1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
87 	struct hnae3_handle *handle)
88 {
89 	if (!handle->client)
90 		return container_of(handle, struct hclgevf_dev, nic);
91 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
92 		return container_of(handle, struct hclgevf_dev, roce);
93 	else
94 		return container_of(handle, struct hclgevf_dev, nic);
95 }
96 
97 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
98 {
99 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
101 	struct hclgevf_desc desc;
102 	struct hclgevf_tqp *tqp;
103 	int status;
104 	int i;
105 
106 	for (i = 0; i < kinfo->num_tqps; i++) {
107 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
108 		hclgevf_cmd_setup_basic_desc(&desc,
109 					     HCLGEVF_OPC_QUERY_RX_STATUS,
110 					     true);
111 
112 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
113 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
114 		if (status) {
115 			dev_err(&hdev->pdev->dev,
116 				"Query tqp stat fail, status = %d,queue = %d\n",
117 				status,	i);
118 			return status;
119 		}
120 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
121 			le32_to_cpu(desc.data[1]);
122 
123 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
124 					     true);
125 
126 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
127 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
128 		if (status) {
129 			dev_err(&hdev->pdev->dev,
130 				"Query tqp stat fail, status = %d,queue = %d\n",
131 				status, i);
132 			return status;
133 		}
134 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
135 			le32_to_cpu(desc.data[1]);
136 	}
137 
138 	return 0;
139 }
140 
141 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
144 	struct hclgevf_tqp *tqp;
145 	u64 *buff = data;
146 	int i;
147 
148 	for (i = 0; i < kinfo->num_tqps; i++) {
149 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
150 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
151 	}
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
155 	}
156 
157 	return buff;
158 }
159 
160 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
161 {
162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
163 
164 	return kinfo->num_tqps * 2;
165 }
166 
167 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 	u8 *buff = data;
171 	int i = 0;
172 
173 	for (i = 0; i < kinfo->num_tqps; i++) {
174 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
175 						       struct hclgevf_tqp, q);
176 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
177 			 tqp->index);
178 		buff += ETH_GSTRING_LEN;
179 	}
180 
181 	for (i = 0; i < kinfo->num_tqps; i++) {
182 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 						       struct hclgevf_tqp, q);
184 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
185 			 tqp->index);
186 		buff += ETH_GSTRING_LEN;
187 	}
188 
189 	return buff;
190 }
191 
192 static void hclgevf_update_stats(struct hnae3_handle *handle,
193 				 struct net_device_stats *net_stats)
194 {
195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
196 	int status;
197 
198 	status = hclgevf_tqps_update_stats(handle);
199 	if (status)
200 		dev_err(&hdev->pdev->dev,
201 			"VF update of TQPS stats fail, status = %d.\n",
202 			status);
203 }
204 
205 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
206 {
207 	if (strset == ETH_SS_TEST)
208 		return -EOPNOTSUPP;
209 	else if (strset == ETH_SS_STATS)
210 		return hclgevf_tqps_get_sset_count(handle, strset);
211 
212 	return 0;
213 }
214 
215 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
216 				u8 *data)
217 {
218 	u8 *p = (char *)data;
219 
220 	if (strset == ETH_SS_STATS)
221 		p = hclgevf_tqps_get_strings(handle, p);
222 }
223 
224 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
225 {
226 	hclgevf_tqps_get_stats(handle, data);
227 }
228 
229 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
230 {
231 	u8 resp_msg;
232 	int status;
233 
234 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
235 				      true, &resp_msg, sizeof(resp_msg));
236 	if (status) {
237 		dev_err(&hdev->pdev->dev,
238 			"VF request to get TC info from PF failed %d",
239 			status);
240 		return status;
241 	}
242 
243 	hdev->hw_tc_map = resp_msg;
244 
245 	return 0;
246 }
247 
248 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
249 {
250 	struct hnae3_handle *nic = &hdev->nic;
251 	u8 resp_msg;
252 	int ret;
253 
254 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
255 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
256 				   NULL, 0, true, &resp_msg, sizeof(u8));
257 	if (ret) {
258 		dev_err(&hdev->pdev->dev,
259 			"VF request to get port based vlan state failed %d",
260 			ret);
261 		return ret;
262 	}
263 
264 	nic->port_base_vlan_state = resp_msg;
265 
266 	return 0;
267 }
268 
269 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
270 {
271 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
272 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
273 	int status;
274 
275 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
276 				      true, resp_msg,
277 				      HCLGEVF_TQPS_RSS_INFO_LEN);
278 	if (status) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get tqp info from PF failed %d",
281 			status);
282 		return status;
283 	}
284 
285 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
286 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
287 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
288 
289 	return 0;
290 }
291 
292 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
293 {
294 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
295 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
296 	int ret;
297 
298 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
299 				   true, resp_msg,
300 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
301 	if (ret) {
302 		dev_err(&hdev->pdev->dev,
303 			"VF request to get tqp depth info from PF failed %d",
304 			ret);
305 		return ret;
306 	}
307 
308 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
309 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
310 
311 	return 0;
312 }
313 
314 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
315 {
316 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
317 	u8 msg_data[2], resp_data[2];
318 	u16 qid_in_pf = 0;
319 	int ret;
320 
321 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
322 
323 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
324 				   sizeof(msg_data), true, resp_data,
325 				   sizeof(resp_data));
326 	if (!ret)
327 		qid_in_pf = *(u16 *)resp_data;
328 
329 	return qid_in_pf;
330 }
331 
332 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
333 {
334 	u8 resp_msg[2];
335 	int ret;
336 
337 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
338 				   true, resp_msg, sizeof(resp_msg));
339 	if (ret) {
340 		dev_err(&hdev->pdev->dev,
341 			"VF request to get the pf port media type failed %d",
342 			ret);
343 		return ret;
344 	}
345 
346 	hdev->hw.mac.media_type = resp_msg[0];
347 	hdev->hw.mac.module_type = resp_msg[1];
348 
349 	return 0;
350 }
351 
352 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
353 {
354 	struct hclgevf_tqp *tqp;
355 	int i;
356 
357 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
358 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
359 	if (!hdev->htqp)
360 		return -ENOMEM;
361 
362 	tqp = hdev->htqp;
363 
364 	for (i = 0; i < hdev->num_tqps; i++) {
365 		tqp->dev = &hdev->pdev->dev;
366 		tqp->index = i;
367 
368 		tqp->q.ae_algo = &ae_algovf;
369 		tqp->q.buf_size = hdev->rx_buf_len;
370 		tqp->q.tx_desc_num = hdev->num_tx_desc;
371 		tqp->q.rx_desc_num = hdev->num_rx_desc;
372 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
373 			i * HCLGEVF_TQP_REG_SIZE;
374 
375 		tqp++;
376 	}
377 
378 	return 0;
379 }
380 
381 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
382 {
383 	struct hnae3_handle *nic = &hdev->nic;
384 	struct hnae3_knic_private_info *kinfo;
385 	u16 new_tqps = hdev->num_tqps;
386 	int i;
387 
388 	kinfo = &nic->kinfo;
389 	kinfo->num_tc = 0;
390 	kinfo->num_tx_desc = hdev->num_tx_desc;
391 	kinfo->num_rx_desc = hdev->num_rx_desc;
392 	kinfo->rx_buf_len = hdev->rx_buf_len;
393 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
394 		if (hdev->hw_tc_map & BIT(i))
395 			kinfo->num_tc++;
396 
397 	kinfo->rss_size
398 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
399 	new_tqps = kinfo->rss_size * kinfo->num_tc;
400 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
401 
402 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
403 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
404 	if (!kinfo->tqp)
405 		return -ENOMEM;
406 
407 	for (i = 0; i < kinfo->num_tqps; i++) {
408 		hdev->htqp[i].q.handle = &hdev->nic;
409 		hdev->htqp[i].q.tqp_index = i;
410 		kinfo->tqp[i] = &hdev->htqp[i].q;
411 	}
412 
413 	return 0;
414 }
415 
416 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
417 {
418 	int status;
419 	u8 resp_msg;
420 
421 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
422 				      0, false, &resp_msg, sizeof(resp_msg));
423 	if (status)
424 		dev_err(&hdev->pdev->dev,
425 			"VF failed to fetch link status(%d) from PF", status);
426 }
427 
428 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
429 {
430 	struct hnae3_handle *rhandle = &hdev->roce;
431 	struct hnae3_handle *handle = &hdev->nic;
432 	struct hnae3_client *rclient;
433 	struct hnae3_client *client;
434 
435 	client = handle->client;
436 	rclient = hdev->roce_client;
437 
438 	link_state =
439 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
440 
441 	if (link_state != hdev->hw.mac.link) {
442 		client->ops->link_status_change(handle, !!link_state);
443 		if (rclient && rclient->ops->link_status_change)
444 			rclient->ops->link_status_change(rhandle, !!link_state);
445 		hdev->hw.mac.link = link_state;
446 	}
447 }
448 
449 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
450 {
451 #define HCLGEVF_ADVERTISING 0
452 #define HCLGEVF_SUPPORTED   1
453 	u8 send_msg;
454 	u8 resp_msg;
455 
456 	send_msg = HCLGEVF_ADVERTISING;
457 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
458 			     &send_msg, sizeof(send_msg), false,
459 			     &resp_msg, sizeof(resp_msg));
460 	send_msg = HCLGEVF_SUPPORTED;
461 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
462 			     &send_msg, sizeof(send_msg), false,
463 			     &resp_msg, sizeof(resp_msg));
464 }
465 
466 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
467 {
468 	struct hnae3_handle *nic = &hdev->nic;
469 	int ret;
470 
471 	nic->ae_algo = &ae_algovf;
472 	nic->pdev = hdev->pdev;
473 	nic->numa_node_mask = hdev->numa_node_mask;
474 	nic->flags |= HNAE3_SUPPORT_VF;
475 
476 	ret = hclgevf_knic_setup(hdev);
477 	if (ret)
478 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
479 			ret);
480 	return ret;
481 }
482 
483 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
484 {
485 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
486 		dev_warn(&hdev->pdev->dev,
487 			 "vector(vector_id %d) has been freed.\n", vector_id);
488 		return;
489 	}
490 
491 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
492 	hdev->num_msi_left += 1;
493 	hdev->num_msi_used -= 1;
494 }
495 
496 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
497 			      struct hnae3_vector_info *vector_info)
498 {
499 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
500 	struct hnae3_vector_info *vector = vector_info;
501 	int alloc = 0;
502 	int i, j;
503 
504 	vector_num = min(hdev->num_msi_left, vector_num);
505 
506 	for (j = 0; j < vector_num; j++) {
507 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
508 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
509 				vector->vector = pci_irq_vector(hdev->pdev, i);
510 				vector->io_addr = hdev->hw.io_base +
511 					HCLGEVF_VECTOR_REG_BASE +
512 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
513 				hdev->vector_status[i] = 0;
514 				hdev->vector_irq[i] = vector->vector;
515 
516 				vector++;
517 				alloc++;
518 
519 				break;
520 			}
521 		}
522 	}
523 	hdev->num_msi_left -= alloc;
524 	hdev->num_msi_used += alloc;
525 
526 	return alloc;
527 }
528 
529 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
530 {
531 	int i;
532 
533 	for (i = 0; i < hdev->num_msi; i++)
534 		if (vector == hdev->vector_irq[i])
535 			return i;
536 
537 	return -EINVAL;
538 }
539 
540 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
541 				    const u8 hfunc, const u8 *key)
542 {
543 	struct hclgevf_rss_config_cmd *req;
544 	struct hclgevf_desc desc;
545 	int key_offset = 0;
546 	int key_counts;
547 	int key_size;
548 	int ret;
549 
550 	key_counts = HCLGEVF_RSS_KEY_SIZE;
