1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
27 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
28 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
29 					 HCLGEVF_CMDQ_TX_TAIL_REG,
30 					 HCLGEVF_CMDQ_TX_HEAD_REG,
31 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
32 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
33 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
34 					 HCLGEVF_CMDQ_RX_TAIL_REG,
35 					 HCLGEVF_CMDQ_RX_HEAD_REG,
36 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
37 					 HCLGEVF_CMDQ_INTR_STS_REG,
38 					 HCLGEVF_CMDQ_INTR_EN_REG,
39 					 HCLGEVF_CMDQ_INTR_GEN_REG};
40 
41 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
42 					   HCLGEVF_RST_ING,
43 					   HCLGEVF_GRO_EN_REG};
44 
45 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
46 					 HCLGEVF_RING_RX_ADDR_H_REG,
47 					 HCLGEVF_RING_RX_BD_NUM_REG,
48 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
49 					 HCLGEVF_RING_RX_MERGE_EN_REG,
50 					 HCLGEVF_RING_RX_TAIL_REG,
51 					 HCLGEVF_RING_RX_HEAD_REG,
52 					 HCLGEVF_RING_RX_FBD_NUM_REG,
53 					 HCLGEVF_RING_RX_OFFSET_REG,
54 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
55 					 HCLGEVF_RING_RX_STASH_REG,
56 					 HCLGEVF_RING_RX_BD_ERR_REG,
57 					 HCLGEVF_RING_TX_ADDR_L_REG,
58 					 HCLGEVF_RING_TX_ADDR_H_REG,
59 					 HCLGEVF_RING_TX_BD_NUM_REG,
60 					 HCLGEVF_RING_TX_PRIORITY_REG,
61 					 HCLGEVF_RING_TX_TC_REG,
62 					 HCLGEVF_RING_TX_MERGE_EN_REG,
63 					 HCLGEVF_RING_TX_TAIL_REG,
64 					 HCLGEVF_RING_TX_HEAD_REG,
65 					 HCLGEVF_RING_TX_FBD_NUM_REG,
66 					 HCLGEVF_RING_TX_OFFSET_REG,
67 					 HCLGEVF_RING_TX_EBD_NUM_REG,
68 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
69 					 HCLGEVF_RING_TX_BD_ERR_REG,
70 					 HCLGEVF_RING_EN_REG};
71 
72 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
73 					     HCLGEVF_TQP_INTR_GL0_REG,
74 					     HCLGEVF_TQP_INTR_GL1_REG,
75 					     HCLGEVF_TQP_INTR_GL2_REG,
76 					     HCLGEVF_TQP_INTR_RL_REG};
77 
78 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
79 	struct hnae3_handle *handle)
80 {
81 	return container_of(handle, struct hclgevf_dev, nic);
82 }
83 
84 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
85 {
86 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
87 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
88 	struct hclgevf_desc desc;
89 	struct hclgevf_tqp *tqp;
90 	int status;
91 	int i;
92 
93 	for (i = 0; i < kinfo->num_tqps; i++) {
94 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
95 		hclgevf_cmd_setup_basic_desc(&desc,
96 					     HCLGEVF_OPC_QUERY_RX_STATUS,
97 					     true);
98 
99 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
100 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
101 		if (status) {
102 			dev_err(&hdev->pdev->dev,
103 				"Query tqp stat fail, status = %d,queue = %d\n",
104 				status,	i);
105 			return status;
106 		}
107 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
108 			le32_to_cpu(desc.data[1]);
109 
110 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
111 					     true);
112 
113 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 		if (status) {
116 			dev_err(&hdev->pdev->dev,
117 				"Query tqp stat fail, status = %d,queue = %d\n",
118 				status, i);
119 			return status;
120 		}
121 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
122 			le32_to_cpu(desc.data[1]);
123 	}
124 
125 	return 0;
126 }
127 
128 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
129 {
130 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
131 	struct hclgevf_tqp *tqp;
132 	u64 *buff = data;
133 	int i;
134 
135 	for (i = 0; i < kinfo->num_tqps; i++) {
136 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
137 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
138 	}
139 	for (i = 0; i < kinfo->num_tqps; i++) {
140 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
141 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
142 	}
143 
144 	return buff;
145 }
146 
147 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
148 {
149 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
150 
151 	return kinfo->num_tqps * 2;
152 }
153 
154 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
155 {
156 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
157 	u8 *buff = data;
158 	int i = 0;
159 
160 	for (i = 0; i < kinfo->num_tqps; i++) {
161 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
162 						       struct hclgevf_tqp, q);
163 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
164 			 tqp->index);
165 		buff += ETH_GSTRING_LEN;
166 	}
167 
168 	for (i = 0; i < kinfo->num_tqps; i++) {
169 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
170 						       struct hclgevf_tqp, q);
171 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
172 			 tqp->index);
173 		buff += ETH_GSTRING_LEN;
174 	}
175 
176 	return buff;
177 }
178 
179 static void hclgevf_update_stats(struct hnae3_handle *handle,
180 				 struct net_device_stats *net_stats)
181 {
182 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
183 	int status;
184 
185 	status = hclgevf_tqps_update_stats(handle);
186 	if (status)
187 		dev_err(&hdev->pdev->dev,
188 			"VF update of TQPS stats fail, status = %d.\n",
189 			status);
190 }
191 
192 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
193 {
194 	if (strset == ETH_SS_TEST)
195 		return -EOPNOTSUPP;
196 	else if (strset == ETH_SS_STATS)
197 		return hclgevf_tqps_get_sset_count(handle, strset);
198 
199 	return 0;
200 }
201 
202 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
203 				u8 *data)
204 {
205 	u8 *p = (char *)data;
206 
207 	if (strset == ETH_SS_STATS)
208 		p = hclgevf_tqps_get_strings(handle, p);
209 }
210 
211 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
212 {
213 	hclgevf_tqps_get_stats(handle, data);
214 }
215 
216 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
217 {
218 	u8 resp_msg;
219 	int status;
220 
221 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
222 				      true, &resp_msg, sizeof(u8));
223 	if (status) {
224 		dev_err(&hdev->pdev->dev,
225 			"VF request to get TC info from PF failed %d",
226 			status);
227 		return status;
228 	}
229 
230 	hdev->hw_tc_map = resp_msg;
231 
232 	return 0;
233 }
234 
235 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
236 {
237 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
238 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
239 	int status;
240 
241 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
242 				      true, resp_msg,
243 				      HCLGEVF_TQPS_RSS_INFO_LEN);
244 	if (status) {
245 		dev_err(&hdev->pdev->dev,
246 			"VF request to get tqp info from PF failed %d",
247 			status);
248 		return status;
249 	}
250 
251 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
252 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
253 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
254 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
255 
256 	return 0;
257 }
258 
259 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
260 {
261 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
262 	u8 msg_data[2], resp_data[2];
263 	u16 qid_in_pf = 0;
264 	int ret;
265 
266 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
267 
268 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
269 				   2, true, resp_data, 2);
270 	if (!ret)
271 		qid_in_pf = *(u16 *)resp_data;
272 
273 	return qid_in_pf;
274 }
275 
276 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
277 {
278 	struct hclgevf_tqp *tqp;
279 	int i;
280 
281 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
282 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
283 	if (!hdev->htqp)
284 		return -ENOMEM;
285 
286 	tqp = hdev->htqp;
287 
288 	for (i = 0; i < hdev->num_tqps; i++) {
289 		tqp->dev = &hdev->pdev->dev;
290 		tqp->index = i;
291 
292 		tqp->q.ae_algo = &ae_algovf;
293 		tqp->q.buf_size = hdev->rx_buf_len;
294 		tqp->q.desc_num = hdev->num_desc;
295 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
296 			i * HCLGEVF_TQP_REG_SIZE;
297 
298 		tqp++;
299 	}
300 
301 	return 0;
302 }
303 
304 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
305 {
306 	struct hnae3_handle *nic = &hdev->nic;
307 	struct hnae3_knic_private_info *kinfo;
308 	u16 new_tqps = hdev->num_tqps;
309 	int i;
310 
311 	kinfo = &nic->kinfo;
312 	kinfo->num_tc = 0;
313 	kinfo->num_desc = hdev->num_desc;
314 	kinfo->rx_buf_len = hdev->rx_buf_len;
315 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
316 		if (hdev->hw_tc_map & BIT(i))
317 			kinfo->num_tc++;
318 
319 	kinfo->rss_size
320 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
321 	new_tqps = kinfo->rss_size * kinfo->num_tc;
322 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
323 
324 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
325 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
326 	if (!kinfo->tqp)
327 		return -ENOMEM;
328 
329 	for (i = 0; i < kinfo->num_tqps; i++) {
330 		hdev->htqp[i].q.handle = &hdev->nic;
331 		hdev->htqp[i].q.tqp_index = i;
332 		kinfo->tqp[i] = &hdev->htqp[i].q;
333 	}
334 
335 	return 0;
336 }
337 
338 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
339 {
340 	int status;
341 	u8 resp_msg;
342 
343 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
344 				      0, false, &resp_msg, sizeof(u8));
345 	if (status)
346 		dev_err(&hdev->pdev->dev,
347 			"VF failed to fetch link status(%d) from PF", status);
348 }
349 
350 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
351 {
352 	struct hnae3_handle *rhandle = &hdev->roce;
353 	struct hnae3_handle *handle = &hdev->nic;
354 	struct hnae3_client *rclient;
355 	struct hnae3_client *client;
356 
357 	client = handle->client;
358 	rclient = hdev->roce_client;
359 
360 	link_state =
361 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
362 
363 	if (link_state != hdev->hw.mac.link) {
364 		client->ops->link_status_change(handle, !!link_state);
365 		if (rclient && rclient->ops->link_status_change)
366 			rclient->ops->link_status_change(rhandle, !!link_state);
367 		hdev->hw.mac.link = link_state;
368 	}
369 }
370 
371 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
372 {
373 	struct hnae3_handle *nic = &hdev->nic;
374 	int ret;
375 
376 	nic->ae_algo = &ae_algovf;
377 	nic->pdev = hdev->pdev;
378 	nic->numa_node_mask = hdev->numa_node_mask;
379 	nic->flags |= HNAE3_SUPPORT_VF;
380 
381 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
382 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
383 			hdev->ae_dev->dev_type);
384 		return -EINVAL;
385 	}
386 
387 	ret = hclgevf_knic_setup(hdev);
388 	if (ret)
389 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
390 			ret);
391 	return ret;
392 }
393 
394 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
395 {
396 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
397 		dev_warn(&hdev->pdev->dev,
398 			 "vector(vector_id %d) has been freed.\n", vector_id);
399 		return;
400 	}
401 
402 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
403 	hdev->num_msi_left += 1;
404 	hdev->num_msi_used -= 1;
405 }
406 
407 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
408 			      struct hnae3_vector_info *vector_info)
409 {
410 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
