1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
87 	struct hnae3_handle *handle)
88 {
89 	return container_of(handle, struct hclgevf_dev, nic);
90 }
91 
92 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
93 {
94 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
95 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
96 	struct hclgevf_desc desc;
97 	struct hclgevf_tqp *tqp;
98 	int status;
99 	int i;
100 
101 	for (i = 0; i < kinfo->num_tqps; i++) {
102 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
103 		hclgevf_cmd_setup_basic_desc(&desc,
104 					     HCLGEVF_OPC_QUERY_RX_STATUS,
105 					     true);
106 
107 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
108 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
109 		if (status) {
110 			dev_err(&hdev->pdev->dev,
111 				"Query tqp stat fail, status = %d,queue = %d\n",
112 				status,	i);
113 			return status;
114 		}
115 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
116 			le32_to_cpu(desc.data[1]);
117 
118 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
119 					     true);
120 
121 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
122 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
123 		if (status) {
124 			dev_err(&hdev->pdev->dev,
125 				"Query tqp stat fail, status = %d,queue = %d\n",
126 				status, i);
127 			return status;
128 		}
129 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
130 			le32_to_cpu(desc.data[1]);
131 	}
132 
133 	return 0;
134 }
135 
136 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
137 {
138 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
139 	struct hclgevf_tqp *tqp;
140 	u64 *buff = data;
141 	int i;
142 
143 	for (i = 0; i < kinfo->num_tqps; i++) {
144 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
145 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
146 	}
147 	for (i = 0; i < kinfo->num_tqps; i++) {
148 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
149 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
150 	}
151 
152 	return buff;
153 }
154 
155 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
156 {
157 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
158 
159 	return kinfo->num_tqps * 2;
160 }
161 
162 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
163 {
164 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
165 	u8 *buff = data;
166 	int i = 0;
167 
168 	for (i = 0; i < kinfo->num_tqps; i++) {
169 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
170 						       struct hclgevf_tqp, q);
171 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
172 			 tqp->index);
173 		buff += ETH_GSTRING_LEN;
174 	}
175 
176 	for (i = 0; i < kinfo->num_tqps; i++) {
177 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
178 						       struct hclgevf_tqp, q);
179 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
180 			 tqp->index);
181 		buff += ETH_GSTRING_LEN;
182 	}
183 
184 	return buff;
185 }
186 
187 static void hclgevf_update_stats(struct hnae3_handle *handle,
188 				 struct net_device_stats *net_stats)
189 {
190 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
191 	int status;
192 
193 	status = hclgevf_tqps_update_stats(handle);
194 	if (status)
195 		dev_err(&hdev->pdev->dev,
196 			"VF update of TQPS stats fail, status = %d.\n",
197 			status);
198 }
199 
200 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
201 {
202 	if (strset == ETH_SS_TEST)
203 		return -EOPNOTSUPP;
204 	else if (strset == ETH_SS_STATS)
205 		return hclgevf_tqps_get_sset_count(handle, strset);
206 
207 	return 0;
208 }
209 
210 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
211 				u8 *data)
212 {
213 	u8 *p = (char *)data;
214 
215 	if (strset == ETH_SS_STATS)
216 		p = hclgevf_tqps_get_strings(handle, p);
217 }
218 
219 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
220 {
221 	hclgevf_tqps_get_stats(handle, data);
222 }
223 
224 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
225 {
226 	u8 resp_msg;
227 	int status;
228 
229 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
230 				      true, &resp_msg, sizeof(u8));
231 	if (status) {
232 		dev_err(&hdev->pdev->dev,
233 			"VF request to get TC info from PF failed %d",
234 			status);
235 		return status;
236 	}
237 
238 	hdev->hw_tc_map = resp_msg;
239 
240 	return 0;
241 }
242 
243 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
244 {
245 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
246 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
247 	int status;
248 
249 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
250 				      true, resp_msg,
251 				      HCLGEVF_TQPS_RSS_INFO_LEN);
252 	if (status) {
253 		dev_err(&hdev->pdev->dev,
254 			"VF request to get tqp info from PF failed %d",
255 			status);
256 		return status;
257 	}
258 
259 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
260 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
261 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
262 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
263 
264 	return 0;
265 }
266 
267 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
268 {
269 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
270 	u8 msg_data[2], resp_data[2];
271 	u16 qid_in_pf = 0;
272 	int ret;
273 
274 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
275 
276 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
277 				   2, true, resp_data, 2);
278 	if (!ret)
279 		qid_in_pf = *(u16 *)resp_data;
280 
281 	return qid_in_pf;
282 }
283 
284 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
285 {
286 	struct hclgevf_tqp *tqp;
287 	int i;
288 
289 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
290 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
291 	if (!hdev->htqp)
292 		return -ENOMEM;
293 
294 	tqp = hdev->htqp;
295 
296 	for (i = 0; i < hdev->num_tqps; i++) {
297 		tqp->dev = &hdev->pdev->dev;
298 		tqp->index = i;
299 
300 		tqp->q.ae_algo = &ae_algovf;
301 		tqp->q.buf_size = hdev->rx_buf_len;
302 		tqp->q.desc_num = hdev->num_desc;
303 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
304 			i * HCLGEVF_TQP_REG_SIZE;
305 
306 		tqp++;
307 	}
308 
309 	return 0;
310 }
311 
312 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
313 {
314 	struct hnae3_handle *nic = &hdev->nic;
315 	struct hnae3_knic_private_info *kinfo;
316 	u16 new_tqps = hdev->num_tqps;
317 	int i;
318 
319 	kinfo = &nic->kinfo;
320 	kinfo->num_tc = 0;
321 	kinfo->num_desc = hdev->num_desc;
322 	kinfo->rx_buf_len = hdev->rx_buf_len;
323 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
324 		if (hdev->hw_tc_map & BIT(i))
325 			kinfo->num_tc++;
326 
327 	kinfo->rss_size
328 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
329 	new_tqps = kinfo->rss_size * kinfo->num_tc;
330 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
331 
332 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
333 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
334 	if (!kinfo->tqp)
335 		return -ENOMEM;
336 
337 	for (i = 0; i < kinfo->num_tqps; i++) {
338 		hdev->htqp[i].q.handle = &hdev->nic;
339 		hdev->htqp[i].q.tqp_index = i;
340 		kinfo->tqp[i] = &hdev->htqp[i].q;
341 	}
342 
343 	return 0;
344 }
345 
346 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
347 {
348 	int status;
349 	u8 resp_msg;
350 
351 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
352 				      0, false, &resp_msg, sizeof(u8));
353 	if (status)
354 		dev_err(&hdev->pdev->dev,
355 			"VF failed to fetch link status(%d) from PF", status);
356 }
357 
358 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
359 {
360 	struct hnae3_handle *rhandle = &hdev->roce;
361 	struct hnae3_handle *handle = &hdev->nic;
362 	struct hnae3_client *rclient;
363 	struct hnae3_client *client;
364 
365 	client = handle->client;
366 	rclient = hdev->roce_client;
367 
368 	link_state =
369 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
370 
371 	if (link_state != hdev->hw.mac.link) {
372 		client->ops->link_status_change(handle, !!link_state);
373 		if (rclient && rclient->ops->link_status_change)
374 			rclient->ops->link_status_change(rhandle, !!link_state);
375 		hdev->hw.mac.link = link_state;
376 	}
377 }
378 
379 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
380 {
381 	struct hnae3_handle *nic = &hdev->nic;
382 	int ret;
383 
384 	nic->ae_algo = &ae_algovf;
385 	nic->pdev = hdev->pdev;
386 	nic->numa_node_mask = hdev->numa_node_mask;
387 	nic->flags |= HNAE3_SUPPORT_VF;
388 
389 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
390 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
391 			hdev->ae_dev->dev_type);
392 		return -EINVAL;
393 	}
394 
395 	ret = hclgevf_knic_setup(hdev);
396 	if (ret)
397 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
398 			ret);
399 	return ret;
400 }
401 
402 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
403 {
404 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
405 		dev_warn(&hdev->pdev->dev,
406 			 "vector(vector_id %d) has been freed.\n", vector_id);
407 		return;
408 	}
409 
410 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
411 	hdev->num_msi_left += 1;
412 	hdev->num_msi_used -= 1;
413 }
414 
415 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
416 			      struct hnae3_vector_info *vector_info)
417 {
418 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
419 	struct hnae3_vector_info *vector = vector_info;
420 	int alloc = 0;
421 	int i, j;
422 
423 	vector_num = min(hdev->num_msi_left, vector_num);
424 
425 	for (j = 0; j < vector_num; j++) {
426 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
427 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
428 				vector->vector = pci_irq_vector(hdev->pdev, i);
429 				vector->io_addr = hdev->hw.io_base +
430 					HCLGEVF_VECTOR_REG_BASE +
431 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
432 				hdev->vector_status[i] = 0;
433 				hdev->vector_irq[i] = vector->vector;
434 
435 				vector++;
436 				alloc++;
437 
438 				break;
439 			}
440 		}
441 	}
442 	hdev->num_msi_left -= alloc;
443 	hdev->num_msi_used += alloc;
444 
445 	return alloc;
446 }
447 
448 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
449 {
450 	int i;
451 
452 	for (i = 0; i < hdev->num_msi; i++)
453 		if (vector == hdev->vector_irq[i])
454 			return i;
455 
456 	return -EINVAL;
457 }
458 
459 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
460 				    const u8 hfunc, const u8 *key)
461 {
462 	struct hclgevf_rss_config_cmd *req;
463 	struct hclgevf_desc desc;
464 	int key_offset;
465 	int key_size;
466 	int ret;
467 
468 	req = (struct hclgevf_rss_config_cmd *)desc.data;
469 
470 	for (key_offset = 0; key_offset < 3; key_offset++) {
471 		hclgevf_cmd_setup_basic_desc(&desc,
472 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
473 					     false);
474 
475 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
476 		req->hash_config |=
477 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
478 
479 		if (key_offset == 2)
480 			key_size =
481 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
482 		else
483 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
484 
485 		memcpy(req->hash_key,
486 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
487 
488 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
489 		if (ret) {
490 			dev_err(&hdev->pdev->dev,
491 				"Configure RSS config fail, status = %d\n",
492 				ret);
493 			return ret;
494 		}
495 	}
496 
497 	return 0;
498 }
499 
500 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
