
1627 	 * status from the hardware
1628 	 */
1629 	if (hclgevf_reset_wait(hdev)) {
1630 		/* can't do much in this situation, will disable VF */
1631 		dev_err(&hdev->pdev->dev,
1632 			"failed to fetch H/W reset completion status\n");
1633 		goto err_reset;
1634 	}
1635 
1636 	if (hclgevf_reset_rebuild(hdev))
1637 		goto err_reset;
1638 
1639 	return;
1640 
1641 err_reset:
1642 	hclgevf_reset_err_handle(hdev);
1643 }
1644 
1645 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1646 						     unsigned long *addr)
1647 {
1648 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1649 
1650 	/* return the highest priority reset level amongst all */
1651 	if (test_bit(HNAE3_VF_RESET, addr)) {
1652 		rst_level = HNAE3_VF_RESET;
1653 		clear_bit(HNAE3_VF_RESET, addr);
1654 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1655 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1656 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1657 		rst_level = HNAE3_VF_FULL_RESET;
1658 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1659 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1660 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1661 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1662 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1663 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1664 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1665 		rst_level = HNAE3_VF_FUNC_RESET;
1666 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1667 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1668 		rst_level = HNAE3_FLR_RESET;
1669 		clear_bit(HNAE3_FLR_RESET, addr);
1670 	}
1671 
1672 	return rst_level;
1673 }
1674 
1675 static void hclgevf_reset_event(struct pci_dev *pdev,
1676 				struct hnae3_handle *handle)
1677 {
1678 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1679 	struct hclgevf_dev *hdev = ae_dev->priv;
1680 
1681 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1682 
1683 	if (hdev->default_reset_request)
1684 		hdev->reset_level =
1685 			hclgevf_get_reset_level(hdev,
1686 						&hdev->default_reset_request);
1687 	else
1688 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1689 
1690 	/* reset of this VF requested */
1691 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1692 	hclgevf_reset_task_schedule(hdev);
1693 
1694 	hdev->last_reset_time = jiffies;
1695 }
1696 
1697 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1698 					  enum hnae3_reset_type rst_type)
1699 {
1700 	struct hclgevf_dev *hdev = ae_dev->priv;
1701 
1702 	set_bit(rst_type, &hdev->default_reset_request);
1703 }
1704 
1705 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1706 {
1707 	writel(en ? 1 : 0, vector->addr);
1708 }
1709 
1710 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1711 					  enum hnae3_reset_type rst_type)
1712 {
1713 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
1714 #define HCLGEVF_RESET_RETRY_CNT		5
1715 
1716 	struct hclgevf_dev *hdev = ae_dev->priv;
1717 	int retry_cnt = 0;
1718 	int ret;
1719 
1720 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1721 		down(&hdev->reset_sem);
1722 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1723 		hdev->reset_type = rst_type;
1724 		ret = hclgevf_reset_prepare(hdev);
1725 		if (!ret && !hdev->reset_pending)
1726 			break;
1727 
1728 		dev_err(&hdev->pdev->dev,
1729 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1730 			ret, hdev->reset_pending, retry_cnt);
1731 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1732 		up(&hdev->reset_sem);
1733 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1734 	}
1735 
1736 	/* disable misc vector before reset done */
1737 	hclgevf_enable_vector(&hdev->misc_vector, false);
1738 
1739 	if (hdev->reset_type == HNAE3_FLR_RESET)
1740 		hdev->rst_stats.flr_rst_cnt++;
1741 }
1742 
1743 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1744 {
1745 	struct hclgevf_dev *hdev = ae_dev->priv;
1746 	int ret;
1747 
1748 	hclgevf_enable_vector(&hdev->misc_vector, true);
1749 
1750 	ret = hclgevf_reset_rebuild(hdev);
1751 	if (ret)
1752 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1753 			 ret);
1754 
1755 	hdev->reset_type = HNAE3_NONE_RESET;
1756 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1757 	up(&hdev->reset_sem);
1758 }
1759 
1760 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1761 {
1762 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1763 
1764 	return hdev->fw_version;
1765 }
1766 
1767 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1768 {
1769 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1770 
1771 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1772 					    HCLGEVF_MISC_VECTOR_NUM);
1773 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1774 	/* vector status always valid for Vector 0 */
1775 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1776 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1777 
1778 	hdev->num_msi_left -= 1;
1779 	hdev->num_msi_used += 1;
1780 }
1781 
1782 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1783 {
1784 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1785 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1786 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1787 			      &hdev->state))
1788 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1789 }
1790 
1791 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1792 {
1793 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1794 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1795 			      &hdev->state))
1796 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1797 }
1798 
1799 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1800 				  unsigned long delay)
1801 {
1802 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1803 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1804 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1805 }
1806 
1807 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1808 {
1809 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1810 
1811 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1812 		return;
1813 
1814 	down(&hdev->reset_sem);
1815 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1816 
1817 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1818 			       &hdev->reset_state)) {
1819 		/* PF has intimated that it is about to reset the hardware.
1820 		 * We now have to poll & check if hardware has actually
1821 		 * completed the reset sequence. On hardware reset completion,
1822 		 * VF needs to reset the client and ae device.
1823 		 */
1824 		hdev->reset_attempts = 0;
1825 
1826 		hdev->last_reset_time = jiffies;
1827 		hdev->reset_type =
1828 			hclgevf_get_reset_level(hdev, &hdev->reset_pending);
1829 		if (hdev->reset_type != HNAE3_NONE_RESET)
1830 			hclgevf_reset(hdev);
1831 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1832 				      &hdev->reset_state)) {
1833 		/* we could be here when either of below happens:
1834 		 * 1. reset was initiated due to watchdog timeout caused by
1835 		 *    a. IMP was earlier reset and our TX got choked down and
1836 		 *       which resulted in watchdog reacting and inducing VF
1837 		 *       reset. This also means our cmdq would be unreliable.
1838 		 *    b. problem in TX due to other lower layer(example link
1839 		 *       layer not functioning properly etc.)
1840 		 * 2. VF reset might have been initiated due to some config
1841 		 *    change.
1842 		 *
1843 		 * NOTE: Theres no clear way to detect above cases than to react
1844 		 * to the response of PF for this reset request. PF will ack the
1845 		 * 1b and 2. cases but we will not get any intimation about 1a
1846 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1847 		 * communication between PF and VF would be broken.
