1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18 				  unsigned long delay);
19 
20 static struct hnae3_ae_algo ae_algovf;
21 
22 static struct workqueue_struct *hclgevf_wq;
23 
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 	/* required last entry */
29 	{0, }
30 };
31 
32 static const u8 hclgevf_hash_key[] = {
33 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39 
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41 
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
44 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
45 					 HCLGEVF_CMDQ_TX_TAIL_REG,
46 					 HCLGEVF_CMDQ_TX_HEAD_REG,
47 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
48 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
49 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
50 					 HCLGEVF_CMDQ_RX_TAIL_REG,
51 					 HCLGEVF_CMDQ_RX_HEAD_REG,
52 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 					 HCLGEVF_CMDQ_INTR_EN_REG,
55 					 HCLGEVF_CMDQ_INTR_GEN_REG};
56 
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58 					   HCLGEVF_RST_ING,
59 					   HCLGEVF_GRO_EN_REG};
60 
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62 					 HCLGEVF_RING_RX_ADDR_H_REG,
63 					 HCLGEVF_RING_RX_BD_NUM_REG,
64 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
65 					 HCLGEVF_RING_RX_MERGE_EN_REG,
66 					 HCLGEVF_RING_RX_TAIL_REG,
67 					 HCLGEVF_RING_RX_HEAD_REG,
68 					 HCLGEVF_RING_RX_FBD_NUM_REG,
69 					 HCLGEVF_RING_RX_OFFSET_REG,
70 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
71 					 HCLGEVF_RING_RX_STASH_REG,
72 					 HCLGEVF_RING_RX_BD_ERR_REG,
73 					 HCLGEVF_RING_TX_ADDR_L_REG,
74 					 HCLGEVF_RING_TX_ADDR_H_REG,
75 					 HCLGEVF_RING_TX_BD_NUM_REG,
76 					 HCLGEVF_RING_TX_PRIORITY_REG,
77 					 HCLGEVF_RING_TX_TC_REG,
78 					 HCLGEVF_RING_TX_MERGE_EN_REG,
79 					 HCLGEVF_RING_TX_TAIL_REG,
80 					 HCLGEVF_RING_TX_HEAD_REG,
81 					 HCLGEVF_RING_TX_FBD_NUM_REG,
82 					 HCLGEVF_RING_TX_OFFSET_REG,
83 					 HCLGEVF_RING_TX_EBD_NUM_REG,
84 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
85 					 HCLGEVF_RING_TX_BD_ERR_REG,
86 					 HCLGEVF_RING_EN_REG};
87 
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89 					     HCLGEVF_TQP_INTR_GL0_REG,
90 					     HCLGEVF_TQP_INTR_GL1_REG,
91 					     HCLGEVF_TQP_INTR_GL2_REG,
92 					     HCLGEVF_TQP_INTR_RL_REG};
93 
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96 	if (!handle->client)
97 		return container_of(handle, struct hclgevf_dev, nic);
98 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
99 		return container_of(handle, struct hclgevf_dev, roce);
100 	else
101 		return container_of(handle, struct hclgevf_dev, nic);
102 }
103 
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108 	struct hclgevf_desc desc;
109 	struct hclgevf_tqp *tqp;
110 	int status;
111 	int i;
112 
113 	for (i = 0; i < kinfo->num_tqps; i++) {
114 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 		hclgevf_cmd_setup_basic_desc(&desc,
116 					     HCLGEVF_OPC_QUERY_RX_STATUS,
117 					     true);
118 
119 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121 		if (status) {
122 			dev_err(&hdev->pdev->dev,
123 				"Query tqp stat fail, status = %d,queue = %d\n",
124 				status,	i);
125 			return status;
126 		}
127 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128 			le32_to_cpu(desc.data[1]);
129 
130 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131 					     true);
132 
133 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135 		if (status) {
136 			dev_err(&hdev->pdev->dev,
137 				"Query tqp stat fail, status = %d,queue = %d\n",
138 				status, i);
139 			return status;
140 		}
141 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142 			le32_to_cpu(desc.data[1]);
143 	}
144 
145 	return 0;
146 }
147 
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151 	struct hclgevf_tqp *tqp;
152 	u64 *buff = data;
153 	int i;
154 
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158 	}
159 	for (i = 0; i < kinfo->num_tqps; i++) {
160 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162 	}
163 
164 	return buff;
165 }
166 
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 
171 	return kinfo->num_tqps * 2;
172 }
173 
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177 	u8 *buff = data;
178 	int i;
179 
180 	for (i = 0; i < kinfo->num_tqps; i++) {
181 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 						       struct hclgevf_tqp, q);
183 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
184 			 tqp->index);
185 		buff += ETH_GSTRING_LEN;
186 	}
187 
188 	for (i = 0; i < kinfo->num_tqps; i++) {
189 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190 						       struct hclgevf_tqp, q);
191 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
192 			 tqp->index);
193 		buff += ETH_GSTRING_LEN;
194 	}
195 
196 	return buff;
197 }
198 
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200 				 struct net_device_stats *net_stats)
201 {
202 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203 	int status;
204 
205 	status = hclgevf_tqps_update_stats(handle);
206 	if (status)
207 		dev_err(&hdev->pdev->dev,
208 			"VF update of TQPS stats fail, status = %d.\n",
209 			status);
210 }
211 
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214 	if (strset == ETH_SS_TEST)
215 		return -EOPNOTSUPP;
216 	else if (strset == ETH_SS_STATS)
217 		return hclgevf_tqps_get_sset_count(handle, strset);
218 
219 	return 0;
220 }
221 
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223 				u8 *data)
224 {
225 	u8 *p = (char *)data;
226 
227 	if (strset == ETH_SS_STATS)
228 		p = hclgevf_tqps_get_strings(handle, p);
229 }
230 
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233 	hclgevf_tqps_get_stats(handle, data);
234 }
235 
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237 				   u8 subcode)
238 {
239 	if (msg) {
240 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241 		msg->code = code;
242 		msg->subcode = subcode;
243 	}
244 }
245 
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
247 {
248 	struct hclge_vf_to_pf_msg send_msg;
249 	u8 resp_msg;
250 	int status;
251 
252 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254 				      sizeof(resp_msg));
255 	if (status) {
256 		dev_err(&hdev->pdev->dev,
257 			"VF request to get TC info from PF failed %d",
258 			status);
259 		return status;
260 	}
261 
262 	hdev->hw_tc_map = resp_msg;
263 
264 	return 0;
265 }
266 
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
268 {
269 	struct hnae3_handle *nic = &hdev->nic;
270 	struct hclge_vf_to_pf_msg send_msg;
271 	u8 resp_msg;
272 	int ret;
273 
274 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277 				   sizeof(u8));
278 	if (ret) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get port based vlan state failed %d",
281 			ret);
282 		return ret;
283 	}
284 
285 	nic->port_base_vlan_state = resp_msg;
286 
287 	return 0;
288 }
289 
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291 {
292 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
296 
297 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298 	struct hclge_vf_to_pf_msg send_msg;
299 	int status;
300 
301 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303 				      HCLGEVF_TQPS_RSS_INFO_LEN);
304 	if (status) {
305 		dev_err(&hdev->pdev->dev,
306 			"VF request to get tqp info from PF failed %d",
307 			status);
308 		return status;
309 	}
310 
311 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312 	       sizeof(u16));
313 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314 	       sizeof(u16));
315 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316 	       sizeof(u16));
317 
318 	return 0;
319 }
320 
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
322 {
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
326 
327 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328 	struct hclge_vf_to_pf_msg send_msg;
329 	int ret;
330 
331 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
334 	if (ret) {
335 		dev_err(&hdev->pdev->dev,
336 			"VF request to get tqp depth info from PF failed %d",
337 			ret);
338 		return ret;
339 	}
340 
341 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342 	       sizeof(u16));
343 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344 	       sizeof(u16));
345 
346 	return 0;
347 }
348 
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
350 {
351 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352 	struct hclge_vf_to_pf_msg send_msg;
353 	u16 qid_in_pf = 0;
354 	u8 resp_data[2];
355 	int ret;
356 
357 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360 				   sizeof(resp_data));
361 	if (!ret)
362 		qid_in_pf = *(u16 *)resp_data;
363 
364 	return qid_in_pf;
365 }
366 
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
368 {
369 	struct hclge_vf_to_pf_msg send_msg;
370 	u8 resp_msg[2];
371 	int ret;
372 
373 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375 				   sizeof(resp_msg));
376 	if (ret) {
377 		dev_err(&hdev->pdev->dev,
378 			"VF request to get the pf port media type failed %d",
379 			ret);
380 		return ret;
381 	}
382 
383 	hdev->hw.mac.media_type = resp_msg[0];
384 	hdev->hw.mac.module_type = resp_msg[1];
385 
386 	return 0;
387 }
388 
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
390 {
391 	struct hclgevf_tqp *tqp;
392 	int i;
393 
394 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
396 	if (!hdev->htqp)
397 		return -ENOMEM;
398 
399 	tqp = hdev->htqp;
400 
401 	for (i = 0; i < hdev->num_tqps; i++) {
402 		tqp->dev = &hdev->pdev->dev;
403 		tqp->index = i;
404 
405 		tqp->q.ae_algo = &ae_algovf;
406 		tqp->q.buf_size = hdev->rx_buf_len;
407 		tqp->q.tx_desc_num = hdev->num_tx_desc;
408 		tqp->q.rx_desc_num = hdev->num_rx_desc;
409 
410 		/* need an extended offset to configure queues >=
411 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
412 		 */
413 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414 			tqp->q.io_base = hdev->hw.io_base +
415 					 HCLGEVF_TQP_REG_OFFSET +
416 					 i * HCLGEVF_TQP_REG_SIZE;
417 		else
418 			tqp->q.io_base = hdev->hw.io_base +
419 					 HCLGEVF_TQP_REG_OFFSET +
420 					 HCLGEVF_TQP_EXT_REG_OFFSET +
421 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422 					 HCLGEVF_TQP_REG_SIZE;
423 
424 		tqp++;
425 	}
426 
427 	return 0;
428 }
429 
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
431 {
432 	struct hnae3_handle *nic = &hdev->nic;
433 	struct hnae3_knic_private_info *kinfo;
434 	u16 new_tqps = hdev->num_tqps;
435 	unsigned int i;
436 	u8 num_tc = 0;
437 
438 	kinfo = &nic->kinfo;
439 	kinfo->num_tx_desc = hdev->num_tx_desc;
440 	kinfo->num_rx_desc = hdev->num_rx_desc;
441 	kinfo->rx_buf_len = hdev->rx_buf_len;
442 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443 		if (hdev->hw_tc_map & BIT(i))
444 			num_tc++;
445 
446 	num_tc = num_tc ? num_tc : 1;
447 	kinfo->tc_info.num_tc = num_tc;
448 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
449 	new_tqps = kinfo->rss_size * num_tc;
450 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
451 
452 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
453 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
454 	if (!kinfo->tqp)
455 		return -ENOMEM;
456 
457 	for (i = 0; i < kinfo->num_tqps; i++) {
458 		hdev->htqp[i].q.handle = &hdev->nic;
459 		hdev->htqp[i].q.tqp_index = i;
460 		kinfo->tqp[i] = &hdev->htqp[i].q;
461 	}
462 
463 	/* after init the max rss_size and tqps, adjust the default tqp numbers
464 	 * and rss size with the actual vector numbers
465 	 */
466 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468 				kinfo->rss_size);
469 
470 	return 0;
471 }
472 
473 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
474 {
475 	struct hclge_vf_to_pf_msg send_msg;
476 	int status;
477 
478 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
479 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480 	if (status)
481 		dev_err(&hdev->pdev->dev,
482 			"VF failed to fetch link status(%d) from PF", status);
483 }
484 
485 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
486 {
487 	struct hnae3_handle *rhandle = &hdev->roce;
488 	struct hnae3_handle *handle = &hdev->nic;
489 	struct hnae3_client *rclient;
490 	struct hnae3_client *client;
491 
492 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
493 		return;
494 
495 	client = handle->client;
496 	rclient = hdev->roce_client;
497 
498 	link_state =
499 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
500 
501 	if (link_state != hdev->hw.mac.link) {
502 		client->ops->link_status_change(handle, !!link_state);
503 		if (rclient && rclient->ops->link_status_change)
504 			rclient->ops->link_status_change(rhandle, !!link_state);
505 		hdev->hw.mac.link = link_state;
506 	}
507 
508 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
509 }
510 
511 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
512 {
513 #define HCLGEVF_ADVERTISING	0
514 #define HCLGEVF_SUPPORTED	1
515 
516 	struct hclge_vf_to_pf_msg send_msg;
517 
518 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
519 	send_msg.data[0] = HCLGEVF_ADVERTISING;
520 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
521 	send_msg.data[0] = HCLGEVF_SUPPORTED;
522 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
523 }
524 
525 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
526 {
527 	struct hnae3_handle *nic = &hdev->nic;
528 	int ret;
529 
530 	nic->ae_algo = &ae_algovf;
531 	nic->pdev = hdev->pdev;
532 	nic->numa_node_mask = hdev->numa_node_mask;
533 	nic->flags |= HNAE3_SUPPORT_VF;
534 
535 	ret = hclgevf_knic_setup(hdev);
536 	if (ret)
537 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
538 			ret);
539 	return ret;
540 }
541 
542 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
543 {
544 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
545 		dev_warn(&hdev->pdev->dev,
546 			 "vector(vector_id %d) has been freed.\n", vector_id);
547 		return;
548 	}
549 
550 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
551 	hdev->num_msi_left += 1;
552 	hdev->num_msi_used -= 1;
553 }
554 
555 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
556 			      struct hnae3_vector_info *vector_info)
557 {
558 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
559 	struct hnae3_vector_info *vector = vector_info;
560 	int alloc = 0;
561 	int i, j;
562 
563 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
564 	vector_num = min(hdev->num_msi_left, vector_num);
565 
566 	for (j = 0; j < vector_num; j++) {
567 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