551 	req = (struct hclgevf_rss_config_cmd *)desc.data;
552 
553 	while (key_counts) {
554 		hclgevf_cmd_setup_basic_desc(&desc,
555 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
556 					     false);
557 
558 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
559 		req->hash_config |=
560 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
561 
562 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
563 		memcpy(req->hash_key,
564 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
565 
566 		key_counts -= key_size;
567 		key_offset++;
568 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
569 		if (ret) {
570 			dev_err(&hdev->pdev->dev,
571 				"Configure RSS config fail, status = %d\n",
572 				ret);
573 			return ret;
574 		}
575 	}
576 
577 	return 0;
578 }
579 
580 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
581 {
582 	return HCLGEVF_RSS_KEY_SIZE;
583 }
584 
585 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
586 {
587 	return HCLGEVF_RSS_IND_TBL_SIZE;
588 }
589 
590 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
591 {
592 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
593 	struct hclgevf_rss_indirection_table_cmd *req;
594 	struct hclgevf_desc desc;
595 	int status;
596 	int i, j;
597 
598 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
599 
600 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
601 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
602 					     false);
603 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
604 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
605 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
606 			req->rss_result[j] =
607 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
608 
609 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
610 		if (status) {
611 			dev_err(&hdev->pdev->dev,
612 				"VF failed(=%d) to set RSS indirection table\n",
613 				status);
614 			return status;
615 		}
616 	}
617 
618 	return 0;
619 }
620 
621 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
622 {
623 	struct hclgevf_rss_tc_mode_cmd *req;
624 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
625 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
626 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
627 	struct hclgevf_desc desc;
628 	u16 roundup_size;
629 	int status;
630 	int i;
631 
632 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
633 
634 	roundup_size = roundup_pow_of_two(rss_size);
635 	roundup_size = ilog2(roundup_size);
636 
637 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
638 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
639 		tc_size[i] = roundup_size;
640 		tc_offset[i] = rss_size * i;
641 	}
642 
643 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
644 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
645 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
646 			      (tc_valid[i] & 0x1));
647 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
648 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
649 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
650 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
651 	}
652 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
653 	if (status)
654 		dev_err(&hdev->pdev->dev,
655 			"VF failed(=%d) to set rss tc mode\n", status);
656 
657 	return status;
658 }
659 
660 /* for revision 0x20, vf shared the same rss config with pf */
661 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
662 {
663 #define HCLGEVF_RSS_MBX_RESP_LEN	8
664 
665 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
666 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
667 	u16 msg_num, hash_key_index;
668 	u8 index;
669 	int ret;
670 
671 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
672 			HCLGEVF_RSS_MBX_RESP_LEN;
673 	for (index = 0; index < msg_num; index++) {
674 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
675 					   &index, sizeof(index),
676 					   true, resp_msg,
677 					   HCLGEVF_RSS_MBX_RESP_LEN);
678 		if (ret) {
679 			dev_err(&hdev->pdev->dev,
680 				"VF get rss hash key from PF failed, ret=%d",
681 				ret);
682 			return ret;
683 		}
684 
685 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
686 		if (index == msg_num - 1)
687 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
688 			       &resp_msg[0],
689 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
690 		else
691 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
692 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
693 	}
694 
695 	return 0;
696 }
697 
698 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
699 			   u8 *hfunc)
700 {
701 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
702 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
703 	int i, ret;
704 
705 	if (handle->pdev->revision >= 0x21) {
706 		/* Get hash algorithm */
707 		if (hfunc) {
708 			switch (rss_cfg->hash_algo) {
709 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
710 				*hfunc = ETH_RSS_HASH_TOP;
711 				break;
712 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
713 				*hfunc = ETH_RSS_HASH_XOR;
714 				break;
715 			default:
716 				*hfunc = ETH_RSS_HASH_UNKNOWN;
717 				break;
718 			}
719 		}
720 
721 		/* Get the RSS Key required by the user */
722 		if (key)
723 			memcpy(key, rss_cfg->rss_hash_key,
724 			       HCLGEVF_RSS_KEY_SIZE);
725 	} else {
726 		if (hfunc)
727 			*hfunc = ETH_RSS_HASH_TOP;
728 		if (key) {
729 			ret = hclgevf_get_rss_hash_key(hdev);
730 			if (ret)
731 				return ret;
732 			memcpy(key, rss_cfg->rss_hash_key,
733 			       HCLGEVF_RSS_KEY_SIZE);
734 		}
735 	}
736 
737 	if (indir)
738 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
739 			indir[i] = rss_cfg->rss_indirection_tbl[i];
740 
741 	return 0;
742 }
743 
744 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
745 			   const  u8 *key, const  u8 hfunc)
746 {
747 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
748 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
749 	int ret, i;
750 
751 	if (handle->pdev->revision >= 0x21) {
752 		/* Set the RSS Hash Key if specififed by the user */
753 		if (key) {
754 			switch (hfunc) {
755 			case ETH_RSS_HASH_TOP:
756 				rss_cfg->hash_algo =
757 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
758 				break;
759 			case ETH_RSS_HASH_XOR:
760 				rss_cfg->hash_algo =
761 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
762 				break;
763 			case ETH_RSS_HASH_NO_CHANGE:
764 				break;
765 			default:
766 				return -EINVAL;
767 			}
768 
769 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
770 						       key);
771 			if (ret)
772 				return ret;
773 
774 			/* Update the shadow RSS key with user specified qids */
775 			memcpy(rss_cfg->rss_hash_key, key,
776 			       HCLGEVF_RSS_KEY_SIZE);
777 		}
778 	}
779 
780 	/* update the shadow RSS table with user specified qids */
781 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
782 		rss_cfg->rss_indirection_tbl[i] = indir[i];
783 
784 	/* update the hardware */
785 	return hclgevf_set_rss_indir_table(hdev);
786 }
787 
788 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
789 {
790 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
791 
792 	if (nfc->data & RXH_L4_B_2_3)
793 		hash_sets |= HCLGEVF_D_PORT_BIT;
794 	else
795 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
796 
797 	if (nfc->data & RXH_IP_SRC)
798 		hash_sets |= HCLGEVF_S_IP_BIT;
799 	else
800 		hash_sets &= ~HCLGEVF_S_IP_BIT;
801 
802 	if (nfc->data & RXH_IP_DST)
803 		hash_sets |= HCLGEVF_D_IP_BIT;
804 	else
805 		hash_sets &= ~HCLGEVF_D_IP_BIT;
806 
807 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
808 		hash_sets |= HCLGEVF_V_TAG_BIT;
809 
810 	return hash_sets;
811 }
812 
813 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
814 				 struct ethtool_rxnfc *nfc)
815 {
816 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
817 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
818 	struct hclgevf_rss_input_tuple_cmd *req;
819 	struct hclgevf_desc desc;
820 	u8 tuple_sets;
821 	int ret;
822 
823 	if (handle->pdev->revision == 0x20)
824 		return -EOPNOTSUPP;
825 
826 	if (nfc->data &
827 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
828 		return -EINVAL;
829 
830 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
831 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
832 
833 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
834 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
835 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
836 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
837 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
838 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
839 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
840 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
841 
842 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
843 	switch (nfc->flow_type) {
844 	case TCP_V4_FLOW:
845 		req->ipv4_tcp_en = tuple_sets;
846 		break;
847 	case TCP_V6_FLOW:
848 		req->ipv6_tcp_en = tuple_sets;
849 		break;
850 	case UDP_V4_FLOW:
851 		req->ipv4_udp_en = tuple_sets;
852 		break;
853 	case UDP_V6_FLOW:
854 		req->ipv6_udp_en = tuple_sets;
855 		break;
856 	case SCTP_V4_FLOW:
857 		req->ipv4_sctp_en = tuple_sets;
858 		break;
859 	case SCTP_V6_FLOW:
860 		if ((nfc->data & RXH_L4_B_0_1) ||
861 		    (nfc->data & RXH_L4_B_2_3))
862 			return -EINVAL;
863 
864 		req->ipv6_sctp_en = tuple_sets;
865 		break;
866 	case IPV4_FLOW:
867 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
868 		break;
869 	case IPV6_FLOW:
870 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
871 		break;
872 	default:
873 		return -EINVAL;
874 	}
875 
876 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
877 	if (ret) {
878 		dev_err(&hdev->pdev->dev,
879 			"Set rss tuple fail, status = %d\n", ret);
880 		return ret;
881 	}
882 
883 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
884 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
885 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
886 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
887 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
888 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
889 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
890 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
891 	return 0;
892 }
893 
894 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
895 				 struct ethtool_rxnfc *nfc)
896 {
897 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
898 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
899 	u8 tuple_sets;
900 
901 	if (handle->pdev->revision == 0x20)
902 		return -EOPNOTSUPP;
903 
904 	nfc->data = 0;
905 
906 	switch (nfc->flow_type) {
907 	case TCP_V4_FLOW:
908 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
909 		break;
910 	case UDP_V4_FLOW:
911 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
912 		break;
913 	case TCP_V6_FLOW:
914 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
915 		break;
916 	case UDP_V6_FLOW:
917 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
918 		break;
919 	case SCTP_V4_FLOW:
920 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
921 		break;
922 	case SCTP_V6_FLOW:
923 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
924 		break;
925 	case IPV4_FLOW:
926 	case IPV6_FLOW:
927 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
928 		break;
929 	default:
930 		return -EINVAL;
931 	}
932 
933 	if (!tuple_sets)
934 		return 0;
935 
936 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
937 		nfc->data |= RXH_L4_B_2_3;
938 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
939 		nfc->data |= RXH_L4_B_0_1;
940 	if (tuple_sets & HCLGEVF_D_IP_BIT)
941 		nfc->data |= RXH_IP_DST;
942 	if (tuple_sets & HCLGEVF_S_IP_BIT)
943 		nfc->data |= RXH_IP_SRC;
944 
945 	return 0;
946 }
947 
948 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
949 				       struct hclgevf_rss_cfg *rss_cfg)
950 {
951 	struct hclgevf_rss_input_tuple_cmd *req;
952 	struct hclgevf_desc desc;
953 	int ret;
954 
955 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
956 
957 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
958 
959 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
960 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
961 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
962 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
963 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
964 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
965 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
966 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
967 
