1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <net/rtnetlink.h>
6 #include "hclgevf_cmd.h"
7 #include "hclgevf_main.h"
8 #include "hclge_mbx.h"
9 #include "hnae3.h"
10 
11 #define HCLGEVF_NAME	"hclgevf"
12 
13 static int hclgevf_init_hdev(struct hclgevf_dev *hdev);
14 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
27 	struct hnae3_handle *handle)
28 {
29 	return container_of(handle, struct hclgevf_dev, nic);
30 }
31 
32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
33 {
34 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
35 	struct hnae3_queue *queue;
36 	struct hclgevf_desc desc;
37 	struct hclgevf_tqp *tqp;
38 	int status;
39 	int i;
40 
41 	for (i = 0; i < hdev->num_tqps; i++) {
42 		queue = handle->kinfo.tqp[i];
43 		tqp = container_of(queue, struct hclgevf_tqp, q);
44 		hclgevf_cmd_setup_basic_desc(&desc,
45 					     HCLGEVF_OPC_QUERY_RX_STATUS,
46 					     true);
47 
48 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
49 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
50 		if (status) {
51 			dev_err(&hdev->pdev->dev,
52 				"Query tqp stat fail, status = %d,queue = %d\n",
53 				status,	i);
54 			return status;
55 		}
56 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
57 			le32_to_cpu(desc.data[1]);
58 
59 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
60 					     true);
61 
62 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
63 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
64 		if (status) {
65 			dev_err(&hdev->pdev->dev,
66 				"Query tqp stat fail, status = %d,queue = %d\n",
67 				status, i);
68 			return status;
69 		}
70 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
71 			le32_to_cpu(desc.data[1]);
72 	}
73 
74 	return 0;
75 }
76 
77 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
78 {
79 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
80 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
81 	struct hclgevf_tqp *tqp;
82 	u64 *buff = data;
83 	int i;
84 
85 	for (i = 0; i < hdev->num_tqps; i++) {
86 		tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
87 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
88 	}
89 	for (i = 0; i < kinfo->num_tqps; i++) {
90 		tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
91 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
92 	}
93 
94 	return buff;
95 }
96 
97 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
98 {
99 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
100 
101 	return hdev->num_tqps * 2;
102 }
103 
104 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
105 {
106 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
107 	u8 *buff = data;
108 	int i = 0;
109 
110 	for (i = 0; i < hdev->num_tqps; i++) {
111 		struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
112 			struct hclgevf_tqp, q);
113 		snprintf(buff, ETH_GSTRING_LEN, "txq#%d_pktnum_rcd",
114 			 tqp->index);
115 		buff += ETH_GSTRING_LEN;
116 	}
117 
118 	for (i = 0; i < hdev->num_tqps; i++) {
119 		struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
120 			struct hclgevf_tqp, q);
121 		snprintf(buff, ETH_GSTRING_LEN, "rxq#%d_pktnum_rcd",
122 			 tqp->index);
123 		buff += ETH_GSTRING_LEN;
124 	}
125 
126 	return buff;
127 }
128 
129 static void hclgevf_update_stats(struct hnae3_handle *handle,
130 				 struct net_device_stats *net_stats)
131 {
132 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
133 	int status;
134 
135 	status = hclgevf_tqps_update_stats(handle);
136 	if (status)
137 		dev_err(&hdev->pdev->dev,
138 			"VF update of TQPS stats fail, status = %d.\n",
139 			status);
140 }
141 
142 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
143 {
144 	if (strset == ETH_SS_TEST)
145 		return -EOPNOTSUPP;
146 	else if (strset == ETH_SS_STATS)
147 		return hclgevf_tqps_get_sset_count(handle, strset);
148 
149 	return 0;
150 }
151 
152 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
153 				u8 *data)
154 {
155 	u8 *p = (char *)data;
156 
157 	if (strset == ETH_SS_STATS)
158 		p = hclgevf_tqps_get_strings(handle, p);
159 }
160 
161 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
162 {
163 	hclgevf_tqps_get_stats(handle, data);
164 }
165 
166 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
167 {
168 	u8 resp_msg;
169 	int status;
170 
171 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
172 				      true, &resp_msg, sizeof(u8));
173 	if (status) {
174 		dev_err(&hdev->pdev->dev,
175 			"VF request to get TC info from PF failed %d",
176 			status);
177 		return status;
178 	}
179 
180 	hdev->hw_tc_map = resp_msg;
181 
182 	return 0;
183 }
184 
185 static int hclge_get_queue_info(struct hclgevf_dev *hdev)
186 {
187 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
188 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
189 	int status;
190 
191 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
192 				      true, resp_msg,
193 				      HCLGEVF_TQPS_RSS_INFO_LEN);
194 	if (status) {
195 		dev_err(&hdev->pdev->dev,
196 			"VF request to get tqp info from PF failed %d",
197 			status);
198 		return status;
199 	}
200 
201 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
202 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
203 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
204 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
205 
206 	return 0;
207 }
208 
209 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
210 {
211 	struct hclgevf_tqp *tqp;
212 	int i;
213 
214 	/* if this is on going reset then we need to re-allocate the TPQs
215 	 * since we cannot assume we would get same number of TPQs back from PF
216 	 */
217 	if (hclgevf_dev_ongoing_reset(hdev))
218 		devm_kfree(&hdev->pdev->dev, hdev->htqp);
219 
220 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
221 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
222 	if (!hdev->htqp)
223 		return -ENOMEM;
224 
225 	tqp = hdev->htqp;
226 
227 	for (i = 0; i < hdev->num_tqps; i++) {
228 		tqp->dev = &hdev->pdev->dev;
229 		tqp->index = i;
230 
231 		tqp->q.ae_algo = &ae_algovf;
232 		tqp->q.buf_size = hdev->rx_buf_len;
233 		tqp->q.desc_num = hdev->num_desc;
234 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
235 			i * HCLGEVF_TQP_REG_SIZE;
236 
237 		tqp++;
238 	}
239 
240 	return 0;
241 }
242 
243 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
244 {
245 	struct hnae3_handle *nic = &hdev->nic;
246 	struct hnae3_knic_private_info *kinfo;
247 	u16 new_tqps = hdev->num_tqps;
248 	int i;
249 
250 	kinfo = &nic->kinfo;
251 	kinfo->num_tc = 0;
252 	kinfo->num_desc = hdev->num_desc;
253 	kinfo->rx_buf_len = hdev->rx_buf_len;
254 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
255 		if (hdev->hw_tc_map & BIT(i))
256 			kinfo->num_tc++;
257 
258 	kinfo->rss_size
259 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
260 	new_tqps = kinfo->rss_size * kinfo->num_tc;
261 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
262 
263 	/* if this is on going reset then we need to re-allocate the hnae queues
264 	 * as well since number of TPQs from PF might have changed.
