1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 #include "hclge_comm_rss.h"
13 
14 #define HCLGEVF_NAME	"hclgevf"
15 
16 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
17 
18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
20 				  unsigned long delay);
21 
22 static struct hnae3_ae_algo ae_algovf;
23 
24 static struct workqueue_struct *hclgevf_wq;
25 
26 static const struct pci_device_id ae_algovf_pci_tbl[] = {
27 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
28 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
29 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
30 	/* required last entry */
31 	{0, }
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
37 					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
38 					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
39 					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
40 					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
41 					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
42 					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
43 					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
44 					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
45 					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
46 					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG,
48 					 HCLGE_COMM_CMDQ_INTR_EN_REG,
49 					 HCLGE_COMM_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 /* hclgevf_cmd_send - send command to command queue
89  * @hw: pointer to the hw struct
90  * @desc: prefilled descriptor for describing the command
91  * @num : the number of descriptors to be sent
92  *
93  * This is the main send command for command queue, it
94  * sends the queue, cleans the queue, etc
95  */
96 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
97 {
98 	return hclge_comm_cmd_send(&hw->hw, desc, num);
99 }
100 
101 void hclgevf_arq_init(struct hclgevf_dev *hdev)
102 {
103 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
104 
105 	spin_lock(&cmdq->crq.lock);
106 	/* initialize the pointers of async rx queue of mailbox */
107 	hdev->arq.hdev = hdev;
108 	hdev->arq.head = 0;
109 	hdev->arq.tail = 0;
110 	atomic_set(&hdev->arq.count, 0);
111 	spin_unlock(&cmdq->crq.lock);
112 }
113 
114 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
115 {
116 	if (!handle->client)
117 		return container_of(handle, struct hclgevf_dev, nic);
118 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
119 		return container_of(handle, struct hclgevf_dev, roce);
120 	else
121 		return container_of(handle, struct hclgevf_dev, nic);
122 }
123 
124 static void hclgevf_update_stats(struct hnae3_handle *handle,
125 				 struct net_device_stats *net_stats)
126 {
127 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
128 	int status;
129 
130 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
131 	if (status)
132 		dev_err(&hdev->pdev->dev,
133 			"VF update of TQPS stats fail, status = %d.\n",
134 			status);
135 }
136 
137 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
138 {
139 	if (strset == ETH_SS_TEST)
140 		return -EOPNOTSUPP;
141 	else if (strset == ETH_SS_STATS)
142 		return hclge_comm_tqps_get_sset_count(handle);
143 
144 	return 0;
145 }
146 
147 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
148 				u8 *data)
149 {
150 	u8 *p = (char *)data;
151 
152 	if (strset == ETH_SS_STATS)
153 		p = hclge_comm_tqps_get_strings(handle, p);
154 }
155 
156 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
157 {
158 	hclge_comm_tqps_get_stats(handle, data);
159 }
160 
161 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
162 				   u8 subcode)
163 {
164 	if (msg) {
165 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
166 		msg->code = code;
167 		msg->subcode = subcode;
168 	}
169 }
170 
171 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
172 {
173 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
174 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
175 	struct hclge_basic_info *basic_info;
176 	struct hclge_vf_to_pf_msg send_msg;
177 	unsigned long caps;
178 	int status;
179 
180 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
181 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
182 				      sizeof(resp_msg));
183 	if (status) {
184 		dev_err(&hdev->pdev->dev,
185 			"failed to get basic info from pf, ret = %d", status);
186 		return status;
187 	}
188 
189 	basic_info = (struct hclge_basic_info *)resp_msg;
190 
191 	hdev->hw_tc_map = basic_info->hw_tc_map;
192 	hdev->mbx_api_version = basic_info->mbx_api_version;
193 	caps = basic_info->pf_caps;
194 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
195 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
196 
197 	return 0;
198 }
199 
200 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
201 {
202 	struct hnae3_handle *nic = &hdev->nic;
203 	struct hclge_vf_to_pf_msg send_msg;
204 	u8 resp_msg;
205 	int ret;
206 
207 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
208 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
209 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
210 				   sizeof(u8));
211 	if (ret) {
212 		dev_err(&hdev->pdev->dev,
213 			"VF request to get port based vlan state failed %d",
214 			ret);
215 		return ret;
216 	}
217 
218 	nic->port_base_vlan_state = resp_msg;
219 
220 	return 0;
221 }
222 
223 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
224 {
225 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
226 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
227 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
228 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
229 
230 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
231 	struct hclge_vf_to_pf_msg send_msg;
232 	int status;
233 
234 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
235 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
236 				      HCLGEVF_TQPS_RSS_INFO_LEN);
237 	if (status) {
238 		dev_err(&hdev->pdev->dev,
239 			"VF request to get tqp info from PF failed %d",
240 			status);
241 		return status;
242 	}
243 
244 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
245 	       sizeof(u16));
246 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
247 	       sizeof(u16));
248 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
249 	       sizeof(u16));
250 
251 	return 0;
252 }
253 
254 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
255 {
256 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
257 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
258 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
259 
260 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
261 	struct hclge_vf_to_pf_msg send_msg;
262 	int ret;
263 
264 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
265 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
266 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
267 	if (ret) {
268 		dev_err(&hdev->pdev->dev,
269 			"VF request to get tqp depth info from PF failed %d",
270 			ret);
271 		return ret;
272 	}
273 
274 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
275 	       sizeof(u16));
276 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
277 	       sizeof(u16));
278 
279 	return 0;
280 }
281 
282 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
283 {
284 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
285 	struct hclge_vf_to_pf_msg send_msg;
286 	u16 qid_in_pf = 0;
287 	u8 resp_data[2];
288 	int ret;
289 
290 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
291 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
292 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
293 				   sizeof(resp_data));
294 	if (!ret)
295 		qid_in_pf = *(u16 *)resp_data;
296 
297 	return qid_in_pf;
298 }
299 
300 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
301 {
302 	struct hclge_vf_to_pf_msg send_msg;
303 	u8 resp_msg[2];
304 	int ret;
305 
306 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
307 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
308 				   sizeof(resp_msg));
309 	if (ret) {
310 		dev_err(&hdev->pdev->dev,
311 			"VF request to get the pf port media type failed %d",
312 			ret);
313 		return ret;
314 	}
315 
316 	hdev->hw.mac.media_type = resp_msg[0];
317 	hdev->hw.mac.module_type = resp_msg[1];
318 
319 	return 0;
320 }
321 
322 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
323 {
324 	struct hclge_comm_tqp *tqp;
325 	int i;
326 
327 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
328 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
329 	if (!hdev->htqp)
330 		return -ENOMEM;
331 
332 	tqp = hdev->htqp;
333 
334 	for (i = 0; i < hdev->num_tqps; i++) {
335 		tqp->dev = &hdev->pdev->dev;
336 		tqp->index = i;
337 
338 		tqp->q.ae_algo = &ae_algovf;
339 		tqp->q.buf_size = hdev->rx_buf_len;
340 		tqp->q.tx_desc_num = hdev->num_tx_desc;
341 		tqp->q.rx_desc_num = hdev->num_rx_desc;
342 
343 		/* need an extended offset to configure queues >=
344 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
345 		 */
346 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
347 			tqp->q.io_base = hdev->hw.hw.io_base +
348 					 HCLGEVF_TQP_REG_OFFSET +
349 					 i * HCLGEVF_TQP_REG_SIZE;
350 		else
351 			tqp->q.io_base = hdev->hw.hw.io_base +
352 					 HCLGEVF_TQP_REG_OFFSET +
353 					 HCLGEVF_TQP_EXT_REG_OFFSET +
354 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
355 					 HCLGEVF_TQP_REG_SIZE;
356 
357 		tqp++;
358 	}
359 
360 	return 0;
361 }
362 
363 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
364 {
365 	struct hnae3_handle *nic = &hdev->nic;
366 	struct hnae3_knic_private_info *kinfo;
367 	u16 new_tqps = hdev->num_tqps;
368 	unsigned int i;
369 	u8 num_tc = 0;
370 
371 	kinfo = &nic->kinfo;
372 	kinfo->num_tx_desc = hdev->num_tx_desc;
373 	kinfo->num_rx_desc = hdev->num_rx_desc;
374 	kinfo->rx_buf_len = hdev->rx_buf_len;
375 	for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
376 		if (hdev->hw_tc_map & BIT(i))
377 			num_tc++;
378 
379 	num_tc = num_tc ? num_tc : 1;
380 	kinfo->tc_info.num_tc = num_tc;
381 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
382 	new_tqps = kinfo->rss_size * num_tc;
383 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
384 
385 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
386 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
387 	if (!kinfo->tqp)
388 		return -ENOMEM;
389 
390 	for (i = 0; i < kinfo->num_tqps; i++) {
391 		hdev->htqp[i].q.handle = &hdev->nic;
392 		hdev->htqp[i].q.tqp_index = i;
393 		kinfo->tqp[i] = &hdev->htqp[i].q;
394 	}
395 
396 	/* after init the max rss_size and tqps, adjust the default tqp numbers
397 	 * and rss size with the actual vector numbers
398 	 */
399 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
400 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
401 				kinfo->rss_size);
402 
403 	return 0;
404 }
405 
406 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
407 {
408 	struct hclge_vf_to_pf_msg send_msg;
409 	int status;
410 
411 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
412 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
413 	if (status)
414 		dev_err(&hdev->pdev->dev,
415 			"VF failed to fetch link status(%d) from PF", status);
416 }
417 
418 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
419 {
420 	struct hnae3_handle *rhandle = &hdev->roce;
421 	struct hnae3_handle *handle = &hdev->nic;
422 	struct hnae3_client *rclient;
423 	struct hnae3_client *client;
424 
425 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
426 		return;
427 
428 	client = handle->client;
429 	rclient = hdev->roce_client;
430 
431 	link_state =
432 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
433 	if (link_state != hdev->hw.mac.link) {
434 		hdev->hw.mac.link = link_state;
435 		client->ops->link_status_change(handle, !!link_state);
436 		if (rclient && rclient->ops->link_status_change)
437 			rclient->ops->link_status_change(rhandle, !!link_state);
438 	}
439 
440 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
441 }
442 
443 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
444 {
445 #define HCLGEVF_ADVERTISING	0
446 #define HCLGEVF_SUPPORTED	1
447 
448 	struct hclge_vf_to_pf_msg send_msg;
449 
450 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
451 	send_msg.data[0] = HCLGEVF_ADVERTISING;
452 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
453 	send_msg.data[0] = HCLGEVF_SUPPORTED;
454 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
455 }
456 
457 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
458 {
459 	struct hnae3_handle *nic = &hdev->nic;
460 	int ret;
461 
462 	nic->ae_algo = &ae_algovf;
463 	nic->pdev = hdev->pdev;
464 	nic->numa_node_mask = hdev->numa_node_mask;
465 	nic->flags |= HNAE3_SUPPORT_VF;
466 	nic->kinfo.io_base = hdev->hw.hw.io_base;
467 
468 	ret = hclgevf_knic_setup(hdev);
469 	if (ret)
470 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
471 			ret);
472 	return ret;
473 }
474 
475 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
476 {
477 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
478 		dev_warn(&hdev->pdev->dev,
479 			 "vector(vector_id %d) has been freed.\n", vector_id);
480 		return;
481 	}
482 
483 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
484 	hdev->num_msi_left += 1;
485 	hdev->num_msi_used -= 1;
486 }
487 
488 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
489 			      struct hnae3_vector_info *vector_info)
490 {
491 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
492 	struct hnae3_vector_info *vector = vector_info;
493 	int alloc = 0;
494 	int i, j;
495 
496 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
497 	vector_num = min(hdev->num_msi_left, vector_num);
498 
499 	for (j = 0; j < vector_num; j++) {
500 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
501 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
502 				vector->vector = pci_irq_vector(hdev->pdev, i);
503 				vector->io_addr = hdev->hw.hw.io_base +