411 	struct hnae3_vector_info *vector = vector_info;
412 	int alloc = 0;
413 	int i, j;
414 
415 	vector_num = min(hdev->num_msi_left, vector_num);
416 
417 	for (j = 0; j < vector_num; j++) {
418 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
419 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
420 				vector->vector = pci_irq_vector(hdev->pdev, i);
421 				vector->io_addr = hdev->hw.io_base +
422 					HCLGEVF_VECTOR_REG_BASE +
423 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
424 				hdev->vector_status[i] = 0;
425 				hdev->vector_irq[i] = vector->vector;
426 
427 				vector++;
428 				alloc++;
429 
430 				break;
431 			}
432 		}
433 	}
434 	hdev->num_msi_left -= alloc;
435 	hdev->num_msi_used += alloc;
436 
437 	return alloc;
438 }
439 
440 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
441 {
442 	int i;
443 
444 	for (i = 0; i < hdev->num_msi; i++)
445 		if (vector == hdev->vector_irq[i])
446 			return i;
447 
448 	return -EINVAL;
449 }
450 
451 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
452 				    const u8 hfunc, const u8 *key)
453 {
454 	struct hclgevf_rss_config_cmd *req;
455 	struct hclgevf_desc desc;
456 	int key_offset;
457 	int key_size;
458 	int ret;
459 
460 	req = (struct hclgevf_rss_config_cmd *)desc.data;
461 
462 	for (key_offset = 0; key_offset < 3; key_offset++) {
463 		hclgevf_cmd_setup_basic_desc(&desc,
464 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
465 					     false);
466 
467 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
468 		req->hash_config |=
469 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
470 
471 		if (key_offset == 2)
472 			key_size =
473 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
474 		else
475 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
476 
477 		memcpy(req->hash_key,
478 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
479 
480 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
481 		if (ret) {
482 			dev_err(&hdev->pdev->dev,
483 				"Configure RSS config fail, status = %d\n",
484 				ret);
485 			return ret;
486 		}
487 	}
488 
489 	return 0;
490 }
491 
492 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
493 {
494 	return HCLGEVF_RSS_KEY_SIZE;
495 }
496 
497 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
498 {
499 	return HCLGEVF_RSS_IND_TBL_SIZE;
500 }
501 
502 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
503 {
504 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
505 	struct hclgevf_rss_indirection_table_cmd *req;
506 	struct hclgevf_desc desc;
507 	int status;
508 	int i, j;
509 
510 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
511 
512 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
513 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
514 					     false);
515 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
516 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
517 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
518 			req->rss_result[j] =
519 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
520 
521 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
522 		if (status) {
523 			dev_err(&hdev->pdev->dev,
524 				"VF failed(=%d) to set RSS indirection table\n",
525 				status);
526 			return status;
527 		}
528 	}
529 
530 	return 0;
531 }
532 
533 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
534 {
535 	struct hclgevf_rss_tc_mode_cmd *req;
536 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
537 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
538 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
539 	struct hclgevf_desc desc;
540 	u16 roundup_size;
541 	int status;
542 	int i;
543 
544 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
545 
546 	roundup_size = roundup_pow_of_two(rss_size);
547 	roundup_size = ilog2(roundup_size);
548 
549 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
550 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
551 		tc_size[i] = roundup_size;
552 		tc_offset[i] = rss_size * i;
553 	}
554 
555 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
556 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
557 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
558 			      (tc_valid[i] & 0x1));
559 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
560 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
561 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
562 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
563 	}
564 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
565 	if (status)
566 		dev_err(&hdev->pdev->dev,
567 			"VF failed(=%d) to set rss tc mode\n", status);
568 
569 	return status;
570 }
571 
572 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
573 			   u8 *hfunc)
574 {
575 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
576 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
577 	int i;
578 
579 	if (handle->pdev->revision >= 0x21) {
580 		/* Get hash algorithm */
581 		if (hfunc) {
582 			switch (rss_cfg->hash_algo) {
583 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
584 				*hfunc = ETH_RSS_HASH_TOP;
585 				break;
586 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
587 				*hfunc = ETH_RSS_HASH_XOR;
588 				break;
589 			default:
590 				*hfunc = ETH_RSS_HASH_UNKNOWN;
591 				break;
592 			}
593 		}
594 
595 		/* Get the RSS Key required by the user */
596 		if (key)
597 			memcpy(key, rss_cfg->rss_hash_key,
598 			       HCLGEVF_RSS_KEY_SIZE);
599 	}
600 
601 	if (indir)
602 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
603 			indir[i] = rss_cfg->rss_indirection_tbl[i];
604 
605 	return 0;
606 }
607 
608 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
609 			   const  u8 *key, const  u8 hfunc)
610 {
611 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
612 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
613 	int ret, i;
614 
615 	if (handle->pdev->revision >= 0x21) {
616 		/* Set the RSS Hash Key if specififed by the user */
617 		if (key) {
618 			switch (hfunc) {
619 			case ETH_RSS_HASH_TOP:
620 				rss_cfg->hash_algo =
621 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
622 				break;
623 			case ETH_RSS_HASH_XOR:
624 				rss_cfg->hash_algo =
625 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
626 				break;
627 			case ETH_RSS_HASH_NO_CHANGE:
628 				break;
629 			default:
630 				return -EINVAL;
631 			}
632 
633 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
634 						       key);
635 			if (ret)
636 				return ret;
637 
638 			/* Update the shadow RSS key with user specified qids */
639 			memcpy(rss_cfg->rss_hash_key, key,
640 			       HCLGEVF_RSS_KEY_SIZE);
641 		}
642 	}
643 
644 	/* update the shadow RSS table with user specified qids */
645 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
646 		rss_cfg->rss_indirection_tbl[i] = indir[i];
647 
648 	/* update the hardware */
649 	return hclgevf_set_rss_indir_table(hdev);
650 }
651 
652 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
653 {
654 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
655 
656 	if (nfc->data & RXH_L4_B_2_3)
657 		hash_sets |= HCLGEVF_D_PORT_BIT;
658 	else
659 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
660 
661 	if (nfc->data & RXH_IP_SRC)
662 		hash_sets |= HCLGEVF_S_IP_BIT;
663 	else
664 		hash_sets &= ~HCLGEVF_S_IP_BIT;
665 
666 	if (nfc->data & RXH_IP_DST)
667 		hash_sets |= HCLGEVF_D_IP_BIT;
668 	else
669 		hash_sets &= ~HCLGEVF_D_IP_BIT;
670 
671 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
672 		hash_sets |= HCLGEVF_V_TAG_BIT;
673 
674 	return hash_sets;
675 }
676 
677 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
678 				 struct ethtool_rxnfc *nfc)
679 {
680 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
681 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
682 	struct hclgevf_rss_input_tuple_cmd *req;
683 	struct hclgevf_desc desc;
684 	u8 tuple_sets;
685 	int ret;
686 
687 	if (handle->pdev->revision == 0x20)
688 		return -EOPNOTSUPP;
689 
690 	if (nfc->data &
691 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
692 		return -EINVAL;
693 
694 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
695 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
696 
697 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
698 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
699 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
700 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
701 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
702 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
703 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
704 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
705 
706 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
707 	switch (nfc->flow_type) {
708 	case TCP_V4_FLOW:
709 		req->ipv4_tcp_en = tuple_sets;
710 		break;
711 	case TCP_V6_FLOW:
712 		req->ipv6_tcp_en = tuple_sets;
713 		break;
714 	case UDP_V4_FLOW:
715 		req->ipv4_udp_en = tuple_sets;
716 		break;
717 	case UDP_V6_FLOW:
718 		req->ipv6_udp_en = tuple_sets;
719 		break;
720 	case SCTP_V4_FLOW:
721 		req->ipv4_sctp_en = tuple_sets;
722 		break;
723 	case SCTP_V6_FLOW:
724 		if ((nfc->data & RXH_L4_B_0_1) ||
725 		    (nfc->data & RXH_L4_B_2_3))
726 			return -EINVAL;
727 
728 		req->ipv6_sctp_en = tuple_sets;
729 		break;
730 	case IPV4_FLOW:
731 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
732 		break;
733 	case IPV6_FLOW:
734 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
735 		break;
736 	default:
737 		return -EINVAL;
738 	}
739 
740 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
741 	if (ret) {
742 		dev_err(&hdev->pdev->dev,
743 			"Set rss tuple fail, status = %d\n", ret);
744 		return ret;
745 	}
746 
747 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
748 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
749 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
750 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
751 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
752 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
753 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
754 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
755 	return 0;
756 }
757 
758 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
759 				 struct ethtool_rxnfc *nfc)
760 {
761 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
762 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
763 	u8 tuple_sets;
764 
765 	if (handle->pdev->revision == 0x20)
766 		return -EOPNOTSUPP;
767 
768 	nfc->data = 0;
769 
770 	switch (nfc->flow_type) {
771 	case TCP_V4_FLOW:
772 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
773 		break;
774 	case UDP_V4_FLOW:
775 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
776 		break;
777 	case TCP_V6_FLOW:
778 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
779 		break;
780 	case UDP_V6_FLOW:
781 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
782 		break;
783 	case SCTP_V4_FLOW:
784 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
785 		break;
786 	case SCTP_V6_FLOW:
787 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
788 		break;
789 	case IPV4_FLOW:
790 	case IPV6_FLOW:
791 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
792 		break;
793 	default:
794 		return -EINVAL;