568 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
569 				vector->vector = pci_irq_vector(hdev->pdev, i);
570 				vector->io_addr = hdev->hw.io_base +
571 					HCLGEVF_VECTOR_REG_BASE +
572 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
573 				hdev->vector_status[i] = 0;
574 				hdev->vector_irq[i] = vector->vector;
575 
576 				vector++;
577 				alloc++;
578 
579 				break;
580 			}
581 		}
582 	}
583 	hdev->num_msi_left -= alloc;
584 	hdev->num_msi_used += alloc;
585 
586 	return alloc;
587 }
588 
589 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
590 {
591 	int i;
592 
593 	for (i = 0; i < hdev->num_msi; i++)
594 		if (vector == hdev->vector_irq[i])
595 			return i;
596 
597 	return -EINVAL;
598 }
599 
600 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
601 				    const u8 hfunc, const u8 *key)
602 {
603 	struct hclgevf_rss_config_cmd *req;
604 	unsigned int key_offset = 0;
605 	struct hclgevf_desc desc;
606 	int key_counts;
607 	int key_size;
608 	int ret;
609 
610 	key_counts = HCLGEVF_RSS_KEY_SIZE;
611 	req = (struct hclgevf_rss_config_cmd *)desc.data;
612 
613 	while (key_counts) {
614 		hclgevf_cmd_setup_basic_desc(&desc,
615 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
616 					     false);
617 
618 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
619 		req->hash_config |=
620 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
621 
622 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
623 		memcpy(req->hash_key,
624 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
625 
626 		key_counts -= key_size;
627 		key_offset++;
628 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
629 		if (ret) {
630 			dev_err(&hdev->pdev->dev,
631 				"Configure RSS config fail, status = %d\n",
632 				ret);
633 			return ret;
634 		}
635 	}
636 
637 	return 0;
638 }
639 
640 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
641 {
642 	return HCLGEVF_RSS_KEY_SIZE;
643 }
644 
645 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
646 {
647 	return HCLGEVF_RSS_IND_TBL_SIZE;
648 }
649 
650 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
651 {
652 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
653 	struct hclgevf_rss_indirection_table_cmd *req;
654 	struct hclgevf_desc desc;
655 	int status;
656 	int i, j;
657 
658 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
659 
660 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
661 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
662 					     false);
663 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
664 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
665 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
666 			req->rss_result[j] =
667 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
668 
669 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
670 		if (status) {
671 			dev_err(&hdev->pdev->dev,
672 				"VF failed(=%d) to set RSS indirection table\n",
673 				status);
674 			return status;
675 		}
676 	}
677 
678 	return 0;
679 }
680 
681 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
682 {
683 	struct hclgevf_rss_tc_mode_cmd *req;
684 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
685 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
686 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
687 	struct hclgevf_desc desc;
688 	u16 roundup_size;
689 	unsigned int i;
690 	int status;
691 
692 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
693 
694 	roundup_size = roundup_pow_of_two(rss_size);
695 	roundup_size = ilog2(roundup_size);
696 
697 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
698 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
699 		tc_size[i] = roundup_size;
700 		tc_offset[i] = rss_size * i;
701 	}
702 
703 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
704 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
705 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
706 			      (tc_valid[i] & 0x1));
707 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
708 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
709 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
710 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
711 	}
712 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
713 	if (status)
714 		dev_err(&hdev->pdev->dev,
715 			"VF failed(=%d) to set rss tc mode\n", status);
716 
717 	return status;
718 }
719 
720 /* for revision 0x20, vf shared the same rss config with pf */
721 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
722 {
723 #define HCLGEVF_RSS_MBX_RESP_LEN	8
724 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
725 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
726 	struct hclge_vf_to_pf_msg send_msg;
727 	u16 msg_num, hash_key_index;
728 	u8 index;
729 	int ret;
730 
731 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
732 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
733 			HCLGEVF_RSS_MBX_RESP_LEN;
734 	for (index = 0; index < msg_num; index++) {
735 		send_msg.data[0] = index;
736 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
737 					   HCLGEVF_RSS_MBX_RESP_LEN);
738 		if (ret) {
739 			dev_err(&hdev->pdev->dev,
740 				"VF get rss hash key from PF failed, ret=%d",
741 				ret);
742 			return ret;
743 		}
744 
745 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
746 		if (index == msg_num - 1)
747 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
748 			       &resp_msg[0],
749 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
750 		else
751 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
752 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
753 	}
754 
755 	return 0;
756 }
757 
758 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
759 			   u8 *hfunc)
760 {
761 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
762 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
763 	int i, ret;
764 
765 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
766 		/* Get hash algorithm */
767 		if (hfunc) {
768 			switch (rss_cfg->hash_algo) {
769 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
770 				*hfunc = ETH_RSS_HASH_TOP;
771 				break;
772 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
773 				*hfunc = ETH_RSS_HASH_XOR;
774 				break;
775 			default:
776 				*hfunc = ETH_RSS_HASH_UNKNOWN;
777 				break;
778 			}
779 		}
780 
781 		/* Get the RSS Key required by the user */
782 		if (key)
783 			memcpy(key, rss_cfg->rss_hash_key,
784 			       HCLGEVF_RSS_KEY_SIZE);
785 	} else {
786 		if (hfunc)
787 			*hfunc = ETH_RSS_HASH_TOP;
788 		if (key) {
789 			ret = hclgevf_get_rss_hash_key(hdev);
790 			if (ret)
791 				return ret;
792 			memcpy(key, rss_cfg->rss_hash_key,
793 			       HCLGEVF_RSS_KEY_SIZE);
794 		}
795 	}
796 
797 	if (indir)
798 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
799 			indir[i] = rss_cfg->rss_indirection_tbl[i];
800 
801 	return 0;
802 }
803 
804 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
805 			   const u8 *key, const u8 hfunc)
806 {
807 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
808 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
809 	int ret, i;
810 
811 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
812 		/* Set the RSS Hash Key if specififed by the user */
813 		if (key) {
814 			switch (hfunc) {
815 			case ETH_RSS_HASH_TOP:
816 				rss_cfg->hash_algo =
817 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
818 				break;
819 			case ETH_RSS_HASH_XOR:
820 				rss_cfg->hash_algo =
821 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
822 				break;
823 			case ETH_RSS_HASH_NO_CHANGE:
824 				break;
825 			default:
826 				return -EINVAL;
827 			}
828 
829 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
830 						       key);
831 			if (ret)
832 				return ret;
833 
834 			/* Update the shadow RSS key with user specified qids */
835 			memcpy(rss_cfg->rss_hash_key, key,
836 			       HCLGEVF_RSS_KEY_SIZE);
837 		}
838 	}
839 
840 	/* update the shadow RSS table with user specified qids */
841 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
842 		rss_cfg->rss_indirection_tbl[i] = indir[i];
843 
844 	/* update the hardware */
845 	return hclgevf_set_rss_indir_table(hdev);
846 }
847 
848 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
849 {
850 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
851 
852 	if (nfc->data & RXH_L4_B_2_3)
853 		hash_sets |= HCLGEVF_D_PORT_BIT;
854 	else
855 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
856 
857 	if (nfc->data & RXH_IP_SRC)
858 		hash_sets |= HCLGEVF_S_IP_BIT;
859 	else
860 		hash_sets &= ~HCLGEVF_S_IP_BIT;
861 
862 	if (nfc->data & RXH_IP_DST)
863 		hash_sets |= HCLGEVF_D_IP_BIT;
864 	else
865 		hash_sets &= ~HCLGEVF_D_IP_BIT;
866 
867 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
868 		hash_sets |= HCLGEVF_V_TAG_BIT;
869 
870 	return hash_sets;
871 }
872 
873 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
874 				 struct ethtool_rxnfc *nfc)
875 {
876 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
877 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
878 	struct hclgevf_rss_input_tuple_cmd *req;
879 	struct hclgevf_desc desc;
880 	u8 tuple_sets;
881 	int ret;
882 
883 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
884 		return -EOPNOTSUPP;
885 
886 	if (nfc->data &
887 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
888 		return -EINVAL;
889 
890 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
891 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
892 
893 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
894 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
895 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
896 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
897 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
898 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
899 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
900 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
901 
902 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
903 	switch (nfc->flow_type) {
904 	case TCP_V4_FLOW:
905 		req->ipv4_tcp_en = tuple_sets;
906 		break;
907 	case TCP_V6_FLOW:
908 		req->ipv6_tcp_en = tuple_sets;
909 		break;
910 	case UDP_V4_FLOW:
911 		req->ipv4_udp_en = tuple_sets;
912 		break;
913 	case UDP_V6_FLOW:
914 		req->ipv6_udp_en = tuple_sets;
915 		break;
916 	case SCTP_V4_FLOW:
917 		req->ipv4_sctp_en = tuple_sets;
918 		break;
919 	case SCTP_V6_FLOW:
920 		if ((nfc->data & RXH_L4_B_0_1) ||
921 		    (nfc->data & RXH_L4_B_2_3))
922 			return -EINVAL;
923 
924 		req->ipv6_sctp_en = tuple_sets;
925 		break;
926 	case IPV4_FLOW:
927 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
928 		break;
929 	case IPV6_FLOW:
930 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
931 		break;
932 	default:
933 		return -EINVAL;
934 	}
935 
936 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
937 	if (ret) {
938 		dev_err(&hdev->pdev->dev,
939 			"Set rss tuple fail, status = %d\n", ret);
940 		return ret;
941 	}
942 
943 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
944 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
945 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
946 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
947 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
948 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
949 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
950 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
951 	return 0;
952 }
953 
954 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
955 				 struct ethtool_rxnfc *nfc)
956 {
957 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
958 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
959 	u8 tuple_sets;
960 
961 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
962 		return -EOPNOTSUPP;
963 
964 	nfc->data = 0;
965 
966 	switch (nfc->flow_type) {
967 	case TCP_V4_FLOW:
968 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
969 		break;
970 	case UDP_V4_FLOW:
971 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
972 		break;
973 	case TCP_V6_FLOW:
974 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
975 		break;
976 	case UDP_V6_FLOW:
977 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
978 		break;
979 	case SCTP_V4_FLOW:
980 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
981 		break;
982 	case SCTP_V6_FLOW:
983 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
984 		break;
985 	case IPV4_FLOW:
986 	case IPV6_FLOW:
987 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
988 		break;
989 	default:
990 		return -EINVAL;
991 	}
992 
993 	if (!tuple_sets)
994 		return 0;
995 
996 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
997 		nfc->data |= RXH_L4_B_2_3;
998 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
999 		nfc->data |= RXH_L4_B_0_1;
1000 	if (tuple_sets & HCLGEVF_D_IP_BIT)
1001 		nfc->data |= RXH_IP_DST;
1002 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1003 		nfc->data |= RXH_IP_SRC;
1004 
1005 	return 0;
1006 }
1007 
1008 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1009 				       struct hclgevf_rss_cfg *rss_cfg)
1010 {
1011 	struct hclgevf_rss_input_tuple_cmd *req;
1012 	struct hclgevf_desc desc;
1013 	int ret;
1014 
1015 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1016 
1017 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1018 
1019 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1020 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1021 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1022 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1023 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1024 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1025 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1026 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1027 
1028 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1029 	if (ret)
1030 		dev_err(&hdev->pdev->dev,
1031 			"Configure rss input fail, status = %d\n", ret);
1032 	return ret;
1033 }
1034 
1035 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1036 {
1037 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1038 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1039 
1040 	return rss_cfg->rss_size;
1041 }
1042 
1043 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1044 				       int vector_id,
1045 				       struct hnae3_ring_chain_node *ring_chain)
1046 {
1047 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1048 	struct hclge_vf_to_pf_msg send_msg;
1049 	struct hnae3_ring_chain_node *node;
