1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
87 	struct hnae3_handle *handle)
88 {
89 	if (!handle->client)
90 		return container_of(handle, struct hclgevf_dev, nic);
91 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
92 		return container_of(handle, struct hclgevf_dev, roce);
93 	else
94 		return container_of(handle, struct hclgevf_dev, nic);
95 }
96 
97 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
98 {
99 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
101 	struct hclgevf_desc desc;
102 	struct hclgevf_tqp *tqp;
103 	int status;
104 	int i;
105 
106 	for (i = 0; i < kinfo->num_tqps; i++) {
107 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
108 		hclgevf_cmd_setup_basic_desc(&desc,
109 					     HCLGEVF_OPC_QUERY_RX_STATUS,
110 					     true);
111 
112 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
113 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
114 		if (status) {
115 			dev_err(&hdev->pdev->dev,
116 				"Query tqp stat fail, status = %d,queue = %d\n",
117 				status,	i);
118 			return status;
119 		}
120 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
121 			le32_to_cpu(desc.data[1]);
122 
123 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
124 					     true);
125 
126 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
127 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
128 		if (status) {
129 			dev_err(&hdev->pdev->dev,
130 				"Query tqp stat fail, status = %d,queue = %d\n",
131 				status, i);
132 			return status;
133 		}
134 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
135 			le32_to_cpu(desc.data[1]);
136 	}
137 
138 	return 0;
139 }
140 
141 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
144 	struct hclgevf_tqp *tqp;
145 	u64 *buff = data;
146 	int i;
147 
148 	for (i = 0; i < kinfo->num_tqps; i++) {
149 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
150 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
151 	}
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
155 	}
156 
157 	return buff;
158 }
159 
160 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
161 {
162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
163 
164 	return kinfo->num_tqps * 2;
165 }
166 
167 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 	u8 *buff = data;
171 	int i = 0;
172 
173 	for (i = 0; i < kinfo->num_tqps; i++) {
174 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
175 						       struct hclgevf_tqp, q);
176 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
177 			 tqp->index);
178 		buff += ETH_GSTRING_LEN;
179 	}
180 
181 	for (i = 0; i < kinfo->num_tqps; i++) {
182 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 						       struct hclgevf_tqp, q);
184 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
185 			 tqp->index);
186 		buff += ETH_GSTRING_LEN;
187 	}
188 
189 	return buff;
190 }
191 
192 static void hclgevf_update_stats(struct hnae3_handle *handle,
193 				 struct net_device_stats *net_stats)
194 {
195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
196 	int status;
197 
198 	status = hclgevf_tqps_update_stats(handle);
199 	if (status)
200 		dev_err(&hdev->pdev->dev,
201 			"VF update of TQPS stats fail, status = %d.\n",
202 			status);
203 }
204 
205 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
206 {
207 	if (strset == ETH_SS_TEST)
208 		return -EOPNOTSUPP;
209 	else if (strset == ETH_SS_STATS)
210 		return hclgevf_tqps_get_sset_count(handle, strset);
211 
212 	return 0;
213 }
214 
215 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
216 				u8 *data)
217 {
218 	u8 *p = (char *)data;
219 
220 	if (strset == ETH_SS_STATS)
221 		p = hclgevf_tqps_get_strings(handle, p);
222 }
223 
224 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
225 {
226 	hclgevf_tqps_get_stats(handle, data);
227 }
228 
229 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
230 {
231 	u8 resp_msg;
232 	int status;
233 
234 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
235 				      true, &resp_msg, sizeof(u8));
236 	if (status) {
237 		dev_err(&hdev->pdev->dev,
238 			"VF request to get TC info from PF failed %d",
239 			status);
240 		return status;
241 	}
242 
243 	hdev->hw_tc_map = resp_msg;
244 
245 	return 0;
246 }
247 
248 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
249 {
250 	struct hnae3_handle *nic = &hdev->nic;
251 	u8 resp_msg;
252 	int ret;
253 
254 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
255 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
256 				   NULL, 0, true, &resp_msg, sizeof(u8));
257 	if (ret) {
258 		dev_err(&hdev->pdev->dev,
259 			"VF request to get port based vlan state failed %d",
260 			ret);
261 		return ret;
262 	}
263 
264 	nic->port_base_vlan_state = resp_msg;
265 
266 	return 0;
267 }
268 
269 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
270 {
271 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
272 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
273 	int status;
274 
275 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
276 				      true, resp_msg,
277 				      HCLGEVF_TQPS_RSS_INFO_LEN);
278 	if (status) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get tqp info from PF failed %d",
281 			status);
282 		return status;
283 	}
284 
285 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
286 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
287 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
288 
289 	return 0;
290 }
291 
292 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
293 {
294 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
295 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
296 	int ret;
297 
298 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
299 				   true, resp_msg,
300 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
301 	if (ret) {
302 		dev_err(&hdev->pdev->dev,
303 			"VF request to get tqp depth info from PF failed %d",
304 			ret);
305 		return ret;
306 	}
307 
308 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
309 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
310 
311 	return 0;
312 }
313 
314 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
315 {
316 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
317 	u8 msg_data[2], resp_data[2];
318 	u16 qid_in_pf = 0;
319 	int ret;
320 
321 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
322 
323 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
324 				   2, true, resp_data, 2);
325 	if (!ret)
326 		qid_in_pf = *(u16 *)resp_data;
327 
328 	return qid_in_pf;
329 }
330 
331 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
332 {
333 	u8 resp_msg[2];
334 	int ret;
335 
336 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
337 				   true, resp_msg, sizeof(resp_msg));
338 	if (ret) {
339 		dev_err(&hdev->pdev->dev,
340 			"VF request to get the pf port media type failed %d",
341 			ret);
342 		return ret;
343 	}
344 
345 	hdev->hw.mac.media_type = resp_msg[0];
346 	hdev->hw.mac.module_type = resp_msg[1];
347 
348 	return 0;
349 }
350 
351 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
352 {
353 	struct hclgevf_tqp *tqp;
354 	int i;
355 
356 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
357 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
358 	if (!hdev->htqp)
359 		return -ENOMEM;
360 
361 	tqp = hdev->htqp;
362 
363 	for (i = 0; i < hdev->num_tqps; i++) {
364 		tqp->dev = &hdev->pdev->dev;
365 		tqp->index = i;
366 
367 		tqp->q.ae_algo = &ae_algovf;
368 		tqp->q.buf_size = hdev->rx_buf_len;
369 		tqp->q.tx_desc_num = hdev->num_tx_desc;
370 		tqp->q.rx_desc_num = hdev->num_rx_desc;
371 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
372 			i * HCLGEVF_TQP_REG_SIZE;
373 
374 		tqp++;
375 	}
376 
377 	return 0;
378 }
379 
380 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
381 {
382 	struct hnae3_handle *nic = &hdev->nic;
383 	struct hnae3_knic_private_info *kinfo;
384 	u16 new_tqps = hdev->num_tqps;
385 	int i;
386 
387 	kinfo = &nic->kinfo;
388 	kinfo->num_tc = 0;
389 	kinfo->num_tx_desc = hdev->num_tx_desc;
390 	kinfo->num_rx_desc = hdev->num_rx_desc;
391 	kinfo->rx_buf_len = hdev->rx_buf_len;
392 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
393 		if (hdev->hw_tc_map & BIT(i))
394 			kinfo->num_tc++;
395 
396 	kinfo->rss_size
397 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
398 	new_tqps = kinfo->rss_size * kinfo->num_tc;
399 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
400 
401 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
402 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
403 	if (!kinfo->tqp)
404 		return -ENOMEM;
405 
406 	for (i = 0; i < kinfo->num_tqps; i++) {
407 		hdev->htqp[i].q.handle = &hdev->nic;
408 		hdev->htqp[i].q.tqp_index = i;
409 		kinfo->tqp[i] = &hdev->htqp[i].q;
410 	}
411 
412 	return 0;
413 }
414 
415 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
416 {
417 	int status;
418 	u8 resp_msg;
419 
420 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
421 				      0, false, &resp_msg, sizeof(u8));
422 	if (status)
423 		dev_err(&hdev->pdev->dev,
424 			"VF failed to fetch link status(%d) from PF", status);
425 }
426 
427 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
428 {
429 	struct hnae3_handle *rhandle = &hdev->roce;
430 	struct hnae3_handle *handle = &hdev->nic;
431 	struct hnae3_client *rclient;
432 	struct hnae3_client *client;
433 
434 	client = handle->client;
435 	rclient = hdev->roce_client;
436 
437 	link_state =
438 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
439 
440 	if (link_state != hdev->hw.mac.link) {
441 		client->ops->link_status_change(handle, !!link_state);
442 		if (rclient && rclient->ops->link_status_change)
443 			rclient->ops->link_status_change(rhandle, !!link_state);
444 		hdev->hw.mac.link = link_state;
445 	}
446 }
447 
448 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
449 {
450 #define HCLGEVF_ADVERTISING 0
451 #define HCLGEVF_SUPPORTED   1
452 	u8 send_msg;
453 	u8 resp_msg;
454 
455 	send_msg = HCLGEVF_ADVERTISING;
456 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
457 			     sizeof(u8), false, &resp_msg, sizeof(u8));
458 	send_msg = HCLGEVF_SUPPORTED;
459 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
460 			     sizeof(u8), false, &resp_msg, sizeof(u8));
461 }
462 
463 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
464 {
465 	struct hnae3_handle *nic = &hdev->nic;
466 	int ret;
467 
468 	nic->ae_algo = &ae_algovf;
469 	nic->pdev = hdev->pdev;
470 	nic->numa_node_mask = hdev->numa_node_mask;
471 	nic->flags |= HNAE3_SUPPORT_VF;
472 
473 	ret = hclgevf_knic_setup(hdev);
474 	if (ret)
475 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
476 			ret);
477 	return ret;
478 }
479 
480 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
481 {
482 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
483 		dev_warn(&hdev->pdev->dev,
484 			 "vector(vector_id %d) has been freed.\n", vector_id);
485 		return;
486 	}
487 
488 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
489 	hdev->num_msi_left += 1;
490 	hdev->num_msi_used -= 1;
491 }
492 
493 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
494 			      struct hnae3_vector_info *vector_info)
495 {
496 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
497 	struct hnae3_vector_info *vector = vector_info;
498 	int alloc = 0;
499 	int i, j;
500 
501 	vector_num = min(hdev->num_msi_left, vector_num);
502 
503 	for (j = 0; j < vector_num; j++) {
504 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
505 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
506 				vector->vector = pci_irq_vector(hdev->pdev, i);
507 				vector->io_addr = hdev->hw.io_base +
508 					HCLGEVF_VECTOR_REG_BASE +
509 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
510 				hdev->vector_status[i] = 0;
511 				hdev->vector_irq[i] = vector->vector;
512 
513 				vector++;
514 				alloc++;
515 
516 				break;
517 			}
518 		}
519 	}
520 	hdev->num_msi_left -= alloc;
521 	hdev->num_msi_used += alloc;
522 
523 	return alloc;
524 }
525 
526 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
527 {
528 	int i;
529 
530 	for (i = 0; i < hdev->num_msi; i++)
531 		if (vector == hdev->vector_irq[i])
532 			return i;
533 
534 	return -EINVAL;
535 }
536 
537 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
538 				    const u8 hfunc, const u8 *key)
539 {
540 	struct hclgevf_rss_config_cmd *req;
541 	struct hclgevf_desc desc;
542 	int key_offset = 0;
543 	int key_counts;
544 	int key_size;
545 	int ret;
546 
547 	key_counts = HCLGEVF_RSS_KEY_SIZE;
548 	req = (struct hclgevf_rss_config_cmd *)desc.data;
549 