795 	}
796 
797 	if (!tuple_sets)
798 		return 0;
799 
800 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
801 		nfc->data |= RXH_L4_B_2_3;
802 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
803 		nfc->data |= RXH_L4_B_0_1;
804 	if (tuple_sets & HCLGEVF_D_IP_BIT)
805 		nfc->data |= RXH_IP_DST;
806 	if (tuple_sets & HCLGEVF_S_IP_BIT)
807 		nfc->data |= RXH_IP_SRC;
808 
809 	return 0;
810 }
811 
812 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
813 				       struct hclgevf_rss_cfg *rss_cfg)
814 {
815 	struct hclgevf_rss_input_tuple_cmd *req;
816 	struct hclgevf_desc desc;
817 	int ret;
818 
819 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
820 
821 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
822 
823 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
824 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
825 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
826 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
827 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
828 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
829 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
830 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
831 
832 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
833 	if (ret)
834 		dev_err(&hdev->pdev->dev,
835 			"Configure rss input fail, status = %d\n", ret);
836 	return ret;
837 }
838 
839 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
840 {
841 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
842 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
843 
844 	return rss_cfg->rss_size;
845 }
846 
847 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
848 				       int vector_id,
849 				       struct hnae3_ring_chain_node *ring_chain)
850 {
851 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
852 	struct hnae3_ring_chain_node *node;
853 	struct hclge_mbx_vf_to_pf_cmd *req;
854 	struct hclgevf_desc desc;
855 	int i = 0;
856 	int status;
857 	u8 type;
858 
859 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
860 
861 	for (node = ring_chain; node; node = node->next) {
862 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
863 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
864 
865 		if (i == 0) {
866 			hclgevf_cmd_setup_basic_desc(&desc,
867 						     HCLGEVF_OPC_MBX_VF_TO_PF,
868 						     false);
869 			type = en ?
870 				HCLGE_MBX_MAP_RING_TO_VECTOR :
871 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
872 			req->msg[0] = type;
873 			req->msg[1] = vector_id;
874 		}
875 
876 		req->msg[idx_offset] =
877 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
878 		req->msg[idx_offset + 1] = node->tqp_index;
879 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
880 							   HNAE3_RING_GL_IDX_M,
881 							   HNAE3_RING_GL_IDX_S);
882 
883 		i++;
884 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
885 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
886 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
887 		    !node->next) {
888 			req->msg[2] = i;
889 
890 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
891 			if (status) {
892 				dev_err(&hdev->pdev->dev,
893 					"Map TQP fail, status is %d.\n",
894 					status);
895 				return status;
896 			}
897 			i = 0;
898 			hclgevf_cmd_setup_basic_desc(&desc,
899 						     HCLGEVF_OPC_MBX_VF_TO_PF,
900 						     false);
901 			req->msg[0] = type;
902 			req->msg[1] = vector_id;
903 		}
904 	}
905 
906 	return 0;
907 }
908 
909 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
910 				      struct hnae3_ring_chain_node *ring_chain)
911 {
912 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
913 	int vector_id;
914 
915 	vector_id = hclgevf_get_vector_index(hdev, vector);
916 	if (vector_id < 0) {
917 		dev_err(&handle->pdev->dev,
918 			"Get vector index fail. ret =%d\n", vector_id);
919 		return vector_id;
920 	}
921 
922 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
923 }
924 
925 static int hclgevf_unmap_ring_from_vector(
926 				struct hnae3_handle *handle,
927 				int vector,
928 				struct hnae3_ring_chain_node *ring_chain)
929 {
930 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
931 	int ret, vector_id;
932 
933 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
934 		return 0;
935 
936 	vector_id = hclgevf_get_vector_index(hdev, vector);
937 	if (vector_id < 0) {
938 		dev_err(&handle->pdev->dev,
939 			"Get vector index fail. ret =%d\n", vector_id);
940 		return vector_id;
941 	}
942 
943 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
944 	if (ret)
945 		dev_err(&handle->pdev->dev,
946 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
947 			vector_id,
948 			ret);
949 
950 	return ret;
951 }
952 
953 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
954 {
955 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
956 	int vector_id;
957 
958 	vector_id = hclgevf_get_vector_index(hdev, vector);
959 	if (vector_id < 0) {
960 		dev_err(&handle->pdev->dev,
961 			"hclgevf_put_vector get vector index fail. ret =%d\n",
962 			vector_id);
963 		return vector_id;
964 	}
965 
966 	hclgevf_free_vector(hdev, vector_id);
967 
968 	return 0;
969 }
970 
971 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
972 					bool en_uc_pmc, bool en_mc_pmc)
973 {
974 	struct hclge_mbx_vf_to_pf_cmd *req;
975 	struct hclgevf_desc desc;
976 	int status;
977 
978 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
979 
980 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
981 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
982 	req->msg[1] = en_uc_pmc ? 1 : 0;
983 	req->msg[2] = en_mc_pmc ? 1 : 0;
984 
985 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
986 	if (status)
987 		dev_err(&hdev->pdev->dev,
988 			"Set promisc mode fail, status is %d.\n", status);
989 
990 	return status;
991 }
992 
993 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle,
994 				    bool en_uc_pmc, bool en_mc_pmc)
995 {
996 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
997 
998 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
999 }
1000 
1001 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1002 			      int stream_id, bool enable)
1003 {
1004 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1005 	struct hclgevf_desc desc;
1006 	int status;
1007 
1008 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1009 
1010 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1011 				     false);
1012 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1013 	req->stream_id = cpu_to_le16(stream_id);
1014 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1015 
1016 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1017 	if (status)
1018 		dev_err(&hdev->pdev->dev,
1019 			"TQP enable fail, status =%d.\n", status);
1020 
1021 	return status;
1022 }
1023 
1024 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1025 {
1026 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1027 	struct hclgevf_tqp *tqp;
1028 	int i;
1029 
1030 	for (i = 0; i < kinfo->num_tqps; i++) {
1031 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1032 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1033 	}
1034 }
1035 
1036 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1037 {
1038 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1039 
1040 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1041 }
1042 
1043 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1044 				bool is_first)
1045 {
1046 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1047 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1048 	u8 *new_mac_addr = (u8 *)p;
1049 	u8 msg_data[ETH_ALEN * 2];
1050 	u16 subcode;
1051 	int status;
1052 
1053 	ether_addr_copy(msg_data, new_mac_addr);
1054 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1055 
1056 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1057 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1058 
1059 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1060 				      subcode, msg_data, ETH_ALEN * 2,
1061 				      true, NULL, 0);
1062 	if (!status)
1063 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1064 
1065 	return status;
1066 }
1067 
1068 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1069 			       const unsigned char *addr)
1070 {
1071 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1072 
1073 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1074 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1075 				    addr, ETH_ALEN, false, NULL, 0);
1076 }
1077 
1078 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1079 			      const unsigned char *addr)
1080 {
1081 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1082 
1083 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1084 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1085 				    addr, ETH_ALEN, false, NULL, 0);
1086 }
1087 
1088 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1089 			       const unsigned char *addr)
1090 {
1091 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1092 
1093 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1094 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1095 				    addr, ETH_ALEN, false, NULL, 0);
1096 }
1097 
1098 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1099 			      const unsigned char *addr)
1100 {
1101 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1102 
1103 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1104 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1105 				    addr, ETH_ALEN, false, NULL, 0);
1106 }
1107 
1108 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1109 				   __be16 proto, u16 vlan_id,
1110 				   bool is_kill)
1111 {
1112 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1113 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1114 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1115 
1116 	if (vlan_id > 4095)
1117 		return -EINVAL;
1118 
1119 	if (proto != htons(ETH_P_8021Q))
1120 		return -EPROTONOSUPPORT;
1121 
1122 	msg_data[0] = is_kill;
1123 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1124 	memcpy(&msg_data[3], &proto, sizeof(proto));
1125 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1126 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1127 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1128 }
1129 
1130 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1131 {
1132 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1133 	u8 msg_data;
1134 
1135 	msg_data = enable ? 1 : 0;
1136 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1137 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1138 				    1, false, NULL, 0);
1139 }
1140 
1141 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1142 {
1143 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1144 	u8 msg_data[2];
1145 	int ret;
1146 
1147 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1148 
1149 	/* disable vf queue before send queue reset msg to PF */
1150 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1151 	if (ret)
1152 		return ret;
1153 
1154 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1155 				    2, true, NULL, 0);
1156 }
1157 
1158 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1159 {
1160 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1161 