1848 		 *
1849 		 * if we are never geting into pending state it means either:
1850 		 * 1. PF is not receiving our request which could be due to IMP
1851 		 *    reset
1852 		 * 2. PF is screwed
1853 		 * We cannot do much for 2. but to check first we can try reset
1854 		 * our PCIe + stack and see if it alleviates the problem.
1855 		 */
1856 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1857 			/* prepare for full reset of stack + pcie interface */
1858 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1859 
1860 			/* "defer" schedule the reset task again */
1861 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1862 		} else {
1863 			hdev->reset_attempts++;
1864 
1865 			set_bit(hdev->reset_level, &hdev->reset_pending);
1866 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1867 		}
1868 		hclgevf_reset_task_schedule(hdev);
1869 	}
1870 
1871 	hdev->reset_type = HNAE3_NONE_RESET;
1872 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1873 	up(&hdev->reset_sem);
1874 }
1875 
1876 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1877 {
1878 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1879 		return;
1880 
1881 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1882 		return;
1883 
1884 	hclgevf_mbx_async_handler(hdev);
1885 
1886 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1887 }
1888 
1889 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1890 {
1891 	struct hclge_vf_to_pf_msg send_msg;
1892 	int ret;
1893 
1894 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1895 		return;
1896 
1897 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1898 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1899 	if (ret)
1900 		dev_err(&hdev->pdev->dev,
1901 			"VF sends keep alive cmd failed(=%d)\n", ret);
1902 }
1903 
1904 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1905 {
1906 	unsigned long delta = round_jiffies_relative(HZ);
1907 	struct hnae3_handle *handle = &hdev->nic;
1908 
1909 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1910 		return;
1911 
1912 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1913 		delta = jiffies - hdev->last_serv_processed;
1914 
1915 		if (delta < round_jiffies_relative(HZ)) {
1916 			delta = round_jiffies_relative(HZ) - delta;
1917 			goto out;
1918 		}
1919 	}
1920 
1921 	hdev->serv_processed_cnt++;
1922 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1923 		hclgevf_keep_alive(hdev);
1924 
1925 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1926 		hdev->last_serv_processed = jiffies;
1927 		goto out;
1928 	}
1929 
1930 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1931 		hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1932 
1933 	/* VF does not need to request link status when this bit is set, because
1934 	 * PF will push its link status to VFs when link status changed.
1935 	 */
1936 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1937 		hclgevf_request_link_info(hdev);
1938 
1939 	hclgevf_update_link_mode(hdev);
1940 
1941 	hclgevf_sync_vlan_filter(hdev);
1942 
1943 	hclgevf_sync_mac_table(hdev);
1944 
1945 	hclgevf_sync_promisc_mode(hdev);
1946 
1947 	hdev->last_serv_processed = jiffies;
1948 
1949 out:
1950 	hclgevf_task_schedule(hdev, delta);
1951 }
1952 
1953 static void hclgevf_service_task(struct work_struct *work)
1954 {
1955 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1956 						service_task.work);
1957 
1958 	hclgevf_reset_service_task(hdev);
1959 	hclgevf_mailbox_service_task(hdev);
1960 	hclgevf_periodic_service_task(hdev);
1961 
1962 	/* Handle reset and mbx again in case periodical task delays the
1963 	 * handling by calling hclgevf_task_schedule() in
1964 	 * hclgevf_periodic_service_task()
1965 	 */
1966 	hclgevf_reset_service_task(hdev);
1967 	hclgevf_mailbox_service_task(hdev);
1968 }
1969 
1970 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1971 {
1972 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1973 }
1974 
1975 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1976 						      u32 *clearval)
1977 {
1978 	u32 val, cmdq_stat_reg, rst_ing_reg;
1979 
1980 	/* fetch the events from their corresponding regs */
1981 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1982 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1983 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1984 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1985 		dev_info(&hdev->pdev->dev,
1986 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1987 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1988 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1989 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1990 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1991 		hdev->rst_stats.vf_rst_cnt++;
1992 		/* set up VF hardware reset status, its PF will clear
1993 		 * this status when PF has initialized done.
1994 		 */
1995 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1996 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1997 				  val | HCLGEVF_VF_RST_ING_BIT);
1998 		return HCLGEVF_VECTOR0_EVENT_RST;
1999 	}
2000 
2001 	/* check for vector0 mailbox(=CMDQ RX) event source */
2002 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2003 		/* for revision 0x21, clearing interrupt is writing bit 0
2004 		 * to the clear register, writing bit 1 means to keep the
2005 		 * old value.
2006 		 * for revision 0x20, the clear register is a read & write
2007 		 * register, so we should just write 0 to the bit we are
2008 		 * handling, and keep other bits as cmdq_stat_reg.