550 	while (key_counts) {
551 		hclgevf_cmd_setup_basic_desc(&desc,
552 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
553 					     false);
554 
555 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
556 		req->hash_config |=
557 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
558 
559 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
560 		memcpy(req->hash_key,
561 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
562 
563 		key_counts -= key_size;
564 		key_offset++;
565 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
566 		if (ret) {
567 			dev_err(&hdev->pdev->dev,
568 				"Configure RSS config fail, status = %d\n",
569 				ret);
570 			return ret;
571 		}
572 	}
573 
574 	return 0;
575 }
576 
577 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
578 {
579 	return HCLGEVF_RSS_KEY_SIZE;
580 }
581 
582 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
583 {
584 	return HCLGEVF_RSS_IND_TBL_SIZE;
585 }
586 
587 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
588 {
589 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
590 	struct hclgevf_rss_indirection_table_cmd *req;
591 	struct hclgevf_desc desc;
592 	int status;
593 	int i, j;
594 
595 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
596 
597 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
598 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
599 					     false);
600 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
601 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
602 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
603 			req->rss_result[j] =
604 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
605 
606 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
607 		if (status) {
608 			dev_err(&hdev->pdev->dev,
609 				"VF failed(=%d) to set RSS indirection table\n",
610 				status);
611 			return status;
612 		}
613 	}
614 
615 	return 0;
616 }
617 
618 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
619 {
620 	struct hclgevf_rss_tc_mode_cmd *req;
621 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
622 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
623 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
624 	struct hclgevf_desc desc;
625 	u16 roundup_size;
626 	int status;
627 	int i;
628 
629 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
630 
631 	roundup_size = roundup_pow_of_two(rss_size);
632 	roundup_size = ilog2(roundup_size);
633 
634 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
635 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
636 		tc_size[i] = roundup_size;
637 		tc_offset[i] = rss_size * i;
638 	}
639 
640 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
641 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
642 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
643 			      (tc_valid[i] & 0x1));
644 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
645 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
646 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
647 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
648 	}
649 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
650 	if (status)
651 		dev_err(&hdev->pdev->dev,
652 			"VF failed(=%d) to set rss tc mode\n", status);
653 
654 	return status;
655 }
656 
657 /* for revision 0x20, vf shared the same rss config with pf */
658 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
659 {
660 #define HCLGEVF_RSS_MBX_RESP_LEN	8
661 
662 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
663 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
664 	u16 msg_num, hash_key_index;
665 	u8 index;
666 	int ret;
667 
668 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
669 			HCLGEVF_RSS_MBX_RESP_LEN;
670 	for (index = 0; index < msg_num; index++) {
671 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
672 					   &index, sizeof(index),
673 					   true, resp_msg,
674 					   HCLGEVF_RSS_MBX_RESP_LEN);
675 		if (ret) {
676 			dev_err(&hdev->pdev->dev,
677 				"VF get rss hash key from PF failed, ret=%d",
678 				ret);
679 			return ret;
680 		}
681 
682 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
683 		if (index == msg_num - 1)
684 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
685 			       &resp_msg[0],
686 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
687 		else
688 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
689 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
690 	}
691 
692 	return 0;
693 }
694 
695 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
696 			   u8 *hfunc)
697 {
698 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
699 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
700 	int i, ret;
701 
702 	if (handle->pdev->revision >= 0x21) {
703 		/* Get hash algorithm */
704 		if (hfunc) {
705 			switch (rss_cfg->hash_algo) {
706 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
707 				*hfunc = ETH_RSS_HASH_TOP;
708 				break;
709 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
710 				*hfunc = ETH_RSS_HASH_XOR;
711 				break;
712 			default:
713 				*hfunc = ETH_RSS_HASH_UNKNOWN;
714 				break;
715 			}
716 		}
717 
718 		/* Get the RSS Key required by the user */
719 		if (key)
720 			memcpy(key, rss_cfg->rss_hash_key,
721 			       HCLGEVF_RSS_KEY_SIZE);
722 	} else {
723 		if (hfunc)
724 			*hfunc = ETH_RSS_HASH_TOP;
725 		if (key) {
726 			ret = hclgevf_get_rss_hash_key(hdev);
727 			if (ret)
728 				return ret;
729 			memcpy(key, rss_cfg->rss_hash_key,
730 			       HCLGEVF_RSS_KEY_SIZE);
731 		}
732 	}
733 
734 	if (indir)
735 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
736 			indir[i] = rss_cfg->rss_indirection_tbl[i];
737 
738 	return 0;
739 }
740 
741 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
742 			   const  u8 *key, const  u8 hfunc)
743 {
744 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
745 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
746 	int ret, i;
747 
748 	if (handle->pdev->revision >= 0x21) {
749 		/* Set the RSS Hash Key if specififed by the user */
750 		if (key) {
751 			switch (hfunc) {
752 			case ETH_RSS_HASH_TOP:
753 				rss_cfg->hash_algo =
754 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
755 				break;
756 			case ETH_RSS_HASH_XOR:
757 				rss_cfg->hash_algo =
758 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
759 				break;
760 			case ETH_RSS_HASH_NO_CHANGE:
761 				break;
762 			default:
763 				return -EINVAL;
764 			}
765 
766 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
767 						       key);
768 			if (ret)
769 				return ret;
770 
771 			/* Update the shadow RSS key with user specified qids */
772 			memcpy(rss_cfg->rss_hash_key, key,
773 			       HCLGEVF_RSS_KEY_SIZE);
774 		}
775 	}
776 
777 	/* update the shadow RSS table with user specified qids */
778 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
779 		rss_cfg->rss_indirection_tbl[i] = indir[i];
780 
781 	/* update the hardware */
782 	return hclgevf_set_rss_indir_table(hdev);
783 }
784 
785 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
786 {
787 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
788 
789 	if (nfc->data & RXH_L4_B_2_3)
790 		hash_sets |= HCLGEVF_D_PORT_BIT;
791 	else
792 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
793 
794 	if (nfc->data & RXH_IP_SRC)
795 		hash_sets |= HCLGEVF_S_IP_BIT;
796 	else
797 		hash_sets &= ~HCLGEVF_S_IP_BIT;
798 
799 	if (nfc->data & RXH_IP_DST)
800 		hash_sets |= HCLGEVF_D_IP_BIT;
801 	else
802 		hash_sets &= ~HCLGEVF_D_IP_BIT;
803 
804 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
805 		hash_sets |= HCLGEVF_V_TAG_BIT;
806 
807 	return hash_sets;
808 }
809 
810 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
811 				 struct ethtool_rxnfc *nfc)
812 {
813 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
814 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
815 	struct hclgevf_rss_input_tuple_cmd *req;
816 	struct hclgevf_desc desc;
817 	u8 tuple_sets;
818 	int ret;
819 
820 	if (handle->pdev->revision == 0x20)
821 		return -EOPNOTSUPP;
822 
823 	if (nfc->data &
824 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
825 		return -EINVAL;
826 
827 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
828 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
829 
830 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
831 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
832 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
833 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
834 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
835 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
836 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
837 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
838 
839 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
840 	switch (nfc->flow_type) {
841 	case TCP_V4_FLOW:
842 		req->ipv4_tcp_en = tuple_sets;
843 		break;
844 	case TCP_V6_FLOW:
845 		req->ipv6_tcp_en = tuple_sets;
846 		break;
847 	case UDP_V4_FLOW:
848 		req->ipv4_udp_en = tuple_sets;
849 		break;
850 	case UDP_V6_FLOW:
851 		req->ipv6_udp_en = tuple_sets;
852 		break;
853 	case SCTP_V4_FLOW:
854 		req->ipv4_sctp_en = tuple_sets;
855 		break;
856 	case SCTP_V6_FLOW:
857 		if ((nfc->data & RXH_L4_B_0_1) ||
858 		    (nfc->data & RXH_L4_B_2_3))
859 			return -EINVAL;
860 
861 		req->ipv6_sctp_en = tuple_sets;
862 		break;
863 	case IPV4_FLOW:
864 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
865 		break;
866 	case IPV6_FLOW:
867 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
868 		break;
869 	default:
870 		return -EINVAL;
871 	}
872 
873 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
874 	if (ret) {
875 		dev_err(&hdev->pdev->dev,
876 			"Set rss tuple fail, status = %d\n", ret);
877 		return ret;
878 	}
879 
880 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
881 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
882 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
883 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
884 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
885 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
886 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
887 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
888 	return 0;
889 }
890 
891 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
892 				 struct ethtool_rxnfc *nfc)
893 {
894 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
895 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
896 	u8 tuple_sets;
897 
898 	if (handle->pdev->revision == 0x20)
899 		return -EOPNOTSUPP;
900 
901 	nfc->data = 0;
902 
903 	switch (nfc->flow_type) {
904 	case TCP_V4_FLOW:
905 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
906 		break;
907 	case UDP_V4_FLOW:
908 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
909 		break;
910 	case TCP_V6_FLOW:
911 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
912 		break;
913 	case UDP_V6_FLOW:
914 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
915 		break;
916 	case SCTP_V4_FLOW:
917 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
918 		break;
919 	case SCTP_V6_FLOW:
920 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
921 		break;
922 	case IPV4_FLOW:
923 	case IPV6_FLOW:
924 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
925 		break;
926 	default:
927 		return -EINVAL;
928 	}
929 
930 	if (!tuple_sets)
931 		return 0;
932 
933 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
934 		nfc->data |= RXH_L4_B_2_3;
935 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
936 		nfc->data |= RXH_L4_B_0_1;
937 	if (tuple_sets & HCLGEVF_D_IP_BIT)
938 		nfc->data |= RXH_IP_DST;
939 	if (tuple_sets & HCLGEVF_S_IP_BIT)
940 		nfc->data |= RXH_IP_SRC;
941 
942 	return 0;
943 }
944 
945 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
946 				       struct hclgevf_rss_cfg *rss_cfg)
947 {
948 	struct hclgevf_rss_input_tuple_cmd *req;
949 	struct hclgevf_desc desc;
950 	int ret;
951 
952 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
953 
954 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
955 
956 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
957 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
958 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
959 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
960 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
961 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
962 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
963 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
964 
965 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