968 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
969 	if (ret)
970 		dev_err(&hdev->pdev->dev,
971 			"Configure rss input fail, status = %d\n", ret);
972 	return ret;
973 }
974 
975 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
976 {
977 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
978 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
979 
980 	return rss_cfg->rss_size;
981 }
982 
983 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
984 				       int vector_id,
985 				       struct hnae3_ring_chain_node *ring_chain)
986 {
987 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
988 	struct hnae3_ring_chain_node *node;
989 	struct hclge_mbx_vf_to_pf_cmd *req;
990 	struct hclgevf_desc desc;
991 	int i = 0;
992 	int status;
993 	u8 type;
994 
995 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
996 
997 	for (node = ring_chain; node; node = node->next) {
998 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
999 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1000 
1001 		if (i == 0) {
1002 			hclgevf_cmd_setup_basic_desc(&desc,
1003 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1004 						     false);
1005 			type = en ?
1006 				HCLGE_MBX_MAP_RING_TO_VECTOR :
1007 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1008 			req->msg[0] = type;
1009 			req->msg[1] = vector_id;
1010 		}
1011 
1012 		req->msg[idx_offset] =
1013 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1014 		req->msg[idx_offset + 1] = node->tqp_index;
1015 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1016 							   HNAE3_RING_GL_IDX_M,
1017 							   HNAE3_RING_GL_IDX_S);
1018 
1019 		i++;
1020 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1021 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1022 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1023 		    !node->next) {
1024 			req->msg[2] = i;
1025 
1026 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1027 			if (status) {
1028 				dev_err(&hdev->pdev->dev,
1029 					"Map TQP fail, status is %d.\n",
1030 					status);
1031 				return status;
1032 			}
1033 			i = 0;
1034 			hclgevf_cmd_setup_basic_desc(&desc,
1035 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1036 						     false);
1037 			req->msg[0] = type;
1038 			req->msg[1] = vector_id;
1039 		}
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1046 				      struct hnae3_ring_chain_node *ring_chain)
1047 {
1048 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1049 	int vector_id;
1050 
1051 	vector_id = hclgevf_get_vector_index(hdev, vector);
1052 	if (vector_id < 0) {
1053 		dev_err(&handle->pdev->dev,
1054 			"Get vector index fail. ret =%d\n", vector_id);
1055 		return vector_id;
1056 	}
1057 
1058 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1059 }
1060 
1061 static int hclgevf_unmap_ring_from_vector(
1062 				struct hnae3_handle *handle,
1063 				int vector,
1064 				struct hnae3_ring_chain_node *ring_chain)
1065 {
1066 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1067 	int ret, vector_id;
1068 
1069 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1070 		return 0;
1071 
1072 	vector_id = hclgevf_get_vector_index(hdev, vector);
1073 	if (vector_id < 0) {
1074 		dev_err(&handle->pdev->dev,
1075 			"Get vector index fail. ret =%d\n", vector_id);
1076 		return vector_id;
1077 	}
1078 
1079 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1080 	if (ret)
1081 		dev_err(&handle->pdev->dev,
1082 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1083 			vector_id,
1084 			ret);
1085 
1086 	return ret;
1087 }
1088 
1089 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1090 {
1091 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1092 	int vector_id;
1093 
1094 	vector_id = hclgevf_get_vector_index(hdev, vector);
1095 	if (vector_id < 0) {
1096 		dev_err(&handle->pdev->dev,
1097 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1098 			vector_id);
1099 		return vector_id;
1100 	}
1101 
1102 	hclgevf_free_vector(hdev, vector_id);
1103 
1104 	return 0;
1105 }
1106 
1107 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1108 					bool en_bc_pmc)
1109 {
1110 	struct hclge_mbx_vf_to_pf_cmd *req;
1111 	struct hclgevf_desc desc;
1112 	int ret;
1113 
1114 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1115 
1116 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1117 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1118 	req->msg[1] = en_bc_pmc ? 1 : 0;
1119 
1120 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1121 	if (ret)
1122 		dev_err(&hdev->pdev->dev,
1123 			"Set promisc mode fail, status is %d.\n", ret);
1124 
1125 	return ret;
1126 }
1127 
1128 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1129 {
1130 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1131 }
1132 
1133 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1134 			      int stream_id, bool enable)
1135 {
1136 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1137 	struct hclgevf_desc desc;
1138 	int status;
1139 
1140 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1141 
1142 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1143 				     false);
1144 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1145 	req->stream_id = cpu_to_le16(stream_id);
1146 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1147 
1148 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1149 	if (status)
1150 		dev_err(&hdev->pdev->dev,
1151 			"TQP enable fail, status =%d.\n", status);
1152 
1153 	return status;
1154 }
1155 
1156 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1157 {
1158 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1159 	struct hclgevf_tqp *tqp;
1160 	int i;
1161 
1162 	for (i = 0; i < kinfo->num_tqps; i++) {
1163 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1164 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1165 	}
1166 }
1167 
1168 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1169 {
1170 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1171 
1172 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1173 }
1174 
1175 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1176 				bool is_first)
1177 {
1178 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1179 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1180 	u8 *new_mac_addr = (u8 *)p;
1181 	u8 msg_data[ETH_ALEN * 2];
1182 	u16 subcode;
1183 	int status;
1184 
1185 	ether_addr_copy(msg_data, new_mac_addr);
1186 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1187 
1188 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1189 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1190 
1191 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1192 				      subcode, msg_data, sizeof(msg_data),
1193 				      true, NULL, 0);
1194 	if (!status)
1195 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1196 
1197 	return status;
1198 }
1199 
1200 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1201 			       const unsigned char *addr)
1202 {
1203 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1204 
1205 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1206 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1207 				    addr, ETH_ALEN, false, NULL, 0);
1208 }
1209 
1210 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1211 			      const unsigned char *addr)
1212 {
1213 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1214 
1215 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1216 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1217 				    addr, ETH_ALEN, false, NULL, 0);
1218 }
1219 
1220 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1221 			       const unsigned char *addr)
1222 {
1223 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1224 
1225 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1226 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1227 				    addr, ETH_ALEN, false, NULL, 0);
1228 }
1229 
1230 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1231 			      const unsigned char *addr)
1232 {
1233 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1234 
1235 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1236 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1237 				    addr, ETH_ALEN, false, NULL, 0);
1238 }
1239 
1240 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1241 				   __be16 proto, u16 vlan_id,
1242 				   bool is_kill)
1243 {
1244 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1245 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1246 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1247 
1248 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1249 		return -EINVAL;
1250 
1251 	if (proto != htons(ETH_P_8021Q))
1252 		return -EPROTONOSUPPORT;
1253 
1254 	msg_data[0] = is_kill;
1255 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1256 	memcpy(&msg_data[3], &proto, sizeof(proto));
1257 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1258 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1259 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1260 }
1261 
1262 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1263 {
1264 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1265 	u8 msg_data;
1266 
1267 	msg_data = enable ? 1 : 0;
1268 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1269 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1270 				    1, false, NULL, 0);
1271 }
1272 
1273 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1274 {
1275 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1276 	u8 msg_data[2];
1277 	int ret;
1278 
1279 	memcpy(msg_data, &queue_id, sizeof(queue_id));
1280 
1281 	/* disable vf queue before send queue reset msg to PF */
1282 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1283 	if (ret)
1284 		return ret;
1285 
1286 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1287 				    sizeof(msg_data), true, NULL, 0);
1288 }
1289 
1290 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1291 {
1292 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1293 
1294 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1295 				    sizeof(new_mtu), true, NULL, 0);
1296 }
1297 
1298 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1299 				 enum hnae3_reset_notify_type type)
1300 {
1301 	struct hnae3_client *client = hdev->nic_client;
1302 	struct hnae3_handle *handle = &hdev->nic;
1303 	int ret;
1304 
1305 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1306 	    !client)
1307 		return 0;
1308 
1309 	if (!client->ops->reset_notify)
1310 		return -EOPNOTSUPP;
1311 
1312 	ret = client->ops->reset_notify(handle, type);
1313 	if (ret)
1314 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1315 			type, ret);
1316 
1317 	return ret;
1318 }
1319 
1320 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1321 {
1322 	struct hclgevf_dev *hdev = ae_dev->priv;
1323 
1324 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1325 }
1326 
1327 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1328 				    unsigned long delay_us,
1329 				    unsigned long wait_cnt)
1330 {
1331 	unsigned long cnt = 0;
1332 
1333 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1334 	       cnt++ < wait_cnt)
1335 		usleep_range(delay_us, delay_us * 2);
1336 
1337 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1338 		dev_err(&hdev->pdev->dev,
1339 			"flr wait timeout\n");
1340 		return -ETIMEDOUT;
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1347 {
1348 #define HCLGEVF_RESET_WAIT_US	20000
1349 #define HCLGEVF_RESET_WAIT_CNT	2000
1350 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1351 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1352 
1353 	u32 val;
1354 	int ret;
1355 
1356 	/* wait to check the hardware reset completion status */
1357 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1358 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1359 
1360 	if (hdev->reset_type == HNAE3_FLR_RESET)
1361 		return hclgevf_flr_poll_timeout(hdev,
1362 						HCLGEVF_RESET_WAIT_US,
1363 						HCLGEVF_RESET_WAIT_CNT);
1364 
1365 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1366 				 !(val & HCLGEVF_RST_ING_BITS),
1367 				 HCLGEVF_RESET_WAIT_US,
1368 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1369 
1370 	/* hardware completion status should be available by this time */
1371 	if (ret) {
1372 		dev_err(&hdev->pdev->dev,
1373 			"could'nt get reset done status from h/w, timeout!\n");
1374 		return ret;
1375 	}
1376 
1377 	/* we will wait a bit more to let reset of the stack to complete. This
1378 	 * might happen in case reset assertion was made by PF. Yes, this also
1379 	 * means we might end up waiting bit more even for VF reset.