1162 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1163 				    sizeof(new_mtu), true, NULL, 0);
1164 }
1165 
1166 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1167 				 enum hnae3_reset_notify_type type)
1168 {
1169 	struct hnae3_client *client = hdev->nic_client;
1170 	struct hnae3_handle *handle = &hdev->nic;
1171 	int ret;
1172 
1173 	if (!client->ops->reset_notify)
1174 		return -EOPNOTSUPP;
1175 
1176 	ret = client->ops->reset_notify(handle, type);
1177 	if (ret)
1178 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1179 			type, ret);
1180 
1181 	return ret;
1182 }
1183 
1184 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1185 {
1186 	struct hclgevf_dev *hdev = ae_dev->priv;
1187 
1188 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1189 }
1190 
1191 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1192 				    unsigned long delay_us,
1193 				    unsigned long wait_cnt)
1194 {
1195 	unsigned long cnt = 0;
1196 
1197 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1198 	       cnt++ < wait_cnt)
1199 		usleep_range(delay_us, delay_us * 2);
1200 
1201 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1202 		dev_err(&hdev->pdev->dev,
1203 			"flr wait timeout\n");
1204 		return -ETIMEDOUT;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1211 {
1212 #define HCLGEVF_RESET_WAIT_US	20000
1213 #define HCLGEVF_RESET_WAIT_CNT	2000
1214 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1215 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1216 
1217 	u32 val;
1218 	int ret;
1219 
1220 	/* wait to check the hardware reset completion status */
1221 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1222 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1223 
1224 	if (hdev->reset_type == HNAE3_FLR_RESET)
1225 		return hclgevf_flr_poll_timeout(hdev,
1226 						HCLGEVF_RESET_WAIT_US,
1227 						HCLGEVF_RESET_WAIT_CNT);
1228 
1229 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1230 				 !(val & HCLGEVF_RST_ING_BITS),
1231 				 HCLGEVF_RESET_WAIT_US,
1232 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1233 
1234 	/* hardware completion status should be available by this time */
1235 	if (ret) {
1236 		dev_err(&hdev->pdev->dev,
1237 			"could'nt get reset done status from h/w, timeout!\n");
1238 		return ret;
1239 	}
1240 
1241 	/* we will wait a bit more to let reset of the stack to complete. This
1242 	 * might happen in case reset assertion was made by PF. Yes, this also
1243 	 * means we might end up waiting bit more even for VF reset.
1244 	 */
1245 	msleep(5000);
1246 
1247 	return 0;
1248 }
1249 
1250 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1251 {
1252 	int ret;
1253 
1254 	/* uninitialize the nic client */
1255 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1256 	if (ret)
1257 		return ret;
1258 
1259 	/* re-initialize the hclge device */
1260 	ret = hclgevf_reset_hdev(hdev);
1261 	if (ret) {
1262 		dev_err(&hdev->pdev->dev,
1263 			"hclge device re-init failed, VF is disabled!\n");
1264 		return ret;
1265 	}
1266 
1267 	/* bring up the nic client again */
1268 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1269 	if (ret)
1270 		return ret;
1271 
1272 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1273 }
1274 
1275 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1276 {
1277 	int ret = 0;
1278 
1279 	switch (hdev->reset_type) {
1280 	case HNAE3_VF_FUNC_RESET:
1281 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1282 					   0, true, NULL, sizeof(u8));
1283 		break;
1284 	case HNAE3_FLR_RESET:
1285 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1286 		break;
1287 	default:
1288 		break;
1289 	}
1290 
1291 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1292 
1293 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1294 		 hdev->reset_type, ret);
1295 
1296 	return ret;
1297 }
1298 
1299 static int hclgevf_reset(struct hclgevf_dev *hdev)
1300 {
1301 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1302 	int ret;
1303 
1304 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1305 	 * know if device is undergoing reset
1306 	 */
1307 	ae_dev->reset_type = hdev->reset_type;
1308 	hdev->reset_count++;
1309 	rtnl_lock();
1310 
1311 	/* bring down the nic to stop any ongoing TX/RX */
1312 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1313 	if (ret)
1314 		goto err_reset_lock;
1315 
1316 	rtnl_unlock();
1317 
1318 	ret = hclgevf_reset_prepare_wait(hdev);
1319 	if (ret)
1320 		goto err_reset;
1321 
1322 	/* check if VF could successfully fetch the hardware reset completion
1323 	 * status from the hardware
1324 	 */
1325 	ret = hclgevf_reset_wait(hdev);
1326 	if (ret) {
1327 		/* can't do much in this situation, will disable VF */
1328 		dev_err(&hdev->pdev->dev,
1329 			"VF failed(=%d) to fetch H/W reset completion status\n",
1330 			ret);
1331 		goto err_reset;
1332 	}
1333 
1334 	rtnl_lock();
1335 
1336 	/* now, re-initialize the nic client and ae device*/
1337 	ret = hclgevf_reset_stack(hdev);
1338 	if (ret) {
1339 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1340 		goto err_reset_lock;
1341 	}
1342 
1343 	/* bring up the nic to enable TX/RX again */
1344 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1345 	if (ret)
1346 		goto err_reset_lock;
1347 
1348 	rtnl_unlock();
1349 
1350 	hdev->last_reset_time = jiffies;
1351 	ae_dev->reset_type = HNAE3_NONE_RESET;
1352 
1353 	return ret;
1354 err_reset_lock:
1355 	rtnl_unlock();
1356 err_reset:
1357 	/* When VF reset failed, only the higher level reset asserted by PF
1358 	 * can restore it, so re-initialize the command queue to receive
1359 	 * this higher reset event.
1360 	 */
1361 	hclgevf_cmd_init(hdev);
1362 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1363 
1364 	return ret;
1365 }
1366 
1367 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1368 						     unsigned long *addr)
1369 {
1370 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1371 
1372 	/* return the highest priority reset level amongst all */
1373 	if (test_bit(HNAE3_VF_RESET, addr)) {
1374 		rst_level = HNAE3_VF_RESET;
1375 		clear_bit(HNAE3_VF_RESET, addr);
1376 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1377 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1378 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1379 		rst_level = HNAE3_VF_FULL_RESET;
1380 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1381 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1382 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1383 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1384 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1385 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1386 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1387 		rst_level = HNAE3_VF_FUNC_RESET;
1388 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1389 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1390 		rst_level = HNAE3_FLR_RESET;
1391 		clear_bit(HNAE3_FLR_RESET, addr);
1392 	}
1393 
1394 	return rst_level;
1395 }
1396 
1397 static void hclgevf_reset_event(struct pci_dev *pdev,
1398 				struct hnae3_handle *handle)
1399 {
1400 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1401 	struct hclgevf_dev *hdev = ae_dev->priv;
1402 
1403 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1404 
1405 	if (hdev->default_reset_request)
1406 		hdev->reset_level =
1407 			hclgevf_get_reset_level(hdev,
1408 						&hdev->default_reset_request);
1409 	else
1410 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1411 
1412 	/* reset of this VF requested */
1413 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1414 	hclgevf_reset_task_schedule(hdev);
1415 
1416 	hdev->last_reset_time = jiffies;
1417 }
1418 
1419 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1420 					  enum hnae3_reset_type rst_type)
1421 {
1422 	struct hclgevf_dev *hdev = ae_dev->priv;
1423 
1424 	set_bit(rst_type, &hdev->default_reset_request);
1425 }
1426 
1427 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1428 {
1429 #define HCLGEVF_FLR_WAIT_MS	100
1430 #define HCLGEVF_FLR_WAIT_CNT	50
1431 	struct hclgevf_dev *hdev = ae_dev->priv;
1432 	int cnt = 0;
1433 
1434 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1435 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1436 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1437 	hclgevf_reset_event(hdev->pdev, NULL);
1438 
1439 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1440 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1441 		msleep(HCLGEVF_FLR_WAIT_MS);
1442 
1443 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1444 		dev_err(&hdev->pdev->dev,
1445 			"flr wait down timeout: %d\n", cnt);
1446 }
1447 
1448 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1449 {
1450 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1451 
1452 	return hdev->fw_version;
1453 }
1454 
1455 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1456 {
1457 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1458 
1459 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1460 					    HCLGEVF_MISC_VECTOR_NUM);
1461 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1462 	/* vector status always valid for Vector 0 */
1463 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1464 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1465 
1466 	hdev->num_msi_left -= 1;
1467 	hdev->num_msi_used += 1;
1468 }
1469 
1470 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1471 {
1472 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1473 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1474 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1475 		schedule_work(&hdev->rst_service_task);
1476 	}
1477 }
1478 
1479 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1480 {
1481 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1482 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1483 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1484 		schedule_work(&hdev->mbx_service_task);
1485 	}
1486 }
1487 
1488 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1489 {
1490 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1491 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1492 		schedule_work(&hdev->service_task);
1493 }
1494 
1495 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1496 {
1497 	/* if we have any pending mailbox event then schedule the mbx task */
1498 	if (hdev->mbx_event_pending)
1499 		hclgevf_mbx_task_schedule(hdev);
1500 
1501 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1502 		hclgevf_reset_task_schedule(hdev);
1503 }
1504 
1505 static void hclgevf_service_timer(struct timer_list *t)
1506 {
1507 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1508 
1509 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1510 
1511 	hclgevf_task_schedule(hdev);
1512 }
1513 
1514 static void hclgevf_reset_service_task(struct work_struct *work)
1515 {
1516 	struct hclgevf_dev *hdev =
1517 		container_of(work, struct hclgevf_dev, rst_service_task);
1518 	int ret;
1519 
1520 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1521 		return;
1522 
1523 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1524 
1525 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1526 			       &hdev->reset_state)) {
1527 		/* PF has initmated that it is about to reset the hardware.