966 	if (ret)
967 		dev_err(&hdev->pdev->dev,
968 			"Configure rss input fail, status = %d\n", ret);
969 	return ret;
970 }
971 
972 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
973 {
974 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
975 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
976 
977 	return rss_cfg->rss_size;
978 }
979 
980 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
981 				       int vector_id,
982 				       struct hnae3_ring_chain_node *ring_chain)
983 {
984 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
985 	struct hnae3_ring_chain_node *node;
986 	struct hclge_mbx_vf_to_pf_cmd *req;
987 	struct hclgevf_desc desc;
988 	int i = 0;
989 	int status;
990 	u8 type;
991 
992 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
993 
994 	for (node = ring_chain; node; node = node->next) {
995 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
996 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
997 
998 		if (i == 0) {
999 			hclgevf_cmd_setup_basic_desc(&desc,
1000 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1001 						     false);
1002 			type = en ?
1003 				HCLGE_MBX_MAP_RING_TO_VECTOR :
1004 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1005 			req->msg[0] = type;
1006 			req->msg[1] = vector_id;
1007 		}
1008 
1009 		req->msg[idx_offset] =
1010 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1011 		req->msg[idx_offset + 1] = node->tqp_index;
1012 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1013 							   HNAE3_RING_GL_IDX_M,
1014 							   HNAE3_RING_GL_IDX_S);
1015 
1016 		i++;
1017 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1018 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1019 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1020 		    !node->next) {
1021 			req->msg[2] = i;
1022 
1023 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1024 			if (status) {
1025 				dev_err(&hdev->pdev->dev,
1026 					"Map TQP fail, status is %d.\n",
1027 					status);
1028 				return status;
1029 			}
1030 			i = 0;
1031 			hclgevf_cmd_setup_basic_desc(&desc,
1032 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1033 						     false);
1034 			req->msg[0] = type;
1035 			req->msg[1] = vector_id;
1036 		}
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1043 				      struct hnae3_ring_chain_node *ring_chain)
1044 {
1045 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1046 	int vector_id;
1047 
1048 	vector_id = hclgevf_get_vector_index(hdev, vector);
1049 	if (vector_id < 0) {
1050 		dev_err(&handle->pdev->dev,
1051 			"Get vector index fail. ret =%d\n", vector_id);
1052 		return vector_id;
1053 	}
1054 
1055 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1056 }
1057 
1058 static int hclgevf_unmap_ring_from_vector(
1059 				struct hnae3_handle *handle,
1060 				int vector,
1061 				struct hnae3_ring_chain_node *ring_chain)
1062 {
1063 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1064 	int ret, vector_id;
1065 
1066 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1067 		return 0;
1068 
1069 	vector_id = hclgevf_get_vector_index(hdev, vector);
1070 	if (vector_id < 0) {
1071 		dev_err(&handle->pdev->dev,
1072 			"Get vector index fail. ret =%d\n", vector_id);
1073 		return vector_id;
1074 	}
1075 
1076 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1077 	if (ret)
1078 		dev_err(&handle->pdev->dev,
1079 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1080 			vector_id,
1081 			ret);
1082 
1083 	return ret;
1084 }
1085 
1086 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1087 {
1088 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1089 	int vector_id;
1090 
1091 	vector_id = hclgevf_get_vector_index(hdev, vector);
1092 	if (vector_id < 0) {
1093 		dev_err(&handle->pdev->dev,
1094 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1095 			vector_id);
1096 		return vector_id;
1097 	}
1098 
1099 	hclgevf_free_vector(hdev, vector_id);
1100 
1101 	return 0;
1102 }
1103 
1104 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1105 					bool en_bc_pmc)
1106 {
1107 	struct hclge_mbx_vf_to_pf_cmd *req;
1108 	struct hclgevf_desc desc;
1109 	int ret;
1110 
1111 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1112 
1113 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1114 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1115 	req->msg[1] = en_bc_pmc ? 1 : 0;
1116 
1117 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1118 	if (ret)
1119 		dev_err(&hdev->pdev->dev,
1120 			"Set promisc mode fail, status is %d.\n", ret);
1121 
1122 	return ret;
1123 }
1124 
1125 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1126 {
1127 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1128 }
1129 
1130 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1131 			      int stream_id, bool enable)
1132 {
1133 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1134 	struct hclgevf_desc desc;
1135 	int status;
1136 
1137 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1138 
1139 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1140 				     false);
1141 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1142 	req->stream_id = cpu_to_le16(stream_id);
1143 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1144 
1145 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1146 	if (status)
1147 		dev_err(&hdev->pdev->dev,
1148 			"TQP enable fail, status =%d.\n", status);
1149 
1150 	return status;
1151 }
1152 
1153 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1154 {
1155 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1156 	struct hclgevf_tqp *tqp;
1157 	int i;
1158 
1159 	for (i = 0; i < kinfo->num_tqps; i++) {
1160 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1161 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1162 	}
1163 }
1164 
1165 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1166 {
1167 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1168 
1169 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1170 }
1171 
1172 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1173 				bool is_first)
1174 {
1175 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1176 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1177 	u8 *new_mac_addr = (u8 *)p;
1178 	u8 msg_data[ETH_ALEN * 2];
1179 	u16 subcode;
1180 	int status;
1181 
1182 	ether_addr_copy(msg_data, new_mac_addr);
1183 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1184 
1185 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1186 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1187 
1188 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1189 				      subcode, msg_data, ETH_ALEN * 2,
1190 				      true, NULL, 0);
1191 	if (!status)
1192 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1193 
1194 	return status;
1195 }
1196 
1197 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1198 			       const unsigned char *addr)
1199 {
1200 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1201 
1202 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1203 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1204 				    addr, ETH_ALEN, false, NULL, 0);
1205 }
1206 
1207 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1208 			      const unsigned char *addr)
1209 {
1210 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1211 
1212 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1213 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1214 				    addr, ETH_ALEN, false, NULL, 0);
1215 }
1216 
1217 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1218 			       const unsigned char *addr)
1219 {
1220 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1221 
1222 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1223 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1224 				    addr, ETH_ALEN, false, NULL, 0);
1225 }
1226 
1227 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1228 			      const unsigned char *addr)
1229 {
1230 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1231 
1232 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1233 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1234 				    addr, ETH_ALEN, false, NULL, 0);
1235 }
1236 
1237 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1238 				   __be16 proto, u16 vlan_id,
1239 				   bool is_kill)
1240 {
1241 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1242 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1243 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1244 
1245 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1246 		return -EINVAL;
1247 
1248 	if (proto != htons(ETH_P_8021Q))
1249 		return -EPROTONOSUPPORT;
1250 
1251 	msg_data[0] = is_kill;
1252 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1253 	memcpy(&msg_data[3], &proto, sizeof(proto));
1254 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1255 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1256 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1257 }
1258 
1259 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1260 {
1261 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1262 	u8 msg_data;
1263 
1264 	msg_data = enable ? 1 : 0;
1265 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1266 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1267 				    1, false, NULL, 0);
1268 }
1269 
1270 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1271 {
1272 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1273 	u8 msg_data[2];
1274 	int ret;
1275 
1276 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1277 
1278 	/* disable vf queue before send queue reset msg to PF */
1279 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1280 	if (ret)
1281 		return ret;
1282 
1283 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1284 				    2, true, NULL, 0);
1285 }
1286 
1287 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1288 {
1289 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1290 
1291 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1292 				    sizeof(new_mtu), true, NULL, 0);
1293 }
1294 
1295 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1296 				 enum hnae3_reset_notify_type type)
1297 {
1298 	struct hnae3_client *client = hdev->nic_client;
1299 	struct hnae3_handle *handle = &hdev->nic;
1300 	int ret;
1301 
1302 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1303 	    !client)
1304 		return 0;
1305 
1306 	if (!client->ops->reset_notify)
1307 		return -EOPNOTSUPP;
1308 
1309 	ret = client->ops->reset_notify(handle, type);
1310 	if (ret)
1311 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1312 			type, ret);
1313 
1314 	return ret;
1315 }
1316 
1317 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1318 {
1319 	struct hclgevf_dev *hdev = ae_dev->priv;
1320 
1321 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1322 }
1323 
1324 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1325 				    unsigned long delay_us,
1326 				    unsigned long wait_cnt)
1327 {
1328 	unsigned long cnt = 0;
1329 
1330 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1331 	       cnt++ < wait_cnt)
1332 		usleep_range(delay_us, delay_us * 2);
1333 
1334 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1335 		dev_err(&hdev->pdev->dev,
1336 			"flr wait timeout\n");
1337 		return -ETIMEDOUT;
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1344 {
1345 #define HCLGEVF_RESET_WAIT_US	20000
1346 #define HCLGEVF_RESET_WAIT_CNT	2000
1347 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1348 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1349 
1350 	u32 val;
1351 	int ret;
1352 
1353 	/* wait to check the hardware reset completion status */
1354 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1355 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1356 
1357 	if (hdev->reset_type == HNAE3_FLR_RESET)
1358 		return hclgevf_flr_poll_timeout(hdev,
1359 						HCLGEVF_RESET_WAIT_US,
1360 						HCLGEVF_RESET_WAIT_CNT);
1361 
1362 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1363 				 !(val & HCLGEVF_RST_ING_BITS),
1364 				 HCLGEVF_RESET_WAIT_US,
1365 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1366 
1367 	/* hardware completion status should be available by this time */
1368 	if (ret) {
1369 		dev_err(&hdev->pdev->dev,
1370 			"could'nt get reset done status from h/w, timeout!\n");
1371 		return ret;
1372 	}
1373 
1374 	/* we will wait a bit more to let reset of the stack to complete. This
1375 	 * might happen in case reset assertion was made by PF. Yes, this also
1376 	 * means we might end up waiting bit more even for VF reset.
