1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18 				  unsigned long delay);
19 
20 static struct hnae3_ae_algo ae_algovf;
21 
22 static struct workqueue_struct *hclgevf_wq;
23 
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 	/* required last entry */
29 	{0, }
30 };
31 
32 static const u8 hclgevf_hash_key[] = {
33 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39 
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41 
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
44 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
45 					 HCLGEVF_CMDQ_TX_TAIL_REG,
46 					 HCLGEVF_CMDQ_TX_HEAD_REG,
47 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
48 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
49 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
50 					 HCLGEVF_CMDQ_RX_TAIL_REG,
51 					 HCLGEVF_CMDQ_RX_HEAD_REG,
52 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 					 HCLGEVF_CMDQ_INTR_EN_REG,
55 					 HCLGEVF_CMDQ_INTR_GEN_REG};
56 
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58 					   HCLGEVF_RST_ING,
59 					   HCLGEVF_GRO_EN_REG};
60 
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62 					 HCLGEVF_RING_RX_ADDR_H_REG,
63 					 HCLGEVF_RING_RX_BD_NUM_REG,
64 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
65 					 HCLGEVF_RING_RX_MERGE_EN_REG,
66 					 HCLGEVF_RING_RX_TAIL_REG,
67 					 HCLGEVF_RING_RX_HEAD_REG,
68 					 HCLGEVF_RING_RX_FBD_NUM_REG,
69 					 HCLGEVF_RING_RX_OFFSET_REG,
70 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
71 					 HCLGEVF_RING_RX_STASH_REG,
72 					 HCLGEVF_RING_RX_BD_ERR_REG,
73 					 HCLGEVF_RING_TX_ADDR_L_REG,
74 					 HCLGEVF_RING_TX_ADDR_H_REG,
75 					 HCLGEVF_RING_TX_BD_NUM_REG,
76 					 HCLGEVF_RING_TX_PRIORITY_REG,
77 					 HCLGEVF_RING_TX_TC_REG,
78 					 HCLGEVF_RING_TX_MERGE_EN_REG,
79 					 HCLGEVF_RING_TX_TAIL_REG,
80 					 HCLGEVF_RING_TX_HEAD_REG,
81 					 HCLGEVF_RING_TX_FBD_NUM_REG,
82 					 HCLGEVF_RING_TX_OFFSET_REG,
83 					 HCLGEVF_RING_TX_EBD_NUM_REG,
84 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
85 					 HCLGEVF_RING_TX_BD_ERR_REG,
86 					 HCLGEVF_RING_EN_REG};
87 
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89 					     HCLGEVF_TQP_INTR_GL0_REG,
90 					     HCLGEVF_TQP_INTR_GL1_REG,
91 					     HCLGEVF_TQP_INTR_GL2_REG,
92 					     HCLGEVF_TQP_INTR_RL_REG};
93 
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96 	if (!handle->client)
97 		return container_of(handle, struct hclgevf_dev, nic);
98 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
99 		return container_of(handle, struct hclgevf_dev, roce);
100 	else
101 		return container_of(handle, struct hclgevf_dev, nic);
102 }
103 
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108 	struct hclgevf_desc desc;
109 	struct hclgevf_tqp *tqp;
110 	int status;
111 	int i;
112 
113 	for (i = 0; i < kinfo->num_tqps; i++) {
114 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 		hclgevf_cmd_setup_basic_desc(&desc,
116 					     HCLGEVF_OPC_QUERY_RX_STATUS,
117 					     true);
118 
119 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121 		if (status) {
122 			dev_err(&hdev->pdev->dev,
123 				"Query tqp stat fail, status = %d,queue = %d\n",
124 				status,	i);
125 			return status;
126 		}
127 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128 			le32_to_cpu(desc.data[1]);
129 
130 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131 					     true);
132 
133 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135 		if (status) {
136 			dev_err(&hdev->pdev->dev,
137 				"Query tqp stat fail, status = %d,queue = %d\n",
138 				status, i);
139 			return status;
140 		}
141 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142 			le32_to_cpu(desc.data[1]);
143 	}
144 
145 	return 0;
146 }
147 
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151 	struct hclgevf_tqp *tqp;
152 	u64 *buff = data;
153 	int i;
154 
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158 	}
159 	for (i = 0; i < kinfo->num_tqps; i++) {
160 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162 	}
163 
164 	return buff;
165 }
166 
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 
171 	return kinfo->num_tqps * 2;
172 }
173 
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177 	u8 *buff = data;
178 	int i;
179 
180 	for (i = 0; i < kinfo->num_tqps; i++) {
181 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 						       struct hclgevf_tqp, q);
183 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
184 			 tqp->index);
185 		buff += ETH_GSTRING_LEN;
186 	}
187 
188 	for (i = 0; i < kinfo->num_tqps; i++) {
189 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190 						       struct hclgevf_tqp, q);
191 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
192 			 tqp->index);
193 		buff += ETH_GSTRING_LEN;
194 	}
195 
196 	return buff;
197 }
198 
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200 				 struct net_device_stats *net_stats)
201 {
202 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203 	int status;
204 
205 	status = hclgevf_tqps_update_stats(handle);
206 	if (status)
207 		dev_err(&hdev->pdev->dev,
208 			"VF update of TQPS stats fail, status = %d.\n",
209 			status);
210 }
211 
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214 	if (strset == ETH_SS_TEST)
215 		return -EOPNOTSUPP;
216 	else if (strset == ETH_SS_STATS)
217 		return hclgevf_tqps_get_sset_count(handle, strset);
218 
219 	return 0;
220 }
221 
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223 				u8 *data)
224 {
225 	u8 *p = (char *)data;
226 
227 	if (strset == ETH_SS_STATS)
228 		p = hclgevf_tqps_get_strings(handle, p);
229 }
230 
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233 	hclgevf_tqps_get_stats(handle, data);
234 }
235 
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237 				   u8 subcode)
238 {
239 	if (msg) {
240 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241 		msg->code = code;
242 		msg->subcode = subcode;
243 	}
244 }
245 
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
247 {
248 	struct hclge_vf_to_pf_msg send_msg;
249 	u8 resp_msg;
250 	int status;
251 
252 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254 				      sizeof(resp_msg));
255 	if (status) {
256 		dev_err(&hdev->pdev->dev,
257 			"VF request to get TC info from PF failed %d",
258 			status);
259 		return status;
260 	}
261 
262 	hdev->hw_tc_map = resp_msg;
263 
264 	return 0;
265 }
266 
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
268 {
269 	struct hnae3_handle *nic = &hdev->nic;
270 	struct hclge_vf_to_pf_msg send_msg;
271 	u8 resp_msg;
272 	int ret;
273 
274 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277 				   sizeof(u8));
278 	if (ret) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get port based vlan state failed %d",
281 			ret);
282 		return ret;
283 	}
284 
285 	nic->port_base_vlan_state = resp_msg;
286 
287 	return 0;
288 }
289 
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291 {
292 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
296 
297 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298 	struct hclge_vf_to_pf_msg send_msg;
299 	int status;
300 
301 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303 				      HCLGEVF_TQPS_RSS_INFO_LEN);
304 	if (status) {
305 		dev_err(&hdev->pdev->dev,
306 			"VF request to get tqp info from PF failed %d",
307 			status);
308 		return status;
309 	}
310 
311 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312 	       sizeof(u16));
313 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314 	       sizeof(u16));
315 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316 	       sizeof(u16));
317 
318 	return 0;
319 }
320 
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
322 {
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
326 
327 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328 	struct hclge_vf_to_pf_msg send_msg;
329 	int ret;
330 
331 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
334 	if (ret) {
335 		dev_err(&hdev->pdev->dev,
336 			"VF request to get tqp depth info from PF failed %d",
337 			ret);
338 		return ret;
339 	}
340 
341 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342 	       sizeof(u16));
343 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344 	       sizeof(u16));
345 
346 	return 0;
347 }
348 
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
350 {
351 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352 	struct hclge_vf_to_pf_msg send_msg;
353 	u16 qid_in_pf = 0;
354 	u8 resp_data[2];
355 	int ret;
356 
357 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360 				   sizeof(resp_data));
361 	if (!ret)
362 		qid_in_pf = *(u16 *)resp_data;
363 
364 	return qid_in_pf;
365 }
366 
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
368 {
369 	struct hclge_vf_to_pf_msg send_msg;
370 	u8 resp_msg[2];
371 	int ret;
372 
373 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375 				   sizeof(resp_msg));
376 	if (ret) {
377 		dev_err(&hdev->pdev->dev,
378 			"VF request to get the pf port media type failed %d",
379 			ret);
380 		return ret;
381 	}
382 
383 	hdev->hw.mac.media_type = resp_msg[0];
384 	hdev->hw.mac.module_type = resp_msg[1];
385 
386 	return 0;
387 }
388 
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
390 {
391 	struct hclgevf_tqp *tqp;
392 	int i;
393 
394 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
396 	if (!hdev->htqp)
397 		return -ENOMEM;
398 
399 	tqp = hdev->htqp;
400 
401 	for (i = 0; i < hdev->num_tqps; i++) {
402 		tqp->dev = &hdev->pdev->dev;
403 		tqp->index = i;
404 
405 		tqp->q.ae_algo = &ae_algovf;
406 		tqp->q.buf_size = hdev->rx_buf_len;
407 		tqp->q.tx_desc_num = hdev->num_tx_desc;
408 		tqp->q.rx_desc_num = hdev->num_rx_desc;
409 
410 		/* need an extended offset to configure queues >=
411 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
412 		 */
413 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414 			tqp->q.io_base = hdev->hw.io_base +
415 					 HCLGEVF_TQP_REG_OFFSET +
416 					 i * HCLGEVF_TQP_REG_SIZE;
417 		else
418 			tqp->q.io_base = hdev->hw.io_base +
419 					 HCLGEVF_TQP_REG_OFFSET +
420 					 HCLGEVF_TQP_EXT_REG_OFFSET +
421 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422 					 HCLGEVF_TQP_REG_SIZE;
423 
424 		tqp++;
425 	}
426 
427 	return 0;
428 }
429 
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
431 {
432 	struct hnae3_handle *nic = &hdev->nic;
433 	struct hnae3_knic_private_info *kinfo;
434 	u16 new_tqps = hdev->num_tqps;
435 	unsigned int i;
436 
437 	kinfo = &nic->kinfo;
438 	kinfo->num_tc = 0;
439 	kinfo->num_tx_desc = hdev->num_tx_desc;
440 	kinfo->num_rx_desc = hdev->num_rx_desc;
441 	kinfo->rx_buf_len = hdev->rx_buf_len;
442 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443 		if (hdev->hw_tc_map & BIT(i))
444 			kinfo->num_tc++;
445 
446 	kinfo->rss_size
447 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
448 	new_tqps = kinfo->rss_size * kinfo->num_tc;
449 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
450 
451 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
452 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
453 	if (!kinfo->tqp)
454 		return -ENOMEM;
455 
456 	for (i = 0; i < kinfo->num_tqps; i++) {
457 		hdev->htqp[i].q.handle = &hdev->nic;
458 		hdev->htqp[i].q.tqp_index = i;
459 		kinfo->tqp[i] = &hdev->htqp[i].q;
460 	}
461 
462 	/* after init the max rss_size and tqps, adjust the default tqp numbers
463 	 * and rss size with the actual vector numbers
464 	 */
465 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
466 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc,
467 				kinfo->rss_size);
468 
469 	return 0;
470 }
471 
472 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
473 {
474 	struct hclge_vf_to_pf_msg send_msg;
475 	int status;
476 
477 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
478 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
479 	if (status)
480 		dev_err(&hdev->pdev->dev,
481 			"VF failed to fetch link status(%d) from PF", status);
482 }
483 
484 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
485 {
486 	struct hnae3_handle *rhandle = &hdev->roce;
487 	struct hnae3_handle *handle = &hdev->nic;
488 	struct hnae3_client *rclient;
489 	struct hnae3_client *client;
490 
491 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
492 		return;
493 
494 	client = handle->client;
495 	rclient = hdev->roce_client;
496 
497 	link_state =
498 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
499 
500 	if (link_state != hdev->hw.mac.link) {
501 		client->ops->link_status_change(handle, !!link_state);
502 		if (rclient && rclient->ops->link_status_change)
503 			rclient->ops->link_status_change(rhandle, !!link_state);
504 		hdev->hw.mac.link = link_state;
505 	}
506 
507 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
508 }
509 
510 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
511 {
512 #define HCLGEVF_ADVERTISING	0
513 #define HCLGEVF_SUPPORTED	1
514 
515 	struct hclge_vf_to_pf_msg send_msg;
516 
517 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
518 	send_msg.data[0] = HCLGEVF_ADVERTISING;
519 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
520 	send_msg.data[0] = HCLGEVF_SUPPORTED;
521 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
522 }
523 
524 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
525 {
526 	struct hnae3_handle *nic = &hdev->nic;
527 	int ret;
528 
529 	nic->ae_algo = &ae_algovf;
530 	nic->pdev = hdev->pdev;
531 	nic->numa_node_mask = hdev->numa_node_mask;
532 	nic->flags |= HNAE3_SUPPORT_VF;
533 
534 	ret = hclgevf_knic_setup(hdev);
535 	if (ret)
536 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
537 			ret);
538 	return ret;
539 }
540 
541 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
542 {
543 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
544 		dev_warn(&hdev->pdev->dev,
545 			 "vector(vector_id %d) has been freed.\n", vector_id);
546 		return;
547 	}
548 
549 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
550 	hdev->num_msi_left += 1;
551 	hdev->num_msi_used -= 1;
552 }
553 
554 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
555 			      struct hnae3_vector_info *vector_info)
556 {
557 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
558 	struct hnae3_vector_info *vector = vector_info;
559 	int alloc = 0;
560 	int i, j;
561 
562 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
563 	vector_num = min(hdev->num_msi_left, vector_num);
564 
565 	for (j = 0; j < vector_num; j++) {
566 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