501 {
502 	return HCLGEVF_RSS_KEY_SIZE;
503 }
504 
505 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
506 {
507 	return HCLGEVF_RSS_IND_TBL_SIZE;
508 }
509 
510 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
511 {
512 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
513 	struct hclgevf_rss_indirection_table_cmd *req;
514 	struct hclgevf_desc desc;
515 	int status;
516 	int i, j;
517 
518 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
519 
520 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
521 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
522 					     false);
523 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
524 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
525 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
526 			req->rss_result[j] =
527 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
528 
529 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
530 		if (status) {
531 			dev_err(&hdev->pdev->dev,
532 				"VF failed(=%d) to set RSS indirection table\n",
533 				status);
534 			return status;
535 		}
536 	}
537 
538 	return 0;
539 }
540 
541 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
542 {
543 	struct hclgevf_rss_tc_mode_cmd *req;
544 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
545 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
546 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
547 	struct hclgevf_desc desc;
548 	u16 roundup_size;
549 	int status;
550 	int i;
551 
552 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
553 
554 	roundup_size = roundup_pow_of_two(rss_size);
555 	roundup_size = ilog2(roundup_size);
556 
557 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
558 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
559 		tc_size[i] = roundup_size;
560 		tc_offset[i] = rss_size * i;
561 	}
562 
563 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
564 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
565 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
566 			      (tc_valid[i] & 0x1));
567 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
568 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
569 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
570 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
571 	}
572 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
573 	if (status)
574 		dev_err(&hdev->pdev->dev,
575 			"VF failed(=%d) to set rss tc mode\n", status);
576 
577 	return status;
578 }
579 
580 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
581 			   u8 *hfunc)
582 {
583 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
584 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
585 	int i;
586 
587 	if (handle->pdev->revision >= 0x21) {
588 		/* Get hash algorithm */
589 		if (hfunc) {
590 			switch (rss_cfg->hash_algo) {
591 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
592 				*hfunc = ETH_RSS_HASH_TOP;
593 				break;
594 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
595 				*hfunc = ETH_RSS_HASH_XOR;
596 				break;
597 			default:
598 				*hfunc = ETH_RSS_HASH_UNKNOWN;
599 				break;
600 			}
601 		}
602 
603 		/* Get the RSS Key required by the user */
604 		if (key)
605 			memcpy(key, rss_cfg->rss_hash_key,
606 			       HCLGEVF_RSS_KEY_SIZE);
607 	}
608 
609 	if (indir)
610 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
611 			indir[i] = rss_cfg->rss_indirection_tbl[i];
612 
613 	return 0;
614 }
615 
616 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
617 			   const  u8 *key, const  u8 hfunc)
618 {
619 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
620 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
621 	int ret, i;
622 
623 	if (handle->pdev->revision >= 0x21) {
624 		/* Set the RSS Hash Key if specififed by the user */
625 		if (key) {
626 			switch (hfunc) {
627 			case ETH_RSS_HASH_TOP:
628 				rss_cfg->hash_algo =
629 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
630 				break;
631 			case ETH_RSS_HASH_XOR:
632 				rss_cfg->hash_algo =
633 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
634 				break;
635 			case ETH_RSS_HASH_NO_CHANGE:
636 				break;
637 			default:
638 				return -EINVAL;
639 			}
640 
641 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
642 						       key);
643 			if (ret)
644 				return ret;
645 
646 			/* Update the shadow RSS key with user specified qids */
647 			memcpy(rss_cfg->rss_hash_key, key,
648 			       HCLGEVF_RSS_KEY_SIZE);
649 		}
650 	}
651 
652 	/* update the shadow RSS table with user specified qids */
653 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
654 		rss_cfg->rss_indirection_tbl[i] = indir[i];
655 
656 	/* update the hardware */
657 	return hclgevf_set_rss_indir_table(hdev);
658 }
659 
660 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
661 {
662 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
663 
664 	if (nfc->data & RXH_L4_B_2_3)
665 		hash_sets |= HCLGEVF_D_PORT_BIT;
666 	else
667 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
668 
669 	if (nfc->data & RXH_IP_SRC)
670 		hash_sets |= HCLGEVF_S_IP_BIT;
671 	else
672 		hash_sets &= ~HCLGEVF_S_IP_BIT;
673 
674 	if (nfc->data & RXH_IP_DST)
675 		hash_sets |= HCLGEVF_D_IP_BIT;
676 	else
677 		hash_sets &= ~HCLGEVF_D_IP_BIT;
678 
679 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
680 		hash_sets |= HCLGEVF_V_TAG_BIT;
681 
682 	return hash_sets;
683 }
684 
685 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
686 				 struct ethtool_rxnfc *nfc)
687 {
688 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
689 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
690 	struct hclgevf_rss_input_tuple_cmd *req;
691 	struct hclgevf_desc desc;
692 	u8 tuple_sets;
693 	int ret;
694 
695 	if (handle->pdev->revision == 0x20)
696 		return -EOPNOTSUPP;
697 
698 	if (nfc->data &
699 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
700 		return -EINVAL;
701 
702 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
703 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
704 
705 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
706 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
707 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
708 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
709 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
710 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
711 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
712 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
713 
714 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
715 	switch (nfc->flow_type) {
716 	case TCP_V4_FLOW:
717 		req->ipv4_tcp_en = tuple_sets;
718 		break;
719 	case TCP_V6_FLOW:
720 		req->ipv6_tcp_en = tuple_sets;
721 		break;
722 	case UDP_V4_FLOW:
723 		req->ipv4_udp_en = tuple_sets;
724 		break;
725 	case UDP_V6_FLOW:
726 		req->ipv6_udp_en = tuple_sets;
727 		break;
728 	case SCTP_V4_FLOW:
729 		req->ipv4_sctp_en = tuple_sets;
730 		break;
731 	case SCTP_V6_FLOW:
732 		if ((nfc->data & RXH_L4_B_0_1) ||
733 		    (nfc->data & RXH_L4_B_2_3))
734 			return -EINVAL;
735 
736 		req->ipv6_sctp_en = tuple_sets;
737 		break;
738 	case IPV4_FLOW:
739 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
740 		break;
741 	case IPV6_FLOW:
742 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
743 		break;
744 	default:
745 		return -EINVAL;
746 	}
747 
748 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
749 	if (ret) {
750 		dev_err(&hdev->pdev->dev,
751 			"Set rss tuple fail, status = %d\n", ret);
752 		return ret;
753 	}
754 
755 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
756 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
757 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
758 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
759 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
760 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
761 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
762 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
763 	return 0;
764 }
765 
766 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
767 				 struct ethtool_rxnfc *nfc)
768 {
769 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
770 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
771 	u8 tuple_sets;
772 
773 	if (handle->pdev->revision == 0x20)
774 		return -EOPNOTSUPP;
775 
776 	nfc->data = 0;
777 
778 	switch (nfc->flow_type) {
779 	case TCP_V4_FLOW:
780 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
781 		break;
782 	case UDP_V4_FLOW:
783 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
784 		break;
785 	case TCP_V6_FLOW:
786 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
787 		break;
788 	case UDP_V6_FLOW:
789 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
790 		break;
791 	case SCTP_V4_FLOW:
792 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
793 		break;
794 	case SCTP_V6_FLOW:
795 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
796 		break;
797 	case IPV4_FLOW:
798 	case IPV6_FLOW:
799 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
800 		break;
801 	default:
802 		return -EINVAL;
803 	}
804 
805 	if (!tuple_sets)
806 		return 0;
807 
808 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
809 		nfc->data |= RXH_L4_B_2_3;
810 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
811 		nfc->data |= RXH_L4_B_0_1;
812 	if (tuple_sets & HCLGEVF_D_IP_BIT)
813 		nfc->data |= RXH_IP_DST;
814 	if (tuple_sets & HCLGEVF_S_IP_BIT)
815 		nfc->data |= RXH_IP_SRC;
816 
817 	return 0;
818 }
819 
820 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
821 				       struct hclgevf_rss_cfg *rss_cfg)
822 {
823 	struct hclgevf_rss_input_tuple_cmd *req;
824 	struct hclgevf_desc desc;
825 	int ret;
826 
827 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
828 
829 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
830 
831 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
832 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
833 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
834 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
835 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
836 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
837 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
838 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
839 
840 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
841 	if (ret)
842 		dev_err(&hdev->pdev->dev,
843 			"Configure rss input fail, status = %d\n", ret);
844 	return ret;
845 }
846 
847 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
848 {
849 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
850 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
851 
852 	return rss_cfg->rss_size;
853 }
854 
855 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
856 				       int vector_id,
857 				       struct hnae3_ring_chain_node *ring_chain)
858 {
859 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
860 	struct hnae3_ring_chain_node *node;
861 	struct hclge_mbx_vf_to_pf_cmd *req;
862 	struct hclgevf_desc desc;
863 	int i = 0;
864 	int status;
865 	u8 type;
866 
867 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
868 
869 	for (node = ring_chain; node; node = node->next) {
870 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
871 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
872 
873 		if (i == 0) {
874 			hclgevf_cmd_setup_basic_desc(&desc,
875 						     HCLGEVF_OPC_MBX_VF_TO_PF,
876 						     false);
877 			type = en ?