2009 		 */
2010 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2011 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2012 		else
2013 			*clearval = cmdq_stat_reg &
2014 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2015 
2016 		return HCLGEVF_VECTOR0_EVENT_MBX;
2017 	}
2018 
2019 	/* print other vector0 event source */
2020 	dev_info(&hdev->pdev->dev,
2021 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2022 		 cmdq_stat_reg);
2023 
2024 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2025 }
2026 
2027 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2028 {
2029 	enum hclgevf_evt_cause event_cause;
2030 	struct hclgevf_dev *hdev = data;
2031 	u32 clearval;
2032 
2033 	hclgevf_enable_vector(&hdev->misc_vector, false);
2034 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2035 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2036 		hclgevf_clear_event_cause(hdev, clearval);
2037 
2038 	switch (event_cause) {
2039 	case HCLGEVF_VECTOR0_EVENT_RST:
2040 		hclgevf_reset_task_schedule(hdev);
2041 		break;
2042 	case HCLGEVF_VECTOR0_EVENT_MBX:
2043 		hclgevf_mbx_handler(hdev);
2044 		break;
2045 	default:
2046 		break;
2047 	}
2048 
2049 	hclgevf_enable_vector(&hdev->misc_vector, true);
2050 
2051 	return IRQ_HANDLED;
2052 }
2053 
2054 static int hclgevf_configure(struct hclgevf_dev *hdev)
2055 {
2056 	int ret;
2057 
2058 	hdev->gro_en = true;
2059 
2060 	ret = hclgevf_get_basic_info(hdev);
2061 	if (ret)
2062 		return ret;
2063 
2064 	/* get current port based vlan state from PF */
2065 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2066 	if (ret)
2067 		return ret;
2068 
2069 	/* get queue configuration from PF */
2070 	ret = hclgevf_get_queue_info(hdev);
2071 	if (ret)
2072 		return ret;
2073 
2074 	/* get queue depth info from PF */
2075 	ret = hclgevf_get_queue_depth(hdev);
2076 	if (ret)
2077 		return ret;
2078 
2079 	return hclgevf_get_pf_media_type(hdev);
2080 }
2081 
2082 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2083 {
2084 	struct pci_dev *pdev = ae_dev->pdev;
2085 	struct hclgevf_dev *hdev;
2086 
2087 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2088 	if (!hdev)
2089 		return -ENOMEM;
2090 
2091 	hdev->pdev = pdev;
2092 	hdev->ae_dev = ae_dev;
2093 	ae_dev->priv = hdev;
2094 
2095 	return 0;
2096 }
2097 
2098 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2099 {
2100 	struct hnae3_handle *roce = &hdev->roce;
2101 	struct hnae3_handle *nic = &hdev->nic;
2102 
2103 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2104 
2105 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2106 	    hdev->num_msi_left == 0)
2107 		return -EINVAL;
2108 
2109 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2110 
2111 	roce->rinfo.netdev = nic->kinfo.netdev;
2112 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2113 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2114 
2115 	roce->pdev = nic->pdev;
2116 	roce->ae_algo = nic->ae_algo;
2117 	roce->numa_node_mask = nic->numa_node_mask;
2118 
2119 	return 0;
2120 }
2121 
2122 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2123 {
2124 	struct hclgevf_cfg_gro_status_cmd *req;
2125 	struct hclge_desc desc;
2126 	int ret;
2127 
2128 	if (!hnae3_dev_gro_supported(hdev))
2129 		return 0;
2130 
2131 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2132 				     false);
2133 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2134 
2135 	req->gro_en = hdev->gro_en ? 1 : 0;
2136 
2137 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2138 	if (ret)
2139 		dev_err(&hdev->pdev->dev,
2140 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2141 
2142 	return ret;
2143 }
2144 
2145 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2146 {
2147 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2148 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2149 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2150 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2151 	int ret;
2152 
2153 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2154 		ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2155 						  rss_cfg->rss_algo,
2156 						  rss_cfg->rss_hash_key);
2157 		if (ret)
2158 			return ret;
2159 
2160 		ret = hclge_comm_set_rss_input_tuple(&hdev->nic, &hdev->hw.hw,
2161 						     false, rss_cfg);
2162 		if (ret)
2163 			return ret;
2164 	}
2165 
2166 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2167 					     rss_cfg->rss_indirection_tbl);
2168 	if (ret)
2169 		return ret;
2170 
2171 	hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2172 				   tc_offset, tc_valid, tc_size);
2173 
2174 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2175 					  tc_valid, tc_size);
2176 }
2177 
2178 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2179 {
2180 	struct hnae3_handle *nic = &hdev->nic;
2181 	int ret;
2182 
2183 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2184 	if (ret) {
2185 		dev_err(&hdev->pdev->dev,
2186 			"failed to enable rx vlan offload, ret = %d\n", ret);
2187 		return ret;
2188 	}
2189 
2190 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2191 				       false);
2192 }
2193 
2194 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2195 {
2196 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2197 
2198 	unsigned long last = hdev->serv_processed_cnt;
2199 	int i = 0;
2200 
2201 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2202 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2203 	       last == hdev->serv_processed_cnt)
2204 		usleep_range(1, 1);
2205 }
2206 
2207 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2208 {
2209 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2210 
2211 	if (enable) {
2212 		hclgevf_task_schedule(hdev, 0);
2213 	} else {
2214 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2215 
2216 		/* flush memory to make sure DOWN is seen by service task */
2217 		smp_mb__before_atomic();
2218 		hclgevf_flush_link_update(hdev);
2219 	}
2220 }
2221 
2222 static int hclgevf_ae_start(struct hnae3_handle *handle)
2223 {
2224 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2225 
2226 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2227 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2228 
2229 	hclge_comm_reset_tqp_stats(handle);
2230 
2231 	hclgevf_request_link_info(hdev);
2232 
2233 	hclgevf_update_link_mode(hdev);
2234 
2235 	return 0;
2236 }
2237 
2238 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2239 {
2240 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2241 
2242 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2243 
2244 	if (hdev->reset_type != HNAE3_VF_RESET)
2245 		hclgevf_reset_tqp(handle);
2246 
2247 	hclge_comm_reset_tqp_stats(handle);
2248 	hclgevf_update_link_status(hdev, 0);
2249 }
2250 
2251 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2252 {
2253 #define HCLGEVF_STATE_ALIVE	1
2254 #define HCLGEVF_STATE_NOT_ALIVE	0
2255 
2256 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2257 	struct hclge_vf_to_pf_msg send_msg;
2258 
2259 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2260 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2261 				HCLGEVF_STATE_NOT_ALIVE;
2262 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2263 }