567 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
568 				vector->vector = pci_irq_vector(hdev->pdev, i);
569 				vector->io_addr = hdev->hw.io_base +
570 					HCLGEVF_VECTOR_REG_BASE +
571 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
572 				hdev->vector_status[i] = 0;
573 				hdev->vector_irq[i] = vector->vector;
574 
575 				vector++;
576 				alloc++;
577 
578 				break;
579 			}
580 		}
581 	}
582 	hdev->num_msi_left -= alloc;
583 	hdev->num_msi_used += alloc;
584 
585 	return alloc;
586 }
587 
588 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
589 {
590 	int i;
591 
592 	for (i = 0; i < hdev->num_msi; i++)
593 		if (vector == hdev->vector_irq[i])
594 			return i;
595 
596 	return -EINVAL;
597 }
598 
599 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
600 				    const u8 hfunc, const u8 *key)
601 {
602 	struct hclgevf_rss_config_cmd *req;
603 	unsigned int key_offset = 0;
604 	struct hclgevf_desc desc;
605 	int key_counts;
606 	int key_size;
607 	int ret;
608 
609 	key_counts = HCLGEVF_RSS_KEY_SIZE;
610 	req = (struct hclgevf_rss_config_cmd *)desc.data;
611 
612 	while (key_counts) {
613 		hclgevf_cmd_setup_basic_desc(&desc,
614 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
615 					     false);
616 
617 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
618 		req->hash_config |=
619 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
620 
621 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
622 		memcpy(req->hash_key,
623 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
624 
625 		key_counts -= key_size;
626 		key_offset++;
627 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
628 		if (ret) {
629 			dev_err(&hdev->pdev->dev,
630 				"Configure RSS config fail, status = %d\n",
631 				ret);
632 			return ret;
633 		}
634 	}
635 
636 	return 0;
637 }
638 
639 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
640 {
641 	return HCLGEVF_RSS_KEY_SIZE;
642 }
643 
644 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
645 {
646 	return HCLGEVF_RSS_IND_TBL_SIZE;
647 }
648 
649 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
650 {
651 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
652 	struct hclgevf_rss_indirection_table_cmd *req;
653 	struct hclgevf_desc desc;
654 	int status;
655 	int i, j;
656 
657 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
658 
659 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
660 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
661 					     false);
662 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
663 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
664 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
665 			req->rss_result[j] =
666 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
667 
668 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
669 		if (status) {
670 			dev_err(&hdev->pdev->dev,
671 				"VF failed(=%d) to set RSS indirection table\n",
672 				status);
673 			return status;
674 		}
675 	}
676 
677 	return 0;
678 }
679 
680 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
681 {
682 	struct hclgevf_rss_tc_mode_cmd *req;
683 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
684 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
685 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
686 	struct hclgevf_desc desc;
687 	u16 roundup_size;
688 	unsigned int i;
689 	int status;
690 
691 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
692 
693 	roundup_size = roundup_pow_of_two(rss_size);
694 	roundup_size = ilog2(roundup_size);
695 
696 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
697 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
698 		tc_size[i] = roundup_size;
699 		tc_offset[i] = rss_size * i;
700 	}
701 
702 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
703 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
704 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
705 			      (tc_valid[i] & 0x1));
706 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
707 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
708 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
709 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
710 	}
711 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
712 	if (status)
713 		dev_err(&hdev->pdev->dev,
714 			"VF failed(=%d) to set rss tc mode\n", status);
715 
716 	return status;
717 }
718 
719 /* for revision 0x20, vf shared the same rss config with pf */
720 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
721 {
722 #define HCLGEVF_RSS_MBX_RESP_LEN	8
723 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
724 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
725 	struct hclge_vf_to_pf_msg send_msg;
726 	u16 msg_num, hash_key_index;
727 	u8 index;
728 	int ret;
729 
730 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
731 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
732 			HCLGEVF_RSS_MBX_RESP_LEN;
733 	for (index = 0; index < msg_num; index++) {
734 		send_msg.data[0] = index;
735 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
736 					   HCLGEVF_RSS_MBX_RESP_LEN);
737 		if (ret) {
738 			dev_err(&hdev->pdev->dev,
739 				"VF get rss hash key from PF failed, ret=%d",
740 				ret);
741 			return ret;
742 		}
743 
744 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
745 		if (index == msg_num - 1)
746 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
747 			       &resp_msg[0],
748 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
749 		else
750 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
751 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
752 	}
753 
754 	return 0;
755 }
756 
757 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
758 			   u8 *hfunc)
759 {
760 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
761 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
762 	int i, ret;
763 
764 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
765 		/* Get hash algorithm */
766 		if (hfunc) {
767 			switch (rss_cfg->hash_algo) {
768 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
769 				*hfunc = ETH_RSS_HASH_TOP;
770 				break;
771 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
772 				*hfunc = ETH_RSS_HASH_XOR;
773 				break;
774 			default:
775 				*hfunc = ETH_RSS_HASH_UNKNOWN;
776 				break;
777 			}
778 		}
779 
780 		/* Get the RSS Key required by the user */
781 		if (key)
782 			memcpy(key, rss_cfg->rss_hash_key,
783 			       HCLGEVF_RSS_KEY_SIZE);
784 	} else {
785 		if (hfunc)
786 			*hfunc = ETH_RSS_HASH_TOP;
787 		if (key) {
788 			ret = hclgevf_get_rss_hash_key(hdev);
789 			if (ret)
790 				return ret;
791 			memcpy(key, rss_cfg->rss_hash_key,
792 			       HCLGEVF_RSS_KEY_SIZE);
793 		}
794 	}
795 
796 	if (indir)
797 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
798 			indir[i] = rss_cfg->rss_indirection_tbl[i];
799 
800 	return 0;
801 }
802 
803 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
804 			   const u8 *key, const u8 hfunc)
805 {
806 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
807 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
808 	int ret, i;
809 
810 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
811 		/* Set the RSS Hash Key if specififed by the user */
812 		if (key) {
813 			switch (hfunc) {
814 			case ETH_RSS_HASH_TOP:
815 				rss_cfg->hash_algo =
816 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
817 				break;
818 			case ETH_RSS_HASH_XOR:
819 				rss_cfg->hash_algo =
820 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
821 				break;
822 			case ETH_RSS_HASH_NO_CHANGE:
823 				break;
824 			default:
825 				return -EINVAL;
826 			}
827 
828 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
829 						       key);
830 			if (ret)
831 				return ret;
832 
833 			/* Update the shadow RSS key with user specified qids */
834 			memcpy(rss_cfg->rss_hash_key, key,
835 			       HCLGEVF_RSS_KEY_SIZE);
836 		}
837 	}
838 
839 	/* update the shadow RSS table with user specified qids */
840 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
841 		rss_cfg->rss_indirection_tbl[i] = indir[i];
842 
843 	/* update the hardware */
844 	return hclgevf_set_rss_indir_table(hdev);
845 }
846 
847 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
848 {
849 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
850 
851 	if (nfc->data & RXH_L4_B_2_3)
852 		hash_sets |= HCLGEVF_D_PORT_BIT;
853 	else
854 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
855 
856 	if (nfc->data & RXH_IP_SRC)
857 		hash_sets |= HCLGEVF_S_IP_BIT;
858 	else
859 		hash_sets &= ~HCLGEVF_S_IP_BIT;
860 
861 	if (nfc->data & RXH_IP_DST)
862 		hash_sets |= HCLGEVF_D_IP_BIT;
863 	else
864 		hash_sets &= ~HCLGEVF_D_IP_BIT;
865 
866 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
867 		hash_sets |= HCLGEVF_V_TAG_BIT;
868 
869 	return hash_sets;
870 }
871 
872 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
873 				 struct ethtool_rxnfc *nfc)
874 {
875 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
876 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
877 	struct hclgevf_rss_input_tuple_cmd *req;
878 	struct hclgevf_desc desc;
879 	u8 tuple_sets;
880 	int ret;
881 
882 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
883 		return -EOPNOTSUPP;
884 
885 	if (nfc->data &
886 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
887 		return -EINVAL;
888 
889 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
890 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
891 
892 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
893 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
894 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
895 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
896 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
897 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
898 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
899 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
900 
901 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
902 	switch (nfc->flow_type) {
903 	case TCP_V4_FLOW:
904 		req->ipv4_tcp_en = tuple_sets;
905 		break;
906 	case TCP_V6_FLOW:
907 		req->ipv6_tcp_en = tuple_sets;
908 		break;
909 	case UDP_V4_FLOW:
910 		req->ipv4_udp_en = tuple_sets;
911 		break;
912 	case UDP_V6_FLOW:
913 		req->ipv6_udp_en = tuple_sets;
914 		break;
915 	case SCTP_V4_FLOW:
916 		req->ipv4_sctp_en = tuple_sets;
917 		break;
918 	case SCTP_V6_FLOW:
919 		if ((nfc->data & RXH_L4_B_0_1) ||
920 		    (nfc->data & RXH_L4_B_2_3))
921 			return -EINVAL;
922 
923 		req->ipv6_sctp_en = tuple_sets;
924 		break;
925 	case IPV4_FLOW:
926 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
927 		break;
928 	case IPV6_FLOW:
929 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
930 		break;
931 	default:
932 		return -EINVAL;
933 	}
934 
935 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
936 	if (ret) {
937 		dev_err(&hdev->pdev->dev,
938 			"Set rss tuple fail, status = %d\n", ret);
939 		return ret;
940 	}
941 
942 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
943 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
944 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
945 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
946 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
947 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
948 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
949 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
950 	return 0;
951 }
952 
953 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
954 				 struct ethtool_rxnfc *nfc)
955 {
956 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
957 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
958 	u8 tuple_sets;
959 
960 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
961 		return -EOPNOTSUPP;
962 
963 	nfc->data = 0;
964 
965 	switch (nfc->flow_type) {
966 	case TCP_V4_FLOW:
967 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
968 		break;
969 	case UDP_V4_FLOW:
970 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
971 		break;
972 	case TCP_V6_FLOW:
973 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
974 		break;
975 	case UDP_V6_FLOW:
976 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
977 		break;
978 	case SCTP_V4_FLOW:
979 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
980 		break;
981 	case SCTP_V6_FLOW:
982 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
983 		break;
984 	case IPV4_FLOW:
985 	case IPV6_FLOW:
986 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
987 		break;
988 	default:
989 		return -EINVAL;
990 	}
991 
992 	if (!tuple_sets)
993 		return 0;
994 
995 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
996 		nfc->data |= RXH_L4_B_2_3;
997 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
998 		nfc->data |= RXH_L4_B_0_1;
999 	if (tuple_sets & HCLGEVF_D_IP_BIT)
1000 		nfc->data |= RXH_IP_DST;
1001 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1002 		nfc->data |= RXH_IP_SRC;
1003 
1004 	return 0;
1005 }
1006 
1007 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1008 				       struct hclgevf_rss_cfg *rss_cfg)
1009 {
1010 	struct hclgevf_rss_input_tuple_cmd *req;
1011 	struct hclgevf_desc desc;
1012 	int ret;
1013 
1014 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1015 
1016 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1017 
1018 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1019 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1020 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1021 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1022 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1023 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1024 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1025 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1026 
1027 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1028 	if (ret)
1029 		dev_err(&hdev->pdev->dev,
1030 			"Configure rss input fail, status = %d\n", ret);
1031 	return ret;
1032 }
1033 
1034 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1035 {
1036 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1037 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1038 
1039 	return rss_cfg->rss_size;
1040 }
1041 
1042 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1043 				       int vector_id,
1044 				       struct hnae3_ring_chain_node *ring_chain)
1045 {
1046 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1047 	struct hclge_vf_to_pf_msg send_msg;
1048 	struct hnae3_ring_chain_node *node;
1049 	int status;