1050 	int status;
1051 	int i = 0;
1052 
1053 	memset(&send_msg, 0, sizeof(send_msg));
1054 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1055 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1056 	send_msg.vector_id = vector_id;
1057 
1058 	for (node = ring_chain; node; node = node->next) {
1059 		send_msg.param[i].ring_type =
1060 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1061 
1062 		send_msg.param[i].tqp_index = node->tqp_index;
1063 		send_msg.param[i].int_gl_index =
1064 					hnae3_get_field(node->int_gl_idx,
1065 							HNAE3_RING_GL_IDX_M,
1066 							HNAE3_RING_GL_IDX_S);
1067 
1068 		i++;
1069 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1070 			send_msg.ring_num = i;
1071 
1072 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1073 						      NULL, 0);
1074 			if (status) {
1075 				dev_err(&hdev->pdev->dev,
1076 					"Map TQP fail, status is %d.\n",
1077 					status);
1078 				return status;
1079 			}
1080 			i = 0;
1081 		}
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1088 				      struct hnae3_ring_chain_node *ring_chain)
1089 {
1090 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1091 	int vector_id;
1092 
1093 	vector_id = hclgevf_get_vector_index(hdev, vector);
1094 	if (vector_id < 0) {
1095 		dev_err(&handle->pdev->dev,
1096 			"Get vector index fail. ret =%d\n", vector_id);
1097 		return vector_id;
1098 	}
1099 
1100 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1101 }
1102 
1103 static int hclgevf_unmap_ring_from_vector(
1104 				struct hnae3_handle *handle,
1105 				int vector,
1106 				struct hnae3_ring_chain_node *ring_chain)
1107 {
1108 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1109 	int ret, vector_id;
1110 
1111 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1112 		return 0;
1113 
1114 	vector_id = hclgevf_get_vector_index(hdev, vector);
1115 	if (vector_id < 0) {
1116 		dev_err(&handle->pdev->dev,
1117 			"Get vector index fail. ret =%d\n", vector_id);
1118 		return vector_id;
1119 	}
1120 
1121 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1122 	if (ret)
1123 		dev_err(&handle->pdev->dev,
1124 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1125 			vector_id,
1126 			ret);
1127 
1128 	return ret;
1129 }
1130 
1131 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1132 {
1133 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1134 	int vector_id;
1135 
1136 	vector_id = hclgevf_get_vector_index(hdev, vector);
1137 	if (vector_id < 0) {
1138 		dev_err(&handle->pdev->dev,
1139 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1140 			vector_id);
1141 		return vector_id;
1142 	}
1143 
1144 	hclgevf_free_vector(hdev, vector_id);
1145 
1146 	return 0;
1147 }
1148 
1149 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1150 					bool en_uc_pmc, bool en_mc_pmc,
1151 					bool en_bc_pmc)
1152 {
1153 	struct hnae3_handle *handle = &hdev->nic;
1154 	struct hclge_vf_to_pf_msg send_msg;
1155 	int ret;
1156 
1157 	memset(&send_msg, 0, sizeof(send_msg));
1158 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1159 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1160 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1161 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1162 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1163 					     &handle->priv_flags) ? 1 : 0;
1164 
1165 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1166 	if (ret)
1167 		dev_err(&hdev->pdev->dev,
1168 			"Set promisc mode fail, status is %d.\n", ret);
1169 
1170 	return ret;
1171 }
1172 
1173 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1174 				    bool en_mc_pmc)
1175 {
1176 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1177 	bool en_bc_pmc;
1178 
1179 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1180 
1181 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1182 					    en_bc_pmc);
1183 }
1184 
1185 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1186 {
1187 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1188 
1189 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1190 	hclgevf_task_schedule(hdev, 0);
1191 }
1192 
1193 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1194 {
1195 	struct hnae3_handle *handle = &hdev->nic;
1196 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1197 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1198 	int ret;
1199 
1200 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1201 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1202 		if (!ret)
1203 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1204 	}
1205 }
1206 
1207 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1208 			      int stream_id, bool enable)
1209 {
1210 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1211 	struct hclgevf_desc desc;
1212 	int status;
1213 
1214 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1215 
1216 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1217 				     false);
1218 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1219 	req->stream_id = cpu_to_le16(stream_id);
1220 	if (enable)
1221 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1222 
1223 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1224 	if (status)
1225 		dev_err(&hdev->pdev->dev,
1226 			"TQP enable fail, status =%d.\n", status);
1227 
1228 	return status;
1229 }
1230 
1231 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1232 {
1233 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1234 	struct hclgevf_tqp *tqp;
1235 	int i;
1236 
1237 	for (i = 0; i < kinfo->num_tqps; i++) {
1238 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1239 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1240 	}
1241 }
1242 
1243 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1244 {
1245 	struct hclge_vf_to_pf_msg send_msg;
1246 	u8 host_mac[ETH_ALEN];
1247 	int status;
1248 
1249 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1250 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1251 				      ETH_ALEN);
1252 	if (status) {
1253 		dev_err(&hdev->pdev->dev,
1254 			"fail to get VF MAC from host %d", status);
1255 		return status;
1256 	}
1257 
1258 	ether_addr_copy(p, host_mac);
1259 
1260 	return 0;
1261 }
1262 
1263 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1264 {
1265 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1266 	u8 host_mac_addr[ETH_ALEN];
1267 
1268 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1269 		return;
1270 
1271 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1272 	if (hdev->has_pf_mac)
1273 		ether_addr_copy(p, host_mac_addr);
1274 	else
1275 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1276 }
1277 
1278 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1279 				bool is_first)
1280 {
1281 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1282 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1283 	struct hclge_vf_to_pf_msg send_msg;
1284 	u8 *new_mac_addr = (u8 *)p;
1285 	int status;
1286 
1287 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1288 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1289 	ether_addr_copy(send_msg.data, new_mac_addr);
1290 	if (is_first && !hdev->has_pf_mac)
1291 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1292 	else
1293 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1294 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1295 	if (!status)
1296 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1297 
1298 	return status;
1299 }
1300 
1301 static struct hclgevf_mac_addr_node *
1302 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1303 {
1304 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1305 
1306 	list_for_each_entry_safe(mac_node, tmp, list, node)
1307 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1308 			return mac_node;
1309 
1310 	return NULL;
1311 }
1312 
1313 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1314 				    enum HCLGEVF_MAC_NODE_STATE state)
1315 {
1316 	switch (state) {
1317 	/* from set_rx_mode or tmp_add_list */
1318 	case HCLGEVF_MAC_TO_ADD:
1319 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1320 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1321 		break;
1322 	/* only from set_rx_mode */
1323 	case HCLGEVF_MAC_TO_DEL:
1324 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1325 			list_del(&mac_node->node);
1326 			kfree(mac_node);
1327 		} else {
1328 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1329 		}
1330 		break;
1331 	/* only from tmp_add_list, the mac_node->state won't be
1332 	 * HCLGEVF_MAC_ACTIVE
1333 	 */
1334 	case HCLGEVF_MAC_ACTIVE:
1335 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1336 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1337 		break;
1338 	}
1339 }
1340 
1341 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1342 				   enum HCLGEVF_MAC_NODE_STATE state,
1343 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1344 				   const unsigned char *addr)
1345 {
1346 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1347 	struct hclgevf_mac_addr_node *mac_node;
1348 	struct list_head *list;
1349 
1350 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1351 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1352 
1353 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1354 
1355 	/* if the mac addr is already in the mac list, no need to add a new
1356 	 * one into it, just check the mac addr state, convert it to a new
1357 	 * new state, or just remove it, or do nothing.
1358 	 */
1359 	mac_node = hclgevf_find_mac_node(list, addr);
1360 	if (mac_node) {
1361 		hclgevf_update_mac_node(mac_node, state);
1362 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1363 		return 0;
1364 	}
1365 	/* if this address is never added, unnecessary to delete */
1366 	if (state == HCLGEVF_MAC_TO_DEL) {
1367 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1368 		return -ENOENT;
1369 	}
1370 
1371 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1372 	if (!mac_node) {
1373 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1374 		return -ENOMEM;
1375 	}
1376 
1377 	mac_node->state = state;
1378 	ether_addr_copy(mac_node->mac_addr, addr);
1379 	list_add_tail(&mac_node->node, list);
1380 
1381 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1382 	return 0;
1383 }
1384 
1385 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1386 			       const unsigned char *addr)
1387 {
1388 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1389 				       HCLGEVF_MAC_ADDR_UC, addr);
1390 }
1391 
1392 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1393 			      const unsigned char *addr)
1394 {
1395 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1396 				       HCLGEVF_MAC_ADDR_UC, addr);
1397 }
1398 
1399 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1400 			       const unsigned char *addr)
1401 {
1402 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1403 				       HCLGEVF_MAC_ADDR_MC, addr);
1404 }
1405 
1406 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1407 			      const unsigned char *addr)
1408 {
1409 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1410 				       HCLGEVF_MAC_ADDR_MC, addr);
1411 }
1412 
1413 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1414 				    struct hclgevf_mac_addr_node *mac_node,
1415 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1416 {
1417 	struct hclge_vf_to_pf_msg send_msg;
1418 	u8 code, subcode;
1419 
1420 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1421 		code = HCLGE_MBX_SET_UNICAST;
1422 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1423 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1424 		else
1425 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1426 	} else {
1427 		code = HCLGE_MBX_SET_MULTICAST;
1428 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1429 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1430 		else
1431 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1432 	}
1433 
1434 	hclgevf_build_send_msg(&send_msg, code, subcode);
1435 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1436 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1437 }
1438 
1439 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1440 				    struct list_head *list,
1441 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1442 {
1443 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1444 	int ret;
1445 
1446 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1447 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1448 		if  (ret) {
1449 			dev_err(&hdev->pdev->dev,
1450 				"failed to configure mac %pM, state = %d, ret = %d\n",
1451 				mac_node->mac_addr, mac_node->state, ret);
1452 			return;
1453 		}
1454 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1455 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1456 		} else {
1457 			list_del(&mac_node->node);
1458 			kfree(mac_node);
1459 		}
1460 	}
1461 }
1462 
1463 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1464 				       struct list_head *mac_list)
1465 {
1466 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1467 
1468 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1469 		/* if the mac address from tmp_add_list is not in the
1470 		 * uc/mc_mac_list, it means have received a TO_DEL request
1471 		 * during the time window of sending mac config request to PF
1472 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1473 		 * then it will be removed at next time. If is TO_ADD, it means
1474 		 * send TO_ADD request failed, so just remove the mac node.
1475 		 */
1476 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1477 		if (new_node) {
1478 			hclgevf_update_mac_node(new_node, mac_node->state);
1479 			list_del(&mac_node->node);
1480 			kfree(mac_node);
1481 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1482 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1483 			list_del(&mac_node->node);
1484 			list_add_tail(&mac_node->node, mac_list);
1485 		} else {
1486 			list_del(&mac_node->node);
1487 			kfree(mac_node);
1488 		}
1489 	}
1490 }
1491 
1492 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1493 				       struct list_head *mac_list)
1494 {
1495 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1496 
1497 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1498 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1499 		if (new_node) {
1500 			/* If the mac addr is exist in the mac list, it means
1501 			 * received a new request TO_ADD during the time window
1502 			 * of sending mac addr configurrequest to PF, so just
1503 			 * change the mac state to ACTIVE.