2264 
2265 static int hclgevf_client_start(struct hnae3_handle *handle)
2266 {
2267 	return hclgevf_set_alive(handle, true);
2268 }
2269 
2270 static void hclgevf_client_stop(struct hnae3_handle *handle)
2271 {
2272 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2273 	int ret;
2274 
2275 	ret = hclgevf_set_alive(handle, false);
2276 	if (ret)
2277 		dev_warn(&hdev->pdev->dev,
2278 			 "%s failed %d\n", __func__, ret);
2279 }
2280 
2281 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2282 {
2283 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2284 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2285 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2286 
2287 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2288 
2289 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2290 	sema_init(&hdev->reset_sem, 1);
2291 
2292 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2293 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2294 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2295 
2296 	/* bring the device down */
2297 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2298 }
2299 
2300 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2301 {
2302 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2303 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2304 
2305 	if (hdev->service_task.work.func)
2306 		cancel_delayed_work_sync(&hdev->service_task);
2307 
2308 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2309 }
2310 
2311 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2312 {
2313 	struct pci_dev *pdev = hdev->pdev;
2314 	int vectors;
2315 	int i;
2316 
2317 	if (hnae3_dev_roce_supported(hdev))
2318 		vectors = pci_alloc_irq_vectors(pdev,
2319 						hdev->roce_base_msix_offset + 1,
2320 						hdev->num_msi,
2321 						PCI_IRQ_MSIX);
2322 	else
2323 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2324 						hdev->num_msi,
2325 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2326 
2327 	if (vectors < 0) {
2328 		dev_err(&pdev->dev,
2329 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2330 			vectors);
2331 		return vectors;
2332 	}
2333 	if (vectors < hdev->num_msi)
2334 		dev_warn(&hdev->pdev->dev,
2335 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2336 			 hdev->num_msi, vectors);
2337 
2338 	hdev->num_msi = vectors;
2339 	hdev->num_msi_left = vectors;
2340 
2341 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2342 					   sizeof(u16), GFP_KERNEL);
2343 	if (!hdev->vector_status) {
2344 		pci_free_irq_vectors(pdev);
2345 		return -ENOMEM;
2346 	}
2347 
2348 	for (i = 0; i < hdev->num_msi; i++)
2349 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2350 
2351 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2352 					sizeof(int), GFP_KERNEL);
2353 	if (!hdev->vector_irq) {
2354 		devm_kfree(&pdev->dev, hdev->vector_status);
2355 		pci_free_irq_vectors(pdev);
2356 		return -ENOMEM;
2357 	}
2358 
2359 	return 0;
2360 }
2361 
2362 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2363 {
2364 	struct pci_dev *pdev = hdev->pdev;
2365 
2366 	devm_kfree(&pdev->dev, hdev->vector_status);
2367 	devm_kfree(&pdev->dev, hdev->vector_irq);
2368 	pci_free_irq_vectors(pdev);
2369 }
2370 
2371 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2372 {
2373 	int ret;
2374 
2375 	hclgevf_get_misc_vector(hdev);
2376 
2377 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2378 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2379 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2380 			  0, hdev->misc_vector.name, hdev);
2381 	if (ret) {
2382 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2383 			hdev->misc_vector.vector_irq);
2384 		return ret;
2385 	}
2386 
2387 	hclgevf_clear_event_cause(hdev, 0);
2388 
2389 	/* enable misc. vector(vector 0) */
2390 	hclgevf_enable_vector(&hdev->misc_vector, true);
2391 
2392 	return ret;
2393 }
2394 
2395 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2396 {
2397 	/* disable misc vector(vector 0) */
2398 	hclgevf_enable_vector(&hdev->misc_vector, false);
2399 	synchronize_irq(hdev->misc_vector.vector_irq);
2400 	free_irq(hdev->misc_vector.vector_irq, hdev);
2401 	hclgevf_free_vector(hdev, 0);
2402 }
2403 
2404 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2405 {
2406 	struct device *dev = &hdev->pdev->dev;
2407 
2408 	dev_info(dev, "VF info begin:\n");
2409 
2410 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2411 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2412 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2413 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2414 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2415 	dev_info(dev, "PF media type of this VF: %u\n",
2416 		 hdev->hw.mac.media_type);
2417 
2418 	dev_info(dev, "VF info end.\n");
2419 }
2420 
2421 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2422 					    struct hnae3_client *client)
2423 {
2424 	struct hclgevf_dev *hdev = ae_dev->priv;
2425 	int rst_cnt = hdev->rst_stats.rst_cnt;
2426 	int ret;
2427 
2428 	ret = client->ops->init_instance(&hdev->nic);
2429 	if (ret)
2430 		return ret;
2431 
2432 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2433 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2434 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2435 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2436 
2437 		client->ops->uninit_instance(&hdev->nic, 0);
2438 		return -EBUSY;
2439 	}
2440 
2441 	hnae3_set_client_init_flag(client, ae_dev, 1);
2442 
2443 	if (netif_msg_drv(&hdev->nic))
2444 		hclgevf_info_show(hdev);
2445 
2446 	return 0;
2447 }
2448 
2449 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2450 					     struct hnae3_client *client)
2451 {
2452 	struct hclgevf_dev *hdev = ae_dev->priv;
2453 	int ret;
2454 
2455 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2456 	    !hdev->nic_client)
2457 		return 0;
2458 
2459 	ret = hclgevf_init_roce_base_info(hdev);
2460 	if (ret)
2461 		return ret;
2462 
2463 	ret = client->ops->init_instance(&hdev->roce);
2464 	if (ret)
2465 		return ret;
2466 
2467 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2468 	hnae3_set_client_init_flag(client, ae_dev, 1);
2469 
2470 	return 0;
2471 }
2472 
2473 static int hclgevf_init_client_instance(struct hnae3_client *client,
2474 					struct hnae3_ae_dev *ae_dev)
2475 {
2476 	struct hclgevf_dev *hdev = ae_dev->priv;
2477 	int ret;
2478 
2479 	switch (client->type) {
2480 	case HNAE3_CLIENT_KNIC:
2481 		hdev->nic_client = client;
2482 		hdev->nic.client = client;
2483 
2484 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2485 		if (ret)
2486 			goto clear_nic;
2487 
2488 		ret = hclgevf_init_roce_client_instance(ae_dev,
2489 							hdev->roce_client);
2490 		if (ret)
2491 			goto clear_roce;
2492 
2493 		break;
2494 	case HNAE3_CLIENT_ROCE:
2495 		if (hnae3_dev_roce_supported(hdev)) {
2496 			hdev->roce_client = client;
2497 			hdev->roce.client = client;
2498 		}
2499 
2500 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2501 		if (ret)
2502 			goto clear_roce;
2503 
2504 		break;
2505 	default:
2506 		return -EINVAL;
2507 	}
2508 
2509 	return 0;
2510 
2511 clear_nic:
2512 	hdev->nic_client = NULL;
2513 	hdev->nic.client = NULL;