878 				HCLGE_MBX_MAP_RING_TO_VECTOR :
879 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
880 			req->msg[0] = type;
881 			req->msg[1] = vector_id;
882 		}
883 
884 		req->msg[idx_offset] =
885 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
886 		req->msg[idx_offset + 1] = node->tqp_index;
887 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
888 							   HNAE3_RING_GL_IDX_M,
889 							   HNAE3_RING_GL_IDX_S);
890 
891 		i++;
892 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
893 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
894 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
895 		    !node->next) {
896 			req->msg[2] = i;
897 
898 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
899 			if (status) {
900 				dev_err(&hdev->pdev->dev,
901 					"Map TQP fail, status is %d.\n",
902 					status);
903 				return status;
904 			}
905 			i = 0;
906 			hclgevf_cmd_setup_basic_desc(&desc,
907 						     HCLGEVF_OPC_MBX_VF_TO_PF,
908 						     false);
909 			req->msg[0] = type;
910 			req->msg[1] = vector_id;
911 		}
912 	}
913 
914 	return 0;
915 }
916 
917 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
918 				      struct hnae3_ring_chain_node *ring_chain)
919 {
920 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
921 	int vector_id;
922 
923 	vector_id = hclgevf_get_vector_index(hdev, vector);
924 	if (vector_id < 0) {
925 		dev_err(&handle->pdev->dev,
926 			"Get vector index fail. ret =%d\n", vector_id);
927 		return vector_id;
928 	}
929 
930 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
931 }
932 
933 static int hclgevf_unmap_ring_from_vector(
934 				struct hnae3_handle *handle,
935 				int vector,
936 				struct hnae3_ring_chain_node *ring_chain)
937 {
938 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
939 	int ret, vector_id;
940 
941 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
942 		return 0;
943 
944 	vector_id = hclgevf_get_vector_index(hdev, vector);
945 	if (vector_id < 0) {
946 		dev_err(&handle->pdev->dev,
947 			"Get vector index fail. ret =%d\n", vector_id);
948 		return vector_id;
949 	}
950 
951 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
952 	if (ret)
953 		dev_err(&handle->pdev->dev,
954 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
955 			vector_id,
956 			ret);
957 
958 	return ret;
959 }
960 
961 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
962 {
963 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
964 	int vector_id;
965 
966 	vector_id = hclgevf_get_vector_index(hdev, vector);
967 	if (vector_id < 0) {
968 		dev_err(&handle->pdev->dev,
969 			"hclgevf_put_vector get vector index fail. ret =%d\n",
970 			vector_id);
971 		return vector_id;
972 	}
973 
974 	hclgevf_free_vector(hdev, vector_id);
975 
976 	return 0;
977 }
978 
979 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
980 					bool en_bc_pmc)
981 {
982 	struct hclge_mbx_vf_to_pf_cmd *req;
983 	struct hclgevf_desc desc;
984 	int ret;
985 
986 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
987 
988 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
989 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
990 	req->msg[1] = en_bc_pmc ? 1 : 0;
991 
992 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
993 	if (ret)
994 		dev_err(&hdev->pdev->dev,
995 			"Set promisc mode fail, status is %d.\n", ret);
996 
997 	return ret;
998 }
999 
1000 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1001 {
1002 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1003 }
1004 
1005 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1006 			      int stream_id, bool enable)
1007 {
1008 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1009 	struct hclgevf_desc desc;
1010 	int status;
1011 
1012 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1013 
1014 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1015 				     false);
1016 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1017 	req->stream_id = cpu_to_le16(stream_id);
1018 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1019 
1020 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1021 	if (status)
1022 		dev_err(&hdev->pdev->dev,
1023 			"TQP enable fail, status =%d.\n", status);
1024 
1025 	return status;
1026 }
1027 
1028 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1029 {
1030 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1031 	struct hclgevf_tqp *tqp;
1032 	int i;
1033 
1034 	for (i = 0; i < kinfo->num_tqps; i++) {
1035 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1036 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1037 	}
1038 }
1039 
1040 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1041 {
1042 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1043 
1044 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1045 }
1046 
1047 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1048 				bool is_first)
1049 {
1050 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1051 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1052 	u8 *new_mac_addr = (u8 *)p;
1053 	u8 msg_data[ETH_ALEN * 2];
1054 	u16 subcode;
1055 	int status;
1056 
1057 	ether_addr_copy(msg_data, new_mac_addr);
1058 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1059 
1060 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1061 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1062 
1063 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1064 				      subcode, msg_data, ETH_ALEN * 2,
1065 				      true, NULL, 0);
1066 	if (!status)
1067 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1068 
1069 	return status;
1070 }
1071 
1072 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1073 			       const unsigned char *addr)
1074 {
1075 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1076 
1077 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1078 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1079 				    addr, ETH_ALEN, false, NULL, 0);
1080 }
1081 
1082 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1083 			      const unsigned char *addr)
1084 {
1085 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1086 
1087 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1088 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1089 				    addr, ETH_ALEN, false, NULL, 0);
1090 }
1091 
1092 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1093 			       const unsigned char *addr)
1094 {
1095 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1096 
1097 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1098 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1099 				    addr, ETH_ALEN, false, NULL, 0);
1100 }
1101 
1102 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1103 			      const unsigned char *addr)
1104 {
1105 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1106 
1107 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1108 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1109 				    addr, ETH_ALEN, false, NULL, 0);
1110 }
1111 
1112 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1113 				   __be16 proto, u16 vlan_id,
1114 				   bool is_kill)
1115 {
1116 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1117 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1118 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1119 
1120 	if (vlan_id > 4095)
1121 		return -EINVAL;
1122 
1123 	if (proto != htons(ETH_P_8021Q))
1124 		return -EPROTONOSUPPORT;
1125 
1126 	msg_data[0] = is_kill;
1127 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1128 	memcpy(&msg_data[3], &proto, sizeof(proto));
1129 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1130 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1131 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1132 }
1133 
1134 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1135 {
1136 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1137 	u8 msg_data;
1138 
1139 	msg_data = enable ? 1 : 0;
1140 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1141 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1142 				    1, false, NULL, 0);
1143 }
1144 
1145 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1146 {
1147 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1148 	u8 msg_data[2];
1149 	int ret;
1150 
1151 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1152 
1153 	/* disable vf queue before send queue reset msg to PF */
1154 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1155 	if (ret)
1156 		return ret;
1157 
1158 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1159 				    2, true, NULL, 0);
1160 }
1161 
1162 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1163 {
1164 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1165 
1166 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1167 				    sizeof(new_mtu), true, NULL, 0);
1168 }
1169 
1170 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1171 				 enum hnae3_reset_notify_type type)
1172 {
1173 	struct hnae3_client *client = hdev->nic_client;
1174 	struct hnae3_handle *handle = &hdev->nic;
1175 	int ret;
1176 
1177 	if (!client->ops->reset_notify)
1178 		return -EOPNOTSUPP;
1179 
1180 	ret = client->ops->reset_notify(handle, type);
1181 	if (ret)
1182 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1183 			type, ret);
1184 
1185 	return ret;
1186 }
1187 
1188 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1189 {
1190 	struct hclgevf_dev *hdev = ae_dev->priv;
1191 
1192 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1193 }
1194 
1195 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1196 				    unsigned long delay_us,
1197 				    unsigned long wait_cnt)
1198 {
1199 	unsigned long cnt = 0;
1200 
1201 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1202 	       cnt++ < wait_cnt)
1203 		usleep_range(delay_us, delay_us * 2);
1204 
1205 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1206 		dev_err(&hdev->pdev->dev,
1207 			"flr wait timeout\n");
1208 		return -ETIMEDOUT;
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1215 {
1216 #define HCLGEVF_RESET_WAIT_US	20000
1217 #define HCLGEVF_RESET_WAIT_CNT	2000
1218 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1219 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1220 
1221 	u32 val;
1222 	int ret;
1223 
1224 	/* wait to check the hardware reset completion status */
1225 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1226 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1227 
1228 	if (hdev->reset_type == HNAE3_FLR_RESET)
1229 		return hclgevf_flr_poll_timeout(hdev,
1230 						HCLGEVF_RESET_WAIT_US,
1231 						HCLGEVF_RESET_WAIT_CNT);
1232 
1233 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1234 				 !(val & HCLGEVF_RST_ING_BITS),
1235 				 HCLGEVF_RESET_WAIT_US,
1236 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1237 
1238 	/* hardware completion status should be available by this time */
1239 	if (ret) {
1240 		dev_err(&hdev->pdev->dev,
1241 			"could'nt get reset done status from h/w, timeout!\n");
1242 		return ret;
1243 	}
1244 
1245 	/* we will wait a bit more to let reset of the stack to complete. This
1246 	 * might happen in case reset assertion was made by PF. Yes, this also
1247 	 * means we might end up waiting bit more even for VF reset.