504 					HCLGEVF_VECTOR_REG_BASE +
505 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
506 				hdev->vector_status[i] = 0;
507 				hdev->vector_irq[i] = vector->vector;
508 
509 				vector++;
510 				alloc++;
511 
512 				break;
513 			}
514 		}
515 	}
516 	hdev->num_msi_left -= alloc;
517 	hdev->num_msi_used += alloc;
518 
519 	return alloc;
520 }
521 
522 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
523 {
524 	int i;
525 
526 	for (i = 0; i < hdev->num_msi; i++)
527 		if (vector == hdev->vector_irq[i])
528 			return i;
529 
530 	return -EINVAL;
531 }
532 
533 /* for revision 0x20, vf shared the same rss config with pf */
534 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
535 {
536 #define HCLGEVF_RSS_MBX_RESP_LEN	8
537 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
538 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
539 	struct hclge_vf_to_pf_msg send_msg;
540 	u16 msg_num, hash_key_index;
541 	u8 index;
542 	int ret;
543 
544 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
545 	msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
546 			HCLGEVF_RSS_MBX_RESP_LEN;
547 	for (index = 0; index < msg_num; index++) {
548 		send_msg.data[0] = index;
549 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
550 					   HCLGEVF_RSS_MBX_RESP_LEN);
551 		if (ret) {
552 			dev_err(&hdev->pdev->dev,
553 				"VF get rss hash key from PF failed, ret=%d",
554 				ret);
555 			return ret;
556 		}
557 
558 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
559 		if (index == msg_num - 1)
560 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
561 			       &resp_msg[0],
562 			       HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
563 		else
564 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
565 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
566 	}
567 
568 	return 0;
569 }
570 
571 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
572 			   u8 *hfunc)
573 {
574 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
575 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
576 	int ret;
577 
578 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
579 		hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
580 	} else {
581 		if (hfunc)
582 			*hfunc = ETH_RSS_HASH_TOP;
583 		if (key) {
584 			ret = hclgevf_get_rss_hash_key(hdev);
585 			if (ret)
586 				return ret;
587 			memcpy(key, rss_cfg->rss_hash_key,
588 			       HCLGE_COMM_RSS_KEY_SIZE);
589 		}
590 	}
591 
592 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
593 				     hdev->ae_dev->dev_specs.rss_ind_tbl_size);
594 
595 	return 0;
596 }
597 
598 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
599 			   const u8 *key, const u8 hfunc)
600 {
601 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
602 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
603 	int ret, i;
604 
605 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
606 		ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
607 						  hfunc);
608 		if (ret)
609 			return ret;
610 	}
611 
612 	/* update the shadow RSS table with user specified qids */
613 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
614 		rss_cfg->rss_indirection_tbl[i] = indir[i];
615 
616 	/* update the hardware */
617 	return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
618 					      rss_cfg->rss_indirection_tbl);
619 }
620 
621 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
622 				 struct ethtool_rxnfc *nfc)
623 {
624 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
625 	int ret;
626 
627 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
628 		return -EOPNOTSUPP;
629 
630 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
631 				       &hdev->rss_cfg, nfc);
632 	if (ret)
633 		dev_err(&hdev->pdev->dev,
634 		"failed to set rss tuple, ret = %d.\n", ret);
635 
636 	return ret;
637 }
638 
639 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
640 				 struct ethtool_rxnfc *nfc)
641 {
642 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
643 	u8 tuple_sets;
644 	int ret;
645 
646 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
647 		return -EOPNOTSUPP;
648 
649 	nfc->data = 0;
650 
651 	ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
652 				       &tuple_sets);
653 	if (ret || !tuple_sets)
654 		return ret;
655 
656 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
657 
658 	return 0;
659 }
660 
661 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
662 {
663 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
664 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
665 
666 	return rss_cfg->rss_size;
667 }
668 
669 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
670 				       int vector_id,
671 				       struct hnae3_ring_chain_node *ring_chain)
672 {
673 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
674 	struct hclge_vf_to_pf_msg send_msg;
675 	struct hnae3_ring_chain_node *node;
676 	int status;
677 	int i = 0;
678 
679 	memset(&send_msg, 0, sizeof(send_msg));
680 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
681 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
682 	send_msg.vector_id = vector_id;
683 
684 	for (node = ring_chain; node; node = node->next) {
685 		send_msg.param[i].ring_type =
686 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
687 
688 		send_msg.param[i].tqp_index = node->tqp_index;
689 		send_msg.param[i].int_gl_index =
690 					hnae3_get_field(node->int_gl_idx,
691 							HNAE3_RING_GL_IDX_M,
692 							HNAE3_RING_GL_IDX_S);
693 
694 		i++;
695 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
696 			send_msg.ring_num = i;
697 
698 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
699 						      NULL, 0);
700 			if (status) {
701 				dev_err(&hdev->pdev->dev,
702 					"Map TQP fail, status is %d.\n",
703 					status);
704 				return status;
705 			}
706 			i = 0;
707 		}
708 	}
709 
710 	return 0;
711 }
712 
713 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
714 				      struct hnae3_ring_chain_node *ring_chain)
715 {
716 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
717 	int vector_id;
718 
719 	vector_id = hclgevf_get_vector_index(hdev, vector);
720 	if (vector_id < 0) {
721 		dev_err(&handle->pdev->dev,
722 			"Get vector index fail. ret =%d\n", vector_id);
723 		return vector_id;
724 	}
725 
726 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
727 }
728 
729 static int hclgevf_unmap_ring_from_vector(
730 				struct hnae3_handle *handle,
731 				int vector,
732 				struct hnae3_ring_chain_node *ring_chain)
733 {
734 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
735 	int ret, vector_id;
736 
737 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
738 		return 0;
739 
740 	vector_id = hclgevf_get_vector_index(hdev, vector);
741 	if (vector_id < 0) {
742 		dev_err(&handle->pdev->dev,
743 			"Get vector index fail. ret =%d\n", vector_id);
744 		return vector_id;
745 	}
746 
747 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
748 	if (ret)
749 		dev_err(&handle->pdev->dev,
750 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
751 			vector_id,
752 			ret);
753 
754 	return ret;
755 }
756 
757 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
758 {
759 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
760 	int vector_id;
761 
762 	vector_id = hclgevf_get_vector_index(hdev, vector);
763 	if (vector_id < 0) {
764 		dev_err(&handle->pdev->dev,
765 			"hclgevf_put_vector get vector index fail. ret =%d\n",
766 			vector_id);
767 		return vector_id;
768 	}
769 
770 	hclgevf_free_vector(hdev, vector_id);
771 
772 	return 0;
773 }
774 
775 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
776 					bool en_uc_pmc, bool en_mc_pmc,
777 					bool en_bc_pmc)
778 {
779 	struct hnae3_handle *handle = &hdev->nic;
780 	struct hclge_vf_to_pf_msg send_msg;
781 	int ret;
782 
783 	memset(&send_msg, 0, sizeof(send_msg));
784 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
785 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
786 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
787 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
788 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
789 					     &handle->priv_flags) ? 1 : 0;
790 
791 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
792 	if (ret)
793 		dev_err(&hdev->pdev->dev,
794 			"Set promisc mode fail, status is %d.\n", ret);
795 
796 	return ret;
797 }
798 
799 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
800 				    bool en_mc_pmc)
801 {
802 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
803 	bool en_bc_pmc;
804 
805 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
806 
807 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
808 					    en_bc_pmc);
809 }
810 
811 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
812 {
813 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
814 
815 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
816 	hclgevf_task_schedule(hdev, 0);
817 }
818 
819 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
820 {
821 	struct hnae3_handle *handle = &hdev->nic;
822 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
823 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
824 	int ret;
825 
826 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
827 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
828 		if (!ret)
829 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
830 	}
831 }
832 
833 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
834 				       u16 stream_id, bool enable)
835 {
836 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
837 	struct hclge_desc desc;
838 
839 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
840 
841 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
842 				     false);
843 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
844 	req->stream_id = cpu_to_le16(stream_id);
845 	if (enable)
846 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
847 
848 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
849 }
850 
851 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
852 {
853 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
854 	int ret;
855 	u16 i;
856 
857 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
858 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
859 		if (ret)
860 			return ret;
861 	}
862 
863 	return 0;
864 }
865 
866 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
867 {
868 	struct hclge_vf_to_pf_msg send_msg;
869 	u8 host_mac[ETH_ALEN];
870 	int status;
871 
872 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
873 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
874 				      ETH_ALEN);
875 	if (status) {
876 		dev_err(&hdev->pdev->dev,
877 			"fail to get VF MAC from host %d", status);
878 		return status;
879 	}
880 
881 	ether_addr_copy(p, host_mac);
882 
883 	return 0;
884 }
885 
886 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
887 {
888 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
889 	u8 host_mac_addr[ETH_ALEN];
890 
891 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
892 		return;
893 
894 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
895 	if (hdev->has_pf_mac)
896 		ether_addr_copy(p, host_mac_addr);
897 	else
898 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
899 }
900 
901 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
902 				bool is_first)
903 {
904 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
905 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
906 	struct hclge_vf_to_pf_msg send_msg;
907 	u8 *new_mac_addr = (u8 *)p;
908 	int status;
909 
910 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
911 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
912 	ether_addr_copy(send_msg.data, new_mac_addr);
913 	if (is_first && !hdev->has_pf_mac)
914 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
915 	else
916 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
917 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
918 	if (!status)
919 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
920 
921 	return status;
922 }
923 
924 static struct hclgevf_mac_addr_node *
925 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
926 {
927 	struct hclgevf_mac_addr_node *mac_node, *tmp;
928 
929 	list_for_each_entry_safe(mac_node, tmp, list, node)
930 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
931 			return mac_node;
932 
933 	return NULL;
934 }
935 
936 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
937 				    enum HCLGEVF_MAC_NODE_STATE state)
938 {
939 	switch (state) {
940 	/* from set_rx_mode or tmp_add_list */
941 	case HCLGEVF_MAC_TO_ADD:
942 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
943 			mac_node->state = HCLGEVF_MAC_ACTIVE;
944 		break;
945 	/* only from set_rx_mode */
946 	case HCLGEVF_MAC_TO_DEL:
947 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
948 			list_del(&mac_node->node);
949 			kfree(mac_node);
950 		} else {
951 			mac_node->state = HCLGEVF_MAC_TO_DEL;
952 		}
953 		break;
954 	/* only from tmp_add_list, the mac_node->state won't be
955 	 * HCLGEVF_MAC_ACTIVE
956 	 */
957 	case HCLGEVF_MAC_ACTIVE:
958 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
959 			mac_node->state = HCLGEVF_MAC_ACTIVE;
960 		break;
961 	}
962 }
963 
964 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
965 				   enum HCLGEVF_MAC_NODE_STATE state,
966 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
967 				   const unsigned char *addr)
968 {
969 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
970 	struct hclgevf_mac_addr_node *mac_node;
971 	struct list_head *list;
972 
973 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
974 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
975 
976 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
977 
978 	/* if the mac addr is already in the mac list, no need to add a new
979 	 * one into it, just check the mac addr state, convert it to a new
980 	 * new state, or just remove it, or do nothing.