1380 	 */
1381 	msleep(5000);
1382 
1383 	return 0;
1384 }
1385 
1386 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1387 {
1388 	int ret;
1389 
1390 	/* uninitialize the nic client */
1391 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1392 	if (ret)
1393 		return ret;
1394 
1395 	/* re-initialize the hclge device */
1396 	ret = hclgevf_reset_hdev(hdev);
1397 	if (ret) {
1398 		dev_err(&hdev->pdev->dev,
1399 			"hclge device re-init failed, VF is disabled!\n");
1400 		return ret;
1401 	}
1402 
1403 	/* bring up the nic client again */
1404 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1405 	if (ret)
1406 		return ret;
1407 
1408 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1409 }
1410 
1411 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1412 {
1413 #define HCLGEVF_RESET_SYNC_TIME 100
1414 
1415 	int ret = 0;
1416 
1417 	switch (hdev->reset_type) {
1418 	case HNAE3_VF_FUNC_RESET:
1419 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1420 					   0, true, NULL, sizeof(u8));
1421 		hdev->rst_stats.vf_func_rst_cnt++;
1422 		break;
1423 	case HNAE3_FLR_RESET:
1424 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1425 		hdev->rst_stats.flr_rst_cnt++;
1426 		break;
1427 	default:
1428 		break;
1429 	}
1430 
1431 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1432 	/* inform hardware that preparatory work is done */
1433 	msleep(HCLGEVF_RESET_SYNC_TIME);
1434 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1435 			  HCLGEVF_NIC_CMQ_ENABLE);
1436 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1437 		 hdev->reset_type, ret);
1438 
1439 	return ret;
1440 }
1441 
1442 static int hclgevf_reset(struct hclgevf_dev *hdev)
1443 {
1444 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1445 	int ret;
1446 
1447 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1448 	 * know if device is undergoing reset
1449 	 */
1450 	ae_dev->reset_type = hdev->reset_type;
1451 	hdev->rst_stats.rst_cnt++;
1452 	rtnl_lock();
1453 
1454 	/* bring down the nic to stop any ongoing TX/RX */
1455 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1456 	if (ret)
1457 		goto err_reset_lock;
1458 
1459 	rtnl_unlock();
1460 
1461 	ret = hclgevf_reset_prepare_wait(hdev);
1462 	if (ret)
1463 		goto err_reset;
1464 
1465 	/* check if VF could successfully fetch the hardware reset completion
1466 	 * status from the hardware
1467 	 */
1468 	ret = hclgevf_reset_wait(hdev);
1469 	if (ret) {
1470 		/* can't do much in this situation, will disable VF */
1471 		dev_err(&hdev->pdev->dev,
1472 			"VF failed(=%d) to fetch H/W reset completion status\n",
1473 			ret);
1474 		goto err_reset;
1475 	}
1476 
1477 	hdev->rst_stats.hw_rst_done_cnt++;
1478 
1479 	rtnl_lock();
1480 
1481 	/* now, re-initialize the nic client and ae device*/
1482 	ret = hclgevf_reset_stack(hdev);
1483 	if (ret) {
1484 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1485 		goto err_reset_lock;
1486 	}
1487 
1488 	/* bring up the nic to enable TX/RX again */
1489 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1490 	if (ret)
1491 		goto err_reset_lock;
1492 
1493 	rtnl_unlock();
1494 
1495 	hdev->last_reset_time = jiffies;
1496 	ae_dev->reset_type = HNAE3_NONE_RESET;
1497 	hdev->rst_stats.rst_done_cnt++;
1498 
1499 	return ret;
1500 err_reset_lock:
1501 	rtnl_unlock();
1502 err_reset:
1503 	/* When VF reset failed, only the higher level reset asserted by PF
1504 	 * can restore it, so re-initialize the command queue to receive
1505 	 * this higher reset event.
1506 	 */
1507 	hclgevf_cmd_init(hdev);
1508 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1509 	if (hclgevf_is_reset_pending(hdev))
1510 		hclgevf_reset_task_schedule(hdev);
1511 
1512 	return ret;
1513 }
1514 
1515 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1516 						     unsigned long *addr)
1517 {
1518 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1519 
1520 	/* return the highest priority reset level amongst all */
1521 	if (test_bit(HNAE3_VF_RESET, addr)) {
1522 		rst_level = HNAE3_VF_RESET;
1523 		clear_bit(HNAE3_VF_RESET, addr);
1524 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1525 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1526 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1527 		rst_level = HNAE3_VF_FULL_RESET;
1528 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1529 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1530 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1531 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1532 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1533 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1534 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1535 		rst_level = HNAE3_VF_FUNC_RESET;
1536 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1537 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1538 		rst_level = HNAE3_FLR_RESET;
1539 		clear_bit(HNAE3_FLR_RESET, addr);
1540 	}
1541 
1542 	return rst_level;
1543 }
1544 
1545 static void hclgevf_reset_event(struct pci_dev *pdev,
1546 				struct hnae3_handle *handle)
1547 {
1548 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1549 	struct hclgevf_dev *hdev = ae_dev->priv;
1550 
1551 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1552 
1553 	if (hdev->default_reset_request)
1554 		hdev->reset_level =
1555 			hclgevf_get_reset_level(hdev,
1556 						&hdev->default_reset_request);
1557 	else
1558 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1559 
1560 	/* reset of this VF requested */
1561 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1562 	hclgevf_reset_task_schedule(hdev);
1563 
1564 	hdev->last_reset_time = jiffies;
1565 }
1566 
1567 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1568 					  enum hnae3_reset_type rst_type)
1569 {
1570 	struct hclgevf_dev *hdev = ae_dev->priv;
1571 
1572 	set_bit(rst_type, &hdev->default_reset_request);
1573 }
1574 
1575 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1576 {
1577 #define HCLGEVF_FLR_WAIT_MS	100
1578 #define HCLGEVF_FLR_WAIT_CNT	50
1579 	struct hclgevf_dev *hdev = ae_dev->priv;
1580 	int cnt = 0;
1581 
1582 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1583 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1584 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1585 	hclgevf_reset_event(hdev->pdev, NULL);
1586 
1587 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1588 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1589 		msleep(HCLGEVF_FLR_WAIT_MS);
1590 
1591 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1592 		dev_err(&hdev->pdev->dev,
1593 			"flr wait down timeout: %d\n", cnt);
1594 }
1595 
1596 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1597 {
1598 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1599 
1600 	return hdev->fw_version;
1601 }
1602 
1603 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1604 {
1605 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1606 
1607 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1608 					    HCLGEVF_MISC_VECTOR_NUM);
1609 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1610 	/* vector status always valid for Vector 0 */
1611 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1612 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1613 
1614 	hdev->num_msi_left -= 1;
1615 	hdev->num_msi_used += 1;
1616 }
1617 
1618 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1619 {
1620 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1621 	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1622 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1623 		schedule_work(&hdev->rst_service_task);
1624 	}
1625 }
1626 
1627 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1628 {
1629 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1630 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1631 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1632 		schedule_work(&hdev->mbx_service_task);
1633 	}
1634 }
1635 
1636 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1637 {
1638 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1639 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1640 		schedule_work(&hdev->service_task);
1641 }
1642 
1643 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1644 {
1645 	/* if we have any pending mailbox event then schedule the mbx task */
1646 	if (hdev->mbx_event_pending)
1647 		hclgevf_mbx_task_schedule(hdev);
1648 
1649 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1650 		hclgevf_reset_task_schedule(hdev);
1651 }
1652 
1653 static void hclgevf_service_timer(struct timer_list *t)
1654 {
1655 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1656 
1657 	mod_timer(&hdev->service_timer, jiffies +
1658 		  HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1659 
1660 	hdev->stats_timer++;
1661 	hclgevf_task_schedule(hdev);
1662 }
1663 
1664 static void hclgevf_reset_service_task(struct work_struct *work)
1665 {
1666 	struct hclgevf_dev *hdev =
1667 		container_of(work, struct hclgevf_dev, rst_service_task);
1668 	int ret;
1669 
1670 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1671 		return;
1672 
1673 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1674 
1675 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1676 			       &hdev->reset_state)) {
1677 		/* PF has initmated that it is about to reset the hardware.