1248 	 */
1249 	msleep(5000);
1250 
1251 	return 0;
1252 }
1253 
1254 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1255 {
1256 	int ret;
1257 
1258 	/* uninitialize the nic client */
1259 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1260 	if (ret)
1261 		return ret;
1262 
1263 	/* re-initialize the hclge device */
1264 	ret = hclgevf_reset_hdev(hdev);
1265 	if (ret) {
1266 		dev_err(&hdev->pdev->dev,
1267 			"hclge device re-init failed, VF is disabled!\n");
1268 		return ret;
1269 	}
1270 
1271 	/* bring up the nic client again */
1272 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1273 	if (ret)
1274 		return ret;
1275 
1276 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1277 }
1278 
1279 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1280 {
1281 	int ret = 0;
1282 
1283 	switch (hdev->reset_type) {
1284 	case HNAE3_VF_FUNC_RESET:
1285 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1286 					   0, true, NULL, sizeof(u8));
1287 		break;
1288 	case HNAE3_FLR_RESET:
1289 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1290 		break;
1291 	default:
1292 		break;
1293 	}
1294 
1295 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1296 
1297 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1298 		 hdev->reset_type, ret);
1299 
1300 	return ret;
1301 }
1302 
1303 static int hclgevf_reset(struct hclgevf_dev *hdev)
1304 {
1305 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1306 	int ret;
1307 
1308 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1309 	 * know if device is undergoing reset
1310 	 */
1311 	ae_dev->reset_type = hdev->reset_type;
1312 	hdev->reset_count++;
1313 	rtnl_lock();
1314 
1315 	/* bring down the nic to stop any ongoing TX/RX */
1316 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1317 	if (ret)
1318 		goto err_reset_lock;
1319 
1320 	rtnl_unlock();
1321 
1322 	ret = hclgevf_reset_prepare_wait(hdev);
1323 	if (ret)
1324 		goto err_reset;
1325 
1326 	/* check if VF could successfully fetch the hardware reset completion
1327 	 * status from the hardware
1328 	 */
1329 	ret = hclgevf_reset_wait(hdev);
1330 	if (ret) {
1331 		/* can't do much in this situation, will disable VF */
1332 		dev_err(&hdev->pdev->dev,
1333 			"VF failed(=%d) to fetch H/W reset completion status\n",
1334 			ret);
1335 		goto err_reset;
1336 	}
1337 
1338 	rtnl_lock();
1339 
1340 	/* now, re-initialize the nic client and ae device*/
1341 	ret = hclgevf_reset_stack(hdev);
1342 	if (ret) {
1343 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1344 		goto err_reset_lock;
1345 	}
1346 
1347 	/* bring up the nic to enable TX/RX again */
1348 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1349 	if (ret)
1350 		goto err_reset_lock;
1351 
1352 	rtnl_unlock();
1353 
1354 	hdev->last_reset_time = jiffies;
1355 	ae_dev->reset_type = HNAE3_NONE_RESET;
1356 
1357 	return ret;
1358 err_reset_lock:
1359 	rtnl_unlock();
1360 err_reset:
1361 	/* When VF reset failed, only the higher level reset asserted by PF
1362 	 * can restore it, so re-initialize the command queue to receive
1363 	 * this higher reset event.
1364 	 */
1365 	hclgevf_cmd_init(hdev);
1366 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1367 
1368 	return ret;
1369 }
1370 
1371 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1372 						     unsigned long *addr)
1373 {
1374 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1375 
1376 	/* return the highest priority reset level amongst all */
1377 	if (test_bit(HNAE3_VF_RESET, addr)) {
1378 		rst_level = HNAE3_VF_RESET;
1379 		clear_bit(HNAE3_VF_RESET, addr);
1380 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1381 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1382 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1383 		rst_level = HNAE3_VF_FULL_RESET;
1384 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1385 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1386 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1387 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1388 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1389 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1390 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1391 		rst_level = HNAE3_VF_FUNC_RESET;
1392 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1393 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1394 		rst_level = HNAE3_FLR_RESET;
1395 		clear_bit(HNAE3_FLR_RESET, addr);
1396 	}
1397 
1398 	return rst_level;
1399 }
1400 
1401 static void hclgevf_reset_event(struct pci_dev *pdev,
1402 				struct hnae3_handle *handle)
1403 {
1404 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1405 	struct hclgevf_dev *hdev = ae_dev->priv;
1406 
1407 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1408 
1409 	if (hdev->default_reset_request)
1410 		hdev->reset_level =
1411 			hclgevf_get_reset_level(hdev,
1412 						&hdev->default_reset_request);
1413 	else
1414 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1415 
1416 	/* reset of this VF requested */
1417 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1418 	hclgevf_reset_task_schedule(hdev);
1419 
1420 	hdev->last_reset_time = jiffies;
1421 }
1422 
1423 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1424 					  enum hnae3_reset_type rst_type)
1425 {
1426 	struct hclgevf_dev *hdev = ae_dev->priv;
1427 
1428 	set_bit(rst_type, &hdev->default_reset_request);
1429 }
1430 
1431 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1432 {
1433 #define HCLGEVF_FLR_WAIT_MS	100
1434 #define HCLGEVF_FLR_WAIT_CNT	50
1435 	struct hclgevf_dev *hdev = ae_dev->priv;
1436 	int cnt = 0;
1437 
1438 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1439 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1440 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1441 	hclgevf_reset_event(hdev->pdev, NULL);
1442 
1443 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1444 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1445 		msleep(HCLGEVF_FLR_WAIT_MS);
1446 
1447 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1448 		dev_err(&hdev->pdev->dev,
1449 			"flr wait down timeout: %d\n", cnt);
1450 }
1451 
1452 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1453 {
1454 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1455 
1456 	return hdev->fw_version;
1457 }
1458 
1459 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1460 {
1461 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1462 
1463 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1464 					    HCLGEVF_MISC_VECTOR_NUM);
1465 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1466 	/* vector status always valid for Vector 0 */
1467 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1468 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1469 
1470 	hdev->num_msi_left -= 1;
1471 	hdev->num_msi_used += 1;
1472 }
1473 
1474 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1475 {
1476 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1477 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1478 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1479 		schedule_work(&hdev->rst_service_task);
1480 	}
1481 }
1482 
1483 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1484 {
1485 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1486 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1487 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1488 		schedule_work(&hdev->mbx_service_task);
1489 	}
1490 }
1491 
1492 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1493 {
1494 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1495 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1496 		schedule_work(&hdev->service_task);
1497 }
1498 
1499 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1500 {
1501 	/* if we have any pending mailbox event then schedule the mbx task */
1502 	if (hdev->mbx_event_pending)
1503 		hclgevf_mbx_task_schedule(hdev);
1504 
1505 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1506 		hclgevf_reset_task_schedule(hdev);
1507 }
1508 
1509 static void hclgevf_service_timer(struct timer_list *t)
1510 {
1511 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1512 
1513 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1514 
1515 	hclgevf_task_schedule(hdev);
1516 }
1517 
1518 static void hclgevf_reset_service_task(struct work_struct *work)
1519 {
1520 	struct hclgevf_dev *hdev =
1521 		container_of(work, struct hclgevf_dev, rst_service_task);
1522 	int ret;
1523 
1524 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1525 		return;
1526 
1527 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1528 
1529 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1530 			       &hdev->reset_state)) {
1531 		/* PF has initmated that it is about to reset the hardware.