1050 	int i = 0;
1051 
1052 	memset(&send_msg, 0, sizeof(send_msg));
1053 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1054 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1055 	send_msg.vector_id = vector_id;
1056 
1057 	for (node = ring_chain; node; node = node->next) {
1058 		send_msg.param[i].ring_type =
1059 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1060 
1061 		send_msg.param[i].tqp_index = node->tqp_index;
1062 		send_msg.param[i].int_gl_index =
1063 					hnae3_get_field(node->int_gl_idx,
1064 							HNAE3_RING_GL_IDX_M,
1065 							HNAE3_RING_GL_IDX_S);
1066 
1067 		i++;
1068 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1069 			send_msg.ring_num = i;
1070 
1071 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1072 						      NULL, 0);
1073 			if (status) {
1074 				dev_err(&hdev->pdev->dev,
1075 					"Map TQP fail, status is %d.\n",
1076 					status);
1077 				return status;
1078 			}
1079 			i = 0;
1080 		}
1081 	}
1082 
1083 	return 0;
1084 }
1085 
1086 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1087 				      struct hnae3_ring_chain_node *ring_chain)
1088 {
1089 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1090 	int vector_id;
1091 
1092 	vector_id = hclgevf_get_vector_index(hdev, vector);
1093 	if (vector_id < 0) {
1094 		dev_err(&handle->pdev->dev,
1095 			"Get vector index fail. ret =%d\n", vector_id);
1096 		return vector_id;
1097 	}
1098 
1099 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1100 }
1101 
1102 static int hclgevf_unmap_ring_from_vector(
1103 				struct hnae3_handle *handle,
1104 				int vector,
1105 				struct hnae3_ring_chain_node *ring_chain)
1106 {
1107 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1108 	int ret, vector_id;
1109 
1110 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1111 		return 0;
1112 
1113 	vector_id = hclgevf_get_vector_index(hdev, vector);
1114 	if (vector_id < 0) {
1115 		dev_err(&handle->pdev->dev,
1116 			"Get vector index fail. ret =%d\n", vector_id);
1117 		return vector_id;
1118 	}
1119 
1120 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1121 	if (ret)
1122 		dev_err(&handle->pdev->dev,
1123 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1124 			vector_id,
1125 			ret);
1126 
1127 	return ret;
1128 }
1129 
1130 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1131 {
1132 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1133 	int vector_id;
1134 
1135 	vector_id = hclgevf_get_vector_index(hdev, vector);
1136 	if (vector_id < 0) {
1137 		dev_err(&handle->pdev->dev,
1138 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1139 			vector_id);
1140 		return vector_id;
1141 	}
1142 
1143 	hclgevf_free_vector(hdev, vector_id);
1144 
1145 	return 0;
1146 }
1147 
1148 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1149 					bool en_uc_pmc, bool en_mc_pmc,
1150 					bool en_bc_pmc)
1151 {
1152 	struct hnae3_handle *handle = &hdev->nic;
1153 	struct hclge_vf_to_pf_msg send_msg;
1154 	int ret;
1155 
1156 	memset(&send_msg, 0, sizeof(send_msg));
1157 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1158 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1159 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1160 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1161 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1162 					     &handle->priv_flags) ? 1 : 0;
1163 
1164 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1165 	if (ret)
1166 		dev_err(&hdev->pdev->dev,
1167 			"Set promisc mode fail, status is %d.\n", ret);
1168 
1169 	return ret;
1170 }
1171 
1172 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1173 				    bool en_mc_pmc)
1174 {
1175 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1176 	bool en_bc_pmc;
1177 
1178 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1179 
1180 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1181 					    en_bc_pmc);
1182 }
1183 
1184 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1185 {
1186 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1187 
1188 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1189 	hclgevf_task_schedule(hdev, 0);
1190 }
1191 
1192 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1193 {
1194 	struct hnae3_handle *handle = &hdev->nic;
1195 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1196 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1197 	int ret;
1198 
1199 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1200 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1201 		if (!ret)
1202 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1203 	}
1204 }
1205 
1206 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1207 			      int stream_id, bool enable)
1208 {
1209 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1210 	struct hclgevf_desc desc;
1211 	int status;
1212 
1213 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1214 
1215 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1216 				     false);
1217 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1218 	req->stream_id = cpu_to_le16(stream_id);
1219 	if (enable)
1220 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1221 
1222 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1223 	if (status)
1224 		dev_err(&hdev->pdev->dev,
1225 			"TQP enable fail, status =%d.\n", status);
1226 
1227 	return status;
1228 }
1229 
1230 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1231 {
1232 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1233 	struct hclgevf_tqp *tqp;
1234 	int i;
1235 
1236 	for (i = 0; i < kinfo->num_tqps; i++) {
1237 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1238 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1239 	}
1240 }
1241 
1242 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1243 {
1244 	struct hclge_vf_to_pf_msg send_msg;
1245 	u8 host_mac[ETH_ALEN];
1246 	int status;
1247 
1248 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1249 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1250 				      ETH_ALEN);
1251 	if (status) {
1252 		dev_err(&hdev->pdev->dev,
1253 			"fail to get VF MAC from host %d", status);
1254 		return status;
1255 	}
1256 
1257 	ether_addr_copy(p, host_mac);
1258 
1259 	return 0;
1260 }
1261 
1262 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1263 {
1264 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1265 	u8 host_mac_addr[ETH_ALEN];
1266 
1267 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1268 		return;
1269 
1270 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1271 	if (hdev->has_pf_mac)
1272 		ether_addr_copy(p, host_mac_addr);
1273 	else
1274 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1275 }
1276 
1277 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1278 				bool is_first)
1279 {
1280 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1281 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1282 	struct hclge_vf_to_pf_msg send_msg;
1283 	u8 *new_mac_addr = (u8 *)p;
1284 	int status;
1285 
1286 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1287 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1288 	ether_addr_copy(send_msg.data, new_mac_addr);
1289 	if (is_first && !hdev->has_pf_mac)
1290 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1291 	else
1292 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1293 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1294 	if (!status)
1295 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1296 
1297 	return status;
1298 }
1299 
1300 static struct hclgevf_mac_addr_node *
1301 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1302 {
1303 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1304 
1305 	list_for_each_entry_safe(mac_node, tmp, list, node)
1306 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1307 			return mac_node;
1308 
1309 	return NULL;
1310 }
1311 
1312 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1313 				    enum HCLGEVF_MAC_NODE_STATE state)
1314 {
1315 	switch (state) {
1316 	/* from set_rx_mode or tmp_add_list */
1317 	case HCLGEVF_MAC_TO_ADD:
1318 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1319 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1320 		break;
1321 	/* only from set_rx_mode */
1322 	case HCLGEVF_MAC_TO_DEL:
1323 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1324 			list_del(&mac_node->node);
1325 			kfree(mac_node);
1326 		} else {
1327 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1328 		}
1329 		break;
1330 	/* only from tmp_add_list, the mac_node->state won't be
1331 	 * HCLGEVF_MAC_ACTIVE
1332 	 */
1333 	case HCLGEVF_MAC_ACTIVE:
1334 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1335 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1336 		break;
1337 	}
1338 }
1339 
1340 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1341 				   enum HCLGEVF_MAC_NODE_STATE state,
1342 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1343 				   const unsigned char *addr)
1344 {
1345 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1346 	struct hclgevf_mac_addr_node *mac_node;
1347 	struct list_head *list;
1348 
1349 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1350 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1351 
1352 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1353 
1354 	/* if the mac addr is already in the mac list, no need to add a new
1355 	 * one into it, just check the mac addr state, convert it to a new
1356 	 * new state, or just remove it, or do nothing.
1357 	 */
1358 	mac_node = hclgevf_find_mac_node(list, addr);
1359 	if (mac_node) {
1360 		hclgevf_update_mac_node(mac_node, state);
1361 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1362 		return 0;
1363 	}
1364 	/* if this address is never added, unnecessary to delete */
1365 	if (state == HCLGEVF_MAC_TO_DEL) {
1366 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1367 		return -ENOENT;
1368 	}
1369 
1370 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1371 	if (!mac_node) {
1372 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1373 		return -ENOMEM;
1374 	}
1375 
1376 	mac_node->state = state;
1377 	ether_addr_copy(mac_node->mac_addr, addr);
1378 	list_add_tail(&mac_node->node, list);
1379 
1380 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1381 	return 0;
1382 }
1383 
1384 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1385 			       const unsigned char *addr)
1386 {
1387 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1388 				       HCLGEVF_MAC_ADDR_UC, addr);
1389 }
1390 
1391 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1392 			      const unsigned char *addr)
1393 {
1394 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1395 				       HCLGEVF_MAC_ADDR_UC, addr);
1396 }
1397 
1398 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1399 			       const unsigned char *addr)
1400 {
1401 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1402 				       HCLGEVF_MAC_ADDR_MC, addr);
1403 }
1404 
1405 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1406 			      const unsigned char *addr)
1407 {
1408 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1409 				       HCLGEVF_MAC_ADDR_MC, addr);
1410 }
1411 
1412 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1413 				    struct hclgevf_mac_addr_node *mac_node,
1414 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1415 {
1416 	struct hclge_vf_to_pf_msg send_msg;
1417 	u8 code, subcode;
1418 
1419 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1420 		code = HCLGE_MBX_SET_UNICAST;
1421 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1422 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1423 		else
1424 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1425 	} else {
1426 		code = HCLGE_MBX_SET_MULTICAST;
1427 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1428 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1429 		else
1430 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1431 	}
1432 
1433 	hclgevf_build_send_msg(&send_msg, code, subcode);
1434 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1435 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1436 }
1437 
1438 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1439 				    struct list_head *list,
1440 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1441 {
1442 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1443 	int ret;
1444 
1445 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1446 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1447 		if  (ret) {
1448 			dev_err(&hdev->pdev->dev,
1449 				"failed to configure mac %pM, state = %d, ret = %d\n",
1450 				mac_node->mac_addr, mac_node->state, ret);
1451 			return;
1452 		}
1453 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1454 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1455 		} else {
1456 			list_del(&mac_node->node);
1457 			kfree(mac_node);
1458 		}
1459 	}
1460 }
1461 
1462 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1463 				       struct list_head *mac_list)
1464 {
1465 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1466 
1467 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1468 		/* if the mac address from tmp_add_list is not in the
1469 		 * uc/mc_mac_list, it means have received a TO_DEL request
1470 		 * during the time window of sending mac config request to PF
1471 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1472 		 * then it will be removed at next time. If is TO_ADD, it means
1473 		 * send TO_ADD request failed, so just remove the mac node.
1474 		 */
1475 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1476 		if (new_node) {
1477 			hclgevf_update_mac_node(new_node, mac_node->state);
1478 			list_del(&mac_node->node);
1479 			kfree(mac_node);
1480 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1481 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1482 			list_del(&mac_node->node);
1483 			list_add_tail(&mac_node->node, mac_list);
1484 		} else {
1485 			list_del(&mac_node->node);
1486 			kfree(mac_node);
1487 		}
1488 	}
1489 }
1490 
1491 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1492 				       struct list_head *mac_list)
1493 {
1494 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1495 
1496 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1497 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1498 		if (new_node) {
1499 			/* If the mac addr is exist in the mac list, it means
1500 			 * received a new request TO_ADD during the time window
1501 			 * of sending mac addr configurrequest to PF, so just
1502 			 * change the mac state to ACTIVE.