265 	 */
266 	if (hclgevf_dev_ongoing_reset(hdev))
267 		devm_kfree(&hdev->pdev->dev, kinfo->tqp);
268 
269 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
270 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
271 	if (!kinfo->tqp)
272 		return -ENOMEM;
273 
274 	for (i = 0; i < kinfo->num_tqps; i++) {
275 		hdev->htqp[i].q.handle = &hdev->nic;
276 		hdev->htqp[i].q.tqp_index = i;
277 		kinfo->tqp[i] = &hdev->htqp[i].q;
278 	}
279 
280 	return 0;
281 }
282 
283 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
284 {
285 	int status;
286 	u8 resp_msg;
287 
288 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
289 				      0, false, &resp_msg, sizeof(u8));
290 	if (status)
291 		dev_err(&hdev->pdev->dev,
292 			"VF failed to fetch link status(%d) from PF", status);
293 }
294 
295 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
296 {
297 	struct hnae3_handle *handle = &hdev->nic;
298 	struct hnae3_client *client;
299 
300 	client = handle->client;
301 
302 	if (link_state != hdev->hw.mac.link) {
303 		client->ops->link_status_change(handle, !!link_state);
304 		hdev->hw.mac.link = link_state;
305 	}
306 }
307 
308 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
309 {
310 	struct hnae3_handle *nic = &hdev->nic;
311 	int ret;
312 
313 	nic->ae_algo = &ae_algovf;
314 	nic->pdev = hdev->pdev;
315 	nic->numa_node_mask = hdev->numa_node_mask;
316 	nic->flags |= HNAE3_SUPPORT_VF;
317 
318 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
319 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
320 			hdev->ae_dev->dev_type);
321 		return -EINVAL;
322 	}
323 
324 	ret = hclgevf_knic_setup(hdev);
325 	if (ret)
326 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
327 			ret);
328 	return ret;
329 }
330 
331 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
332 {
333 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
334 		dev_warn(&hdev->pdev->dev,
335 			 "vector(vector_id %d) has been freed.\n", vector_id);
336 		return;
337 	}
338 
339 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
340 	hdev->num_msi_left += 1;
341 	hdev->num_msi_used -= 1;
342 }
343 
344 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
345 			      struct hnae3_vector_info *vector_info)
346 {
347 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
348 	struct hnae3_vector_info *vector = vector_info;
349 	int alloc = 0;
350 	int i, j;
351 
352 	vector_num = min(hdev->num_msi_left, vector_num);
353 
354 	for (j = 0; j < vector_num; j++) {
355 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
356 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
357 				vector->vector = pci_irq_vector(hdev->pdev, i);
358 				vector->io_addr = hdev->hw.io_base +
359 					HCLGEVF_VECTOR_REG_BASE +
360 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
361 				hdev->vector_status[i] = 0;
362 				hdev->vector_irq[i] = vector->vector;
363 
364 				vector++;
365 				alloc++;
366 
367 				break;
368 			}
369 		}
370 	}
371 	hdev->num_msi_left -= alloc;
372 	hdev->num_msi_used += alloc;
373 
374 	return alloc;
375 }
376 
377 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
378 {
379 	int i;
380 
381 	for (i = 0; i < hdev->num_msi; i++)
382 		if (vector == hdev->vector_irq[i])
383 			return i;
384 
385 	return -EINVAL;
386 }
387 
388 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
389 {
390 	return HCLGEVF_RSS_KEY_SIZE;
391 }
392 
393 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
394 {
395 	return HCLGEVF_RSS_IND_TBL_SIZE;
396 }
397 
398 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
399 {
400 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
401 	struct hclgevf_rss_indirection_table_cmd *req;
402 	struct hclgevf_desc desc;
403 	int status;
404 	int i, j;
405 
406 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
407 
408 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
409 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
410 					     false);
411 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
412 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
413 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
414 			req->rss_result[j] =
415 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
416 
417 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
418 		if (status) {
419 			dev_err(&hdev->pdev->dev,
420 				"VF failed(=%d) to set RSS indirection table\n",
421 				status);
422 			return status;
423 		}
424 	}
425 
426 	return 0;
427 }
428 
429 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
430 {
431 	struct hclgevf_rss_tc_mode_cmd *req;
432 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
433 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
434 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
435 	struct hclgevf_desc desc;
436 	u16 roundup_size;
437 	int status;
438 	int i;
439 
440 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
441 
442 	roundup_size = roundup_pow_of_two(rss_size);
443 	roundup_size = ilog2(roundup_size);
444 
445 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
446 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
447 		tc_size[i] = roundup_size;
448 		tc_offset[i] = rss_size * i;
449 	}
450 
451 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
452 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
453 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
454 			      (tc_valid[i] & 0x1));
455 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
456 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
457 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
458 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
459 	}
460 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
461 	if (status)
462 		dev_err(&hdev->pdev->dev,
463 			"VF failed(=%d) to set rss tc mode\n", status);
464 
465 	return status;
466 }
467 
468 static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash,
469 				  u8 *key)
470 {
471 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
472 	struct hclgevf_rss_config_cmd *req;
473 	int lkup_times = key ? 3 : 1;
474 	struct hclgevf_desc desc;
475 	int key_offset;
476 	int key_size;
477 	int status;
478 
479 	req = (struct hclgevf_rss_config_cmd *)desc.data;
480 	lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0);
481 
482 	for (key_offset = 0; key_offset < lkup_times; key_offset++) {
483 		hclgevf_cmd_setup_basic_desc(&desc,
484 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
485 					     true);
486 		req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET);
487 
488 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
489 		if (status) {
490 			dev_err(&hdev->pdev->dev,
491 				"failed to get hardware RSS cfg, status = %d\n",
492 				status);
493 			return status;
494 		}
495 
496 		if (key_offset == 2)
497 			key_size =
498 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
499 		else
500 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
501 
502 		if (key)
503 			memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM,
504 			       req->hash_key,
505 			       key_size);
506 	}
507 
508 	if (hash) {
509 		if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ)
510 			*hash = ETH_RSS_HASH_TOP;
511 		else
512 			*hash = ETH_RSS_HASH_UNKNOWN;
513 	}
514 
515 	return 0;
516 }
517 
518 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
519 			   u8 *hfunc)
520 {
521 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
522 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
523 	int i;
524 
525 	if (indir)
526 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
527 			indir[i] = rss_cfg->rss_indirection_tbl[i];
528 
529 	return hclgevf_get_rss_hw_cfg(handle, hfunc, key);
530 }
531 
532 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
533 			   const  u8 *key, const  u8 hfunc)
534 {
535 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
536 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
537 	int i;
538 
539 	/* update the shadow RSS table with user specified qids */
540 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
541 		rss_cfg->rss_indirection_tbl[i] = indir[i];
542 
543 	/* update the hardware */
544 	return hclgevf_set_rss_indir_table(hdev);
545 }
546 
547 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
548 {
549 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
550 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
551 
552 	return rss_cfg->rss_size;
553 }
554 
555 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
556 				       int vector_id,
557 				       struct hnae3_ring_chain_node *ring_chain)
558 {
559 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
560 	struct hnae3_ring_chain_node *node;
561 	struct hclge_mbx_vf_to_pf_cmd *req;
562 	struct hclgevf_desc desc;
563 	int i = 0;
564 	int status;
565 	u8 type;
566 
567 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
568 
569 	for (node = ring_chain; node; node = node->next) {
570 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
571 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
572 
573 		if (i == 0) {
574 			hclgevf_cmd_setup_basic_desc(&desc,
575 						     HCLGEVF_OPC_MBX_VF_TO_PF,
576 						     false);
577 			type = en ?
