1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18 
19 static const struct pci_device_id ae_algovf_pci_tbl[] = {
20 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
21 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
22 	/* required last entry */
23 	{0, }
24 };
25 
26 static const u8 hclgevf_hash_key[] = {
27 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
28 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
29 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
30 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
31 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
32 };
33 
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35 
36 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
37 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
38 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
39 					 HCLGEVF_CMDQ_TX_TAIL_REG,
40 					 HCLGEVF_CMDQ_TX_HEAD_REG,
41 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
42 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
43 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
44 					 HCLGEVF_CMDQ_RX_TAIL_REG,
45 					 HCLGEVF_CMDQ_RX_HEAD_REG,
46 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
47 					 HCLGEVF_CMDQ_INTR_STS_REG,
48 					 HCLGEVF_CMDQ_INTR_EN_REG,
49 					 HCLGEVF_CMDQ_INTR_GEN_REG};
50 
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 					   HCLGEVF_RST_ING,
53 					   HCLGEVF_GRO_EN_REG};
54 
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 					 HCLGEVF_RING_RX_ADDR_H_REG,
57 					 HCLGEVF_RING_RX_BD_NUM_REG,
58 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 					 HCLGEVF_RING_RX_MERGE_EN_REG,
60 					 HCLGEVF_RING_RX_TAIL_REG,
61 					 HCLGEVF_RING_RX_HEAD_REG,
62 					 HCLGEVF_RING_RX_FBD_NUM_REG,
63 					 HCLGEVF_RING_RX_OFFSET_REG,
64 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 					 HCLGEVF_RING_RX_STASH_REG,
66 					 HCLGEVF_RING_RX_BD_ERR_REG,
67 					 HCLGEVF_RING_TX_ADDR_L_REG,
68 					 HCLGEVF_RING_TX_ADDR_H_REG,
69 					 HCLGEVF_RING_TX_BD_NUM_REG,
70 					 HCLGEVF_RING_TX_PRIORITY_REG,
71 					 HCLGEVF_RING_TX_TC_REG,
72 					 HCLGEVF_RING_TX_MERGE_EN_REG,
73 					 HCLGEVF_RING_TX_TAIL_REG,
74 					 HCLGEVF_RING_TX_HEAD_REG,
75 					 HCLGEVF_RING_TX_FBD_NUM_REG,
76 					 HCLGEVF_RING_TX_OFFSET_REG,
77 					 HCLGEVF_RING_TX_EBD_NUM_REG,
78 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 					 HCLGEVF_RING_TX_BD_ERR_REG,
80 					 HCLGEVF_RING_EN_REG};
81 
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 					     HCLGEVF_TQP_INTR_GL0_REG,
84 					     HCLGEVF_TQP_INTR_GL1_REG,
85 					     HCLGEVF_TQP_INTR_GL2_REG,
86 					     HCLGEVF_TQP_INTR_RL_REG};
87 
88 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
89 {
90 	if (!handle->client)
91 		return container_of(handle, struct hclgevf_dev, nic);
92 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
93 		return container_of(handle, struct hclgevf_dev, roce);
94 	else
95 		return container_of(handle, struct hclgevf_dev, nic);
96 }
97 
98 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
99 {
100 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
101 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
102 	struct hclgevf_desc desc;
103 	struct hclgevf_tqp *tqp;
104 	int status;
105 	int i;
106 
107 	for (i = 0; i < kinfo->num_tqps; i++) {
108 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
109 		hclgevf_cmd_setup_basic_desc(&desc,
110 					     HCLGEVF_OPC_QUERY_RX_STATUS,
111 					     true);
112 
113 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 		if (status) {
116 			dev_err(&hdev->pdev->dev,
117 				"Query tqp stat fail, status = %d,queue = %d\n",
118 				status,	i);
119 			return status;
120 		}
121 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
122 			le32_to_cpu(desc.data[1]);
123 
124 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
125 					     true);
126 
127 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
128 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
129 		if (status) {
130 			dev_err(&hdev->pdev->dev,
131 				"Query tqp stat fail, status = %d,queue = %d\n",
132 				status, i);
133 			return status;
134 		}
135 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
136 			le32_to_cpu(desc.data[1]);
137 	}
138 
139 	return 0;
140 }
141 
142 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
143 {
144 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
145 	struct hclgevf_tqp *tqp;
146 	u64 *buff = data;
147 	int i;
148 
149 	for (i = 0; i < kinfo->num_tqps; i++) {
150 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
151 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
152 	}
153 	for (i = 0; i < kinfo->num_tqps; i++) {
154 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
155 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
156 	}
157 
158 	return buff;
159 }
160 
161 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