1503 			 */
1504 			new_node->state = HCLGEVF_MAC_ACTIVE;
1505 			list_del(&mac_node->node);
1506 			kfree(mac_node);
1507 		} else {
1508 			list_del(&mac_node->node);
1509 			list_add_tail(&mac_node->node, mac_list);
1510 		}
1511 	}
1512 }
1513 
1514 static void hclgevf_clear_list(struct list_head *list)
1515 {
1516 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1517 
1518 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1519 		list_del(&mac_node->node);
1520 		kfree(mac_node);
1521 	}
1522 }
1523 
1524 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1525 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1526 {
1527 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1528 	struct list_head tmp_add_list, tmp_del_list;
1529 	struct list_head *list;
1530 
1531 	INIT_LIST_HEAD(&tmp_add_list);
1532 	INIT_LIST_HEAD(&tmp_del_list);
1533 
1534 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1535 	 * we can add/delete these mac addr outside the spin lock
1536 	 */
1537 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1538 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1539 
1540 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1541 
1542 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1543 		switch (mac_node->state) {
1544 		case HCLGEVF_MAC_TO_DEL:
1545 			list_del(&mac_node->node);
1546 			list_add_tail(&mac_node->node, &tmp_del_list);
1547 			break;
1548 		case HCLGEVF_MAC_TO_ADD:
1549 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1550 			if (!new_node)
1551 				goto stop_traverse;
1552 
1553 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1554 			new_node->state = mac_node->state;
1555 			list_add_tail(&new_node->node, &tmp_add_list);
1556 			break;
1557 		default:
1558 			break;
1559 		}
1560 	}
1561 
1562 stop_traverse:
1563 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1564 
1565 	/* delete first, in order to get max mac table space for adding */
1566 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1567 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1568 
1569 	/* if some mac addresses were added/deleted fail, move back to the
1570 	 * mac_list, and retry at next time.
1571 	 */
1572 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1573 
1574 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1575 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1576 
1577 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1578 }
1579 
1580 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1581 {
1582 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1583 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1584 }
1585 
1586 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1587 {
1588 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1589 
1590 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1591 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1592 
1593 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1594 }
1595 
1596 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1597 				   __be16 proto, u16 vlan_id,
1598 				   bool is_kill)
1599 {
1600 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1601 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1602 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1603 
1604 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1605 	struct hclge_vf_to_pf_msg send_msg;
1606 	int ret;
1607 
1608 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1609 		return -EINVAL;
1610 
1611 	if (proto != htons(ETH_P_8021Q))
1612 		return -EPROTONOSUPPORT;
1613 
1614 	/* When device is resetting or reset failed, firmware is unable to
1615 	 * handle mailbox. Just record the vlan id, and remove it after
1616 	 * reset finished.
1617 	 */
1618 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1619 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1620 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1621 		return -EBUSY;
1622 	}
1623 
1624 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1625 			       HCLGE_MBX_VLAN_FILTER);
1626 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1627 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1628 	       sizeof(vlan_id));
1629 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1630 	       sizeof(proto));
1631 	/* when remove hw vlan filter failed, record the vlan id,
1632 	 * and try to remove it from hw later, to be consistence
1633 	 * with stack.
1634 	 */
1635 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1636 	if (is_kill && ret)
1637 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1638 
1639 	return ret;
1640 }
1641 
1642 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1643 {
1644 #define HCLGEVF_MAX_SYNC_COUNT	60
1645 	struct hnae3_handle *handle = &hdev->nic;
1646 	int ret, sync_cnt = 0;
1647 	u16 vlan_id;
1648 
1649 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1650 	while (vlan_id != VLAN_N_VID) {
1651 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1652 					      vlan_id, true);
1653 		if (ret)
1654 			return;
1655 
1656 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1657 		sync_cnt++;
1658 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1659 			return;
1660 
1661 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1662 	}
1663 }
1664 
1665 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1666 {
1667 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1668 	struct hclge_vf_to_pf_msg send_msg;
1669 
1670 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1671 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1672 	send_msg.data[0] = enable ? 1 : 0;
1673 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1674 }
1675 
1676 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1677 {
1678 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1679 	struct hclge_vf_to_pf_msg send_msg;
1680 	int ret;
1681 
1682 	/* disable vf queue before send queue reset msg to PF */
1683 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1684 	if (ret)
1685 		return ret;
1686 
1687 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1688 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1689 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1690 }
1691 
1692 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1693 {
1694 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1695 	struct hclge_vf_to_pf_msg send_msg;
1696 
1697 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1698 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1699 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1700 }
1701 
1702 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1703 				 enum hnae3_reset_notify_type type)
1704 {
1705 	struct hnae3_client *client = hdev->nic_client;
1706 	struct hnae3_handle *handle = &hdev->nic;
1707 	int ret;
1708 
1709 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1710 	    !client)
1711 		return 0;
1712 
1713 	if (!client->ops->reset_notify)
1714 		return -EOPNOTSUPP;
1715 
1716 	ret = client->ops->reset_notify(handle, type);
1717 	if (ret)
1718 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1719 			type, ret);
1720 
1721 	return ret;
1722 }
1723 
1724 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1725 				      enum hnae3_reset_notify_type type)
1726 {
1727 	struct hnae3_client *client = hdev->roce_client;
1728 	struct hnae3_handle *handle = &hdev->roce;
1729 	int ret;
1730 
1731 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1732 		return 0;
1733 
1734 	if (!client->ops->reset_notify)
1735 		return -EOPNOTSUPP;
1736 
1737 	ret = client->ops->reset_notify(handle, type);
1738 	if (ret)
1739 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1740 			type, ret);
1741 	return ret;
1742 }
1743 
1744 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1745 {
1746 #define HCLGEVF_RESET_WAIT_US	20000
1747 #define HCLGEVF_RESET_WAIT_CNT	2000
1748 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1749 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1750 
1751 	u32 val;
1752 	int ret;
1753 
1754 	if (hdev->reset_type == HNAE3_VF_RESET)
1755 		ret = readl_poll_timeout(hdev->hw.io_base +
1756 					 HCLGEVF_VF_RST_ING, val,
1757 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1758 					 HCLGEVF_RESET_WAIT_US,
1759 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1760 	else
1761 		ret = readl_poll_timeout(hdev->hw.io_base +
1762 					 HCLGEVF_RST_ING, val,
1763 					 !(val & HCLGEVF_RST_ING_BITS),
1764 					 HCLGEVF_RESET_WAIT_US,
1765 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1766 
1767 	/* hardware completion status should be available by this time */
1768 	if (ret) {
1769 		dev_err(&hdev->pdev->dev,
1770 			"couldn't get reset done status from h/w, timeout!\n");
1771 		return ret;
1772 	}
1773 
1774 	/* we will wait a bit more to let reset of the stack to complete. This
1775 	 * might happen in case reset assertion was made by PF. Yes, this also
1776 	 * means we might end up waiting bit more even for VF reset.
1777 	 */
1778 	msleep(5000);
1779 
1780 	return 0;
1781 }
1782 
1783 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1784 {
1785 	u32 reg_val;
1786 
1787 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1788 	if (enable)
1789 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1790 	else
1791 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1792 
1793 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1794 			  reg_val);
1795 }
1796 
1797 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1798 {
1799 	int ret;
1800 
1801 	/* uninitialize the nic client */
1802 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1803 	if (ret)
1804 		return ret;
1805 
1806 	/* re-initialize the hclge device */
1807 	ret = hclgevf_reset_hdev(hdev);
1808 	if (ret) {
1809 		dev_err(&hdev->pdev->dev,
1810 			"hclge device re-init failed, VF is disabled!\n");
1811 		return ret;
1812 	}
1813 
1814 	/* bring up the nic client again */
1815 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1816 	if (ret)
1817 		return ret;
1818 
1819 	/* clear handshake status with IMP */
1820 	hclgevf_reset_handshake(hdev, false);
1821 
1822 	/* bring up the nic to enable TX/RX again */
1823 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1824 }
1825 
1826 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1827 {
1828 #define HCLGEVF_RESET_SYNC_TIME 100
1829 
1830 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1831 		struct hclge_vf_to_pf_msg send_msg;
1832 		int ret;
1833 
1834 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1835 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1836 		if (ret) {
1837 			dev_err(&hdev->pdev->dev,
1838 				"failed to assert VF reset, ret = %d\n", ret);
1839 			return ret;
1840 		}
1841 		hdev->rst_stats.vf_func_rst_cnt++;
1842 	}
1843 
1844 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1845 	/* inform hardware that preparatory work is done */
1846 	msleep(HCLGEVF_RESET_SYNC_TIME);
1847 	hclgevf_reset_handshake(hdev, true);
1848 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1849 		 hdev->reset_type);
1850 
1851 	return 0;
1852 }
1853 
1854 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1855 {
1856 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1857 		 hdev->rst_stats.vf_func_rst_cnt);
1858 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1859 		 hdev->rst_stats.flr_rst_cnt);
1860 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1861 		 hdev->rst_stats.vf_rst_cnt);
1862 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1863 		 hdev->rst_stats.rst_done_cnt);
1864 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1865 		 hdev->rst_stats.hw_rst_done_cnt);
1866 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1867 		 hdev->rst_stats.rst_cnt);
1868 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1869 		 hdev->rst_stats.rst_fail_cnt);
1870 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1871 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1872 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1873 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1874 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1875 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1876 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1877 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1878 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1879 }
1880 
1881 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1882 {
1883 	/* recover handshake status with IMP when reset fail */
1884 	hclgevf_reset_handshake(hdev, true);
1885 	hdev->rst_stats.rst_fail_cnt++;
1886 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1887 		hdev->rst_stats.rst_fail_cnt);
1888 
1889 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1890 		set_bit(hdev->reset_type, &hdev->reset_pending);
1891 
1892 	if (hclgevf_is_reset_pending(hdev)) {
1893 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1894 		hclgevf_reset_task_schedule(hdev);
1895 	} else {
1896 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1897 		hclgevf_dump_rst_info(hdev);
1898 	}
1899 }
1900 
1901 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1902 {
1903 	int ret;
1904 
1905 	hdev->rst_stats.rst_cnt++;
1906 
1907 	/* perform reset of the stack & ae device for a client */
1908 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1909 	if (ret)
1910 		return ret;
1911 
1912 	rtnl_lock();
1913 	/* bring down the nic to stop any ongoing TX/RX */
1914 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1915 	rtnl_unlock();
1916 	if (ret)
1917 		return ret;
1918 
1919 	return hclgevf_reset_prepare_wait(hdev);
1920 }
1921 
1922 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1923 {
1924 	int ret;
1925 
1926 	hdev->rst_stats.hw_rst_done_cnt++;
1927 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1928 	if (ret)
1929 		return ret;
1930 
1931 	rtnl_lock();
1932 	/* now, re-initialize the nic client and ae device */
1933 	ret = hclgevf_reset_stack(hdev);
1934 	rtnl_unlock();
1935 	if (ret) {