578 				HCLGE_MBX_MAP_RING_TO_VECTOR :
579 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
580 			req->msg[0] = type;
581 			req->msg[1] = vector_id;
582 		}
583 
584 		req->msg[idx_offset] =
585 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
586 		req->msg[idx_offset + 1] = node->tqp_index;
587 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
588 							   HNAE3_RING_GL_IDX_M,
589 							   HNAE3_RING_GL_IDX_S);
590 
591 		i++;
592 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
593 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
594 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
595 		    !node->next) {
596 			req->msg[2] = i;
597 
598 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
599 			if (status) {
600 				dev_err(&hdev->pdev->dev,
601 					"Map TQP fail, status is %d.\n",
602 					status);
603 				return status;
604 			}
605 			i = 0;
606 			hclgevf_cmd_setup_basic_desc(&desc,
607 						     HCLGEVF_OPC_MBX_VF_TO_PF,
608 						     false);
609 			req->msg[0] = type;
610 			req->msg[1] = vector_id;
611 		}
612 	}
613 
614 	return 0;
615 }
616 
617 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
618 				      struct hnae3_ring_chain_node *ring_chain)
619 {
620 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
621 	int vector_id;
622 
623 	vector_id = hclgevf_get_vector_index(hdev, vector);
624 	if (vector_id < 0) {
625 		dev_err(&handle->pdev->dev,
626 			"Get vector index fail. ret =%d\n", vector_id);
627 		return vector_id;
628 	}
629 
630 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
631 }
632 
633 static int hclgevf_unmap_ring_from_vector(
634 				struct hnae3_handle *handle,
635 				int vector,
636 				struct hnae3_ring_chain_node *ring_chain)
637 {
638 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
639 	int ret, vector_id;
640 
641 	vector_id = hclgevf_get_vector_index(hdev, vector);
642 	if (vector_id < 0) {
643 		dev_err(&handle->pdev->dev,
644 			"Get vector index fail. ret =%d\n", vector_id);
645 		return vector_id;
646 	}
647 
648 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
649 	if (ret)
650 		dev_err(&handle->pdev->dev,
651 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
652 			vector_id,
653 			ret);
654 
655 	return ret;
656 }
657 
658 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
659 {
660 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
661 	int vector_id;
662 
663 	vector_id = hclgevf_get_vector_index(hdev, vector);
664 	if (vector_id < 0) {
665 		dev_err(&handle->pdev->dev,
666 			"hclgevf_put_vector get vector index fail. ret =%d\n",
667 			vector_id);
668 		return vector_id;
669 	}
670 
671 	hclgevf_free_vector(hdev, vector_id);
672 
673 	return 0;
674 }
675 
676 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
677 					bool en_uc_pmc, bool en_mc_pmc)
678 {
679 	struct hclge_mbx_vf_to_pf_cmd *req;
680 	struct hclgevf_desc desc;
681 	int status;
682 
683 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
684 
685 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
686 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
687 	req->msg[1] = en_uc_pmc ? 1 : 0;
688 	req->msg[2] = en_mc_pmc ? 1 : 0;
689 
690 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
691 	if (status)
692 		dev_err(&hdev->pdev->dev,
693 			"Set promisc mode fail, status is %d.\n", status);
694 
695 	return status;
696 }
697 
698 static void hclgevf_set_promisc_mode(struct hnae3_handle *handle,
699 				     bool en_uc_pmc, bool en_mc_pmc)
700 {
701 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
702 
703 	hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
704 }
705 
706 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
707 			      int stream_id, bool enable)
708 {
709 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
710 	struct hclgevf_desc desc;
711 	int status;
712 
713 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
714 
715 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
716 				     false);
717 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
718 	req->stream_id = cpu_to_le16(stream_id);
719 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
720 
721 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
722 	if (status)
723 		dev_err(&hdev->pdev->dev,
724 			"TQP enable fail, status =%d.\n", status);
725 
726 	return status;
727 }
728 
729 static int hclgevf_get_queue_id(struct hnae3_queue *queue)
730 {
731 	struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q);
732 
733 	return tqp->index;
734 }
735 
736 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
737 {
738 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
739 	struct hnae3_queue *queue;
740 	struct hclgevf_tqp *tqp;
741 	int i;
742 
743 	for (i = 0; i < hdev->num_tqps; i++) {
744 		queue = handle->kinfo.tqp[i];
745 		tqp = container_of(queue, struct hclgevf_tqp, q);
746 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
747 	}
748 }
749 
750 static int hclgevf_cfg_func_mta_type(struct hclgevf_dev *hdev)
751 {
752 	u8 resp_msg = HCLGEVF_MTA_TYPE_SEL_MAX;
753 	int ret;
754 
755 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
756 				   HCLGE_MBX_MAC_VLAN_MTA_TYPE_READ,
757 				   NULL, 0, true, &resp_msg, sizeof(u8));
758 
759 	if (ret) {
760 		dev_err(&hdev->pdev->dev,
761 			"Read mta type fail, ret=%d.\n", ret);
762 		return ret;
763 	}
764 
765 	if (resp_msg > HCLGEVF_MTA_TYPE_SEL_MAX) {
766 		dev_err(&hdev->pdev->dev,
767 			"Read mta type invalid, resp=%d.\n", resp_msg);
768 		return -EINVAL;
769 	}
770 
771 	hdev->mta_mac_sel_type = resp_msg;
772 
773 	return 0;
774 }
775 
776 static u16 hclgevf_get_mac_addr_to_mta_index(struct hclgevf_dev *hdev,
777 					     const u8 *addr)
778 {
779 	u32 rsh = HCLGEVF_MTA_TYPE_SEL_MAX - hdev->mta_mac_sel_type;
780 	u16 high_val = addr[1] | (addr[0] << 8);
781 
782 	return (high_val >> rsh) & 0xfff;
783 }
784 
785 static int hclgevf_do_update_mta_status(struct hclgevf_dev *hdev,
786 					unsigned long *status)
787 {
788 #define HCLGEVF_MTA_STATUS_MSG_SIZE 13
789 #define HCLGEVF_MTA_STATUS_MSG_BITS \
790 			(HCLGEVF_MTA_STATUS_MSG_SIZE * BITS_PER_BYTE)
791 #define HCLGEVF_MTA_STATUS_MSG_END_BITS \
792 			(HCLGEVF_MTA_TBL_SIZE % HCLGEVF_MTA_STATUS_MSG_BITS)
793 	u16 tbl_cnt;
794 	u16 tbl_idx;
795 	u8 msg_cnt;
796 	u8 msg_idx;
797 	int ret;
798 
799 	msg_cnt = DIV_ROUND_UP(HCLGEVF_MTA_TBL_SIZE,
800 			       HCLGEVF_MTA_STATUS_MSG_BITS);
801 	tbl_idx = 0;
802 	msg_idx = 0;
803 	while (msg_cnt--) {
804 		u8 msg[HCLGEVF_MTA_STATUS_MSG_SIZE + 1];
805 		u8 *p = &msg[1];
806 		u8 msg_ofs;
807 		u8 msg_bit;
808 
809 		memset(msg, 0, sizeof(msg));
810 
811 		/* set index field */
812 		msg[0] = 0x7F & msg_idx;