1528 		 * We now have to poll & check if harware has actually completed
1529 		 * the reset sequence. On hardware reset completion, VF needs to
1530 		 * reset the client and ae device.
1531 		 */
1532 		hdev->reset_attempts = 0;
1533 
1534 		hdev->last_reset_time = jiffies;
1535 		while ((hdev->reset_type =
1536 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1537 		       != HNAE3_NONE_RESET) {
1538 			ret = hclgevf_reset(hdev);
1539 			if (ret)
1540 				dev_err(&hdev->pdev->dev,
1541 					"VF stack reset failed %d.\n", ret);
1542 		}
1543 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1544 				      &hdev->reset_state)) {
1545 		/* we could be here when either of below happens:
1546 		 * 1. reset was initiated due to watchdog timeout due to
1547 		 *    a. IMP was earlier reset and our TX got choked down and
1548 		 *       which resulted in watchdog reacting and inducing VF
1549 		 *       reset. This also means our cmdq would be unreliable.
1550 		 *    b. problem in TX due to other lower layer(example link
1551 		 *       layer not functioning properly etc.)
1552 		 * 2. VF reset might have been initiated due to some config
1553 		 *    change.
1554 		 *
1555 		 * NOTE: Theres no clear way to detect above cases than to react
1556 		 * to the response of PF for this reset request. PF will ack the
1557 		 * 1b and 2. cases but we will not get any intimation about 1a
1558 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1559 		 * communication between PF and VF would be broken.
1560 		 */
1561 
1562 		/* if we are never geting into pending state it means either:
1563 		 * 1. PF is not receiving our request which could be due to IMP
1564 		 *    reset
1565 		 * 2. PF is screwed
1566 		 * We cannot do much for 2. but to check first we can try reset
1567 		 * our PCIe + stack and see if it alleviates the problem.
1568 		 */
1569 		if (hdev->reset_attempts > 3) {
1570 			/* prepare for full reset of stack + pcie interface */
1571 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1572 
1573 			/* "defer" schedule the reset task again */
1574 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1575 		} else {
1576 			hdev->reset_attempts++;
1577 
1578 			set_bit(hdev->reset_level, &hdev->reset_pending);
1579 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1580 		}
1581 		hclgevf_reset_task_schedule(hdev);
1582 	}
1583 
1584 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1585 }
1586 
1587 static void hclgevf_mailbox_service_task(struct work_struct *work)
1588 {
1589 	struct hclgevf_dev *hdev;
1590 
1591 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1592 
1593 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1594 		return;
1595 
1596 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1597 
1598 	hclgevf_mbx_async_handler(hdev);
1599 
1600 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1601 }
1602 
1603 static void hclgevf_keep_alive_timer(struct timer_list *t)
1604 {
1605 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1606 
1607 	schedule_work(&hdev->keep_alive_task);
1608 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1609 }
1610 
1611 static void hclgevf_keep_alive_task(struct work_struct *work)
1612 {
1613 	struct hclgevf_dev *hdev;
1614 	u8 respmsg;
1615 	int ret;
1616 
1617 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1618 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1619 				   0, false, &respmsg, sizeof(u8));
1620 	if (ret)
1621 		dev_err(&hdev->pdev->dev,
1622 			"VF sends keep alive cmd failed(=%d)\n", ret);
1623 }
1624 
1625 static void hclgevf_service_task(struct work_struct *work)
1626 {
1627 	struct hclgevf_dev *hdev;
1628 
1629 	hdev = container_of(work, struct hclgevf_dev, service_task);
1630 
1631 	/* request the link status from the PF. PF would be able to tell VF
1632 	 * about such updates in future so we might remove this later
1633 	 */
1634 	hclgevf_request_link_info(hdev);
1635 
1636 	hclgevf_deferred_task_schedule(hdev);
1637 
1638 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1639 }
1640 
1641 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1642 {
1643 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1644 }
1645 
1646 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1647 						      u32 *clearval)
1648 {
1649 	u32 cmdq_src_reg, rst_ing_reg;
1650 
1651 	/* fetch the events from their corresponding regs */
1652 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1653 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1654 
1655 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1656 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1657 		dev_info(&hdev->pdev->dev,
1658 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1659 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1660 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1661 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1662 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1663 		*clearval = cmdq_src_reg;
1664 		return HCLGEVF_VECTOR0_EVENT_RST;
1665 	}
1666 
1667 	/* check for vector0 mailbox(=CMDQ RX) event source */
1668 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1669 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1670 		*clearval = cmdq_src_reg;
1671 		return HCLGEVF_VECTOR0_EVENT_MBX;
1672 	}
1673 
1674 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1675 
1676 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1677 }
1678 
1679 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1680 {
1681 	writel(en ? 1 : 0, vector->addr);
1682 }
1683 
1684 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1685 {
1686 	enum hclgevf_evt_cause event_cause;
1687 	struct hclgevf_dev *hdev = data;
1688 	u32 clearval;
1689 
1690 	hclgevf_enable_vector(&hdev->misc_vector, false);
1691 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1692 
1693 	switch (event_cause) {
1694 	case HCLGEVF_VECTOR0_EVENT_RST:
1695 		hclgevf_reset_task_schedule(hdev);
1696 		break;
1697 	case HCLGEVF_VECTOR0_EVENT_MBX:
1698 		hclgevf_mbx_handler(hdev);
1699 		break;
1700 	default:
1701 		break;
1702 	}
1703 
1704 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1705 		hclgevf_clear_event_cause(hdev, clearval);
1706 		hclgevf_enable_vector(&hdev->misc_vector, true);
1707 	}
1708 
1709 	return IRQ_HANDLED;
1710 }
1711 
1712 static int hclgevf_configure(struct hclgevf_dev *hdev)
1713 {
1714 	int ret;
1715 
1716 	hdev->hw.mac.media_type = HNAE3_MEDIA_TYPE_NONE;
1717 
1718 	/* get queue configuration from PF */
1719 	ret = hclgevf_get_queue_info(hdev);
1720 	if (ret)
1721 		return ret;
1722 	/* get tc configuration from PF */
1723 	return hclgevf_get_tc_info(hdev);
1724 }
1725 
1726 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1727 {
1728 	struct pci_dev *pdev = ae_dev->pdev;
1729 	struct hclgevf_dev *hdev;
1730 
1731 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1732 	if (!hdev)
1733 		return -ENOMEM;
1734 
1735 	hdev->pdev = pdev;
1736 	hdev->ae_dev = ae_dev;
1737 	ae_dev->priv = hdev;
1738 
1739 	return 0;
1740 }
1741 
1742 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1743 {
1744 	struct hnae3_handle *roce = &hdev->roce;
1745 	struct hnae3_handle *nic = &hdev->nic;
1746 
1747 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1748 
1749 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1750 	    hdev->num_msi_left == 0)
1751 		return -EINVAL;
1752 
1753 	roce->rinfo.base_vector = hdev->roce_base_vector;
1754 
1755 	roce->rinfo.netdev = nic->kinfo.netdev;
1756 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1757 
1758 	roce->pdev = nic->pdev;
1759 	roce->ae_algo = nic->ae_algo;
1760 	roce->numa_node_mask = nic->numa_node_mask;
1761 
1762 	return 0;
1763 }
1764 
1765 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1766 {
1767 	struct hclgevf_cfg_gro_status_cmd *req;
1768 	struct hclgevf_desc desc;
1769 	int ret;
1770 
1771 	if (!hnae3_dev_gro_supported(hdev))
1772 		return 0;
1773 
1774 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1775 				     false);
1776 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1777 
1778 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1779 
1780 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1781 	if (ret)
1782 		dev_err(&hdev->pdev->dev,
1783 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1784 
1785 	return ret;
1786 }
1787 
1788 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1789 {
1790 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1791 	int i, ret;
1792 
1793 	rss_cfg->rss_size = hdev->rss_size_max;
1794 
1795 	if (hdev->pdev->revision >= 0x21) {
1796 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
1797 		netdev_rss_key_fill(rss_cfg->rss_hash_key,
1798 				    HCLGEVF_RSS_KEY_SIZE);
1799 
1800 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1801 					       rss_cfg->rss_hash_key);
1802 		if (ret)
1803 			return ret;
1804 