1936 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1937 		return ret;
1938 	}
1939 
1940 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1941 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1942 	 * times
1943 	 */
1944 	if (ret &&
1945 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1946 		return ret;
1947 
1948 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1949 	if (ret)
1950 		return ret;
1951 
1952 	hdev->last_reset_time = jiffies;
1953 	hdev->rst_stats.rst_done_cnt++;
1954 	hdev->rst_stats.rst_fail_cnt = 0;
1955 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1956 
1957 	return 0;
1958 }
1959 
1960 static void hclgevf_reset(struct hclgevf_dev *hdev)
1961 {
1962 	if (hclgevf_reset_prepare(hdev))
1963 		goto err_reset;
1964 
1965 	/* check if VF could successfully fetch the hardware reset completion
1966 	 * status from the hardware
1967 	 */
1968 	if (hclgevf_reset_wait(hdev)) {
1969 		/* can't do much in this situation, will disable VF */
1970 		dev_err(&hdev->pdev->dev,
1971 			"failed to fetch H/W reset completion status\n");
1972 		goto err_reset;
1973 	}
1974 
1975 	if (hclgevf_reset_rebuild(hdev))
1976 		goto err_reset;
1977 
1978 	return;
1979 
1980 err_reset:
1981 	hclgevf_reset_err_handle(hdev);
1982 }
1983 
1984 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1985 						     unsigned long *addr)
1986 {
1987 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1988 
1989 	/* return the highest priority reset level amongst all */
1990 	if (test_bit(HNAE3_VF_RESET, addr)) {
1991 		rst_level = HNAE3_VF_RESET;
1992 		clear_bit(HNAE3_VF_RESET, addr);
1993 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1994 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1995 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1996 		rst_level = HNAE3_VF_FULL_RESET;
1997 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1998 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1999 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2000 		rst_level = HNAE3_VF_PF_FUNC_RESET;
2001 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2002 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2003 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2004 		rst_level = HNAE3_VF_FUNC_RESET;
2005 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2006 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2007 		rst_level = HNAE3_FLR_RESET;
2008 		clear_bit(HNAE3_FLR_RESET, addr);
2009 	}
2010 
2011 	return rst_level;
2012 }
2013 
2014 static void hclgevf_reset_event(struct pci_dev *pdev,
2015 				struct hnae3_handle *handle)
2016 {
2017 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2018 	struct hclgevf_dev *hdev = ae_dev->priv;
2019 
2020 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2021 
2022 	if (hdev->default_reset_request)
2023 		hdev->reset_level =
2024 			hclgevf_get_reset_level(hdev,
2025 						&hdev->default_reset_request);
2026 	else
2027 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2028 
2029 	/* reset of this VF requested */
2030 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2031 	hclgevf_reset_task_schedule(hdev);
2032 
2033 	hdev->last_reset_time = jiffies;
2034 }
2035 
2036 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2037 					  enum hnae3_reset_type rst_type)
2038 {
2039 	struct hclgevf_dev *hdev = ae_dev->priv;
2040 
2041 	set_bit(rst_type, &hdev->default_reset_request);
2042 }
2043 
2044 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2045 {
2046 	writel(en ? 1 : 0, vector->addr);
2047 }
2048 
2049 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2050 {
2051 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
2052 #define HCLGEVF_FLR_RETRY_CNT		5
2053 
2054 	struct hclgevf_dev *hdev = ae_dev->priv;
2055 	int retry_cnt = 0;
2056 	int ret;
2057 
2058 retry:
2059 	down(&hdev->reset_sem);
2060 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2061 	hdev->reset_type = HNAE3_FLR_RESET;
2062 	ret = hclgevf_reset_prepare(hdev);
2063 	if (ret) {
2064 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2065 			ret);
2066 		if (hdev->reset_pending ||
2067 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2068 			dev_err(&hdev->pdev->dev,
2069 				"reset_pending:0x%lx, retry_cnt:%d\n",
2070 				hdev->reset_pending, retry_cnt);
2071 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2072 			up(&hdev->reset_sem);
2073 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2074 			goto retry;
2075 		}
2076 	}
2077 
2078 	/* disable misc vector before FLR done */
2079 	hclgevf_enable_vector(&hdev->misc_vector, false);
2080 	hdev->rst_stats.flr_rst_cnt++;
2081 }
2082 
2083 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2084 {
2085 	struct hclgevf_dev *hdev = ae_dev->priv;
2086 	int ret;
2087 
2088 	hclgevf_enable_vector(&hdev->misc_vector, true);
2089 
2090 	ret = hclgevf_reset_rebuild(hdev);
2091 	if (ret)
2092 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2093 			 ret);
2094 
2095 	hdev->reset_type = HNAE3_NONE_RESET;
2096 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2097 	up(&hdev->reset_sem);
2098 }
2099 
2100 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2101 {
2102 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2103 
2104 	return hdev->fw_version;
2105 }
2106 
2107 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2108 {
2109 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2110 
2111 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2112 					    HCLGEVF_MISC_VECTOR_NUM);
2113 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2114 	/* vector status always valid for Vector 0 */
2115 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2116 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2117 
2118 	hdev->num_msi_left -= 1;
2119 	hdev->num_msi_used += 1;
2120 }
2121 
2122 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2123 {
2124 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2125 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2126 			      &hdev->state))
2127 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2128 }
2129 
2130 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2131 {
2132 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2133 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2134 			      &hdev->state))
2135 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2136 }
2137 
2138 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2139 				  unsigned long delay)
2140 {
2141 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2142 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2143 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2144 }
2145 
2146 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2147 {
2148 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2149 
2150 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2151 		return;
2152 
2153 	down(&hdev->reset_sem);
2154 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2155 
2156 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2157 			       &hdev->reset_state)) {
2158 		/* PF has initmated that it is about to reset the hardware.
2159 		 * We now have to poll & check if hardware has actually
2160 		 * completed the reset sequence. On hardware reset completion,
2161 		 * VF needs to reset the client and ae device.
2162 		 */
2163 		hdev->reset_attempts = 0;
2164 
2165 		hdev->last_reset_time = jiffies;
2166 		while ((hdev->reset_type =
2167 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2168 		       != HNAE3_NONE_RESET)
2169 			hclgevf_reset(hdev);
2170 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2171 				      &hdev->reset_state)) {
2172 		/* we could be here when either of below happens:
2173 		 * 1. reset was initiated due to watchdog timeout caused by
2174 		 *    a. IMP was earlier reset and our TX got choked down and
2175 		 *       which resulted in watchdog reacting and inducing VF
2176 		 *       reset. This also means our cmdq would be unreliable.
2177 		 *    b. problem in TX due to other lower layer(example link
2178 		 *       layer not functioning properly etc.)
2179 		 * 2. VF reset might have been initiated due to some config
2180 		 *    change.
2181 		 *
2182 		 * NOTE: Theres no clear way to detect above cases than to react
2183 		 * to the response of PF for this reset request. PF will ack the
2184 		 * 1b and 2. cases but we will not get any intimation about 1a
2185 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2186 		 * communication between PF and VF would be broken.
2187 		 *
2188 		 * if we are never geting into pending state it means either:
2189 		 * 1. PF is not receiving our request which could be due to IMP
2190 		 *    reset
2191 		 * 2. PF is screwed
2192 		 * We cannot do much for 2. but to check first we can try reset
2193 		 * our PCIe + stack and see if it alleviates the problem.
2194 		 */
2195 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2196 			/* prepare for full reset of stack + pcie interface */
2197 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2198 
2199 			/* "defer" schedule the reset task again */
2200 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2201 		} else {
2202 			hdev->reset_attempts++;
2203 
2204 			set_bit(hdev->reset_level, &hdev->reset_pending);
2205 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2206 		}
2207 		hclgevf_reset_task_schedule(hdev);
2208 	}
2209 
2210 	hdev->reset_type = HNAE3_NONE_RESET;
2211 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2212 	up(&hdev->reset_sem);
2213 }
2214 
2215 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2216 {
2217 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2218 		return;
2219 
2220 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2221 		return;
2222 
2223 	hclgevf_mbx_async_handler(hdev);
2224 
2225 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2226 }
2227 
2228 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2229 {
2230 	struct hclge_vf_to_pf_msg send_msg;
2231 	int ret;
2232 
2233 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2234 		return;
2235 
2236 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2237 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2238 	if (ret)
2239 		dev_err(&hdev->pdev->dev,
2240 			"VF sends keep alive cmd failed(=%d)\n", ret);
2241 }
2242 
2243 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2244 {
2245 	unsigned long delta = round_jiffies_relative(HZ);
2246 	struct hnae3_handle *handle = &hdev->nic;
2247 
2248 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2249 		return;
2250 
2251 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2252 		delta = jiffies - hdev->last_serv_processed;
2253 
2254 		if (delta < round_jiffies_relative(HZ)) {
2255 			delta = round_jiffies_relative(HZ) - delta;
2256 			goto out;
2257 		}
2258 	}
2259 
2260 	hdev->serv_processed_cnt++;
2261 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2262 		hclgevf_keep_alive(hdev);
2263 
2264 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2265 		hdev->last_serv_processed = jiffies;
2266 		goto out;
2267 	}
2268 
2269 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2270 		hclgevf_tqps_update_stats(handle);
2271 
2272 	/* request the link status from the PF. PF would be able to tell VF
2273 	 * about such updates in future so we might remove this later
2274 	 */
2275 	hclgevf_request_link_info(hdev);
2276 
2277 	hclgevf_update_link_mode(hdev);
2278 
2279 	hclgevf_sync_vlan_filter(hdev);
2280 
2281 	hclgevf_sync_mac_table(hdev);
2282 
2283 	hclgevf_sync_promisc_mode(hdev);
2284 
2285 	hdev->last_serv_processed = jiffies;
2286 
2287 out:
2288 	hclgevf_task_schedule(hdev, delta);
2289 }
2290 
2291 static void hclgevf_service_task(struct work_struct *work)
2292 {
2293 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2294 						service_task.work);
2295 
2296 	hclgevf_reset_service_task(hdev);
2297 	hclgevf_mailbox_service_task(hdev);
2298 	hclgevf_periodic_service_task(hdev);
2299 
2300 	/* Handle reset and mbx again in case periodical task delays the
2301 	 * handling by calling hclgevf_task_schedule() in
2302 	 * hclgevf_periodic_service_task()
2303 	 */
2304 	hclgevf_reset_service_task(hdev);
2305 	hclgevf_mailbox_service_task(hdev);
2306 }
2307 
2308 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2309 {
2310 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2311 }
2312 
2313 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2314 						      u32 *clearval)
2315 {
2316 	u32 val, cmdq_stat_reg, rst_ing_reg;
2317 
2318 	/* fetch the events from their corresponding regs */
2319 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2320 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2321 
2322 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2323 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2324 		dev_info(&hdev->pdev->dev,
2325 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2326 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2327 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2328 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2329 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2330 		hdev->rst_stats.vf_rst_cnt++;
2331 		/* set up VF hardware reset status, its PF will clear
2332 		 * this status when PF has initialized done.
2333 		 */
2334 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2335 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2336 				  val | HCLGEVF_VF_RST_ING_BIT);
2337 		return HCLGEVF_VECTOR0_EVENT_RST;
2338 	}
2339 
2340 	/* check for vector0 mailbox(=CMDQ RX) event source */
2341 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2342 		/* for revision 0x21, clearing interrupt is writing bit 0
2343 		 * to the clear register, writing bit 1 means to keep the
2344 		 * old value.
2345 		 * for revision 0x20, the clear register is a read & write
2346 		 * register, so we should just write 0 to the bit we are
2347 		 * handling, and keep other bits as cmdq_stat_reg.
