1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18 				  unsigned long delay);
19 
20 static struct hnae3_ae_algo ae_algovf;
21 
22 static struct workqueue_struct *hclgevf_wq;
23 
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 	/* required last entry */
29 	{0, }
30 };
31 
32 static const u8 hclgevf_hash_key[] = {
33 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39 
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41 
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
44 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
45 					 HCLGEVF_CMDQ_TX_TAIL_REG,
46 					 HCLGEVF_CMDQ_TX_HEAD_REG,
47 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
48 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
49 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
50 					 HCLGEVF_CMDQ_RX_TAIL_REG,
51 					 HCLGEVF_CMDQ_RX_HEAD_REG,
52 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 					 HCLGEVF_CMDQ_INTR_EN_REG,
55 					 HCLGEVF_CMDQ_INTR_GEN_REG};
56 
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58 					   HCLGEVF_RST_ING,
59 					   HCLGEVF_GRO_EN_REG};
60 
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62 					 HCLGEVF_RING_RX_ADDR_H_REG,
63 					 HCLGEVF_RING_RX_BD_NUM_REG,
64 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
65 					 HCLGEVF_RING_RX_MERGE_EN_REG,
66 					 HCLGEVF_RING_RX_TAIL_REG,
67 					 HCLGEVF_RING_RX_HEAD_REG,
68 					 HCLGEVF_RING_RX_FBD_NUM_REG,
69 					 HCLGEVF_RING_RX_OFFSET_REG,
70 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
71 					 HCLGEVF_RING_RX_STASH_REG,
72 					 HCLGEVF_RING_RX_BD_ERR_REG,
73 					 HCLGEVF_RING_TX_ADDR_L_REG,
74 					 HCLGEVF_RING_TX_ADDR_H_REG,
75 					 HCLGEVF_RING_TX_BD_NUM_REG,
76 					 HCLGEVF_RING_TX_PRIORITY_REG,
77 					 HCLGEVF_RING_TX_TC_REG,
78 					 HCLGEVF_RING_TX_MERGE_EN_REG,
79 					 HCLGEVF_RING_TX_TAIL_REG,
80 					 HCLGEVF_RING_TX_HEAD_REG,
81 					 HCLGEVF_RING_TX_FBD_NUM_REG,
82 					 HCLGEVF_RING_TX_OFFSET_REG,
83 					 HCLGEVF_RING_TX_EBD_NUM_REG,
84 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
85 					 HCLGEVF_RING_TX_BD_ERR_REG,
86 					 HCLGEVF_RING_EN_REG};
87 
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89 					     HCLGEVF_TQP_INTR_GL0_REG,
90 					     HCLGEVF_TQP_INTR_GL1_REG,
91 					     HCLGEVF_TQP_INTR_GL2_REG,
92 					     HCLGEVF_TQP_INTR_RL_REG};
93 
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96 	if (!handle->client)
97 		return container_of(handle, struct hclgevf_dev, nic);
98 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
99 		return container_of(handle, struct hclgevf_dev, roce);
100 	else
101 		return container_of(handle, struct hclgevf_dev, nic);
102 }
103 
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108 	struct hclgevf_desc desc;
109 	struct hclgevf_tqp *tqp;
110 	int status;
111 	int i;
112 
113 	for (i = 0; i < kinfo->num_tqps; i++) {
114 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 		hclgevf_cmd_setup_basic_desc(&desc,
116 					     HCLGEVF_OPC_QUERY_RX_STATUS,
117 					     true);
118 
119 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121 		if (status) {
122 			dev_err(&hdev->pdev->dev,
123 				"Query tqp stat fail, status = %d,queue = %d\n",
124 				status,	i);
125 			return status;
126 		}
127 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128 			le32_to_cpu(desc.data[1]);
129 
130 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131 					     true);
132 
133 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135 		if (status) {
136 			dev_err(&hdev->pdev->dev,
137 				"Query tqp stat fail, status = %d,queue = %d\n",
138 				status, i);
139 			return status;
140 		}
141 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142 			le32_to_cpu(desc.data[1]);
143 	}
144 
145 	return 0;
146 }
147 
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151 	struct hclgevf_tqp *tqp;
152 	u64 *buff = data;
153 	int i;
154 
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158 	}
159 	for (i = 0; i < kinfo->num_tqps; i++) {
160 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162 	}
163 
164 	return buff;
165 }
166 
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 
171 	return kinfo->num_tqps * 2;
172 }
173 
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177 	u8 *buff = data;
178 	int i;
179 
180 	for (i = 0; i < kinfo->num_tqps; i++) {
181 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 						       struct hclgevf_tqp, q);
183 		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184 			 tqp->index);
185 		buff += ETH_GSTRING_LEN;
186 	}
187 
188 	for (i = 0; i < kinfo->num_tqps; i++) {
189 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190 						       struct hclgevf_tqp, q);
191 		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192 			 tqp->index);
193 		buff += ETH_GSTRING_LEN;
194 	}
195 
196 	return buff;
197 }
198 
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200 				 struct net_device_stats *net_stats)
201 {
202 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203 	int status;
204 
205 	status = hclgevf_tqps_update_stats(handle);
206 	if (status)
207 		dev_err(&hdev->pdev->dev,
208 			"VF update of TQPS stats fail, status = %d.\n",
209 			status);
210 }
211 
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214 	if (strset == ETH_SS_TEST)
215 		return -EOPNOTSUPP;
216 	else if (strset == ETH_SS_STATS)
217 		return hclgevf_tqps_get_sset_count(handle, strset);
218 
219 	return 0;
220 }
221 
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223 				u8 *data)
224 {
225 	u8 *p = (char *)data;
226 
227 	if (strset == ETH_SS_STATS)
228 		p = hclgevf_tqps_get_strings(handle, p);
229 }
230 
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233 	hclgevf_tqps_get_stats(handle, data);
234 }
235 
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237 				   u8 subcode)
238 {
239 	if (msg) {
240 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241 		msg->code = code;
242 		msg->subcode = subcode;
243 	}
244 }
245 
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
247 {
248 	struct hclge_vf_to_pf_msg send_msg;
249 	u8 resp_msg;
250 	int status;
251 
252 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254 				      sizeof(resp_msg));
255 	if (status) {
256 		dev_err(&hdev->pdev->dev,
257 			"VF request to get TC info from PF failed %d",
258 			status);
259 		return status;
260 	}
261 
262 	hdev->hw_tc_map = resp_msg;
263 
264 	return 0;
265 }
266 
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
268 {
269 	struct hnae3_handle *nic = &hdev->nic;
270 	struct hclge_vf_to_pf_msg send_msg;
271 	u8 resp_msg;
272 	int ret;
273 
274 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277 				   sizeof(u8));
278 	if (ret) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get port based vlan state failed %d",
281 			ret);
282 		return ret;
283 	}
284 
285 	nic->port_base_vlan_state = resp_msg;
286 
287 	return 0;
288 }
289 
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291 {
292 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
296 
297 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298 	struct hclge_vf_to_pf_msg send_msg;
299 	int status;
300 
301 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303 				      HCLGEVF_TQPS_RSS_INFO_LEN);
304 	if (status) {
305 		dev_err(&hdev->pdev->dev,
306 			"VF request to get tqp info from PF failed %d",
307 			status);
308 		return status;
309 	}
310 
311 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312 	       sizeof(u16));
313 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314 	       sizeof(u16));
315 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316 	       sizeof(u16));
317 
318 	return 0;
319 }
320 
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
322 {
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
326 
327 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328 	struct hclge_vf_to_pf_msg send_msg;
329 	int ret;
330 
331 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
334 	if (ret) {
335 		dev_err(&hdev->pdev->dev,
336 			"VF request to get tqp depth info from PF failed %d",
337 			ret);
338 		return ret;
339 	}
340 
341 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342 	       sizeof(u16));
343 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344 	       sizeof(u16));
345 
346 	return 0;
347 }
348 
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
350 {
351 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352 	struct hclge_vf_to_pf_msg send_msg;
353 	u16 qid_in_pf = 0;
354 	u8 resp_data[2];
355 	int ret;
356 
357 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360 				   sizeof(resp_data));
361 	if (!ret)
362 		qid_in_pf = *(u16 *)resp_data;
363 
364 	return qid_in_pf;
365 }
366 
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
368 {
369 	struct hclge_vf_to_pf_msg send_msg;
370 	u8 resp_msg[2];
371 	int ret;
372 
373 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375 				   sizeof(resp_msg));
376 	if (ret) {
377 		dev_err(&hdev->pdev->dev,
378 			"VF request to get the pf port media type failed %d",
379 			ret);
380 		return ret;
381 	}
382 
383 	hdev->hw.mac.media_type = resp_msg[0];
384 	hdev->hw.mac.module_type = resp_msg[1];
385 
386 	return 0;
387 }
388 
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
390 {
391 	struct hclgevf_tqp *tqp;
392 	int i;
393 
394 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
396 	if (!hdev->htqp)
397 		return -ENOMEM;
398 
399 	tqp = hdev->htqp;
400 
401 	for (i = 0; i < hdev->num_tqps; i++) {
402 		tqp->dev = &hdev->pdev->dev;
403 		tqp->index = i;
404 
405 		tqp->q.ae_algo = &ae_algovf;
406 		tqp->q.buf_size = hdev->rx_buf_len;
407 		tqp->q.tx_desc_num = hdev->num_tx_desc;
408 		tqp->q.rx_desc_num = hdev->num_rx_desc;
409 
410 		/* need an extended offset to configure queues >=
411 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
412 		 */
413 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414 			tqp->q.io_base = hdev->hw.io_base +
415 					 HCLGEVF_TQP_REG_OFFSET +
416 					 i * HCLGEVF_TQP_REG_SIZE;
417 		else
418 			tqp->q.io_base = hdev->hw.io_base +
419 					 HCLGEVF_TQP_REG_OFFSET +
420 					 HCLGEVF_TQP_EXT_REG_OFFSET +
421 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422 					 HCLGEVF_TQP_REG_SIZE;
423 
424 		tqp++;
425 	}
426 
427 	return 0;
428 }
429 
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
431 {
432 	struct hnae3_handle *nic = &hdev->nic;
433 	struct hnae3_knic_private_info *kinfo;
434 	u16 new_tqps = hdev->num_tqps;
435 	unsigned int i;
436 	u8 num_tc = 0;
437 
438 	kinfo = &nic->kinfo;
439 	kinfo->num_tx_desc = hdev->num_tx_desc;
440 	kinfo->num_rx_desc = hdev->num_rx_desc;
441 	kinfo->rx_buf_len = hdev->rx_buf_len;
442 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443 		if (hdev->hw_tc_map & BIT(i))
444 			num_tc++;
445 
446 	num_tc = num_tc ? num_tc : 1;
447 	kinfo->tc_info.num_tc = num_tc;
448 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
449 	new_tqps = kinfo->rss_size * num_tc;
450 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
451 
452 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
453 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
454 	if (!kinfo->tqp)
455 		return -ENOMEM;
456 
457 	for (i = 0; i < kinfo->num_tqps; i++) {
458 		hdev->htqp[i].q.handle = &hdev->nic;
459 		hdev->htqp[i].q.tqp_index = i;
460 		kinfo->tqp[i] = &hdev->htqp[i].q;
461 	}
462 
463 	/* after init the max rss_size and tqps, adjust the default tqp numbers
464 	 * and rss size with the actual vector numbers
465 	 */
466 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468 				kinfo->rss_size);
469 
470 	return 0;
471 }
472 
473 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
474 {
475 	struct hclge_vf_to_pf_msg send_msg;
476 	int status;
477 
478 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
479 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480 	if (status)
481 		dev_err(&hdev->pdev->dev,
482 			"VF failed to fetch link status(%d) from PF", status);
483 }
484 
485 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
486 {
487 	struct hnae3_handle *rhandle = &hdev->roce;
488 	struct hnae3_handle *handle = &hdev->nic;
489 	struct hnae3_client *rclient;
490 	struct hnae3_client *client;
491 
492 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
493 		return;
494 
495 	client = handle->client;
496 	rclient = hdev->roce_client;
497 
498 	link_state =
499 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
500 
501 	if (link_state != hdev->hw.mac.link) {
502 		client->ops->link_status_change(handle, !!link_state);
503 		if (rclient && rclient->ops->link_status_change)
504 			rclient->ops->link_status_change(rhandle, !!link_state);
505 		hdev->hw.mac.link = link_state;
506 	}
507 
508 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
509 }
510 
511 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
512 {
513 #define HCLGEVF_ADVERTISING	0
514 #define HCLGEVF_SUPPORTED	1
515 
516 	struct hclge_vf_to_pf_msg send_msg;
517 
518 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
519 	send_msg.data[0] = HCLGEVF_ADVERTISING;
520 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
521 	send_msg.data[0] = HCLGEVF_SUPPORTED;
522 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
523 }
524 
525 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
526 {
527 	struct hnae3_handle *nic = &hdev->nic;
528 	int ret;
529 
530 	nic->ae_algo = &ae_algovf;
531 	nic->pdev = hdev->pdev;
532 	nic->numa_node_mask = hdev->numa_node_mask;
533 	nic->flags |= HNAE3_SUPPORT_VF;
534 
535 	ret = hclgevf_knic_setup(hdev);
536 	if (ret)
537 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
538 			ret);
539 	return ret;
540 }
541 
542 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
543 {
544 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
545 		dev_warn(&hdev->pdev->dev,
546 			 "vector(vector_id %d) has been freed.\n", vector_id);
547 		return;
548 	}
549 
550 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
551 	hdev->num_msi_left += 1;
552 	hdev->num_msi_used -= 1;
553 }
554 
555 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
556 			      struct hnae3_vector_info *vector_info)
557 {
558 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
559 	struct hnae3_vector_info *vector = vector_info;
560 	int alloc = 0;
561 	int i, j;
562 
563 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
564 	vector_num = min(hdev->num_msi_left, vector_num);
565 
566 	for (j = 0; j < vector_num; j++) {
567 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
568 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