1532 		 * We now have to poll & check if harware has actually completed
1533 		 * the reset sequence. On hardware reset completion, VF needs to
1534 		 * reset the client and ae device.
1535 		 */
1536 		hdev->reset_attempts = 0;
1537 
1538 		hdev->last_reset_time = jiffies;
1539 		while ((hdev->reset_type =
1540 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1541 		       != HNAE3_NONE_RESET) {
1542 			ret = hclgevf_reset(hdev);
1543 			if (ret)
1544 				dev_err(&hdev->pdev->dev,
1545 					"VF stack reset failed %d.\n", ret);
1546 		}
1547 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1548 				      &hdev->reset_state)) {
1549 		/* we could be here when either of below happens:
1550 		 * 1. reset was initiated due to watchdog timeout due to
1551 		 *    a. IMP was earlier reset and our TX got choked down and
1552 		 *       which resulted in watchdog reacting and inducing VF
1553 		 *       reset. This also means our cmdq would be unreliable.
1554 		 *    b. problem in TX due to other lower layer(example link
1555 		 *       layer not functioning properly etc.)
1556 		 * 2. VF reset might have been initiated due to some config
1557 		 *    change.
1558 		 *
1559 		 * NOTE: Theres no clear way to detect above cases than to react
1560 		 * to the response of PF for this reset request. PF will ack the
1561 		 * 1b and 2. cases but we will not get any intimation about 1a
1562 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1563 		 * communication between PF and VF would be broken.
1564 		 */
1565 
1566 		/* if we are never geting into pending state it means either:
1567 		 * 1. PF is not receiving our request which could be due to IMP
1568 		 *    reset
1569 		 * 2. PF is screwed
1570 		 * We cannot do much for 2. but to check first we can try reset
1571 		 * our PCIe + stack and see if it alleviates the problem.
1572 		 */
1573 		if (hdev->reset_attempts > 3) {
1574 			/* prepare for full reset of stack + pcie interface */
1575 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1576 
1577 			/* "defer" schedule the reset task again */
1578 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1579 		} else {
1580 			hdev->reset_attempts++;
1581 
1582 			set_bit(hdev->reset_level, &hdev->reset_pending);
1583 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1584 		}
1585 		hclgevf_reset_task_schedule(hdev);
1586 	}
1587 
1588 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1589 }
1590 
1591 static void hclgevf_mailbox_service_task(struct work_struct *work)
1592 {
1593 	struct hclgevf_dev *hdev;
1594 
1595 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1596 
1597 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1598 		return;
1599 
1600 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1601 
1602 	hclgevf_mbx_async_handler(hdev);
1603 
1604 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1605 }
1606 
1607 static void hclgevf_keep_alive_timer(struct timer_list *t)
1608 {
1609 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1610 
1611 	schedule_work(&hdev->keep_alive_task);
1612 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1613 }
1614 
1615 static void hclgevf_keep_alive_task(struct work_struct *work)
1616 {
1617 	struct hclgevf_dev *hdev;
1618 	u8 respmsg;
1619 	int ret;
1620 
1621 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1622 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1623 				   0, false, &respmsg, sizeof(u8));
1624 	if (ret)
1625 		dev_err(&hdev->pdev->dev,
1626 			"VF sends keep alive cmd failed(=%d)\n", ret);
1627 }
1628 
1629 static void hclgevf_service_task(struct work_struct *work)
1630 {
1631 	struct hclgevf_dev *hdev;
1632 
1633 	hdev = container_of(work, struct hclgevf_dev, service_task);
1634 
1635 	/* request the link status from the PF. PF would be able to tell VF
1636 	 * about such updates in future so we might remove this later
1637 	 */
1638 	hclgevf_request_link_info(hdev);
1639 
1640 	hclgevf_deferred_task_schedule(hdev);
1641 
1642 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1643 }
1644 
1645 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1646 {
1647 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1648 }
1649 
1650 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1651 						      u32 *clearval)
1652 {
1653 	u32 cmdq_src_reg, rst_ing_reg;
1654 
1655 	/* fetch the events from their corresponding regs */
1656 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1657 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1658 
1659 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1660 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1661 		dev_info(&hdev->pdev->dev,
1662 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1663 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1664 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1665 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1666 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1667 		*clearval = cmdq_src_reg;
1668 		return HCLGEVF_VECTOR0_EVENT_RST;
1669 	}
1670 
1671 	/* check for vector0 mailbox(=CMDQ RX) event source */
1672 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1673 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1674 		*clearval = cmdq_src_reg;
1675 		return HCLGEVF_VECTOR0_EVENT_MBX;
1676 	}
1677 
1678 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1679 
1680 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1681 }
1682 
1683 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1684 {
1685 	writel(en ? 1 : 0, vector->addr);
1686 }
1687 
1688 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1689 {
1690 	enum hclgevf_evt_cause event_cause;
1691 	struct hclgevf_dev *hdev = data;
1692 	u32 clearval;
1693 
1694 	hclgevf_enable_vector(&hdev->misc_vector, false);
1695 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1696 
1697 	switch (event_cause) {
1698 	case HCLGEVF_VECTOR0_EVENT_RST:
1699 		hclgevf_reset_task_schedule(hdev);
1700 		break;
1701 	case HCLGEVF_VECTOR0_EVENT_MBX:
1702 		hclgevf_mbx_handler(hdev);
1703 		break;
1704 	default:
1705 		break;
1706 	}
1707 
1708 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1709 		hclgevf_clear_event_cause(hdev, clearval);
1710 		hclgevf_enable_vector(&hdev->misc_vector, true);
1711 	}
1712 
1713 	return IRQ_HANDLED;
1714 }
1715 
1716 static int hclgevf_configure(struct hclgevf_dev *hdev)
1717 {
1718 	int ret;
1719 
1720 	hdev->hw.mac.media_type = HNAE3_MEDIA_TYPE_NONE;
1721 
1722 	/* get queue configuration from PF */
1723 	ret = hclgevf_get_queue_info(hdev);
1724 	if (ret)
1725 		return ret;
1726 	/* get tc configuration from PF */
1727 	return hclgevf_get_tc_info(hdev);
1728 }
1729 
1730 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1731 {
1732 	struct pci_dev *pdev = ae_dev->pdev;
1733 	struct hclgevf_dev *hdev;
1734 
1735 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1736 	if (!hdev)
1737 		return -ENOMEM;
1738 
1739 	hdev->pdev = pdev;
1740 	hdev->ae_dev = ae_dev;
1741 	ae_dev->priv = hdev;
1742 
1743 	return 0;
1744 }
1745 
1746 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1747 {
1748 	struct hnae3_handle *roce = &hdev->roce;
1749 	struct hnae3_handle *nic = &hdev->nic;
1750 
1751 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1752 
1753 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1754 	    hdev->num_msi_left == 0)
1755 		return -EINVAL;
1756 
1757 	roce->rinfo.base_vector = hdev->roce_base_vector;
1758 
1759 	roce->rinfo.netdev = nic->kinfo.netdev;
1760 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1761 
1762 	roce->pdev = nic->pdev;
1763 	roce->ae_algo = nic->ae_algo;
1764 	roce->numa_node_mask = nic->numa_node_mask;
1765 
1766 	return 0;
1767 }
1768 
1769 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1770 {
1771 	struct hclgevf_cfg_gro_status_cmd *req;
1772 	struct hclgevf_desc desc;
1773 	int ret;
1774 
1775 	if (!hnae3_dev_gro_supported(hdev))
1776 		return 0;
1777 
1778 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1779 				     false);
1780 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1781 
1782 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1783 
1784 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1785 	if (ret)
1786 		dev_err(&hdev->pdev->dev,
1787 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1788 
1789 	return ret;
1790 }
1791 
1792 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1793 {
1794 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1795 	int i, ret;
1796 
1797 	rss_cfg->rss_size = hdev->rss_size_max;
1798 
1799 	if (hdev->pdev->revision >= 0x21) {
1800 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1801 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1802 		       HCLGEVF_RSS_KEY_SIZE);
1803 
1804 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1805 					       rss_cfg->rss_hash_key);
1806 		if (ret)
1807 			return ret;
1808 
1809 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1810 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1811 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1812 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1813 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1814 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1815 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1816 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1817 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1818 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1819 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1820 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1821 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1822 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1823 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1824 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1825 