1678 		 * We now have to poll & check if harware has actually completed
1679 		 * the reset sequence. On hardware reset completion, VF needs to
1680 		 * reset the client and ae device.
1681 		 */
1682 		hdev->reset_attempts = 0;
1683 
1684 		hdev->last_reset_time = jiffies;
1685 		while ((hdev->reset_type =
1686 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1687 		       != HNAE3_NONE_RESET) {
1688 			ret = hclgevf_reset(hdev);
1689 			if (ret)
1690 				dev_err(&hdev->pdev->dev,
1691 					"VF stack reset failed %d.\n", ret);
1692 		}
1693 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1694 				      &hdev->reset_state)) {
1695 		/* we could be here when either of below happens:
1696 		 * 1. reset was initiated due to watchdog timeout due to
1697 		 *    a. IMP was earlier reset and our TX got choked down and
1698 		 *       which resulted in watchdog reacting and inducing VF
1699 		 *       reset. This also means our cmdq would be unreliable.
1700 		 *    b. problem in TX due to other lower layer(example link
1701 		 *       layer not functioning properly etc.)
1702 		 * 2. VF reset might have been initiated due to some config
1703 		 *    change.
1704 		 *
1705 		 * NOTE: Theres no clear way to detect above cases than to react
1706 		 * to the response of PF for this reset request. PF will ack the
1707 		 * 1b and 2. cases but we will not get any intimation about 1a
1708 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1709 		 * communication between PF and VF would be broken.
1710 		 */
1711 
1712 		/* if we are never geting into pending state it means either:
1713 		 * 1. PF is not receiving our request which could be due to IMP
1714 		 *    reset
1715 		 * 2. PF is screwed
1716 		 * We cannot do much for 2. but to check first we can try reset
1717 		 * our PCIe + stack and see if it alleviates the problem.
1718 		 */
1719 		if (hdev->reset_attempts > 3) {
1720 			/* prepare for full reset of stack + pcie interface */
1721 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1722 
1723 			/* "defer" schedule the reset task again */
1724 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1725 		} else {
1726 			hdev->reset_attempts++;
1727 
1728 			set_bit(hdev->reset_level, &hdev->reset_pending);
1729 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1730 		}
1731 		hclgevf_reset_task_schedule(hdev);
1732 	}
1733 
1734 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1735 }
1736 
1737 static void hclgevf_mailbox_service_task(struct work_struct *work)
1738 {
1739 	struct hclgevf_dev *hdev;
1740 
1741 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1742 
1743 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1744 		return;
1745 
1746 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1747 
1748 	hclgevf_mbx_async_handler(hdev);
1749 
1750 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1751 }
1752 
1753 static void hclgevf_keep_alive_timer(struct timer_list *t)
1754 {
1755 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1756 
1757 	schedule_work(&hdev->keep_alive_task);
1758 	mod_timer(&hdev->keep_alive_timer, jiffies +
1759 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1760 }
1761 
1762 static void hclgevf_keep_alive_task(struct work_struct *work)
1763 {
1764 	struct hclgevf_dev *hdev;
1765 	u8 respmsg;
1766 	int ret;
1767 
1768 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1769 
1770 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1771 		return;
1772 
1773 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1774 				   0, false, &respmsg, sizeof(respmsg));
1775 	if (ret)
1776 		dev_err(&hdev->pdev->dev,
1777 			"VF sends keep alive cmd failed(=%d)\n", ret);
1778 }
1779 
1780 static void hclgevf_service_task(struct work_struct *work)
1781 {
1782 	struct hnae3_handle *handle;
1783 	struct hclgevf_dev *hdev;
1784 
1785 	hdev = container_of(work, struct hclgevf_dev, service_task);
1786 	handle = &hdev->nic;
1787 
1788 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1789 		hclgevf_tqps_update_stats(handle);
1790 		hdev->stats_timer = 0;
1791 	}
1792 
1793 	/* request the link status from the PF. PF would be able to tell VF
1794 	 * about such updates in future so we might remove this later
1795 	 */
1796 	hclgevf_request_link_info(hdev);
1797 
1798 	hclgevf_update_link_mode(hdev);
1799 
1800 	hclgevf_deferred_task_schedule(hdev);
1801 
1802 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1803 }
1804 
1805 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1806 {
1807 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1808 }
1809 
1810 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1811 						      u32 *clearval)
1812 {
1813 	u32 cmdq_src_reg, rst_ing_reg;
1814 
1815 	/* fetch the events from their corresponding regs */
1816 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1817 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1818 
1819 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1820 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1821 		dev_info(&hdev->pdev->dev,
1822 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1823 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1824 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1825 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1826 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1827 		*clearval = cmdq_src_reg;
1828 		hdev->rst_stats.vf_rst_cnt++;
1829 		return HCLGEVF_VECTOR0_EVENT_RST;
1830 	}
1831 
1832 	/* check for vector0 mailbox(=CMDQ RX) event source */
1833 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1834 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1835 		*clearval = cmdq_src_reg;
1836 		return HCLGEVF_VECTOR0_EVENT_MBX;
1837 	}
1838 
1839 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1840 
1841 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1842 }
1843 
1844 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1845 {
1846 	writel(en ? 1 : 0, vector->addr);
1847 }
1848 
1849 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1850 {
1851 	enum hclgevf_evt_cause event_cause;
1852 	struct hclgevf_dev *hdev = data;
1853 	u32 clearval;
1854 
1855 	hclgevf_enable_vector(&hdev->misc_vector, false);
1856 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1857 
1858 	switch (event_cause) {
1859 	case HCLGEVF_VECTOR0_EVENT_RST:
1860 		hclgevf_reset_task_schedule(hdev);
1861 		break;
1862 	case HCLGEVF_VECTOR0_EVENT_MBX:
1863 		hclgevf_mbx_handler(hdev);
1864 		break;
1865 	default:
1866 		break;
1867 	}
1868 
1869 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1870 		hclgevf_clear_event_cause(hdev, clearval);
1871 		hclgevf_enable_vector(&hdev->misc_vector, true);
1872 	}
1873 
1874 	return IRQ_HANDLED;
1875 }
1876 
1877 static int hclgevf_configure(struct hclgevf_dev *hdev)
1878 {
1879 	int ret;
1880 
1881 	/* get current port based vlan state from PF */
1882 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1883 	if (ret)
1884 		return ret;
1885 
1886 	/* get queue configuration from PF */
1887 	ret = hclgevf_get_queue_info(hdev);
1888 	if (ret)
1889 		return ret;
1890 
1891 	/* get queue depth info from PF */
1892 	ret = hclgevf_get_queue_depth(hdev);
1893 	if (ret)
1894 		return ret;
1895 
1896 	ret = hclgevf_get_pf_media_type(hdev);
1897 	if (ret)
1898 		return ret;
1899 
1900 	/* get tc configuration from PF */
1901 	return hclgevf_get_tc_info(hdev);
1902 }
1903 
1904 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1905 {
1906 	struct pci_dev *pdev = ae_dev->pdev;
1907 	struct hclgevf_dev *hdev;
1908 
1909 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1910 	if (!hdev)
1911 		return -ENOMEM;
1912 
1913 	hdev->pdev = pdev;
1914 	hdev->ae_dev = ae_dev;
1915 	ae_dev->priv = hdev;
1916 
1917 	return 0;
1918 }
1919 
1920 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1921 {
1922 	struct hnae3_handle *roce = &hdev->roce;
1923 	struct hnae3_handle *nic = &hdev->nic;
1924 
1925 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1926 
1927 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1928 	    hdev->num_msi_left == 0)
1929 		return -EINVAL;
1930 
1931 	roce->rinfo.base_vector = hdev->roce_base_vector;
1932 
1933 	roce->rinfo.netdev = nic->kinfo.netdev;
1934 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1935 
1936 	roce->pdev = nic->pdev;
1937 	roce->ae_algo = nic->ae_algo;
1938 	roce->numa_node_mask = nic->numa_node_mask;
1939 
1940 	return 0;
1941 }
1942 
1943 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1944 {
1945 	struct hclgevf_cfg_gro_status_cmd *req;
1946 	struct hclgevf_desc desc;
1947 	int ret;
1948 
1949 	if (!hnae3_dev_gro_supported(hdev))
1950 		return 0;
1951 
1952 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1953 				     false);
1954 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1955 
1956 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1957 
1958 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1959 	if (ret)
1960 		dev_err(&hdev->pdev->dev,
1961 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1962 
1963 	return ret;
1964 }
1965 
1966 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1967 {
1968 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1969 	int i, ret;
1970 
1971 	rss_cfg->rss_size = hdev->rss_size_max;
1972 
1973 	if (hdev->pdev->revision >= 0x21) {
1974 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1975 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1976 		       HCLGEVF_RSS_KEY_SIZE);
1977 
1978 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1979 					       rss_cfg->rss_hash_key);
1980 		if (ret)
1981 			return ret;
1982 
1983 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1984 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1985 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1986 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1987 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1988 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1989 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1990 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1991 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1992 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1993 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1994 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1995 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1996 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1997 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1998 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1999 