569 				vector->vector = pci_irq_vector(hdev->pdev, i);
570 				vector->io_addr = hdev->hw.io_base +
571 					HCLGEVF_VECTOR_REG_BASE +
572 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
573 				hdev->vector_status[i] = 0;
574 				hdev->vector_irq[i] = vector->vector;
575 
576 				vector++;
577 				alloc++;
578 
579 				break;
580 			}
581 		}
582 	}
583 	hdev->num_msi_left -= alloc;
584 	hdev->num_msi_used += alloc;
585 
586 	return alloc;
587 }
588 
589 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
590 {
591 	int i;
592 
593 	for (i = 0; i < hdev->num_msi; i++)
594 		if (vector == hdev->vector_irq[i])
595 			return i;
596 
597 	return -EINVAL;
598 }
599 
600 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
601 				    const u8 hfunc, const u8 *key)
602 {
603 	struct hclgevf_rss_config_cmd *req;
604 	unsigned int key_offset = 0;
605 	struct hclgevf_desc desc;
606 	int key_counts;
607 	int key_size;
608 	int ret;
609 
610 	key_counts = HCLGEVF_RSS_KEY_SIZE;
611 	req = (struct hclgevf_rss_config_cmd *)desc.data;
612 
613 	while (key_counts) {
614 		hclgevf_cmd_setup_basic_desc(&desc,
615 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
616 					     false);
617 
618 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
619 		req->hash_config |=
620 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
621 
622 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
623 		memcpy(req->hash_key,
624 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
625 
626 		key_counts -= key_size;
627 		key_offset++;
628 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
629 		if (ret) {
630 			dev_err(&hdev->pdev->dev,
631 				"Configure RSS config fail, status = %d\n",
632 				ret);
633 			return ret;
634 		}
635 	}
636 
637 	return 0;
638 }
639 
640 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
641 {
642 	return HCLGEVF_RSS_KEY_SIZE;
643 }
644 
645 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
646 {
647 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
648 	struct hclgevf_rss_indirection_table_cmd *req;
649 	struct hclgevf_desc desc;
650 	int rss_cfg_tbl_num;
651 	int status;
652 	int i, j;
653 
654 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
655 	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
656 			  HCLGEVF_RSS_CFG_TBL_SIZE;
657 
658 	for (i = 0; i < rss_cfg_tbl_num; i++) {
659 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
660 					     false);
661 		req->start_table_index =
662 			cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
663 		req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
664 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
665 			req->rss_result[j] =
666 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
667 
668 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
669 		if (status) {
670 			dev_err(&hdev->pdev->dev,
671 				"VF failed(=%d) to set RSS indirection table\n",
672 				status);
673 			return status;
674 		}
675 	}
676 
677 	return 0;
678 }
679 
680 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
681 {
682 	struct hclgevf_rss_tc_mode_cmd *req;
683 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
684 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
685 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
686 	struct hclgevf_desc desc;
687 	u16 roundup_size;
688 	unsigned int i;
689 	int status;
690 
691 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
692 
693 	roundup_size = roundup_pow_of_two(rss_size);
694 	roundup_size = ilog2(roundup_size);
695 
696 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
697 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
698 		tc_size[i] = roundup_size;
699 		tc_offset[i] = rss_size * i;
700 	}
701 
702 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
703 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
704 		u16 mode = 0;
705 
706 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
707 			      (tc_valid[i] & 0x1));
708 		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
709 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
710 		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
711 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
712 
713 		req->rss_tc_mode[i] = cpu_to_le16(mode);
714 	}
715 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
716 	if (status)
717 		dev_err(&hdev->pdev->dev,
718 			"VF failed(=%d) to set rss tc mode\n", status);
719 
720 	return status;
721 }
722 
723 /* for revision 0x20, vf shared the same rss config with pf */
724 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
725 {
726 #define HCLGEVF_RSS_MBX_RESP_LEN	8
727 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
728 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
729 	struct hclge_vf_to_pf_msg send_msg;
730 	u16 msg_num, hash_key_index;
731 	u8 index;
732 	int ret;
733 
734 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
735 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
736 			HCLGEVF_RSS_MBX_RESP_LEN;
737 	for (index = 0; index < msg_num; index++) {
738 		send_msg.data[0] = index;
739 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
740 					   HCLGEVF_RSS_MBX_RESP_LEN);
741 		if (ret) {
742 			dev_err(&hdev->pdev->dev,
743 				"VF get rss hash key from PF failed, ret=%d",
744 				ret);
745 			return ret;
746 		}
747 
748 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
749 		if (index == msg_num - 1)
750 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
751 			       &resp_msg[0],
752 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
753 		else
754 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
755 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
756 	}
757 
758 	return 0;
759 }
760 
761 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
762 			   u8 *hfunc)
763 {
764 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
765 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
766 	int i, ret;
767 
768 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
769 		/* Get hash algorithm */
770 		if (hfunc) {
771 			switch (rss_cfg->hash_algo) {
772 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
773 				*hfunc = ETH_RSS_HASH_TOP;
774 				break;
775 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
776 				*hfunc = ETH_RSS_HASH_XOR;
777 				break;
778 			default:
779 				*hfunc = ETH_RSS_HASH_UNKNOWN;
780 				break;
781 			}
782 		}
783 
784 		/* Get the RSS Key required by the user */
785 		if (key)
786 			memcpy(key, rss_cfg->rss_hash_key,
787 			       HCLGEVF_RSS_KEY_SIZE);
788 	} else {
789 		if (hfunc)
790 			*hfunc = ETH_RSS_HASH_TOP;
791 		if (key) {
792 			ret = hclgevf_get_rss_hash_key(hdev);
793 			if (ret)
794 				return ret;
795 			memcpy(key, rss_cfg->rss_hash_key,
796 			       HCLGEVF_RSS_KEY_SIZE);
797 		}
798 	}
799 
800 	if (indir)
801 		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
802 			indir[i] = rss_cfg->rss_indirection_tbl[i];
803 
804 	return 0;
805 }
806 
807 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
808 			   const u8 *key, const u8 hfunc)
809 {
810 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
811 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
812 	int ret, i;
813 
814 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
815 		/* Set the RSS Hash Key if specififed by the user */
816 		if (key) {
817 			switch (hfunc) {
818 			case ETH_RSS_HASH_TOP:
819 				rss_cfg->hash_algo =
820 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
821 				break;
822 			case ETH_RSS_HASH_XOR:
823 				rss_cfg->hash_algo =
824 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
825 				break;
826 			case ETH_RSS_HASH_NO_CHANGE:
827 				break;
828 			default:
829 				return -EINVAL;
830 			}
831 
832 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
833 						       key);
834 			if (ret)
835 				return ret;
836 
837 			/* Update the shadow RSS key with user specified qids */
838 			memcpy(rss_cfg->rss_hash_key, key,
839 			       HCLGEVF_RSS_KEY_SIZE);
840 		}
841 	}
842 
843 	/* update the shadow RSS table with user specified qids */
844 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
845 		rss_cfg->rss_indirection_tbl[i] = indir[i];
846 
847 	/* update the hardware */
848 	return hclgevf_set_rss_indir_table(hdev);
849 }
850 
851 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
852 {
853 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
854 
855 	if (nfc->data & RXH_L4_B_2_3)
856 		hash_sets |= HCLGEVF_D_PORT_BIT;
857 	else
858 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
859 
860 	if (nfc->data & RXH_IP_SRC)
861 		hash_sets |= HCLGEVF_S_IP_BIT;
862 	else
863 		hash_sets &= ~HCLGEVF_S_IP_BIT;
864 
865 	if (nfc->data & RXH_IP_DST)
866 		hash_sets |= HCLGEVF_D_IP_BIT;
867 	else
868 		hash_sets &= ~HCLGEVF_D_IP_BIT;
869 
870 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
871 		hash_sets |= HCLGEVF_V_TAG_BIT;
872 
873 	return hash_sets;
874 }
875 
876 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
877 				 struct ethtool_rxnfc *nfc)
878 {
879 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
880 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
881 	struct hclgevf_rss_input_tuple_cmd *req;
882 	struct hclgevf_desc desc;
883 	u8 tuple_sets;
884 	int ret;
885 
886 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
887 		return -EOPNOTSUPP;
888 
889 	if (nfc->data &
890 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
891 		return -EINVAL;
892 
893 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
894 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
895 
896 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
897 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
898 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
899 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
900 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
901 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
902 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
903 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
904 
905 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
906 	switch (nfc->flow_type) {
907 	case TCP_V4_FLOW:
908 		req->ipv4_tcp_en = tuple_sets;
909 		break;
910 	case TCP_V6_FLOW:
911 		req->ipv6_tcp_en = tuple_sets;
912 		break;
913 	case UDP_V4_FLOW:
914 		req->ipv4_udp_en = tuple_sets;
915 		break;
916 	case UDP_V6_FLOW:
917 		req->ipv6_udp_en = tuple_sets;
918 		break;
919 	case SCTP_V4_FLOW:
920 		req->ipv4_sctp_en = tuple_sets;
921 		break;
922 	case SCTP_V6_FLOW:
923 		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
924 		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
925 			return -EINVAL;
926 
927 		req->ipv6_sctp_en = tuple_sets;
928 		break;
929 	case IPV4_FLOW:
930 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
931 		break;
932 	case IPV6_FLOW:
933 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
934 		break;
935 	default:
936 		return -EINVAL;
937 	}
938 
939 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
940 	if (ret) {
941 		dev_err(&hdev->pdev->dev,
942 			"Set rss tuple fail, status = %d\n", ret);
943 		return ret;
944 	}
945 
946 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
947 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
948 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
949 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
950 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
951 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
952 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
953 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
954 	return 0;
955 }
956 
957 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
958 				 struct ethtool_rxnfc *nfc)
959 {
960 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
961 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
962 	u8 tuple_sets;
963 
964 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
965 		return -EOPNOTSUPP;
966 
967 	nfc->data = 0;
968 
969 	switch (nfc->flow_type) {
970 	case TCP_V4_FLOW:
971 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
972 		break;
973 	case UDP_V4_FLOW:
974 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
975 		break;
976 	case TCP_V6_FLOW:
977 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
978 		break;
979 	case UDP_V6_FLOW:
980 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
981 		break;
982 	case SCTP_V4_FLOW:
983 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
984 		break;
985 	case SCTP_V6_FLOW:
986 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
987 		break;
988 	case IPV4_FLOW:
989 	case IPV6_FLOW:
990 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
991 		break;
992 	default:
993 		return -EINVAL;
994 	}
995 
996 	if (!tuple_sets)
997 		return 0;
998 
999 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
1000 		nfc->data |= RXH_L4_B_2_3;
1001 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
1002 		nfc->data |= RXH_L4_B_0_1;
1003 	if (tuple_sets & HCLGEVF_D_IP_BIT)
1004 		nfc->data |= RXH_IP_DST;
1005 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1006 		nfc->data |= RXH_IP_SRC;
1007 
1008 	return 0;
1009 }
1010 
1011 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1012 				       struct hclgevf_rss_cfg *rss_cfg)
1013 {
1014 	struct hclgevf_rss_input_tuple_cmd *req;
1015 	struct hclgevf_desc desc;
1016 	int ret;
1017 
1018 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1019 
1020 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1021 
1022 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1023 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1024 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1025 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1026 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1027 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1028 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1029 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1030 
1031 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1032 	if (ret)
1033 		dev_err(&hdev->pdev->dev,
1034 			"Configure rss input fail, status = %d\n", ret);
1035 	return ret;
1036 }
1037 
1038 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1039 {
1040 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1041 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1042 
1043 	return rss_cfg->rss_size;
1044 }
1045 
1046 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1047 				       int vector_id,
1048 				       struct hnae3_ring_chain_node *ring_chain)
1049 {
1050 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1051 	struct hclge_vf_to_pf_msg send_msg;