1377 	 */
1378 	msleep(5000);
1379 
1380 	return 0;
1381 }
1382 
1383 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1384 {
1385 	int ret;
1386 
1387 	/* uninitialize the nic client */
1388 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1389 	if (ret)
1390 		return ret;
1391 
1392 	/* re-initialize the hclge device */
1393 	ret = hclgevf_reset_hdev(hdev);
1394 	if (ret) {
1395 		dev_err(&hdev->pdev->dev,
1396 			"hclge device re-init failed, VF is disabled!\n");
1397 		return ret;
1398 	}
1399 
1400 	/* bring up the nic client again */
1401 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1402 	if (ret)
1403 		return ret;
1404 
1405 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1406 }
1407 
1408 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1409 {
1410 #define HCLGEVF_RESET_SYNC_TIME 100
1411 
1412 	int ret = 0;
1413 
1414 	switch (hdev->reset_type) {
1415 	case HNAE3_VF_FUNC_RESET:
1416 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1417 					   0, true, NULL, sizeof(u8));
1418 		hdev->rst_stats.vf_func_rst_cnt++;
1419 		break;
1420 	case HNAE3_FLR_RESET:
1421 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1422 		hdev->rst_stats.flr_rst_cnt++;
1423 		break;
1424 	default:
1425 		break;
1426 	}
1427 
1428 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1429 	/* inform hardware that preparatory work is done */
1430 	msleep(HCLGEVF_RESET_SYNC_TIME);
1431 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1432 			  HCLGEVF_NIC_CMQ_ENABLE);
1433 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1434 		 hdev->reset_type, ret);
1435 
1436 	return ret;
1437 }
1438 
1439 static int hclgevf_reset(struct hclgevf_dev *hdev)
1440 {
1441 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1442 	int ret;
1443 
1444 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1445 	 * know if device is undergoing reset
1446 	 */
1447 	ae_dev->reset_type = hdev->reset_type;
1448 	hdev->rst_stats.rst_cnt++;
1449 	rtnl_lock();
1450 
1451 	/* bring down the nic to stop any ongoing TX/RX */
1452 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1453 	if (ret)
1454 		goto err_reset_lock;
1455 
1456 	rtnl_unlock();
1457 
1458 	ret = hclgevf_reset_prepare_wait(hdev);
1459 	if (ret)
1460 		goto err_reset;
1461 
1462 	/* check if VF could successfully fetch the hardware reset completion
1463 	 * status from the hardware
1464 	 */
1465 	ret = hclgevf_reset_wait(hdev);
1466 	if (ret) {
1467 		/* can't do much in this situation, will disable VF */
1468 		dev_err(&hdev->pdev->dev,
1469 			"VF failed(=%d) to fetch H/W reset completion status\n",
1470 			ret);
1471 		goto err_reset;
1472 	}
1473 
1474 	hdev->rst_stats.hw_rst_done_cnt++;
1475 
1476 	rtnl_lock();
1477 
1478 	/* now, re-initialize the nic client and ae device*/
1479 	ret = hclgevf_reset_stack(hdev);
1480 	if (ret) {
1481 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1482 		goto err_reset_lock;
1483 	}
1484 
1485 	/* bring up the nic to enable TX/RX again */
1486 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1487 	if (ret)
1488 		goto err_reset_lock;
1489 
1490 	rtnl_unlock();
1491 
1492 	hdev->last_reset_time = jiffies;
1493 	ae_dev->reset_type = HNAE3_NONE_RESET;
1494 	hdev->rst_stats.rst_done_cnt++;
1495 
1496 	return ret;
1497 err_reset_lock:
1498 	rtnl_unlock();
1499 err_reset:
1500 	/* When VF reset failed, only the higher level reset asserted by PF
1501 	 * can restore it, so re-initialize the command queue to receive
1502 	 * this higher reset event.
1503 	 */
1504 	hclgevf_cmd_init(hdev);
1505 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1506 	if (hclgevf_is_reset_pending(hdev))
1507 		hclgevf_reset_task_schedule(hdev);
1508 
1509 	return ret;
1510 }
1511 
1512 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1513 						     unsigned long *addr)
1514 {
1515 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1516 
1517 	/* return the highest priority reset level amongst all */
1518 	if (test_bit(HNAE3_VF_RESET, addr)) {
1519 		rst_level = HNAE3_VF_RESET;
1520 		clear_bit(HNAE3_VF_RESET, addr);
1521 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1522 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1523 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1524 		rst_level = HNAE3_VF_FULL_RESET;
1525 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1526 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1527 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1528 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1529 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1530 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1531 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1532 		rst_level = HNAE3_VF_FUNC_RESET;
1533 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1534 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1535 		rst_level = HNAE3_FLR_RESET;
1536 		clear_bit(HNAE3_FLR_RESET, addr);
1537 	}
1538 
1539 	return rst_level;
1540 }
1541 
1542 static void hclgevf_reset_event(struct pci_dev *pdev,
1543 				struct hnae3_handle *handle)
1544 {
1545 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1546 	struct hclgevf_dev *hdev = ae_dev->priv;
1547 
1548 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1549 
1550 	if (hdev->default_reset_request)
1551 		hdev->reset_level =
1552 			hclgevf_get_reset_level(hdev,
1553 						&hdev->default_reset_request);
1554 	else
1555 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1556 
1557 	/* reset of this VF requested */
1558 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1559 	hclgevf_reset_task_schedule(hdev);
1560 
1561 	hdev->last_reset_time = jiffies;
1562 }
1563 
1564 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1565 					  enum hnae3_reset_type rst_type)
1566 {
1567 	struct hclgevf_dev *hdev = ae_dev->priv;
1568 
1569 	set_bit(rst_type, &hdev->default_reset_request);
1570 }
1571 
1572 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1573 {
1574 #define HCLGEVF_FLR_WAIT_MS	100
1575 #define HCLGEVF_FLR_WAIT_CNT	50
1576 	struct hclgevf_dev *hdev = ae_dev->priv;
1577 	int cnt = 0;
1578 
1579 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1580 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1581 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1582 	hclgevf_reset_event(hdev->pdev, NULL);
1583 
1584 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1585 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1586 		msleep(HCLGEVF_FLR_WAIT_MS);
1587 
1588 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1589 		dev_err(&hdev->pdev->dev,
1590 			"flr wait down timeout: %d\n", cnt);
1591 }
1592 
1593 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1594 {
1595 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1596 
1597 	return hdev->fw_version;
1598 }
1599 
1600 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1601 {
1602 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1603 
1604 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1605 					    HCLGEVF_MISC_VECTOR_NUM);
1606 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1607 	/* vector status always valid for Vector 0 */
1608 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1609 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1610 
1611 	hdev->num_msi_left -= 1;
1612 	hdev->num_msi_used += 1;
1613 }
1614 
1615 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1616 {
1617 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1618 	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1619 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1620 		schedule_work(&hdev->rst_service_task);
1621 	}
1622 }
1623 
1624 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1625 {
1626 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1627 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1628 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1629 		schedule_work(&hdev->mbx_service_task);
1630 	}
1631 }
1632 
1633 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1634 {
1635 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1636 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1637 		schedule_work(&hdev->service_task);
1638 }
1639 
1640 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1641 {
1642 	/* if we have any pending mailbox event then schedule the mbx task */
1643 	if (hdev->mbx_event_pending)
1644 		hclgevf_mbx_task_schedule(hdev);
1645 
1646 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1647 		hclgevf_reset_task_schedule(hdev);
1648 }
1649 
1650 static void hclgevf_service_timer(struct timer_list *t)
1651 {
1652 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1653 
1654 	mod_timer(&hdev->service_timer, jiffies +
1655 		  HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1656 
1657 	hdev->stats_timer++;
1658 	hclgevf_task_schedule(hdev);
1659 }
1660 
1661 static void hclgevf_reset_service_task(struct work_struct *work)
1662 {
1663 	struct hclgevf_dev *hdev =
1664 		container_of(work, struct hclgevf_dev, rst_service_task);
1665 	int ret;
1666 
1667 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1668 		return;
1669 
1670 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1671 
1672 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1673 			       &hdev->reset_state)) {
1674 		/* PF has initmated that it is about to reset the hardware.