162 {
163 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
164 
165 	return kinfo->num_tqps * 2;
166 }
167 
168 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
169 {
170 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171 	u8 *buff = data;
172 	int i = 0;
173 
174 	for (i = 0; i < kinfo->num_tqps; i++) {
175 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
176 						       struct hclgevf_tqp, q);
177 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
178 			 tqp->index);
179 		buff += ETH_GSTRING_LEN;
180 	}
181 
182 	for (i = 0; i < kinfo->num_tqps; i++) {
183 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
184 						       struct hclgevf_tqp, q);
185 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
186 			 tqp->index);
187 		buff += ETH_GSTRING_LEN;
188 	}
189 
190 	return buff;
191 }
192 
193 static void hclgevf_update_stats(struct hnae3_handle *handle,
194 				 struct net_device_stats *net_stats)
195 {
196 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
197 	int status;
198 
199 	status = hclgevf_tqps_update_stats(handle);
200 	if (status)
201 		dev_err(&hdev->pdev->dev,
202 			"VF update of TQPS stats fail, status = %d.\n",
203 			status);
204 }
205 
206 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
207 {
208 	if (strset == ETH_SS_TEST)
209 		return -EOPNOTSUPP;
210 	else if (strset == ETH_SS_STATS)
211 		return hclgevf_tqps_get_sset_count(handle, strset);
212 
213 	return 0;
214 }
215 
216 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
217 				u8 *data)
218 {
219 	u8 *p = (char *)data;
220 
221 	if (strset == ETH_SS_STATS)
222 		p = hclgevf_tqps_get_strings(handle, p);
223 }
224 
225 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
226 {
227 	hclgevf_tqps_get_stats(handle, data);
228 }
229 
230 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
231 {
232 	u8 resp_msg;
233 	int status;
234 
235 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
236 				      true, &resp_msg, sizeof(resp_msg));
237 	if (status) {
238 		dev_err(&hdev->pdev->dev,
239 			"VF request to get TC info from PF failed %d",
240 			status);
241 		return status;
242 	}
243 
244 	hdev->hw_tc_map = resp_msg;
245 
246 	return 0;
247 }
248 
249 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
250 {
251 	struct hnae3_handle *nic = &hdev->nic;
252 	u8 resp_msg;
253 	int ret;
254 
255 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
256 				   HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
257 				   NULL, 0, true, &resp_msg, sizeof(u8));
258 	if (ret) {
259 		dev_err(&hdev->pdev->dev,
260 			"VF request to get port based vlan state failed %d",
261 			ret);
262 		return ret;
263 	}
264 
265 	nic->port_base_vlan_state = resp_msg;
266 
267 	return 0;
268 }
269 
270 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
271 {
272 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
273 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
274 	int status;
275 
276 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
277 				      true, resp_msg,
278 				      HCLGEVF_TQPS_RSS_INFO_LEN);
279 	if (status) {
280 		dev_err(&hdev->pdev->dev,
281 			"VF request to get tqp info from PF failed %d",
282 			status);
283 		return status;
284 	}
285 
286 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
287 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
288 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
289 
290 	return 0;
291 }
292 
293 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
294 {
295 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
296 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
297 	int ret;
298 
299 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
300 				   true, resp_msg,
301 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
302 	if (ret) {
303 		dev_err(&hdev->pdev->dev,
304 			"VF request to get tqp depth info from PF failed %d",
305 			ret);
306 		return ret;
307 	}
308 
309 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
310 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
311 
312 	return 0;
313 }
314 
315 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
316 {
317 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
318 	u8 msg_data[2], resp_data[2];
319 	u16 qid_in_pf = 0;
320 	int ret;
321 
322 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
323 
324 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
325 				   sizeof(msg_data), true, resp_data,
326 				   sizeof(resp_data));
327 	if (!ret)
328 		qid_in_pf = *(u16 *)resp_data;
329 
330 	return qid_in_pf;
331 }
332 
333 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
334 {
335 	u8 resp_msg[2];
336 	int ret;
337 
338 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
339 				   true, resp_msg, sizeof(resp_msg));
340 	if (ret) {
341 		dev_err(&hdev->pdev->dev,
342 			"VF request to get the pf port media type failed %d",
343 			ret);