981 	 */
982 	mac_node = hclgevf_find_mac_node(list, addr);
983 	if (mac_node) {
984 		hclgevf_update_mac_node(mac_node, state);
985 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
986 		return 0;
987 	}
988 	/* if this address is never added, unnecessary to delete */
989 	if (state == HCLGEVF_MAC_TO_DEL) {
990 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
991 		return -ENOENT;
992 	}
993 
994 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
995 	if (!mac_node) {
996 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
997 		return -ENOMEM;
998 	}
999 
1000 	mac_node->state = state;
1001 	ether_addr_copy(mac_node->mac_addr, addr);
1002 	list_add_tail(&mac_node->node, list);
1003 
1004 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1005 	return 0;
1006 }
1007 
1008 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1009 			       const unsigned char *addr)
1010 {
1011 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1012 				       HCLGEVF_MAC_ADDR_UC, addr);
1013 }
1014 
1015 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1016 			      const unsigned char *addr)
1017 {
1018 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1019 				       HCLGEVF_MAC_ADDR_UC, addr);
1020 }
1021 
1022 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1023 			       const unsigned char *addr)
1024 {
1025 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1026 				       HCLGEVF_MAC_ADDR_MC, addr);
1027 }
1028 
1029 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1030 			      const unsigned char *addr)
1031 {
1032 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1033 				       HCLGEVF_MAC_ADDR_MC, addr);
1034 }
1035 
1036 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1037 				    struct hclgevf_mac_addr_node *mac_node,
1038 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1039 {
1040 	struct hclge_vf_to_pf_msg send_msg;
1041 	u8 code, subcode;
1042 
1043 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1044 		code = HCLGE_MBX_SET_UNICAST;
1045 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1046 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1047 		else
1048 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1049 	} else {
1050 		code = HCLGE_MBX_SET_MULTICAST;
1051 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1052 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1053 		else
1054 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1055 	}
1056 
1057 	hclgevf_build_send_msg(&send_msg, code, subcode);
1058 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1059 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1060 }
1061 
1062 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1063 				    struct list_head *list,
1064 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1065 {
1066 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1067 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1068 	int ret;
1069 
1070 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1071 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1072 		if  (ret) {
1073 			hnae3_format_mac_addr(format_mac_addr,
1074 					      mac_node->mac_addr);
1075 			dev_err(&hdev->pdev->dev,
1076 				"failed to configure mac %s, state = %d, ret = %d\n",
1077 				format_mac_addr, mac_node->state, ret);
1078 			return;
1079 		}
1080 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1081 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1082 		} else {
1083 			list_del(&mac_node->node);
1084 			kfree(mac_node);
1085 		}
1086 	}
1087 }
1088 
1089 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1090 				       struct list_head *mac_list)
1091 {
1092 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1093 
1094 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1095 		/* if the mac address from tmp_add_list is not in the
1096 		 * uc/mc_mac_list, it means have received a TO_DEL request
1097 		 * during the time window of sending mac config request to PF
1098 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1099 		 * then it will be removed at next time. If is TO_ADD, it means
1100 		 * send TO_ADD request failed, so just remove the mac node.
1101 		 */
1102 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1103 		if (new_node) {
1104 			hclgevf_update_mac_node(new_node, mac_node->state);
1105 			list_del(&mac_node->node);
1106 			kfree(mac_node);
1107 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1108 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1109 			list_move_tail(&mac_node->node, mac_list);
1110 		} else {
1111 			list_del(&mac_node->node);
1112 			kfree(mac_node);
1113 		}
1114 	}
1115 }
1116 
1117 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1118 				       struct list_head *mac_list)
1119 {
1120 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1121 
1122 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1123 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1124 		if (new_node) {
1125 			/* If the mac addr is exist in the mac list, it means
1126 			 * received a new request TO_ADD during the time window
1127 			 * of sending mac addr configurrequest to PF, so just
1128 			 * change the mac state to ACTIVE.
1129 			 */
1130 			new_node->state = HCLGEVF_MAC_ACTIVE;
1131 			list_del(&mac_node->node);
1132 			kfree(mac_node);
1133 		} else {
1134 			list_move_tail(&mac_node->node, mac_list);
1135 		}
1136 	}
1137 }
1138 
1139 static void hclgevf_clear_list(struct list_head *list)
1140 {
1141 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1142 
1143 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1144 		list_del(&mac_node->node);
1145 		kfree(mac_node);
1146 	}
1147 }
1148 
1149 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1150 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1151 {
1152 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1153 	struct list_head tmp_add_list, tmp_del_list;
1154 	struct list_head *list;
1155 
1156 	INIT_LIST_HEAD(&tmp_add_list);
1157 	INIT_LIST_HEAD(&tmp_del_list);
1158 
1159 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1160 	 * we can add/delete these mac addr outside the spin lock
1161 	 */
1162 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1163 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1164 
1165 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1166 
1167 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1168 		switch (mac_node->state) {
1169 		case HCLGEVF_MAC_TO_DEL:
1170 			list_move_tail(&mac_node->node, &tmp_del_list);
1171 			break;
1172 		case HCLGEVF_MAC_TO_ADD:
1173 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1174 			if (!new_node)
1175 				goto stop_traverse;
1176 
1177 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1178 			new_node->state = mac_node->state;
1179 			list_add_tail(&new_node->node, &tmp_add_list);
1180 			break;
1181 		default:
1182 			break;
1183 		}
1184 	}
1185 
1186 stop_traverse:
1187 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1188 
1189 	/* delete first, in order to get max mac table space for adding */
1190 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1191 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1192 
1193 	/* if some mac addresses were added/deleted fail, move back to the
1194 	 * mac_list, and retry at next time.
1195 	 */
1196 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1197 
1198 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1199 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1200 
1201 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1202 }
1203 
1204 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1205 {
1206 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1207 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1208 }
1209 
1210 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1211 {
1212 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1213 
1214 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1215 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1216 
1217 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1218 }
1219 
1220 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1221 {
1222 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1223 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1224 	struct hclge_vf_to_pf_msg send_msg;
1225 
1226 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1227 		return -EOPNOTSUPP;
1228 
1229 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1230 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1231 	send_msg.data[0] = enable ? 1 : 0;
1232 
1233 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1234 }
1235 
1236 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1237 				   __be16 proto, u16 vlan_id,
1238 				   bool is_kill)
1239 {
1240 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1241 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1242 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1243 
1244 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1245 	struct hclge_vf_to_pf_msg send_msg;
1246 	int ret;
1247 
1248 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1249 		return -EINVAL;
1250 
1251 	if (proto != htons(ETH_P_8021Q))
1252 		return -EPROTONOSUPPORT;
1253 
1254 	/* When device is resetting or reset failed, firmware is unable to
1255 	 * handle mailbox. Just record the vlan id, and remove it after
1256 	 * reset finished.
1257 	 */
1258 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1259 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1260 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1261 		return -EBUSY;
1262 	}
1263 
1264 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1265 			       HCLGE_MBX_VLAN_FILTER);
1266 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1267 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1268 	       sizeof(vlan_id));
1269 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1270 	       sizeof(proto));
1271 	/* when remove hw vlan filter failed, record the vlan id,
1272 	 * and try to remove it from hw later, to be consistence
1273 	 * with stack.
1274 	 */
1275 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1276 	if (is_kill && ret)
1277 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1278 
1279 	return ret;
1280 }
1281 
1282 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1283 {
1284 #define HCLGEVF_MAX_SYNC_COUNT	60
1285 	struct hnae3_handle *handle = &hdev->nic;
1286 	int ret, sync_cnt = 0;
1287 	u16 vlan_id;
1288 
1289 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1290 	while (vlan_id != VLAN_N_VID) {
1291 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1292 					      vlan_id, true);
1293 		if (ret)
1294 			return;
1295 
1296 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1297 		sync_cnt++;
1298 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1299 			return;
1300 
1301 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1302 	}
1303 }
1304 
1305 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1306 {
1307 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1308 	struct hclge_vf_to_pf_msg send_msg;
1309 
1310 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1311 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1312 	send_msg.data[0] = enable ? 1 : 0;
1313 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1314 }
1315 
1316 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1317 {
1318 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1319 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1320 	struct hclge_vf_to_pf_msg send_msg;
1321 	u8 return_status = 0;
1322 	int ret;
1323 	u16 i;
1324 
1325 	/* disable vf queue before send queue reset msg to PF */
1326 	ret = hclgevf_tqp_enable(handle, false);
1327 	if (ret) {
1328 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1329 			ret);
1330 		return ret;
1331 	}
1332 
1333 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1334 
1335 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1336 				   sizeof(return_status));
1337 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1338 		return ret;
1339 
1340 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1341 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1342 		memcpy(send_msg.data, &i, sizeof(i));
1343 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1344 		if (ret)
1345 			return ret;
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1352 {
1353 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1354 	struct hclge_vf_to_pf_msg send_msg;
1355 
1356 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1357 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1358 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1359 }
1360 
1361 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1362 				 enum hnae3_reset_notify_type type)
1363 {
1364 	struct hnae3_client *client = hdev->nic_client;
1365 	struct hnae3_handle *handle = &hdev->nic;
1366 	int ret;
1367 
1368 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1369 	    !client)
1370 		return 0;
1371 
1372 	if (!client->ops->reset_notify)
1373 		return -EOPNOTSUPP;
1374 
1375 	ret = client->ops->reset_notify(handle, type);
1376 	if (ret)
1377 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1378 			type, ret);
1379 
1380 	return ret;
1381 }
1382 
1383 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1384 				      enum hnae3_reset_notify_type type)
1385 {
1386 	struct hnae3_client *client = hdev->roce_client;
1387 	struct hnae3_handle *handle = &hdev->roce;
1388 	int ret;
1389 
1390 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1391 		return 0;
1392 
1393 	if (!client->ops->reset_notify)
1394 		return -EOPNOTSUPP;
1395 
1396 	ret = client->ops->reset_notify(handle, type);
1397 	if (ret)
1398 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1399 			type, ret);
1400 	return ret;
1401 }
1402 
1403 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1404 {
1405 #define HCLGEVF_RESET_WAIT_US	20000
1406 #define HCLGEVF_RESET_WAIT_CNT	2000
1407 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1408 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1409 
1410 	u32 val;
1411 	int ret;
1412 
1413 	if (hdev->reset_type == HNAE3_VF_RESET)
1414 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1415 					 HCLGEVF_VF_RST_ING, val,
1416 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1417 					 HCLGEVF_RESET_WAIT_US,
1418 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1419 	else
1420 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1421 					 HCLGEVF_RST_ING, val,
1422 					 !(val & HCLGEVF_RST_ING_BITS),
1423 					 HCLGEVF_RESET_WAIT_US,
1424 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1425 
1426 	/* hardware completion status should be available by this time */
1427 	if (ret) {
1428 		dev_err(&hdev->pdev->dev,
1429 			"couldn't get reset done status from h/w, timeout!\n");
1430 		return ret;
1431 	}
1432 
1433 	/* we will wait a bit more to let reset of the stack to complete. This
1434 	 * might happen in case reset assertion was made by PF. Yes, this also
1435 	 * means we might end up waiting bit more even for VF reset.