2348 		 */
2349 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2350 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2351 		else
2352 			*clearval = cmdq_stat_reg &
2353 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2354 
2355 		return HCLGEVF_VECTOR0_EVENT_MBX;
2356 	}
2357 
2358 	/* print other vector0 event source */
2359 	dev_info(&hdev->pdev->dev,
2360 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2361 		 cmdq_stat_reg);
2362 
2363 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2364 }
2365 
2366 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2367 {
2368 	enum hclgevf_evt_cause event_cause;
2369 	struct hclgevf_dev *hdev = data;
2370 	u32 clearval;
2371 
2372 	hclgevf_enable_vector(&hdev->misc_vector, false);
2373 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2374 
2375 	switch (event_cause) {
2376 	case HCLGEVF_VECTOR0_EVENT_RST:
2377 		hclgevf_reset_task_schedule(hdev);
2378 		break;
2379 	case HCLGEVF_VECTOR0_EVENT_MBX:
2380 		hclgevf_mbx_handler(hdev);
2381 		break;
2382 	default:
2383 		break;
2384 	}
2385 
2386 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2387 		hclgevf_clear_event_cause(hdev, clearval);
2388 		hclgevf_enable_vector(&hdev->misc_vector, true);
2389 	}
2390 
2391 	return IRQ_HANDLED;
2392 }
2393 
2394 static int hclgevf_configure(struct hclgevf_dev *hdev)
2395 {
2396 	int ret;
2397 
2398 	/* get current port based vlan state from PF */
2399 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2400 	if (ret)
2401 		return ret;
2402 
2403 	/* get queue configuration from PF */
2404 	ret = hclgevf_get_queue_info(hdev);
2405 	if (ret)
2406 		return ret;
2407 
2408 	/* get queue depth info from PF */
2409 	ret = hclgevf_get_queue_depth(hdev);
2410 	if (ret)
2411 		return ret;
2412 
2413 	ret = hclgevf_get_pf_media_type(hdev);
2414 	if (ret)
2415 		return ret;
2416 
2417 	/* get tc configuration from PF */
2418 	return hclgevf_get_tc_info(hdev);
2419 }
2420 
2421 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2422 {
2423 	struct pci_dev *pdev = ae_dev->pdev;
2424 	struct hclgevf_dev *hdev;
2425 
2426 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2427 	if (!hdev)
2428 		return -ENOMEM;
2429 
2430 	hdev->pdev = pdev;
2431 	hdev->ae_dev = ae_dev;
2432 	ae_dev->priv = hdev;
2433 
2434 	return 0;
2435 }
2436 
2437 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2438 {
2439 	struct hnae3_handle *roce = &hdev->roce;
2440 	struct hnae3_handle *nic = &hdev->nic;
2441 
2442 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2443 
2444 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2445 	    hdev->num_msi_left == 0)
2446 		return -EINVAL;
2447 
2448 	roce->rinfo.base_vector = hdev->roce_base_vector;
2449 
2450 	roce->rinfo.netdev = nic->kinfo.netdev;
2451 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2452 	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2453 
2454 	roce->pdev = nic->pdev;
2455 	roce->ae_algo = nic->ae_algo;
2456 	roce->numa_node_mask = nic->numa_node_mask;
2457 
2458 	return 0;
2459 }
2460 
2461 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2462 {
2463 	struct hclgevf_cfg_gro_status_cmd *req;
2464 	struct hclgevf_desc desc;
2465 	int ret;
2466 
2467 	if (!hnae3_dev_gro_supported(hdev))
2468 		return 0;
2469 
2470 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2471 				     false);
2472 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2473 
2474 	req->gro_en = en ? 1 : 0;
2475 
2476 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2477 	if (ret)
2478 		dev_err(&hdev->pdev->dev,
2479 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2480 
2481 	return ret;
2482 }
2483 
2484 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2485 {
2486 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2487 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2488 	u32 i;
2489 
2490 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2491 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2492 	tuple_sets = &rss_cfg->rss_tuple_sets;
2493 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2494 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2495 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2496 		       HCLGEVF_RSS_KEY_SIZE);
2497 
2498 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2499 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2500 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2501 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2502 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2503 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2504 		tuple_sets->ipv6_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2505 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2506 	}
2507 
2508 	/* Initialize RSS indirect table */
2509 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2510 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2511 }
2512 
2513 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2514 {
2515 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2516 	int ret;
2517 
2518 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2519 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2520 					       rss_cfg->rss_hash_key);
2521 		if (ret)
2522 			return ret;
2523 
2524 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2525 		if (ret)
2526 			return ret;
2527 	}
2528 
2529 	ret = hclgevf_set_rss_indir_table(hdev);
2530 	if (ret)
2531 		return ret;
2532 
2533 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2534 }
2535 
2536 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2537 {
2538 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2539 				       false);
2540 }
2541 
2542 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2543 {
2544 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2545 
2546 	unsigned long last = hdev->serv_processed_cnt;
2547 	int i = 0;
2548 
2549 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2550 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2551 	       last == hdev->serv_processed_cnt)
2552 		usleep_range(1, 1);
2553 }
2554 
2555 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2556 {
2557 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2558 
2559 	if (enable) {
2560 		hclgevf_task_schedule(hdev, 0);
2561 	} else {
2562 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2563 
2564 		/* flush memory to make sure DOWN is seen by service task */
2565 		smp_mb__before_atomic();
2566 		hclgevf_flush_link_update(hdev);
2567 	}
2568 }
2569 
2570 static int hclgevf_ae_start(struct hnae3_handle *handle)
2571 {
2572 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2573 
2574 	hclgevf_reset_tqp_stats(handle);
2575 
2576 	hclgevf_request_link_info(hdev);
2577 
2578 	hclgevf_update_link_mode(hdev);
2579 
2580 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2581 
2582 	return 0;
2583 }
2584 
2585 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2586 {
2587 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2588 	int i;
2589 
2590 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2591 
2592 	if (hdev->reset_type != HNAE3_VF_RESET)
2593 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2594 			if (hclgevf_reset_tqp(handle, i))
2595 				break;
2596 
2597 	hclgevf_reset_tqp_stats(handle);
2598 	hclgevf_update_link_status(hdev, 0);
2599 }
2600 
2601 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2602 {
2603 #define HCLGEVF_STATE_ALIVE	1
2604 #define HCLGEVF_STATE_NOT_ALIVE	0
2605 
2606 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2607 	struct hclge_vf_to_pf_msg send_msg;
2608 
2609 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2610 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2611 				HCLGEVF_STATE_NOT_ALIVE;
2612 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2613 }
2614 
2615 static int hclgevf_client_start(struct hnae3_handle *handle)
2616 {
2617 	return hclgevf_set_alive(handle, true);
2618 }
2619 
2620 static void hclgevf_client_stop(struct hnae3_handle *handle)
2621 {
2622 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2623 	int ret;
2624 
2625 	ret = hclgevf_set_alive(handle, false);
2626 	if (ret)
2627 		dev_warn(&hdev->pdev->dev,
2628 			 "%s failed %d\n", __func__, ret);
2629 }
2630 
2631 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2632 {
2633 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2634 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2635 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2636 
2637 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2638 
2639 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2640 	sema_init(&hdev->reset_sem, 1);
2641 
2642 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2643 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2644 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2645 
2646 	/* bring the device down */
2647 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2648 }
2649 
2650 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2651 {
2652 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2653 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2654 
2655 	if (hdev->service_task.work.func)
2656 		cancel_delayed_work_sync(&hdev->service_task);
2657 
2658 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2659 }
2660 
2661 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2662 {
2663 	struct pci_dev *pdev = hdev->pdev;
2664 	int vectors;
2665 	int i;
2666 
2667 	if (hnae3_dev_roce_supported(hdev))
2668 		vectors = pci_alloc_irq_vectors(pdev,
2669 						hdev->roce_base_msix_offset + 1,
2670 						hdev->num_msi,
2671 						PCI_IRQ_MSIX);
2672 	else
2673 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2674 						hdev->num_msi,
2675 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2676 
2677 	if (vectors < 0) {
2678 		dev_err(&pdev->dev,
2679 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2680 			vectors);
2681 		return vectors;
2682 	}
2683 	if (vectors < hdev->num_msi)
2684 		dev_warn(&hdev->pdev->dev,
2685 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2686 			 hdev->num_msi, vectors);
2687 
2688 	hdev->num_msi = vectors;
2689 	hdev->num_msi_left = vectors;
2690 
2691 	hdev->base_msi_vector = pdev->irq;
2692 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2693 
2694 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2695 					   sizeof(u16), GFP_KERNEL);
2696 	if (!hdev->vector_status) {
2697 		pci_free_irq_vectors(pdev);
2698 		return -ENOMEM;
2699 	}
2700 
2701 	for (i = 0; i < hdev->num_msi; i++)
2702 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2703 
2704 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2705 					sizeof(int), GFP_KERNEL);
2706 	if (!hdev->vector_irq) {
2707 		devm_kfree(&pdev->dev, hdev->vector_status);
2708 		pci_free_irq_vectors(pdev);
2709 		return -ENOMEM;
2710 	}
2711 
2712 	return 0;
2713 }
2714 
2715 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2716 {
2717 	struct pci_dev *pdev = hdev->pdev;
2718 
2719 	devm_kfree(&pdev->dev, hdev->vector_status);
2720 	devm_kfree(&pdev->dev, hdev->vector_irq);
2721 	pci_free_irq_vectors(pdev);
2722 }
2723 
2724 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2725 {
2726 	int ret;
2727 
2728 	hclgevf_get_misc_vector(hdev);
2729 
2730 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2731 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2732 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2733 			  0, hdev->misc_vector.name, hdev);
2734 	if (ret) {
2735 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2736 			hdev->misc_vector.vector_irq);
2737 		return ret;
2738 	}
2739 
2740 	hclgevf_clear_event_cause(hdev, 0);
2741 
2742 	/* enable misc. vector(vector 0) */
2743 	hclgevf_enable_vector(&hdev->misc_vector, true);
2744 
2745 	return ret;
2746 }
2747 
2748 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2749 {
2750 	/* disable misc vector(vector 0) */
2751 	hclgevf_enable_vector(&hdev->misc_vector, false);
2752 	synchronize_irq(hdev->misc_vector.vector_irq);
2753 	free_irq(hdev->misc_vector.vector_irq, hdev);
2754 	hclgevf_free_vector(hdev, 0);
2755 }
2756 
2757 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2758 {
2759 	struct device *dev = &hdev->pdev->dev;
2760 
2761 	dev_info(dev, "VF info begin:\n");
2762 
2763 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2764 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2765 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2766 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2767 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2768 	dev_info(dev, "PF media type of this VF: %u\n",
2769 		 hdev->hw.mac.media_type);
2770 
2771 	dev_info(dev, "VF info end.\n");
2772 }
2773 
2774 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2775 					    struct hnae3_client *client)
2776 {
2777 	struct hclgevf_dev *hdev = ae_dev->priv;
2778 	int rst_cnt = hdev->rst_stats.rst_cnt;
2779 	int ret;
2780 
2781 	ret = client->ops->init_instance(&hdev->nic);
2782 	if (ret)
2783 		return ret;
2784 
2785 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2786 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2787 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2788 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2789 
2790 		client->ops->uninit_instance(&hdev->nic, 0);
2791 		return -EBUSY;
2792 	}
2793 
2794 	hnae3_set_client_init_flag(client, ae_dev, 1);
2795 
2796 	if (netif_msg_drv(&hdev->nic))
2797 		hclgevf_info_show(hdev);
2798 
2799 	return 0;
2800 }
2801 
2802 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2803 					     struct hnae3_client *client)
2804 {
2805 	struct hclgevf_dev *hdev = ae_dev->priv;
2806 	int ret;
2807 
2808 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2809 	    !hdev->nic_client)
2810 		return 0;
2811 
2812 	ret = hclgevf_init_roce_base_info(hdev);
2813 	if (ret)
2814 		return ret;
2815 
2816 	ret = client->ops->init_instance(&hdev->roce);
2817 	if (ret)
2818 		return ret;
2819 
2820 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2821 	hnae3_set_client_init_flag(client, ae_dev, 1);
2822 
2823 	return 0;
2824 }
2825 
2826 static int hclgevf_init_client_instance(struct hnae3_client *client,
2827 					struct hnae3_ae_dev *ae_dev)
2828 {
2829 	struct hclgevf_dev *hdev = ae_dev->priv;
2830 	int ret;
2831 
2832 	switch (client->type) {
2833 	case HNAE3_CLIENT_KNIC:
2834 		hdev->nic_client = client;
2835 		hdev->nic.client = client;
2836 
2837 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2838 		if (ret)
2839 			goto clear_nic;
2840 
2841 		ret = hclgevf_init_roce_client_instance(ae_dev,
2842 							hdev->roce_client);
2843 		if (ret)