1504 			 */
1505 			new_node->state = HCLGEVF_MAC_ACTIVE;
1506 			list_del(&mac_node->node);
1507 			kfree(mac_node);
1508 		} else {
1509 			list_del(&mac_node->node);
1510 			list_add_tail(&mac_node->node, mac_list);
1511 		}
1512 	}
1513 }
1514 
1515 static void hclgevf_clear_list(struct list_head *list)
1516 {
1517 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1518 
1519 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1520 		list_del(&mac_node->node);
1521 		kfree(mac_node);
1522 	}
1523 }
1524 
1525 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1526 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1527 {
1528 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1529 	struct list_head tmp_add_list, tmp_del_list;
1530 	struct list_head *list;
1531 
1532 	INIT_LIST_HEAD(&tmp_add_list);
1533 	INIT_LIST_HEAD(&tmp_del_list);
1534 
1535 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1536 	 * we can add/delete these mac addr outside the spin lock
1537 	 */
1538 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1539 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1540 
1541 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1542 
1543 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1544 		switch (mac_node->state) {
1545 		case HCLGEVF_MAC_TO_DEL:
1546 			list_del(&mac_node->node);
1547 			list_add_tail(&mac_node->node, &tmp_del_list);
1548 			break;
1549 		case HCLGEVF_MAC_TO_ADD:
1550 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1551 			if (!new_node)
1552 				goto stop_traverse;
1553 
1554 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1555 			new_node->state = mac_node->state;
1556 			list_add_tail(&new_node->node, &tmp_add_list);
1557 			break;
1558 		default:
1559 			break;
1560 		}
1561 	}
1562 
1563 stop_traverse:
1564 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1565 
1566 	/* delete first, in order to get max mac table space for adding */
1567 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1568 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1569 
1570 	/* if some mac addresses were added/deleted fail, move back to the
1571 	 * mac_list, and retry at next time.
1572 	 */
1573 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1574 
1575 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1576 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1577 
1578 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1579 }
1580 
1581 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1582 {
1583 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1584 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1585 }
1586 
1587 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1588 {
1589 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1590 
1591 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1592 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1593 
1594 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1595 }
1596 
1597 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1598 				   __be16 proto, u16 vlan_id,
1599 				   bool is_kill)
1600 {
1601 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1602 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1603 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1604 
1605 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1606 	struct hclge_vf_to_pf_msg send_msg;
1607 	int ret;
1608 
1609 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1610 		return -EINVAL;
1611 
1612 	if (proto != htons(ETH_P_8021Q))
1613 		return -EPROTONOSUPPORT;
1614 
1615 	/* When device is resetting or reset failed, firmware is unable to
1616 	 * handle mailbox. Just record the vlan id, and remove it after
1617 	 * reset finished.
1618 	 */
1619 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1620 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1621 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1622 		return -EBUSY;
1623 	}
1624 
1625 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1626 			       HCLGE_MBX_VLAN_FILTER);
1627 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1628 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1629 	       sizeof(vlan_id));
1630 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1631 	       sizeof(proto));
1632 	/* when remove hw vlan filter failed, record the vlan id,
1633 	 * and try to remove it from hw later, to be consistence
1634 	 * with stack.
1635 	 */
1636 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1637 	if (is_kill && ret)
1638 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1639 
1640 	return ret;
1641 }
1642 
1643 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1644 {
1645 #define HCLGEVF_MAX_SYNC_COUNT	60
1646 	struct hnae3_handle *handle = &hdev->nic;
1647 	int ret, sync_cnt = 0;
1648 	u16 vlan_id;
1649 
1650 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1651 	while (vlan_id != VLAN_N_VID) {
1652 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1653 					      vlan_id, true);
1654 		if (ret)
1655 			return;
1656 
1657 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1658 		sync_cnt++;
1659 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1660 			return;
1661 
1662 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1663 	}
1664 }
1665 
1666 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1667 {
1668 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1669 	struct hclge_vf_to_pf_msg send_msg;
1670 
1671 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1672 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1673 	send_msg.data[0] = enable ? 1 : 0;
1674 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1675 }
1676 
1677 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1678 {
1679 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1680 	struct hclge_vf_to_pf_msg send_msg;
1681 	int ret;
1682 
1683 	/* disable vf queue before send queue reset msg to PF */
1684 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1685 	if (ret)
1686 		return ret;
1687 
1688 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1689 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
1690 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1691 }
1692 
1693 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1694 {
1695 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1696 	struct hclge_vf_to_pf_msg send_msg;
1697 
1698 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1699 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1700 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1701 }
1702 
1703 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1704 				 enum hnae3_reset_notify_type type)
1705 {
1706 	struct hnae3_client *client = hdev->nic_client;
1707 	struct hnae3_handle *handle = &hdev->nic;
1708 	int ret;
1709 
1710 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1711 	    !client)
1712 		return 0;
1713 
1714 	if (!client->ops->reset_notify)
1715 		return -EOPNOTSUPP;
1716 
1717 	ret = client->ops->reset_notify(handle, type);
1718 	if (ret)
1719 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1720 			type, ret);
1721 
1722 	return ret;
1723 }
1724 
1725 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1726 				      enum hnae3_reset_notify_type type)
1727 {
1728 	struct hnae3_client *client = hdev->roce_client;
1729 	struct hnae3_handle *handle = &hdev->roce;
1730 	int ret;
1731 
1732 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1733 		return 0;
1734 
1735 	if (!client->ops->reset_notify)
1736 		return -EOPNOTSUPP;
1737 
1738 	ret = client->ops->reset_notify(handle, type);
1739 	if (ret)
1740 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1741 			type, ret);
1742 	return ret;
1743 }
1744 
1745 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1746 {
1747 #define HCLGEVF_RESET_WAIT_US	20000
1748 #define HCLGEVF_RESET_WAIT_CNT	2000
1749 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1750 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1751 
1752 	u32 val;
1753 	int ret;
1754 
1755 	if (hdev->reset_type == HNAE3_VF_RESET)
1756 		ret = readl_poll_timeout(hdev->hw.io_base +
1757 					 HCLGEVF_VF_RST_ING, val,
1758 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1759 					 HCLGEVF_RESET_WAIT_US,
1760 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1761 	else
1762 		ret = readl_poll_timeout(hdev->hw.io_base +
1763 					 HCLGEVF_RST_ING, val,
1764 					 !(val & HCLGEVF_RST_ING_BITS),
1765 					 HCLGEVF_RESET_WAIT_US,
1766 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1767 
1768 	/* hardware completion status should be available by this time */
1769 	if (ret) {
1770 		dev_err(&hdev->pdev->dev,
1771 			"couldn't get reset done status from h/w, timeout!\n");
1772 		return ret;
1773 	}
1774 
1775 	/* we will wait a bit more to let reset of the stack to complete. This
1776 	 * might happen in case reset assertion was made by PF. Yes, this also
1777 	 * means we might end up waiting bit more even for VF reset.
1778 	 */
1779 	msleep(5000);
1780 
1781 	return 0;
1782 }
1783 
1784 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1785 {
1786 	u32 reg_val;
1787 
1788 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1789 	if (enable)
1790 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1791 	else
1792 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1793 
1794 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1795 			  reg_val);
1796 }
1797 
1798 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1799 {
1800 	int ret;
1801 
1802 	/* uninitialize the nic client */
1803 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1804 	if (ret)
1805 		return ret;
1806 
1807 	/* re-initialize the hclge device */
1808 	ret = hclgevf_reset_hdev(hdev);
1809 	if (ret) {
1810 		dev_err(&hdev->pdev->dev,
1811 			"hclge device re-init failed, VF is disabled!\n");
1812 		return ret;
1813 	}
1814 
1815 	/* bring up the nic client again */
1816 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1817 	if (ret)
1818 		return ret;
1819 
1820 	/* clear handshake status with IMP */
1821 	hclgevf_reset_handshake(hdev, false);
1822 
1823 	/* bring up the nic to enable TX/RX again */
1824 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1825 }
1826 
1827 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1828 {
1829 #define HCLGEVF_RESET_SYNC_TIME 100
1830 
1831 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1832 		struct hclge_vf_to_pf_msg send_msg;
1833 		int ret;
1834 
1835 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1836 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1837 		if (ret) {
1838 			dev_err(&hdev->pdev->dev,
1839 				"failed to assert VF reset, ret = %d\n", ret);
1840 			return ret;
1841 		}
1842 		hdev->rst_stats.vf_func_rst_cnt++;
1843 	}
1844 
1845 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1846 	/* inform hardware that preparatory work is done */
1847 	msleep(HCLGEVF_RESET_SYNC_TIME);
1848 	hclgevf_reset_handshake(hdev, true);
1849 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1850 		 hdev->reset_type);
1851 
1852 	return 0;
1853 }
1854 
1855 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1856 {
1857 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1858 		 hdev->rst_stats.vf_func_rst_cnt);
1859 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1860 		 hdev->rst_stats.flr_rst_cnt);
1861 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1862 		 hdev->rst_stats.vf_rst_cnt);
1863 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1864 		 hdev->rst_stats.rst_done_cnt);
1865 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1866 		 hdev->rst_stats.hw_rst_done_cnt);
1867 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1868 		 hdev->rst_stats.rst_cnt);
1869 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1870 		 hdev->rst_stats.rst_fail_cnt);
1871 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1872 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1873 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1874 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1875 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1876 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1877 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1878 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1879 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1880 }
1881 
1882 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1883 {
1884 	/* recover handshake status with IMP when reset fail */
1885 	hclgevf_reset_handshake(hdev, true);
1886 	hdev->rst_stats.rst_fail_cnt++;
1887 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1888 		hdev->rst_stats.rst_fail_cnt);
1889 
1890 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1891 		set_bit(hdev->reset_type, &hdev->reset_pending);
1892 
1893 	if (hclgevf_is_reset_pending(hdev)) {
1894 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1895 		hclgevf_reset_task_schedule(hdev);
1896 	} else {
1897 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1898 		hclgevf_dump_rst_info(hdev);
1899 	}
1900 }
1901 
1902 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1903 {
1904 	int ret;
1905 
1906 	hdev->rst_stats.rst_cnt++;
1907 
1908 	/* perform reset of the stack & ae device for a client */
1909 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1910 	if (ret)
1911 		return ret;
1912 
1913 	rtnl_lock();
1914 	/* bring down the nic to stop any ongoing TX/RX */
1915 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1916 	rtnl_unlock();
1917 	if (ret)
1918 		return ret;
1919 
1920 	return hclgevf_reset_prepare_wait(hdev);
1921 }
1922 
1923 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1924 {
1925 	int ret;
1926 
1927 	hdev->rst_stats.hw_rst_done_cnt++;
1928 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1929 	if (ret)
1930 		return ret;
1931 
1932 	rtnl_lock();
1933 	/* now, re-initialize the nic client and ae device */
1934 	ret = hclgevf_reset_stack(hdev);
1935 	rtnl_unlock();
1936 	if (ret) {