1436 	 */
1437 	msleep(5000);
1438 
1439 	return 0;
1440 }
1441 
1442 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1443 {
1444 	u32 reg_val;
1445 
1446 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1447 	if (enable)
1448 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1449 	else
1450 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1451 
1452 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1453 			  reg_val);
1454 }
1455 
1456 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1457 {
1458 	int ret;
1459 
1460 	/* uninitialize the nic client */
1461 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1462 	if (ret)
1463 		return ret;
1464 
1465 	/* re-initialize the hclge device */
1466 	ret = hclgevf_reset_hdev(hdev);
1467 	if (ret) {
1468 		dev_err(&hdev->pdev->dev,
1469 			"hclge device re-init failed, VF is disabled!\n");
1470 		return ret;
1471 	}
1472 
1473 	/* bring up the nic client again */
1474 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1475 	if (ret)
1476 		return ret;
1477 
1478 	/* clear handshake status with IMP */
1479 	hclgevf_reset_handshake(hdev, false);
1480 
1481 	/* bring up the nic to enable TX/RX again */
1482 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1483 }
1484 
1485 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1486 {
1487 #define HCLGEVF_RESET_SYNC_TIME 100
1488 
1489 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1490 		struct hclge_vf_to_pf_msg send_msg;
1491 		int ret;
1492 
1493 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1494 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1495 		if (ret) {
1496 			dev_err(&hdev->pdev->dev,
1497 				"failed to assert VF reset, ret = %d\n", ret);
1498 			return ret;
1499 		}
1500 		hdev->rst_stats.vf_func_rst_cnt++;
1501 	}
1502 
1503 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1504 	/* inform hardware that preparatory work is done */
1505 	msleep(HCLGEVF_RESET_SYNC_TIME);
1506 	hclgevf_reset_handshake(hdev, true);
1507 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1508 		 hdev->reset_type);
1509 
1510 	return 0;
1511 }
1512 
1513 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1514 {
1515 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1516 		 hdev->rst_stats.vf_func_rst_cnt);
1517 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1518 		 hdev->rst_stats.flr_rst_cnt);
1519 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1520 		 hdev->rst_stats.vf_rst_cnt);
1521 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1522 		 hdev->rst_stats.rst_done_cnt);
1523 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1524 		 hdev->rst_stats.hw_rst_done_cnt);
1525 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1526 		 hdev->rst_stats.rst_cnt);
1527 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1528 		 hdev->rst_stats.rst_fail_cnt);
1529 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1530 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1531 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1532 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1533 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1534 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1535 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1536 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1537 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1538 }
1539 
1540 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1541 {
1542 	/* recover handshake status with IMP when reset fail */
1543 	hclgevf_reset_handshake(hdev, true);
1544 	hdev->rst_stats.rst_fail_cnt++;
1545 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1546 		hdev->rst_stats.rst_fail_cnt);
1547 
1548 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1549 		set_bit(hdev->reset_type, &hdev->reset_pending);
1550 
1551 	if (hclgevf_is_reset_pending(hdev)) {
1552 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1553 		hclgevf_reset_task_schedule(hdev);
1554 	} else {
1555 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1556 		hclgevf_dump_rst_info(hdev);
1557 	}
1558 }
1559 
1560 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1561 {
1562 	int ret;
1563 
1564 	hdev->rst_stats.rst_cnt++;
1565 
1566 	/* perform reset of the stack & ae device for a client */
1567 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1568 	if (ret)
1569 		return ret;
1570 
1571 	rtnl_lock();
1572 	/* bring down the nic to stop any ongoing TX/RX */
1573 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1574 	rtnl_unlock();
1575 	if (ret)
1576 		return ret;
1577 
1578 	return hclgevf_reset_prepare_wait(hdev);
1579 }
1580 
1581 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1582 {
1583 	int ret;
1584 
1585 	hdev->rst_stats.hw_rst_done_cnt++;
1586 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1587 	if (ret)
1588 		return ret;
1589 
1590 	rtnl_lock();
1591 	/* now, re-initialize the nic client and ae device */
1592 	ret = hclgevf_reset_stack(hdev);
1593 	rtnl_unlock();
1594 	if (ret) {
1595 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1596 		return ret;
1597 	}
1598 
1599 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1600 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1601 	 * times
1602 	 */
1603 	if (ret &&
1604 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1605 		return ret;
1606 
1607 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1608 	if (ret)
1609 		return ret;
1610 
1611 	hdev->last_reset_time = jiffies;
1612 	hdev->rst_stats.rst_done_cnt++;
1613 	hdev->rst_stats.rst_fail_cnt = 0;
1614 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1615 
1616 	return 0;
1617 }
1618 
1619 static void hclgevf_reset(struct hclgevf_dev *hdev)
1620 {
1621 	if (hclgevf_reset_prepare(hdev))
1622 		goto err_reset;
1623 
1624 	/* check if VF could successfully fetch the hardware reset completion
1625 	 * status from the hardware
1626 	 */
1627 	if (hclgevf_reset_wait(hdev)) {
1628 		/* can't do much in this situation, will disable VF */
1629 		dev_err(&hdev->pdev->dev,
1630 			"failed to fetch H/W reset completion status\n");
1631 		goto err_reset;
1632 	}
1633 
1634 	if (hclgevf_reset_rebuild(hdev))
1635 		goto err_reset;
1636 
1637 	return;
1638 
1639 err_reset:
1640 	hclgevf_reset_err_handle(hdev);
1641 }
1642 
1643 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1644 						     unsigned long *addr)
1645 {
1646 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1647 
1648 	/* return the highest priority reset level amongst all */
1649 	if (test_bit(HNAE3_VF_RESET, addr)) {
1650 		rst_level = HNAE3_VF_RESET;
1651 		clear_bit(HNAE3_VF_RESET, addr);
1652 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1653 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1654 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1655 		rst_level = HNAE3_VF_FULL_RESET;
1656 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1657 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1658 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1659 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1660 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1661 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1662 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1663 		rst_level = HNAE3_VF_FUNC_RESET;
1664 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1665 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1666 		rst_level = HNAE3_FLR_RESET;
1667 		clear_bit(HNAE3_FLR_RESET, addr);
1668 	}
1669 
1670 	return rst_level;
1671 }
1672 
1673 static void hclgevf_reset_event(struct pci_dev *pdev,
1674 				struct hnae3_handle *handle)
1675 {
1676 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1677 	struct hclgevf_dev *hdev = ae_dev->priv;
1678 
1679 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1680 
1681 	if (hdev->default_reset_request)
1682 		hdev->reset_level =
1683 			hclgevf_get_reset_level(hdev,
1684 						&hdev->default_reset_request);
1685 	else
1686 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1687 
1688 	/* reset of this VF requested */
1689 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1690 	hclgevf_reset_task_schedule(hdev);
1691 
1692 	hdev->last_reset_time = jiffies;
1693 }
1694 
1695 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1696 					  enum hnae3_reset_type rst_type)
1697 {
1698 	struct hclgevf_dev *hdev = ae_dev->priv;
1699 
1700 	set_bit(rst_type, &hdev->default_reset_request);
1701 }
1702 
1703 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1704 {
1705 	writel(en ? 1 : 0, vector->addr);
1706 }
1707 
1708 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1709 					  enum hnae3_reset_type rst_type)
1710 {
1711 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
1712 #define HCLGEVF_RESET_RETRY_CNT		5
1713 
1714 	struct hclgevf_dev *hdev = ae_dev->priv;
1715 	int retry_cnt = 0;
1716 	int ret;
1717 
1718 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1719 		down(&hdev->reset_sem);
1720 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1721 		hdev->reset_type = rst_type;
1722 		ret = hclgevf_reset_prepare(hdev);
1723 		if (!ret && !hdev->reset_pending)
1724 			break;
1725 
1726 		dev_err(&hdev->pdev->dev,
1727 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1728 			ret, hdev->reset_pending, retry_cnt);
1729 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1730 		up(&hdev->reset_sem);
1731 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1732 	}
1733 
1734 	/* disable misc vector before reset done */
1735 	hclgevf_enable_vector(&hdev->misc_vector, false);
1736 
1737 	if (hdev->reset_type == HNAE3_FLR_RESET)
1738 		hdev->rst_stats.flr_rst_cnt++;
1739 }
1740 
1741 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1742 {
1743 	struct hclgevf_dev *hdev = ae_dev->priv;
1744 	int ret;
1745 
1746 	hclgevf_enable_vector(&hdev->misc_vector, true);
1747 
1748 	ret = hclgevf_reset_rebuild(hdev);
1749 	if (ret)
1750 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1751 			 ret);
1752 
1753 	hdev->reset_type = HNAE3_NONE_RESET;
1754 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1755 	up(&hdev->reset_sem);
1756 }
1757 
1758 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1759 {
1760 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1761 
1762 	return hdev->fw_version;
1763 }
1764 
1765 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1766 {
1767 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1768 
1769 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1770 					    HCLGEVF_MISC_VECTOR_NUM);
1771 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1772 	/* vector status always valid for Vector 0 */
1773 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1774 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1775 
1776 	hdev->num_msi_left -= 1;
1777 	hdev->num_msi_used += 1;
1778 }
1779 
1780 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1781 {
1782 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1783 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1784 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1785 			      &hdev->state))
1786 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1787 }
1788 
1789 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1790 {
1791 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1792 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1793 			      &hdev->state))
1794 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1795 }
1796 
1797 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1798 				  unsigned long delay)
1799 {
1800 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1801 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1802 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1803 }
1804 
1805 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1806 {
1807 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1808 
1809 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1810 		return;
1811 
1812 	down(&hdev->reset_sem);
1813 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1814 
1815 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1816 			       &hdev->reset_state)) {
1817 		/* PF has intimated that it is about to reset the hardware.
1818 		 * We now have to poll & check if hardware has actually
1819 		 * completed the reset sequence. On hardware reset completion,
1820 		 * VF needs to reset the client and ae device.
1821 		 */
1822 		hdev->reset_attempts = 0;
1823 
1824 		hdev->last_reset_time = jiffies;
1825 		hdev->reset_type =
1826 			hclgevf_get_reset_level(hdev, &hdev->reset_pending);
1827 		if (hdev->reset_type != HNAE3_NONE_RESET)
1828 			hclgevf_reset(hdev);
1829 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1830 				      &hdev->reset_state)) {
1831 		/* we could be here when either of below happens:
1832 		 * 1. reset was initiated due to watchdog timeout caused by
1833 		 *    a. IMP was earlier reset and our TX got choked down and
1834 		 *       which resulted in watchdog reacting and inducing VF
1835 		 *       reset. This also means our cmdq would be unreliable.
1836 		 *    b. problem in TX due to other lower layer(example link
1837 		 *       layer not functioning properly etc.)
1838 		 * 2. VF reset might have been initiated due to some config
1839 		 *    change.