813 
814 		/* set end flag field */
815 		if (msg_cnt == 0) {
816 			msg[0] |= 0x80;
817 			tbl_cnt = HCLGEVF_MTA_STATUS_MSG_END_BITS;
818 		} else {
819 			tbl_cnt = HCLGEVF_MTA_STATUS_MSG_BITS;
820 		}
821 
822 		/* set status field */
823 		msg_ofs = 0;
824 		msg_bit = 0;
825 		while (tbl_cnt--) {
826 			if (test_bit(tbl_idx, status))
827 				p[msg_ofs] |= BIT(msg_bit);
828 
829 			tbl_idx++;
830 
831 			msg_bit++;
832 			if (msg_bit == BITS_PER_BYTE) {
833 				msg_bit = 0;
834 				msg_ofs++;
835 			}
836 		}
837 
838 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
839 					   HCLGE_MBX_MAC_VLAN_MTA_STATUS_UPDATE,
840 					   msg, sizeof(msg), false, NULL, 0);
841 		if (ret)
842 			break;
843 
844 		msg_idx++;
845 	}
846 
847 	return ret;
848 }
849 
850 static int hclgevf_update_mta_status(struct hnae3_handle *handle)
851 {
852 	unsigned long mta_status[BITS_TO_LONGS(HCLGEVF_MTA_TBL_SIZE)];
853 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
854 	struct net_device *netdev = hdev->nic.kinfo.netdev;
855 	struct netdev_hw_addr *ha;
856 	u16 tbl_idx;
857 
858 	/* clear status */
859 	memset(mta_status, 0, sizeof(mta_status));
860 
861 	/* update status from mc addr list */
862 	netdev_for_each_mc_addr(ha, netdev) {
863 		tbl_idx = hclgevf_get_mac_addr_to_mta_index(hdev, ha->addr);
864 		set_bit(tbl_idx, mta_status);
865 	}
866 
867 	return hclgevf_do_update_mta_status(hdev, mta_status);
868 }
869 
870 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
871 {
872 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
873 
874 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
875 }
876 
877 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
878 				bool is_first)
879 {
880 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
881 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
882 	u8 *new_mac_addr = (u8 *)p;
883 	u8 msg_data[ETH_ALEN * 2];
884 	u16 subcode;
885 	int status;
886 
887 	ether_addr_copy(msg_data, new_mac_addr);
888 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
889 
890 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
891 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
892 
893 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
894 				      subcode, msg_data, ETH_ALEN * 2,
895 				      true, NULL, 0);
896 	if (!status)
897 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
898 
899 	return status;
900 }
901 
902 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
903 			       const unsigned char *addr)
904 {
905 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
906 
907 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
908 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
909 				    addr, ETH_ALEN, false, NULL, 0);
910 }
911 
912 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
913 			      const unsigned char *addr)
914 {
915 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
916 
917 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
918 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
919 				    addr, ETH_ALEN, false, NULL, 0);
920 }
921 
922 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
923 			       const unsigned char *addr)
924 {
925 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
926 
927 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
928 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
929 				    addr, ETH_ALEN, false, NULL, 0);
930 }
931 
932 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
933 			      const unsigned char *addr)
934 {
935 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
936 
937 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
938 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
939 				    addr, ETH_ALEN, false, NULL, 0);
940 }
941 
942 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
943 				   __be16 proto, u16 vlan_id,
944 				   bool is_kill)
945 {
946 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
947 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
948 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
949 
950 	if (vlan_id > 4095)
951 		return -EINVAL;
952 
953 	if (proto != htons(ETH_P_8021Q))
954 		return -EPROTONOSUPPORT;
955 
956 	msg_data[0] = is_kill;
957 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
958 	memcpy(&msg_data[3], &proto, sizeof(proto));
959 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
960 				    HCLGE_MBX_VLAN_FILTER, msg_data,
961 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
962 }
963 
964 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
965 {
966 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
967 	u8 msg_data;
968 
969 	msg_data = enable ? 1 : 0;
970 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
971 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
972 				    1, false, NULL, 0);
973 }
974 
975 static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
976 {
977 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
978 	u8 msg_data[2];
979 	int ret;
980 
981 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
982 
983 	/* disable vf queue before send queue reset msg to PF */
984 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
985 	if (ret)
986 		return;
987 
988 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
989 			     2, true, NULL, 0);
990 }
991 
992 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
993 				 enum hnae3_reset_notify_type type)
994 {
995 	struct hnae3_client *client = hdev->nic_client;
996 	struct hnae3_handle *handle = &hdev->nic;
997 
998 	if (!client->ops->reset_notify)
999 		return -EOPNOTSUPP;
1000 
1001 	return client->ops->reset_notify(handle, type);
1002 }
1003 
1004 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1005 {
1006 #define HCLGEVF_RESET_WAIT_MS	500
1007 #define HCLGEVF_RESET_WAIT_CNT	20
1008 	u32 val, cnt = 0;
1009 
1010 	/* wait to check the hardware reset completion status */
1011 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
1012 	while (hnae3_get_bit(val, HCLGEVF_FUN_RST_ING_B) &&
1013 	       (cnt < HCLGEVF_RESET_WAIT_CNT)) {
1014 		msleep(HCLGEVF_RESET_WAIT_MS);
1015 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
1016 		cnt++;
1017 	}
1018 
1019 	/* hardware completion status should be available by this time */
1020 	if (cnt >= HCLGEVF_RESET_WAIT_CNT) {
1021 		dev_warn(&hdev->pdev->dev,
1022 			 "could'nt get reset done status from h/w, timeout!\n");
1023 		return -EBUSY;
1024 	}
1025 
1026 	/* we will wait a bit more to let reset of the stack to complete. This
1027 	 * might happen in case reset assertion was made by PF. Yes, this also
1028 	 * means we might end up waiting bit more even for VF reset.