1052 	struct hnae3_ring_chain_node *node;
1053 	int status;
1054 	int i = 0;
1055 
1056 	memset(&send_msg, 0, sizeof(send_msg));
1057 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1058 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1059 	send_msg.vector_id = vector_id;
1060 
1061 	for (node = ring_chain; node; node = node->next) {
1062 		send_msg.param[i].ring_type =
1063 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1064 
1065 		send_msg.param[i].tqp_index = node->tqp_index;
1066 		send_msg.param[i].int_gl_index =
1067 					hnae3_get_field(node->int_gl_idx,
1068 							HNAE3_RING_GL_IDX_M,
1069 							HNAE3_RING_GL_IDX_S);
1070 
1071 		i++;
1072 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1073 			send_msg.ring_num = i;
1074 
1075 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1076 						      NULL, 0);
1077 			if (status) {
1078 				dev_err(&hdev->pdev->dev,
1079 					"Map TQP fail, status is %d.\n",
1080 					status);
1081 				return status;
1082 			}
1083 			i = 0;
1084 		}
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1091 				      struct hnae3_ring_chain_node *ring_chain)
1092 {
1093 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1094 	int vector_id;
1095 
1096 	vector_id = hclgevf_get_vector_index(hdev, vector);
1097 	if (vector_id < 0) {
1098 		dev_err(&handle->pdev->dev,
1099 			"Get vector index fail. ret =%d\n", vector_id);
1100 		return vector_id;
1101 	}
1102 
1103 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1104 }
1105 
1106 static int hclgevf_unmap_ring_from_vector(
1107 				struct hnae3_handle *handle,
1108 				int vector,
1109 				struct hnae3_ring_chain_node *ring_chain)
1110 {
1111 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1112 	int ret, vector_id;
1113 
1114 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1115 		return 0;
1116 
1117 	vector_id = hclgevf_get_vector_index(hdev, vector);
1118 	if (vector_id < 0) {
1119 		dev_err(&handle->pdev->dev,
1120 			"Get vector index fail. ret =%d\n", vector_id);
1121 		return vector_id;
1122 	}
1123 
1124 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1125 	if (ret)
1126 		dev_err(&handle->pdev->dev,
1127 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1128 			vector_id,
1129 			ret);
1130 
1131 	return ret;
1132 }
1133 
1134 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1135 {
1136 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1137 	int vector_id;
1138 
1139 	vector_id = hclgevf_get_vector_index(hdev, vector);
1140 	if (vector_id < 0) {
1141 		dev_err(&handle->pdev->dev,
1142 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1143 			vector_id);
1144 		return vector_id;
1145 	}
1146 
1147 	hclgevf_free_vector(hdev, vector_id);
1148 
1149 	return 0;
1150 }
1151 
1152 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1153 					bool en_uc_pmc, bool en_mc_pmc,
1154 					bool en_bc_pmc)
1155 {
1156 	struct hnae3_handle *handle = &hdev->nic;
1157 	struct hclge_vf_to_pf_msg send_msg;
1158 	int ret;
1159 
1160 	memset(&send_msg, 0, sizeof(send_msg));
1161 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1162 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1163 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1164 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1165 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1166 					     &handle->priv_flags) ? 1 : 0;
1167 
1168 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1169 	if (ret)
1170 		dev_err(&hdev->pdev->dev,
1171 			"Set promisc mode fail, status is %d.\n", ret);
1172 
1173 	return ret;
1174 }
1175 
1176 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1177 				    bool en_mc_pmc)
1178 {
1179 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1180 	bool en_bc_pmc;
1181 
1182 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1183 
1184 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1185 					    en_bc_pmc);
1186 }
1187 
1188 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1189 {
1190 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1191 
1192 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1193 	hclgevf_task_schedule(hdev, 0);
1194 }
1195 
1196 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1197 {
1198 	struct hnae3_handle *handle = &hdev->nic;
1199 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1200 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1201 	int ret;
1202 
1203 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1204 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1205 		if (!ret)
1206 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1207 	}
1208 }
1209 
1210 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1211 			      int stream_id, bool enable)
1212 {
1213 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1214 	struct hclgevf_desc desc;
1215 	int status;
1216 
1217 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1218 
1219 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1220 				     false);
1221 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1222 	req->stream_id = cpu_to_le16(stream_id);
1223 	if (enable)
1224 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1225 
1226 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1227 	if (status)
1228 		dev_err(&hdev->pdev->dev,
1229 			"TQP enable fail, status =%d.\n", status);
1230 
1231 	return status;
1232 }
1233 
1234 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1235 {
1236 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1237 	struct hclgevf_tqp *tqp;
1238 	int i;
1239 
1240 	for (i = 0; i < kinfo->num_tqps; i++) {
1241 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1242 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1243 	}
1244 }
1245 
1246 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1247 {
1248 	struct hclge_vf_to_pf_msg send_msg;
1249 	u8 host_mac[ETH_ALEN];
1250 	int status;
1251 
1252 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1253 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1254 				      ETH_ALEN);
1255 	if (status) {
1256 		dev_err(&hdev->pdev->dev,
1257 			"fail to get VF MAC from host %d", status);
1258 		return status;
1259 	}
1260 
1261 	ether_addr_copy(p, host_mac);
1262 
1263 	return 0;
1264 }
1265 
1266 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1267 {
1268 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1269 	u8 host_mac_addr[ETH_ALEN];
1270 
1271 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1272 		return;
1273 
1274 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1275 	if (hdev->has_pf_mac)
1276 		ether_addr_copy(p, host_mac_addr);
1277 	else
1278 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1279 }
1280 
1281 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1282 				bool is_first)
1283 {
1284 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1285 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1286 	struct hclge_vf_to_pf_msg send_msg;
1287 	u8 *new_mac_addr = (u8 *)p;
1288 	int status;
1289 
1290 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1291 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1292 	ether_addr_copy(send_msg.data, new_mac_addr);
1293 	if (is_first && !hdev->has_pf_mac)
1294 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1295 	else
1296 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1297 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1298 	if (!status)
1299 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1300 
1301 	return status;
1302 }
1303 
1304 static struct hclgevf_mac_addr_node *
1305 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1306 {
1307 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1308 
1309 	list_for_each_entry_safe(mac_node, tmp, list, node)
1310 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1311 			return mac_node;
1312 
1313 	return NULL;
1314 }
1315 
1316 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1317 				    enum HCLGEVF_MAC_NODE_STATE state)
1318 {
1319 	switch (state) {
1320 	/* from set_rx_mode or tmp_add_list */
1321 	case HCLGEVF_MAC_TO_ADD:
1322 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1323 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1324 		break;
1325 	/* only from set_rx_mode */
1326 	case HCLGEVF_MAC_TO_DEL:
1327 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1328 			list_del(&mac_node->node);
1329 			kfree(mac_node);
1330 		} else {
1331 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1332 		}
1333 		break;
1334 	/* only from tmp_add_list, the mac_node->state won't be
1335 	 * HCLGEVF_MAC_ACTIVE
1336 	 */
1337 	case HCLGEVF_MAC_ACTIVE:
1338 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1339 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1340 		break;
1341 	}
1342 }
1343 
1344 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1345 				   enum HCLGEVF_MAC_NODE_STATE state,
1346 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1347 				   const unsigned char *addr)
1348 {
1349 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1350 	struct hclgevf_mac_addr_node *mac_node;
1351 	struct list_head *list;
1352 
1353 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1354 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1355 
1356 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1357 
1358 	/* if the mac addr is already in the mac list, no need to add a new
1359 	 * one into it, just check the mac addr state, convert it to a new
1360 	 * new state, or just remove it, or do nothing.
1361 	 */
1362 	mac_node = hclgevf_find_mac_node(list, addr);
1363 	if (mac_node) {
1364 		hclgevf_update_mac_node(mac_node, state);
1365 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1366 		return 0;
1367 	}
1368 	/* if this address is never added, unnecessary to delete */
1369 	if (state == HCLGEVF_MAC_TO_DEL) {
1370 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1371 		return -ENOENT;
1372 	}
1373 
1374 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1375 	if (!mac_node) {
1376 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1377 		return -ENOMEM;
1378 	}
1379 
1380 	mac_node->state = state;
1381 	ether_addr_copy(mac_node->mac_addr, addr);
1382 	list_add_tail(&mac_node->node, list);
1383 
1384 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1385 	return 0;
1386 }
1387 
1388 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1389 			       const unsigned char *addr)
1390 {
1391 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1392 				       HCLGEVF_MAC_ADDR_UC, addr);
1393 }
1394 
1395 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1396 			      const unsigned char *addr)
1397 {
1398 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1399 				       HCLGEVF_MAC_ADDR_UC, addr);
1400 }
1401 
1402 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1403 			       const unsigned char *addr)
1404 {
1405 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1406 				       HCLGEVF_MAC_ADDR_MC, addr);
1407 }
1408 
1409 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1410 			      const unsigned char *addr)
1411 {
1412 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1413 				       HCLGEVF_MAC_ADDR_MC, addr);
1414 }
1415 
1416 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1417 				    struct hclgevf_mac_addr_node *mac_node,
1418 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1419 {
1420 	struct hclge_vf_to_pf_msg send_msg;
1421 	u8 code, subcode;
1422 
1423 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1424 		code = HCLGE_MBX_SET_UNICAST;
1425 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1426 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1427 		else
1428 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1429 	} else {
1430 		code = HCLGE_MBX_SET_MULTICAST;
1431 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1432 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1433 		else
1434 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1435 	}
1436 
1437 	hclgevf_build_send_msg(&send_msg, code, subcode);
1438 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1439 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1440 }
1441 
1442 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1443 				    struct list_head *list,
1444 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1445 {
1446 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1447 	int ret;
1448 
1449 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1450 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1451 		if  (ret) {
1452 			dev_err(&hdev->pdev->dev,
1453 				"failed to configure mac %pM, state = %d, ret = %d\n",
1454 				mac_node->mac_addr, mac_node->state, ret);
1455 			return;
1456 		}
1457 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1458 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1459 		} else {
1460 			list_del(&mac_node->node);
1461 			kfree(mac_node);
1462 		}
1463 	}
1464 }
1465 
1466 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1467 				       struct list_head *mac_list)
1468 {
1469 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1470 
1471 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1472 		/* if the mac address from tmp_add_list is not in the
1473 		 * uc/mc_mac_list, it means have received a TO_DEL request
1474 		 * during the time window of sending mac config request to PF
1475 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1476 		 * then it will be removed at next time. If is TO_ADD, it means
1477 		 * send TO_ADD request failed, so just remove the mac node.
1478 		 */
1479 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1480 		if (new_node) {
1481 			hclgevf_update_mac_node(new_node, mac_node->state);
1482 			list_del(&mac_node->node);
1483 			kfree(mac_node);
1484 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1485 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1486 			list_del(&mac_node->node);
1487 			list_add_tail(&mac_node->node, mac_list);
1488 		} else {
1489 			list_del(&mac_node->node);
1490 			kfree(mac_node);
1491 		}
1492 	}
1493 }
1494 
1495 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1496 				       struct list_head *mac_list)
1497 {
1498 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1499 
1500 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1501 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1502 		if (new_node) {
1503 			/* If the mac addr is exist in the mac list, it means
1504 			 * received a new request TO_ADD during the time window
1505 			 * of sending mac addr configurrequest to PF, so just
1506 			 * change the mac state to ACTIVE.