1840 		 *
1841 		 * NOTE: Theres no clear way to detect above cases than to react
1842 		 * to the response of PF for this reset request. PF will ack the
1843 		 * 1b and 2. cases but we will not get any intimation about 1a
1844 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1845 		 * communication between PF and VF would be broken.
1846 		 *
1847 		 * if we are never geting into pending state it means either:
1848 		 * 1. PF is not receiving our request which could be due to IMP
1849 		 *    reset
1850 		 * 2. PF is screwed
1851 		 * We cannot do much for 2. but to check first we can try reset
1852 		 * our PCIe + stack and see if it alleviates the problem.
1853 		 */
1854 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1855 			/* prepare for full reset of stack + pcie interface */
1856 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1857 
1858 			/* "defer" schedule the reset task again */
1859 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1860 		} else {
1861 			hdev->reset_attempts++;
1862 
1863 			set_bit(hdev->reset_level, &hdev->reset_pending);
1864 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1865 		}
1866 		hclgevf_reset_task_schedule(hdev);
1867 	}
1868 
1869 	hdev->reset_type = HNAE3_NONE_RESET;
1870 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1871 	up(&hdev->reset_sem);
1872 }
1873 
1874 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1875 {
1876 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1877 		return;
1878 
1879 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1880 		return;
1881 
1882 	hclgevf_mbx_async_handler(hdev);
1883 
1884 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1885 }
1886 
1887 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1888 {
1889 	struct hclge_vf_to_pf_msg send_msg;
1890 	int ret;
1891 
1892 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1893 		return;
1894 
1895 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1896 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1897 	if (ret)
1898 		dev_err(&hdev->pdev->dev,
1899 			"VF sends keep alive cmd failed(=%d)\n", ret);
1900 }
1901 
1902 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1903 {
1904 	unsigned long delta = round_jiffies_relative(HZ);
1905 	struct hnae3_handle *handle = &hdev->nic;
1906 
1907 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1908 		return;
1909 
1910 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1911 		delta = jiffies - hdev->last_serv_processed;
1912 
1913 		if (delta < round_jiffies_relative(HZ)) {
1914 			delta = round_jiffies_relative(HZ) - delta;
1915 			goto out;
1916 		}
1917 	}
1918 
1919 	hdev->serv_processed_cnt++;
1920 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1921 		hclgevf_keep_alive(hdev);
1922 
1923 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1924 		hdev->last_serv_processed = jiffies;
1925 		goto out;
1926 	}
1927 
1928 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1929 		hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1930 
1931 	/* VF does not need to request link status when this bit is set, because
1932 	 * PF will push its link status to VFs when link status changed.
1933 	 */
1934 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1935 		hclgevf_request_link_info(hdev);
1936 
1937 	hclgevf_update_link_mode(hdev);
1938 
1939 	hclgevf_sync_vlan_filter(hdev);
1940 
1941 	hclgevf_sync_mac_table(hdev);
1942 
1943 	hclgevf_sync_promisc_mode(hdev);
1944 
1945 	hdev->last_serv_processed = jiffies;
1946 
1947 out:
1948 	hclgevf_task_schedule(hdev, delta);
1949 }
1950 
1951 static void hclgevf_service_task(struct work_struct *work)
1952 {
1953 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1954 						service_task.work);
1955 
1956 	hclgevf_reset_service_task(hdev);
1957 	hclgevf_mailbox_service_task(hdev);
1958 	hclgevf_periodic_service_task(hdev);
1959 
1960 	/* Handle reset and mbx again in case periodical task delays the
1961 	 * handling by calling hclgevf_task_schedule() in
1962 	 * hclgevf_periodic_service_task()
1963 	 */
1964 	hclgevf_reset_service_task(hdev);
1965 	hclgevf_mailbox_service_task(hdev);
1966 }
1967 
1968 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1969 {
1970 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1971 }
1972 
1973 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1974 						      u32 *clearval)
1975 {
1976 	u32 val, cmdq_stat_reg, rst_ing_reg;
1977 
1978 	/* fetch the events from their corresponding regs */
1979 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1980 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1981 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1982 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1983 		dev_info(&hdev->pdev->dev,
1984 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1985 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1986 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1987 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1988 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1989 		hdev->rst_stats.vf_rst_cnt++;
1990 		/* set up VF hardware reset status, its PF will clear
1991 		 * this status when PF has initialized done.
1992 		 */
1993 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1994 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1995 				  val | HCLGEVF_VF_RST_ING_BIT);
1996 		return HCLGEVF_VECTOR0_EVENT_RST;
1997 	}
1998 
1999 	/* check for vector0 mailbox(=CMDQ RX) event source */
2000 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2001 		/* for revision 0x21, clearing interrupt is writing bit 0
2002 		 * to the clear register, writing bit 1 means to keep the
2003 		 * old value.
2004 		 * for revision 0x20, the clear register is a read & write
2005 		 * register, so we should just write 0 to the bit we are
2006 		 * handling, and keep other bits as cmdq_stat_reg.
2007 		 */
2008 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2009 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2010 		else
2011 			*clearval = cmdq_stat_reg &
2012 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2013 
2014 		return HCLGEVF_VECTOR0_EVENT_MBX;
2015 	}
2016 
2017 	/* print other vector0 event source */
2018 	dev_info(&hdev->pdev->dev,
2019 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2020 		 cmdq_stat_reg);
2021 
2022 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2023 }
2024 
2025 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2026 {
2027 	enum hclgevf_evt_cause event_cause;
2028 	struct hclgevf_dev *hdev = data;
2029 	u32 clearval;
2030 
2031 	hclgevf_enable_vector(&hdev->misc_vector, false);
2032 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2033 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2034 		hclgevf_clear_event_cause(hdev, clearval);
2035 
2036 	switch (event_cause) {
2037 	case HCLGEVF_VECTOR0_EVENT_RST:
2038 		hclgevf_reset_task_schedule(hdev);
2039 		break;
2040 	case HCLGEVF_VECTOR0_EVENT_MBX:
2041 		hclgevf_mbx_handler(hdev);
2042 		break;
2043 	default:
2044 		break;
2045 	}
2046 
2047 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2048 		hclgevf_enable_vector(&hdev->misc_vector, true);
2049 
2050 	return IRQ_HANDLED;
2051 }
2052 
2053 static int hclgevf_configure(struct hclgevf_dev *hdev)
2054 {
2055 	int ret;
2056 
2057 	hdev->gro_en = true;
2058 
2059 	ret = hclgevf_get_basic_info(hdev);
2060 	if (ret)
2061 		return ret;
2062 
2063 	/* get current port based vlan state from PF */
2064 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2065 	if (ret)
2066 		return ret;
2067 
2068 	/* get queue configuration from PF */
2069 	ret = hclgevf_get_queue_info(hdev);
2070 	if (ret)
2071 		return ret;
2072 
2073 	/* get queue depth info from PF */
2074 	ret = hclgevf_get_queue_depth(hdev);
2075 	if (ret)
2076 		return ret;
2077 
2078 	return hclgevf_get_pf_media_type(hdev);
2079 }
2080 
2081 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2082 {
2083 	struct pci_dev *pdev = ae_dev->pdev;
2084 	struct hclgevf_dev *hdev;
2085 
2086 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2087 	if (!hdev)
2088 		return -ENOMEM;
2089 
2090 	hdev->pdev = pdev;
2091 	hdev->ae_dev = ae_dev;
2092 	ae_dev->priv = hdev;
2093 
2094 	return 0;
2095 }
2096 
2097 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2098 {
2099 	struct hnae3_handle *roce = &hdev->roce;
2100 	struct hnae3_handle *nic = &hdev->nic;
2101 
2102 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2103 
2104 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2105 	    hdev->num_msi_left == 0)
2106 		return -EINVAL;
2107 
2108 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2109 
2110 	roce->rinfo.netdev = nic->kinfo.netdev;
2111 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2112 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2113 
2114 	roce->pdev = nic->pdev;
2115 	roce->ae_algo = nic->ae_algo;
2116 	roce->numa_node_mask = nic->numa_node_mask;
2117 
2118 	return 0;
2119 }
2120 
2121 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2122 {
2123 	struct hclgevf_cfg_gro_status_cmd *req;
2124 	struct hclge_desc desc;
2125 	int ret;
2126 
2127 	if (!hnae3_dev_gro_supported(hdev))
2128 		return 0;
2129 
2130 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2131 				     false);
2132 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2133 
2134 	req->gro_en = hdev->gro_en ? 1 : 0;
2135 
2136 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2137 	if (ret)
2138 		dev_err(&hdev->pdev->dev,
2139 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2140 
2141 	return ret;
2142 }
2143 
2144 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2145 {
2146 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2147 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2148 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2149 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2150 	int ret;
2151 
2152 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2153 		ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2154 						  rss_cfg->rss_algo,
2155 						  rss_cfg->rss_hash_key);
2156 		if (ret)
2157 			return ret;
2158 
2159 		ret = hclge_comm_set_rss_input_tuple(&hdev->nic, &hdev->hw.hw,
2160 						     false, rss_cfg);
2161 		if (ret)
2162 			return ret;
2163 	}
2164 
2165 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2166 					     rss_cfg->rss_indirection_tbl);
2167 	if (ret)
2168 		return ret;
2169 
2170 	hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2171 				   tc_offset, tc_valid, tc_size);
2172 
2173 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2174 					  tc_valid, tc_size);
2175 }
2176 
2177 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2178 {
2179 	struct hnae3_handle *nic = &hdev->nic;
2180 	int ret;
2181 
2182 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2183 	if (ret) {
2184 		dev_err(&hdev->pdev->dev,
2185 			"failed to enable rx vlan offload, ret = %d\n", ret);
2186 		return ret;
2187 	}
2188 
2189 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2190 				       false);
2191 }
2192 
2193 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2194 {
2195 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2196 
2197 	unsigned long last = hdev->serv_processed_cnt;
2198 	int i = 0;
2199 
2200 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2201 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2202 	       last == hdev->serv_processed_cnt)
2203 		usleep_range(1, 1);
2204 }
2205 
2206 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2207 {
2208 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2209 
2210 	if (enable) {
2211 		hclgevf_task_schedule(hdev, 0);
2212 	} else {
2213 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2214 
2215 		/* flush memory to make sure DOWN is seen by service task */
2216 		smp_mb__before_atomic();
2217 		hclgevf_flush_link_update(hdev);
2218 	}
2219 }
2220 
2221 static int hclgevf_ae_start(struct hnae3_handle *handle)
2222 {
2223 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2224 
2225 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2226 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2227 
2228 	hclge_comm_reset_tqp_stats(handle);
2229 
2230 	hclgevf_request_link_info(hdev);
2231 
2232 	hclgevf_update_link_mode(hdev);
2233 
2234 	return 0;
2235 }
2236 
2237 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2238 {
2239 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2240 