1029 	 */
1030 	msleep(5000);
1031 
1032 	return 0;
1033 }
1034 
1035 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1036 {
1037 	int ret;
1038 
1039 	/* uninitialize the nic client */
1040 	hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1041 
1042 	/* re-initialize the hclge device */
1043 	ret = hclgevf_init_hdev(hdev);
1044 	if (ret) {
1045 		dev_err(&hdev->pdev->dev,
1046 			"hclge device re-init failed, VF is disabled!\n");
1047 		return ret;
1048 	}
1049 
1050 	/* bring up the nic client again */
1051 	hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1052 
1053 	return 0;
1054 }
1055 
1056 static int hclgevf_reset(struct hclgevf_dev *hdev)
1057 {
1058 	int ret;
1059 
1060 	rtnl_lock();
1061 
1062 	/* bring down the nic to stop any ongoing TX/RX */
1063 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1064 
1065 	/* check if VF could successfully fetch the hardware reset completion
1066 	 * status from the hardware
1067 	 */
1068 	ret = hclgevf_reset_wait(hdev);
1069 	if (ret) {
1070 		/* can't do much in this situation, will disable VF */
1071 		dev_err(&hdev->pdev->dev,
1072 			"VF failed(=%d) to fetch H/W reset completion status\n",
1073 			ret);
1074 
1075 		dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n");
1076 		hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1077 
1078 		rtnl_unlock();
1079 		return ret;
1080 	}
1081 
1082 	/* now, re-initialize the nic client and ae device*/
1083 	ret = hclgevf_reset_stack(hdev);
1084 	if (ret)
1085 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1086 
1087 	/* bring up the nic to enable TX/RX again */
1088 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1089 
1090 	rtnl_unlock();
1091 
1092 	return ret;
1093 }
1094 
1095 static int hclgevf_do_reset(struct hclgevf_dev *hdev)
1096 {
1097 	int status;
1098 	u8 respmsg;
1099 
1100 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1101 				      0, false, &respmsg, sizeof(u8));
1102 	if (status)
1103 		dev_err(&hdev->pdev->dev,
1104 			"VF reset request to PF failed(=%d)\n", status);
1105 
1106 	return status;
1107 }
1108 
1109 static void hclgevf_reset_event(struct hnae3_handle *handle)
1110 {
1111 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1112 
1113 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1114 
1115 	handle->reset_level = HNAE3_VF_RESET;
1116 
1117 	/* reset of this VF requested */
1118 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1119 	hclgevf_reset_task_schedule(hdev);
1120 
1121 	handle->last_reset_time = jiffies;
1122 }
1123 
1124 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1125 {
1126 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1127 
1128 	return hdev->fw_version;
1129 }
1130 
1131 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1132 {
1133 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1134 
1135 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1136 					    HCLGEVF_MISC_VECTOR_NUM);
1137 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1138 	/* vector status always valid for Vector 0 */
1139 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1140 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1141 
1142 	hdev->num_msi_left -= 1;
1143 	hdev->num_msi_used += 1;
1144 }
1145 
1146 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1147 {
1148 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1149 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1150 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1151 		schedule_work(&hdev->rst_service_task);
1152 	}
1153 }
1154 
1155 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1156 {
1157 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1158 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1159 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1160 		schedule_work(&hdev->mbx_service_task);
1161 	}
1162 }
1163 
1164 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1165 {
1166 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1167 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1168 		schedule_work(&hdev->service_task);
1169 }
1170 
1171 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1172 {
1173 	/* if we have any pending mailbox event then schedule the mbx task */
1174 	if (hdev->mbx_event_pending)
1175 		hclgevf_mbx_task_schedule(hdev);
1176 
1177 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1178 		hclgevf_reset_task_schedule(hdev);
1179 }
1180 
1181 static void hclgevf_service_timer(struct timer_list *t)
1182 {
1183 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1184 
1185 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1186 
1187 	hclgevf_task_schedule(hdev);
1188 }
1189 
1190 static void hclgevf_reset_service_task(struct work_struct *work)
1191 {
1192 	struct hclgevf_dev *hdev =
1193 		container_of(work, struct hclgevf_dev, rst_service_task);
1194 	int ret;
1195 
1196 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1197 		return;
1198 
1199 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1200 
1201 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1202 			       &hdev->reset_state)) {
1203 		/* PF has initmated that it is about to reset the hardware.
1204 		 * We now have to poll & check if harware has actually completed
1205 		 * the reset sequence. On hardware reset completion, VF needs to
1206 		 * reset the client and ae device.
1207 		 */
1208 		hdev->reset_attempts = 0;
1209 
1210 		ret = hclgevf_reset(hdev);
1211 		if (ret)
1212 			dev_err(&hdev->pdev->dev, "VF stack reset failed.\n");
1213 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1214 				      &hdev->reset_state)) {
1215 		/* we could be here when either of below happens:
1216 		 * 1. reset was initiated due to watchdog timeout due to
1217 		 *    a. IMP was earlier reset and our TX got choked down and
1218 		 *       which resulted in watchdog reacting and inducing VF
1219 		 *       reset. This also means our cmdq would be unreliable.
1220 		 *    b. problem in TX due to other lower layer(example link
1221 		 *       layer not functioning properly etc.)
1222 		 * 2. VF reset might have been initiated due to some config
1223 		 *    change.
1224 		 *
1225 		 * NOTE: Theres no clear way to detect above cases than to react
1226 		 * to the response of PF for this reset request. PF will ack the
1227 		 * 1b and 2. cases but we will not get any intimation about 1a
1228 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1229 		 * communication between PF and VF would be broken.
1230 		 */
1231 
1232 		/* if we are never geting into pending state it means either:
1233 		 * 1. PF is not receiving our request which could be due to IMP
1234 		 *    reset
1235 		 * 2. PF is screwed
1236 		 * We cannot do much for 2. but to check first we can try reset
1237 		 * our PCIe + stack and see if it alleviates the problem.
1238 		 */
1239 		if (hdev->reset_attempts > 3) {
1240 			/* prepare for full reset of stack + pcie interface */
1241 			hdev->nic.reset_level = HNAE3_VF_FULL_RESET;
1242 
1243 			/* "defer" schedule the reset task again */
1244 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1245 		} else {
1246 			hdev->reset_attempts++;
1247 
1248 			/* request PF for resetting this VF via mailbox */
1249 			ret = hclgevf_do_reset(hdev);
1250 			if (ret)
1251 				dev_warn(&hdev->pdev->dev,
1252 					 "VF rst fail, stack will call\n");
1253 		}
1254 	}
1255 
1256 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1257 }