1805 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1806 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1807 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1808 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1809 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1810 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1811 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1812 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1813 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1814 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1815 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1816 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1817 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1818 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1819 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1820 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1821 
1822 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1823 		if (ret)
1824 			return ret;
1825 
1826 	}
1827 
1828 	/* Initialize RSS indirect table for each vport */
1829 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1830 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1831 
1832 	ret = hclgevf_set_rss_indir_table(hdev);
1833 	if (ret)
1834 		return ret;
1835 
1836 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1837 }
1838 
1839 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1840 {
1841 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1842 	 * here later
1843 	 */
1844 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1845 				       false);
1846 }
1847 
1848 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
1849 {
1850 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1851 
1852 	if (enable) {
1853 		mod_timer(&hdev->service_timer, jiffies + HZ);
1854 	} else {
1855 		del_timer_sync(&hdev->service_timer);
1856 		cancel_work_sync(&hdev->service_task);
1857 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1858 	}
1859 }
1860 
1861 static int hclgevf_ae_start(struct hnae3_handle *handle)
1862 {
1863 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1864 
1865 	/* reset tqp stats */
1866 	hclgevf_reset_tqp_stats(handle);
1867 
1868 	hclgevf_request_link_info(hdev);
1869 
1870 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1871 
1872 	return 0;
1873 }
1874 
1875 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1876 {
1877 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1878 	int i;
1879 
1880 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1881 
1882 	for (i = 0; i < handle->kinfo.num_tqps; i++)
1883 		hclgevf_reset_tqp(handle, i);
1884 
1885 	/* reset tqp stats */
1886 	hclgevf_reset_tqp_stats(handle);
1887 	hclgevf_update_link_status(hdev, 0);
1888 }
1889 
1890 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
1891 {
1892 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1893 	u8 msg_data;
1894 
1895 	msg_data = alive ? 1 : 0;
1896 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
1897 				    0, &msg_data, 1, false, NULL, 0);
1898 }
1899 
1900 static int hclgevf_client_start(struct hnae3_handle *handle)
1901 {
1902 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1903 
1904 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1905 	return hclgevf_set_alive(handle, true);
1906 }
1907 
1908 static void hclgevf_client_stop(struct hnae3_handle *handle)
1909 {
1910 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1911 	int ret;
1912 
1913 	ret = hclgevf_set_alive(handle, false);
1914 	if (ret)
1915 		dev_warn(&hdev->pdev->dev,
1916 			 "%s failed %d\n", __func__, ret);
1917 
1918 	del_timer_sync(&hdev->keep_alive_timer);
1919 	cancel_work_sync(&hdev->keep_alive_task);
1920 }
1921 
1922 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1923 {
1924 	/* setup tasks for the MBX */
1925 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1926 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1927 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1928 
1929 	/* setup tasks for service timer */
1930 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1931 
1932 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1933 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1934 
1935 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1936 
1937 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1938 
1939 	/* bring the device down */
1940 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1941 }
1942 
1943 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1944 {
1945 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1946 
1947 	if (hdev->service_timer.function)
1948 		del_timer_sync(&hdev->service_timer);
1949 	if (hdev->service_task.func)
1950 		cancel_work_sync(&hdev->service_task);
1951 	if (hdev->mbx_service_task.func)
1952 		cancel_work_sync(&hdev->mbx_service_task);
1953 	if (hdev->rst_service_task.func)
1954 		cancel_work_sync(&hdev->rst_service_task);
1955 
1956 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1957 }
1958 
1959 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1960 {
1961 	struct pci_dev *pdev = hdev->pdev;
1962 	int vectors;
1963 	int i;
1964 
1965 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1966 		vectors = pci_alloc_irq_vectors(pdev,
1967 						hdev->roce_base_msix_offset + 1,
1968 						hdev->num_msi,
1969 						PCI_IRQ_MSIX);
1970 	else
1971 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1972 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
1973 
1974 	if (vectors < 0) {
1975 		dev_err(&pdev->dev,
1976 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1977 			vectors);
1978 		return vectors;
1979 	}
1980 	if (vectors < hdev->num_msi)
1981 		dev_warn(&hdev->pdev->dev,
1982 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1983 			 hdev->num_msi, vectors);
1984 
1985 	hdev->num_msi = vectors;
1986 	hdev->num_msi_left = vectors;
1987 	hdev->base_msi_vector = pdev->irq;
1988 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
1989 
1990 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1991 					   sizeof(u16), GFP_KERNEL);
1992 	if (!hdev->vector_status) {
1993 		pci_free_irq_vectors(pdev);
1994 		return -ENOMEM;
1995 	}
1996 
1997 	for (i = 0; i < hdev->num_msi; i++)
1998 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1999 
2000 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2001 					sizeof(int), GFP_KERNEL);
2002 	if (!hdev->vector_irq) {
2003 		devm_kfree(&pdev->dev, hdev->vector_status);
2004 		pci_free_irq_vectors(pdev);
2005 		return -ENOMEM;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2012 {
2013 	struct pci_dev *pdev = hdev->pdev;
2014 
2015 	devm_kfree(&pdev->dev, hdev->vector_status);
2016 	devm_kfree(&pdev->dev, hdev->vector_irq);
2017 	pci_free_irq_vectors(pdev);
2018 }
2019 
2020 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2021 {
2022 	int ret = 0;
2023 
2024 	hclgevf_get_misc_vector(hdev);
2025 
2026 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2027 			  0, "hclgevf_cmd", hdev);
2028 	if (ret) {
2029 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2030 			hdev->misc_vector.vector_irq);
2031 		return ret;
2032 	}
2033 
2034 	hclgevf_clear_event_cause(hdev, 0);
2035 
2036 	/* enable misc. vector(vector 0) */
2037 	hclgevf_enable_vector(&hdev->misc_vector, true);
2038 
2039 	return ret;
2040 }
2041 
2042 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2043 {
2044 	/* disable misc vector(vector 0) */
2045 	hclgevf_enable_vector(&hdev->misc_vector, false);
2046 	synchronize_irq(hdev->misc_vector.vector_irq);
2047 	free_irq(hdev->misc_vector.vector_irq, hdev);
2048 	hclgevf_free_vector(hdev, 0);
2049 }
2050 
2051 static int hclgevf_init_client_instance(struct hnae3_client *client,
2052 					struct hnae3_ae_dev *ae_dev)
2053 {
2054 	struct hclgevf_dev *hdev = ae_dev->priv;
2055 	int ret;
2056 
2057 	switch (client->type) {
2058 	case HNAE3_CLIENT_KNIC:
2059 		hdev->nic_client = client;
2060 		hdev->nic.client = client;
2061 
2062 		ret = client->ops->init_instance(&hdev->nic);
2063 		if (ret)
2064 			goto clear_nic;
2065 
2066 		hnae3_set_client_init_flag(client, ae_dev, 1);
2067 
2068 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
2069 			struct hnae3_client *rc = hdev->roce_client;
2070 
2071 			ret = hclgevf_init_roce_base_info(hdev);
2072 			if (ret)
2073 				goto clear_roce;
2074 			ret = rc->ops->init_instance(&hdev->roce);
2075 			if (ret)
2076 				goto clear_roce;
2077 
2078 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
2079 						   1);
2080 		}
2081 		break;
2082 	case HNAE3_CLIENT_UNIC:
2083 		hdev->nic_client = client;
2084 		hdev->nic.client = client;
2085 
2086 		ret = client->ops->init_instance(&hdev->nic);
2087 		if (ret)
2088 			goto clear_nic;
2089 
2090 		hnae3_set_client_init_flag(client, ae_dev, 1);
2091 		break;
2092 	case HNAE3_CLIENT_ROCE:
2093 		if (hnae3_dev_roce_supported(hdev)) {
2094 			hdev->roce_client = client;
2095 			hdev->roce.client = client;
2096 		}
2097 
2098 		if (hdev->roce_client && hdev->nic_client) {
2099 			ret = hclgevf_init_roce_base_info(hdev);
2100 			if (ret)
2101 				goto clear_roce;
2102 
2103 			ret = client->ops->init_instance(&hdev->roce);
2104 			if (ret)
2105 				goto clear_roce;
2106 		}
2107 
2108 		hnae3_set_client_init_flag(client, ae_dev, 1);
2109 		break;
2110 	default:
2111 		return -EINVAL;
2112 	}
2113 
2114 	return 0;
2115 
2116 clear_nic:
2117 	hdev->nic_client = NULL;
2118 	hdev->nic.client = NULL;
2119 	return ret;
2120 clear_roce:
2121 	hdev->roce_client = NULL;
2122 	hdev->roce.client = NULL;
2123 	return ret;
2124 }
2125 
2126 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2127 					   struct hnae3_ae_dev *ae_dev)