2000 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2001 		if (ret)
2002 			return ret;
2003 
2004 	}
2005 
2006 	/* Initialize RSS indirect table for each vport */
2007 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2008 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
2009 
2010 	ret = hclgevf_set_rss_indir_table(hdev);
2011 	if (ret)
2012 		return ret;
2013 
2014 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
2015 }
2016 
2017 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2018 {
2019 	/* other vlan config(like, VLAN TX/RX offload) would also be added
2020 	 * here later
2021 	 */
2022 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2023 				       false);
2024 }
2025 
2026 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2027 {
2028 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2029 
2030 	if (enable) {
2031 		mod_timer(&hdev->service_timer, jiffies + HZ);
2032 	} else {
2033 		del_timer_sync(&hdev->service_timer);
2034 		cancel_work_sync(&hdev->service_task);
2035 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2036 	}
2037 }
2038 
2039 static int hclgevf_ae_start(struct hnae3_handle *handle)
2040 {
2041 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2042 
2043 	/* reset tqp stats */
2044 	hclgevf_reset_tqp_stats(handle);
2045 
2046 	hclgevf_request_link_info(hdev);
2047 
2048 	hclgevf_update_link_mode(hdev);
2049 
2050 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2051 
2052 	return 0;
2053 }
2054 
2055 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2056 {
2057 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2058 	int i;
2059 
2060 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2061 
2062 	if (hdev->reset_type != HNAE3_VF_RESET)
2063 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2064 			if (hclgevf_reset_tqp(handle, i))
2065 				break;
2066 
2067 	/* reset tqp stats */
2068 	hclgevf_reset_tqp_stats(handle);
2069 	hclgevf_update_link_status(hdev, 0);
2070 }
2071 
2072 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2073 {
2074 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2075 	u8 msg_data;
2076 
2077 	msg_data = alive ? 1 : 0;
2078 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2079 				    0, &msg_data, 1, false, NULL, 0);
2080 }
2081 
2082 static int hclgevf_client_start(struct hnae3_handle *handle)
2083 {
2084 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2085 	int ret;
2086 
2087 	ret = hclgevf_set_alive(handle, true);
2088 	if (ret)
2089 		return ret;
2090 
2091 	mod_timer(&hdev->keep_alive_timer, jiffies +
2092 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2093 
2094 	return 0;
2095 }
2096 
2097 static void hclgevf_client_stop(struct hnae3_handle *handle)
2098 {
2099 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2100 	int ret;
2101 
2102 	ret = hclgevf_set_alive(handle, false);
2103 	if (ret)
2104 		dev_warn(&hdev->pdev->dev,
2105 			 "%s failed %d\n", __func__, ret);
2106 
2107 	del_timer_sync(&hdev->keep_alive_timer);
2108 	cancel_work_sync(&hdev->keep_alive_task);
2109 }
2110 
2111 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2112 {
2113 	/* setup tasks for the MBX */
2114 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2115 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2116 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2117 
2118 	/* setup tasks for service timer */
2119 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2120 
2121 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2122 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2123 
2124 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2125 
2126 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2127 
2128 	/* bring the device down */
2129 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2130 }
2131 
2132 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2133 {
2134 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2135 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2136 
2137 	if (hdev->keep_alive_timer.function)
2138 		del_timer_sync(&hdev->keep_alive_timer);
2139 	if (hdev->keep_alive_task.func)
2140 		cancel_work_sync(&hdev->keep_alive_task);
2141 	if (hdev->service_timer.function)
2142 		del_timer_sync(&hdev->service_timer);
2143 	if (hdev->service_task.func)
2144 		cancel_work_sync(&hdev->service_task);
2145 	if (hdev->mbx_service_task.func)
2146 		cancel_work_sync(&hdev->mbx_service_task);
2147 	if (hdev->rst_service_task.func)
2148 		cancel_work_sync(&hdev->rst_service_task);
2149 
2150 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2151 }
2152 
2153 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2154 {
2155 	struct pci_dev *pdev = hdev->pdev;
2156 	int vectors;
2157 	int i;
2158 
2159 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2160 		vectors = pci_alloc_irq_vectors(pdev,
2161 						hdev->roce_base_msix_offset + 1,
2162 						hdev->num_msi,
2163 						PCI_IRQ_MSIX);
2164 	else
2165 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2166 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2167 
2168 	if (vectors < 0) {
2169 		dev_err(&pdev->dev,
2170 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2171 			vectors);
2172 		return vectors;
2173 	}
2174 	if (vectors < hdev->num_msi)
2175 		dev_warn(&hdev->pdev->dev,
2176 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2177 			 hdev->num_msi, vectors);
2178 
2179 	hdev->num_msi = vectors;
2180 	hdev->num_msi_left = vectors;
2181 	hdev->base_msi_vector = pdev->irq;
2182 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2183 
2184 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2185 					   sizeof(u16), GFP_KERNEL);
2186 	if (!hdev->vector_status) {
2187 		pci_free_irq_vectors(pdev);
2188 		return -ENOMEM;
2189 	}
2190 
2191 	for (i = 0; i < hdev->num_msi; i++)
2192 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2193 
2194 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2195 					sizeof(int), GFP_KERNEL);
2196 	if (!hdev->vector_irq) {
2197 		devm_kfree(&pdev->dev, hdev->vector_status);
2198 		pci_free_irq_vectors(pdev);
2199 		return -ENOMEM;
2200 	}
2201 
2202 	return 0;
2203 }
2204 
2205 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2206 {
2207 	struct pci_dev *pdev = hdev->pdev;
2208 
2209 	devm_kfree(&pdev->dev, hdev->vector_status);
2210 	devm_kfree(&pdev->dev, hdev->vector_irq);
2211 	pci_free_irq_vectors(pdev);
2212 }
2213 
2214 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2215 {
2216 	int ret = 0;
2217 
2218 	hclgevf_get_misc_vector(hdev);
2219 
2220 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2221 			  0, "hclgevf_cmd", hdev);
2222 	if (ret) {
2223 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2224 			hdev->misc_vector.vector_irq);
2225 		return ret;
2226 	}
2227 
2228 	hclgevf_clear_event_cause(hdev, 0);
2229 
2230 	/* enable misc. vector(vector 0) */
2231 	hclgevf_enable_vector(&hdev->misc_vector, true);
2232 
2233 	return ret;
2234 }
2235 
2236 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2237 {
2238 	/* disable misc vector(vector 0) */
2239 	hclgevf_enable_vector(&hdev->misc_vector, false);
2240 	synchronize_irq(hdev->misc_vector.vector_irq);
2241 	free_irq(hdev->misc_vector.vector_irq, hdev);
2242 	hclgevf_free_vector(hdev, 0);
2243 }
2244 
2245 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2246 {
2247 	struct device *dev = &hdev->pdev->dev;
2248 
2249 	dev_info(dev, "VF info begin:\n");
2250 
2251 	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2252 	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2253 	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2254 	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2255 	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2256 	dev_info(dev, "PF media type of this VF: %d\n",
2257 		 hdev->hw.mac.media_type);
2258 
2259 	dev_info(dev, "VF info end.\n");
2260 }
2261 
2262 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2263 					    struct hnae3_client *client)
2264 {
2265 	struct hclgevf_dev *hdev = ae_dev->priv;
2266 	int ret;
2267 
2268 	ret = client->ops->init_instance(&hdev->nic);
2269 	if (ret)
2270 		return ret;
2271 
2272 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2273 	hnae3_set_client_init_flag(client, ae_dev, 1);
2274 
2275 	if (netif_msg_drv(&hdev->nic))
2276 		hclgevf_info_show(hdev);
2277 
2278 	return 0;
2279 }
2280 
2281 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2282 					     struct hnae3_client *client)
2283 {
2284 	struct hclgevf_dev *hdev = ae_dev->priv;
2285 	int ret;
2286 
2287 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2288 	    !hdev->nic_client)
2289 		return 0;
2290 
2291 	ret = hclgevf_init_roce_base_info(hdev);
2292 	if (ret)
2293 		return ret;
2294 
2295 	ret = client->ops->init_instance(&hdev->roce);
2296 	if (ret)
2297 		return ret;
2298 
2299 	hnae3_set_client_init_flag(client, ae_dev, 1);
2300 
2301 	return 0;
2302 }
2303 
2304 static int hclgevf_init_client_instance(struct hnae3_client *client,
2305 					struct hnae3_ae_dev *ae_dev)
2306 {
2307 	struct hclgevf_dev *hdev = ae_dev->priv;
2308 	int ret;
2309 
2310 	switch (client->type) {
2311 	case HNAE3_CLIENT_KNIC:
2312 		hdev->nic_client = client;
2313 		hdev->nic.client = client;
2314 
2315 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2316 		if (ret)
2317 			goto clear_nic;
2318 
2319 		ret = hclgevf_init_roce_client_instance(ae_dev,
2320 							hdev->roce_client);
2321 		if (ret)
2322 			goto clear_roce;
2323 
2324 		break;
2325 	case HNAE3_CLIENT_ROCE:
2326 		if (hnae3_dev_roce_supported(hdev)) {
2327 			hdev->roce_client = client;
2328 			hdev->roce.client = client;
2329 		}
2330 
2331 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2332 		if (ret)