1258 
1259 static void hclgevf_mailbox_service_task(struct work_struct *work)
1260 {
1261 	struct hclgevf_dev *hdev;
1262 
1263 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1264 
1265 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1266 		return;
1267 
1268 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1269 
1270 	hclgevf_mbx_async_handler(hdev);
1271 
1272 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1273 }
1274 
1275 static void hclgevf_service_task(struct work_struct *work)
1276 {
1277 	struct hclgevf_dev *hdev;
1278 
1279 	hdev = container_of(work, struct hclgevf_dev, service_task);
1280 
1281 	/* request the link status from the PF. PF would be able to tell VF
1282 	 * about such updates in future so we might remove this later
1283 	 */
1284 	hclgevf_request_link_info(hdev);
1285 
1286 	hclgevf_deferred_task_schedule(hdev);
1287 
1288 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1289 }
1290 
1291 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1292 {
1293 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1294 }
1295 
1296 static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval)
1297 {
1298 	u32 cmdq_src_reg;
1299 
1300 	/* fetch the events from their corresponding regs */
1301 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1302 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1303 
1304 	/* check for vector0 mailbox(=CMDQ RX) event source */
1305 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1306 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1307 		*clearval = cmdq_src_reg;
1308 		return true;
1309 	}
1310 
1311 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1312 
1313 	return false;
1314 }
1315 
1316 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1317 {
1318 	writel(en ? 1 : 0, vector->addr);
1319 }
1320 
1321 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1322 {
1323 	struct hclgevf_dev *hdev = data;
1324 	u32 clearval;
1325 
1326 	hclgevf_enable_vector(&hdev->misc_vector, false);
1327 	if (!hclgevf_check_event_cause(hdev, &clearval))
1328 		goto skip_sched;
1329 
1330 	hclgevf_mbx_handler(hdev);
1331 
1332 	hclgevf_clear_event_cause(hdev, clearval);
1333 
1334 skip_sched:
1335 	hclgevf_enable_vector(&hdev->misc_vector, true);
1336 
1337 	return IRQ_HANDLED;
1338 }
1339 
1340 static int hclgevf_configure(struct hclgevf_dev *hdev)
1341 {
1342 	int ret;
1343 
1344 	/* get queue configuration from PF */
1345 	ret = hclge_get_queue_info(hdev);
1346 	if (ret)
1347 		return ret;
1348 	/* get tc configuration from PF */
1349 	return hclgevf_get_tc_info(hdev);
1350 }
1351 
1352 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1353 {
1354 	struct pci_dev *pdev = ae_dev->pdev;
1355 	struct hclgevf_dev *hdev = ae_dev->priv;
1356 
1357 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1358 	if (!hdev)
1359 		return -ENOMEM;
1360 
1361 	hdev->pdev = pdev;
1362 	hdev->ae_dev = ae_dev;
1363 	ae_dev->priv = hdev;
1364 
1365 	return 0;
1366 }
1367 
1368 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1369 {
1370 	struct hnae3_handle *roce = &hdev->roce;
1371 	struct hnae3_handle *nic = &hdev->nic;
1372 
1373 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1374 
1375 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1376 	    hdev->num_msi_left == 0)
1377 		return -EINVAL;
1378 
1379 	roce->rinfo.base_vector = hdev->roce_base_vector;
1380 
1381 	roce->rinfo.netdev = nic->kinfo.netdev;
1382 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1383 
1384 	roce->pdev = nic->pdev;
1385 	roce->ae_algo = nic->ae_algo;
1386 	roce->numa_node_mask = nic->numa_node_mask;
1387 
1388 	return 0;
1389 }
1390 
1391 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1392 {
1393 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1394 	int i, ret;
1395 
1396 	rss_cfg->rss_size = hdev->rss_size_max;
1397 
1398 	/* Initialize RSS indirect table for each vport */
1399 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1400 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1401 
1402 	ret = hclgevf_set_rss_indir_table(hdev);
1403 	if (ret)
1404 		return ret;
1405 
1406 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1407 }
1408 
1409 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1410 {
1411 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1412 	 * here later
1413 	 */
1414 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1415 				       false);
1416 }
1417 
1418 static int hclgevf_ae_start(struct hnae3_handle *handle)
1419 {
1420 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1421 	int i, queue_id;
1422 
1423 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
1424 		/* ring enable */
1425 		queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1426 		if (queue_id < 0) {
1427 			dev_warn(&hdev->pdev->dev,
1428 				 "Get invalid queue id, ignore it\n");
1429 			continue;
1430 		}
1431 
1432 		hclgevf_tqp_enable(hdev, queue_id, 0, true);
1433 	}
1434 
1435 	/* reset tqp stats */
1436 	hclgevf_reset_tqp_stats(handle);
1437 
1438 	hclgevf_request_link_info(hdev);
1439 
1440 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1441 	mod_timer(&hdev->service_timer, jiffies + HZ);
1442 
1443 	return 0;
1444 }
1445 
1446 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1447 {
1448 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1449 	int i, queue_id;
1450 
1451 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1452 
1453 	for (i = 0; i < hdev->num_tqps; i++) {
1454 		/* Ring disable */
1455 		queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1456 		if (queue_id < 0) {
1457 			dev_warn(&hdev->pdev->dev,
1458 				 "Get invalid queue id, ignore it\n");
1459 			continue;
1460 		}
1461 
1462 		hclgevf_tqp_enable(hdev, queue_id, 0, false);
1463 	}
1464 
1465 	/* reset tqp stats */
1466 	hclgevf_reset_tqp_stats(handle);
1467 	del_timer_sync(&hdev->service_timer);
1468 	cancel_work_sync(&hdev->service_task);
1469 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1470 	hclgevf_update_link_status(hdev, 0);
1471 }
1472 
1473 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1474 {
1475 	/* if this is on going reset then skip this initialization */
1476 	if (hclgevf_dev_ongoing_reset(hdev))
1477 		return;
1478 
1479 	/* setup tasks for the MBX */
1480 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1481 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1482 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1483 
1484 	/* setup tasks for service timer */
1485 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1486 
1487 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1488 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1489 
1490 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1491 
1492 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1493 
1494 	/* bring the device down */
1495 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1496 }
1497 
1498 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1499 {
1500 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1501 
1502 	if (hdev->service_timer.function)
1503 		del_timer_sync(&hdev->service_timer);
1504 	if (hdev->service_task.func)
1505 		cancel_work_sync(&hdev->service_task);
1506 	if (hdev->mbx_service_task.func)
1507 		cancel_work_sync(&hdev->mbx_service_task);
1508 	if (hdev->rst_service_task.func)
1509 		cancel_work_sync(&hdev->rst_service_task);
1510 