1826 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1827 		if (ret)
1828 			return ret;
1829 
1830 	}
1831 
1832 	/* Initialize RSS indirect table for each vport */
1833 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1834 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1835 
1836 	ret = hclgevf_set_rss_indir_table(hdev);
1837 	if (ret)
1838 		return ret;
1839 
1840 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1841 }
1842 
1843 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1844 {
1845 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1846 	 * here later
1847 	 */
1848 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1849 				       false);
1850 }
1851 
1852 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
1853 {
1854 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1855 
1856 	if (enable) {
1857 		mod_timer(&hdev->service_timer, jiffies + HZ);
1858 	} else {
1859 		del_timer_sync(&hdev->service_timer);
1860 		cancel_work_sync(&hdev->service_task);
1861 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1862 	}
1863 }
1864 
1865 static int hclgevf_ae_start(struct hnae3_handle *handle)
1866 {
1867 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1868 
1869 	/* reset tqp stats */
1870 	hclgevf_reset_tqp_stats(handle);
1871 
1872 	hclgevf_request_link_info(hdev);
1873 
1874 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1875 
1876 	return 0;
1877 }
1878 
1879 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1880 {
1881 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1882 	int i;
1883 
1884 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1885 
1886 	for (i = 0; i < handle->kinfo.num_tqps; i++)
1887 		hclgevf_reset_tqp(handle, i);
1888 
1889 	/* reset tqp stats */
1890 	hclgevf_reset_tqp_stats(handle);
1891 	hclgevf_update_link_status(hdev, 0);
1892 }
1893 
1894 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
1895 {
1896 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1897 	u8 msg_data;
1898 
1899 	msg_data = alive ? 1 : 0;
1900 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
1901 				    0, &msg_data, 1, false, NULL, 0);
1902 }
1903 
1904 static int hclgevf_client_start(struct hnae3_handle *handle)
1905 {
1906 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1907 
1908 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1909 	return hclgevf_set_alive(handle, true);
1910 }
1911 
1912 static void hclgevf_client_stop(struct hnae3_handle *handle)
1913 {
1914 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1915 	int ret;
1916 
1917 	ret = hclgevf_set_alive(handle, false);
1918 	if (ret)
1919 		dev_warn(&hdev->pdev->dev,
1920 			 "%s failed %d\n", __func__, ret);
1921 
1922 	del_timer_sync(&hdev->keep_alive_timer);
1923 	cancel_work_sync(&hdev->keep_alive_task);
1924 }
1925 
1926 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1927 {
1928 	/* setup tasks for the MBX */
1929 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1930 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1931 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1932 
1933 	/* setup tasks for service timer */
1934 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1935 
1936 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1937 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1938 
1939 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1940 
1941 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1942 
1943 	/* bring the device down */
1944 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1945 }
1946 
1947 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1948 {
1949 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1950 
1951 	if (hdev->service_timer.function)
1952 		del_timer_sync(&hdev->service_timer);
1953 	if (hdev->service_task.func)
1954 		cancel_work_sync(&hdev->service_task);
1955 	if (hdev->mbx_service_task.func)
1956 		cancel_work_sync(&hdev->mbx_service_task);
1957 	if (hdev->rst_service_task.func)
1958 		cancel_work_sync(&hdev->rst_service_task);
1959 
1960 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1961 }
1962 
1963 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1964 {
1965 	struct pci_dev *pdev = hdev->pdev;
1966 	int vectors;
1967 	int i;
1968 
1969 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1970 		vectors = pci_alloc_irq_vectors(pdev,
1971 						hdev->roce_base_msix_offset + 1,
1972 						hdev->num_msi,
1973 						PCI_IRQ_MSIX);
1974 	else
1975 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1976 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
1977 
1978 	if (vectors < 0) {
1979 		dev_err(&pdev->dev,
1980 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1981 			vectors);
1982 		return vectors;
1983 	}
1984 	if (vectors < hdev->num_msi)
1985 		dev_warn(&hdev->pdev->dev,
1986 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1987 			 hdev->num_msi, vectors);
1988 
1989 	hdev->num_msi = vectors;
1990 	hdev->num_msi_left = vectors;
1991 	hdev->base_msi_vector = pdev->irq;
1992 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
1993 
1994 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1995 					   sizeof(u16), GFP_KERNEL);
1996 	if (!hdev->vector_status) {
1997 		pci_free_irq_vectors(pdev);
1998 		return -ENOMEM;
1999 	}
2000 
2001 	for (i = 0; i < hdev->num_msi; i++)
2002 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2003 
2004 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2005 					sizeof(int), GFP_KERNEL);
2006 	if (!hdev->vector_irq) {
2007 		devm_kfree(&pdev->dev, hdev->vector_status);
2008 		pci_free_irq_vectors(pdev);
2009 		return -ENOMEM;
2010 	}
2011 
2012 	return 0;
2013 }
2014 
2015 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2016 {
2017 	struct pci_dev *pdev = hdev->pdev;
2018 
2019 	devm_kfree(&pdev->dev, hdev->vector_status);
2020 	devm_kfree(&pdev->dev, hdev->vector_irq);
2021 	pci_free_irq_vectors(pdev);
2022 }
2023 
2024 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2025 {
2026 	int ret = 0;
2027 
2028 	hclgevf_get_misc_vector(hdev);
2029 
2030 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2031 			  0, "hclgevf_cmd", hdev);
2032 	if (ret) {
2033 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2034 			hdev->misc_vector.vector_irq);
2035 		return ret;
2036 	}
2037 
2038 	hclgevf_clear_event_cause(hdev, 0);
2039 
2040 	/* enable misc. vector(vector 0) */
2041 	hclgevf_enable_vector(&hdev->misc_vector, true);
2042 
2043 	return ret;
2044 }
2045 
2046 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2047 {
2048 	/* disable misc vector(vector 0) */
2049 	hclgevf_enable_vector(&hdev->misc_vector, false);
2050 	synchronize_irq(hdev->misc_vector.vector_irq);
2051 	free_irq(hdev->misc_vector.vector_irq, hdev);
2052 	hclgevf_free_vector(hdev, 0);
2053 }
2054 
2055 static int hclgevf_init_client_instance(struct hnae3_client *client,
2056 					struct hnae3_ae_dev *ae_dev)
2057 {
2058 	struct hclgevf_dev *hdev = ae_dev->priv;
2059 	int ret;
2060 
2061 	switch (client->type) {
2062 	case HNAE3_CLIENT_KNIC:
2063 		hdev->nic_client = client;
2064 		hdev->nic.client = client;
2065 
2066 		ret = client->ops->init_instance(&hdev->nic);
2067 		if (ret)
2068 			goto clear_nic;
2069 
2070 		hnae3_set_client_init_flag(client, ae_dev, 1);
2071 
2072 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
2073 			struct hnae3_client *rc = hdev->roce_client;
2074 
2075 			ret = hclgevf_init_roce_base_info(hdev);
2076 			if (ret)
2077 				goto clear_roce;
2078 			ret = rc->ops->init_instance(&hdev->roce);
2079 			if (ret)
2080 				goto clear_roce;
2081 
2082 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
2083 						   1);
2084 		}
2085 		break;
2086 	case HNAE3_CLIENT_UNIC:
2087 		hdev->nic_client = client;
2088 		hdev->nic.client = client;
2089 
2090 		ret = client->ops->init_instance(&hdev->nic);
2091 		if (ret)
2092 			goto clear_nic;
2093 
2094 		hnae3_set_client_init_flag(client, ae_dev, 1);
2095 		break;
2096 	case HNAE3_CLIENT_ROCE:
2097 		if (hnae3_dev_roce_supported(hdev)) {
2098 			hdev->roce_client = client;
2099 			hdev->roce.client = client;
2100 		}
2101 
2102 		if (hdev->roce_client && hdev->nic_client) {
2103 			ret = hclgevf_init_roce_base_info(hdev);
2104 			if (ret)
2105 				goto clear_roce;
2106 
2107 			ret = client->ops->init_instance(&hdev->roce);
2108 			if (ret)
2109 				goto clear_roce;
2110 		}
2111 
2112 		hnae3_set_client_init_flag(client, ae_dev, 1);
2113 		break;
2114 	default:
2115 		return -EINVAL;
2116 	}
2117 
2118 	return 0;
2119 
2120 clear_nic:
2121 	hdev->nic_client = NULL;
2122 	hdev->nic.client = NULL;
2123 	return ret;
2124 clear_roce:
2125 	hdev->roce_client = NULL;
2126 	hdev->roce.client = NULL;
2127 	return ret;
2128 }
2129 
2130 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2131 					   struct hnae3_ae_dev *ae_dev)
2132 {
2133 	struct hclgevf_dev *hdev = ae_dev->priv;
2134 
2135 	/* un-init roce, if it exists */
2136 	if (hdev->roce_client) {