2514 	return ret;
2515 clear_roce:
2516 	hdev->roce_client = NULL;
2517 	hdev->roce.client = NULL;
2518 	return ret;
2519 }
2520 
2521 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2522 					   struct hnae3_ae_dev *ae_dev)
2523 {
2524 	struct hclgevf_dev *hdev = ae_dev->priv;
2525 
2526 	/* un-init roce, if it exists */
2527 	if (hdev->roce_client) {
2528 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2529 			msleep(HCLGEVF_WAIT_RESET_DONE);
2530 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2531 
2532 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2533 		hdev->roce_client = NULL;
2534 		hdev->roce.client = NULL;
2535 	}
2536 
2537 	/* un-init nic/unic, if this was not called by roce client */
2538 	if (client->ops->uninit_instance && hdev->nic_client &&
2539 	    client->type != HNAE3_CLIENT_ROCE) {
2540 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2541 			msleep(HCLGEVF_WAIT_RESET_DONE);
2542 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2543 
2544 		client->ops->uninit_instance(&hdev->nic, 0);
2545 		hdev->nic_client = NULL;
2546 		hdev->nic.client = NULL;
2547 	}
2548 }
2549 
2550 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2551 {
2552 	struct pci_dev *pdev = hdev->pdev;
2553 	struct hclgevf_hw *hw = &hdev->hw;
2554 
2555 	/* for device does not have device memory, return directly */
2556 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2557 		return 0;
2558 
2559 	hw->hw.mem_base =
2560 		devm_ioremap_wc(&pdev->dev,
2561 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2562 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2563 	if (!hw->hw.mem_base) {
2564 		dev_err(&pdev->dev, "failed to map device memory\n");
2565 		return -EFAULT;
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2572 {
2573 	struct pci_dev *pdev = hdev->pdev;
2574 	struct hclgevf_hw *hw;
2575 	int ret;
2576 
2577 	ret = pci_enable_device(pdev);
2578 	if (ret) {
2579 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2580 		return ret;
2581 	}
2582 
2583 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2584 	if (ret) {
2585 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2586 		goto err_disable_device;
2587 	}
2588 
2589 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2590 	if (ret) {
2591 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2592 		goto err_disable_device;
2593 	}
2594 
2595 	pci_set_master(pdev);
2596 	hw = &hdev->hw;
2597 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
2598 	if (!hw->hw.io_base) {
2599 		dev_err(&pdev->dev, "can't map configuration register space\n");
2600 		ret = -ENOMEM;
2601 		goto err_clr_master;
2602 	}
2603 
2604 	ret = hclgevf_dev_mem_map(hdev);
2605 	if (ret)
2606 		goto err_unmap_io_base;
2607 
2608 	return 0;
2609 
2610 err_unmap_io_base:
2611 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2612 err_clr_master:
2613 	pci_clear_master(pdev);
2614 	pci_release_regions(pdev);
2615 err_disable_device:
2616 	pci_disable_device(pdev);
2617 
2618 	return ret;
2619 }
2620 
2621 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2622 {
2623 	struct pci_dev *pdev = hdev->pdev;
2624 
2625 	if (hdev->hw.hw.mem_base)
2626 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2627 
2628 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2629 	pci_clear_master(pdev);
2630 	pci_release_regions(pdev);
2631 	pci_disable_device(pdev);
2632 }
2633 
2634 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2635 {
2636 	struct hclgevf_query_res_cmd *req;
2637 	struct hclge_desc desc;
2638 	int ret;
2639 
2640 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2641 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2642 	if (ret) {
2643 		dev_err(&hdev->pdev->dev,
2644 			"query vf resource failed, ret = %d.\n", ret);
2645 		return ret;
2646 	}
2647 
2648 	req = (struct hclgevf_query_res_cmd *)desc.data;
2649 
2650 	if (hnae3_dev_roce_supported(hdev)) {
2651 		hdev->roce_base_msix_offset =
2652 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2653 				HCLGEVF_MSIX_OFT_ROCEE_M,
2654 				HCLGEVF_MSIX_OFT_ROCEE_S);
2655 		hdev->num_roce_msix =
2656 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2657 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2658 
2659 		/* nic's msix numbers is always equals to the roce's. */
2660 		hdev->num_nic_msix = hdev->num_roce_msix;
2661 
2662 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2663 		 * are queued before Roce vectors. The offset is fixed to 64.
2664 		 */
2665 		hdev->num_msi = hdev->num_roce_msix +
2666 				hdev->roce_base_msix_offset;
2667 	} else {
2668 		hdev->num_msi =
2669 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2670 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2671 
2672 		hdev->num_nic_msix = hdev->num_msi;
2673 	}
2674 
2675 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2676 		dev_err(&hdev->pdev->dev,
2677 			"Just %u msi resources, not enough for vf(min:2).\n",
2678 			hdev->num_nic_msix);
2679 		return -EINVAL;
2680 	}
2681 
2682 	return 0;
2683 }
2684 
2685 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2686 {
2687 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
2688 
2689 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2690 
2691 	ae_dev->dev_specs.max_non_tso_bd_num =
2692 					HCLGEVF_MAX_NON_TSO_BD_NUM;
2693 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2694 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2695 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2696 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2697 }
2698 
2699 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2700 				    struct hclge_desc *desc)
2701 {
2702 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2703 	struct hclgevf_dev_specs_0_cmd *req0;
2704 	struct hclgevf_dev_specs_1_cmd *req1;
2705 
2706 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2707 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2708 
2709 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2710 	ae_dev->dev_specs.rss_ind_tbl_size =
2711 					le16_to_cpu(req0->rss_ind_tbl_size);
2712 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2713 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2714 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2715 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2716 }
2717 
2718 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2719 {
2720 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2721 
2722 	if (!dev_specs->max_non_tso_bd_num)
2723 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2724 	if (!dev_specs->rss_ind_tbl_size)
2725 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2726 	if (!dev_specs->rss_key_size)
2727 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2728 	if (!dev_specs->max_int_gl)
2729 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2730 	if (!dev_specs->max_frm_size)
2731 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2732 }
2733 
2734 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2735 {
2736 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2737 	int ret;
2738 	int i;
2739 
2740 	/* set default specifications as devices lower than version V3 do not
2741 	 * support querying specifications from firmware.