2333 			goto clear_roce;
2334 
2335 		break;
2336 	default:
2337 		return -EINVAL;
2338 	}
2339 
2340 	return 0;
2341 
2342 clear_nic:
2343 	hdev->nic_client = NULL;
2344 	hdev->nic.client = NULL;
2345 	return ret;
2346 clear_roce:
2347 	hdev->roce_client = NULL;
2348 	hdev->roce.client = NULL;
2349 	return ret;
2350 }
2351 
2352 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2353 					   struct hnae3_ae_dev *ae_dev)
2354 {
2355 	struct hclgevf_dev *hdev = ae_dev->priv;
2356 
2357 	/* un-init roce, if it exists */
2358 	if (hdev->roce_client) {
2359 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2360 		hdev->roce_client = NULL;
2361 		hdev->roce.client = NULL;
2362 	}
2363 
2364 	/* un-init nic/unic, if this was not called by roce client */
2365 	if (client->ops->uninit_instance && hdev->nic_client &&
2366 	    client->type != HNAE3_CLIENT_ROCE) {
2367 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2368 
2369 		client->ops->uninit_instance(&hdev->nic, 0);
2370 		hdev->nic_client = NULL;
2371 		hdev->nic.client = NULL;
2372 	}
2373 }
2374 
2375 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2376 {
2377 	struct pci_dev *pdev = hdev->pdev;
2378 	struct hclgevf_hw *hw;
2379 	int ret;
2380 
2381 	ret = pci_enable_device(pdev);
2382 	if (ret) {
2383 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2384 		return ret;
2385 	}
2386 
2387 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2388 	if (ret) {
2389 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2390 		goto err_disable_device;
2391 	}
2392 
2393 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2394 	if (ret) {
2395 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2396 		goto err_disable_device;
2397 	}
2398 
2399 	pci_set_master(pdev);
2400 	hw = &hdev->hw;
2401 	hw->hdev = hdev;
2402 	hw->io_base = pci_iomap(pdev, 2, 0);
2403 	if (!hw->io_base) {
2404 		dev_err(&pdev->dev, "can't map configuration register space\n");
2405 		ret = -ENOMEM;
2406 		goto err_clr_master;
2407 	}
2408 
2409 	return 0;
2410 
2411 err_clr_master:
2412 	pci_clear_master(pdev);
2413 	pci_release_regions(pdev);
2414 err_disable_device:
2415 	pci_disable_device(pdev);
2416 
2417 	return ret;
2418 }
2419 
2420 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2421 {
2422 	struct pci_dev *pdev = hdev->pdev;
2423 
2424 	pci_iounmap(pdev, hdev->hw.io_base);
2425 	pci_clear_master(pdev);
2426 	pci_release_regions(pdev);
2427 	pci_disable_device(pdev);
2428 }
2429 
2430 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2431 {
2432 	struct hclgevf_query_res_cmd *req;
2433 	struct hclgevf_desc desc;
2434 	int ret;
2435 
2436 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2437 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2438 	if (ret) {
2439 		dev_err(&hdev->pdev->dev,
2440 			"query vf resource failed, ret = %d.\n", ret);
2441 		return ret;
2442 	}
2443 
2444 	req = (struct hclgevf_query_res_cmd *)desc.data;
2445 
2446 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2447 		hdev->roce_base_msix_offset =
2448 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2449 				HCLGEVF_MSIX_OFT_ROCEE_M,
2450 				HCLGEVF_MSIX_OFT_ROCEE_S);
2451 		hdev->num_roce_msix =
2452 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2453 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2454 
2455 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2456 		 * are queued before Roce vectors. The offset is fixed to 64.
2457 		 */
2458 		hdev->num_msi = hdev->num_roce_msix +
2459 				hdev->roce_base_msix_offset;
2460 	} else {
2461 		hdev->num_msi =
2462 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2463 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2464 	}
2465 
2466 	return 0;
2467 }
2468 
2469 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2470 {
2471 	struct pci_dev *pdev = hdev->pdev;
2472 	int ret = 0;
2473 
2474 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2475 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2476 		hclgevf_misc_irq_uninit(hdev);
2477 		hclgevf_uninit_msi(hdev);
2478 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2479 	}
2480 
2481 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2482 		pci_set_master(pdev);
2483 		ret = hclgevf_init_msi(hdev);
2484 		if (ret) {
2485 			dev_err(&pdev->dev,
2486 				"failed(%d) to init MSI/MSI-X\n", ret);
2487 			return ret;
2488 		}
2489 
2490 		ret = hclgevf_misc_irq_init(hdev);
2491 		if (ret) {
2492 			hclgevf_uninit_msi(hdev);
2493 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2494 				ret);
2495 			return ret;
2496 		}
2497 
2498 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2499 	}
2500 
2501 	return ret;
2502 }
2503 
2504 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2505 {
2506 	struct pci_dev *pdev = hdev->pdev;
2507 	int ret;
2508 
2509 	ret = hclgevf_pci_reset(hdev);
2510 	if (ret) {
2511 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2512 		return ret;
2513 	}
2514 
2515 	ret = hclgevf_cmd_init(hdev);
2516 	if (ret) {
2517 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2518 		return ret;
2519 	}
2520 
2521 	ret = hclgevf_rss_init_hw(hdev);
2522 	if (ret) {
2523 		dev_err(&hdev->pdev->dev,
2524 			"failed(%d) to initialize RSS\n", ret);
2525 		return ret;
2526 	}
2527 
2528 	ret = hclgevf_config_gro(hdev, true);
2529 	if (ret)
2530 		return ret;
2531 
2532 	ret = hclgevf_init_vlan_config(hdev);
2533 	if (ret) {
2534 		dev_err(&hdev->pdev->dev,
2535 			"failed(%d) to initialize VLAN config\n", ret);
2536 		return ret;
2537 	}
2538 
2539 	dev_info(&hdev->pdev->dev, "Reset done\n");
2540 
2541 	return 0;
2542 }
2543 
2544 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2545 {
2546 	struct pci_dev *pdev = hdev->pdev;
2547 	int ret;
2548 
2549 	ret = hclgevf_pci_init(hdev);
2550 	if (ret) {
2551 		dev_err(&pdev->dev, "PCI initialization failed\n");
2552 		return ret;
2553 	}
2554 
2555 	ret = hclgevf_cmd_queue_init(hdev);
2556 	if (ret) {
2557 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2558 		goto err_cmd_queue_init;
2559 	}
2560 
2561 	ret = hclgevf_cmd_init(hdev);
2562 	if (ret)
2563 		goto err_cmd_init;
2564 
2565 	/* Get vf resource */
2566 	ret = hclgevf_query_vf_resource(hdev);
2567 	if (ret) {
2568 		dev_err(&hdev->pdev->dev,
2569 			"Query vf status error, ret = %d.\n", ret);
2570 		goto err_cmd_init;
2571 	}
2572 
2573 	ret = hclgevf_init_msi(hdev);
2574 	if (ret) {
2575 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2576 		goto err_cmd_init;
2577 	}
2578 
2579 	hclgevf_state_init(hdev);
2580 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2581 
2582 	ret = hclgevf_misc_irq_init(hdev);
2583 	if (ret) {
2584 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2585 			ret);
2586 		goto err_misc_irq_init;
2587 	}
2588 
2589 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2590 
2591 	ret = hclgevf_configure(hdev);
2592 	if (ret) {
2593 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2594 		goto err_config;
2595 	}
2596 
2597 	ret = hclgevf_alloc_tqps(hdev);
2598 	if (ret) {
2599 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2600 		goto err_config;
2601 	}
2602 
2603 	ret = hclgevf_set_handle_info(hdev);
2604 	if (ret) {
2605 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2606 		goto err_config;
2607 	}
2608 
2609 	ret = hclgevf_config_gro(hdev, true);
2610 	if (ret)
2611 		goto err_config;
2612 
2613 	/* vf is not allowed to enable unicast/multicast promisc mode.
2614 	 * For revision 0x20, default to disable broadcast promisc mode,
2615 	 * firmware makes sure broadcast packets can be accepted.
2616 	 * For revision 0x21, default to enable broadcast promisc mode.
2617 	 */
2618 	ret = hclgevf_set_promisc_mode(hdev, true);
2619 	if (ret)
2620 		goto err_config;
2621 
2622 	/* Initialize RSS for this VF */
2623 	ret = hclgevf_rss_init_hw(hdev);
2624 	if (ret) {
2625 		dev_err(&hdev->pdev->dev,
2626 			"failed(%d) to initialize RSS\n", ret);
2627 		goto err_config;
2628 	}
2629 
2630 	ret = hclgevf_init_vlan_config(hdev);
2631 	if (ret) {
2632 		dev_err(&hdev->pdev->dev,
2633 			"failed(%d) to initialize VLAN config\n", ret);
2634 		goto err_config;
2635 	}
2636 
2637 	hdev->last_reset_time = jiffies;
2638 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2639 
2640 	return 0;
2641 
2642 err_config:
2643 	hclgevf_misc_irq_uninit(hdev);
2644 err_misc_irq_init:
2645 	hclgevf_state_uninit(hdev);
2646 	hclgevf_uninit_msi(hdev);
2647 err_cmd_init:
2648 	hclgevf_cmd_uninit(hdev);
2649 err_cmd_queue_init:
2650 	hclgevf_pci_uninit(hdev);
2651 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2652 	return ret;
2653 }
2654 
2655 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2656 {
2657 	hclgevf_state_uninit(hdev);
2658 
2659 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2660 		hclgevf_misc_irq_uninit(hdev);
2661 		hclgevf_uninit_msi(hdev);
2662 	}
2663 
2664 	hclgevf_pci_uninit(hdev);
2665 	hclgevf_cmd_uninit(hdev);
2666 }
2667 
2668 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2669 {
2670 	struct pci_dev *pdev = ae_dev->pdev;
2671 	struct hclgevf_dev *hdev;
2672 	int ret;
2673 
2674 	ret = hclgevf_alloc_hdev(ae_dev);
2675 	if (ret) {
2676 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2677 		return ret;
2678 	}
2679 
2680 	ret = hclgevf_init_hdev(ae_dev->priv);
2681 	if (ret) {
2682 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2683 		return ret;
2684 	}
2685 
2686 	hdev = ae_dev->priv;
2687 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2688 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2689 
2690 	return 0;
2691 }
2692 
2693 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2694 {
2695 	struct hclgevf_dev *hdev = ae_dev->priv;
2696 
2697 	hclgevf_uninit_hdev(hdev);
2698 	ae_dev->priv = NULL;
2699 }
2700 
2701 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2702 {
2703 	struct hnae3_handle *nic = &hdev->nic;
2704 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2705 
2706 	return min_t(u32, hdev->rss_size_max,
2707 		     hdev->num_tqps / kinfo->num_tc);
2708 }
2709 
2710 /**
2711  * hclgevf_get_channels - Get the current channels enabled and max supported.