1937 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1938 		return ret;
1939 	}
1940 
1941 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1942 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1943 	 * times
1944 	 */
1945 	if (ret &&
1946 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1947 		return ret;
1948 
1949 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1950 	if (ret)
1951 		return ret;
1952 
1953 	hdev->last_reset_time = jiffies;
1954 	hdev->rst_stats.rst_done_cnt++;
1955 	hdev->rst_stats.rst_fail_cnt = 0;
1956 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1957 
1958 	return 0;
1959 }
1960 
1961 static void hclgevf_reset(struct hclgevf_dev *hdev)
1962 {
1963 	if (hclgevf_reset_prepare(hdev))
1964 		goto err_reset;
1965 
1966 	/* check if VF could successfully fetch the hardware reset completion
1967 	 * status from the hardware
1968 	 */
1969 	if (hclgevf_reset_wait(hdev)) {
1970 		/* can't do much in this situation, will disable VF */
1971 		dev_err(&hdev->pdev->dev,
1972 			"failed to fetch H/W reset completion status\n");
1973 		goto err_reset;
1974 	}
1975 
1976 	if (hclgevf_reset_rebuild(hdev))
1977 		goto err_reset;
1978 
1979 	return;
1980 
1981 err_reset:
1982 	hclgevf_reset_err_handle(hdev);
1983 }
1984 
1985 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1986 						     unsigned long *addr)
1987 {
1988 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1989 
1990 	/* return the highest priority reset level amongst all */
1991 	if (test_bit(HNAE3_VF_RESET, addr)) {
1992 		rst_level = HNAE3_VF_RESET;
1993 		clear_bit(HNAE3_VF_RESET, addr);
1994 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1995 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1996 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1997 		rst_level = HNAE3_VF_FULL_RESET;
1998 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1999 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2000 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2001 		rst_level = HNAE3_VF_PF_FUNC_RESET;
2002 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2003 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2004 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2005 		rst_level = HNAE3_VF_FUNC_RESET;
2006 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2007 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2008 		rst_level = HNAE3_FLR_RESET;
2009 		clear_bit(HNAE3_FLR_RESET, addr);
2010 	}
2011 
2012 	return rst_level;
2013 }
2014 
2015 static void hclgevf_reset_event(struct pci_dev *pdev,
2016 				struct hnae3_handle *handle)
2017 {
2018 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2019 	struct hclgevf_dev *hdev = ae_dev->priv;
2020 
2021 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2022 
2023 	if (hdev->default_reset_request)
2024 		hdev->reset_level =
2025 			hclgevf_get_reset_level(hdev,
2026 						&hdev->default_reset_request);
2027 	else
2028 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2029 
2030 	/* reset of this VF requested */
2031 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2032 	hclgevf_reset_task_schedule(hdev);
2033 
2034 	hdev->last_reset_time = jiffies;
2035 }
2036 
2037 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2038 					  enum hnae3_reset_type rst_type)
2039 {
2040 	struct hclgevf_dev *hdev = ae_dev->priv;
2041 
2042 	set_bit(rst_type, &hdev->default_reset_request);
2043 }
2044 
2045 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2046 {
2047 	writel(en ? 1 : 0, vector->addr);
2048 }
2049 
2050 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
2051 {
2052 #define HCLGEVF_FLR_RETRY_WAIT_MS	500
2053 #define HCLGEVF_FLR_RETRY_CNT		5
2054 
2055 	struct hclgevf_dev *hdev = ae_dev->priv;
2056 	int retry_cnt = 0;
2057 	int ret;
2058 
2059 retry:
2060 	down(&hdev->reset_sem);
2061 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2062 	hdev->reset_type = HNAE3_FLR_RESET;
2063 	ret = hclgevf_reset_prepare(hdev);
2064 	if (ret) {
2065 		dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n",
2066 			ret);
2067 		if (hdev->reset_pending ||
2068 		    retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) {
2069 			dev_err(&hdev->pdev->dev,
2070 				"reset_pending:0x%lx, retry_cnt:%d\n",
2071 				hdev->reset_pending, retry_cnt);
2072 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2073 			up(&hdev->reset_sem);
2074 			msleep(HCLGEVF_FLR_RETRY_WAIT_MS);
2075 			goto retry;
2076 		}
2077 	}
2078 
2079 	/* disable misc vector before FLR done */
2080 	hclgevf_enable_vector(&hdev->misc_vector, false);
2081 	hdev->rst_stats.flr_rst_cnt++;
2082 }
2083 
2084 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
2085 {
2086 	struct hclgevf_dev *hdev = ae_dev->priv;
2087 	int ret;
2088 
2089 	hclgevf_enable_vector(&hdev->misc_vector, true);
2090 
2091 	ret = hclgevf_reset_rebuild(hdev);
2092 	if (ret)
2093 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2094 			 ret);
2095 
2096 	hdev->reset_type = HNAE3_NONE_RESET;
2097 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2098 	up(&hdev->reset_sem);
2099 }
2100 
2101 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2102 {
2103 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2104 
2105 	return hdev->fw_version;
2106 }
2107 
2108 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2109 {
2110 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2111 
2112 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2113 					    HCLGEVF_MISC_VECTOR_NUM);
2114 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2115 	/* vector status always valid for Vector 0 */
2116 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2117 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2118 
2119 	hdev->num_msi_left -= 1;
2120 	hdev->num_msi_used += 1;
2121 }
2122 
2123 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2124 {
2125 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2126 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2127 			      &hdev->state))
2128 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2129 }
2130 
2131 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2132 {
2133 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2134 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2135 			      &hdev->state))
2136 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2137 }
2138 
2139 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2140 				  unsigned long delay)
2141 {
2142 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2143 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2144 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2145 }
2146 
2147 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2148 {
2149 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2150 
2151 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2152 		return;
2153 
2154 	down(&hdev->reset_sem);
2155 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2156 
2157 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2158 			       &hdev->reset_state)) {
2159 		/* PF has initmated that it is about to reset the hardware.
2160 		 * We now have to poll & check if hardware has actually
2161 		 * completed the reset sequence. On hardware reset completion,
2162 		 * VF needs to reset the client and ae device.
2163 		 */
2164 		hdev->reset_attempts = 0;
2165 
2166 		hdev->last_reset_time = jiffies;
2167 		while ((hdev->reset_type =
2168 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2169 		       != HNAE3_NONE_RESET)
2170 			hclgevf_reset(hdev);
2171 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2172 				      &hdev->reset_state)) {
2173 		/* we could be here when either of below happens:
2174 		 * 1. reset was initiated due to watchdog timeout caused by
2175 		 *    a. IMP was earlier reset and our TX got choked down and
2176 		 *       which resulted in watchdog reacting and inducing VF
2177 		 *       reset. This also means our cmdq would be unreliable.
2178 		 *    b. problem in TX due to other lower layer(example link
2179 		 *       layer not functioning properly etc.)
2180 		 * 2. VF reset might have been initiated due to some config
2181 		 *    change.
2182 		 *
2183 		 * NOTE: Theres no clear way to detect above cases than to react
2184 		 * to the response of PF for this reset request. PF will ack the
2185 		 * 1b and 2. cases but we will not get any intimation about 1a
2186 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2187 		 * communication between PF and VF would be broken.
2188 		 *
2189 		 * if we are never geting into pending state it means either:
2190 		 * 1. PF is not receiving our request which could be due to IMP
2191 		 *    reset
2192 		 * 2. PF is screwed
2193 		 * We cannot do much for 2. but to check first we can try reset
2194 		 * our PCIe + stack and see if it alleviates the problem.
2195 		 */
2196 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2197 			/* prepare for full reset of stack + pcie interface */
2198 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2199 
2200 			/* "defer" schedule the reset task again */
2201 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2202 		} else {
2203 			hdev->reset_attempts++;
2204 
2205 			set_bit(hdev->reset_level, &hdev->reset_pending);
2206 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2207 		}
2208 		hclgevf_reset_task_schedule(hdev);
2209 	}
2210 
2211 	hdev->reset_type = HNAE3_NONE_RESET;
2212 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2213 	up(&hdev->reset_sem);
2214 }
2215 
2216 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2217 {
2218 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2219 		return;
2220 
2221 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2222 		return;
2223 
2224 	hclgevf_mbx_async_handler(hdev);
2225 
2226 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2227 }
2228 
2229 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2230 {
2231 	struct hclge_vf_to_pf_msg send_msg;
2232 	int ret;
2233 
2234 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2235 		return;
2236 
2237 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2238 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2239 	if (ret)
2240 		dev_err(&hdev->pdev->dev,
2241 			"VF sends keep alive cmd failed(=%d)\n", ret);
2242 }
2243 
2244 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2245 {
2246 	unsigned long delta = round_jiffies_relative(HZ);
2247 	struct hnae3_handle *handle = &hdev->nic;
2248 
2249 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2250 		return;
2251 
2252 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2253 		delta = jiffies - hdev->last_serv_processed;
2254 
2255 		if (delta < round_jiffies_relative(HZ)) {
2256 			delta = round_jiffies_relative(HZ) - delta;
2257 			goto out;
2258 		}
2259 	}
2260 
2261 	hdev->serv_processed_cnt++;
2262 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2263 		hclgevf_keep_alive(hdev);
2264 
2265 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2266 		hdev->last_serv_processed = jiffies;
2267 		goto out;
2268 	}
2269 
2270 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2271 		hclgevf_tqps_update_stats(handle);
2272 
2273 	/* request the link status from the PF. PF would be able to tell VF
2274 	 * about such updates in future so we might remove this later
2275 	 */
2276 	hclgevf_request_link_info(hdev);
2277 
2278 	hclgevf_update_link_mode(hdev);
2279 
2280 	hclgevf_sync_vlan_filter(hdev);
2281 
2282 	hclgevf_sync_mac_table(hdev);
2283 
2284 	hclgevf_sync_promisc_mode(hdev);
2285 
2286 	hdev->last_serv_processed = jiffies;
2287 
2288 out:
2289 	hclgevf_task_schedule(hdev, delta);
2290 }
2291 
2292 static void hclgevf_service_task(struct work_struct *work)
2293 {
2294 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2295 						service_task.work);
2296 
2297 	hclgevf_reset_service_task(hdev);
2298 	hclgevf_mailbox_service_task(hdev);
2299 	hclgevf_periodic_service_task(hdev);
2300 
2301 	/* Handle reset and mbx again in case periodical task delays the
2302 	 * handling by calling hclgevf_task_schedule() in
2303 	 * hclgevf_periodic_service_task()
2304 	 */
2305 	hclgevf_reset_service_task(hdev);
2306 	hclgevf_mailbox_service_task(hdev);
2307 }
2308 
2309 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2310 {
2311 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2312 }
2313 
2314 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2315 						      u32 *clearval)
2316 {
2317 	u32 val, cmdq_stat_reg, rst_ing_reg;
2318 
2319 	/* fetch the events from their corresponding regs */
2320 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2321 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2322 
2323 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2324 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2325 		dev_info(&hdev->pdev->dev,
2326 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2327 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2328 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2329 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2330 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2331 		hdev->rst_stats.vf_rst_cnt++;
2332 		/* set up VF hardware reset status, its PF will clear
2333 		 * this status when PF has initialized done.
2334 		 */
2335 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2336 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2337 				  val | HCLGEVF_VF_RST_ING_BIT);
2338 		return HCLGEVF_VECTOR0_EVENT_RST;
2339 	}
2340 
2341 	/* check for vector0 mailbox(=CMDQ RX) event source */
2342 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2343 		/* for revision 0x21, clearing interrupt is writing bit 0
2344 		 * to the clear register, writing bit 1 means to keep the
2345 		 * old value.
2346 		 * for revision 0x20, the clear register is a read & write
2347 		 * register, so we should just write 0 to the bit we are
2348 		 * handling, and keep other bits as cmdq_stat_reg.