2742 	 */
2743 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2744 		hclgevf_set_default_dev_specs(hdev);
2745 		return 0;
2746 	}
2747 
2748 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2749 		hclgevf_cmd_setup_basic_desc(&desc[i],
2750 					     HCLGE_OPC_QUERY_DEV_SPECS, true);
2751 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2752 	}
2753 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2754 
2755 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2756 	if (ret)
2757 		return ret;
2758 
2759 	hclgevf_parse_dev_specs(hdev, desc);
2760 	hclgevf_check_dev_specs(hdev);
2761 
2762 	return 0;
2763 }
2764 
2765 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2766 {
2767 	struct pci_dev *pdev = hdev->pdev;
2768 	int ret = 0;
2769 
2770 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2771 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2772 		hclgevf_misc_irq_uninit(hdev);
2773 		hclgevf_uninit_msi(hdev);
2774 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2775 	}
2776 
2777 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2778 		pci_set_master(pdev);
2779 		ret = hclgevf_init_msi(hdev);
2780 		if (ret) {
2781 			dev_err(&pdev->dev,
2782 				"failed(%d) to init MSI/MSI-X\n", ret);
2783 			return ret;
2784 		}
2785 
2786 		ret = hclgevf_misc_irq_init(hdev);
2787 		if (ret) {
2788 			hclgevf_uninit_msi(hdev);
2789 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2790 				ret);
2791 			return ret;
2792 		}
2793 
2794 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2795 	}
2796 
2797 	return ret;
2798 }
2799 
2800 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2801 {
2802 	struct hclge_vf_to_pf_msg send_msg;
2803 
2804 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2805 			       HCLGE_MBX_VPORT_LIST_CLEAR);
2806 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2807 }
2808 
2809 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2810 {
2811 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2812 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2813 }
2814 
2815 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2816 {
2817 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2818 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2819 }
2820 
2821 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2822 {
2823 	struct pci_dev *pdev = hdev->pdev;
2824 	int ret;
2825 
2826 	ret = hclgevf_pci_reset(hdev);
2827 	if (ret) {
2828 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2829 		return ret;
2830 	}
2831 
2832 	hclgevf_arq_init(hdev);
2833 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2834 				  &hdev->fw_version, false,
2835 				  hdev->reset_pending);
2836 	if (ret) {
2837 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2838 		return ret;
2839 	}
2840 
2841 	ret = hclgevf_rss_init_hw(hdev);
2842 	if (ret) {
2843 		dev_err(&hdev->pdev->dev,
2844 			"failed(%d) to initialize RSS\n", ret);
2845 		return ret;
2846 	}
2847 
2848 	ret = hclgevf_config_gro(hdev);
2849 	if (ret)
2850 		return ret;
2851 
2852 	ret = hclgevf_init_vlan_config(hdev);
2853 	if (ret) {
2854 		dev_err(&hdev->pdev->dev,
2855 			"failed(%d) to initialize VLAN config\n", ret);
2856 		return ret;
2857 	}
2858 
2859 	/* get current port based vlan state from PF */
2860 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2861 	if (ret)
2862 		return ret;
2863 
2864 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2865 
2866 	hclgevf_init_rxd_adv_layout(hdev);
2867 
2868 	dev_info(&hdev->pdev->dev, "Reset done\n");
2869 
2870 	return 0;
2871 }
2872 
2873 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2874 {
2875 	struct pci_dev *pdev = hdev->pdev;
2876 	int ret;
2877 
2878 	ret = hclgevf_pci_init(hdev);
2879 	if (ret)
2880 		return ret;
2881 
2882 	ret = hclgevf_devlink_init(hdev);
2883 	if (ret)
2884 		goto err_devlink_init;
2885 
2886 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2887 	if (ret)
2888 		goto err_cmd_queue_init;
2889 
2890 	hclgevf_arq_init(hdev);
2891 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2892 				  &hdev->fw_version, false,
2893 				  hdev->reset_pending);
2894 	if (ret)
2895 		goto err_cmd_init;
2896 
2897 	/* Get vf resource */
2898 	ret = hclgevf_query_vf_resource(hdev);
2899 	if (ret)
2900 		goto err_cmd_init;
2901 
2902 	ret = hclgevf_query_dev_specs(hdev);
2903 	if (ret) {
2904 		dev_err(&pdev->dev,
2905 			"failed to query dev specifications, ret = %d\n", ret);
2906 		goto err_cmd_init;
2907 	}
2908 
2909 	ret = hclgevf_init_msi(hdev);
2910 	if (ret) {
2911 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2912 		goto err_cmd_init;
2913 	}
2914 
2915 	hclgevf_state_init(hdev);
2916 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2917 	hdev->reset_type = HNAE3_NONE_RESET;
2918 
2919 	ret = hclgevf_misc_irq_init(hdev);
2920 	if (ret)
2921 		goto err_misc_irq_init;
2922 
2923 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2924 
2925 	ret = hclgevf_configure(hdev);
2926 	if (ret) {
2927 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2928 		goto err_config;
2929 	}
2930 
2931 	ret = hclgevf_alloc_tqps(hdev);
2932 	if (ret) {
2933 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2934 		goto err_config;
2935 	}
2936 
2937 	ret = hclgevf_set_handle_info(hdev);
2938 	if (ret)
2939 		goto err_config;
2940 
2941 	ret = hclgevf_config_gro(hdev);
2942 	if (ret)
2943 		goto err_config;
2944 
2945 	/* Initialize RSS for this VF */
2946 	ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2947 				      &hdev->rss_cfg);
2948 	if (ret) {
2949 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2950 		goto err_config;
2951 	}
2952 
2953 	ret = hclgevf_rss_init_hw(hdev);
2954 	if (ret) {
2955 		dev_err(&hdev->pdev->dev,
2956 			"failed(%d) to initialize RSS\n", ret);
2957 		goto err_config;
2958 	}
2959 
2960 	/* ensure vf tbl list as empty before init */
2961 	ret = hclgevf_clear_vport_list(hdev);
2962 	if (ret) {
2963 		dev_err(&pdev->dev,
2964 			"failed to clear tbl list configuration, ret = %d.\n",
2965 			ret);
2966 		goto err_config;
2967 	}
2968 
2969 	ret = hclgevf_init_vlan_config(hdev);
2970 	if (ret) {
2971 		dev_err(&hdev->pdev->dev,
2972 			"failed(%d) to initialize VLAN config\n", ret);
2973 		goto err_config;
2974 	}
2975 
2976 	hclgevf_init_rxd_adv_layout(hdev);
2977 
2978 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2979 
2980 	hdev->last_reset_time = jiffies;
2981 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2982 		 HCLGEVF_DRIVER_NAME);
2983 
2984 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2985 
2986 	return 0;
2987 
2988 err_config:
2989 	hclgevf_misc_irq_uninit(hdev);
2990 err_misc_irq_init:
2991 	hclgevf_state_uninit(hdev);
2992 	hclgevf_uninit_msi(hdev);
2993 err_cmd_init:
2994 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
2995 err_cmd_queue_init:
2996 	hclgevf_devlink_uninit(hdev);
2997 err_devlink_init:
2998 	hclgevf_pci_uninit(hdev);
2999 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3000 	return ret;
3001 }
3002 
3003 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3004 {
3005 	struct hclge_vf_to_pf_msg send_msg;
3006 
3007 	hclgevf_state_uninit(hdev);
3008 	hclgevf_uninit_rxd_adv_layout(hdev);
3009 
3010 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3011 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3012 
3013 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3014 		hclgevf_misc_irq_uninit(hdev);
3015 		hclgevf_uninit_msi(hdev);
3016 	}
3017 
3018 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3019 	hclgevf_devlink_uninit(hdev);
3020 	hclgevf_pci_uninit(hdev);
3021 	hclgevf_uninit_mac_list(hdev);
3022 }
3023 
3024 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3025 {
3026 	struct pci_dev *pdev = ae_dev->pdev;
3027 	int ret;
3028 
3029 	ret = hclgevf_alloc_hdev(ae_dev);
3030 	if (ret) {
3031 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3032 		return ret;
3033 	}
3034 
3035 	ret = hclgevf_init_hdev(ae_dev->priv);
3036 	if (ret) {
3037 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3038 		return ret;
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3045 {
3046 	struct hclgevf_dev *hdev = ae_dev->priv;
3047 
3048 	hclgevf_uninit_hdev(hdev);
3049 	ae_dev->priv = NULL;
3050 }
3051 
3052 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3053 {
3054 	struct hnae3_handle *nic = &hdev->nic;
3055 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3056 
3057 	return min_t(u32, hdev->rss_size_max,
3058 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3059 }
3060 
3061 /**
3062  * hclgevf_get_channels - Get the current channels enabled and max supported.