2241 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2242 
2243 	if (hdev->reset_type != HNAE3_VF_RESET)
2244 		hclgevf_reset_tqp(handle);
2245 
2246 	hclge_comm_reset_tqp_stats(handle);
2247 	hclgevf_update_link_status(hdev, 0);
2248 }
2249 
2250 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2251 {
2252 #define HCLGEVF_STATE_ALIVE	1
2253 #define HCLGEVF_STATE_NOT_ALIVE	0
2254 
2255 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2256 	struct hclge_vf_to_pf_msg send_msg;
2257 
2258 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2259 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2260 				HCLGEVF_STATE_NOT_ALIVE;
2261 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2262 }
2263 
2264 static int hclgevf_client_start(struct hnae3_handle *handle)
2265 {
2266 	return hclgevf_set_alive(handle, true);
2267 }
2268 
2269 static void hclgevf_client_stop(struct hnae3_handle *handle)
2270 {
2271 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2272 	int ret;
2273 
2274 	ret = hclgevf_set_alive(handle, false);
2275 	if (ret)
2276 		dev_warn(&hdev->pdev->dev,
2277 			 "%s failed %d\n", __func__, ret);
2278 }
2279 
2280 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2281 {
2282 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2283 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2284 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2285 
2286 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2287 
2288 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2289 	sema_init(&hdev->reset_sem, 1);
2290 
2291 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2292 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2293 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2294 
2295 	/* bring the device down */
2296 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2297 }
2298 
2299 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2300 {
2301 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2302 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2303 
2304 	if (hdev->service_task.work.func)
2305 		cancel_delayed_work_sync(&hdev->service_task);
2306 
2307 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2308 }
2309 
2310 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2311 {
2312 	struct pci_dev *pdev = hdev->pdev;
2313 	int vectors;
2314 	int i;
2315 
2316 	if (hnae3_dev_roce_supported(hdev))
2317 		vectors = pci_alloc_irq_vectors(pdev,
2318 						hdev->roce_base_msix_offset + 1,
2319 						hdev->num_msi,
2320 						PCI_IRQ_MSIX);
2321 	else
2322 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2323 						hdev->num_msi,
2324 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2325 
2326 	if (vectors < 0) {
2327 		dev_err(&pdev->dev,
2328 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2329 			vectors);
2330 		return vectors;
2331 	}
2332 	if (vectors < hdev->num_msi)
2333 		dev_warn(&hdev->pdev->dev,
2334 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2335 			 hdev->num_msi, vectors);
2336 
2337 	hdev->num_msi = vectors;
2338 	hdev->num_msi_left = vectors;
2339 
2340 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2341 					   sizeof(u16), GFP_KERNEL);
2342 	if (!hdev->vector_status) {
2343 		pci_free_irq_vectors(pdev);
2344 		return -ENOMEM;
2345 	}
2346 
2347 	for (i = 0; i < hdev->num_msi; i++)
2348 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2349 
2350 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2351 					sizeof(int), GFP_KERNEL);
2352 	if (!hdev->vector_irq) {
2353 		devm_kfree(&pdev->dev, hdev->vector_status);
2354 		pci_free_irq_vectors(pdev);
2355 		return -ENOMEM;
2356 	}
2357 
2358 	return 0;
2359 }
2360 
2361 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2362 {
2363 	struct pci_dev *pdev = hdev->pdev;
2364 
2365 	devm_kfree(&pdev->dev, hdev->vector_status);
2366 	devm_kfree(&pdev->dev, hdev->vector_irq);
2367 	pci_free_irq_vectors(pdev);
2368 }
2369 
2370 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2371 {
2372 	int ret;
2373 
2374 	hclgevf_get_misc_vector(hdev);
2375 
2376 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2377 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2378 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2379 			  0, hdev->misc_vector.name, hdev);
2380 	if (ret) {
2381 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2382 			hdev->misc_vector.vector_irq);
2383 		return ret;
2384 	}
2385 
2386 	hclgevf_clear_event_cause(hdev, 0);
2387 
2388 	/* enable misc. vector(vector 0) */
2389 	hclgevf_enable_vector(&hdev->misc_vector, true);
2390 
2391 	return ret;
2392 }
2393 
2394 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2395 {
2396 	/* disable misc vector(vector 0) */
2397 	hclgevf_enable_vector(&hdev->misc_vector, false);
2398 	synchronize_irq(hdev->misc_vector.vector_irq);
2399 	free_irq(hdev->misc_vector.vector_irq, hdev);
2400 	hclgevf_free_vector(hdev, 0);
2401 }
2402 
2403 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2404 {
2405 	struct device *dev = &hdev->pdev->dev;
2406 
2407 	dev_info(dev, "VF info begin:\n");
2408 
2409 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2410 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2411 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2412 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2413 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2414 	dev_info(dev, "PF media type of this VF: %u\n",
2415 		 hdev->hw.mac.media_type);
2416 
2417 	dev_info(dev, "VF info end.\n");
2418 }
2419 
2420 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2421 					    struct hnae3_client *client)
2422 {
2423 	struct hclgevf_dev *hdev = ae_dev->priv;
2424 	int rst_cnt = hdev->rst_stats.rst_cnt;
2425 	int ret;
2426 
2427 	ret = client->ops->init_instance(&hdev->nic);
2428 	if (ret)
2429 		return ret;
2430 
2431 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2432 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2433 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2434 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2435 
2436 		client->ops->uninit_instance(&hdev->nic, 0);
2437 		return -EBUSY;
2438 	}
2439 
2440 	hnae3_set_client_init_flag(client, ae_dev, 1);
2441 
2442 	if (netif_msg_drv(&hdev->nic))
2443 		hclgevf_info_show(hdev);
2444 
2445 	return 0;
2446 }
2447 
2448 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2449 					     struct hnae3_client *client)
2450 {
2451 	struct hclgevf_dev *hdev = ae_dev->priv;
2452 	int ret;
2453 
2454 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2455 	    !hdev->nic_client)
2456 		return 0;
2457 
2458 	ret = hclgevf_init_roce_base_info(hdev);
2459 	if (ret)
2460 		return ret;
2461 
2462 	ret = client->ops->init_instance(&hdev->roce);
2463 	if (ret)
2464 		return ret;
2465 
2466 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2467 	hnae3_set_client_init_flag(client, ae_dev, 1);
2468 
2469 	return 0;
2470 }
2471 
2472 static int hclgevf_init_client_instance(struct hnae3_client *client,
2473 					struct hnae3_ae_dev *ae_dev)
2474 {
2475 	struct hclgevf_dev *hdev = ae_dev->priv;
2476 	int ret;
2477 
2478 	switch (client->type) {
2479 	case HNAE3_CLIENT_KNIC:
2480 		hdev->nic_client = client;
2481 		hdev->nic.client = client;
2482 
2483 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2484 		if (ret)
2485 			goto clear_nic;
2486 
2487 		ret = hclgevf_init_roce_client_instance(ae_dev,
2488 							hdev->roce_client);
2489 		if (ret)
2490 			goto clear_roce;
2491 
2492 		break;
2493 	case HNAE3_CLIENT_ROCE:
2494 		if (hnae3_dev_roce_supported(hdev)) {
2495 			hdev->roce_client = client;
2496 			hdev->roce.client = client;
2497 		}
2498 
2499 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2500 		if (ret)
2501 			goto clear_roce;
2502 
2503 		break;
2504 	default:
2505 		return -EINVAL;
2506 	}
2507 
2508 	return 0;
2509 
2510 clear_nic:
2511 	hdev->nic_client = NULL;
2512 	hdev->nic.client = NULL;
2513 	return ret;
2514 clear_roce:
2515 	hdev->roce_client = NULL;
2516 	hdev->roce.client = NULL;
2517 	return ret;
2518 }
2519 
2520 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2521 					   struct hnae3_ae_dev *ae_dev)
2522 {
2523 	struct hclgevf_dev *hdev = ae_dev->priv;
2524 
2525 	/* un-init roce, if it exists */
2526 	if (hdev->roce_client) {
2527 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2528 			msleep(HCLGEVF_WAIT_RESET_DONE);
2529 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2530 
2531 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2532 		hdev->roce_client = NULL;
2533 		hdev->roce.client = NULL;
2534 	}
2535 
2536 	/* un-init nic/unic, if this was not called by roce client */
2537 	if (client->ops->uninit_instance && hdev->nic_client &&
2538 	    client->type != HNAE3_CLIENT_ROCE) {
2539 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2540 			msleep(HCLGEVF_WAIT_RESET_DONE);
2541 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2542 
2543 		client->ops->uninit_instance(&hdev->nic, 0);
2544 		hdev->nic_client = NULL;
2545 		hdev->nic.client = NULL;
2546 	}
2547 }
2548 
2549 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2550 {
2551 #define HCLGEVF_MEM_BAR		4
2552 
2553 	struct pci_dev *pdev = hdev->pdev;
2554 	struct hclgevf_hw *hw = &hdev->hw;
2555 
2556 	/* for device does not have device memory, return directly */
2557 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2558 		return 0;
2559 
2560 	hw->hw.mem_base =
2561 		devm_ioremap_wc(&pdev->dev,
2562 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2563 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2564 	if (!hw->hw.mem_base) {
2565 		dev_err(&pdev->dev, "failed to map device memory\n");
2566 		return -EFAULT;
2567 	}
2568 
2569 	return 0;
2570 }
2571 
2572 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2573 {
2574 	struct pci_dev *pdev = hdev->pdev;
2575 	struct hclgevf_hw *hw;
2576 	int ret;
2577 
2578 	ret = pci_enable_device(pdev);
2579 	if (ret) {
2580 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2581 		return ret;
2582 	}
2583 
2584 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2585 	if (ret) {
2586 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2587 		goto err_disable_device;
2588 	}
2589 
2590 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2591 	if (ret) {
2592 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2593 		goto err_disable_device;
2594 	}
2595 
2596 	pci_set_master(pdev);
2597 	hw = &hdev->hw;
2598 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
2599 	if (!hw->hw.io_base) {
2600 		dev_err(&pdev->dev, "can't map configuration register space\n");
2601 		ret = -ENOMEM;
2602 		goto err_clr_master;
2603 	}
2604 
2605 	ret = hclgevf_dev_mem_map(hdev);
2606 	if (ret)
2607 		goto err_unmap_io_base;
2608 
2609 	return 0;
2610 
2611 err_unmap_io_base:
2612 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2613 err_clr_master:
2614 	pci_clear_master(pdev);
2615 	pci_release_regions(pdev);
2616 err_disable_device:
2617 	pci_disable_device(pdev);
2618 
2619 	return ret;
2620 }
2621 
2622 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2623 {
2624 	struct pci_dev *pdev = hdev->pdev;
2625 
2626 	if (hdev->hw.hw.mem_base)
2627 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2628 
2629 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2630 	pci_clear_master(pdev);
2631 	pci_release_regions(pdev);
2632 	pci_disable_device(pdev);
2633 }
2634 
2635 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2636 {
2637 	struct hclgevf_query_res_cmd *req;
2638 	struct hclge_desc desc;
2639 	int ret;
2640 
2641 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2642 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2643 	if (ret) {
2644 		dev_err(&hdev->pdev->dev,
2645 			"query vf resource failed, ret = %d.\n", ret);
2646 		return ret;
2647 	}
2648 
2649 	req = (struct hclgevf_query_res_cmd *)desc.data;
2650 
2651 	if (hnae3_dev_roce_supported(hdev)) {
2652 		hdev->roce_base_msix_offset =
2653 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2654 				HCLGEVF_MSIX_OFT_ROCEE_M,
2655 				HCLGEVF_MSIX_OFT_ROCEE_S);
2656 		hdev->num_roce_msix =
2657 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2658 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2659 
2660 		/* nic's msix numbers is always equals to the roce's. */
2661 		hdev->num_nic_msix = hdev->num_roce_msix;
2662 
2663 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2664 		 * are queued before Roce vectors. The offset is fixed to 64.