2349 		 */
2350 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2351 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2352 		else
2353 			*clearval = cmdq_stat_reg &
2354 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2355 
2356 		return HCLGEVF_VECTOR0_EVENT_MBX;
2357 	}
2358 
2359 	/* print other vector0 event source */
2360 	dev_info(&hdev->pdev->dev,
2361 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2362 		 cmdq_stat_reg);
2363 
2364 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2365 }
2366 
2367 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2368 {
2369 	enum hclgevf_evt_cause event_cause;
2370 	struct hclgevf_dev *hdev = data;
2371 	u32 clearval;
2372 
2373 	hclgevf_enable_vector(&hdev->misc_vector, false);
2374 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2375 
2376 	switch (event_cause) {
2377 	case HCLGEVF_VECTOR0_EVENT_RST:
2378 		hclgevf_reset_task_schedule(hdev);
2379 		break;
2380 	case HCLGEVF_VECTOR0_EVENT_MBX:
2381 		hclgevf_mbx_handler(hdev);
2382 		break;
2383 	default:
2384 		break;
2385 	}
2386 
2387 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2388 		hclgevf_clear_event_cause(hdev, clearval);
2389 		hclgevf_enable_vector(&hdev->misc_vector, true);
2390 	}
2391 
2392 	return IRQ_HANDLED;
2393 }
2394 
2395 static int hclgevf_configure(struct hclgevf_dev *hdev)
2396 {
2397 	int ret;
2398 
2399 	/* get current port based vlan state from PF */
2400 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2401 	if (ret)
2402 		return ret;
2403 
2404 	/* get queue configuration from PF */
2405 	ret = hclgevf_get_queue_info(hdev);
2406 	if (ret)
2407 		return ret;
2408 
2409 	/* get queue depth info from PF */
2410 	ret = hclgevf_get_queue_depth(hdev);
2411 	if (ret)
2412 		return ret;
2413 
2414 	ret = hclgevf_get_pf_media_type(hdev);
2415 	if (ret)
2416 		return ret;
2417 
2418 	/* get tc configuration from PF */
2419 	return hclgevf_get_tc_info(hdev);
2420 }
2421 
2422 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2423 {
2424 	struct pci_dev *pdev = ae_dev->pdev;
2425 	struct hclgevf_dev *hdev;
2426 
2427 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2428 	if (!hdev)
2429 		return -ENOMEM;
2430 
2431 	hdev->pdev = pdev;
2432 	hdev->ae_dev = ae_dev;
2433 	ae_dev->priv = hdev;
2434 
2435 	return 0;
2436 }
2437 
2438 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2439 {
2440 	struct hnae3_handle *roce = &hdev->roce;
2441 	struct hnae3_handle *nic = &hdev->nic;
2442 
2443 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2444 
2445 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2446 	    hdev->num_msi_left == 0)
2447 		return -EINVAL;
2448 
2449 	roce->rinfo.base_vector = hdev->roce_base_vector;
2450 
2451 	roce->rinfo.netdev = nic->kinfo.netdev;
2452 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2453 	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2454 
2455 	roce->pdev = nic->pdev;
2456 	roce->ae_algo = nic->ae_algo;
2457 	roce->numa_node_mask = nic->numa_node_mask;
2458 
2459 	return 0;
2460 }
2461 
2462 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2463 {
2464 	struct hclgevf_cfg_gro_status_cmd *req;
2465 	struct hclgevf_desc desc;
2466 	int ret;
2467 
2468 	if (!hnae3_dev_gro_supported(hdev))
2469 		return 0;
2470 
2471 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2472 				     false);
2473 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2474 
2475 	req->gro_en = en ? 1 : 0;
2476 
2477 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2478 	if (ret)
2479 		dev_err(&hdev->pdev->dev,
2480 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2481 
2482 	return ret;
2483 }
2484 
2485 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2486 {
2487 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2488 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2489 	u32 i;
2490 
2491 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2492 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2493 	tuple_sets = &rss_cfg->rss_tuple_sets;
2494 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2495 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2496 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2497 		       HCLGEVF_RSS_KEY_SIZE);
2498 
2499 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2500 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2501 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2502 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2503 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2504 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2505 		tuple_sets->ipv6_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2506 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2507 	}
2508 
2509 	/* Initialize RSS indirect table */
2510 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2511 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2512 }
2513 
2514 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2515 {
2516 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2517 	int ret;
2518 
2519 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2520 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2521 					       rss_cfg->rss_hash_key);
2522 		if (ret)
2523 			return ret;
2524 
2525 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2526 		if (ret)
2527 			return ret;
2528 	}
2529 
2530 	ret = hclgevf_set_rss_indir_table(hdev);
2531 	if (ret)
2532 		return ret;
2533 
2534 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2535 }
2536 
2537 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2538 {
2539 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2540 				       false);
2541 }
2542 
2543 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2544 {
2545 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2546 
2547 	unsigned long last = hdev->serv_processed_cnt;
2548 	int i = 0;
2549 
2550 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2551 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2552 	       last == hdev->serv_processed_cnt)
2553 		usleep_range(1, 1);
2554 }
2555 
2556 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2557 {
2558 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2559 
2560 	if (enable) {
2561 		hclgevf_task_schedule(hdev, 0);
2562 	} else {
2563 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2564 
2565 		/* flush memory to make sure DOWN is seen by service task */
2566 		smp_mb__before_atomic();
2567 		hclgevf_flush_link_update(hdev);
2568 	}
2569 }
2570 
2571 static int hclgevf_ae_start(struct hnae3_handle *handle)
2572 {
2573 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2574 
2575 	hclgevf_reset_tqp_stats(handle);
2576 
2577 	hclgevf_request_link_info(hdev);
2578 
2579 	hclgevf_update_link_mode(hdev);
2580 
2581 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2582 
2583 	return 0;
2584 }
2585 
2586 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2587 {
2588 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2589 	int i;
2590 
2591 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2592 
2593 	if (hdev->reset_type != HNAE3_VF_RESET)
2594 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2595 			if (hclgevf_reset_tqp(handle, i))
2596 				break;
2597 
2598 	hclgevf_reset_tqp_stats(handle);
2599 	hclgevf_update_link_status(hdev, 0);
2600 }
2601 
2602 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2603 {
2604 #define HCLGEVF_STATE_ALIVE	1
2605 #define HCLGEVF_STATE_NOT_ALIVE	0
2606 
2607 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2608 	struct hclge_vf_to_pf_msg send_msg;
2609 
2610 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2611 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2612 				HCLGEVF_STATE_NOT_ALIVE;
2613 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2614 }
2615 
2616 static int hclgevf_client_start(struct hnae3_handle *handle)
2617 {
2618 	return hclgevf_set_alive(handle, true);
2619 }
2620 
2621 static void hclgevf_client_stop(struct hnae3_handle *handle)
2622 {
2623 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2624 	int ret;
2625 
2626 	ret = hclgevf_set_alive(handle, false);
2627 	if (ret)
2628 		dev_warn(&hdev->pdev->dev,
2629 			 "%s failed %d\n", __func__, ret);
2630 }
2631 
2632 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2633 {
2634 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2635 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2636 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2637 
2638 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2639 
2640 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2641 	sema_init(&hdev->reset_sem, 1);
2642 
2643 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2644 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2645 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2646 
2647 	/* bring the device down */
2648 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2649 }
2650 
2651 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2652 {
2653 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2654 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2655 
2656 	if (hdev->service_task.work.func)
2657 		cancel_delayed_work_sync(&hdev->service_task);
2658 
2659 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2660 }
2661 
2662 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2663 {
2664 	struct pci_dev *pdev = hdev->pdev;
2665 	int vectors;
2666 	int i;
2667 
2668 	if (hnae3_dev_roce_supported(hdev))
2669 		vectors = pci_alloc_irq_vectors(pdev,
2670 						hdev->roce_base_msix_offset + 1,
2671 						hdev->num_msi,
2672 						PCI_IRQ_MSIX);
2673 	else
2674 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2675 						hdev->num_msi,
2676 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2677 
2678 	if (vectors < 0) {
2679 		dev_err(&pdev->dev,
2680 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2681 			vectors);
2682 		return vectors;
2683 	}
2684 	if (vectors < hdev->num_msi)
2685 		dev_warn(&hdev->pdev->dev,
2686 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2687 			 hdev->num_msi, vectors);
2688 
2689 	hdev->num_msi = vectors;
2690 	hdev->num_msi_left = vectors;
2691 
2692 	hdev->base_msi_vector = pdev->irq;
2693 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2694 
2695 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2696 					   sizeof(u16), GFP_KERNEL);
2697 	if (!hdev->vector_status) {
2698 		pci_free_irq_vectors(pdev);
2699 		return -ENOMEM;
2700 	}
2701 
2702 	for (i = 0; i < hdev->num_msi; i++)
2703 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2704 
2705 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2706 					sizeof(int), GFP_KERNEL);
2707 	if (!hdev->vector_irq) {
2708 		devm_kfree(&pdev->dev, hdev->vector_status);
2709 		pci_free_irq_vectors(pdev);
2710 		return -ENOMEM;
2711 	}
2712 
2713 	return 0;
2714 }
2715 
2716 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2717 {
2718 	struct pci_dev *pdev = hdev->pdev;
2719 
2720 	devm_kfree(&pdev->dev, hdev->vector_status);
2721 	devm_kfree(&pdev->dev, hdev->vector_irq);
2722 	pci_free_irq_vectors(pdev);
2723 }
2724 
2725 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2726 {
2727 	int ret;
2728 
2729 	hclgevf_get_misc_vector(hdev);
2730 
2731 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2732 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2733 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2734 			  0, hdev->misc_vector.name, hdev);
2735 	if (ret) {
2736 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2737 			hdev->misc_vector.vector_irq);
2738 		return ret;
2739 	}
2740 
2741 	hclgevf_clear_event_cause(hdev, 0);
2742 
2743 	/* enable misc. vector(vector 0) */
2744 	hclgevf_enable_vector(&hdev->misc_vector, true);
2745 
2746 	return ret;
2747 }
2748 
2749 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2750 {
2751 	/* disable misc vector(vector 0) */
2752 	hclgevf_enable_vector(&hdev->misc_vector, false);
2753 	synchronize_irq(hdev->misc_vector.vector_irq);
2754 	free_irq(hdev->misc_vector.vector_irq, hdev);
2755 	hclgevf_free_vector(hdev, 0);
2756 }
2757 
2758 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2759 {
2760 	struct device *dev = &hdev->pdev->dev;
2761 
2762 	dev_info(dev, "VF info begin:\n");
2763 
2764 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2765 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2766 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2767 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2768 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2769 	dev_info(dev, "PF media type of this VF: %u\n",
2770 		 hdev->hw.mac.media_type);
2771 
2772 	dev_info(dev, "VF info end.\n");
2773 }
2774 
2775 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2776 					    struct hnae3_client *client)
2777 {
2778 	struct hclgevf_dev *hdev = ae_dev->priv;
2779 	int rst_cnt = hdev->rst_stats.rst_cnt;
2780 	int ret;
2781 
2782 	ret = client->ops->init_instance(&hdev->nic);
2783 	if (ret)
2784 		return ret;
2785 
2786 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2787 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2788 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2789 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2790 
2791 		client->ops->uninit_instance(&hdev->nic, 0);
2792 		return -EBUSY;
2793 	}
2794 
2795 	hnae3_set_client_init_flag(client, ae_dev, 1);
2796 
2797 	if (netif_msg_drv(&hdev->nic))
2798 		hclgevf_info_show(hdev);
2799 
2800 	return 0;
2801 }
2802 
2803 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2804 					     struct hnae3_client *client)
2805 {
2806 	struct hclgevf_dev *hdev = ae_dev->priv;
2807 	int ret;
2808 
2809 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2810 	    !hdev->nic_client)
2811 		return 0;
2812 
2813 	ret = hclgevf_init_roce_base_info(hdev);
2814 	if (ret)
2815 		return ret;
2816 
2817 	ret = client->ops->init_instance(&hdev->roce);
2818 	if (ret)
2819 		return ret;
2820 
2821 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2822 	hnae3_set_client_init_flag(client, ae_dev, 1);
2823 
2824 	return 0;
2825 }
2826 
2827 static int hclgevf_init_client_instance(struct hnae3_client *client,
2828 					struct hnae3_ae_dev *ae_dev)
2829 {
2830 	struct hclgevf_dev *hdev = ae_dev->priv;
2831 	int ret;
2832 
2833 	switch (client->type) {
2834 	case HNAE3_CLIENT_KNIC:
2835 		hdev->nic_client = client;
2836 		hdev->nic.client = client;
2837 
2838 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2839 		if (ret)
2840 			goto clear_nic;
2841 
2842 		ret = hclgevf_init_roce_client_instance(ae_dev,
2843 							hdev->roce_client);
2844 		if (ret)
2845 			goto clear_roce;
2846 