1507 			 */
1508 			new_node->state = HCLGEVF_MAC_ACTIVE;
1509 			list_del(&mac_node->node);
1510 			kfree(mac_node);
1511 		} else {
1512 			list_del(&mac_node->node);
1513 			list_add_tail(&mac_node->node, mac_list);
1514 		}
1515 	}
1516 }
1517 
1518 static void hclgevf_clear_list(struct list_head *list)
1519 {
1520 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1521 
1522 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1523 		list_del(&mac_node->node);
1524 		kfree(mac_node);
1525 	}
1526 }
1527 
1528 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1529 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1530 {
1531 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1532 	struct list_head tmp_add_list, tmp_del_list;
1533 	struct list_head *list;
1534 
1535 	INIT_LIST_HEAD(&tmp_add_list);
1536 	INIT_LIST_HEAD(&tmp_del_list);
1537 
1538 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1539 	 * we can add/delete these mac addr outside the spin lock
1540 	 */
1541 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1542 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1543 
1544 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1545 
1546 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1547 		switch (mac_node->state) {
1548 		case HCLGEVF_MAC_TO_DEL:
1549 			list_del(&mac_node->node);
1550 			list_add_tail(&mac_node->node, &tmp_del_list);
1551 			break;
1552 		case HCLGEVF_MAC_TO_ADD:
1553 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1554 			if (!new_node)
1555 				goto stop_traverse;
1556 
1557 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1558 			new_node->state = mac_node->state;
1559 			list_add_tail(&new_node->node, &tmp_add_list);
1560 			break;
1561 		default:
1562 			break;
1563 		}
1564 	}
1565 
1566 stop_traverse:
1567 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1568 
1569 	/* delete first, in order to get max mac table space for adding */
1570 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1571 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1572 
1573 	/* if some mac addresses were added/deleted fail, move back to the
1574 	 * mac_list, and retry at next time.
1575 	 */
1576 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1577 
1578 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1579 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1580 
1581 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1582 }
1583 
1584 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1585 {
1586 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1587 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1588 }
1589 
1590 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1591 {
1592 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1593 
1594 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1595 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1596 
1597 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1598 }
1599 
1600 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1601 				   __be16 proto, u16 vlan_id,
1602 				   bool is_kill)
1603 {
1604 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1605 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1606 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1607 
1608 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1609 	struct hclge_vf_to_pf_msg send_msg;
1610 	int ret;
1611 
1612 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1613 		return -EINVAL;
1614 
1615 	if (proto != htons(ETH_P_8021Q))
1616 		return -EPROTONOSUPPORT;
1617 
1618 	/* When device is resetting or reset failed, firmware is unable to
1619 	 * handle mailbox. Just record the vlan id, and remove it after
1620 	 * reset finished.
1621 	 */
1622 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1623 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1624 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1625 		return -EBUSY;
1626 	}
1627 
1628 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1629 			       HCLGE_MBX_VLAN_FILTER);
1630 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1631 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1632 	       sizeof(vlan_id));
1633 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1634 	       sizeof(proto));
1635 	/* when remove hw vlan filter failed, record the vlan id,
1636 	 * and try to remove it from hw later, to be consistence
1637 	 * with stack.
1638 	 */
1639 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1640 	if (is_kill && ret)
1641 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1642 
1643 	return ret;
1644 }
1645 
1646 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1647 {
1648 #define HCLGEVF_MAX_SYNC_COUNT	60
1649 	struct hnae3_handle *handle = &hdev->nic;
1650 	int ret, sync_cnt = 0;
1651 	u16 vlan_id;
1652 
1653 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1654 	while (vlan_id != VLAN_N_VID) {
1655 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1656 					      vlan_id, true);
1657 		if (ret)
1658 			return;
1659 
1660 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1661 		sync_cnt++;
1662 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1663 			return;
1664 
1665 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1666 	}
1667 }
1668 
1669 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1670 {
1671 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1672 	struct hclge_vf_to_pf_msg send_msg;
1673 
1674 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1675 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1676 	send_msg.data[0] = enable ? 1 : 0;
1677 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1678 }
1679 
1680 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1681 {
1682 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1683 	struct hclge_vf_to_pf_msg send_msg;
1684 	int ret;
1685 
1686 	/* disable vf queue before send queue reset msg to PF */
1687 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1688 	if (ret)
1689 		return ret;
1690 
1691 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1692 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1693 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1694 }
1695 
1696 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1697 {
1698 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1699 	struct hclge_vf_to_pf_msg send_msg;
1700 
1701 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1702 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1703 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1704 }
1705 
1706 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1707 				 enum hnae3_reset_notify_type type)
1708 {
1709 	struct hnae3_client *client = hdev->nic_client;
1710 	struct hnae3_handle *handle = &hdev->nic;
1711 	int ret;
1712 
1713 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1714 	    !client)
1715 		return 0;
1716 
1717 	if (!client->ops->reset_notify)
1718 		return -EOPNOTSUPP;
1719 
1720 	ret = client->ops->reset_notify(handle, type);
1721 	if (ret)
1722 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1723 			type, ret);
1724 
1725 	return ret;
1726 }
1727 
1728 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1729 				      enum hnae3_reset_notify_type type)
1730 {
1731 	struct hnae3_client *client = hdev->roce_client;
1732 	struct hnae3_handle *handle = &hdev->roce;
1733 	int ret;
1734 
1735 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1736 		return 0;
1737 
1738 	if (!client->ops->reset_notify)
1739 		return -EOPNOTSUPP;
1740 
1741 	ret = client->ops->reset_notify(handle, type);
1742 	if (ret)
1743 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1744 			type, ret);
1745 	return ret;
1746 }
1747 
1748 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1749 {
1750 #define HCLGEVF_RESET_WAIT_US	20000
1751 #define HCLGEVF_RESET_WAIT_CNT	2000
1752 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1753 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1754 
1755 	u32 val;
1756 	int ret;
1757 
1758 	if (hdev->reset_type == HNAE3_VF_RESET)
1759 		ret = readl_poll_timeout(hdev->hw.io_base +
1760 					 HCLGEVF_VF_RST_ING, val,
1761 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1762 					 HCLGEVF_RESET_WAIT_US,
1763 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1764 	else
1765 		ret = readl_poll_timeout(hdev->hw.io_base +
1766 					 HCLGEVF_RST_ING, val,
1767 					 !(val & HCLGEVF_RST_ING_BITS),
1768 					 HCLGEVF_RESET_WAIT_US,
1769 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1770 
1771 	/* hardware completion status should be available by this time */
1772 	if (ret) {
1773 		dev_err(&hdev->pdev->dev,
1774 			"couldn't get reset done status from h/w, timeout!\n");
1775 		return ret;
1776 	}
1777 
1778 	/* we will wait a bit more to let reset of the stack to complete. This
1779 	 * might happen in case reset assertion was made by PF. Yes, this also
1780 	 * means we might end up waiting bit more even for VF reset.
1781 	 */
1782 	msleep(5000);
1783 
1784 	return 0;
1785 }
1786 
1787 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1788 {
1789 	u32 reg_val;
1790 
1791 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1792 	if (enable)
1793 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1794 	else
1795 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1796 
1797 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1798 			  reg_val);
1799 }
1800 
1801 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1802 {
1803 	int ret;
1804 
1805 	/* uninitialize the nic client */
1806 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1807 	if (ret)
1808 		return ret;
1809 
1810 	/* re-initialize the hclge device */
1811 	ret = hclgevf_reset_hdev(hdev);
1812 	if (ret) {
1813 		dev_err(&hdev->pdev->dev,
1814 			"hclge device re-init failed, VF is disabled!\n");
1815 		return ret;
1816 	}
1817 
1818 	/* bring up the nic client again */
1819 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1820 	if (ret)
1821 		return ret;
1822 
1823 	/* clear handshake status with IMP */
1824 	hclgevf_reset_handshake(hdev, false);
1825 
1826 	/* bring up the nic to enable TX/RX again */
1827 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1828 }
1829 
1830 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1831 {
1832 #define HCLGEVF_RESET_SYNC_TIME 100
1833 
1834 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1835 		struct hclge_vf_to_pf_msg send_msg;
1836 		int ret;
1837 
1838 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1839 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1840 		if (ret) {
1841 			dev_err(&hdev->pdev->dev,
1842 				"failed to assert VF reset, ret = %d\n", ret);
1843 			return ret;
1844 		}
1845 		hdev->rst_stats.vf_func_rst_cnt++;
1846 	}
1847 
1848 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1849 	/* inform hardware that preparatory work is done */
1850 	msleep(HCLGEVF_RESET_SYNC_TIME);
1851 	hclgevf_reset_handshake(hdev, true);
1852 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1853 		 hdev->reset_type);
1854 
1855 	return 0;
1856 }
1857 
1858 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1859 {
1860 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1861 		 hdev->rst_stats.vf_func_rst_cnt);
1862 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1863 		 hdev->rst_stats.flr_rst_cnt);
1864 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1865 		 hdev->rst_stats.vf_rst_cnt);
1866 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1867 		 hdev->rst_stats.rst_done_cnt);
1868 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1869 		 hdev->rst_stats.hw_rst_done_cnt);
1870 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1871 		 hdev->rst_stats.rst_cnt);
1872 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1873 		 hdev->rst_stats.rst_fail_cnt);
1874 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1875 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1876 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1877 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1878 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1879 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1880 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1881 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1882 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1883 }
1884 
1885 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1886 {
1887 	/* recover handshake status with IMP when reset fail */
1888 	hclgevf_reset_handshake(hdev, true);
1889 	hdev->rst_stats.rst_fail_cnt++;
1890 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1891 		hdev->rst_stats.rst_fail_cnt);
1892 
1893 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1894 		set_bit(hdev->reset_type, &hdev->reset_pending);
1895 
1896 	if (hclgevf_is_reset_pending(hdev)) {
1897 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1898 		hclgevf_reset_task_schedule(hdev);
1899 	} else {
1900 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1901 		hclgevf_dump_rst_info(hdev);
1902 	}
1903 }
1904 
1905 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1906 {
1907 	int ret;
1908 
1909 	hdev->rst_stats.rst_cnt++;
1910 
1911 	/* perform reset of the stack & ae device for a client */
1912 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1913 	if (ret)
1914 		return ret;
1915 
1916 	rtnl_lock();
1917 	/* bring down the nic to stop any ongoing TX/RX */
1918 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1919 	rtnl_unlock();
1920 	if (ret)
1921 		return ret;
1922 
1923 	return hclgevf_reset_prepare_wait(hdev);
1924 }
1925 
1926 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1927 {
1928 	int ret;
1929 
1930 	hdev->rst_stats.hw_rst_done_cnt++;
1931 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1932 	if (ret)
1933 		return ret;
1934 
1935 	rtnl_lock();
1936 	/* now, re-initialize the nic client and ae device */
1937 	ret = hclgevf_reset_stack(hdev);
1938 	rtnl_unlock();
1939 	if (ret) {