2844 			goto clear_roce;
2845 
2846 		break;
2847 	case HNAE3_CLIENT_ROCE:
2848 		if (hnae3_dev_roce_supported(hdev)) {
2849 			hdev->roce_client = client;
2850 			hdev->roce.client = client;
2851 		}
2852 
2853 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2854 		if (ret)
2855 			goto clear_roce;
2856 
2857 		break;
2858 	default:
2859 		return -EINVAL;
2860 	}
2861 
2862 	return 0;
2863 
2864 clear_nic:
2865 	hdev->nic_client = NULL;
2866 	hdev->nic.client = NULL;
2867 	return ret;
2868 clear_roce:
2869 	hdev->roce_client = NULL;
2870 	hdev->roce.client = NULL;
2871 	return ret;
2872 }
2873 
2874 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2875 					   struct hnae3_ae_dev *ae_dev)
2876 {
2877 	struct hclgevf_dev *hdev = ae_dev->priv;
2878 
2879 	/* un-init roce, if it exists */
2880 	if (hdev->roce_client) {
2881 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2882 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2883 		hdev->roce_client = NULL;
2884 		hdev->roce.client = NULL;
2885 	}
2886 
2887 	/* un-init nic/unic, if this was not called by roce client */
2888 	if (client->ops->uninit_instance && hdev->nic_client &&
2889 	    client->type != HNAE3_CLIENT_ROCE) {
2890 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2891 
2892 		client->ops->uninit_instance(&hdev->nic, 0);
2893 		hdev->nic_client = NULL;
2894 		hdev->nic.client = NULL;
2895 	}
2896 }
2897 
2898 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2899 {
2900 #define HCLGEVF_MEM_BAR		4
2901 
2902 	struct pci_dev *pdev = hdev->pdev;
2903 	struct hclgevf_hw *hw = &hdev->hw;
2904 
2905 	/* for device does not have device memory, return directly */
2906 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2907 		return 0;
2908 
2909 	hw->mem_base = devm_ioremap_wc(&pdev->dev,
2910 				       pci_resource_start(pdev,
2911 							  HCLGEVF_MEM_BAR),
2912 				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2913 	if (!hw->mem_base) {
2914 		dev_err(&pdev->dev, "failed to map device memory\n");
2915 		return -EFAULT;
2916 	}
2917 
2918 	return 0;
2919 }
2920 
2921 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2922 {
2923 	struct pci_dev *pdev = hdev->pdev;
2924 	struct hclgevf_hw *hw;
2925 	int ret;
2926 
2927 	ret = pci_enable_device(pdev);
2928 	if (ret) {
2929 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2930 		return ret;
2931 	}
2932 
2933 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2934 	if (ret) {
2935 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2936 		goto err_disable_device;
2937 	}
2938 
2939 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2940 	if (ret) {
2941 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2942 		goto err_disable_device;
2943 	}
2944 
2945 	pci_set_master(pdev);
2946 	hw = &hdev->hw;
2947 	hw->hdev = hdev;
2948 	hw->io_base = pci_iomap(pdev, 2, 0);
2949 	if (!hw->io_base) {
2950 		dev_err(&pdev->dev, "can't map configuration register space\n");
2951 		ret = -ENOMEM;
2952 		goto err_clr_master;
2953 	}
2954 
2955 	ret = hclgevf_dev_mem_map(hdev);
2956 	if (ret)
2957 		goto err_unmap_io_base;
2958 
2959 	return 0;
2960 
2961 err_unmap_io_base:
2962 	pci_iounmap(pdev, hdev->hw.io_base);
2963 err_clr_master:
2964 	pci_clear_master(pdev);
2965 	pci_release_regions(pdev);
2966 err_disable_device:
2967 	pci_disable_device(pdev);
2968 
2969 	return ret;
2970 }
2971 
2972 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2973 {
2974 	struct pci_dev *pdev = hdev->pdev;
2975 
2976 	if (hdev->hw.mem_base)
2977 		devm_iounmap(&pdev->dev, hdev->hw.mem_base);
2978 
2979 	pci_iounmap(pdev, hdev->hw.io_base);
2980 	pci_clear_master(pdev);
2981 	pci_release_regions(pdev);
2982 	pci_disable_device(pdev);
2983 }
2984 
2985 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2986 {
2987 	struct hclgevf_query_res_cmd *req;
2988 	struct hclgevf_desc desc;
2989 	int ret;
2990 
2991 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2992 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2993 	if (ret) {
2994 		dev_err(&hdev->pdev->dev,
2995 			"query vf resource failed, ret = %d.\n", ret);
2996 		return ret;
2997 	}
2998 
2999 	req = (struct hclgevf_query_res_cmd *)desc.data;
3000 
3001 	if (hnae3_dev_roce_supported(hdev)) {
3002 		hdev->roce_base_msix_offset =
3003 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3004 				HCLGEVF_MSIX_OFT_ROCEE_M,
3005 				HCLGEVF_MSIX_OFT_ROCEE_S);
3006 		hdev->num_roce_msix =
3007 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3008 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3009 
3010 		/* nic's msix numbers is always equals to the roce's. */
3011 		hdev->num_nic_msix = hdev->num_roce_msix;
3012 
3013 		/* VF should have NIC vectors and Roce vectors, NIC vectors
3014 		 * are queued before Roce vectors. The offset is fixed to 64.
3015 		 */
3016 		hdev->num_msi = hdev->num_roce_msix +
3017 				hdev->roce_base_msix_offset;
3018 	} else {
3019 		hdev->num_msi =
3020 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3021 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3022 
3023 		hdev->num_nic_msix = hdev->num_msi;
3024 	}
3025 
3026 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3027 		dev_err(&hdev->pdev->dev,
3028 			"Just %u msi resources, not enough for vf(min:2).\n",
3029 			hdev->num_nic_msix);
3030 		return -EINVAL;
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3037 {
3038 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3039 
3040 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3041 
3042 	ae_dev->dev_specs.max_non_tso_bd_num =
3043 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3044 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3045 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3046 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3047 }
3048 
3049 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3050 				    struct hclgevf_desc *desc)
3051 {
3052 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3053 	struct hclgevf_dev_specs_0_cmd *req0;
3054 	struct hclgevf_dev_specs_1_cmd *req1;
3055 
3056 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3057 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3058 
3059 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3060 	ae_dev->dev_specs.rss_ind_tbl_size =
3061 					le16_to_cpu(req0->rss_ind_tbl_size);
3062 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3063 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3064 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3065 }
3066 
3067 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3068 {
3069 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3070 
3071 	if (!dev_specs->max_non_tso_bd_num)
3072 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3073 	if (!dev_specs->rss_ind_tbl_size)
3074 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3075 	if (!dev_specs->rss_key_size)
3076 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3077 	if (!dev_specs->max_int_gl)
3078 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3079 }
3080 
3081 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3082 {
3083 	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3084 	int ret;
3085 	int i;
3086 
3087 	/* set default specifications as devices lower than version V3 do not
3088 	 * support querying specifications from firmware.
3089 	 */
3090 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3091 		hclgevf_set_default_dev_specs(hdev);
3092 		return 0;
3093 	}
3094 
3095 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3096 		hclgevf_cmd_setup_basic_desc(&desc[i],
3097 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3098 		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3099 	}
3100 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3101 				     true);
3102 
3103 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3104 	if (ret)
3105 		return ret;
3106 
3107 	hclgevf_parse_dev_specs(hdev, desc);
3108 	hclgevf_check_dev_specs(hdev);
3109 
3110 	return 0;
3111 }
3112 
3113 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3114 {
3115 	struct pci_dev *pdev = hdev->pdev;
3116 	int ret = 0;
3117 
3118 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3119 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3120 		hclgevf_misc_irq_uninit(hdev);
3121 		hclgevf_uninit_msi(hdev);
3122 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3123 	}
3124 
3125 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3126 		pci_set_master(pdev);
3127 		ret = hclgevf_init_msi(hdev);
3128 		if (ret) {
3129 			dev_err(&pdev->dev,
3130 				"failed(%d) to init MSI/MSI-X\n", ret);
3131 			return ret;
3132 		}
3133 
3134 		ret = hclgevf_misc_irq_init(hdev);
3135 		if (ret) {
3136 			hclgevf_uninit_msi(hdev);
3137 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3138 				ret);
3139 			return ret;
3140 		}
3141 
3142 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3143 	}
3144 
3145 	return ret;
3146 }
3147 
3148 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3149 {
3150 	struct hclge_vf_to_pf_msg send_msg;
3151 
3152 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3153 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3154 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3155 }
3156 
3157 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3158 {
3159 	struct pci_dev *pdev = hdev->pdev;
3160 	int ret;
3161 
3162 	ret = hclgevf_pci_reset(hdev);
3163 	if (ret) {
3164 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3165 		return ret;
3166 	}
3167 
3168 	ret = hclgevf_cmd_init(hdev);
3169 	if (ret) {
3170 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3171 		return ret;
3172 	}
3173 
3174 	ret = hclgevf_rss_init_hw(hdev);
3175 	if (ret) {
3176 		dev_err(&hdev->pdev->dev,
3177 			"failed(%d) to initialize RSS\n", ret);
3178 		return ret;
3179 	}
3180 
3181 	ret = hclgevf_config_gro(hdev, true);
3182 	if (ret)
3183 		return ret;
3184 
3185 	ret = hclgevf_init_vlan_config(hdev);
3186 	if (ret) {
3187 		dev_err(&hdev->pdev->dev,
3188 			"failed(%d) to initialize VLAN config\n", ret);
3189 		return ret;
3190 	}
3191 
3192 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3193 
3194 	dev_info(&hdev->pdev->dev, "Reset done\n");
3195 
3196 	return 0;
3197 }
3198 
3199 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3200 {
3201 	struct pci_dev *pdev = hdev->pdev;
3202 	int ret;
3203 
3204 	ret = hclgevf_pci_init(hdev);
3205 	if (ret)
3206 		return ret;
3207 
3208 	ret = hclgevf_cmd_queue_init(hdev);
3209 	if (ret)
3210 		goto err_cmd_queue_init;
3211 
3212 	ret = hclgevf_cmd_init(hdev);
3213 	if (ret)
3214 		goto err_cmd_init;
3215 
3216 	/* Get vf resource */
3217 	ret = hclgevf_query_vf_resource(hdev);
3218 	if (ret)
3219 		goto err_cmd_init;
3220 
3221 	ret = hclgevf_query_dev_specs(hdev);
3222 	if (ret) {
3223 		dev_err(&pdev->dev,
3224 			"failed to query dev specifications, ret = %d\n", ret);
3225 		goto err_cmd_init;
3226 	}
3227 
3228 	ret = hclgevf_init_msi(hdev);
3229 	if (ret) {
3230 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3231 		goto err_cmd_init;
3232 	}
3233 
3234 	hclgevf_state_init(hdev);
3235 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3236 	hdev->reset_type = HNAE3_NONE_RESET;
3237 
3238 	ret = hclgevf_misc_irq_init(hdev);
3239 	if (ret)
3240 		goto err_misc_irq_init;
3241 
3242 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3243 
3244 	ret = hclgevf_configure(hdev);
3245 	if (ret) {
3246 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3247 		goto err_config;
3248 	}
3249 
3250 	ret = hclgevf_alloc_tqps(hdev);
3251 	if (ret) {
3252 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3253 		goto err_config;
3254 	}
3255 
3256 	ret = hclgevf_set_handle_info(hdev);
3257 	if (ret)
3258 		goto err_config;
3259 
3260 	ret = hclgevf_config_gro(hdev, true);
3261 	if (ret)
3262 		goto err_config;
3263 
3264 	/* Initialize RSS for this VF */
3265 	hclgevf_rss_init_cfg(hdev);
3266 	ret = hclgevf_rss_init_hw(hdev);
3267 	if (ret) {
3268 		dev_err(&hdev->pdev->dev,
3269 			"failed(%d) to initialize RSS\n", ret);
3270 		goto err_config;
3271 	}
3272 
3273 	/* ensure vf tbl list as empty before init*/
3274 	ret = hclgevf_clear_vport_list(hdev);
3275 	if (ret) {
3276 		dev_err(&pdev->dev,
3277 			"failed to clear tbl list configuration, ret = %d.\n",
3278 			ret);
3279 		goto err_config;
3280 	}
3281 
3282 	ret = hclgevf_init_vlan_config(hdev);
3283 	if (ret) {
3284 		dev_err(&hdev->pdev->dev,
3285 			"failed(%d) to initialize VLAN config\n", ret);
3286 		goto err_config;
3287 	}
3288 
3289 	hdev->last_reset_time = jiffies;
3290 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3291 		 HCLGEVF_DRIVER_NAME);
3292 
3293 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3294 
3295 	return 0;
3296 
3297 err_config:
3298 	hclgevf_misc_irq_uninit(hdev);
3299 err_misc_irq_init:
3300 	hclgevf_state_uninit(hdev);
3301 	hclgevf_uninit_msi(hdev);
3302 err_cmd_init:
3303 	hclgevf_cmd_uninit(hdev);
3304 err_cmd_queue_init:
3305 	hclgevf_pci_uninit(hdev);
3306 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3307 	return ret;
3308 }
3309 
3310 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3311 {
3312 	struct hclge_vf_to_pf_msg send_msg;
3313 
3314 	hclgevf_state_uninit(hdev);
3315 
3316 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3317 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3318 
3319 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3320 		hclgevf_misc_irq_uninit(hdev);
3321 		hclgevf_uninit_msi(hdev);
3322 	}
3323 
3324 	hclgevf_cmd_uninit(hdev);
3325 	hclgevf_pci_uninit(hdev);
3326 	hclgevf_uninit_mac_list(hdev);
3327 }
3328 
3329 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3330 {
3331 	struct pci_dev *pdev = ae_dev->pdev;
3332 	int ret;
3333 
3334 	ret = hclgevf_alloc_hdev(ae_dev);
3335 	if (ret) {
3336 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3337 		return ret;
3338 	}
3339 
3340 	ret = hclgevf_init_hdev(ae_dev->priv);
3341 	if (ret) {
3342 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3343 		return ret;
3344 	}
3345 
3346 	return 0;
3347 }
3348 
3349 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3350 {
3351 	struct hclgevf_dev *hdev = ae_dev->priv;
3352 
3353 	hclgevf_uninit_hdev(hdev);
3354 	ae_dev->priv = NULL;
3355 }
3356 
3357 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3358 {
3359 	struct hnae3_handle *nic = &hdev->nic;
3360 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3361 
3362 	return min_t(u32, hdev->rss_size_max,
3363 		     hdev->num_tqps / kinfo->num_tc);
3364 }
3365 
3366 /**
3367  * hclgevf_get_channels - Get the current channels enabled and max supported.