2847 		break;
2848 	case HNAE3_CLIENT_ROCE:
2849 		if (hnae3_dev_roce_supported(hdev)) {
2850 			hdev->roce_client = client;
2851 			hdev->roce.client = client;
2852 		}
2853 
2854 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2855 		if (ret)
2856 			goto clear_roce;
2857 
2858 		break;
2859 	default:
2860 		return -EINVAL;
2861 	}
2862 
2863 	return 0;
2864 
2865 clear_nic:
2866 	hdev->nic_client = NULL;
2867 	hdev->nic.client = NULL;
2868 	return ret;
2869 clear_roce:
2870 	hdev->roce_client = NULL;
2871 	hdev->roce.client = NULL;
2872 	return ret;
2873 }
2874 
2875 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2876 					   struct hnae3_ae_dev *ae_dev)
2877 {
2878 	struct hclgevf_dev *hdev = ae_dev->priv;
2879 
2880 	/* un-init roce, if it exists */
2881 	if (hdev->roce_client) {
2882 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2883 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2884 		hdev->roce_client = NULL;
2885 		hdev->roce.client = NULL;
2886 	}
2887 
2888 	/* un-init nic/unic, if this was not called by roce client */
2889 	if (client->ops->uninit_instance && hdev->nic_client &&
2890 	    client->type != HNAE3_CLIENT_ROCE) {
2891 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2892 
2893 		client->ops->uninit_instance(&hdev->nic, 0);
2894 		hdev->nic_client = NULL;
2895 		hdev->nic.client = NULL;
2896 	}
2897 }
2898 
2899 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2900 {
2901 #define HCLGEVF_MEM_BAR		4
2902 
2903 	struct pci_dev *pdev = hdev->pdev;
2904 	struct hclgevf_hw *hw = &hdev->hw;
2905 
2906 	/* for device does not have device memory, return directly */
2907 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2908 		return 0;
2909 
2910 	hw->mem_base = devm_ioremap_wc(&pdev->dev,
2911 				       pci_resource_start(pdev,
2912 							  HCLGEVF_MEM_BAR),
2913 				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2914 	if (!hw->mem_base) {
2915 		dev_err(&pdev->dev, "failed to map device memory\n");
2916 		return -EFAULT;
2917 	}
2918 
2919 	return 0;
2920 }
2921 
2922 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2923 {
2924 	struct pci_dev *pdev = hdev->pdev;
2925 	struct hclgevf_hw *hw;
2926 	int ret;
2927 
2928 	ret = pci_enable_device(pdev);
2929 	if (ret) {
2930 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2931 		return ret;
2932 	}
2933 
2934 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2935 	if (ret) {
2936 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2937 		goto err_disable_device;
2938 	}
2939 
2940 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2941 	if (ret) {
2942 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2943 		goto err_disable_device;
2944 	}
2945 
2946 	pci_set_master(pdev);
2947 	hw = &hdev->hw;
2948 	hw->hdev = hdev;
2949 	hw->io_base = pci_iomap(pdev, 2, 0);
2950 	if (!hw->io_base) {
2951 		dev_err(&pdev->dev, "can't map configuration register space\n");
2952 		ret = -ENOMEM;
2953 		goto err_clr_master;
2954 	}
2955 
2956 	ret = hclgevf_dev_mem_map(hdev);
2957 	if (ret)
2958 		goto err_unmap_io_base;
2959 
2960 	return 0;
2961 
2962 err_unmap_io_base:
2963 	pci_iounmap(pdev, hdev->hw.io_base);
2964 err_clr_master:
2965 	pci_clear_master(pdev);
2966 	pci_release_regions(pdev);
2967 err_disable_device:
2968 	pci_disable_device(pdev);
2969 
2970 	return ret;
2971 }
2972 
2973 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2974 {
2975 	struct pci_dev *pdev = hdev->pdev;
2976 
2977 	if (hdev->hw.mem_base)
2978 		devm_iounmap(&pdev->dev, hdev->hw.mem_base);
2979 
2980 	pci_iounmap(pdev, hdev->hw.io_base);
2981 	pci_clear_master(pdev);
2982 	pci_release_regions(pdev);
2983 	pci_disable_device(pdev);
2984 }
2985 
2986 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2987 {
2988 	struct hclgevf_query_res_cmd *req;
2989 	struct hclgevf_desc desc;
2990 	int ret;
2991 
2992 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2993 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2994 	if (ret) {
2995 		dev_err(&hdev->pdev->dev,
2996 			"query vf resource failed, ret = %d.\n", ret);
2997 		return ret;
2998 	}
2999 
3000 	req = (struct hclgevf_query_res_cmd *)desc.data;
3001 
3002 	if (hnae3_dev_roce_supported(hdev)) {
3003 		hdev->roce_base_msix_offset =
3004 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3005 				HCLGEVF_MSIX_OFT_ROCEE_M,
3006 				HCLGEVF_MSIX_OFT_ROCEE_S);
3007 		hdev->num_roce_msix =
3008 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3009 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3010 
3011 		/* nic's msix numbers is always equals to the roce's. */
3012 		hdev->num_nic_msix = hdev->num_roce_msix;
3013 
3014 		/* VF should have NIC vectors and Roce vectors, NIC vectors
3015 		 * are queued before Roce vectors. The offset is fixed to 64.
3016 		 */
3017 		hdev->num_msi = hdev->num_roce_msix +
3018 				hdev->roce_base_msix_offset;
3019 	} else {
3020 		hdev->num_msi =
3021 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3022 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3023 
3024 		hdev->num_nic_msix = hdev->num_msi;
3025 	}
3026 
3027 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3028 		dev_err(&hdev->pdev->dev,
3029 			"Just %u msi resources, not enough for vf(min:2).\n",
3030 			hdev->num_nic_msix);
3031 		return -EINVAL;
3032 	}
3033 
3034 	return 0;
3035 }
3036 
3037 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3038 {
3039 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3040 
3041 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3042 
3043 	ae_dev->dev_specs.max_non_tso_bd_num =
3044 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3045 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3046 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3047 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3048 }
3049 
3050 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3051 				    struct hclgevf_desc *desc)
3052 {
3053 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3054 	struct hclgevf_dev_specs_0_cmd *req0;
3055 	struct hclgevf_dev_specs_1_cmd *req1;
3056 
3057 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3058 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3059 
3060 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3061 	ae_dev->dev_specs.rss_ind_tbl_size =
3062 					le16_to_cpu(req0->rss_ind_tbl_size);
3063 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3064 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3065 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3066 }
3067 
3068 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3069 {
3070 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3071 
3072 	if (!dev_specs->max_non_tso_bd_num)
3073 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3074 	if (!dev_specs->rss_ind_tbl_size)
3075 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3076 	if (!dev_specs->rss_key_size)
3077 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3078 	if (!dev_specs->max_int_gl)
3079 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3080 }
3081 
3082 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3083 {
3084 	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3085 	int ret;
3086 	int i;
3087 
3088 	/* set default specifications as devices lower than version V3 do not
3089 	 * support querying specifications from firmware.
3090 	 */
3091 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3092 		hclgevf_set_default_dev_specs(hdev);
3093 		return 0;
3094 	}
3095 
3096 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3097 		hclgevf_cmd_setup_basic_desc(&desc[i],
3098 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3099 		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3100 	}
3101 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3102 				     true);
3103 
3104 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3105 	if (ret)
3106 		return ret;
3107 
3108 	hclgevf_parse_dev_specs(hdev, desc);
3109 	hclgevf_check_dev_specs(hdev);
3110 
3111 	return 0;
3112 }
3113 
3114 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3115 {
3116 	struct pci_dev *pdev = hdev->pdev;
3117 	int ret = 0;
3118 
3119 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3120 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3121 		hclgevf_misc_irq_uninit(hdev);
3122 		hclgevf_uninit_msi(hdev);
3123 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3124 	}
3125 
3126 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3127 		pci_set_master(pdev);
3128 		ret = hclgevf_init_msi(hdev);
3129 		if (ret) {
3130 			dev_err(&pdev->dev,
3131 				"failed(%d) to init MSI/MSI-X\n", ret);
3132 			return ret;
3133 		}
3134 
3135 		ret = hclgevf_misc_irq_init(hdev);
3136 		if (ret) {
3137 			hclgevf_uninit_msi(hdev);
3138 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3139 				ret);
3140 			return ret;
3141 		}
3142 
3143 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3144 	}
3145 
3146 	return ret;
3147 }
3148 
3149 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3150 {
3151 	struct hclge_vf_to_pf_msg send_msg;
3152 
3153 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3154 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3155 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3156 }
3157 
3158 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3159 {
3160 	struct pci_dev *pdev = hdev->pdev;
3161 	int ret;
3162 
3163 	ret = hclgevf_pci_reset(hdev);
3164 	if (ret) {
3165 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3166 		return ret;
3167 	}
3168 
3169 	ret = hclgevf_cmd_init(hdev);
3170 	if (ret) {
3171 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3172 		return ret;
3173 	}
3174 
3175 	ret = hclgevf_rss_init_hw(hdev);
3176 	if (ret) {
3177 		dev_err(&hdev->pdev->dev,
3178 			"failed(%d) to initialize RSS\n", ret);
3179 		return ret;
3180 	}
3181 
3182 	ret = hclgevf_config_gro(hdev, true);
3183 	if (ret)
3184 		return ret;
3185 
3186 	ret = hclgevf_init_vlan_config(hdev);
3187 	if (ret) {
3188 		dev_err(&hdev->pdev->dev,
3189 			"failed(%d) to initialize VLAN config\n", ret);
3190 		return ret;
3191 	}
3192 
3193 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3194 
3195 	dev_info(&hdev->pdev->dev, "Reset done\n");
3196 
3197 	return 0;
3198 }
3199 
3200 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3201 {
3202 	struct pci_dev *pdev = hdev->pdev;
3203 	int ret;
3204 
3205 	ret = hclgevf_pci_init(hdev);
3206 	if (ret)
3207 		return ret;
3208 
3209 	ret = hclgevf_cmd_queue_init(hdev);
3210 	if (ret)
3211 		goto err_cmd_queue_init;
3212 
3213 	ret = hclgevf_cmd_init(hdev);
3214 	if (ret)
3215 		goto err_cmd_init;
3216 
3217 	/* Get vf resource */
3218 	ret = hclgevf_query_vf_resource(hdev);
3219 	if (ret)
3220 		goto err_cmd_init;
3221 
3222 	ret = hclgevf_query_dev_specs(hdev);
3223 	if (ret) {
3224 		dev_err(&pdev->dev,
3225 			"failed to query dev specifications, ret = %d\n", ret);
3226 		goto err_cmd_init;
3227 	}
3228 
3229 	ret = hclgevf_init_msi(hdev);
3230 	if (ret) {
3231 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3232 		goto err_cmd_init;
3233 	}
3234 
3235 	hclgevf_state_init(hdev);
3236 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3237 	hdev->reset_type = HNAE3_NONE_RESET;
3238 
3239 	ret = hclgevf_misc_irq_init(hdev);
3240 	if (ret)
3241 		goto err_misc_irq_init;
3242 
3243 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3244 
3245 	ret = hclgevf_configure(hdev);
3246 	if (ret) {
3247 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3248 		goto err_config;
3249 	}
3250 
3251 	ret = hclgevf_alloc_tqps(hdev);
3252 	if (ret) {
3253 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3254 		goto err_config;
3255 	}
3256 
3257 	ret = hclgevf_set_handle_info(hdev);
3258 	if (ret)
3259 		goto err_config;
3260 
3261 	ret = hclgevf_config_gro(hdev, true);
3262 	if (ret)
3263 		goto err_config;
3264 
3265 	/* Initialize RSS for this VF */
3266 	hclgevf_rss_init_cfg(hdev);
3267 	ret = hclgevf_rss_init_hw(hdev);
3268 	if (ret) {
3269 		dev_err(&hdev->pdev->dev,
3270 			"failed(%d) to initialize RSS\n", ret);
3271 		goto err_config;
3272 	}
3273 
3274 	/* ensure vf tbl list as empty before init*/
3275 	ret = hclgevf_clear_vport_list(hdev);
3276 	if (ret) {
3277 		dev_err(&pdev->dev,
3278 			"failed to clear tbl list configuration, ret = %d.\n",
3279 			ret);
3280 		goto err_config;
3281 	}
3282 
3283 	ret = hclgevf_init_vlan_config(hdev);
3284 	if (ret) {
3285 		dev_err(&hdev->pdev->dev,
3286 			"failed(%d) to initialize VLAN config\n", ret);
3287 		goto err_config;
3288 	}
3289 
3290 	hdev->last_reset_time = jiffies;
3291 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3292 		 HCLGEVF_DRIVER_NAME);
3293 
3294 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3295 
3296 	return 0;
3297 
3298 err_config:
3299 	hclgevf_misc_irq_uninit(hdev);
3300 err_misc_irq_init:
3301 	hclgevf_state_uninit(hdev);
3302 	hclgevf_uninit_msi(hdev);
3303 err_cmd_init:
3304 	hclgevf_cmd_uninit(hdev);
3305 err_cmd_queue_init:
3306 	hclgevf_pci_uninit(hdev);
3307 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3308 	return ret;
3309 }
3310 
3311 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3312 {
3313 	struct hclge_vf_to_pf_msg send_msg;
3314 
3315 	hclgevf_state_uninit(hdev);
3316 
3317 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3318 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3319 
3320 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3321 		hclgevf_misc_irq_uninit(hdev);
3322 		hclgevf_uninit_msi(hdev);
3323 	}
3324 
3325 	hclgevf_cmd_uninit(hdev);
3326 	hclgevf_pci_uninit(hdev);
3327 	hclgevf_uninit_mac_list(hdev);
3328 }
3329 
3330 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3331 {
3332 	struct pci_dev *pdev = ae_dev->pdev;
3333 	int ret;
3334 
3335 	ret = hclgevf_alloc_hdev(ae_dev);
3336 	if (ret) {
3337 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3338 		return ret;
3339 	}
3340 
3341 	ret = hclgevf_init_hdev(ae_dev->priv);
3342 	if (ret) {
3343 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3344 		return ret;
3345 	}
3346 
3347 	return 0;
3348 }
3349 
3350 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3351 {
3352 	struct hclgevf_dev *hdev = ae_dev->priv;
3353 
3354 	hclgevf_uninit_hdev(hdev);
3355 	ae_dev->priv = NULL;
3356 }
3357 
3358 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3359 {
3360 	struct hnae3_handle *nic = &hdev->nic;
3361 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3362 
3363 	return min_t(u32, hdev->rss_size_max,
3364 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3365 }
3366 
3367 /**
3368  * hclgevf_get_channels - Get the current channels enabled and max supported.