1511 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1512 }
1513 
1514 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1515 {
1516 	struct pci_dev *pdev = hdev->pdev;
1517 	int vectors;
1518 	int i;
1519 
1520 	/* if this is on going reset then skip this initialization */
1521 	if (hclgevf_dev_ongoing_reset(hdev))
1522 		return 0;
1523 
1524 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1525 		vectors = pci_alloc_irq_vectors(pdev,
1526 						hdev->roce_base_msix_offset + 1,
1527 						hdev->num_msi,
1528 						PCI_IRQ_MSIX);
1529 	else
1530 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1531 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
1532 
1533 	if (vectors < 0) {
1534 		dev_err(&pdev->dev,
1535 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1536 			vectors);
1537 		return vectors;
1538 	}
1539 	if (vectors < hdev->num_msi)
1540 		dev_warn(&hdev->pdev->dev,
1541 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1542 			 hdev->num_msi, vectors);
1543 
1544 	hdev->num_msi = vectors;
1545 	hdev->num_msi_left = vectors;
1546 	hdev->base_msi_vector = pdev->irq;
1547 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
1548 
1549 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1550 					   sizeof(u16), GFP_KERNEL);
1551 	if (!hdev->vector_status) {
1552 		pci_free_irq_vectors(pdev);
1553 		return -ENOMEM;
1554 	}
1555 
1556 	for (i = 0; i < hdev->num_msi; i++)
1557 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1558 
1559 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1560 					sizeof(int), GFP_KERNEL);
1561 	if (!hdev->vector_irq) {
1562 		pci_free_irq_vectors(pdev);
1563 		return -ENOMEM;
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1570 {
1571 	struct pci_dev *pdev = hdev->pdev;
1572 
1573 	pci_free_irq_vectors(pdev);
1574 }
1575 
1576 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1577 {
1578 	int ret = 0;
1579 
1580 	/* if this is on going reset then skip this initialization */
1581 	if (hclgevf_dev_ongoing_reset(hdev))
1582 		return 0;
1583 
1584 	hclgevf_get_misc_vector(hdev);
1585 
1586 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1587 			  0, "hclgevf_cmd", hdev);
1588 	if (ret) {
1589 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1590 			hdev->misc_vector.vector_irq);
1591 		return ret;
1592 	}
1593 
1594 	hclgevf_clear_event_cause(hdev, 0);
1595 
1596 	/* enable misc. vector(vector 0) */
1597 	hclgevf_enable_vector(&hdev->misc_vector, true);
1598 
1599 	return ret;
1600 }
1601 
1602 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
1603 {
1604 	/* disable misc vector(vector 0) */
1605 	hclgevf_enable_vector(&hdev->misc_vector, false);
1606 	synchronize_irq(hdev->misc_vector.vector_irq);
1607 	free_irq(hdev->misc_vector.vector_irq, hdev);
1608 	hclgevf_free_vector(hdev, 0);
1609 }
1610 
1611 static int hclgevf_init_client_instance(struct hnae3_client *client,
1612 					struct hnae3_ae_dev *ae_dev)
1613 {
1614 	struct hclgevf_dev *hdev = ae_dev->priv;
1615 	int ret;
1616 
1617 	switch (client->type) {
1618 	case HNAE3_CLIENT_KNIC:
1619 		hdev->nic_client = client;
1620 		hdev->nic.client = client;
1621 
1622 		ret = client->ops->init_instance(&hdev->nic);
1623 		if (ret)
1624 			return ret;
1625 
1626 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1627 			struct hnae3_client *rc = hdev->roce_client;
1628 
1629 			ret = hclgevf_init_roce_base_info(hdev);
1630 			if (ret)
1631 				return ret;
1632 			ret = rc->ops->init_instance(&hdev->roce);
1633 			if (ret)
1634 				return ret;
1635 		}
1636 		break;
1637 	case HNAE3_CLIENT_UNIC:
1638 		hdev->nic_client = client;
1639 		hdev->nic.client = client;
1640 
1641 		ret = client->ops->init_instance(&hdev->nic);
1642 		if (ret)
1643 			return ret;
1644 		break;
1645 	case HNAE3_CLIENT_ROCE:
1646 		if (hnae3_dev_roce_supported(hdev)) {
1647 			hdev->roce_client = client;
1648 			hdev->roce.client = client;
1649 		}
1650 
1651 		if (hdev->roce_client && hdev->nic_client) {
1652 			ret = hclgevf_init_roce_base_info(hdev);
1653 			if (ret)
1654 				return ret;
1655 
1656 			ret = client->ops->init_instance(&hdev->roce);
1657 			if (ret)
1658 				return ret;
1659 		}
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
1666 					   struct hnae3_ae_dev *ae_dev)
1667 {
1668 	struct hclgevf_dev *hdev = ae_dev->priv;
1669 
1670 	/* un-init roce, if it exists */
1671 	if (hdev->roce_client)
1672 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
1673 
1674 	/* un-init nic/unic, if this was not called by roce client */
1675 	if ((client->ops->uninit_instance) &&
1676 	    (client->type != HNAE3_CLIENT_ROCE))
1677 		client->ops->uninit_instance(&hdev->nic, 0);
1678 }
1679 
1680 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
1681 {
1682 	struct pci_dev *pdev = hdev->pdev;
1683 	struct hclgevf_hw *hw;
1684 	int ret;
1685 
1686 	/* check if we need to skip initialization of pci. This will happen if
1687 	 * device is undergoing VF reset. Otherwise, we would need to
1688 	 * re-initialize pci interface again i.e. when device is not going
1689 	 * through *any* reset or actually undergoing full reset.
1690 	 */
1691 	if (hclgevf_dev_ongoing_reset(hdev))
1692 		return 0;
1693 
1694 	ret = pci_enable_device(pdev);
1695 	if (ret) {
1696 		dev_err(&pdev->dev, "failed to enable PCI device\n");
1697 		return ret;
1698 	}
1699 
1700 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1701 	if (ret) {
1702 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
1703 		goto err_disable_device;
1704 	}
1705 
1706 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
1707 	if (ret) {
1708 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
1709 		goto err_disable_device;
1710 	}
1711 
1712 	pci_set_master(pdev);
1713 	hw = &hdev->hw;
1714 	hw->hdev = hdev;
1715 	hw->io_base = pci_iomap(pdev, 2, 0);
1716 	if (!hw->io_base) {
1717 		dev_err(&pdev->dev, "can't map configuration register space\n");
1718 		ret = -ENOMEM;
1719 		goto err_clr_master;
1720 	}
1721 
1722 	return 0;
1723 
1724 err_clr_master:
1725 	pci_clear_master(pdev);
1726 	pci_release_regions(pdev);
1727 err_disable_device:
1728 	pci_disable_device(pdev);
1729 
1730 	return ret;
1731 }
1732 
1733 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
1734 {
1735 	struct pci_dev *pdev = hdev->pdev;
1736 
1737 	pci_iounmap(pdev, hdev->hw.io_base);
1738 	pci_clear_master(pdev);
1739 	pci_release_regions(pdev);
1740 	pci_disable_device(pdev);
1741 }
1742 
1743 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
1744 {
1745 	struct hclgevf_query_res_cmd *req;
1746 	struct hclgevf_desc desc;
1747 	int ret;
1748 
1749 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
1750 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1751 	if (ret) {
1752 		dev_err(&hdev->pdev->dev,
1753 			"query vf resource failed, ret = %d.\n", ret);
1754 		return ret;
1755 	}
1756 
1757 	req = (struct hclgevf_query_res_cmd *)desc.data;
1758 
1759 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
1760 		hdev->roce_base_msix_offset =
1761 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
1762 				HCLGEVF_MSIX_OFT_ROCEE_M,
1763 				HCLGEVF_MSIX_OFT_ROCEE_S);
1764 		hdev->num_roce_msix =
1765 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
1766 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
1767 
1768 		/* VF should have NIC vectors and Roce vectors, NIC vectors
1769 		 * are queued before Roce vectors. The offset is fixed to 64.