3063  * @handle: hardware information for network interface
3064  * @ch: ethtool channels structure
3065  *
3066  * We don't support separate tx and rx queues as channels. The other count
3067  * represents how many queues are being used for control. max_combined counts
3068  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3069  * q_vectors since we support a lot more queue pairs than q_vectors.
3070  **/
3071 static void hclgevf_get_channels(struct hnae3_handle *handle,
3072 				 struct ethtool_channels *ch)
3073 {
3074 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3075 
3076 	ch->max_combined = hclgevf_get_max_channels(hdev);
3077 	ch->other_count = 0;
3078 	ch->max_other = 0;
3079 	ch->combined_count = handle->kinfo.rss_size;
3080 }
3081 
3082 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3083 					  u16 *alloc_tqps, u16 *max_rss_size)
3084 {
3085 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3086 
3087 	*alloc_tqps = hdev->num_tqps;
3088 	*max_rss_size = hdev->rss_size_max;
3089 }
3090 
3091 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3092 				    u32 new_tqps_num)
3093 {
3094 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3095 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3096 	u16 max_rss_size;
3097 
3098 	kinfo->req_rss_size = new_tqps_num;
3099 
3100 	max_rss_size = min_t(u16, hdev->rss_size_max,
3101 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3102 
3103 	/* Use the user's configuration when it is not larger than
3104 	 * max_rss_size, otherwise, use the maximum specification value.
3105 	 */
3106 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3107 	    kinfo->req_rss_size <= max_rss_size)
3108 		kinfo->rss_size = kinfo->req_rss_size;
3109 	else if (kinfo->rss_size > max_rss_size ||
3110 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3111 		kinfo->rss_size = max_rss_size;
3112 
3113 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3114 }
3115 
3116 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3117 				bool rxfh_configured)
3118 {
3119 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3120 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3121 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3122 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3123 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3124 	u16 cur_rss_size = kinfo->rss_size;
3125 	u16 cur_tqps = kinfo->num_tqps;
3126 	u32 *rss_indir;
3127 	unsigned int i;
3128 	int ret;
3129 
3130 	hclgevf_update_rss_size(handle, new_tqps_num);
3131 
3132 	hclge_comm_get_rss_tc_info(cur_rss_size, hdev->hw_tc_map,
3133 				   tc_offset, tc_valid, tc_size);
3134 	ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3135 					 tc_valid, tc_size);
3136 	if (ret)
3137 		return ret;
3138 
3139 	/* RSS indirection table has been configured by user */
3140 	if (rxfh_configured)
3141 		goto out;
3142 
3143 	/* Reinitializes the rss indirect table according to the new RSS size */
3144 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3145 			    sizeof(u32), GFP_KERNEL);
3146 	if (!rss_indir)
3147 		return -ENOMEM;
3148 
3149 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3150 		rss_indir[i] = i % kinfo->rss_size;
3151 
3152 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3153 
3154 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3155 	if (ret)
3156 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3157 			ret);
3158 
3159 	kfree(rss_indir);
3160 
3161 out:
3162 	if (!ret)
3163 		dev_info(&hdev->pdev->dev,
3164 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3165 			 cur_rss_size, kinfo->rss_size,
3166 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3167 
3168 	return ret;
3169 }
3170 
3171 static int hclgevf_get_status(struct hnae3_handle *handle)
3172 {
3173 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3174 
3175 	return hdev->hw.mac.link;
3176 }
3177 
3178 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3179 					    u8 *auto_neg, u32 *speed,
3180 					    u8 *duplex)
3181 {
3182 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3183 
3184 	if (speed)
3185 		*speed = hdev->hw.mac.speed;
3186 	if (duplex)
3187 		*duplex = hdev->hw.mac.duplex;
3188 	if (auto_neg)
3189 		*auto_neg = AUTONEG_DISABLE;
3190 }
3191 
3192 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3193 				 u8 duplex)
3194 {
3195 	hdev->hw.mac.speed = speed;
3196 	hdev->hw.mac.duplex = duplex;
3197 }
3198 
3199 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3200 {
3201 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3202 	bool gro_en_old = hdev->gro_en;
3203 	int ret;
3204 
3205 	hdev->gro_en = enable;
3206 	ret = hclgevf_config_gro(hdev);
3207 	if (ret)
3208 		hdev->gro_en = gro_en_old;
3209 
3210 	return ret;
3211 }
3212 
3213 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3214 				   u8 *module_type)
3215 {
3216 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3217 
3218 	if (media_type)
3219 		*media_type = hdev->hw.mac.media_type;
3220 
3221 	if (module_type)
3222 		*module_type = hdev->hw.mac.module_type;
3223 }
3224 
3225 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3226 {
3227 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3228 
3229 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3230 }
3231 
3232 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3233 {
3234 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3235 
3236 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3237 }
3238 
3239 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3240 {
3241 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3242 
3243 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3244 }
3245 
3246 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3247 {
3248 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3249 
3250 	return hdev->rst_stats.hw_rst_done_cnt;
3251 }
3252 
3253 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3254 				  unsigned long *supported,
3255 				  unsigned long *advertising)
3256 {
3257 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3258 
3259 	*supported = hdev->hw.mac.supported;
3260 	*advertising = hdev->hw.mac.advertising;
3261 }
3262 
3263 #define MAX_SEPARATE_NUM	4
3264 #define SEPARATOR_VALUE		0xFDFCFBFA
3265 #define REG_NUM_PER_LINE	4
3266 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3267 
3268 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3269 {
3270 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3271 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3272 
3273 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3274 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3275 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3276 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3277 