344 		return ret;
345 	}
346 
347 	hdev->hw.mac.media_type = resp_msg[0];
348 	hdev->hw.mac.module_type = resp_msg[1];
349 
350 	return 0;
351 }
352 
353 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
354 {
355 	struct hclgevf_tqp *tqp;
356 	int i;
357 
358 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
359 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
360 	if (!hdev->htqp)
361 		return -ENOMEM;
362 
363 	tqp = hdev->htqp;
364 
365 	for (i = 0; i < hdev->num_tqps; i++) {
366 		tqp->dev = &hdev->pdev->dev;
367 		tqp->index = i;
368 
369 		tqp->q.ae_algo = &ae_algovf;
370 		tqp->q.buf_size = hdev->rx_buf_len;
371 		tqp->q.tx_desc_num = hdev->num_tx_desc;
372 		tqp->q.rx_desc_num = hdev->num_rx_desc;
373 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
374 			i * HCLGEVF_TQP_REG_SIZE;
375 
376 		tqp++;
377 	}
378 
379 	return 0;
380 }
381 
382 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
383 {
384 	struct hnae3_handle *nic = &hdev->nic;
385 	struct hnae3_knic_private_info *kinfo;
386 	u16 new_tqps = hdev->num_tqps;
387 	unsigned int i;
388 
389 	kinfo = &nic->kinfo;
390 	kinfo->num_tc = 0;
391 	kinfo->num_tx_desc = hdev->num_tx_desc;
392 	kinfo->num_rx_desc = hdev->num_rx_desc;
393 	kinfo->rx_buf_len = hdev->rx_buf_len;
394 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
395 		if (hdev->hw_tc_map & BIT(i))
396 			kinfo->num_tc++;
397 
398 	kinfo->rss_size
399 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
400 	new_tqps = kinfo->rss_size * kinfo->num_tc;
401 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
402 
403 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
404 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
405 	if (!kinfo->tqp)
406 		return -ENOMEM;
407 
408 	for (i = 0; i < kinfo->num_tqps; i++) {
409 		hdev->htqp[i].q.handle = &hdev->nic;
410 		hdev->htqp[i].q.tqp_index = i;
411 		kinfo->tqp[i] = &hdev->htqp[i].q;
412 	}
413 
414 	return 0;
415 }
416 
417 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
418 {
419 	int status;
420 	u8 resp_msg;
421 
422 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
423 				      0, false, &resp_msg, sizeof(resp_msg));
424 	if (status)
425 		dev_err(&hdev->pdev->dev,
426 			"VF failed to fetch link status(%d) from PF", status);
427 }
428 
429 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
430 {
431 	struct hnae3_handle *rhandle = &hdev->roce;
432 	struct hnae3_handle *handle = &hdev->nic;
433 	struct hnae3_client *rclient;
434 	struct hnae3_client *client;
435 
436 	client = handle->client;
437 	rclient = hdev->roce_client;
438 
439 	link_state =
440 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
441 
442 	if (link_state != hdev->hw.mac.link) {
443 		client->ops->link_status_change(handle, !!link_state);
444 		if (rclient && rclient->ops->link_status_change)
445 			rclient->ops->link_status_change(rhandle, !!link_state);
446 		hdev->hw.mac.link = link_state;
447 	}
448 }
449 
450 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
451 {
452 #define HCLGEVF_ADVERTISING 0
453 #define HCLGEVF_SUPPORTED   1
454 	u8 send_msg;
455 	u8 resp_msg;
456 
457 	send_msg = HCLGEVF_ADVERTISING;
458 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
459 			     &send_msg, sizeof(send_msg), false,
460 			     &resp_msg, sizeof(resp_msg));
461 	send_msg = HCLGEVF_SUPPORTED;
462 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
463 			     &send_msg, sizeof(send_msg), false,
464 			     &resp_msg, sizeof(resp_msg));
465 }
466 
467 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
468 {
469 	struct hnae3_handle *nic = &hdev->nic;
470 	int ret;
471 
472 	nic->ae_algo = &ae_algovf;
473 	nic->pdev = hdev->pdev;
474 	nic->numa_node_mask = hdev->numa_node_mask;
475 	nic->flags |= HNAE3_SUPPORT_VF;
476 
477 	ret = hclgevf_knic_setup(hdev);
478 	if (ret)
479 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
480 			ret);
481 	return ret;
482 }
483 
484 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
485 {
486 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
487 		dev_warn(&hdev->pdev->dev,
488 			 "vector(vector_id %d) has been freed.\n", vector_id);
489 		return;
490 	}
491 
492 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
493 	hdev->num_msi_left += 1;
494 	hdev->num_msi_used -= 1;
495 }
496 
497 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
498 			      struct hnae3_vector_info *vector_info)
499 {
500 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
501 	struct hnae3_vector_info *vector = vector_info;
502 	int alloc = 0;
503 	int i, j;
504 
505 	vector_num = min(hdev->num_msi_left, vector_num);
506 
507 	for (j = 0; j < vector_num; j++) {
508 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
509 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
510 				vector->vector = pci_irq_vector(hdev->pdev, i);
511 				vector->io_addr = hdev->hw.io_base +
512 					HCLGEVF_VECTOR_REG_BASE +