2665 		 */
2666 		hdev->num_msi = hdev->num_roce_msix +
2667 				hdev->roce_base_msix_offset;
2668 	} else {
2669 		hdev->num_msi =
2670 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2671 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2672 
2673 		hdev->num_nic_msix = hdev->num_msi;
2674 	}
2675 
2676 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2677 		dev_err(&hdev->pdev->dev,
2678 			"Just %u msi resources, not enough for vf(min:2).\n",
2679 			hdev->num_nic_msix);
2680 		return -EINVAL;
2681 	}
2682 
2683 	return 0;
2684 }
2685 
2686 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2687 {
2688 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
2689 
2690 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2691 
2692 	ae_dev->dev_specs.max_non_tso_bd_num =
2693 					HCLGEVF_MAX_NON_TSO_BD_NUM;
2694 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2695 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2696 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2697 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2698 }
2699 
2700 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2701 				    struct hclge_desc *desc)
2702 {
2703 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2704 	struct hclgevf_dev_specs_0_cmd *req0;
2705 	struct hclgevf_dev_specs_1_cmd *req1;
2706 
2707 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2708 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2709 
2710 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2711 	ae_dev->dev_specs.rss_ind_tbl_size =
2712 					le16_to_cpu(req0->rss_ind_tbl_size);
2713 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2714 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2715 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2716 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2717 }
2718 
2719 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2720 {
2721 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2722 
2723 	if (!dev_specs->max_non_tso_bd_num)
2724 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2725 	if (!dev_specs->rss_ind_tbl_size)
2726 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2727 	if (!dev_specs->rss_key_size)
2728 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2729 	if (!dev_specs->max_int_gl)
2730 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2731 	if (!dev_specs->max_frm_size)
2732 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2733 }
2734 
2735 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2736 {
2737 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2738 	int ret;
2739 	int i;
2740 
2741 	/* set default specifications as devices lower than version V3 do not
2742 	 * support querying specifications from firmware.
2743 	 */
2744 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2745 		hclgevf_set_default_dev_specs(hdev);
2746 		return 0;
2747 	}
2748 
2749 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2750 		hclgevf_cmd_setup_basic_desc(&desc[i],
2751 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
2752 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2753 	}
2754 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
2755 				     true);
2756 
2757 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2758 	if (ret)
2759 		return ret;
2760 
2761 	hclgevf_parse_dev_specs(hdev, desc);
2762 	hclgevf_check_dev_specs(hdev);
2763 
2764 	return 0;
2765 }
2766 
2767 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2768 {
2769 	struct pci_dev *pdev = hdev->pdev;
2770 	int ret = 0;
2771 
2772 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2773 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2774 		hclgevf_misc_irq_uninit(hdev);
2775 		hclgevf_uninit_msi(hdev);
2776 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2777 	}
2778 
2779 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2780 		pci_set_master(pdev);
2781 		ret = hclgevf_init_msi(hdev);
2782 		if (ret) {
2783 			dev_err(&pdev->dev,
2784 				"failed(%d) to init MSI/MSI-X\n", ret);
2785 			return ret;
2786 		}
2787 
2788 		ret = hclgevf_misc_irq_init(hdev);
2789 		if (ret) {
2790 			hclgevf_uninit_msi(hdev);
2791 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2792 				ret);
2793 			return ret;
2794 		}
2795 
2796 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2797 	}
2798 
2799 	return ret;
2800 }
2801 
2802 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2803 {
2804 	struct hclge_vf_to_pf_msg send_msg;
2805 
2806 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2807 			       HCLGE_MBX_VPORT_LIST_CLEAR);
2808 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2809 }
2810 
2811 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2812 {
2813 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2814 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2815 }
2816 
2817 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2818 {
2819 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2820 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2821 }
2822 
2823 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2824 {
2825 	struct pci_dev *pdev = hdev->pdev;
2826 	int ret;
2827 
2828 	ret = hclgevf_pci_reset(hdev);
2829 	if (ret) {
2830 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2831 		return ret;
2832 	}
2833 
2834 	hclgevf_arq_init(hdev);
2835 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2836 				  &hdev->fw_version, false,
2837 				  hdev->reset_pending);
2838 	if (ret) {
2839 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2840 		return ret;
2841 	}
2842 
2843 	ret = hclgevf_rss_init_hw(hdev);
2844 	if (ret) {
2845 		dev_err(&hdev->pdev->dev,
2846 			"failed(%d) to initialize RSS\n", ret);
2847 		return ret;
2848 	}
2849 
2850 	ret = hclgevf_config_gro(hdev);
2851 	if (ret)
2852 		return ret;
2853 
2854 	ret = hclgevf_init_vlan_config(hdev);
2855 	if (ret) {
2856 		dev_err(&hdev->pdev->dev,
2857 			"failed(%d) to initialize VLAN config\n", ret);
2858 		return ret;
2859 	}
2860 
2861 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2862 
2863 	hclgevf_init_rxd_adv_layout(hdev);
2864 
2865 	dev_info(&hdev->pdev->dev, "Reset done\n");
2866 
2867 	return 0;
2868 }
2869 
2870 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2871 {
2872 	struct pci_dev *pdev = hdev->pdev;
2873 	int ret;
2874 
2875 	ret = hclgevf_pci_init(hdev);
2876 	if (ret)
2877 		return ret;
2878 
2879 	ret = hclgevf_devlink_init(hdev);
2880 	if (ret)
2881 		goto err_devlink_init;
2882 
2883 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2884 	if (ret)
2885 		goto err_cmd_queue_init;
2886 
2887 	hclgevf_arq_init(hdev);
2888 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2889 				  &hdev->fw_version, false,
2890 				  hdev->reset_pending);
2891 	if (ret)
2892 		goto err_cmd_init;
2893 
2894 	/* Get vf resource */
2895 	ret = hclgevf_query_vf_resource(hdev);
2896 	if (ret)
2897 		goto err_cmd_init;
2898 
2899 	ret = hclgevf_query_dev_specs(hdev);
2900 	if (ret) {
2901 		dev_err(&pdev->dev,
2902 			"failed to query dev specifications, ret = %d\n", ret);
2903 		goto err_cmd_init;
2904 	}
2905 
2906 	ret = hclgevf_init_msi(hdev);
2907 	if (ret) {
2908 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2909 		goto err_cmd_init;
2910 	}
2911 
2912 	hclgevf_state_init(hdev);
2913 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2914 	hdev->reset_type = HNAE3_NONE_RESET;
2915 
2916 	ret = hclgevf_misc_irq_init(hdev);
2917 	if (ret)
2918 		goto err_misc_irq_init;
2919 
2920 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2921 
2922 	ret = hclgevf_configure(hdev);
2923 	if (ret) {
2924 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2925 		goto err_config;
2926 	}
2927 
2928 	ret = hclgevf_alloc_tqps(hdev);
2929 	if (ret) {
2930 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2931 		goto err_config;
2932 	}
2933 
2934 	ret = hclgevf_set_handle_info(hdev);
2935 	if (ret)
2936 		goto err_config;
2937 
2938 	ret = hclgevf_config_gro(hdev);
2939 	if (ret)
2940 		goto err_config;
2941 
2942 	/* Initialize RSS for this VF */
2943 	ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2944 				      &hdev->rss_cfg);
2945 	if (ret) {
2946 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2947 		goto err_config;
2948 	}
2949 
2950 	ret = hclgevf_rss_init_hw(hdev);
2951 	if (ret) {
2952 		dev_err(&hdev->pdev->dev,
2953 			"failed(%d) to initialize RSS\n", ret);
2954 		goto err_config;
2955 	}
2956 
2957 	/* ensure vf tbl list as empty before init*/
2958 	ret = hclgevf_clear_vport_list(hdev);
2959 	if (ret) {
2960 		dev_err(&pdev->dev,
2961 			"failed to clear tbl list configuration, ret = %d.\n",
2962 			ret);
2963 		goto err_config;
2964 	}
2965 
2966 	ret = hclgevf_init_vlan_config(hdev);
2967 	if (ret) {
2968 		dev_err(&hdev->pdev->dev,
2969 			"failed(%d) to initialize VLAN config\n", ret);
2970 		goto err_config;
2971 	}
2972 
2973 	hclgevf_init_rxd_adv_layout(hdev);
2974 
2975 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2976 
2977 	hdev->last_reset_time = jiffies;
2978 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2979 		 HCLGEVF_DRIVER_NAME);
2980 
2981 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2982 
2983 	return 0;
2984 
2985 err_config:
2986 	hclgevf_misc_irq_uninit(hdev);
2987 err_misc_irq_init:
2988 	hclgevf_state_uninit(hdev);
2989 	hclgevf_uninit_msi(hdev);
2990 err_cmd_init:
2991 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
2992 err_cmd_queue_init:
2993 	hclgevf_devlink_uninit(hdev);
2994 err_devlink_init:
2995 	hclgevf_pci_uninit(hdev);
2996 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2997 	return ret;
2998 }
2999 
3000 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3001 {
3002 	struct hclge_vf_to_pf_msg send_msg;
3003 
3004 	hclgevf_state_uninit(hdev);
3005 	hclgevf_uninit_rxd_adv_layout(hdev);
3006 
3007 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3008 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3009 
3010 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3011 		hclgevf_misc_irq_uninit(hdev);
3012 		hclgevf_uninit_msi(hdev);
3013 	}
3014 
3015 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3016 	hclgevf_devlink_uninit(hdev);
3017 	hclgevf_pci_uninit(hdev);
3018 	hclgevf_uninit_mac_list(hdev);
3019 }
3020 
3021 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3022 {
3023 	struct pci_dev *pdev = ae_dev->pdev;
3024 	int ret;
3025 
3026 	ret = hclgevf_alloc_hdev(ae_dev);
3027 	if (ret) {
3028 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3029 		return ret;
3030 	}
3031 
3032 	ret = hclgevf_init_hdev(ae_dev->priv);
3033 	if (ret) {
3034 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3035 		return ret;
3036 	}
3037 
3038 	return 0;
3039 }
3040 
3041 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3042 {
3043 	struct hclgevf_dev *hdev = ae_dev->priv;
3044 
3045 	hclgevf_uninit_hdev(hdev);
3046 	ae_dev->priv = NULL;
3047 }
3048 
3049 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3050 {
3051 	struct hnae3_handle *nic = &hdev->nic;
3052 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3053 
3054 	return min_t(u32, hdev->rss_size_max,
3055 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3056 }
3057 
3058 /**
3059  * hclgevf_get_channels - Get the current channels enabled and max supported.
3060  * @handle: hardware information for network interface
3061  * @ch: ethtool channels structure
3062  *
3063  * We don't support separate tx and rx queues as channels. The other count
3064  * represents how many queues are being used for control. max_combined counts
3065  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3066  * q_vectors since we support a lot more queue pairs than q_vectors.