2712  * @handle: hardware information for network interface
2713  * @ch: ethtool channels structure
2714  *
2715  * We don't support separate tx and rx queues as channels. The other count
2716  * represents how many queues are being used for control. max_combined counts
2717  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2718  * q_vectors since we support a lot more queue pairs than q_vectors.
2719  **/
2720 static void hclgevf_get_channels(struct hnae3_handle *handle,
2721 				 struct ethtool_channels *ch)
2722 {
2723 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2724 
2725 	ch->max_combined = hclgevf_get_max_channels(hdev);
2726 	ch->other_count = 0;
2727 	ch->max_other = 0;
2728 	ch->combined_count = handle->kinfo.rss_size;
2729 }
2730 
2731 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2732 					  u16 *alloc_tqps, u16 *max_rss_size)
2733 {
2734 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2735 
2736 	*alloc_tqps = hdev->num_tqps;
2737 	*max_rss_size = hdev->rss_size_max;
2738 }
2739 
2740 static int hclgevf_get_status(struct hnae3_handle *handle)
2741 {
2742 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2743 
2744 	return hdev->hw.mac.link;
2745 }
2746 
2747 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2748 					    u8 *auto_neg, u32 *speed,
2749 					    u8 *duplex)
2750 {
2751 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2752 
2753 	if (speed)
2754 		*speed = hdev->hw.mac.speed;
2755 	if (duplex)
2756 		*duplex = hdev->hw.mac.duplex;
2757 	if (auto_neg)
2758 		*auto_neg = AUTONEG_DISABLE;
2759 }
2760 
2761 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2762 				 u8 duplex)
2763 {
2764 	hdev->hw.mac.speed = speed;
2765 	hdev->hw.mac.duplex = duplex;
2766 }
2767 
2768 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2769 {
2770 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2771 
2772 	return hclgevf_config_gro(hdev, enable);
2773 }
2774 
2775 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2776 				   u8 *module_type)
2777 {
2778 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2779 
2780 	if (media_type)
2781 		*media_type = hdev->hw.mac.media_type;
2782 
2783 	if (module_type)
2784 		*module_type = hdev->hw.mac.module_type;
2785 }
2786 
2787 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2788 {
2789 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2790 
2791 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2792 }
2793 
2794 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2795 {
2796 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2797 
2798 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2799 }
2800 
2801 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2802 {
2803 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2804 
2805 	return hdev->rst_stats.hw_rst_done_cnt;
2806 }
2807 
2808 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2809 				  unsigned long *supported,
2810 				  unsigned long *advertising)
2811 {
2812 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2813 
2814 	*supported = hdev->hw.mac.supported;
2815 	*advertising = hdev->hw.mac.advertising;
2816 }
2817 
2818 #define MAX_SEPARATE_NUM	4
2819 #define SEPARATOR_VALUE		0xFFFFFFFF
2820 #define REG_NUM_PER_LINE	4
2821 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2822 
2823 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2824 {
2825 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2826 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2827 
2828 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2829 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2830 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2831 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2832 
2833 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2834 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2835 }
2836 
2837 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2838 			     void *data)
2839 {
2840 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2841 	int i, j, reg_um, separator_num;
2842 	u32 *reg = data;
2843 
2844 	*version = hdev->fw_version;
2845 
2846 	/* fetching per-VF registers values from VF PCIe register space */
2847 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2848 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2849 	for (i = 0; i < reg_um; i++)
2850 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2851 	for (i = 0; i < separator_num; i++)
2852 		*reg++ = SEPARATOR_VALUE;
2853 
2854 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2855 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2856 	for (i = 0; i < reg_um; i++)
2857 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2858 	for (i = 0; i < separator_num; i++)
2859 		*reg++ = SEPARATOR_VALUE;
2860 
2861 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2862 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2863 	for (j = 0; j < hdev->num_tqps; j++) {
2864 		for (i = 0; i < reg_um; i++)
2865 			*reg++ = hclgevf_read_dev(&hdev->hw,
2866 						  ring_reg_addr_list[i] +
2867 						  0x200 * j);
2868 		for (i = 0; i < separator_num; i++)
2869 			*reg++ = SEPARATOR_VALUE;
2870 	}
2871 
2872 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2873 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2874 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2875 		for (i = 0; i < reg_um; i++)
2876 			*reg++ = hclgevf_read_dev(&hdev->hw,
2877 						  tqp_intr_reg_addr_list[i] +
2878 						  4 * j);
2879 		for (i = 0; i < separator_num; i++)
2880 			*reg++ = SEPARATOR_VALUE;
2881 	}
2882 }
2883 
2884 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
2885 					u8 *port_base_vlan_info, u8 data_size)
2886 {
2887 	struct hnae3_handle *nic = &hdev->nic;
2888 
2889 	rtnl_lock();
2890 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2891 	rtnl_unlock();
2892 
2893 	/* send msg to PF and wait update port based vlan info */
2894 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
2895 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
2896 			     port_base_vlan_info, data_size,
2897 			     false, NULL, 0);
2898 
2899 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
2900 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
2901 	else
2902 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
2903 
2904 	rtnl_lock();
2905 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
2906 	rtnl_unlock();
2907 }
2908 
2909 static const struct hnae3_ae_ops hclgevf_ops = {
2910 	.init_ae_dev = hclgevf_init_ae_dev,
2911 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2912 	.flr_prepare = hclgevf_flr_prepare,
2913 	.flr_done = hclgevf_flr_done,
2914 	.init_client_instance = hclgevf_init_client_instance,
2915 	.uninit_client_instance = hclgevf_uninit_client_instance,
2916 	.start = hclgevf_ae_start,
2917 	.stop = hclgevf_ae_stop,
2918 	.client_start = hclgevf_client_start,
2919 	.client_stop = hclgevf_client_stop,
2920 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2921 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2922 	.get_vector = hclgevf_get_vector,
2923 	.put_vector = hclgevf_put_vector,
2924 	.reset_queue = hclgevf_reset_tqp,
2925 	.get_mac_addr = hclgevf_get_mac_addr,
2926 	.set_mac_addr = hclgevf_set_mac_addr,
2927 	.add_uc_addr = hclgevf_add_uc_addr,
2928 	.rm_uc_addr = hclgevf_rm_uc_addr,
2929 	.add_mc_addr = hclgevf_add_mc_addr,
2930 	.rm_mc_addr = hclgevf_rm_mc_addr,
2931 	.get_stats = hclgevf_get_stats,
2932 	.update_stats = hclgevf_update_stats,
2933 	.get_strings = hclgevf_get_strings,
2934 	.get_sset_count = hclgevf_get_sset_count,
2935 	.get_rss_key_size = hclgevf_get_rss_key_size,
2936 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2937 	.get_rss = hclgevf_get_rss,
2938 	.set_rss = hclgevf_set_rss,
2939 	.get_rss_tuple = hclgevf_get_rss_tuple,
2940 	.set_rss_tuple = hclgevf_set_rss_tuple,
2941 	.get_tc_size = hclgevf_get_tc_size,
2942 	.get_fw_version = hclgevf_get_fw_version,
2943 	.set_vlan_filter = hclgevf_set_vlan_filter,
2944 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2945 	.reset_event = hclgevf_reset_event,
2946 	.set_default_reset_request = hclgevf_set_def_reset_request,
2947 	.get_channels = hclgevf_get_channels,
2948 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2949 	.get_regs_len = hclgevf_get_regs_len,
2950 	.get_regs = hclgevf_get_regs,
2951 	.get_status = hclgevf_get_status,
2952 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2953 	.get_media_type = hclgevf_get_media_type,
2954 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2955 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2956 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2957 	.set_gro_en = hclgevf_gro_en,
2958 	.set_mtu = hclgevf_set_mtu,
2959 	.get_global_queue_id = hclgevf_get_qid_global,
2960 	.set_timer_task = hclgevf_set_timer_task,
2961 	.get_link_mode = hclgevf_get_link_mode,
2962 };
2963 
2964 static struct hnae3_ae_algo ae_algovf = {
2965 	.ops = &hclgevf_ops,
2966 	.pdev_id_table = ae_algovf_pci_tbl,
2967 };
2968 
2969 static int hclgevf_init(void)
2970 {
2971 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2972 
2973 	hnae3_register_ae_algo(&ae_algovf);
2974 
2975 	return 0;
2976 }
2977 
2978 static void hclgevf_exit(void)
2979 {
2980 	hnae3_unregister_ae_algo(&ae_algovf);
2981 }
2982 module_init(hclgevf_init);
2983 module_exit(hclgevf_exit);
2984 
2985 MODULE_LICENSE("GPL");
2986 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2987 MODULE_DESCRIPTION("HCLGEVF Driver");
2988 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2989