1940 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1941 		return ret;
1942 	}
1943 
1944 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1945 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1946 	 * times
1947 	 */
1948 	if (ret &&
1949 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1950 		return ret;
1951 
1952 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1953 	if (ret)
1954 		return ret;
1955 
1956 	hdev->last_reset_time = jiffies;
1957 	hdev->rst_stats.rst_done_cnt++;
1958 	hdev->rst_stats.rst_fail_cnt = 0;
1959 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1960 
1961 	return 0;
1962 }
1963 
1964 static void hclgevf_reset(struct hclgevf_dev *hdev)
1965 {
1966 	if (hclgevf_reset_prepare(hdev))
1967 		goto err_reset;
1968 
1969 	/* check if VF could successfully fetch the hardware reset completion
1970 	 * status from the hardware
1971 	 */
1972 	if (hclgevf_reset_wait(hdev)) {
1973 		/* can't do much in this situation, will disable VF */
1974 		dev_err(&hdev->pdev->dev,
1975 			"failed to fetch H/W reset completion status\n");
1976 		goto err_reset;
1977 	}
1978 
1979 	if (hclgevf_reset_rebuild(hdev))
1980 		goto err_reset;
1981 
1982 	return;
1983 
1984 err_reset:
1985 	hclgevf_reset_err_handle(hdev);
1986 }
1987 
1988 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1989 						     unsigned long *addr)
1990 {
1991 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1992 
1993 	/* return the highest priority reset level amongst all */
1994 	if (test_bit(HNAE3_VF_RESET, addr)) {
1995 		rst_level = HNAE3_VF_RESET;
1996 		clear_bit(HNAE3_VF_RESET, addr);
1997 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1998 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1999 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2000 		rst_level = HNAE3_VF_FULL_RESET;
2001 		clear_bit(HNAE3_VF_FULL_RESET, addr);
2002 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2003 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2004 		rst_level = HNAE3_VF_PF_FUNC_RESET;
2005 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2006 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2007 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2008 		rst_level = HNAE3_VF_FUNC_RESET;
2009 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2010 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2011 		rst_level = HNAE3_FLR_RESET;
2012 		clear_bit(HNAE3_FLR_RESET, addr);
2013 	}
2014 
2015 	return rst_level;
2016 }
2017 
2018 static void hclgevf_reset_event(struct pci_dev *pdev,
2019 				struct hnae3_handle *handle)
2020 {
2021 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2022 	struct hclgevf_dev *hdev = ae_dev->priv;
2023 
2024 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2025 
2026 	if (hdev->default_reset_request)
2027 		hdev->reset_level =
2028 			hclgevf_get_reset_level(hdev,
2029 						&hdev->default_reset_request);
2030 	else
2031 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2032 
2033 	/* reset of this VF requested */
2034 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2035 	hclgevf_reset_task_schedule(hdev);
2036 
2037 	hdev->last_reset_time = jiffies;
2038 }
2039 
2040 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2041 					  enum hnae3_reset_type rst_type)
2042 {
2043 	struct hclgevf_dev *hdev = ae_dev->priv;
2044 
2045 	set_bit(rst_type, &hdev->default_reset_request);
2046 }
2047 
2048 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2049 {
2050 	writel(en ? 1 : 0, vector->addr);
2051 }
2052 
2053 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2054 {
2055 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
2056 #define HCLGEVF_FLR_RETRY_CNT		5
2057 
2058 	struct hclgevf_dev *hdev = ae_dev->priv;
2059 	int retry_cnt = 0;
2060 	int ret;
2061 
2062 retry:
2063 	down(&hdev->reset_sem);
2064 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2065 	hdev->reset_type = HNAE3_FLR_RESET;
2066 	ret = hclgevf_reset_prepare(hdev);
2067 	if (ret) {
2068 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2069 			ret);
2070 		if (hdev->reset_pending ||
2071 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2072 			dev_err(&hdev->pdev->dev,
2073 				"reset_pending:0x%lx, retry_cnt:%d\n",
2074 				hdev->reset_pending, retry_cnt);
2075 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2076 			up(&hdev->reset_sem);
2077 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2078 			goto retry;
2079 		}
2080 	}
2081 
2082 	/* disable misc vector before FLR done */
2083 	hclgevf_enable_vector(&hdev->misc_vector, false);
2084 	hdev->rst_stats.flr_rst_cnt++;
2085 }
2086 
2087 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2088 {
2089 	struct hclgevf_dev *hdev = ae_dev->priv;
2090 	int ret;
2091 
2092 	hclgevf_enable_vector(&hdev->misc_vector, true);
2093 
2094 	ret = hclgevf_reset_rebuild(hdev);
2095 	if (ret)
2096 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2097 			 ret);
2098 
2099 	hdev->reset_type = HNAE3_NONE_RESET;
2100 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2101 	up(&hdev->reset_sem);
2102 }
2103 
2104 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2105 {
2106 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2107 
2108 	return hdev->fw_version;
2109 }
2110 
2111 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2112 {
2113 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2114 
2115 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2116 					    HCLGEVF_MISC_VECTOR_NUM);
2117 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2118 	/* vector status always valid for Vector 0 */
2119 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2120 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2121 
2122 	hdev->num_msi_left -= 1;
2123 	hdev->num_msi_used += 1;
2124 }
2125 
2126 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2127 {
2128 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2129 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2130 			      &hdev->state))
2131 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2132 }
2133 
2134 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2135 {
2136 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2137 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2138 			      &hdev->state))
2139 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2140 }
2141 
2142 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2143 				  unsigned long delay)
2144 {
2145 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2146 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2147 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2148 }
2149 
2150 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2151 {
2152 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2153 
2154 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2155 		return;
2156 
2157 	down(&hdev->reset_sem);
2158 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2159 
2160 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2161 			       &hdev->reset_state)) {
2162 		/* PF has initmated that it is about to reset the hardware.
2163 		 * We now have to poll & check if hardware has actually
2164 		 * completed the reset sequence. On hardware reset completion,
2165 		 * VF needs to reset the client and ae device.
2166 		 */
2167 		hdev->reset_attempts = 0;
2168 
2169 		hdev->last_reset_time = jiffies;
2170 		while ((hdev->reset_type =
2171 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2172 		       != HNAE3_NONE_RESET)
2173 			hclgevf_reset(hdev);
2174 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2175 				      &hdev->reset_state)) {
2176 		/* we could be here when either of below happens:
2177 		 * 1. reset was initiated due to watchdog timeout caused by
2178 		 *    a. IMP was earlier reset and our TX got choked down and
2179 		 *       which resulted in watchdog reacting and inducing VF
2180 		 *       reset. This also means our cmdq would be unreliable.
2181 		 *    b. problem in TX due to other lower layer(example link
2182 		 *       layer not functioning properly etc.)
2183 		 * 2. VF reset might have been initiated due to some config
2184 		 *    change.
2185 		 *
2186 		 * NOTE: Theres no clear way to detect above cases than to react
2187 		 * to the response of PF for this reset request. PF will ack the
2188 		 * 1b and 2. cases but we will not get any intimation about 1a
2189 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2190 		 * communication between PF and VF would be broken.
2191 		 *
2192 		 * if we are never geting into pending state it means either:
2193 		 * 1. PF is not receiving our request which could be due to IMP
2194 		 *    reset
2195 		 * 2. PF is screwed
2196 		 * We cannot do much for 2. but to check first we can try reset
2197 		 * our PCIe + stack and see if it alleviates the problem.
2198 		 */
2199 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2200 			/* prepare for full reset of stack + pcie interface */
2201 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2202 
2203 			/* "defer" schedule the reset task again */
2204 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2205 		} else {
2206 			hdev->reset_attempts++;
2207 
2208 			set_bit(hdev->reset_level, &hdev->reset_pending);
2209 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2210 		}
2211 		hclgevf_reset_task_schedule(hdev);
2212 	}
2213 
2214 	hdev->reset_type = HNAE3_NONE_RESET;
2215 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2216 	up(&hdev->reset_sem);
2217 }
2218 
2219 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2220 {
2221 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2222 		return;
2223 
2224 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2225 		return;
2226 
2227 	hclgevf_mbx_async_handler(hdev);
2228 
2229 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2230 }
2231 
2232 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2233 {
2234 	struct hclge_vf_to_pf_msg send_msg;
2235 	int ret;
2236 
2237 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2238 		return;
2239 
2240 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2241 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2242 	if (ret)
2243 		dev_err(&hdev->pdev->dev,
2244 			"VF sends keep alive cmd failed(=%d)\n", ret);
2245 }
2246 
2247 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2248 {
2249 	unsigned long delta = round_jiffies_relative(HZ);
2250 	struct hnae3_handle *handle = &hdev->nic;
2251 
2252 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2253 		return;
2254 
2255 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2256 		delta = jiffies - hdev->last_serv_processed;
2257 
2258 		if (delta < round_jiffies_relative(HZ)) {
2259 			delta = round_jiffies_relative(HZ) - delta;
2260 			goto out;
2261 		}
2262 	}
2263 
2264 	hdev->serv_processed_cnt++;
2265 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2266 		hclgevf_keep_alive(hdev);
2267 
2268 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2269 		hdev->last_serv_processed = jiffies;
2270 		goto out;
2271 	}
2272 
2273 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2274 		hclgevf_tqps_update_stats(handle);
2275 
2276 	/* request the link status from the PF. PF would be able to tell VF
2277 	 * about such updates in future so we might remove this later
2278 	 */
2279 	hclgevf_request_link_info(hdev);
2280 
2281 	hclgevf_update_link_mode(hdev);
2282 
2283 	hclgevf_sync_vlan_filter(hdev);
2284 
2285 	hclgevf_sync_mac_table(hdev);
2286 
2287 	hclgevf_sync_promisc_mode(hdev);
2288 
2289 	hdev->last_serv_processed = jiffies;
2290 
2291 out:
2292 	hclgevf_task_schedule(hdev, delta);
2293 }
2294 
2295 static void hclgevf_service_task(struct work_struct *work)
2296 {
2297 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2298 						service_task.work);
2299 
2300 	hclgevf_reset_service_task(hdev);
2301 	hclgevf_mailbox_service_task(hdev);
2302 	hclgevf_periodic_service_task(hdev);
2303 
2304 	/* Handle reset and mbx again in case periodical task delays the
2305 	 * handling by calling hclgevf_task_schedule() in
2306 	 * hclgevf_periodic_service_task()
2307 	 */
2308 	hclgevf_reset_service_task(hdev);
2309 	hclgevf_mailbox_service_task(hdev);
2310 }
2311 
2312 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2313 {
2314 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2315 }
2316 
2317 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2318 						      u32 *clearval)
2319 {
2320 	u32 val, cmdq_stat_reg, rst_ing_reg;
2321 
2322 	/* fetch the events from their corresponding regs */
2323 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2324 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2325 
2326 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2327 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2328 		dev_info(&hdev->pdev->dev,
2329 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2330 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2331 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2332 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2333 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2334 		hdev->rst_stats.vf_rst_cnt++;
2335 		/* set up VF hardware reset status, its PF will clear
2336 		 * this status when PF has initialized done.
2337 		 */
2338 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2339 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2340 				  val | HCLGEVF_VF_RST_ING_BIT);
2341 		return HCLGEVF_VECTOR0_EVENT_RST;
2342 	}
2343 
2344 	/* check for vector0 mailbox(=CMDQ RX) event source */
2345 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2346 		/* for revision 0x21, clearing interrupt is writing bit 0
2347 		 * to the clear register, writing bit 1 means to keep the
2348 		 * old value.
2349 		 * for revision 0x20, the clear register is a read & write
2350 		 * register, so we should just write 0 to the bit we are
2351 		 * handling, and keep other bits as cmdq_stat_reg.