3368  * @handle: hardware information for network interface
3369  * @ch: ethtool channels structure
3370  *
3371  * We don't support separate tx and rx queues as channels. The other count
3372  * represents how many queues are being used for control. max_combined counts
3373  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3374  * q_vectors since we support a lot more queue pairs than q_vectors.
3375  **/
3376 static void hclgevf_get_channels(struct hnae3_handle *handle,
3377 				 struct ethtool_channels *ch)
3378 {
3379 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3380 
3381 	ch->max_combined = hclgevf_get_max_channels(hdev);
3382 	ch->other_count = 0;
3383 	ch->max_other = 0;
3384 	ch->combined_count = handle->kinfo.rss_size;
3385 }
3386 
3387 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3388 					  u16 *alloc_tqps, u16 *max_rss_size)
3389 {
3390 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3391 
3392 	*alloc_tqps = hdev->num_tqps;
3393 	*max_rss_size = hdev->rss_size_max;
3394 }
3395 
3396 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3397 				    u32 new_tqps_num)
3398 {
3399 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3400 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3401 	u16 max_rss_size;
3402 
3403 	kinfo->req_rss_size = new_tqps_num;
3404 
3405 	max_rss_size = min_t(u16, hdev->rss_size_max,
3406 			     hdev->num_tqps / kinfo->num_tc);
3407 
3408 	/* Use the user's configuration when it is not larger than
3409 	 * max_rss_size, otherwise, use the maximum specification value.
3410 	 */
3411 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3412 	    kinfo->req_rss_size <= max_rss_size)
3413 		kinfo->rss_size = kinfo->req_rss_size;
3414 	else if (kinfo->rss_size > max_rss_size ||
3415 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3416 		kinfo->rss_size = max_rss_size;
3417 
3418 	kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size;
3419 }
3420 
3421 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3422 				bool rxfh_configured)
3423 {
3424 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3425 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3426 	u16 cur_rss_size = kinfo->rss_size;
3427 	u16 cur_tqps = kinfo->num_tqps;
3428 	u32 *rss_indir;
3429 	unsigned int i;
3430 	int ret;
3431 
3432 	hclgevf_update_rss_size(handle, new_tqps_num);
3433 
3434 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3435 	if (ret)
3436 		return ret;
3437 
3438 	/* RSS indirection table has been configuared by user */
3439 	if (rxfh_configured)
3440 		goto out;
3441 
3442 	/* Reinitializes the rss indirect table according to the new RSS size */
3443 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
3444 	if (!rss_indir)
3445 		return -ENOMEM;
3446 
3447 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
3448 		rss_indir[i] = i % kinfo->rss_size;
3449 
3450 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3451 
3452 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3453 	if (ret)
3454 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3455 			ret);
3456 
3457 	kfree(rss_indir);
3458 
3459 out:
3460 	if (!ret)
3461 		dev_info(&hdev->pdev->dev,
3462 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3463 			 cur_rss_size, kinfo->rss_size,
3464 			 cur_tqps, kinfo->rss_size * kinfo->num_tc);
3465 
3466 	return ret;
3467 }
3468 
3469 static int hclgevf_get_status(struct hnae3_handle *handle)
3470 {
3471 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3472 
3473 	return hdev->hw.mac.link;
3474 }
3475 
3476 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3477 					    u8 *auto_neg, u32 *speed,
3478 					    u8 *duplex)
3479 {
3480 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3481 
3482 	if (speed)
3483 		*speed = hdev->hw.mac.speed;
3484 	if (duplex)
3485 		*duplex = hdev->hw.mac.duplex;
3486 	if (auto_neg)
3487 		*auto_neg = AUTONEG_DISABLE;
3488 }
3489 
3490 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3491 				 u8 duplex)
3492 {
3493 	hdev->hw.mac.speed = speed;
3494 	hdev->hw.mac.duplex = duplex;
3495 }
3496 
3497 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3498 {
3499 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3500 
3501 	return hclgevf_config_gro(hdev, enable);
3502 }
3503 
3504 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3505 				   u8 *module_type)
3506 {
3507 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3508 
3509 	if (media_type)
3510 		*media_type = hdev->hw.mac.media_type;
3511 
3512 	if (module_type)
3513 		*module_type = hdev->hw.mac.module_type;
3514 }
3515 
3516 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3517 {
3518 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3519 
3520 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3521 }
3522 
3523 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3524 {
3525 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3526 
3527 	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3528 }
3529 
3530 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3531 {
3532 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3533 
3534 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3535 }
3536 
3537 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3538 {
3539 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3540 
3541 	return hdev->rst_stats.hw_rst_done_cnt;
3542 }
3543 
3544 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3545 				  unsigned long *supported,
3546 				  unsigned long *advertising)
3547 {
3548 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3549 
3550 	*supported = hdev->hw.mac.supported;
3551 	*advertising = hdev->hw.mac.advertising;
3552 }
3553 
3554 #define MAX_SEPARATE_NUM	4
3555 #define SEPARATOR_VALUE		0xFFFFFFFF
3556 #define REG_NUM_PER_LINE	4
3557 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3558 
3559 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3560 {
3561 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3562 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3563 
3564 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3565 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3566 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3567 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3568 
3569 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3570 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3571 }
3572 
3573 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3574 			     void *data)
3575 {
3576 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3577 	int i, j, reg_um, separator_num;
3578 	u32 *reg = data;
3579 
3580 	*version = hdev->fw_version;
3581 
3582 	/* fetching per-VF registers values from VF PCIe register space */
3583 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3584 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3585 	for (i = 0; i < reg_um; i++)
3586 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3587 	for (i = 0; i < separator_num; i++)
3588 		*reg++ = SEPARATOR_VALUE;
3589 
3590 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3591 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3592 	for (i = 0; i < reg_um; i++)
3593 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3594 	for (i = 0; i < separator_num; i++)
3595 		*reg++ = SEPARATOR_VALUE;
3596 
3597 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3598 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3599 	for (j = 0; j < hdev->num_tqps; j++) {
3600 		for (i = 0; i < reg_um; i++)
3601 			*reg++ = hclgevf_read_dev(&hdev->hw,
3602 						  ring_reg_addr_list[i] +
3603 						  0x200 * j);
3604 		for (i = 0; i < separator_num; i++)
3605 			*reg++ = SEPARATOR_VALUE;
3606 	}
3607 
3608 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3609 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3610 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3611 		for (i = 0; i < reg_um; i++)
3612 			*reg++ = hclgevf_read_dev(&hdev->hw,
3613 						  tqp_intr_reg_addr_list[i] +
3614 						  4 * j);
3615 		for (i = 0; i < separator_num; i++)
3616 			*reg++ = SEPARATOR_VALUE;
3617 	}
3618 }
3619 
3620 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3621 					u8 *port_base_vlan_info, u8 data_size)
3622 {
3623 	struct hnae3_handle *nic = &hdev->nic;
3624 	struct hclge_vf_to_pf_msg send_msg;
3625 	int ret;
3626 
3627 	rtnl_lock();
3628 
3629 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3630 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3631 		dev_warn(&hdev->pdev->dev,
3632 			 "is resetting when updating port based vlan info\n");
3633 		rtnl_unlock();
3634 		return;
3635 	}
3636 
3637 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3638 	if (ret) {
3639 		rtnl_unlock();
3640 		return;
3641 	}
3642 
3643 	/* send msg to PF and wait update port based vlan info */
3644 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3645 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3646 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3647 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3648 	if (!ret) {
3649 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3650 			nic->port_base_vlan_state = state;
3651 		else
3652 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3653 	}
3654 
3655 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3656 	rtnl_unlock();
3657 }
3658 
3659 static const struct hnae3_ae_ops hclgevf_ops = {
3660 	.init_ae_dev = hclgevf_init_ae_dev,
3661 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3662 	.flr_prepare = hclgevf_flr_prepare,
3663 	.flr_done = hclgevf_flr_done,
3664 	.init_client_instance = hclgevf_init_client_instance,
3665 	.uninit_client_instance = hclgevf_uninit_client_instance,
3666 	.start = hclgevf_ae_start,
3667 	.stop = hclgevf_ae_stop,
3668 	.client_start = hclgevf_client_start,
3669 	.client_stop = hclgevf_client_stop,
3670 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3671 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3672 	.get_vector = hclgevf_get_vector,
3673 	.put_vector = hclgevf_put_vector,
3674 	.reset_queue = hclgevf_reset_tqp,
3675 	.get_mac_addr = hclgevf_get_mac_addr,
3676 	.set_mac_addr = hclgevf_set_mac_addr,
3677 	.add_uc_addr = hclgevf_add_uc_addr,
3678 	.rm_uc_addr = hclgevf_rm_uc_addr,
3679 	.add_mc_addr = hclgevf_add_mc_addr,
3680 	.rm_mc_addr = hclgevf_rm_mc_addr,
3681 	.get_stats = hclgevf_get_stats,
3682 	.update_stats = hclgevf_update_stats,
3683 	.get_strings = hclgevf_get_strings,
3684 	.get_sset_count = hclgevf_get_sset_count,
3685 	.get_rss_key_size = hclgevf_get_rss_key_size,
3686 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3687 	.get_rss = hclgevf_get_rss,
3688 	.set_rss = hclgevf_set_rss,
3689 	.get_rss_tuple = hclgevf_get_rss_tuple,
3690 	.set_rss_tuple = hclgevf_set_rss_tuple,
3691 	.get_tc_size = hclgevf_get_tc_size,
3692 	.get_fw_version = hclgevf_get_fw_version,
3693 	.set_vlan_filter = hclgevf_set_vlan_filter,
3694 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3695 	.reset_event = hclgevf_reset_event,
3696 	.set_default_reset_request = hclgevf_set_def_reset_request,
3697 	.set_channels = hclgevf_set_channels,
3698 	.get_channels = hclgevf_get_channels,
3699 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3700 	.get_regs_len = hclgevf_get_regs_len,
3701 	.get_regs = hclgevf_get_regs,
3702 	.get_status = hclgevf_get_status,
3703 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3704 	.get_media_type = hclgevf_get_media_type,
3705 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3706 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3707 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3708 	.set_gro_en = hclgevf_gro_en,
3709 	.set_mtu = hclgevf_set_mtu,
3710 	.get_global_queue_id = hclgevf_get_qid_global,
3711 	.set_timer_task = hclgevf_set_timer_task,
3712 	.get_link_mode = hclgevf_get_link_mode,
3713 	.set_promisc_mode = hclgevf_set_promisc_mode,
3714 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3715 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3716 };
3717 
3718 static struct hnae3_ae_algo ae_algovf = {
3719 	.ops = &hclgevf_ops,
3720 	.pdev_id_table = ae_algovf_pci_tbl,
3721 };
3722 
3723 static int hclgevf_init(void)
3724 {
3725 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3726 
3727 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3728 	if (!hclgevf_wq) {
3729 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3730 		return -ENOMEM;
3731 	}
3732 
3733 	hnae3_register_ae_algo(&ae_algovf);
3734 
3735 	return 0;
3736 }
3737 
3738 static void hclgevf_exit(void)
3739 {
3740 	hnae3_unregister_ae_algo(&ae_algovf);
3741 	destroy_workqueue(hclgevf_wq);
3742 }
3743 module_init(hclgevf_init);
3744 module_exit(hclgevf_exit);
3745 
3746 MODULE_LICENSE("GPL");
3747 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3748 MODULE_DESCRIPTION("HCLGEVF Driver");
3749 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3750