2128 {
2129 	struct hclgevf_dev *hdev = ae_dev->priv;
2130 
2131 	/* un-init roce, if it exists */
2132 	if (hdev->roce_client) {
2133 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2134 		hdev->roce_client = NULL;
2135 		hdev->roce.client = NULL;
2136 	}
2137 
2138 	/* un-init nic/unic, if this was not called by roce client */
2139 	if (client->ops->uninit_instance && hdev->nic_client &&
2140 	    client->type != HNAE3_CLIENT_ROCE) {
2141 		client->ops->uninit_instance(&hdev->nic, 0);
2142 		hdev->nic_client = NULL;
2143 		hdev->nic.client = NULL;
2144 	}
2145 }
2146 
2147 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2148 {
2149 	struct pci_dev *pdev = hdev->pdev;
2150 	struct hclgevf_hw *hw;
2151 	int ret;
2152 
2153 	ret = pci_enable_device(pdev);
2154 	if (ret) {
2155 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2156 		return ret;
2157 	}
2158 
2159 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2160 	if (ret) {
2161 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2162 		goto err_disable_device;
2163 	}
2164 
2165 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2166 	if (ret) {
2167 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2168 		goto err_disable_device;
2169 	}
2170 
2171 	pci_set_master(pdev);
2172 	hw = &hdev->hw;
2173 	hw->hdev = hdev;
2174 	hw->io_base = pci_iomap(pdev, 2, 0);
2175 	if (!hw->io_base) {
2176 		dev_err(&pdev->dev, "can't map configuration register space\n");
2177 		ret = -ENOMEM;
2178 		goto err_clr_master;
2179 	}
2180 
2181 	return 0;
2182 
2183 err_clr_master:
2184 	pci_clear_master(pdev);
2185 	pci_release_regions(pdev);
2186 err_disable_device:
2187 	pci_disable_device(pdev);
2188 
2189 	return ret;
2190 }
2191 
2192 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2193 {
2194 	struct pci_dev *pdev = hdev->pdev;
2195 
2196 	pci_iounmap(pdev, hdev->hw.io_base);
2197 	pci_clear_master(pdev);
2198 	pci_release_regions(pdev);
2199 	pci_disable_device(pdev);
2200 }
2201 
2202 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2203 {
2204 	struct hclgevf_query_res_cmd *req;
2205 	struct hclgevf_desc desc;
2206 	int ret;
2207 
2208 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2209 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2210 	if (ret) {
2211 		dev_err(&hdev->pdev->dev,
2212 			"query vf resource failed, ret = %d.\n", ret);
2213 		return ret;
2214 	}
2215 
2216 	req = (struct hclgevf_query_res_cmd *)desc.data;
2217 
2218 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2219 		hdev->roce_base_msix_offset =
2220 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2221 				HCLGEVF_MSIX_OFT_ROCEE_M,
2222 				HCLGEVF_MSIX_OFT_ROCEE_S);
2223 		hdev->num_roce_msix =
2224 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2225 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2226 
2227 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2228 		 * are queued before Roce vectors. The offset is fixed to 64.
2229 		 */
2230 		hdev->num_msi = hdev->num_roce_msix +
2231 				hdev->roce_base_msix_offset;
2232 	} else {
2233 		hdev->num_msi =
2234 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2235 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2236 	}
2237 
2238 	return 0;
2239 }
2240 
2241 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2242 {
2243 	struct pci_dev *pdev = hdev->pdev;
2244 	int ret = 0;
2245 
2246 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2247 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2248 		hclgevf_misc_irq_uninit(hdev);
2249 		hclgevf_uninit_msi(hdev);
2250 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2251 	}
2252 
2253 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2254 		pci_set_master(pdev);
2255 		ret = hclgevf_init_msi(hdev);
2256 		if (ret) {
2257 			dev_err(&pdev->dev,
2258 				"failed(%d) to init MSI/MSI-X\n", ret);
2259 			return ret;
2260 		}
2261 
2262 		ret = hclgevf_misc_irq_init(hdev);
2263 		if (ret) {
2264 			hclgevf_uninit_msi(hdev);
2265 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2266 				ret);
2267 			return ret;
2268 		}
2269 
2270 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2271 	}
2272 
2273 	return ret;
2274 }
2275 
2276 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2277 {
2278 	struct pci_dev *pdev = hdev->pdev;
2279 	int ret;
2280 
2281 	ret = hclgevf_pci_reset(hdev);
2282 	if (ret) {
2283 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2284 		return ret;
2285 	}
2286 
2287 	ret = hclgevf_cmd_init(hdev);
2288 	if (ret) {
2289 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2290 		return ret;
2291 	}
2292 
2293 	ret = hclgevf_rss_init_hw(hdev);
2294 	if (ret) {
2295 		dev_err(&hdev->pdev->dev,
2296 			"failed(%d) to initialize RSS\n", ret);
2297 		return ret;
2298 	}
2299 
2300 	ret = hclgevf_config_gro(hdev, true);
2301 	if (ret)
2302 		return ret;
2303 
2304 	ret = hclgevf_init_vlan_config(hdev);
2305 	if (ret) {
2306 		dev_err(&hdev->pdev->dev,
2307 			"failed(%d) to initialize VLAN config\n", ret);
2308 		return ret;
2309 	}
2310 
2311 	dev_info(&hdev->pdev->dev, "Reset done\n");
2312 
2313 	return 0;
2314 }
2315 
2316 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2317 {
2318 	struct pci_dev *pdev = hdev->pdev;
2319 	int ret;
2320 
2321 	ret = hclgevf_pci_init(hdev);
2322 	if (ret) {
2323 		dev_err(&pdev->dev, "PCI initialization failed\n");
2324 		return ret;
2325 	}
2326 
2327 	ret = hclgevf_cmd_queue_init(hdev);
2328 	if (ret) {
2329 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2330 		goto err_cmd_queue_init;
2331 	}
2332 
2333 	ret = hclgevf_cmd_init(hdev);
2334 	if (ret)
2335 		goto err_cmd_init;
2336 
2337 	/* Get vf resource */
2338 	ret = hclgevf_query_vf_resource(hdev);
2339 	if (ret) {
2340 		dev_err(&hdev->pdev->dev,
2341 			"Query vf status error, ret = %d.\n", ret);
2342 		goto err_cmd_init;
2343 	}
2344 
2345 	ret = hclgevf_init_msi(hdev);
2346 	if (ret) {
2347 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2348 		goto err_cmd_init;
2349 	}
2350 
2351 	hclgevf_state_init(hdev);
2352 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2353 
2354 	ret = hclgevf_misc_irq_init(hdev);
2355 	if (ret) {
2356 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2357 			ret);
2358 		goto err_misc_irq_init;
2359 	}
2360 
2361 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2362 
2363 	ret = hclgevf_configure(hdev);
2364 	if (ret) {
2365 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2366 		goto err_config;
2367 	}
2368 
2369 	ret = hclgevf_alloc_tqps(hdev);
2370 	if (ret) {
2371 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2372 		goto err_config;
2373 	}
2374 
2375 	ret = hclgevf_set_handle_info(hdev);
2376 	if (ret) {
2377 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2378 		goto err_config;
2379 	}
2380 
2381 	ret = hclgevf_config_gro(hdev, true);
2382 	if (ret)
2383 		goto err_config;
2384 
2385 	/* Initialize RSS for this VF */
2386 	ret = hclgevf_rss_init_hw(hdev);
2387 	if (ret) {
2388 		dev_err(&hdev->pdev->dev,
2389 			"failed(%d) to initialize RSS\n", ret);
2390 		goto err_config;
2391 	}
2392 
2393 	ret = hclgevf_init_vlan_config(hdev);
2394 	if (ret) {
2395 		dev_err(&hdev->pdev->dev,
2396 			"failed(%d) to initialize VLAN config\n", ret);
2397 		goto err_config;
2398 	}
2399 
2400 	hdev->last_reset_time = jiffies;
2401 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2402 
2403 	return 0;
2404 
2405 err_config:
2406 	hclgevf_misc_irq_uninit(hdev);
2407 err_misc_irq_init:
2408 	hclgevf_state_uninit(hdev);
2409 	hclgevf_uninit_msi(hdev);
2410 err_cmd_init:
2411 	hclgevf_cmd_uninit(hdev);
2412 err_cmd_queue_init:
2413 	hclgevf_pci_uninit(hdev);
2414 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2415 	return ret;
2416 }
2417 
2418 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2419 {
2420 	hclgevf_state_uninit(hdev);
2421 
2422 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2423 		hclgevf_misc_irq_uninit(hdev);
2424 		hclgevf_uninit_msi(hdev);
2425 	}
2426 
2427 	hclgevf_pci_uninit(hdev);
2428 	hclgevf_cmd_uninit(hdev);
2429 }
2430 
2431 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2432 {
2433 	struct pci_dev *pdev = ae_dev->pdev;
2434 	struct hclgevf_dev *hdev;
2435 	int ret;
2436 
2437 	ret = hclgevf_alloc_hdev(ae_dev);
2438 	if (ret) {
2439 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2440 		return ret;
2441 	}
2442 
2443 	ret = hclgevf_init_hdev(ae_dev->priv);
2444 	if (ret) {
2445 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2446 		return ret;
2447 	}
2448 
2449 	hdev = ae_dev->priv;
2450 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2451 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2452 
2453 	return 0;
2454 }
2455 
2456 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2457 {
2458 	struct hclgevf_dev *hdev = ae_dev->priv;
2459 
2460 	hclgevf_uninit_hdev(hdev);
2461 	ae_dev->priv = NULL;
2462 }
2463 
2464 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2465 {
2466 	struct hnae3_handle *nic = &hdev->nic;
2467 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2468 
2469 	return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
2470 }
2471 
2472 /**
2473  * hclgevf_get_channels - Get the current channels enabled and max supported.