1770 		 */
1771 		hdev->num_msi = hdev->num_roce_msix +
1772 				hdev->roce_base_msix_offset;
1773 	} else {
1774 		hdev->num_msi =
1775 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
1776 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
1783 {
1784 	struct pci_dev *pdev = hdev->pdev;
1785 	int ret;
1786 
1787 	/* check if device is on-going full reset(i.e. pcie as well) */
1788 	if (hclgevf_dev_ongoing_full_reset(hdev)) {
1789 		dev_warn(&pdev->dev, "device is going full reset\n");
1790 		hclgevf_uninit_hdev(hdev);
1791 	}
1792 
1793 	ret = hclgevf_pci_init(hdev);
1794 	if (ret) {
1795 		dev_err(&pdev->dev, "PCI initialization failed\n");
1796 		return ret;
1797 	}
1798 
1799 	ret = hclgevf_cmd_init(hdev);
1800 	if (ret)
1801 		goto err_cmd_init;
1802 
1803 	/* Get vf resource */
1804 	ret = hclgevf_query_vf_resource(hdev);
1805 	if (ret) {
1806 		dev_err(&hdev->pdev->dev,
1807 			"Query vf status error, ret = %d.\n", ret);
1808 		goto err_query_vf;
1809 	}
1810 
1811 	ret = hclgevf_init_msi(hdev);
1812 	if (ret) {
1813 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
1814 		goto err_query_vf;
1815 	}
1816 
1817 	hclgevf_state_init(hdev);
1818 
1819 	ret = hclgevf_misc_irq_init(hdev);
1820 	if (ret) {
1821 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
1822 			ret);
1823 		goto err_misc_irq_init;
1824 	}
1825 
1826 	ret = hclgevf_configure(hdev);
1827 	if (ret) {
1828 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
1829 		goto err_config;
1830 	}
1831 
1832 	ret = hclgevf_alloc_tqps(hdev);
1833 	if (ret) {
1834 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
1835 		goto err_config;
1836 	}
1837 
1838 	ret = hclgevf_set_handle_info(hdev);
1839 	if (ret) {
1840 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
1841 		goto err_config;
1842 	}
1843 
1844 	/* Initialize mta type for this VF */
1845 	ret = hclgevf_cfg_func_mta_type(hdev);
1846 	if (ret) {
1847 		dev_err(&hdev->pdev->dev,
1848 			"failed(%d) to initialize MTA type\n", ret);
1849 		goto err_config;
1850 	}
1851 
1852 	/* Initialize RSS for this VF */
1853 	ret = hclgevf_rss_init_hw(hdev);
1854 	if (ret) {
1855 		dev_err(&hdev->pdev->dev,
1856 			"failed(%d) to initialize RSS\n", ret);
1857 		goto err_config;
1858 	}
1859 
1860 	ret = hclgevf_init_vlan_config(hdev);
1861 	if (ret) {
1862 		dev_err(&hdev->pdev->dev,
1863 			"failed(%d) to initialize VLAN config\n", ret);
1864 		goto err_config;
1865 	}
1866 
1867 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
1868 
1869 	return 0;
1870 
1871 err_config:
1872 	hclgevf_misc_irq_uninit(hdev);
1873 err_misc_irq_init:
1874 	hclgevf_state_uninit(hdev);
1875 	hclgevf_uninit_msi(hdev);
1876 err_query_vf:
1877 	hclgevf_cmd_uninit(hdev);
1878 err_cmd_init:
1879 	hclgevf_pci_uninit(hdev);
1880 	return ret;
1881 }
1882 
1883 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
1884 {
1885 	hclgevf_state_uninit(hdev);
1886 	hclgevf_misc_irq_uninit(hdev);
1887 	hclgevf_cmd_uninit(hdev);
1888 	hclgevf_uninit_msi(hdev);
1889 	hclgevf_pci_uninit(hdev);
1890 }
1891 
1892 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
1893 {
1894 	struct pci_dev *pdev = ae_dev->pdev;
1895 	int ret;
1896 
1897 	ret = hclgevf_alloc_hdev(ae_dev);
1898 	if (ret) {
1899 		dev_err(&pdev->dev, "hclge device allocation failed\n");
1900 		return ret;
1901 	}
1902 
1903 	ret = hclgevf_init_hdev(ae_dev->priv);
1904 	if (ret)
1905 		dev_err(&pdev->dev, "hclge device initialization failed\n");
1906 
1907 	return ret;
1908 }
1909 
1910 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
1911 {
1912 	struct hclgevf_dev *hdev = ae_dev->priv;
1913 
1914 	hclgevf_uninit_hdev(hdev);
1915 	ae_dev->priv = NULL;
1916 }
1917 
1918 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
1919 {
1920 	struct hnae3_handle *nic = &hdev->nic;
1921 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1922 
1923 	return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
1924 }
1925 
1926 /**
1927  * hclgevf_get_channels - Get the current channels enabled and max supported.
1928  * @handle: hardware information for network interface
1929  * @ch: ethtool channels structure
1930  *
1931  * We don't support separate tx and rx queues as channels. The other count
1932  * represents how many queues are being used for control. max_combined counts
1933  * how many queue pairs we can support. They may not be mapped 1 to 1 with
1934  * q_vectors since we support a lot more queue pairs than q_vectors.
1935  **/
1936 static void hclgevf_get_channels(struct hnae3_handle *handle,
1937 				 struct ethtool_channels *ch)
1938 {
1939 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1940 
1941 	ch->max_combined = hclgevf_get_max_channels(hdev);
1942 	ch->other_count = 0;
1943 	ch->max_other = 0;
1944 	ch->combined_count = hdev->num_tqps;
1945 }
1946 
1947 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
1948 					  u16 *free_tqps, u16 *max_rss_size)
1949 {
1950 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1951 
1952 	*free_tqps = 0;
1953 	*max_rss_size = hdev->rss_size_max;
1954 }
1955 
1956 static int hclgevf_get_status(struct hnae3_handle *handle)
1957 {
1958 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1959 
1960 	return hdev->hw.mac.link;
1961 }
1962 
1963 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
1964 					    u8 *auto_neg, u32 *speed,
1965 					    u8 *duplex)
1966 {
1967 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1968 
1969 	if (speed)
1970 		*speed = hdev->hw.mac.speed;
1971 	if (duplex)
1972 		*duplex = hdev->hw.mac.duplex;
1973 	if (auto_neg)
1974 		*auto_neg = AUTONEG_DISABLE;
1975 }
1976 
1977 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
1978 				 u8 duplex)
1979 {
1980 	hdev->hw.mac.speed = speed;
1981 	hdev->hw.mac.duplex = duplex;
1982 }
1983 
1984 static const struct hnae3_ae_ops hclgevf_ops = {
1985 	.init_ae_dev = hclgevf_init_ae_dev,
1986 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
1987 	.init_client_instance = hclgevf_init_client_instance,
1988 	.uninit_client_instance = hclgevf_uninit_client_instance,
1989 	.start = hclgevf_ae_start,
1990 	.stop = hclgevf_ae_stop,
1991 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
1992 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
1993 	.get_vector = hclgevf_get_vector,
1994 	.put_vector = hclgevf_put_vector,
1995 	.reset_queue = hclgevf_reset_tqp,
1996 	.set_promisc_mode = hclgevf_set_promisc_mode,
1997 	.get_mac_addr = hclgevf_get_mac_addr,
1998 	.set_mac_addr = hclgevf_set_mac_addr,
1999 	.add_uc_addr = hclgevf_add_uc_addr,
2000 	.rm_uc_addr = hclgevf_rm_uc_addr,
2001 	.add_mc_addr = hclgevf_add_mc_addr,
2002 	.rm_mc_addr = hclgevf_rm_mc_addr,
2003 	.update_mta_status = hclgevf_update_mta_status,
2004 	.get_stats = hclgevf_get_stats,
2005 	.update_stats = hclgevf_update_stats,
2006 	.get_strings = hclgevf_get_strings,
2007 	.get_sset_count = hclgevf_get_sset_count,
2008 	.get_rss_key_size = hclgevf_get_rss_key_size,
2009 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2010 	.get_rss = hclgevf_get_rss,
2011 	.set_rss = hclgevf_set_rss,
2012 	.get_tc_size = hclgevf_get_tc_size,
2013 	.get_fw_version = hclgevf_get_fw_version,
2014 	.set_vlan_filter = hclgevf_set_vlan_filter,
2015 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2016 	.reset_event = hclgevf_reset_event,
2017 	.get_channels = hclgevf_get_channels,
2018 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2019 	.get_status = hclgevf_get_status,
2020 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2021 };
2022 
2023 static struct hnae3_ae_algo ae_algovf = {
2024 	.ops = &hclgevf_ops,
2025 	.pdev_id_table = ae_algovf_pci_tbl,
2026 };
2027 
2028 static int hclgevf_init(void)
2029 {
2030 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2031 
2032 	hnae3_register_ae_algo(&ae_algovf);
2033 
2034 	return 0;
2035 }
2036 
2037 static void hclgevf_exit(void)
2038 {
2039 	hnae3_unregister_ae_algo(&ae_algovf);
2040 }
2041 module_init(hclgevf_init);
2042 module_exit(hclgevf_exit);
2043 
2044 MODULE_LICENSE("GPL");
2045 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2046 MODULE_DESCRIPTION("HCLGEVF Driver");
2047 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2048