1675 		 * We now have to poll & check if harware has actually completed
1676 		 * the reset sequence. On hardware reset completion, VF needs to
1677 		 * reset the client and ae device.
1678 		 */
1679 		hdev->reset_attempts = 0;
1680 
1681 		hdev->last_reset_time = jiffies;
1682 		while ((hdev->reset_type =
1683 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1684 		       != HNAE3_NONE_RESET) {
1685 			ret = hclgevf_reset(hdev);
1686 			if (ret)
1687 				dev_err(&hdev->pdev->dev,
1688 					"VF stack reset failed %d.\n", ret);
1689 		}
1690 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1691 				      &hdev->reset_state)) {
1692 		/* we could be here when either of below happens:
1693 		 * 1. reset was initiated due to watchdog timeout due to
1694 		 *    a. IMP was earlier reset and our TX got choked down and
1695 		 *       which resulted in watchdog reacting and inducing VF
1696 		 *       reset. This also means our cmdq would be unreliable.
1697 		 *    b. problem in TX due to other lower layer(example link
1698 		 *       layer not functioning properly etc.)
1699 		 * 2. VF reset might have been initiated due to some config
1700 		 *    change.
1701 		 *
1702 		 * NOTE: Theres no clear way to detect above cases than to react
1703 		 * to the response of PF for this reset request. PF will ack the
1704 		 * 1b and 2. cases but we will not get any intimation about 1a
1705 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1706 		 * communication between PF and VF would be broken.
1707 		 */
1708 
1709 		/* if we are never geting into pending state it means either:
1710 		 * 1. PF is not receiving our request which could be due to IMP
1711 		 *    reset
1712 		 * 2. PF is screwed
1713 		 * We cannot do much for 2. but to check first we can try reset
1714 		 * our PCIe + stack and see if it alleviates the problem.
1715 		 */
1716 		if (hdev->reset_attempts > 3) {
1717 			/* prepare for full reset of stack + pcie interface */
1718 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1719 
1720 			/* "defer" schedule the reset task again */
1721 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1722 		} else {
1723 			hdev->reset_attempts++;
1724 
1725 			set_bit(hdev->reset_level, &hdev->reset_pending);
1726 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1727 		}
1728 		hclgevf_reset_task_schedule(hdev);
1729 	}
1730 
1731 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1732 }
1733 
1734 static void hclgevf_mailbox_service_task(struct work_struct *work)
1735 {
1736 	struct hclgevf_dev *hdev;
1737 
1738 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1739 
1740 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1741 		return;
1742 
1743 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1744 
1745 	hclgevf_mbx_async_handler(hdev);
1746 
1747 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1748 }
1749 
1750 static void hclgevf_keep_alive_timer(struct timer_list *t)
1751 {
1752 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1753 
1754 	schedule_work(&hdev->keep_alive_task);
1755 	mod_timer(&hdev->keep_alive_timer, jiffies +
1756 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1757 }
1758 
1759 static void hclgevf_keep_alive_task(struct work_struct *work)
1760 {
1761 	struct hclgevf_dev *hdev;
1762 	u8 respmsg;
1763 	int ret;
1764 
1765 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1766 
1767 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1768 		return;
1769 
1770 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1771 				   0, false, &respmsg, sizeof(u8));
1772 	if (ret)
1773 		dev_err(&hdev->pdev->dev,
1774 			"VF sends keep alive cmd failed(=%d)\n", ret);
1775 }
1776 
1777 static void hclgevf_service_task(struct work_struct *work)
1778 {
1779 	struct hnae3_handle *handle;
1780 	struct hclgevf_dev *hdev;
1781 
1782 	hdev = container_of(work, struct hclgevf_dev, service_task);
1783 	handle = &hdev->nic;
1784 
1785 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1786 		hclgevf_tqps_update_stats(handle);
1787 		hdev->stats_timer = 0;
1788 	}
1789 
1790 	/* request the link status from the PF. PF would be able to tell VF
1791 	 * about such updates in future so we might remove this later
1792 	 */
1793 	hclgevf_request_link_info(hdev);
1794 
1795 	hclgevf_update_link_mode(hdev);
1796 
1797 	hclgevf_deferred_task_schedule(hdev);
1798 
1799 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1800 }
1801 
1802 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1803 {
1804 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1805 }
1806 
1807 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1808 						      u32 *clearval)
1809 {
1810 	u32 cmdq_src_reg, rst_ing_reg;
1811 
1812 	/* fetch the events from their corresponding regs */
1813 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1814 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1815 
1816 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1817 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1818 		dev_info(&hdev->pdev->dev,
1819 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1820 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1821 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1822 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1823 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1824 		*clearval = cmdq_src_reg;
1825 		hdev->rst_stats.vf_rst_cnt++;
1826 		return HCLGEVF_VECTOR0_EVENT_RST;
1827 	}
1828 
1829 	/* check for vector0 mailbox(=CMDQ RX) event source */
1830 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1831 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1832 		*clearval = cmdq_src_reg;
1833 		return HCLGEVF_VECTOR0_EVENT_MBX;
1834 	}
1835 
1836 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1837 
1838 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1839 }
1840 
1841 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1842 {
1843 	writel(en ? 1 : 0, vector->addr);
1844 }
1845 
1846 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1847 {
1848 	enum hclgevf_evt_cause event_cause;
1849 	struct hclgevf_dev *hdev = data;
1850 	u32 clearval;
1851 
1852 	hclgevf_enable_vector(&hdev->misc_vector, false);
1853 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1854 
1855 	switch (event_cause) {
1856 	case HCLGEVF_VECTOR0_EVENT_RST:
1857 		hclgevf_reset_task_schedule(hdev);
1858 		break;
1859 	case HCLGEVF_VECTOR0_EVENT_MBX:
1860 		hclgevf_mbx_handler(hdev);
1861 		break;
1862 	default:
1863 		break;
1864 	}
1865 
1866 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1867 		hclgevf_clear_event_cause(hdev, clearval);
1868 		hclgevf_enable_vector(&hdev->misc_vector, true);
1869 	}
1870 
1871 	return IRQ_HANDLED;
1872 }
1873 
1874 static int hclgevf_configure(struct hclgevf_dev *hdev)
1875 {
1876 	int ret;
1877 
1878 	/* get current port based vlan state from PF */
1879 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1880 	if (ret)
1881 		return ret;
1882 
1883 	/* get queue configuration from PF */
1884 	ret = hclgevf_get_queue_info(hdev);
1885 	if (ret)
1886 		return ret;
1887 
1888 	/* get queue depth info from PF */
1889 	ret = hclgevf_get_queue_depth(hdev);
1890 	if (ret)
1891 		return ret;
1892 
1893 	ret = hclgevf_get_pf_media_type(hdev);
1894 	if (ret)
1895 		return ret;
1896 
1897 	/* get tc configuration from PF */
1898 	return hclgevf_get_tc_info(hdev);
1899 }
1900 
1901 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1902 {
1903 	struct pci_dev *pdev = ae_dev->pdev;
1904 	struct hclgevf_dev *hdev;
1905 
1906 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1907 	if (!hdev)
1908 		return -ENOMEM;
1909 
1910 	hdev->pdev = pdev;
1911 	hdev->ae_dev = ae_dev;
1912 	ae_dev->priv = hdev;
1913 
1914 	return 0;
1915 }
1916 
1917 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1918 {
1919 	struct hnae3_handle *roce = &hdev->roce;
1920 	struct hnae3_handle *nic = &hdev->nic;
1921 
1922 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1923 
1924 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1925 	    hdev->num_msi_left == 0)
1926 		return -EINVAL;
1927 
1928 	roce->rinfo.base_vector = hdev->roce_base_vector;
1929 
1930 	roce->rinfo.netdev = nic->kinfo.netdev;
1931 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1932 
1933 	roce->pdev = nic->pdev;
1934 	roce->ae_algo = nic->ae_algo;
1935 	roce->numa_node_mask = nic->numa_node_mask;
1936 
1937 	return 0;
1938 }
1939 
1940 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1941 {
1942 	struct hclgevf_cfg_gro_status_cmd *req;
1943 	struct hclgevf_desc desc;
1944 	int ret;
1945 
1946 	if (!hnae3_dev_gro_supported(hdev))
1947 		return 0;
1948 
1949 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1950 				     false);
1951 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1952 
1953 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1954 
1955 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1956 	if (ret)
1957 		dev_err(&hdev->pdev->dev,
1958 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1959 
1960 	return ret;
1961 }
1962 
1963 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1964 {
1965 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1966 	int i, ret;
1967 
1968 	rss_cfg->rss_size = hdev->rss_size_max;
1969 
1970 	if (hdev->pdev->revision >= 0x21) {
1971 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1972 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1973 		       HCLGEVF_RSS_KEY_SIZE);
1974 
1975 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1976 					       rss_cfg->rss_hash_key);
1977 		if (ret)
1978 			return ret;
1979 
1980 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1981 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1982 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1983 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1984 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1985 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1986 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1987 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1988 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1989 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1990 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1991 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1992 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1993 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1994 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1995 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1996 