2474  * @handle: hardware information for network interface
2475  * @ch: ethtool channels structure
2476  *
2477  * We don't support separate tx and rx queues as channels. The other count
2478  * represents how many queues are being used for control. max_combined counts
2479  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2480  * q_vectors since we support a lot more queue pairs than q_vectors.
2481  **/
2482 static void hclgevf_get_channels(struct hnae3_handle *handle,
2483 				 struct ethtool_channels *ch)
2484 {
2485 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2486 
2487 	ch->max_combined = hclgevf_get_max_channels(hdev);
2488 	ch->other_count = 0;
2489 	ch->max_other = 0;
2490 	ch->combined_count = hdev->num_tqps;
2491 }
2492 
2493 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2494 					  u16 *alloc_tqps, u16 *max_rss_size)
2495 {
2496 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2497 
2498 	*alloc_tqps = hdev->num_tqps;
2499 	*max_rss_size = hdev->rss_size_max;
2500 }
2501 
2502 static int hclgevf_get_status(struct hnae3_handle *handle)
2503 {
2504 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2505 
2506 	return hdev->hw.mac.link;
2507 }
2508 
2509 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2510 					    u8 *auto_neg, u32 *speed,
2511 					    u8 *duplex)
2512 {
2513 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2514 
2515 	if (speed)
2516 		*speed = hdev->hw.mac.speed;
2517 	if (duplex)
2518 		*duplex = hdev->hw.mac.duplex;
2519 	if (auto_neg)
2520 		*auto_neg = AUTONEG_DISABLE;
2521 }
2522 
2523 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2524 				 u8 duplex)
2525 {
2526 	hdev->hw.mac.speed = speed;
2527 	hdev->hw.mac.duplex = duplex;
2528 }
2529 
2530 static int hclgevf_gro_en(struct hnae3_handle *handle, int enable)
2531 {
2532 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2533 
2534 	return hclgevf_config_gro(hdev, enable);
2535 }
2536 
2537 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2538 				  u8 *media_type)
2539 {
2540 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2541 	if (media_type)
2542 		*media_type = hdev->hw.mac.media_type;
2543 }
2544 
2545 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2546 {
2547 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2548 
2549 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2550 }
2551 
2552 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2553 {
2554 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2555 
2556 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2557 }
2558 
2559 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2560 {
2561 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2562 
2563 	return hdev->reset_count;
2564 }
2565 
2566 #define MAX_SEPARATE_NUM	4
2567 #define SEPARATOR_VALUE		0xFFFFFFFF
2568 #define REG_NUM_PER_LINE	4
2569 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2570 
2571 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2572 {
2573 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2574 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2575 
2576 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2577 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2578 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2579 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2580 
2581 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2582 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2583 }
2584 
2585 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2586 			     void *data)
2587 {
2588 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2589 	int i, j, reg_um, separator_num;
2590 	u32 *reg = data;
2591 
2592 	*version = hdev->fw_version;
2593 
2594 	/* fetching per-VF registers values from VF PCIe register space */
2595 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2596 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2597 	for (i = 0; i < reg_um; i++)
2598 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2599 	for (i = 0; i < separator_num; i++)
2600 		*reg++ = SEPARATOR_VALUE;
2601 
2602 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2603 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2604 	for (i = 0; i < reg_um; i++)
2605 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2606 	for (i = 0; i < separator_num; i++)
2607 		*reg++ = SEPARATOR_VALUE;
2608 
2609 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2610 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2611 	for (j = 0; j < hdev->num_tqps; j++) {
2612 		for (i = 0; i < reg_um; i++)
2613 			*reg++ = hclgevf_read_dev(&hdev->hw,
2614 						  ring_reg_addr_list[i] +
2615 						  0x200 * j);
2616 		for (i = 0; i < separator_num; i++)
2617 			*reg++ = SEPARATOR_VALUE;
2618 	}
2619 
2620 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2621 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2622 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2623 		for (i = 0; i < reg_um; i++)
2624 			*reg++ = hclgevf_read_dev(&hdev->hw,
2625 						  tqp_intr_reg_addr_list[i] +
2626 						  4 * j);
2627 		for (i = 0; i < separator_num; i++)
2628 			*reg++ = SEPARATOR_VALUE;
2629 	}
2630 }
2631 
2632 static const struct hnae3_ae_ops hclgevf_ops = {
2633 	.init_ae_dev = hclgevf_init_ae_dev,
2634 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2635 	.flr_prepare = hclgevf_flr_prepare,
2636 	.flr_done = hclgevf_flr_done,
2637 	.init_client_instance = hclgevf_init_client_instance,
2638 	.uninit_client_instance = hclgevf_uninit_client_instance,
2639 	.start = hclgevf_ae_start,
2640 	.stop = hclgevf_ae_stop,
2641 	.client_start = hclgevf_client_start,
2642 	.client_stop = hclgevf_client_stop,
2643 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2644 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2645 	.get_vector = hclgevf_get_vector,
2646 	.put_vector = hclgevf_put_vector,
2647 	.reset_queue = hclgevf_reset_tqp,
2648 	.set_promisc_mode = hclgevf_set_promisc_mode,
2649 	.get_mac_addr = hclgevf_get_mac_addr,
2650 	.set_mac_addr = hclgevf_set_mac_addr,
2651 	.add_uc_addr = hclgevf_add_uc_addr,
2652 	.rm_uc_addr = hclgevf_rm_uc_addr,
2653 	.add_mc_addr = hclgevf_add_mc_addr,
2654 	.rm_mc_addr = hclgevf_rm_mc_addr,
2655 	.get_stats = hclgevf_get_stats,
2656 	.update_stats = hclgevf_update_stats,
2657 	.get_strings = hclgevf_get_strings,
2658 	.get_sset_count = hclgevf_get_sset_count,
2659 	.get_rss_key_size = hclgevf_get_rss_key_size,
2660 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2661 	.get_rss = hclgevf_get_rss,
2662 	.set_rss = hclgevf_set_rss,
2663 	.get_rss_tuple = hclgevf_get_rss_tuple,
2664 	.set_rss_tuple = hclgevf_set_rss_tuple,
2665 	.get_tc_size = hclgevf_get_tc_size,
2666 	.get_fw_version = hclgevf_get_fw_version,
2667 	.set_vlan_filter = hclgevf_set_vlan_filter,
2668 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2669 	.reset_event = hclgevf_reset_event,
2670 	.set_default_reset_request = hclgevf_set_def_reset_request,
2671 	.get_channels = hclgevf_get_channels,
2672 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2673 	.get_regs_len = hclgevf_get_regs_len,
2674 	.get_regs = hclgevf_get_regs,
2675 	.get_status = hclgevf_get_status,
2676 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2677 	.get_media_type = hclgevf_get_media_type,
2678 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2679 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2680 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2681 	.set_gro_en = hclgevf_gro_en,
2682 	.set_mtu = hclgevf_set_mtu,
2683 	.get_global_queue_id = hclgevf_get_qid_global,
2684 	.set_timer_task = hclgevf_set_timer_task,
2685 };
2686 
2687 static struct hnae3_ae_algo ae_algovf = {
2688 	.ops = &hclgevf_ops,
2689 	.pdev_id_table = ae_algovf_pci_tbl,
2690 };
2691 
2692 static int hclgevf_init(void)
2693 {
2694 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2695 
2696 	hnae3_register_ae_algo(&ae_algovf);
2697 
2698 	return 0;
2699 }
2700 
2701 static void hclgevf_exit(void)
2702 {
2703 	hnae3_unregister_ae_algo(&ae_algovf);
2704 }
2705 module_init(hclgevf_init);
2706 module_exit(hclgevf_exit);
2707 
2708 MODULE_LICENSE("GPL");
2709 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2710 MODULE_DESCRIPTION("HCLGEVF Driver");
2711 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2712