2137 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2138 		hdev->roce_client = NULL;
2139 		hdev->roce.client = NULL;
2140 	}
2141 
2142 	/* un-init nic/unic, if this was not called by roce client */
2143 	if (client->ops->uninit_instance && hdev->nic_client &&
2144 	    client->type != HNAE3_CLIENT_ROCE) {
2145 		client->ops->uninit_instance(&hdev->nic, 0);
2146 		hdev->nic_client = NULL;
2147 		hdev->nic.client = NULL;
2148 	}
2149 }
2150 
2151 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2152 {
2153 	struct pci_dev *pdev = hdev->pdev;
2154 	struct hclgevf_hw *hw;
2155 	int ret;
2156 
2157 	ret = pci_enable_device(pdev);
2158 	if (ret) {
2159 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2160 		return ret;
2161 	}
2162 
2163 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2164 	if (ret) {
2165 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2166 		goto err_disable_device;
2167 	}
2168 
2169 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2170 	if (ret) {
2171 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2172 		goto err_disable_device;
2173 	}
2174 
2175 	pci_set_master(pdev);
2176 	hw = &hdev->hw;
2177 	hw->hdev = hdev;
2178 	hw->io_base = pci_iomap(pdev, 2, 0);
2179 	if (!hw->io_base) {
2180 		dev_err(&pdev->dev, "can't map configuration register space\n");
2181 		ret = -ENOMEM;
2182 		goto err_clr_master;
2183 	}
2184 
2185 	return 0;
2186 
2187 err_clr_master:
2188 	pci_clear_master(pdev);
2189 	pci_release_regions(pdev);
2190 err_disable_device:
2191 	pci_disable_device(pdev);
2192 
2193 	return ret;
2194 }
2195 
2196 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2197 {
2198 	struct pci_dev *pdev = hdev->pdev;
2199 
2200 	pci_iounmap(pdev, hdev->hw.io_base);
2201 	pci_clear_master(pdev);
2202 	pci_release_regions(pdev);
2203 	pci_disable_device(pdev);
2204 }
2205 
2206 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2207 {
2208 	struct hclgevf_query_res_cmd *req;
2209 	struct hclgevf_desc desc;
2210 	int ret;
2211 
2212 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2213 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2214 	if (ret) {
2215 		dev_err(&hdev->pdev->dev,
2216 			"query vf resource failed, ret = %d.\n", ret);
2217 		return ret;
2218 	}
2219 
2220 	req = (struct hclgevf_query_res_cmd *)desc.data;
2221 
2222 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2223 		hdev->roce_base_msix_offset =
2224 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2225 				HCLGEVF_MSIX_OFT_ROCEE_M,
2226 				HCLGEVF_MSIX_OFT_ROCEE_S);
2227 		hdev->num_roce_msix =
2228 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2229 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2230 
2231 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2232 		 * are queued before Roce vectors. The offset is fixed to 64.
2233 		 */
2234 		hdev->num_msi = hdev->num_roce_msix +
2235 				hdev->roce_base_msix_offset;
2236 	} else {
2237 		hdev->num_msi =
2238 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2239 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2246 {
2247 	struct pci_dev *pdev = hdev->pdev;
2248 	int ret = 0;
2249 
2250 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2251 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2252 		hclgevf_misc_irq_uninit(hdev);
2253 		hclgevf_uninit_msi(hdev);
2254 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2255 	}
2256 
2257 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2258 		pci_set_master(pdev);
2259 		ret = hclgevf_init_msi(hdev);
2260 		if (ret) {
2261 			dev_err(&pdev->dev,
2262 				"failed(%d) to init MSI/MSI-X\n", ret);
2263 			return ret;
2264 		}
2265 
2266 		ret = hclgevf_misc_irq_init(hdev);
2267 		if (ret) {
2268 			hclgevf_uninit_msi(hdev);
2269 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2270 				ret);
2271 			return ret;
2272 		}
2273 
2274 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2275 	}
2276 
2277 	return ret;
2278 }
2279 
2280 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2281 {
2282 	struct pci_dev *pdev = hdev->pdev;
2283 	int ret;
2284 
2285 	ret = hclgevf_pci_reset(hdev);
2286 	if (ret) {
2287 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2288 		return ret;
2289 	}
2290 
2291 	ret = hclgevf_cmd_init(hdev);
2292 	if (ret) {
2293 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2294 		return ret;
2295 	}
2296 
2297 	ret = hclgevf_rss_init_hw(hdev);
2298 	if (ret) {
2299 		dev_err(&hdev->pdev->dev,
2300 			"failed(%d) to initialize RSS\n", ret);
2301 		return ret;
2302 	}
2303 
2304 	ret = hclgevf_config_gro(hdev, true);
2305 	if (ret)
2306 		return ret;
2307 
2308 	ret = hclgevf_init_vlan_config(hdev);
2309 	if (ret) {
2310 		dev_err(&hdev->pdev->dev,
2311 			"failed(%d) to initialize VLAN config\n", ret);
2312 		return ret;
2313 	}
2314 
2315 	dev_info(&hdev->pdev->dev, "Reset done\n");
2316 
2317 	return 0;
2318 }
2319 
2320 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2321 {
2322 	struct pci_dev *pdev = hdev->pdev;
2323 	int ret;
2324 
2325 	ret = hclgevf_pci_init(hdev);
2326 	if (ret) {
2327 		dev_err(&pdev->dev, "PCI initialization failed\n");
2328 		return ret;
2329 	}
2330 
2331 	ret = hclgevf_cmd_queue_init(hdev);
2332 	if (ret) {
2333 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2334 		goto err_cmd_queue_init;
2335 	}
2336 
2337 	ret = hclgevf_cmd_init(hdev);
2338 	if (ret)
2339 		goto err_cmd_init;
2340 
2341 	/* Get vf resource */
2342 	ret = hclgevf_query_vf_resource(hdev);
2343 	if (ret) {
2344 		dev_err(&hdev->pdev->dev,
2345 			"Query vf status error, ret = %d.\n", ret);
2346 		goto err_cmd_init;
2347 	}
2348 
2349 	ret = hclgevf_init_msi(hdev);
2350 	if (ret) {
2351 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2352 		goto err_cmd_init;
2353 	}
2354 
2355 	hclgevf_state_init(hdev);
2356 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2357 
2358 	ret = hclgevf_misc_irq_init(hdev);
2359 	if (ret) {
2360 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2361 			ret);
2362 		goto err_misc_irq_init;
2363 	}
2364 
2365 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2366 
2367 	ret = hclgevf_configure(hdev);
2368 	if (ret) {
2369 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2370 		goto err_config;
2371 	}
2372 
2373 	ret = hclgevf_alloc_tqps(hdev);
2374 	if (ret) {
2375 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2376 		goto err_config;
2377 	}
2378 
2379 	ret = hclgevf_set_handle_info(hdev);
2380 	if (ret) {
2381 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2382 		goto err_config;
2383 	}
2384 
2385 	ret = hclgevf_config_gro(hdev, true);
2386 	if (ret)
2387 		goto err_config;
2388 
2389 	/* vf is not allowed to enable unicast/multicast promisc mode.
2390 	 * For revision 0x20, default to disable broadcast promisc mode,
2391 	 * firmware makes sure broadcast packets can be accepted.
2392 	 * For revision 0x21, default to enable broadcast promisc mode.
2393 	 */
2394 	ret = hclgevf_set_promisc_mode(hdev, true);
2395 	if (ret)
2396 		goto err_config;
2397 
2398 	/* Initialize RSS for this VF */
2399 	ret = hclgevf_rss_init_hw(hdev);
2400 	if (ret) {
2401 		dev_err(&hdev->pdev->dev,
2402 			"failed(%d) to initialize RSS\n", ret);
2403 		goto err_config;
2404 	}
2405 
2406 	ret = hclgevf_init_vlan_config(hdev);
2407 	if (ret) {
2408 		dev_err(&hdev->pdev->dev,
2409 			"failed(%d) to initialize VLAN config\n", ret);
2410 		goto err_config;
2411 	}
2412 
2413 	hdev->last_reset_time = jiffies;
2414 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2415 
2416 	return 0;
2417 
2418 err_config:
2419 	hclgevf_misc_irq_uninit(hdev);
2420 err_misc_irq_init:
2421 	hclgevf_state_uninit(hdev);
2422 	hclgevf_uninit_msi(hdev);
2423 err_cmd_init:
2424 	hclgevf_cmd_uninit(hdev);
2425 err_cmd_queue_init:
2426 	hclgevf_pci_uninit(hdev);
2427 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2428 	return ret;
2429 }
2430 
2431 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2432 {
2433 	hclgevf_state_uninit(hdev);
2434 
2435 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2436 		hclgevf_misc_irq_uninit(hdev);
2437 		hclgevf_uninit_msi(hdev);
2438 	}
2439 
2440 	hclgevf_pci_uninit(hdev);
2441 	hclgevf_cmd_uninit(hdev);
2442 }
2443 
2444 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2445 {
2446 	struct pci_dev *pdev = ae_dev->pdev;
2447 	struct hclgevf_dev *hdev;
2448 	int ret;
2449 
2450 	ret = hclgevf_alloc_hdev(ae_dev);
2451 	if (ret) {
2452 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2453 		return ret;
2454 	}
2455 
2456 	ret = hclgevf_init_hdev(ae_dev->priv);
2457 	if (ret) {
2458 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2459 		return ret;
2460 	}
2461 
2462 	hdev = ae_dev->priv;
2463 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2464 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2465 
2466 	return 0;
2467 }
2468 
2469 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2470 {
2471 	struct hclgevf_dev *hdev = ae_dev->priv;
2472 
2473 	hclgevf_uninit_hdev(hdev);
2474 	ae_dev->priv = NULL;
2475 }
2476 
2477 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2478 {
2479 	struct hnae3_handle *nic = &hdev->nic;
2480 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2481 
2482 	return min_t(u32, hdev->rss_size_max,
2483 		     hdev->num_tqps / kinfo->num_tc);
2484 }
2485 
2486 /**
2487  * hclgevf_get_channels - Get the current channels enabled and max supported.