3067  **/
3068 static void hclgevf_get_channels(struct hnae3_handle *handle,
3069 				 struct ethtool_channels *ch)
3070 {
3071 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3072 
3073 	ch->max_combined = hclgevf_get_max_channels(hdev);
3074 	ch->other_count = 0;
3075 	ch->max_other = 0;
3076 	ch->combined_count = handle->kinfo.rss_size;
3077 }
3078 
3079 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3080 					  u16 *alloc_tqps, u16 *max_rss_size)
3081 {
3082 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3083 
3084 	*alloc_tqps = hdev->num_tqps;
3085 	*max_rss_size = hdev->rss_size_max;
3086 }
3087 
3088 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3089 				    u32 new_tqps_num)
3090 {
3091 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3092 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3093 	u16 max_rss_size;
3094 
3095 	kinfo->req_rss_size = new_tqps_num;
3096 
3097 	max_rss_size = min_t(u16, hdev->rss_size_max,
3098 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3099 
3100 	/* Use the user's configuration when it is not larger than
3101 	 * max_rss_size, otherwise, use the maximum specification value.
3102 	 */
3103 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3104 	    kinfo->req_rss_size <= max_rss_size)
3105 		kinfo->rss_size = kinfo->req_rss_size;
3106 	else if (kinfo->rss_size > max_rss_size ||
3107 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3108 		kinfo->rss_size = max_rss_size;
3109 
3110 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3111 }
3112 
3113 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3114 				bool rxfh_configured)
3115 {
3116 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3117 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3118 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3119 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3120 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3121 	u16 cur_rss_size = kinfo->rss_size;
3122 	u16 cur_tqps = kinfo->num_tqps;
3123 	u32 *rss_indir;
3124 	unsigned int i;
3125 	int ret;
3126 
3127 	hclgevf_update_rss_size(handle, new_tqps_num);
3128 
3129 	hclge_comm_get_rss_tc_info(cur_rss_size, hdev->hw_tc_map,
3130 				   tc_offset, tc_valid, tc_size);
3131 	ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3132 					 tc_valid, tc_size);
3133 	if (ret)
3134 		return ret;
3135 
3136 	/* RSS indirection table has been configured by user */
3137 	if (rxfh_configured)
3138 		goto out;
3139 
3140 	/* Reinitializes the rss indirect table according to the new RSS size */
3141 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3142 			    sizeof(u32), GFP_KERNEL);
3143 	if (!rss_indir)
3144 		return -ENOMEM;
3145 
3146 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3147 		rss_indir[i] = i % kinfo->rss_size;
3148 
3149 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3150 
3151 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3152 	if (ret)
3153 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3154 			ret);
3155 
3156 	kfree(rss_indir);
3157 
3158 out:
3159 	if (!ret)
3160 		dev_info(&hdev->pdev->dev,
3161 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3162 			 cur_rss_size, kinfo->rss_size,
3163 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3164 
3165 	return ret;
3166 }
3167 
3168 static int hclgevf_get_status(struct hnae3_handle *handle)
3169 {
3170 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3171 
3172 	return hdev->hw.mac.link;
3173 }
3174 
3175 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3176 					    u8 *auto_neg, u32 *speed,
3177 					    u8 *duplex)
3178 {
3179 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3180 
3181 	if (speed)
3182 		*speed = hdev->hw.mac.speed;
3183 	if (duplex)
3184 		*duplex = hdev->hw.mac.duplex;
3185 	if (auto_neg)
3186 		*auto_neg = AUTONEG_DISABLE;
3187 }
3188 
3189 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3190 				 u8 duplex)
3191 {
3192 	hdev->hw.mac.speed = speed;
3193 	hdev->hw.mac.duplex = duplex;
3194 }
3195 
3196 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3197 {
3198 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3199 	bool gro_en_old = hdev->gro_en;
3200 	int ret;
3201 
3202 	hdev->gro_en = enable;
3203 	ret = hclgevf_config_gro(hdev);
3204 	if (ret)
3205 		hdev->gro_en = gro_en_old;
3206 
3207 	return ret;
3208 }
3209 
3210 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3211 				   u8 *module_type)
3212 {
3213 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3214 
3215 	if (media_type)
3216 		*media_type = hdev->hw.mac.media_type;
3217 
3218 	if (module_type)
3219 		*module_type = hdev->hw.mac.module_type;
3220 }
3221 
3222 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3223 {
3224 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3225 
3226 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3227 }
3228 
3229 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3230 {
3231 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3232 
3233 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3234 }
3235 
3236 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3237 {
3238 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3239 
3240 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3241 }
3242 
3243 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3244 {
3245 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3246 
3247 	return hdev->rst_stats.hw_rst_done_cnt;
3248 }
3249 
3250 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3251 				  unsigned long *supported,
3252 				  unsigned long *advertising)
3253 {
3254 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3255 
3256 	*supported = hdev->hw.mac.supported;
3257 	*advertising = hdev->hw.mac.advertising;
3258 }
3259 
3260 #define MAX_SEPARATE_NUM	4
3261 #define SEPARATOR_VALUE		0xFDFCFBFA
3262 #define REG_NUM_PER_LINE	4
3263 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3264 
3265 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3266 {
3267 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3268 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3269 
3270 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3271 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3272 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3273 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3274 
3275 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3276 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3277 }
3278 
3279 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3280 			     void *data)
3281 {
3282 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3283 	int i, j, reg_um, separator_num;
3284 	u32 *reg = data;
3285 
3286 	*version = hdev->fw_version;
3287 
3288 	/* fetching per-VF registers values from VF PCIe register space */
3289 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3290 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3291 	for (i = 0; i < reg_um; i++)
3292 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3293 	for (i = 0; i < separator_num; i++)
3294 		*reg++ = SEPARATOR_VALUE;
3295 
3296 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3297 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3298 	for (i = 0; i < reg_um; i++)
3299 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3300 	for (i = 0; i < separator_num; i++)
3301 		*reg++ = SEPARATOR_VALUE;
3302 
3303 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3304 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3305 	for (j = 0; j < hdev->num_tqps; j++) {
3306 		for (i = 0; i < reg_um; i++)
3307 			*reg++ = hclgevf_read_dev(&hdev->hw,
3308 						  ring_reg_addr_list[i] +
3309 						  0x200 * j);
3310 		for (i = 0; i < separator_num; i++)
3311 			*reg++ = SEPARATOR_VALUE;
3312 	}
3313 
3314 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3315 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3316 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3317 		for (i = 0; i < reg_um; i++)
3318 			*reg++ = hclgevf_read_dev(&hdev->hw,
3319 						  tqp_intr_reg_addr_list[i] +
3320 						  4 * j);
3321 		for (i = 0; i < separator_num; i++)
3322 			*reg++ = SEPARATOR_VALUE;
3323 	}
3324 }
3325 
3326 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3327 					u8 *port_base_vlan_info, u8 data_size)
3328 {
3329 	struct hnae3_handle *nic = &hdev->nic;
3330 	struct hclge_vf_to_pf_msg send_msg;
3331 	int ret;
3332 
3333 	rtnl_lock();
3334 
3335 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3336 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3337 		dev_warn(&hdev->pdev->dev,
3338 			 "is resetting when updating port based vlan info\n");
3339 		rtnl_unlock();
3340 		return;
3341 	}
3342 
3343 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3344 	if (ret) {
3345 		rtnl_unlock();
3346 		return;
3347 	}
3348 
3349 	/* send msg to PF and wait update port based vlan info */
3350 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3351 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3352 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3353 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3354 	if (!ret) {
3355 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3356 			nic->port_base_vlan_state = state;
3357 		else
3358 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3359 	}
3360 
3361 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3362 	rtnl_unlock();
3363 }
3364 
3365 static const struct hnae3_ae_ops hclgevf_ops = {
3366 	.init_ae_dev = hclgevf_init_ae_dev,
3367 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3368 	.reset_prepare = hclgevf_reset_prepare_general,
3369 	.reset_done = hclgevf_reset_done,
3370 	.init_client_instance = hclgevf_init_client_instance,
3371 	.uninit_client_instance = hclgevf_uninit_client_instance,
3372 	.start = hclgevf_ae_start,
3373 	.stop = hclgevf_ae_stop,
3374 	.client_start = hclgevf_client_start,
3375 	.client_stop = hclgevf_client_stop,
3376 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3377 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3378 	.get_vector = hclgevf_get_vector,
3379 	.put_vector = hclgevf_put_vector,
3380 	.reset_queue = hclgevf_reset_tqp,
3381 	.get_mac_addr = hclgevf_get_mac_addr,
3382 	.set_mac_addr = hclgevf_set_mac_addr,
3383 	.add_uc_addr = hclgevf_add_uc_addr,
3384 	.rm_uc_addr = hclgevf_rm_uc_addr,
3385 	.add_mc_addr = hclgevf_add_mc_addr,
3386 	.rm_mc_addr = hclgevf_rm_mc_addr,
3387 	.get_stats = hclgevf_get_stats,
3388 	.update_stats = hclgevf_update_stats,
3389 	.get_strings = hclgevf_get_strings,
3390 	.get_sset_count = hclgevf_get_sset_count,
3391 	.get_rss_key_size = hclge_comm_get_rss_key_size,
3392 	.get_rss = hclgevf_get_rss,
3393 	.set_rss = hclgevf_set_rss,
3394 	.get_rss_tuple = hclgevf_get_rss_tuple,
3395 	.set_rss_tuple = hclgevf_set_rss_tuple,
3396 	.get_tc_size = hclgevf_get_tc_size,
3397 	.get_fw_version = hclgevf_get_fw_version,
3398 	.set_vlan_filter = hclgevf_set_vlan_filter,
3399 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3400 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3401 	.reset_event = hclgevf_reset_event,
3402 	.set_default_reset_request = hclgevf_set_def_reset_request,
3403 	.set_channels = hclgevf_set_channels,
3404 	.get_channels = hclgevf_get_channels,
3405 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3406 	.get_regs_len = hclgevf_get_regs_len,
3407 	.get_regs = hclgevf_get_regs,
3408 	.get_status = hclgevf_get_status,
3409 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3410 	.get_media_type = hclgevf_get_media_type,
3411 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3412 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3413 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3414 	.set_gro_en = hclgevf_gro_en,
3415 	.set_mtu = hclgevf_set_mtu,
3416 	.get_global_queue_id = hclgevf_get_qid_global,
3417 	.set_timer_task = hclgevf_set_timer_task,
3418 	.get_link_mode = hclgevf_get_link_mode,
3419 	.set_promisc_mode = hclgevf_set_promisc_mode,
3420 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3421 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3422 };
3423 
3424 static struct hnae3_ae_algo ae_algovf = {
3425 	.ops = &hclgevf_ops,
3426 	.pdev_id_table = ae_algovf_pci_tbl,
3427 };
3428 
3429 static int hclgevf_init(void)
3430 {
3431 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3432 
3433 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3434 	if (!hclgevf_wq) {
3435 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3436 		return -ENOMEM;
3437 	}
3438 
3439 	hnae3_register_ae_algo(&ae_algovf);
3440 
3441 	return 0;
3442 }
3443 
3444 static void hclgevf_exit(void)
3445 {
3446 	hnae3_unregister_ae_algo(&ae_algovf);
3447 	destroy_workqueue(hclgevf_wq);
3448 }
3449 module_init(hclgevf_init);
3450 module_exit(hclgevf_exit);
3451 
3452 MODULE_LICENSE("GPL");
3453 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3454 MODULE_DESCRIPTION("HCLGEVF Driver");
3455 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3456