2352 		 */
2353 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2354 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2355 		else
2356 			*clearval = cmdq_stat_reg &
2357 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2358 
2359 		return HCLGEVF_VECTOR0_EVENT_MBX;
2360 	}
2361 
2362 	/* print other vector0 event source */
2363 	dev_info(&hdev->pdev->dev,
2364 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2365 		 cmdq_stat_reg);
2366 
2367 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2368 }
2369 
2370 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2371 {
2372 	enum hclgevf_evt_cause event_cause;
2373 	struct hclgevf_dev *hdev = data;
2374 	u32 clearval;
2375 
2376 	hclgevf_enable_vector(&hdev->misc_vector, false);
2377 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2378 
2379 	switch (event_cause) {
2380 	case HCLGEVF_VECTOR0_EVENT_RST:
2381 		hclgevf_reset_task_schedule(hdev);
2382 		break;
2383 	case HCLGEVF_VECTOR0_EVENT_MBX:
2384 		hclgevf_mbx_handler(hdev);
2385 		break;
2386 	default:
2387 		break;
2388 	}
2389 
2390 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2391 		hclgevf_clear_event_cause(hdev, clearval);
2392 		hclgevf_enable_vector(&hdev->misc_vector, true);
2393 	}
2394 
2395 	return IRQ_HANDLED;
2396 }
2397 
2398 static int hclgevf_configure(struct hclgevf_dev *hdev)
2399 {
2400 	int ret;
2401 
2402 	/* get current port based vlan state from PF */
2403 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2404 	if (ret)
2405 		return ret;
2406 
2407 	/* get queue configuration from PF */
2408 	ret = hclgevf_get_queue_info(hdev);
2409 	if (ret)
2410 		return ret;
2411 
2412 	/* get queue depth info from PF */
2413 	ret = hclgevf_get_queue_depth(hdev);
2414 	if (ret)
2415 		return ret;
2416 
2417 	ret = hclgevf_get_pf_media_type(hdev);
2418 	if (ret)
2419 		return ret;
2420 
2421 	/* get tc configuration from PF */
2422 	return hclgevf_get_tc_info(hdev);
2423 }
2424 
2425 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2426 {
2427 	struct pci_dev *pdev = ae_dev->pdev;
2428 	struct hclgevf_dev *hdev;
2429 
2430 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2431 	if (!hdev)
2432 		return -ENOMEM;
2433 
2434 	hdev->pdev = pdev;
2435 	hdev->ae_dev = ae_dev;
2436 	ae_dev->priv = hdev;
2437 
2438 	return 0;
2439 }
2440 
2441 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2442 {
2443 	struct hnae3_handle *roce = &hdev->roce;
2444 	struct hnae3_handle *nic = &hdev->nic;
2445 
2446 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2447 
2448 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2449 	    hdev->num_msi_left == 0)
2450 		return -EINVAL;
2451 
2452 	roce->rinfo.base_vector = hdev->roce_base_vector;
2453 
2454 	roce->rinfo.netdev = nic->kinfo.netdev;
2455 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2456 	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2457 
2458 	roce->pdev = nic->pdev;
2459 	roce->ae_algo = nic->ae_algo;
2460 	roce->numa_node_mask = nic->numa_node_mask;
2461 
2462 	return 0;
2463 }
2464 
2465 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2466 {
2467 	struct hclgevf_cfg_gro_status_cmd *req;
2468 	struct hclgevf_desc desc;
2469 	int ret;
2470 
2471 	if (!hnae3_dev_gro_supported(hdev))
2472 		return 0;
2473 
2474 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2475 				     false);
2476 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2477 
2478 	req->gro_en = en ? 1 : 0;
2479 
2480 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2481 	if (ret)
2482 		dev_err(&hdev->pdev->dev,
2483 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2484 
2485 	return ret;
2486 }
2487 
2488 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2489 {
2490 	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2491 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2492 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2493 	u32 i;
2494 
2495 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2496 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2497 	tuple_sets = &rss_cfg->rss_tuple_sets;
2498 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2499 		u8 *rss_ind_tbl;
2500 
2501 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2502 
2503 		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2504 					   sizeof(*rss_ind_tbl), GFP_KERNEL);
2505 		if (!rss_ind_tbl)
2506 			return -ENOMEM;
2507 
2508 		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2509 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2510 		       HCLGEVF_RSS_KEY_SIZE);
2511 
2512 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2513 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2514 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2515 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2516 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2517 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2518 		tuple_sets->ipv6_sctp_en =
2519 			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2520 					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2521 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2522 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2523 	}
2524 
2525 	/* Initialize RSS indirect table */
2526 	for (i = 0; i < rss_ind_tbl_size; i++)
2527 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2528 
2529 	return 0;
2530 }
2531 
2532 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2533 {
2534 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2535 	int ret;
2536 
2537 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2538 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2539 					       rss_cfg->rss_hash_key);
2540 		if (ret)
2541 			return ret;
2542 
2543 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2544 		if (ret)
2545 			return ret;
2546 	}
2547 
2548 	ret = hclgevf_set_rss_indir_table(hdev);
2549 	if (ret)
2550 		return ret;
2551 
2552 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2553 }
2554 
2555 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2556 {
2557 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2558 				       false);
2559 }
2560 
2561 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2562 {
2563 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2564 
2565 	unsigned long last = hdev->serv_processed_cnt;
2566 	int i = 0;
2567 
2568 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2569 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2570 	       last == hdev->serv_processed_cnt)
2571 		usleep_range(1, 1);
2572 }
2573 
2574 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2575 {
2576 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2577 
2578 	if (enable) {
2579 		hclgevf_task_schedule(hdev, 0);
2580 	} else {
2581 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2582 
2583 		/* flush memory to make sure DOWN is seen by service task */
2584 		smp_mb__before_atomic();
2585 		hclgevf_flush_link_update(hdev);
2586 	}
2587 }
2588 
2589 static int hclgevf_ae_start(struct hnae3_handle *handle)
2590 {
2591 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2592 
2593 	hclgevf_reset_tqp_stats(handle);
2594 
2595 	hclgevf_request_link_info(hdev);
2596 
2597 	hclgevf_update_link_mode(hdev);
2598 
2599 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2600 
2601 	return 0;
2602 }
2603 
2604 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2605 {
2606 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2607 	int i;
2608 
2609 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2610 
2611 	if (hdev->reset_type != HNAE3_VF_RESET)
2612 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2613 			if (hclgevf_reset_tqp(handle, i))
2614 				break;
2615 
2616 	hclgevf_reset_tqp_stats(handle);
2617 	hclgevf_update_link_status(hdev, 0);
2618 }
2619 
2620 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2621 {
2622 #define HCLGEVF_STATE_ALIVE	1
2623 #define HCLGEVF_STATE_NOT_ALIVE	0
2624 
2625 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2626 	struct hclge_vf_to_pf_msg send_msg;
2627 
2628 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2629 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2630 				HCLGEVF_STATE_NOT_ALIVE;
2631 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2632 }
2633 
2634 static int hclgevf_client_start(struct hnae3_handle *handle)
2635 {
2636 	return hclgevf_set_alive(handle, true);
2637 }
2638 
2639 static void hclgevf_client_stop(struct hnae3_handle *handle)
2640 {
2641 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2642 	int ret;
2643 
2644 	ret = hclgevf_set_alive(handle, false);
2645 	if (ret)
2646 		dev_warn(&hdev->pdev->dev,
2647 			 "%s failed %d\n", __func__, ret);
2648 }
2649 
2650 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2651 {
2652 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2653 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2654 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2655 
2656 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2657 
2658 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2659 	sema_init(&hdev->reset_sem, 1);
2660 
2661 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2662 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2663 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2664 
2665 	/* bring the device down */
2666 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2667 }
2668 
2669 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2670 {
2671 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2672 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2673 
2674 	if (hdev->service_task.work.func)
2675 		cancel_delayed_work_sync(&hdev->service_task);
2676 
2677 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2678 }
2679 
2680 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2681 {
2682 	struct pci_dev *pdev = hdev->pdev;
2683 	int vectors;
2684 	int i;
2685 
2686 	if (hnae3_dev_roce_supported(hdev))
2687 		vectors = pci_alloc_irq_vectors(pdev,
2688 						hdev->roce_base_msix_offset + 1,
2689 						hdev->num_msi,
2690 						PCI_IRQ_MSIX);
2691 	else
2692 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2693 						hdev->num_msi,
2694 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2695 
2696 	if (vectors < 0) {
2697 		dev_err(&pdev->dev,
2698 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2699 			vectors);
2700 		return vectors;
2701 	}
2702 	if (vectors < hdev->num_msi)
2703 		dev_warn(&hdev->pdev->dev,
2704 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2705 			 hdev->num_msi, vectors);
2706 
2707 	hdev->num_msi = vectors;
2708 	hdev->num_msi_left = vectors;
2709 
2710 	hdev->base_msi_vector = pdev->irq;
2711 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2712 
2713 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2714 					   sizeof(u16), GFP_KERNEL);
2715 	if (!hdev->vector_status) {
2716 		pci_free_irq_vectors(pdev);
2717 		return -ENOMEM;
2718 	}
2719 
2720 	for (i = 0; i < hdev->num_msi; i++)
2721 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2722 
2723 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2724 					sizeof(int), GFP_KERNEL);
2725 	if (!hdev->vector_irq) {
2726 		devm_kfree(&pdev->dev, hdev->vector_status);
2727 		pci_free_irq_vectors(pdev);
2728 		return -ENOMEM;
2729 	}
2730 
2731 	return 0;
2732 }
2733 
2734 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2735 {
2736 	struct pci_dev *pdev = hdev->pdev;
2737 
2738 	devm_kfree(&pdev->dev, hdev->vector_status);
2739 	devm_kfree(&pdev->dev, hdev->vector_irq);
2740 	pci_free_irq_vectors(pdev);
2741 }
2742 
2743 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2744 {
2745 	int ret;
2746 
2747 	hclgevf_get_misc_vector(hdev);
2748 
2749 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2750 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2751 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2752 			  0, hdev->misc_vector.name, hdev);
2753 	if (ret) {
2754 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2755 			hdev->misc_vector.vector_irq);
2756 		return ret;
2757 	}
2758 
2759 	hclgevf_clear_event_cause(hdev, 0);
2760 
2761 	/* enable misc. vector(vector 0) */
2762 	hclgevf_enable_vector(&hdev->misc_vector, true);
2763 
2764 	return ret;
2765 }
2766 
2767 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2768 {
2769 	/* disable misc vector(vector 0) */
2770 	hclgevf_enable_vector(&hdev->misc_vector, false);
2771 	synchronize_irq(hdev->misc_vector.vector_irq);
2772 	free_irq(hdev->misc_vector.vector_irq, hdev);
2773 	hclgevf_free_vector(hdev, 0);
2774 }
2775 
2776 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2777 {
2778 	struct device *dev = &hdev->pdev->dev;
2779 
2780 	dev_info(dev, "VF info begin:\n");
2781 
2782 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2783 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2784 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2785 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2786 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2787 	dev_info(dev, "PF media type of this VF: %u\n",
2788 		 hdev->hw.mac.media_type);
2789 
2790 	dev_info(dev, "VF info end.\n");
2791 }
2792 
2793 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2794 					    struct hnae3_client *client)
2795 {
2796 	struct hclgevf_dev *hdev = ae_dev->priv;
2797 	int rst_cnt = hdev->rst_stats.rst_cnt;
2798 	int ret;
2799 
2800 	ret = client->ops->init_instance(&hdev->nic);
2801 	if (ret)
2802 		return ret;
2803 
2804 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2805 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2806 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2807 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2808 
2809 		client->ops->uninit_instance(&hdev->nic, 0);
2810 		return -EBUSY;
2811 	}
2812 
2813 	hnae3_set_client_init_flag(client, ae_dev, 1);
2814 
2815 	if (netif_msg_drv(&hdev->nic))
2816 		hclgevf_info_show(hdev);
2817 
2818 	return 0;
2819 }
2820 
2821 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2822 					     struct hnae3_client *client)
2823 {
2824 	struct hclgevf_dev *hdev = ae_dev->priv;
2825 	int ret;
2826 
2827 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2828 	    !hdev->nic_client)
2829 		return 0;
2830 
2831 	ret = hclgevf_init_roce_base_info(hdev);
2832 	if (ret)
2833 		return ret;
2834 
2835 	ret = client->ops->init_instance(&hdev->roce);
2836 	if (ret)
2837 		return ret;
2838 
2839 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2840 	hnae3_set_client_init_flag(client, ae_dev, 1);
2841 
2842 	return 0;
2843 }
2844 
2845 static int hclgevf_init_client_instance(struct hnae3_client *client,
2846 					struct hnae3_ae_dev *ae_dev)
2847 {
2848 	struct hclgevf_dev *hdev = ae_dev->priv;
2849 	int ret;
2850 
2851 	switch (client->type) {
2852 	case HNAE3_CLIENT_KNIC:
2853 		hdev->nic_client = client;
2854 		hdev->nic.client = client;
2855 
2856 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2857 		if (ret)
2858 			goto clear_nic;
2859 
2860 		ret = hclgevf_init_roce_client_instance(ae_dev,