513 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
514 				hdev->vector_status[i] = 0;
515 				hdev->vector_irq[i] = vector->vector;
516 
517 				vector++;
518 				alloc++;
519 
520 				break;
521 			}
522 		}
523 	}
524 	hdev->num_msi_left -= alloc;
525 	hdev->num_msi_used += alloc;
526 
527 	return alloc;
528 }
529 
530 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
531 {
532 	int i;
533 
534 	for (i = 0; i < hdev->num_msi; i++)
535 		if (vector == hdev->vector_irq[i])
536 			return i;
537 
538 	return -EINVAL;
539 }
540 
541 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
542 				    const u8 hfunc, const u8 *key)
543 {
544 	struct hclgevf_rss_config_cmd *req;
545 	unsigned int key_offset = 0;
546 	struct hclgevf_desc desc;
547 	int key_counts;
548 	int key_size;
549 	int ret;
550 
551 	key_counts = HCLGEVF_RSS_KEY_SIZE;
552 	req = (struct hclgevf_rss_config_cmd *)desc.data;
553 
554 	while (key_counts) {
555 		hclgevf_cmd_setup_basic_desc(&desc,
556 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
557 					     false);
558 
559 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
560 		req->hash_config |=
561 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
562 
563 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
564 		memcpy(req->hash_key,
565 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
566 
567 		key_counts -= key_size;
568 		key_offset++;
569 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
570 		if (ret) {
571 			dev_err(&hdev->pdev->dev,
572 				"Configure RSS config fail, status = %d\n",
573 				ret);
574 			return ret;
575 		}
576 	}
577 
578 	return 0;
579 }
580 
581 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
582 {
583 	return HCLGEVF_RSS_KEY_SIZE;
584 }
585 
586 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
587 {
588 	return HCLGEVF_RSS_IND_TBL_SIZE;
589 }
590 
591 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
592 {
593 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
594 	struct hclgevf_rss_indirection_table_cmd *req;
595 	struct hclgevf_desc desc;
596 	int status;
597 	int i, j;
598 
599 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
600 
601 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
602 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
603 					     false);
604 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
605 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
606 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
607 			req->rss_result[j] =
608 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
609 
610 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
611 		if (status) {
612 			dev_err(&hdev->pdev->dev,
613 				"VF failed(=%d) to set RSS indirection table\n",
614 				status);
615 			return status;
616 		}
617 	}
618 
619 	return 0;
620 }
621 
622 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
623 {
624 	struct hclgevf_rss_tc_mode_cmd *req;
625 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
626 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
627 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
628 	struct hclgevf_desc desc;
629 	u16 roundup_size;
630 	int status;
631 	unsigned int i;
632 
633 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
634 
635 	roundup_size = roundup_pow_of_two(rss_size);
636 	roundup_size = ilog2(roundup_size);
637 
638 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
639 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
640 		tc_size[i] = roundup_size;
641 		tc_offset[i] = rss_size * i;
642 	}
643 
644 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
645 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
646 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
647 			      (tc_valid[i] & 0x1));
648 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
649 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
650 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
651 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
652 	}
653 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
654 	if (status)
655 		dev_err(&hdev->pdev->dev,
656 			"VF failed(=%d) to set rss tc mode\n", status);
657 
658 	return status;
659 }
660 
661 /* for revision 0x20, vf shared the same rss config with pf */
662 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
663 {
664 #define HCLGEVF_RSS_MBX_RESP_LEN	8
665 
666 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
667 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
668 	u16 msg_num, hash_key_index;
669 	u8 index;
670 	int ret;
671 
672 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
673 			HCLGEVF_RSS_MBX_RESP_LEN;
674 	for (index = 0; index < msg_num; index++) {
675 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
676 					   &index, sizeof(index),
677 					   true, resp_msg,
678 					   HCLGEVF_RSS_MBX_RESP_LEN);
679 		if (ret) {
680 			dev_err(&hdev->pdev->dev,