1997 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1998 		if (ret)
1999 			return ret;
2000 
2001 	}
2002 
2003 	/* Initialize RSS indirect table for each vport */
2004 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2005 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
2006 
2007 	ret = hclgevf_set_rss_indir_table(hdev);
2008 	if (ret)
2009 		return ret;
2010 
2011 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
2012 }
2013 
2014 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2015 {
2016 	/* other vlan config(like, VLAN TX/RX offload) would also be added
2017 	 * here later
2018 	 */
2019 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2020 				       false);
2021 }
2022 
2023 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2024 {
2025 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2026 
2027 	if (enable) {
2028 		mod_timer(&hdev->service_timer, jiffies + HZ);
2029 	} else {
2030 		del_timer_sync(&hdev->service_timer);
2031 		cancel_work_sync(&hdev->service_task);
2032 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2033 	}
2034 }
2035 
2036 static int hclgevf_ae_start(struct hnae3_handle *handle)
2037 {
2038 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2039 
2040 	/* reset tqp stats */
2041 	hclgevf_reset_tqp_stats(handle);
2042 
2043 	hclgevf_request_link_info(hdev);
2044 
2045 	hclgevf_update_link_mode(hdev);
2046 
2047 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2048 
2049 	return 0;
2050 }
2051 
2052 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2053 {
2054 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2055 	int i;
2056 
2057 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2058 
2059 	if (hdev->reset_type != HNAE3_VF_RESET)
2060 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2061 			if (hclgevf_reset_tqp(handle, i))
2062 				break;
2063 
2064 	/* reset tqp stats */
2065 	hclgevf_reset_tqp_stats(handle);
2066 	hclgevf_update_link_status(hdev, 0);
2067 }
2068 
2069 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2070 {
2071 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2072 	u8 msg_data;
2073 
2074 	msg_data = alive ? 1 : 0;
2075 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2076 				    0, &msg_data, 1, false, NULL, 0);
2077 }
2078 
2079 static int hclgevf_client_start(struct hnae3_handle *handle)
2080 {
2081 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2082 	int ret;
2083 
2084 	ret = hclgevf_set_alive(handle, true);
2085 	if (ret)
2086 		return ret;
2087 
2088 	mod_timer(&hdev->keep_alive_timer, jiffies +
2089 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2090 
2091 	return 0;
2092 }
2093 
2094 static void hclgevf_client_stop(struct hnae3_handle *handle)
2095 {
2096 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2097 	int ret;
2098 
2099 	ret = hclgevf_set_alive(handle, false);
2100 	if (ret)
2101 		dev_warn(&hdev->pdev->dev,
2102 			 "%s failed %d\n", __func__, ret);
2103 
2104 	del_timer_sync(&hdev->keep_alive_timer);
2105 	cancel_work_sync(&hdev->keep_alive_task);
2106 }
2107 
2108 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2109 {
2110 	/* setup tasks for the MBX */
2111 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2112 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2113 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2114 
2115 	/* setup tasks for service timer */
2116 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2117 
2118 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2119 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2120 
2121 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2122 
2123 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2124 
2125 	/* bring the device down */
2126 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2127 }
2128 
2129 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2130 {
2131 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2132 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2133 
2134 	if (hdev->keep_alive_timer.function)
2135 		del_timer_sync(&hdev->keep_alive_timer);
2136 	if (hdev->keep_alive_task.func)
2137 		cancel_work_sync(&hdev->keep_alive_task);
2138 	if (hdev->service_timer.function)
2139 		del_timer_sync(&hdev->service_timer);
2140 	if (hdev->service_task.func)
2141 		cancel_work_sync(&hdev->service_task);
2142 	if (hdev->mbx_service_task.func)
2143 		cancel_work_sync(&hdev->mbx_service_task);
2144 	if (hdev->rst_service_task.func)
2145 		cancel_work_sync(&hdev->rst_service_task);
2146 
2147 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2148 }
2149 
2150 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2151 {
2152 	struct pci_dev *pdev = hdev->pdev;
2153 	int vectors;
2154 	int i;
2155 
2156 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2157 		vectors = pci_alloc_irq_vectors(pdev,
2158 						hdev->roce_base_msix_offset + 1,
2159 						hdev->num_msi,
2160 						PCI_IRQ_MSIX);
2161 	else
2162 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2163 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2164 
2165 	if (vectors < 0) {
2166 		dev_err(&pdev->dev,
2167 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2168 			vectors);
2169 		return vectors;
2170 	}
2171 	if (vectors < hdev->num_msi)
2172 		dev_warn(&hdev->pdev->dev,
2173 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2174 			 hdev->num_msi, vectors);
2175 
2176 	hdev->num_msi = vectors;
2177 	hdev->num_msi_left = vectors;
2178 	hdev->base_msi_vector = pdev->irq;
2179 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2180 
2181 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2182 					   sizeof(u16), GFP_KERNEL);
2183 	if (!hdev->vector_status) {
2184 		pci_free_irq_vectors(pdev);
2185 		return -ENOMEM;
2186 	}
2187 
2188 	for (i = 0; i < hdev->num_msi; i++)
2189 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2190 
2191 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2192 					sizeof(int), GFP_KERNEL);
2193 	if (!hdev->vector_irq) {
2194 		devm_kfree(&pdev->dev, hdev->vector_status);
2195 		pci_free_irq_vectors(pdev);
2196 		return -ENOMEM;
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2203 {
2204 	struct pci_dev *pdev = hdev->pdev;
2205 
2206 	devm_kfree(&pdev->dev, hdev->vector_status);
2207 	devm_kfree(&pdev->dev, hdev->vector_irq);
2208 	pci_free_irq_vectors(pdev);
2209 }
2210 
2211 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2212 {
2213 	int ret = 0;
2214 
2215 	hclgevf_get_misc_vector(hdev);
2216 
2217 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2218 			  0, "hclgevf_cmd", hdev);
2219 	if (ret) {
2220 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2221 			hdev->misc_vector.vector_irq);
2222 		return ret;
2223 	}
2224 
2225 	hclgevf_clear_event_cause(hdev, 0);
2226 
2227 	/* enable misc. vector(vector 0) */
2228 	hclgevf_enable_vector(&hdev->misc_vector, true);
2229 
2230 	return ret;
2231 }
2232 
2233 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2234 {
2235 	/* disable misc vector(vector 0) */
2236 	hclgevf_enable_vector(&hdev->misc_vector, false);
2237 	synchronize_irq(hdev->misc_vector.vector_irq);
2238 	free_irq(hdev->misc_vector.vector_irq, hdev);
2239 	hclgevf_free_vector(hdev, 0);
2240 }
2241 
2242 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2243 {
2244 	struct device *dev = &hdev->pdev->dev;
2245 
2246 	dev_info(dev, "VF info begin:\n");
2247 
2248 	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2249 	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2250 	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2251 	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2252 	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2253 	dev_info(dev, "PF media type of this VF: %d\n",
2254 		 hdev->hw.mac.media_type);
2255 
2256 	dev_info(dev, "VF info end.\n");
2257 }
2258 
2259 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2260 					    struct hnae3_client *client)
2261 {
2262 	struct hclgevf_dev *hdev = ae_dev->priv;
2263 	int ret;
2264 
2265 	ret = client->ops->init_instance(&hdev->nic);
2266 	if (ret)
2267 		return ret;
2268 
2269 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2270 	hnae3_set_client_init_flag(client, ae_dev, 1);
2271 
2272 	if (netif_msg_drv(&hdev->nic))
2273 		hclgevf_info_show(hdev);
2274 
2275 	return 0;
2276 }
2277 
2278 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2279 					     struct hnae3_client *client)
2280 {
2281 	struct hclgevf_dev *hdev = ae_dev->priv;
2282 	int ret;
2283 
2284 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2285 	    !hdev->nic_client)
2286 		return 0;
2287 
2288 	ret = hclgevf_init_roce_base_info(hdev);
2289 	if (ret)
2290 		return ret;
2291 
2292 	ret = client->ops->init_instance(&hdev->roce);
2293 	if (ret)
2294 		return ret;
2295 
2296 	hnae3_set_client_init_flag(client, ae_dev, 1);
2297 
2298 	return 0;
2299 }
2300 
2301 static int hclgevf_init_client_instance(struct hnae3_client *client,
2302 					struct hnae3_ae_dev *ae_dev)
2303 {
2304 	struct hclgevf_dev *hdev = ae_dev->priv;
2305 	int ret;
2306 
2307 	switch (client->type) {
2308 	case HNAE3_CLIENT_KNIC:
2309 		hdev->nic_client = client;
2310 		hdev->nic.client = client;
2311 
2312 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2313 		if (ret)
2314 			goto clear_nic;
2315 
2316 		ret = hclgevf_init_roce_client_instance(ae_dev,
2317 							hdev->roce_client);
2318 		if (ret)
2319 			goto clear_roce;
2320 
2321 		break;
2322 	case HNAE3_CLIENT_ROCE:
2323 		if (hnae3_dev_roce_supported(hdev)) {
2324 			hdev->roce_client = client;
2325 			hdev->roce.client = client;
2326 		}
2327 
2328 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2329 		if (ret)
2330 			goto clear_roce;