2861 							hdev->roce_client);
2862 		if (ret)
2863 			goto clear_roce;
2864 
2865 		break;
2866 	case HNAE3_CLIENT_ROCE:
2867 		if (hnae3_dev_roce_supported(hdev)) {
2868 			hdev->roce_client = client;
2869 			hdev->roce.client = client;
2870 		}
2871 
2872 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2873 		if (ret)
2874 			goto clear_roce;
2875 
2876 		break;
2877 	default:
2878 		return -EINVAL;
2879 	}
2880 
2881 	return 0;
2882 
2883 clear_nic:
2884 	hdev->nic_client = NULL;
2885 	hdev->nic.client = NULL;
2886 	return ret;
2887 clear_roce:
2888 	hdev->roce_client = NULL;
2889 	hdev->roce.client = NULL;
2890 	return ret;
2891 }
2892 
2893 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2894 					   struct hnae3_ae_dev *ae_dev)
2895 {
2896 	struct hclgevf_dev *hdev = ae_dev->priv;
2897 
2898 	/* un-init roce, if it exists */
2899 	if (hdev->roce_client) {
2900 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2901 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2902 		hdev->roce_client = NULL;
2903 		hdev->roce.client = NULL;
2904 	}
2905 
2906 	/* un-init nic/unic, if this was not called by roce client */
2907 	if (client->ops->uninit_instance && hdev->nic_client &&
2908 	    client->type != HNAE3_CLIENT_ROCE) {
2909 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2910 
2911 		client->ops->uninit_instance(&hdev->nic, 0);
2912 		hdev->nic_client = NULL;
2913 		hdev->nic.client = NULL;
2914 	}
2915 }
2916 
2917 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2918 {
2919 #define HCLGEVF_MEM_BAR		4
2920 
2921 	struct pci_dev *pdev = hdev->pdev;
2922 	struct hclgevf_hw *hw = &hdev->hw;
2923 
2924 	/* for device does not have device memory, return directly */
2925 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2926 		return 0;
2927 
2928 	hw->mem_base = devm_ioremap_wc(&pdev->dev,
2929 				       pci_resource_start(pdev,
2930 							  HCLGEVF_MEM_BAR),
2931 				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2932 	if (!hw->mem_base) {
2933 		dev_err(&pdev->dev, "failed to map device memory\n");
2934 		return -EFAULT;
2935 	}
2936 
2937 	return 0;
2938 }
2939 
2940 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2941 {
2942 	struct pci_dev *pdev = hdev->pdev;
2943 	struct hclgevf_hw *hw;
2944 	int ret;
2945 
2946 	ret = pci_enable_device(pdev);
2947 	if (ret) {
2948 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2949 		return ret;
2950 	}
2951 
2952 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2953 	if (ret) {
2954 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2955 		goto err_disable_device;
2956 	}
2957 
2958 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2959 	if (ret) {
2960 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2961 		goto err_disable_device;
2962 	}
2963 
2964 	pci_set_master(pdev);
2965 	hw = &hdev->hw;
2966 	hw->hdev = hdev;
2967 	hw->io_base = pci_iomap(pdev, 2, 0);
2968 	if (!hw->io_base) {
2969 		dev_err(&pdev->dev, "can't map configuration register space\n");
2970 		ret = -ENOMEM;
2971 		goto err_clr_master;
2972 	}
2973 
2974 	ret = hclgevf_dev_mem_map(hdev);
2975 	if (ret)
2976 		goto err_unmap_io_base;
2977 
2978 	return 0;
2979 
2980 err_unmap_io_base:
2981 	pci_iounmap(pdev, hdev->hw.io_base);
2982 err_clr_master:
2983 	pci_clear_master(pdev);
2984 	pci_release_regions(pdev);
2985 err_disable_device:
2986 	pci_disable_device(pdev);
2987 
2988 	return ret;
2989 }
2990 
2991 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2992 {
2993 	struct pci_dev *pdev = hdev->pdev;
2994 
2995 	if (hdev->hw.mem_base)
2996 		devm_iounmap(&pdev->dev, hdev->hw.mem_base);
2997 
2998 	pci_iounmap(pdev, hdev->hw.io_base);
2999 	pci_clear_master(pdev);
3000 	pci_release_regions(pdev);
3001 	pci_disable_device(pdev);
3002 }
3003 
3004 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3005 {
3006 	struct hclgevf_query_res_cmd *req;
3007 	struct hclgevf_desc desc;
3008 	int ret;
3009 
3010 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3011 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3012 	if (ret) {
3013 		dev_err(&hdev->pdev->dev,
3014 			"query vf resource failed, ret = %d.\n", ret);
3015 		return ret;
3016 	}
3017 
3018 	req = (struct hclgevf_query_res_cmd *)desc.data;
3019 
3020 	if (hnae3_dev_roce_supported(hdev)) {
3021 		hdev->roce_base_msix_offset =
3022 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3023 				HCLGEVF_MSIX_OFT_ROCEE_M,
3024 				HCLGEVF_MSIX_OFT_ROCEE_S);
3025 		hdev->num_roce_msix =
3026 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3027 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3028 
3029 		/* nic's msix numbers is always equals to the roce's. */
3030 		hdev->num_nic_msix = hdev->num_roce_msix;
3031 
3032 		/* VF should have NIC vectors and Roce vectors, NIC vectors
3033 		 * are queued before Roce vectors. The offset is fixed to 64.
3034 		 */
3035 		hdev->num_msi = hdev->num_roce_msix +
3036 				hdev->roce_base_msix_offset;
3037 	} else {
3038 		hdev->num_msi =
3039 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3040 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3041 
3042 		hdev->num_nic_msix = hdev->num_msi;
3043 	}
3044 
3045 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3046 		dev_err(&hdev->pdev->dev,
3047 			"Just %u msi resources, not enough for vf(min:2).\n",
3048 			hdev->num_nic_msix);
3049 		return -EINVAL;
3050 	}
3051 
3052 	return 0;
3053 }
3054 
3055 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3056 {
3057 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3058 
3059 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3060 
3061 	ae_dev->dev_specs.max_non_tso_bd_num =
3062 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3063 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3064 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3065 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3066 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3067 }
3068 
3069 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3070 				    struct hclgevf_desc *desc)
3071 {
3072 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3073 	struct hclgevf_dev_specs_0_cmd *req0;
3074 	struct hclgevf_dev_specs_1_cmd *req1;
3075 
3076 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3077 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3078 
3079 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3080 	ae_dev->dev_specs.rss_ind_tbl_size =
3081 					le16_to_cpu(req0->rss_ind_tbl_size);
3082 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3083 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3084 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3085 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3086 }
3087 
3088 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3089 {
3090 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3091 
3092 	if (!dev_specs->max_non_tso_bd_num)
3093 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3094 	if (!dev_specs->rss_ind_tbl_size)
3095 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3096 	if (!dev_specs->rss_key_size)
3097 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3098 	if (!dev_specs->max_int_gl)
3099 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3100 	if (!dev_specs->max_frm_size)
3101 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3102 }
3103 
3104 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3105 {
3106 	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3107 	int ret;
3108 	int i;
3109 
3110 	/* set default specifications as devices lower than version V3 do not
3111 	 * support querying specifications from firmware.
3112 	 */
3113 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3114 		hclgevf_set_default_dev_specs(hdev);
3115 		return 0;
3116 	}
3117 
3118 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3119 		hclgevf_cmd_setup_basic_desc(&desc[i],
3120 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3121 		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3122 	}
3123 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3124 				     true);
3125 
3126 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3127 	if (ret)
3128 		return ret;
3129 
3130 	hclgevf_parse_dev_specs(hdev, desc);
3131 	hclgevf_check_dev_specs(hdev);
3132 
3133 	return 0;
3134 }
3135 
3136 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3137 {
3138 	struct pci_dev *pdev = hdev->pdev;
3139 	int ret = 0;
3140 
3141 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3142 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3143 		hclgevf_misc_irq_uninit(hdev);
3144 		hclgevf_uninit_msi(hdev);
3145 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3146 	}
3147 
3148 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3149 		pci_set_master(pdev);
3150 		ret = hclgevf_init_msi(hdev);
3151 		if (ret) {
3152 			dev_err(&pdev->dev,
3153 				"failed(%d) to init MSI/MSI-X\n", ret);
3154 			return ret;
3155 		}
3156 
3157 		ret = hclgevf_misc_irq_init(hdev);
3158 		if (ret) {
3159 			hclgevf_uninit_msi(hdev);
3160 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3161 				ret);
3162 			return ret;
3163 		}
3164 
3165 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3166 	}
3167 
3168 	return ret;
3169 }
3170 
3171 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3172 {
3173 	struct hclge_vf_to_pf_msg send_msg;
3174 
3175 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3176 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3177 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3178 }
3179 
3180 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3181 {
3182 	struct pci_dev *pdev = hdev->pdev;
3183 	int ret;
3184 
3185 	ret = hclgevf_pci_reset(hdev);
3186 	if (ret) {
3187 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3188 		return ret;
3189 	}
3190 
3191 	ret = hclgevf_cmd_init(hdev);
3192 	if (ret) {
3193 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3194 		return ret;
3195 	}
3196 
3197 	ret = hclgevf_rss_init_hw(hdev);
3198 	if (ret) {
3199 		dev_err(&hdev->pdev->dev,
3200 			"failed(%d) to initialize RSS\n", ret);
3201 		return ret;
3202 	}
3203 
3204 	ret = hclgevf_config_gro(hdev, true);
3205 	if (ret)
3206 		return ret;
3207 
3208 	ret = hclgevf_init_vlan_config(hdev);
3209 	if (ret) {
3210 		dev_err(&hdev->pdev->dev,
3211 			"failed(%d) to initialize VLAN config\n", ret);
3212 		return ret;
3213 	}
3214 
3215 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3216 
3217 	dev_info(&hdev->pdev->dev, "Reset done\n");
3218 
3219 	return 0;
3220 }
3221 
3222 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3223 {
3224 	struct pci_dev *pdev = hdev->pdev;
3225 	int ret;
3226 
3227 	ret = hclgevf_pci_init(hdev);
3228 	if (ret)
3229 		return ret;
3230 
3231 	ret = hclgevf_cmd_queue_init(hdev);
3232 	if (ret)
3233 		goto err_cmd_queue_init;
3234 
3235 	ret = hclgevf_cmd_init(hdev);
3236 	if (ret)
3237 		goto err_cmd_init;
3238 
3239 	/* Get vf resource */
3240 	ret = hclgevf_query_vf_resource(hdev);
3241 	if (ret)
3242 		goto err_cmd_init;
3243 
3244 	ret = hclgevf_query_dev_specs(hdev);
3245 	if (ret) {
3246 		dev_err(&pdev->dev,
3247 			"failed to query dev specifications, ret = %d\n", ret);
3248 		goto err_cmd_init;
3249 	}
3250 
3251 	ret = hclgevf_init_msi(hdev);
3252 	if (ret) {
3253 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3254 		goto err_cmd_init;
3255 	}
3256 
3257 	hclgevf_state_init(hdev);
3258 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3259 	hdev->reset_type = HNAE3_NONE_RESET;
3260 
3261 	ret = hclgevf_misc_irq_init(hdev);
3262 	if (ret)
3263 		goto err_misc_irq_init;
3264 
3265 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3266 
3267 	ret = hclgevf_configure(hdev);
3268 	if (ret) {
3269 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3270 		goto err_config;
3271 	}
3272 
3273 	ret = hclgevf_alloc_tqps(hdev);
3274 	if (ret) {
3275 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3276 		goto err_config;
3277 	}
3278 
3279 	ret = hclgevf_set_handle_info(hdev);
3280 	if (ret)
3281 		goto err_config;
3282 
3283 	ret = hclgevf_config_gro(hdev, true);
3284 	if (ret)
3285 		goto err_config;
3286 
3287 	/* Initialize RSS for this VF */
3288 	ret = hclgevf_rss_init_cfg(hdev);
3289 	if (ret) {
3290 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3291 		goto err_config;
3292 	}
3293 
3294 	ret = hclgevf_rss_init_hw(hdev);
3295 	if (ret) {
3296 		dev_err(&hdev->pdev->dev,
3297 			"failed(%d) to initialize RSS\n", ret);
3298 		goto err_config;
3299 	}
3300 
3301 	/* ensure vf tbl list as empty before init*/
3302 	ret = hclgevf_clear_vport_list(hdev);
3303 	if (ret) {
3304 		dev_err(&pdev->dev,
3305 			"failed to clear tbl list configuration, ret = %d.\n",
3306 			ret);
3307 		goto err_config;
3308 	}
3309 
3310 	ret = hclgevf_init_vlan_config(hdev);
3311 	if (ret) {
3312 		dev_err(&hdev->pdev->dev,
3313 			"failed(%d) to initialize VLAN config\n", ret);
3314 		goto err_config;
3315 	}
3316 
3317 	hdev->last_reset_time = jiffies;
3318 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3319 		 HCLGEVF_DRIVER_NAME);
3320 
3321 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3322 
3323 	return 0;
3324 
3325 err_config:
3326 	hclgevf_misc_irq_uninit(hdev);
3327 err_misc_irq_init:
3328 	hclgevf_state_uninit(hdev);
3329 	hclgevf_uninit_msi(hdev);
3330 err_cmd_init:
3331 	hclgevf_cmd_uninit(hdev);
3332 err_cmd_queue_init:
3333 	hclgevf_pci_uninit(hdev);
3334 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3335 	return ret;
3336 }
3337 
3338 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3339 {
3340 	struct hclge_vf_to_pf_msg send_msg;
3341 
3342 	hclgevf_state_uninit(hdev);
3343 
3344 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3345 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3346 
3347 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3348 		hclgevf_misc_irq_uninit(hdev);
3349 		hclgevf_uninit_msi(hdev);
3350 	}
3351 
3352 	hclgevf_cmd_uninit(hdev);
3353 	hclgevf_pci_uninit(hdev);
3354 	hclgevf_uninit_mac_list(hdev);
3355 }
3356 
3357 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3358 {
3359 	struct pci_dev *pdev = ae_dev->pdev;
3360 	int ret;
3361 
3362 	ret = hclgevf_alloc_hdev(ae_dev);
3363 	if (ret) {
3364 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3365 		return ret;
3366 	}
3367 
3368 	ret = hclgevf_init_hdev(ae_dev->priv);
3369 	if (ret) {
3370 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3371 		return ret;
3372 	}
3373 
3374 	return 0;
3375 }
3376 
3377 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3378 {
3379 	struct hclgevf_dev *hdev = ae_dev->priv;
3380 
3381 	hclgevf_uninit_hdev(hdev);
3382 	ae_dev->priv = NULL;
3383 }
3384 
3385 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3386 {
3387 	struct hnae3_handle *nic = &hdev->nic;
3388 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3389 
3390 	return min_t(u32, hdev->rss_size_max,
3391 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3392 }
3393 
3394 /**
3395  * hclgevf_get_channels - Get the current channels enabled and max supported.