681 				"VF get rss hash key from PF failed, ret=%d",
682 				ret);
683 			return ret;
684 		}
685 
686 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
687 		if (index == msg_num - 1)
688 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
689 			       &resp_msg[0],
690 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
691 		else
692 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
693 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
694 	}
695 
696 	return 0;
697 }
698 
699 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
700 			   u8 *hfunc)
701 {
702 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
703 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
704 	int i, ret;
705 
706 	if (handle->pdev->revision >= 0x21) {
707 		/* Get hash algorithm */
708 		if (hfunc) {
709 			switch (rss_cfg->hash_algo) {
710 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
711 				*hfunc = ETH_RSS_HASH_TOP;
712 				break;
713 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
714 				*hfunc = ETH_RSS_HASH_XOR;
715 				break;
716 			default:
717 				*hfunc = ETH_RSS_HASH_UNKNOWN;
718 				break;
719 			}
720 		}
721 
722 		/* Get the RSS Key required by the user */
723 		if (key)
724 			memcpy(key, rss_cfg->rss_hash_key,
725 			       HCLGEVF_RSS_KEY_SIZE);
726 	} else {
727 		if (hfunc)
728 			*hfunc = ETH_RSS_HASH_TOP;
729 		if (key) {
730 			ret = hclgevf_get_rss_hash_key(hdev);
731 			if (ret)
732 				return ret;
733 			memcpy(key, rss_cfg->rss_hash_key,
734 			       HCLGEVF_RSS_KEY_SIZE);
735 		}
736 	}
737 
738 	if (indir)
739 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
740 			indir[i] = rss_cfg->rss_indirection_tbl[i];
741 
742 	return 0;
743 }
744 
745 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
746 			   const  u8 *key, const  u8 hfunc)
747 {
748 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
749 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
750 	int ret, i;
751 
752 	if (handle->pdev->revision >= 0x21) {
753 		/* Set the RSS Hash Key if specififed by the user */
754 		if (key) {
755 			switch (hfunc) {
756 			case ETH_RSS_HASH_TOP:
757 				rss_cfg->hash_algo =
758 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
759 				break;
760 			case ETH_RSS_HASH_XOR:
761 				rss_cfg->hash_algo =
762 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
763 				break;
764 			case ETH_RSS_HASH_NO_CHANGE:
765 				break;
766 			default:
767 				return -EINVAL;
768 			}
769 
770 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
771 						       key);
772 			if (ret)
773 				return ret;
774 
775 			/* Update the shadow RSS key with user specified qids */
776 			memcpy(rss_cfg->rss_hash_key, key,
777 			       HCLGEVF_RSS_KEY_SIZE);
778 		}
779 	}
780 
781 	/* update the shadow RSS table with user specified qids */
782 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
783 		rss_cfg->rss_indirection_tbl[i] = indir[i];
784 
785 	/* update the hardware */
786 	return hclgevf_set_rss_indir_table(hdev);
787 }
788 
789 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
790 {
791 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
792 
793 	if (nfc->data & RXH_L4_B_2_3)
794 		hash_sets |= HCLGEVF_D_PORT_BIT;
795 	else
796 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
797 
798 	if (nfc->data & RXH_IP_SRC)
799 		hash_sets |= HCLGEVF_S_IP_BIT;
800 	else
801 		hash_sets &= ~HCLGEVF_S_IP_BIT;
802 
803 	if (nfc->data & RXH_IP_DST)
804 		hash_sets |= HCLGEVF_D_IP_BIT;
805 	else
806 		hash_sets &= ~HCLGEVF_D_IP_BIT;
807 
808 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
809 		hash_sets |= HCLGEVF_V_TAG_BIT;
810 
811 	return hash_sets;
812 }
813 
814 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
815 				 struct ethtool_rxnfc *nfc)
816 {
817 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
818 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
819 	struct hclgevf_rss_input_tuple_cmd *req;
820 	struct hclgevf_desc desc;
821 	u8 tuple_sets;
822 	int ret;
823 
824 	if (handle->pdev->revision == 0x20)
825 		return -EOPNOTSUPP;
826 
827 	if (nfc->data &
828 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
829 		return -EINVAL;
830 
831 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
832 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
833 
834 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
835 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
836 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
837 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
838 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
839 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
840 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
841 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
842 
843 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
844 	switch (nfc->flow_type) {
845 	case TCP_V4_FLOW:
846 		req->ipv4_tcp_en = tuple_sets;
847 		break;
848 	case TCP_V6_FLOW:
849 		req->ipv6_tcp_en = tuple_sets;
850 		break;
851 	case UDP_V4_FLOW:
852 		req->ipv4_udp_en = tuple_sets;
853 		break;
854 	case UDP_V6_FLOW:
855 		req->ipv6_udp_en = tuple_sets;
856 		break;
857 	case SCTP_V4_FLOW:
858 		req->ipv4_sctp_en = tuple_sets;
859 		break;
860 	case SCTP_V6_FLOW:
861 		if ((nfc->data & RXH_L4_B_0_1) ||
862 		    (nfc->data & RXH_L4_B_2_3))
863 			return -EINVAL;
864 
865 		req->ipv6_sctp_en = tuple_sets;
866 		break;
867 	case IPV4_FLOW:
868 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
869 		break;
870 	case IPV6_FLOW:
871 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
872 		break;
873 	default:
874 		return -EINVAL;
875 	}
876 
877 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
878 	if (ret) {
879 		dev_err(&hdev->pdev->dev,
880 			"Set rss tuple fail, status = %d\n", ret);
881 		return ret;
882 	}
883 
884 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
885 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
886 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
887 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
888 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
889 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
890 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
891 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
892 	return 0;
893 }
894 
895 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
896 				 struct ethtool_rxnfc *nfc)
897 {
898 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
899 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
900 	u8 tuple_sets;
901 
902 	if (handle->pdev->revision == 0x20)
903 		return -EOPNOTSUPP;
904 
905 	nfc->data = 0;
906 
907 	switch (nfc->flow_type) {
908 	case TCP_V4_FLOW:
909 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
910 		break;
911 	case UDP_V4_FLOW:
912 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
913 		break;
914 	case TCP_V6_FLOW:
915 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
916 		break;
917 	case UDP_V6_FLOW:
918 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
919 		break;
920 	case SCTP_V4_FLOW:
921 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
922 		break;
923 	case SCTP_V6_FLOW:
924 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
925 		break;
926 	case IPV4_FLOW:
927 	case IPV6_FLOW:
928 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
929 		break;
930 	default:
931 		return -EINVAL;
932 	}
933 
934 	if (!tuple_sets)
935 		return 0;
936 
937 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
938 		nfc->data |= RXH_L4_B_2_3;
939 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
940 		nfc->data |= RXH_L4_B_0_1;
941 	if (tuple_sets & HCLGEVF_D_IP_BIT)
942 		nfc->data |= RXH_IP_DST;
943 	if (tuple_sets & HCLGEVF_S_IP_BIT)
944 		nfc->data |= RXH_IP_SRC;
945 
946 	return 0;
947 }
948 
949 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
950 				       struct hclgevf_rss_cfg *rss_cfg)
951 {
952 	struct hclgevf_rss_input_tuple_cmd *req;
953 	struct hclgevf_desc desc;
954 	int ret;
955 
956 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
957 
958 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
959 
960 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
961 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
962 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
963 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
964 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
965 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
966 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
967 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
968 
969 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
970 	if (ret)
971 		dev_err(&hdev->pdev->dev,
972 			"Configure rss input fail, status = %d\n", ret);
973 	return ret;
974 }
975 
976 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
977 {
978 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
979 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
980 
981 	return rss_cfg->rss_size;
982 }
983 
984 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
985 				       int vector_id,
986 				       struct hnae3_ring_chain_node *ring_chain)
987 {
988 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
989 	struct hnae3_ring_chain_node *node;
990 	struct hclge_mbx_vf_to_pf_cmd *req;
991 	struct hclgevf_desc desc;
992 	int i = 0;
993 	int status;
994 	u8 type;
995 
996 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
997 
998 	for (node = ring_chain; node; node = node->next) {
999 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1000 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1001 
1002 		if (i == 0) {
1003 			hclgevf_cmd_setup_basic_desc(&desc,
1004 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1005 						     false);
1006 			type = en ?