3278 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3279 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3280 }
3281 
3282 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3283 			     void *data)
3284 {
3285 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3286 	int i, j, reg_um, separator_num;
3287 	u32 *reg = data;
3288 
3289 	*version = hdev->fw_version;
3290 
3291 	/* fetching per-VF registers values from VF PCIe register space */
3292 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3293 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3294 	for (i = 0; i < reg_um; i++)
3295 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3296 	for (i = 0; i < separator_num; i++)
3297 		*reg++ = SEPARATOR_VALUE;
3298 
3299 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3300 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3301 	for (i = 0; i < reg_um; i++)
3302 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3303 	for (i = 0; i < separator_num; i++)
3304 		*reg++ = SEPARATOR_VALUE;
3305 
3306 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3307 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3308 	for (j = 0; j < hdev->num_tqps; j++) {
3309 		for (i = 0; i < reg_um; i++)
3310 			*reg++ = hclgevf_read_dev(&hdev->hw,
3311 						  ring_reg_addr_list[i] +
3312 						  HCLGEVF_TQP_REG_SIZE * j);
3313 		for (i = 0; i < separator_num; i++)
3314 			*reg++ = SEPARATOR_VALUE;
3315 	}
3316 
3317 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3318 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3319 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3320 		for (i = 0; i < reg_um; i++)
3321 			*reg++ = hclgevf_read_dev(&hdev->hw,
3322 						  tqp_intr_reg_addr_list[i] +
3323 						  4 * j);
3324 		for (i = 0; i < separator_num; i++)
3325 			*reg++ = SEPARATOR_VALUE;
3326 	}
3327 }
3328 
3329 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3330 				struct hclge_mbx_port_base_vlan *port_base_vlan)
3331 {
3332 	struct hnae3_handle *nic = &hdev->nic;
3333 	struct hclge_vf_to_pf_msg send_msg;
3334 	int ret;
3335 
3336 	rtnl_lock();
3337 
3338 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3339 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3340 		dev_warn(&hdev->pdev->dev,
3341 			 "is resetting when updating port based vlan info\n");
3342 		rtnl_unlock();
3343 		return;
3344 	}
3345 
3346 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3347 	if (ret) {
3348 		rtnl_unlock();
3349 		return;
3350 	}
3351 
3352 	/* send msg to PF and wait update port based vlan info */
3353 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3354 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3355 	memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3356 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3357 	if (!ret) {
3358 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3359 			nic->port_base_vlan_state = state;
3360 		else
3361 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3362 	}
3363 
3364 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3365 	rtnl_unlock();
3366 }
3367 
3368 static const struct hnae3_ae_ops hclgevf_ops = {
3369 	.init_ae_dev = hclgevf_init_ae_dev,
3370 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3371 	.reset_prepare = hclgevf_reset_prepare_general,
3372 	.reset_done = hclgevf_reset_done,
3373 	.init_client_instance = hclgevf_init_client_instance,
3374 	.uninit_client_instance = hclgevf_uninit_client_instance,
3375 	.start = hclgevf_ae_start,
3376 	.stop = hclgevf_ae_stop,
3377 	.client_start = hclgevf_client_start,
3378 	.client_stop = hclgevf_client_stop,
3379 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3380 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3381 	.get_vector = hclgevf_get_vector,
3382 	.put_vector = hclgevf_put_vector,
3383 	.reset_queue = hclgevf_reset_tqp,
3384 	.get_mac_addr = hclgevf_get_mac_addr,
3385 	.set_mac_addr = hclgevf_set_mac_addr,
3386 	.add_uc_addr = hclgevf_add_uc_addr,
3387 	.rm_uc_addr = hclgevf_rm_uc_addr,
3388 	.add_mc_addr = hclgevf_add_mc_addr,
3389 	.rm_mc_addr = hclgevf_rm_mc_addr,
3390 	.get_stats = hclgevf_get_stats,
3391 	.update_stats = hclgevf_update_stats,
3392 	.get_strings = hclgevf_get_strings,
3393 	.get_sset_count = hclgevf_get_sset_count,
3394 	.get_rss_key_size = hclge_comm_get_rss_key_size,
3395 	.get_rss = hclgevf_get_rss,
3396 	.set_rss = hclgevf_set_rss,
3397 	.get_rss_tuple = hclgevf_get_rss_tuple,
3398 	.set_rss_tuple = hclgevf_set_rss_tuple,
3399 	.get_tc_size = hclgevf_get_tc_size,
3400 	.get_fw_version = hclgevf_get_fw_version,
3401 	.set_vlan_filter = hclgevf_set_vlan_filter,
3402 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3403 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3404 	.reset_event = hclgevf_reset_event,
3405 	.set_default_reset_request = hclgevf_set_def_reset_request,
3406 	.set_channels = hclgevf_set_channels,
3407 	.get_channels = hclgevf_get_channels,
3408 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3409 	.get_regs_len = hclgevf_get_regs_len,
3410 	.get_regs = hclgevf_get_regs,
3411 	.get_status = hclgevf_get_status,
3412 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3413 	.get_media_type = hclgevf_get_media_type,
3414 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3415 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3416 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3417 	.set_gro_en = hclgevf_gro_en,
3418 	.set_mtu = hclgevf_set_mtu,
3419 	.get_global_queue_id = hclgevf_get_qid_global,
3420 	.set_timer_task = hclgevf_set_timer_task,
3421 	.get_link_mode = hclgevf_get_link_mode,
3422 	.set_promisc_mode = hclgevf_set_promisc_mode,
3423 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3424 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3425 };
3426 
3427 static struct hnae3_ae_algo ae_algovf = {
3428 	.ops = &hclgevf_ops,
3429 	.pdev_id_table = ae_algovf_pci_tbl,
3430 };
3431 
3432 static int hclgevf_init(void)
3433 {
3434 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3435 
3436 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3437 	if (!hclgevf_wq) {
3438 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3439 		return -ENOMEM;
3440 	}
3441 
3442 	hnae3_register_ae_algo(&ae_algovf);
3443 
3444 	return 0;
3445 }
3446 
3447 static void hclgevf_exit(void)
3448 {
3449 	hnae3_unregister_ae_algo(&ae_algovf);
3450 	destroy_workqueue(hclgevf_wq);
3451 }
3452 module_init(hclgevf_init);
3453 module_exit(hclgevf_exit);
3454 
3455 MODULE_LICENSE("GPL");
3456 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3457 MODULE_DESCRIPTION("HCLGEVF Driver");
3458 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3459