2331 
2332 		break;
2333 	default:
2334 		return -EINVAL;
2335 	}
2336 
2337 	return 0;
2338 
2339 clear_nic:
2340 	hdev->nic_client = NULL;
2341 	hdev->nic.client = NULL;
2342 	return ret;
2343 clear_roce:
2344 	hdev->roce_client = NULL;
2345 	hdev->roce.client = NULL;
2346 	return ret;
2347 }
2348 
2349 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2350 					   struct hnae3_ae_dev *ae_dev)
2351 {
2352 	struct hclgevf_dev *hdev = ae_dev->priv;
2353 
2354 	/* un-init roce, if it exists */
2355 	if (hdev->roce_client) {
2356 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2357 		hdev->roce_client = NULL;
2358 		hdev->roce.client = NULL;
2359 	}
2360 
2361 	/* un-init nic/unic, if this was not called by roce client */
2362 	if (client->ops->uninit_instance && hdev->nic_client &&
2363 	    client->type != HNAE3_CLIENT_ROCE) {
2364 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2365 
2366 		client->ops->uninit_instance(&hdev->nic, 0);
2367 		hdev->nic_client = NULL;
2368 		hdev->nic.client = NULL;
2369 	}
2370 }
2371 
2372 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2373 {
2374 	struct pci_dev *pdev = hdev->pdev;
2375 	struct hclgevf_hw *hw;
2376 	int ret;
2377 
2378 	ret = pci_enable_device(pdev);
2379 	if (ret) {
2380 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2381 		return ret;
2382 	}
2383 
2384 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2385 	if (ret) {
2386 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2387 		goto err_disable_device;
2388 	}
2389 
2390 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2391 	if (ret) {
2392 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2393 		goto err_disable_device;
2394 	}
2395 
2396 	pci_set_master(pdev);
2397 	hw = &hdev->hw;
2398 	hw->hdev = hdev;
2399 	hw->io_base = pci_iomap(pdev, 2, 0);
2400 	if (!hw->io_base) {
2401 		dev_err(&pdev->dev, "can't map configuration register space\n");
2402 		ret = -ENOMEM;
2403 		goto err_clr_master;
2404 	}
2405 
2406 	return 0;
2407 
2408 err_clr_master:
2409 	pci_clear_master(pdev);
2410 	pci_release_regions(pdev);
2411 err_disable_device:
2412 	pci_disable_device(pdev);
2413 
2414 	return ret;
2415 }
2416 
2417 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2418 {
2419 	struct pci_dev *pdev = hdev->pdev;
2420 
2421 	pci_iounmap(pdev, hdev->hw.io_base);
2422 	pci_clear_master(pdev);
2423 	pci_release_regions(pdev);
2424 	pci_disable_device(pdev);
2425 }
2426 
2427 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2428 {
2429 	struct hclgevf_query_res_cmd *req;
2430 	struct hclgevf_desc desc;
2431 	int ret;
2432 
2433 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2434 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2435 	if (ret) {
2436 		dev_err(&hdev->pdev->dev,
2437 			"query vf resource failed, ret = %d.\n", ret);
2438 		return ret;
2439 	}
2440 
2441 	req = (struct hclgevf_query_res_cmd *)desc.data;
2442 
2443 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2444 		hdev->roce_base_msix_offset =
2445 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2446 				HCLGEVF_MSIX_OFT_ROCEE_M,
2447 				HCLGEVF_MSIX_OFT_ROCEE_S);
2448 		hdev->num_roce_msix =
2449 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2450 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2451 
2452 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2453 		 * are queued before Roce vectors. The offset is fixed to 64.
2454 		 */
2455 		hdev->num_msi = hdev->num_roce_msix +
2456 				hdev->roce_base_msix_offset;
2457 	} else {
2458 		hdev->num_msi =
2459 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2460 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2461 	}
2462 
2463 	return 0;
2464 }
2465 
2466 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2467 {
2468 	struct pci_dev *pdev = hdev->pdev;
2469 	int ret = 0;
2470 
2471 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2472 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2473 		hclgevf_misc_irq_uninit(hdev);
2474 		hclgevf_uninit_msi(hdev);
2475 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2476 	}
2477 
2478 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2479 		pci_set_master(pdev);
2480 		ret = hclgevf_init_msi(hdev);
2481 		if (ret) {
2482 			dev_err(&pdev->dev,
2483 				"failed(%d) to init MSI/MSI-X\n", ret);
2484 			return ret;
2485 		}
2486 
2487 		ret = hclgevf_misc_irq_init(hdev);
2488 		if (ret) {
2489 			hclgevf_uninit_msi(hdev);
2490 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2491 				ret);
2492 			return ret;
2493 		}
2494 
2495 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2496 	}
2497 
2498 	return ret;
2499 }
2500 
2501 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2502 {
2503 	struct pci_dev *pdev = hdev->pdev;
2504 	int ret;
2505 
2506 	ret = hclgevf_pci_reset(hdev);
2507 	if (ret) {
2508 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2509 		return ret;
2510 	}
2511 
2512 	ret = hclgevf_cmd_init(hdev);
2513 	if (ret) {
2514 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2515 		return ret;
2516 	}
2517 
2518 	ret = hclgevf_rss_init_hw(hdev);
2519 	if (ret) {
2520 		dev_err(&hdev->pdev->dev,
2521 			"failed(%d) to initialize RSS\n", ret);
2522 		return ret;
2523 	}
2524 
2525 	ret = hclgevf_config_gro(hdev, true);
2526 	if (ret)
2527 		return ret;
2528 
2529 	ret = hclgevf_init_vlan_config(hdev);
2530 	if (ret) {
2531 		dev_err(&hdev->pdev->dev,
2532 			"failed(%d) to initialize VLAN config\n", ret);
2533 		return ret;
2534 	}
2535 
2536 	dev_info(&hdev->pdev->dev, "Reset done\n");
2537 
2538 	return 0;
2539 }
2540 
2541 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2542 {
2543 	struct pci_dev *pdev = hdev->pdev;
2544 	int ret;
2545 
2546 	ret = hclgevf_pci_init(hdev);
2547 	if (ret) {
2548 		dev_err(&pdev->dev, "PCI initialization failed\n");
2549 		return ret;
2550 	}
2551 
2552 	ret = hclgevf_cmd_queue_init(hdev);
2553 	if (ret) {
2554 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2555 		goto err_cmd_queue_init;
2556 	}
2557 
2558 	ret = hclgevf_cmd_init(hdev);
2559 	if (ret)
2560 		goto err_cmd_init;
2561 
2562 	/* Get vf resource */
2563 	ret = hclgevf_query_vf_resource(hdev);
2564 	if (ret) {
2565 		dev_err(&hdev->pdev->dev,
2566 			"Query vf status error, ret = %d.\n", ret);
2567 		goto err_cmd_init;
2568 	}
2569 
2570 	ret = hclgevf_init_msi(hdev);
2571 	if (ret) {
2572 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2573 		goto err_cmd_init;
2574 	}
2575 
2576 	hclgevf_state_init(hdev);
2577 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2578 
2579 	ret = hclgevf_misc_irq_init(hdev);
2580 	if (ret) {
2581 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2582 			ret);
2583 		goto err_misc_irq_init;
2584 	}
2585 
2586 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2587 
2588 	ret = hclgevf_configure(hdev);
2589 	if (ret) {
2590 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2591 		goto err_config;
2592 	}
2593 
2594 	ret = hclgevf_alloc_tqps(hdev);
2595 	if (ret) {
2596 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2597 		goto err_config;
2598 	}
2599 
2600 	ret = hclgevf_set_handle_info(hdev);
2601 	if (ret) {
2602 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2603 		goto err_config;
2604 	}
2605 
2606 	ret = hclgevf_config_gro(hdev, true);
2607 	if (ret)
2608 		goto err_config;
2609 
2610 	/* vf is not allowed to enable unicast/multicast promisc mode.
2611 	 * For revision 0x20, default to disable broadcast promisc mode,
2612 	 * firmware makes sure broadcast packets can be accepted.
2613 	 * For revision 0x21, default to enable broadcast promisc mode.
2614 	 */
2615 	ret = hclgevf_set_promisc_mode(hdev, true);
2616 	if (ret)
2617 		goto err_config;
2618 
2619 	/* Initialize RSS for this VF */
2620 	ret = hclgevf_rss_init_hw(hdev);
2621 	if (ret) {
2622 		dev_err(&hdev->pdev->dev,
2623 			"failed(%d) to initialize RSS\n", ret);
2624 		goto err_config;
2625 	}
2626 
2627 	ret = hclgevf_init_vlan_config(hdev);
2628 	if (ret) {
2629 		dev_err(&hdev->pdev->dev,
2630 			"failed(%d) to initialize VLAN config\n", ret);
2631 		goto err_config;
2632 	}
2633 
2634 	hdev->last_reset_time = jiffies;
2635 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2636 
2637 	return 0;
2638 
2639 err_config:
2640 	hclgevf_misc_irq_uninit(hdev);
2641 err_misc_irq_init:
2642 	hclgevf_state_uninit(hdev);
2643 	hclgevf_uninit_msi(hdev);
2644 err_cmd_init:
2645 	hclgevf_cmd_uninit(hdev);
2646 err_cmd_queue_init:
2647 	hclgevf_pci_uninit(hdev);
2648 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2649 	return ret;
2650 }
2651 
2652 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2653 {
2654 	hclgevf_state_uninit(hdev);
2655 
2656 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2657 		hclgevf_misc_irq_uninit(hdev);
2658 		hclgevf_uninit_msi(hdev);
2659 	}
2660 
2661 	hclgevf_pci_uninit(hdev);
2662 	hclgevf_cmd_uninit(hdev);
2663 }
2664 
2665 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2666 {
2667 	struct pci_dev *pdev = ae_dev->pdev;
2668 	struct hclgevf_dev *hdev;
2669 	int ret;
2670 
2671 	ret = hclgevf_alloc_hdev(ae_dev);
2672 	if (ret) {
2673 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2674 		return ret;
2675 	}
2676 
2677 	ret = hclgevf_init_hdev(ae_dev->priv);
2678 	if (ret) {
2679 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2680 		return ret;
2681 	}
2682 
2683 	hdev = ae_dev->priv;
2684 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2685 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2686 
2687 	return 0;
2688 }
2689 
2690 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2691 {
2692 	struct hclgevf_dev *hdev = ae_dev->priv;
2693 
2694 	hclgevf_uninit_hdev(hdev);
2695 	ae_dev->priv = NULL;
2696 }
2697 
2698 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2699 {
2700 	struct hnae3_handle *nic = &hdev->nic;
2701 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2702 
2703 	return min_t(u32, hdev->rss_size_max,
2704 		     hdev->num_tqps / kinfo->num_tc);
2705 }
2706 
2707 /**
2708  * hclgevf_get_channels - Get the current channels enabled and max supported.