1007 				HCLGE_MBX_MAP_RING_TO_VECTOR :
1008 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1009 			req->msg[0] = type;
1010 			req->msg[1] = vector_id;
1011 		}
1012 
1013 		req->msg[idx_offset] =
1014 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1015 		req->msg[idx_offset + 1] = node->tqp_index;
1016 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1017 							   HNAE3_RING_GL_IDX_M,
1018 							   HNAE3_RING_GL_IDX_S);
1019 
1020 		i++;
1021 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1022 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1023 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1024 		    !node->next) {
1025 			req->msg[2] = i;
1026 
1027 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1028 			if (status) {
1029 				dev_err(&hdev->pdev->dev,
1030 					"Map TQP fail, status is %d.\n",
1031 					status);
1032 				return status;
1033 			}
1034 			i = 0;
1035 			hclgevf_cmd_setup_basic_desc(&desc,
1036 						     HCLGEVF_OPC_MBX_VF_TO_PF,
1037 						     false);
1038 			req->msg[0] = type;
1039 			req->msg[1] = vector_id;
1040 		}
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1047 				      struct hnae3_ring_chain_node *ring_chain)
1048 {
1049 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1050 	int vector_id;
1051 
1052 	vector_id = hclgevf_get_vector_index(hdev, vector);
1053 	if (vector_id < 0) {
1054 		dev_err(&handle->pdev->dev,
1055 			"Get vector index fail. ret =%d\n", vector_id);
1056 		return vector_id;
1057 	}
1058 
1059 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1060 }
1061 
1062 static int hclgevf_unmap_ring_from_vector(
1063 				struct hnae3_handle *handle,
1064 				int vector,
1065 				struct hnae3_ring_chain_node *ring_chain)
1066 {
1067 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1068 	int ret, vector_id;
1069 
1070 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1071 		return 0;
1072 
1073 	vector_id = hclgevf_get_vector_index(hdev, vector);
1074 	if (vector_id < 0) {
1075 		dev_err(&handle->pdev->dev,
1076 			"Get vector index fail. ret =%d\n", vector_id);
1077 		return vector_id;
1078 	}
1079 
1080 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1081 	if (ret)
1082 		dev_err(&handle->pdev->dev,
1083 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1084 			vector_id,
1085 			ret);
1086 
1087 	return ret;
1088 }
1089 
1090 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1091 {
1092 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1093 	int vector_id;
1094 
1095 	vector_id = hclgevf_get_vector_index(hdev, vector);
1096 	if (vector_id < 0) {
1097 		dev_err(&handle->pdev->dev,
1098 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1099 			vector_id);
1100 		return vector_id;
1101 	}
1102 
1103 	hclgevf_free_vector(hdev, vector_id);
1104 
1105 	return 0;
1106 }
1107 
1108 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1109 					bool en_bc_pmc)
1110 {
1111 	struct hclge_mbx_vf_to_pf_cmd *req;
1112 	struct hclgevf_desc desc;
1113 	int ret;
1114 
1115 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1116 
1117 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1118 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1119 	req->msg[1] = en_bc_pmc ? 1 : 0;
1120 
1121 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1122 	if (ret)
1123 		dev_err(&hdev->pdev->dev,
1124 			"Set promisc mode fail, status is %d.\n", ret);
1125 
1126 	return ret;
1127 }
1128 
1129 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1130 {
1131 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1132 }
1133 
1134 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1135 			      int stream_id, bool enable)
1136 {
1137 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1138 	struct hclgevf_desc desc;
1139 	int status;
1140 
1141 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1142 
1143 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1144 				     false);
1145 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1146 	req->stream_id = cpu_to_le16(stream_id);
1147 	if (enable)
1148 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1149 
1150 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1151 	if (status)
1152 		dev_err(&hdev->pdev->dev,
1153 			"TQP enable fail, status =%d.\n", status);
1154 
1155 	return status;
1156 }
1157 
1158 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1159 {
1160 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1161 	struct hclgevf_tqp *tqp;
1162 	int i;
1163 
1164 	for (i = 0; i < kinfo->num_tqps; i++) {
1165 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1166 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1167 	}
1168 }
1169 
1170 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1171 {
1172 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1173 
1174 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1175 }
1176 
1177 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1178 				bool is_first)
1179 {
1180 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1181 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1182 	u8 *new_mac_addr = (u8 *)p;
1183 	u8 msg_data[ETH_ALEN * 2];
1184 	u16 subcode;
1185 	int status;
1186 
1187 	ether_addr_copy(msg_data, new_mac_addr);
1188 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1189 
1190 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1191 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1192 
1193 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1194 				      subcode, msg_data, sizeof(msg_data),
1195 				      true, NULL, 0);
1196 	if (!status)
1197 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1198 
1199 	return status;
1200 }
1201 