2488  * @handle: hardware information for network interface
2489  * @ch: ethtool channels structure
2490  *
2491  * We don't support separate tx and rx queues as channels. The other count
2492  * represents how many queues are being used for control. max_combined counts
2493  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2494  * q_vectors since we support a lot more queue pairs than q_vectors.
2495  **/
2496 static void hclgevf_get_channels(struct hnae3_handle *handle,
2497 				 struct ethtool_channels *ch)
2498 {
2499 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2500 
2501 	ch->max_combined = hclgevf_get_max_channels(hdev);
2502 	ch->other_count = 0;
2503 	ch->max_other = 0;
2504 	ch->combined_count = handle->kinfo.rss_size;
2505 }
2506 
2507 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2508 					  u16 *alloc_tqps, u16 *max_rss_size)
2509 {
2510 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2511 
2512 	*alloc_tqps = hdev->num_tqps;
2513 	*max_rss_size = hdev->rss_size_max;
2514 }
2515 
2516 static int hclgevf_get_status(struct hnae3_handle *handle)
2517 {
2518 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2519 
2520 	return hdev->hw.mac.link;
2521 }
2522 
2523 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2524 					    u8 *auto_neg, u32 *speed,
2525 					    u8 *duplex)
2526 {
2527 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2528 
2529 	if (speed)
2530 		*speed = hdev->hw.mac.speed;
2531 	if (duplex)
2532 		*duplex = hdev->hw.mac.duplex;
2533 	if (auto_neg)
2534 		*auto_neg = AUTONEG_DISABLE;
2535 }
2536 
2537 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2538 				 u8 duplex)
2539 {
2540 	hdev->hw.mac.speed = speed;
2541 	hdev->hw.mac.duplex = duplex;
2542 }
2543 
2544 static int hclgevf_gro_en(struct hnae3_handle *handle, int enable)
2545 {
2546 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2547 
2548 	return hclgevf_config_gro(hdev, enable);
2549 }
2550 
2551 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2552 				  u8 *media_type)
2553 {
2554 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2555 	if (media_type)
2556 		*media_type = hdev->hw.mac.media_type;
2557 }
2558 
2559 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2560 {
2561 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2562 
2563 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2564 }
2565 
2566 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2567 {
2568 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2569 
2570 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2571 }
2572 
2573 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2574 {
2575 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2576 
2577 	return hdev->reset_count;
2578 }
2579 
2580 #define MAX_SEPARATE_NUM	4
2581 #define SEPARATOR_VALUE		0xFFFFFFFF
2582 #define REG_NUM_PER_LINE	4
2583 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2584 
2585 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2586 {
2587 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2588 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2589 
2590 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2591 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2592 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2593 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2594 
2595 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2596 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2597 }
2598 
2599 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2600 			     void *data)
2601 {
2602 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2603 	int i, j, reg_um, separator_num;
2604 	u32 *reg = data;
2605 
2606 	*version = hdev->fw_version;
2607 
2608 	/* fetching per-VF registers values from VF PCIe register space */
2609 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2610 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2611 	for (i = 0; i < reg_um; i++)
2612 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2613 	for (i = 0; i < separator_num; i++)
2614 		*reg++ = SEPARATOR_VALUE;
2615 
2616 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2617 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2618 	for (i = 0; i < reg_um; i++)
2619 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2620 	for (i = 0; i < separator_num; i++)
2621 		*reg++ = SEPARATOR_VALUE;
2622 
2623 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2624 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2625 	for (j = 0; j < hdev->num_tqps; j++) {
2626 		for (i = 0; i < reg_um; i++)
2627 			*reg++ = hclgevf_read_dev(&hdev->hw,
2628 						  ring_reg_addr_list[i] +
2629 						  0x200 * j);
2630 		for (i = 0; i < separator_num; i++)
2631 			*reg++ = SEPARATOR_VALUE;
2632 	}
2633 
2634 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2635 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2636 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2637 		for (i = 0; i < reg_um; i++)
2638 			*reg++ = hclgevf_read_dev(&hdev->hw,
2639 						  tqp_intr_reg_addr_list[i] +
2640 						  4 * j);
2641 		for (i = 0; i < separator_num; i++)
2642 			*reg++ = SEPARATOR_VALUE;
2643 	}
2644 }
2645 
2646 static const struct hnae3_ae_ops hclgevf_ops = {
2647 	.init_ae_dev = hclgevf_init_ae_dev,
2648 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2649 	.flr_prepare = hclgevf_flr_prepare,
2650 	.flr_done = hclgevf_flr_done,
2651 	.init_client_instance = hclgevf_init_client_instance,
2652 	.uninit_client_instance = hclgevf_uninit_client_instance,
2653 	.start = hclgevf_ae_start,
2654 	.stop = hclgevf_ae_stop,
2655 	.client_start = hclgevf_client_start,
2656 	.client_stop = hclgevf_client_stop,
2657 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2658 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2659 	.get_vector = hclgevf_get_vector,
2660 	.put_vector = hclgevf_put_vector,
2661 	.reset_queue = hclgevf_reset_tqp,
2662 	.get_mac_addr = hclgevf_get_mac_addr,
2663 	.set_mac_addr = hclgevf_set_mac_addr,
2664 	.add_uc_addr = hclgevf_add_uc_addr,
2665 	.rm_uc_addr = hclgevf_rm_uc_addr,
2666 	.add_mc_addr = hclgevf_add_mc_addr,
2667 	.rm_mc_addr = hclgevf_rm_mc_addr,
2668 	.get_stats = hclgevf_get_stats,
2669 	.update_stats = hclgevf_update_stats,
2670 	.get_strings = hclgevf_get_strings,
2671 	.get_sset_count = hclgevf_get_sset_count,
2672 	.get_rss_key_size = hclgevf_get_rss_key_size,
2673 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2674 	.get_rss = hclgevf_get_rss,
2675 	.set_rss = hclgevf_set_rss,
2676 	.get_rss_tuple = hclgevf_get_rss_tuple,
2677 	.set_rss_tuple = hclgevf_set_rss_tuple,
2678 	.get_tc_size = hclgevf_get_tc_size,
2679 	.get_fw_version = hclgevf_get_fw_version,
2680 	.set_vlan_filter = hclgevf_set_vlan_filter,
2681 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2682 	.reset_event = hclgevf_reset_event,
2683 	.set_default_reset_request = hclgevf_set_def_reset_request,
2684 	.get_channels = hclgevf_get_channels,
2685 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2686 	.get_regs_len = hclgevf_get_regs_len,
2687 	.get_regs = hclgevf_get_regs,
2688 	.get_status = hclgevf_get_status,
2689 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2690 	.get_media_type = hclgevf_get_media_type,
2691 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2692 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2693 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2694 	.set_gro_en = hclgevf_gro_en,
2695 	.set_mtu = hclgevf_set_mtu,
2696 	.get_global_queue_id = hclgevf_get_qid_global,
2697 	.set_timer_task = hclgevf_set_timer_task,
2698 };
2699 
2700 static struct hnae3_ae_algo ae_algovf = {
2701 	.ops = &hclgevf_ops,
2702 	.pdev_id_table = ae_algovf_pci_tbl,
2703 };
2704 
2705 static int hclgevf_init(void)
2706 {
2707 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2708 
2709 	hnae3_register_ae_algo(&ae_algovf);
2710 
2711 	return 0;
2712 }
2713 
2714 static void hclgevf_exit(void)
2715 {
2716 	hnae3_unregister_ae_algo(&ae_algovf);
2717 }
2718 module_init(hclgevf_init);
2719 module_exit(hclgevf_exit);
2720 
2721 MODULE_LICENSE("GPL");
2722 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2723 MODULE_DESCRIPTION("HCLGEVF Driver");
2724 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2725