2709  * @handle: hardware information for network interface
2710  * @ch: ethtool channels structure
2711  *
2712  * We don't support separate tx and rx queues as channels. The other count
2713  * represents how many queues are being used for control. max_combined counts
2714  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2715  * q_vectors since we support a lot more queue pairs than q_vectors.
2716  **/
2717 static void hclgevf_get_channels(struct hnae3_handle *handle,
2718 				 struct ethtool_channels *ch)
2719 {
2720 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2721 
2722 	ch->max_combined = hclgevf_get_max_channels(hdev);
2723 	ch->other_count = 0;
2724 	ch->max_other = 0;
2725 	ch->combined_count = handle->kinfo.rss_size;
2726 }
2727 
2728 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2729 					  u16 *alloc_tqps, u16 *max_rss_size)
2730 {
2731 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2732 
2733 	*alloc_tqps = hdev->num_tqps;
2734 	*max_rss_size = hdev->rss_size_max;
2735 }
2736 
2737 static int hclgevf_get_status(struct hnae3_handle *handle)
2738 {
2739 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2740 
2741 	return hdev->hw.mac.link;
2742 }
2743 
2744 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2745 					    u8 *auto_neg, u32 *speed,
2746 					    u8 *duplex)
2747 {
2748 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2749 
2750 	if (speed)
2751 		*speed = hdev->hw.mac.speed;
2752 	if (duplex)
2753 		*duplex = hdev->hw.mac.duplex;
2754 	if (auto_neg)
2755 		*auto_neg = AUTONEG_DISABLE;
2756 }
2757 
2758 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2759 				 u8 duplex)
2760 {
2761 	hdev->hw.mac.speed = speed;
2762 	hdev->hw.mac.duplex = duplex;
2763 }
2764 
2765 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2766 {
2767 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2768 
2769 	return hclgevf_config_gro(hdev, enable);
2770 }
2771 
2772 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2773 				   u8 *module_type)
2774 {
2775 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2776 
2777 	if (media_type)
2778 		*media_type = hdev->hw.mac.media_type;
2779 
2780 	if (module_type)
2781 		*module_type = hdev->hw.mac.module_type;
2782 }
2783 
2784 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2785 {
2786 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2787 
2788 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2789 }
2790 
2791 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2792 {
2793 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2794 
2795 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2796 }
2797 
2798 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2799 {
2800 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2801 
2802 	return hdev->rst_stats.hw_rst_done_cnt;
2803 }
2804 
2805 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2806 				  unsigned long *supported,
2807 				  unsigned long *advertising)
2808 {
2809 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2810 
2811 	*supported = hdev->hw.mac.supported;
2812 	*advertising = hdev->hw.mac.advertising;
2813 }
2814 
2815 #define MAX_SEPARATE_NUM	4
2816 #define SEPARATOR_VALUE		0xFFFFFFFF
2817 #define REG_NUM_PER_LINE	4
2818 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2819 
2820 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2821 {
2822 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2823 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2824 
2825 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2826 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2827 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2828 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2829 
2830 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2831 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2832 }
2833 
2834 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2835 			     void *data)
2836 {
2837 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2838 	int i, j, reg_um, separator_num;
2839 	u32 *reg = data;
2840 
2841 	*version = hdev->fw_version;
2842 
2843 	/* fetching per-VF registers values from VF PCIe register space */
2844 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2845 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2846 	for (i = 0; i < reg_um; i++)
2847 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2848 	for (i = 0; i < separator_num; i++)
2849 		*reg++ = SEPARATOR_VALUE;
2850 
2851 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2852 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2853 	for (i = 0; i < reg_um; i++)
2854 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2855 	for (i = 0; i < separator_num; i++)
2856 		*reg++ = SEPARATOR_VALUE;
2857 
2858 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2859 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2860 	for (j = 0; j < hdev->num_tqps; j++) {
2861 		for (i = 0; i < reg_um; i++)
2862 			*reg++ = hclgevf_read_dev(&hdev->hw,
2863 						  ring_reg_addr_list[i] +
2864 						  0x200 * j);
2865 		for (i = 0; i < separator_num; i++)
2866 			*reg++ = SEPARATOR_VALUE;
2867 	}
2868 
2869 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2870 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2871 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2872 		for (i = 0; i < reg_um; i++)
2873 			*reg++ = hclgevf_read_dev(&hdev->hw,
2874 						  tqp_intr_reg_addr_list[i] +
2875 						  4 * j);
2876 		for (i = 0; i < separator_num; i++)
2877 			*reg++ = SEPARATOR_VALUE;
2878 	}
2879 }
2880 
2881 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
2882 					u8 *port_base_vlan_info, u8 data_size)
2883 {
2884 	struct hnae3_handle *nic = &hdev->nic;
2885 
2886 	rtnl_lock();
2887 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2888 	rtnl_unlock();
2889 
2890 	/* send msg to PF and wait update port based vlan info */
2891 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
2892 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
2893 			     port_base_vlan_info, data_size,
2894 			     false, NULL, 0);
2895 
2896 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
2897 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
2898 	else
2899 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
2900 
2901 	rtnl_lock();
2902 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
2903 	rtnl_unlock();
2904 }
2905 
2906 static const struct hnae3_ae_ops hclgevf_ops = {
2907 	.init_ae_dev = hclgevf_init_ae_dev,
2908 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2909 	.flr_prepare = hclgevf_flr_prepare,
2910 	.flr_done = hclgevf_flr_done,
2911 	.init_client_instance = hclgevf_init_client_instance,
2912 	.uninit_client_instance = hclgevf_uninit_client_instance,
2913 	.start = hclgevf_ae_start,
2914 	.stop = hclgevf_ae_stop,
2915 	.client_start = hclgevf_client_start,
2916 	.client_stop = hclgevf_client_stop,
2917 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2918 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2919 	.get_vector = hclgevf_get_vector,
2920 	.put_vector = hclgevf_put_vector,
2921 	.reset_queue = hclgevf_reset_tqp,
2922 	.get_mac_addr = hclgevf_get_mac_addr,
2923 	.set_mac_addr = hclgevf_set_mac_addr,
2924 	.add_uc_addr = hclgevf_add_uc_addr,
2925 	.rm_uc_addr = hclgevf_rm_uc_addr,
2926 	.add_mc_addr = hclgevf_add_mc_addr,
2927 	.rm_mc_addr = hclgevf_rm_mc_addr,
2928 	.get_stats = hclgevf_get_stats,
2929 	.update_stats = hclgevf_update_stats,
2930 	.get_strings = hclgevf_get_strings,
2931 	.get_sset_count = hclgevf_get_sset_count,
2932 	.get_rss_key_size = hclgevf_get_rss_key_size,
2933 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2934 	.get_rss = hclgevf_get_rss,
2935 	.set_rss = hclgevf_set_rss,
2936 	.get_rss_tuple = hclgevf_get_rss_tuple,
2937 	.set_rss_tuple = hclgevf_set_rss_tuple,
2938 	.get_tc_size = hclgevf_get_tc_size,
2939 	.get_fw_version = hclgevf_get_fw_version,
2940 	.set_vlan_filter = hclgevf_set_vlan_filter,
2941 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2942 	.reset_event = hclgevf_reset_event,
2943 	.set_default_reset_request = hclgevf_set_def_reset_request,
2944 	.get_channels = hclgevf_get_channels,
2945 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2946 	.get_regs_len = hclgevf_get_regs_len,
2947 	.get_regs = hclgevf_get_regs,
2948 	.get_status = hclgevf_get_status,
2949 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2950 	.get_media_type = hclgevf_get_media_type,
2951 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2952 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2953 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2954 	.set_gro_en = hclgevf_gro_en,
2955 	.set_mtu = hclgevf_set_mtu,
2956 	.get_global_queue_id = hclgevf_get_qid_global,
2957 	.set_timer_task = hclgevf_set_timer_task,
2958 	.get_link_mode = hclgevf_get_link_mode,
2959 };
2960 
2961 static struct hnae3_ae_algo ae_algovf = {
2962 	.ops = &hclgevf_ops,
2963 	.pdev_id_table = ae_algovf_pci_tbl,
2964 };
2965 
2966 static int hclgevf_init(void)
2967 {
2968 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2969 
2970 	hnae3_register_ae_algo(&ae_algovf);
2971 
2972 	return 0;
2973 }
2974 
2975 static void hclgevf_exit(void)
2976 {
2977 	hnae3_unregister_ae_algo(&ae_algovf);
2978 }
2979 module_init(hclgevf_init);
2980 module_exit(hclgevf_exit);
2981 
2982 MODULE_LICENSE("GPL");
2983 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2984 MODULE_DESCRIPTION("HCLGEVF Driver");
2985 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2986