3369  * @handle: hardware information for network interface
3370  * @ch: ethtool channels structure
3371  *
3372  * We don't support separate tx and rx queues as channels. The other count
3373  * represents how many queues are being used for control. max_combined counts
3374  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3375  * q_vectors since we support a lot more queue pairs than q_vectors.
3376  **/
3377 static void hclgevf_get_channels(struct hnae3_handle *handle,
3378 				 struct ethtool_channels *ch)
3379 {
3380 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3381 
3382 	ch->max_combined = hclgevf_get_max_channels(hdev);
3383 	ch->other_count = 0;
3384 	ch->max_other = 0;
3385 	ch->combined_count = handle->kinfo.rss_size;
3386 }
3387 
3388 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3389 					  u16 *alloc_tqps, u16 *max_rss_size)
3390 {
3391 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3392 
3393 	*alloc_tqps = hdev->num_tqps;
3394 	*max_rss_size = hdev->rss_size_max;
3395 }
3396 
3397 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3398 				    u32 new_tqps_num)
3399 {
3400 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3401 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3402 	u16 max_rss_size;
3403 
3404 	kinfo->req_rss_size = new_tqps_num;
3405 
3406 	max_rss_size = min_t(u16, hdev->rss_size_max,
3407 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3408 
3409 	/* Use the user's configuration when it is not larger than
3410 	 * max_rss_size, otherwise, use the maximum specification value.
3411 	 */
3412 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3413 	    kinfo->req_rss_size <= max_rss_size)
3414 		kinfo->rss_size = kinfo->req_rss_size;
3415 	else if (kinfo->rss_size > max_rss_size ||
3416 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3417 		kinfo->rss_size = max_rss_size;
3418 
3419 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3420 }
3421 
3422 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3423 				bool rxfh_configured)
3424 {
3425 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3426 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3427 	u16 cur_rss_size = kinfo->rss_size;
3428 	u16 cur_tqps = kinfo->num_tqps;
3429 	u32 *rss_indir;
3430 	unsigned int i;
3431 	int ret;
3432 
3433 	hclgevf_update_rss_size(handle, new_tqps_num);
3434 
3435 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3436 	if (ret)
3437 		return ret;
3438 
3439 	/* RSS indirection table has been configuared by user */
3440 	if (rxfh_configured)
3441 		goto out;
3442 
3443 	/* Reinitializes the rss indirect table according to the new RSS size */
3444 	rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL);
3445 	if (!rss_indir)
3446 		return -ENOMEM;
3447 
3448 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
3449 		rss_indir[i] = i % kinfo->rss_size;
3450 
3451 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3452 
3453 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3454 	if (ret)
3455 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3456 			ret);
3457 
3458 	kfree(rss_indir);
3459 
3460 out:
3461 	if (!ret)
3462 		dev_info(&hdev->pdev->dev,
3463 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3464 			 cur_rss_size, kinfo->rss_size,
3465 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3466 
3467 	return ret;
3468 }
3469 
3470 static int hclgevf_get_status(struct hnae3_handle *handle)
3471 {
3472 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3473 
3474 	return hdev->hw.mac.link;
3475 }
3476 
3477 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3478 					    u8 *auto_neg, u32 *speed,
3479 					    u8 *duplex)
3480 {
3481 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3482 
3483 	if (speed)
3484 		*speed = hdev->hw.mac.speed;
3485 	if (duplex)
3486 		*duplex = hdev->hw.mac.duplex;
3487 	if (auto_neg)
3488 		*auto_neg = AUTONEG_DISABLE;
3489 }
3490 
3491 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3492 				 u8 duplex)
3493 {
3494 	hdev->hw.mac.speed = speed;
3495 	hdev->hw.mac.duplex = duplex;
3496 }
3497 
3498 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3499 {
3500 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3501 
3502 	return hclgevf_config_gro(hdev, enable);
3503 }
3504 
3505 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3506 				   u8 *module_type)
3507 {
3508 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3509 
3510 	if (media_type)
3511 		*media_type = hdev->hw.mac.media_type;
3512 
3513 	if (module_type)
3514 		*module_type = hdev->hw.mac.module_type;
3515 }
3516 
3517 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3518 {
3519 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3520 
3521 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3522 }
3523 
3524 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3525 {
3526 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3527 
3528 	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3529 }
3530 
3531 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3532 {
3533 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3534 
3535 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3536 }
3537 
3538 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3539 {
3540 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3541 
3542 	return hdev->rst_stats.hw_rst_done_cnt;
3543 }
3544 
3545 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3546 				  unsigned long *supported,
3547 				  unsigned long *advertising)
3548 {
3549 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3550 
3551 	*supported = hdev->hw.mac.supported;
3552 	*advertising = hdev->hw.mac.advertising;
3553 }
3554 
3555 #define MAX_SEPARATE_NUM	4
3556 #define SEPARATOR_VALUE		0xFFFFFFFF
3557 #define REG_NUM_PER_LINE	4
3558 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3559 
3560 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3561 {
3562 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3563 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3564 
3565 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3566 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3567 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3568 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3569 
3570 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3571 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3572 }
3573 
3574 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3575 			     void *data)
3576 {
3577 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3578 	int i, j, reg_um, separator_num;
3579 	u32 *reg = data;
3580 
3581 	*version = hdev->fw_version;
3582 
3583 	/* fetching per-VF registers values from VF PCIe register space */
3584 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3585 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3586 	for (i = 0; i < reg_um; i++)
3587 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3588 	for (i = 0; i < separator_num; i++)
3589 		*reg++ = SEPARATOR_VALUE;
3590 
3591 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3592 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3593 	for (i = 0; i < reg_um; i++)
3594 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3595 	for (i = 0; i < separator_num; i++)
3596 		*reg++ = SEPARATOR_VALUE;
3597 
3598 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3599 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3600 	for (j = 0; j < hdev->num_tqps; j++) {
3601 		for (i = 0; i < reg_um; i++)
3602 			*reg++ = hclgevf_read_dev(&hdev->hw,
3603 						  ring_reg_addr_list[i] +
3604 						  0x200 * j);
3605 		for (i = 0; i < separator_num; i++)
3606 			*reg++ = SEPARATOR_VALUE;
3607 	}
3608 
3609 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3610 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3611 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3612 		for (i = 0; i < reg_um; i++)
3613 			*reg++ = hclgevf_read_dev(&hdev->hw,
3614 						  tqp_intr_reg_addr_list[i] +
3615 						  4 * j);
3616 		for (i = 0; i < separator_num; i++)
3617 			*reg++ = SEPARATOR_VALUE;
3618 	}
3619 }
3620 
3621 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3622 					u8 *port_base_vlan_info, u8 data_size)
3623 {
3624 	struct hnae3_handle *nic = &hdev->nic;
3625 	struct hclge_vf_to_pf_msg send_msg;
3626 	int ret;
3627 
3628 	rtnl_lock();
3629 
3630 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3631 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3632 		dev_warn(&hdev->pdev->dev,
3633 			 "is resetting when updating port based vlan info\n");
3634 		rtnl_unlock();
3635 		return;
3636 	}
3637 
3638 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3639 	if (ret) {
3640 		rtnl_unlock();
3641 		return;
3642 	}
3643 
3644 	/* send msg to PF and wait update port based vlan info */
3645 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3646 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3647 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3648 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3649 	if (!ret) {
3650 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3651 			nic->port_base_vlan_state = state;
3652 		else
3653 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3654 	}
3655 
3656 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3657 	rtnl_unlock();
3658 }
3659 
3660 static const struct hnae3_ae_ops hclgevf_ops = {
3661 	.init_ae_dev = hclgevf_init_ae_dev,
3662 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3663 	.flr_prepare = hclgevf_flr_prepare,
3664 	.flr_done = hclgevf_flr_done,
3665 	.init_client_instance = hclgevf_init_client_instance,
3666 	.uninit_client_instance = hclgevf_uninit_client_instance,
3667 	.start = hclgevf_ae_start,
3668 	.stop = hclgevf_ae_stop,
3669 	.client_start = hclgevf_client_start,
3670 	.client_stop = hclgevf_client_stop,
3671 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3672 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3673 	.get_vector = hclgevf_get_vector,
3674 	.put_vector = hclgevf_put_vector,
3675 	.reset_queue = hclgevf_reset_tqp,
3676 	.get_mac_addr = hclgevf_get_mac_addr,
3677 	.set_mac_addr = hclgevf_set_mac_addr,
3678 	.add_uc_addr = hclgevf_add_uc_addr,
3679 	.rm_uc_addr = hclgevf_rm_uc_addr,
3680 	.add_mc_addr = hclgevf_add_mc_addr,
3681 	.rm_mc_addr = hclgevf_rm_mc_addr,
3682 	.get_stats = hclgevf_get_stats,
3683 	.update_stats = hclgevf_update_stats,
3684 	.get_strings = hclgevf_get_strings,
3685 	.get_sset_count = hclgevf_get_sset_count,
3686 	.get_rss_key_size = hclgevf_get_rss_key_size,
3687 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
3688 	.get_rss = hclgevf_get_rss,
3689 	.set_rss = hclgevf_set_rss,
3690 	.get_rss_tuple = hclgevf_get_rss_tuple,
3691 	.set_rss_tuple = hclgevf_set_rss_tuple,
3692 	.get_tc_size = hclgevf_get_tc_size,
3693 	.get_fw_version = hclgevf_get_fw_version,
3694 	.set_vlan_filter = hclgevf_set_vlan_filter,
3695 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3696 	.reset_event = hclgevf_reset_event,
3697 	.set_default_reset_request = hclgevf_set_def_reset_request,
3698 	.set_channels = hclgevf_set_channels,
3699 	.get_channels = hclgevf_get_channels,
3700 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3701 	.get_regs_len = hclgevf_get_regs_len,
3702 	.get_regs = hclgevf_get_regs,
3703 	.get_status = hclgevf_get_status,
3704 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3705 	.get_media_type = hclgevf_get_media_type,
3706 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3707 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3708 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3709 	.set_gro_en = hclgevf_gro_en,
3710 	.set_mtu = hclgevf_set_mtu,
3711 	.get_global_queue_id = hclgevf_get_qid_global,
3712 	.set_timer_task = hclgevf_set_timer_task,
3713 	.get_link_mode = hclgevf_get_link_mode,
3714 	.set_promisc_mode = hclgevf_set_promisc_mode,
3715 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3716 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3717 };
3718 
3719 static struct hnae3_ae_algo ae_algovf = {
3720 	.ops = &hclgevf_ops,
3721 	.pdev_id_table = ae_algovf_pci_tbl,
3722 };
3723 
3724 static int hclgevf_init(void)
3725 {
3726 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3727 
3728 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3729 	if (!hclgevf_wq) {
3730 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3731 		return -ENOMEM;
3732 	}
3733 
3734 	hnae3_register_ae_algo(&ae_algovf);
3735 
3736 	return 0;
3737 }
3738 
3739 static void hclgevf_exit(void)
3740 {
3741 	hnae3_unregister_ae_algo(&ae_algovf);
3742 	destroy_workqueue(hclgevf_wq);
3743 }
3744 module_init(hclgevf_init);
3745 module_exit(hclgevf_exit);
3746 
3747 MODULE_LICENSE("GPL");
3748 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3749 MODULE_DESCRIPTION("HCLGEVF Driver");
3750 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3751