3396  * @handle: hardware information for network interface
3397  * @ch: ethtool channels structure
3398  *
3399  * We don't support separate tx and rx queues as channels. The other count
3400  * represents how many queues are being used for control. max_combined counts
3401  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3402  * q_vectors since we support a lot more queue pairs than q_vectors.
3403  **/
3404 static void hclgevf_get_channels(struct hnae3_handle *handle,
3405 				 struct ethtool_channels *ch)
3406 {
3407 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3408 
3409 	ch->max_combined = hclgevf_get_max_channels(hdev);
3410 	ch->other_count = 0;
3411 	ch->max_other = 0;
3412 	ch->combined_count = handle->kinfo.rss_size;
3413 }
3414 
3415 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3416 					  u16 *alloc_tqps, u16 *max_rss_size)
3417 {
3418 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3419 
3420 	*alloc_tqps = hdev->num_tqps;
3421 	*max_rss_size = hdev->rss_size_max;
3422 }
3423 
3424 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3425 				    u32 new_tqps_num)
3426 {
3427 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3428 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3429 	u16 max_rss_size;
3430 
3431 	kinfo->req_rss_size = new_tqps_num;
3432 
3433 	max_rss_size = min_t(u16, hdev->rss_size_max,
3434 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3435 
3436 	/* Use the user's configuration when it is not larger than
3437 	 * max_rss_size, otherwise, use the maximum specification value.
3438 	 */
3439 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3440 	    kinfo->req_rss_size <= max_rss_size)
3441 		kinfo->rss_size = kinfo->req_rss_size;
3442 	else if (kinfo->rss_size > max_rss_size ||
3443 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3444 		kinfo->rss_size = max_rss_size;
3445 
3446 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3447 }
3448 
3449 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3450 				bool rxfh_configured)
3451 {
3452 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3453 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3454 	u16 cur_rss_size = kinfo->rss_size;
3455 	u16 cur_tqps = kinfo->num_tqps;
3456 	u32 *rss_indir;
3457 	unsigned int i;
3458 	int ret;
3459 
3460 	hclgevf_update_rss_size(handle, new_tqps_num);
3461 
3462 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3463 	if (ret)
3464 		return ret;
3465 
3466 	/* RSS indirection table has been configuared by user */
3467 	if (rxfh_configured)
3468 		goto out;
3469 
3470 	/* Reinitializes the rss indirect table according to the new RSS size */
3471 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3472 			    sizeof(u32), GFP_KERNEL);
3473 	if (!rss_indir)
3474 		return -ENOMEM;
3475 
3476 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3477 		rss_indir[i] = i % kinfo->rss_size;
3478 
3479 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3480 
3481 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3482 	if (ret)
3483 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3484 			ret);
3485 
3486 	kfree(rss_indir);
3487 
3488 out:
3489 	if (!ret)
3490 		dev_info(&hdev->pdev->dev,
3491 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3492 			 cur_rss_size, kinfo->rss_size,
3493 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3494 
3495 	return ret;
3496 }
3497 
3498 static int hclgevf_get_status(struct hnae3_handle *handle)
3499 {
3500 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3501 
3502 	return hdev->hw.mac.link;
3503 }
3504 
3505 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3506 					    u8 *auto_neg, u32 *speed,
3507 					    u8 *duplex)
3508 {
3509 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3510 
3511 	if (speed)
3512 		*speed = hdev->hw.mac.speed;
3513 	if (duplex)
3514 		*duplex = hdev->hw.mac.duplex;
3515 	if (auto_neg)
3516 		*auto_neg = AUTONEG_DISABLE;
3517 }
3518 
3519 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3520 				 u8 duplex)
3521 {
3522 	hdev->hw.mac.speed = speed;
3523 	hdev->hw.mac.duplex = duplex;
3524 }
3525 
3526 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3527 {
3528 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3529 
3530 	return hclgevf_config_gro(hdev, enable);
3531 }
3532 
3533 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3534 				   u8 *module_type)
3535 {
3536 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3537 
3538 	if (media_type)
3539 		*media_type = hdev->hw.mac.media_type;
3540 
3541 	if (module_type)
3542 		*module_type = hdev->hw.mac.module_type;
3543 }
3544 
3545 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3546 {
3547 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3548 
3549 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3550 }
3551 
3552 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3553 {
3554 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3555 
3556 	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3557 }
3558 
3559 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3560 {
3561 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3562 
3563 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3564 }
3565 
3566 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3567 {
3568 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3569 
3570 	return hdev->rst_stats.hw_rst_done_cnt;
3571 }
3572 
3573 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3574 				  unsigned long *supported,
3575 				  unsigned long *advertising)
3576 {
3577 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3578 
3579 	*supported = hdev->hw.mac.supported;
3580 	*advertising = hdev->hw.mac.advertising;
3581 }
3582 
3583 #define MAX_SEPARATE_NUM	4
3584 #define SEPARATOR_VALUE		0xFFFFFFFF
3585 #define REG_NUM_PER_LINE	4
3586 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3587 
3588 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3589 {
3590 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3591 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3592 
3593 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3594 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3595 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3596 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3597 
3598 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3599 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3600 }
3601 
3602 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3603 			     void *data)
3604 {
3605 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3606 	int i, j, reg_um, separator_num;
3607 	u32 *reg = data;
3608 
3609 	*version = hdev->fw_version;
3610 
3611 	/* fetching per-VF registers values from VF PCIe register space */
3612 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3613 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3614 	for (i = 0; i < reg_um; i++)
3615 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3616 	for (i = 0; i < separator_num; i++)
3617 		*reg++ = SEPARATOR_VALUE;
3618 
3619 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3620 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3621 	for (i = 0; i < reg_um; i++)
3622 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3623 	for (i = 0; i < separator_num; i++)
3624 		*reg++ = SEPARATOR_VALUE;
3625 
3626 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3627 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3628 	for (j = 0; j < hdev->num_tqps; j++) {
3629 		for (i = 0; i < reg_um; i++)
3630 			*reg++ = hclgevf_read_dev(&hdev->hw,
3631 						  ring_reg_addr_list[i] +
3632 						  0x200 * j);
3633 		for (i = 0; i < separator_num; i++)
3634 			*reg++ = SEPARATOR_VALUE;
3635 	}
3636 
3637 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3638 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3639 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3640 		for (i = 0; i < reg_um; i++)
3641 			*reg++ = hclgevf_read_dev(&hdev->hw,
3642 						  tqp_intr_reg_addr_list[i] +
3643 						  4 * j);
3644 		for (i = 0; i < separator_num; i++)
3645 			*reg++ = SEPARATOR_VALUE;
3646 	}
3647 }
3648 
3649 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3650 					u8 *port_base_vlan_info, u8 data_size)
3651 {
3652 	struct hnae3_handle *nic = &hdev->nic;
3653 	struct hclge_vf_to_pf_msg send_msg;
3654 	int ret;
3655 
3656 	rtnl_lock();
3657 
3658 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3659 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3660 		dev_warn(&hdev->pdev->dev,
3661 			 "is resetting when updating port based vlan info\n");
3662 		rtnl_unlock();
3663 		return;
3664 	}
3665 
3666 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3667 	if (ret) {
3668 		rtnl_unlock();
3669 		return;
3670 	}
3671 
3672 	/* send msg to PF and wait update port based vlan info */
3673 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3674 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3675 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3676 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3677 	if (!ret) {
3678 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3679 			nic->port_base_vlan_state = state;
3680 		else
3681 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3682 	}
3683 
3684 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3685 	rtnl_unlock();
3686 }
3687 
3688 static const struct hnae3_ae_ops hclgevf_ops = {
3689 	.init_ae_dev = hclgevf_init_ae_dev,
3690 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3691 	.flr_prepare = hclgevf_flr_prepare,
3692 	.flr_done = hclgevf_flr_done,
3693 	.init_client_instance = hclgevf_init_client_instance,
3694 	.uninit_client_instance = hclgevf_uninit_client_instance,
3695 	.start = hclgevf_ae_start,
3696 	.stop = hclgevf_ae_stop,
3697 	.client_start = hclgevf_client_start,
3698 	.client_stop = hclgevf_client_stop,
3699 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3700 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3701 	.get_vector = hclgevf_get_vector,
3702 	.put_vector = hclgevf_put_vector,
3703 	.reset_queue = hclgevf_reset_tqp,
3704 	.get_mac_addr = hclgevf_get_mac_addr,
3705 	.set_mac_addr = hclgevf_set_mac_addr,
3706 	.add_uc_addr = hclgevf_add_uc_addr,
3707 	.rm_uc_addr = hclgevf_rm_uc_addr,
3708 	.add_mc_addr = hclgevf_add_mc_addr,
3709 	.rm_mc_addr = hclgevf_rm_mc_addr,
3710 	.get_stats = hclgevf_get_stats,
3711 	.update_stats = hclgevf_update_stats,
3712 	.get_strings = hclgevf_get_strings,
3713 	.get_sset_count = hclgevf_get_sset_count,
3714 	.get_rss_key_size = hclgevf_get_rss_key_size,
3715 	.get_rss = hclgevf_get_rss,
3716 	.set_rss = hclgevf_set_rss,
3717 	.get_rss_tuple = hclgevf_get_rss_tuple,
3718 	.set_rss_tuple = hclgevf_set_rss_tuple,
3719 	.get_tc_size = hclgevf_get_tc_size,
3720 	.get_fw_version = hclgevf_get_fw_version,
3721 	.set_vlan_filter = hclgevf_set_vlan_filter,
3722 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3723 	.reset_event = hclgevf_reset_event,
3724 	.set_default_reset_request = hclgevf_set_def_reset_request,
3725 	.set_channels = hclgevf_set_channels,
3726 	.get_channels = hclgevf_get_channels,
3727 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3728 	.get_regs_len = hclgevf_get_regs_len,
3729 	.get_regs = hclgevf_get_regs,
3730 	.get_status = hclgevf_get_status,
3731 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3732 	.get_media_type = hclgevf_get_media_type,
3733 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3734 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3735 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3736 	.set_gro_en = hclgevf_gro_en,
3737 	.set_mtu = hclgevf_set_mtu,
3738 	.get_global_queue_id = hclgevf_get_qid_global,
3739 	.set_timer_task = hclgevf_set_timer_task,
3740 	.get_link_mode = hclgevf_get_link_mode,
3741 	.set_promisc_mode = hclgevf_set_promisc_mode,
3742 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3743 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3744 };
3745 
3746 static struct hnae3_ae_algo ae_algovf = {
3747 	.ops = &hclgevf_ops,
3748 	.pdev_id_table = ae_algovf_pci_tbl,
3749 };
3750 
3751 static int hclgevf_init(void)
3752 {
3753 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3754 
3755 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3756 	if (!hclgevf_wq) {
3757 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3758 		return -ENOMEM;
3759 	}
3760 
3761 	hnae3_register_ae_algo(&ae_algovf);
3762 
3763 	return 0;
3764 }
3765 
3766 static void hclgevf_exit(void)
3767 {
3768 	hnae3_unregister_ae_algo(&ae_algovf);
3769 	destroy_workqueue(hclgevf_wq);
3770 }
3771 module_init(hclgevf_init);
3772 module_exit(hclgevf_exit);
3773 
3774 MODULE_LICENSE("GPL");
3775 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3776 MODULE_DESCRIPTION("HCLGEVF Driver");
3777 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3778