1202 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1203 			       const unsigned char *addr)
1204 {
1205 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1206 
1207 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1208 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1209 				    addr, ETH_ALEN, false, NULL, 0);
1210 }
1211 
1212 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1213 			      const unsigned char *addr)
1214 {
1215 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1216 
1217 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1218 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1219 				    addr, ETH_ALEN, false, NULL, 0);
1220 }
1221 
1222 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1223 			       const unsigned char *addr)
1224 {
1225 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1226 
1227 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1228 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1229 				    addr, ETH_ALEN, false, NULL, 0);
1230 }
1231 
1232 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1233 			      const unsigned char *addr)
1234 {
1235 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1236 
1237 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1238 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1239 				    addr, ETH_ALEN, false, NULL, 0);
1240 }
1241 
1242 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1243 				   __be16 proto, u16 vlan_id,
1244 				   bool is_kill)
1245 {
1246 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1247 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1248 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1249 	int ret;
1250 
1251 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1252 		return -EINVAL;
1253 
1254 	if (proto != htons(ETH_P_8021Q))
1255 		return -EPROTONOSUPPORT;
1256 
1257 	/* When device is resetting, firmware is unable to handle
1258 	 * mailbox. Just record the vlan id, and remove it after
1259 	 * reset finished.
1260 	 */
1261 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1262 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1263 		return -EBUSY;
1264 	}
1265 
1266 	msg_data[0] = is_kill;
1267 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1268 	memcpy(&msg_data[3], &proto, sizeof(proto));
1269 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1270 				   HCLGE_MBX_VLAN_FILTER, msg_data,
1271 				   HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1272 
1273 	/* When remove hw vlan filter failed, record the vlan id,
1274 	 * and try to remove it from hw later, to be consistence
1275 	 * with stack.
1276 	 */
1277 	if (is_kill && ret)
1278 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1279 
1280 	return ret;
1281 }
1282 
1283 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1284 {
1285 #define HCLGEVF_MAX_SYNC_COUNT	60
1286 	struct hnae3_handle *handle = &hdev->nic;
1287 	int ret, sync_cnt = 0;
1288 	u16 vlan_id;
1289 
1290 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1291 	while (vlan_id != VLAN_N_VID) {
1292 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1293 					      vlan_id, true);
1294 		if (ret)
1295 			return;
1296 
1297 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1298 		sync_cnt++;
1299 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1300 			return;
1301 
1302 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1303 	}
1304 }
1305 
1306 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1307 {
1308 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1309 	u8 msg_data;
1310 
1311 	msg_data = enable ? 1 : 0;
1312 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1313 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1314 				    1, false, NULL, 0);
1315 }
1316 
1317 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1318 {
1319 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1320 	u8 msg_data[2];
1321 	int ret;
1322 
1323 	memcpy(msg_data, &queue_id, sizeof(queue_id));
1324 
1325 	/* disable vf queue before send queue reset msg to PF */
1326 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1327 	if (ret)
1328 		return ret;
1329 
1330 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1331 				    sizeof(msg_data), true, NULL, 0);
1332 }
1333 
1334 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1335 {
1336 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1337 
1338 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1339 				    sizeof(new_mtu), true, NULL, 0);
1340 }
1341 
1342 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1343 				 enum hnae3_reset_notify_type type)
1344 {
1345 	struct hnae3_client *client = hdev->nic_client;
1346 	struct hnae3_handle *handle = &hdev->nic;
1347 	int ret;
1348 
1349 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1350 	    !client)
1351 		return 0;
1352 
1353 	if (!client->ops->reset_notify)
1354 		return -EOPNOTSUPP;
1355 
1356 	ret = client->ops->reset_notify(handle, type);
1357 	if (ret)
1358 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1359 			type, ret);
1360 
1361 	return ret;
1362 }
1363 
1364 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1365 {
1366 	struct hclgevf_dev *hdev = ae_dev->priv;
1367 
1368 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1369 }
1370 
1371 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1372 				    unsigned long delay_us,
1373 				    unsigned long wait_cnt)
1374 {
1375 	unsigned long cnt = 0;
1376 
1377 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1378 	       cnt++ < wait_cnt)
1379 		usleep_range(delay_us, delay_us * 2);
1380 
1381 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1382 		dev_err(&hdev->pdev->dev,
1383 			"flr wait timeout\n");
1384 		return -ETIMEDOUT;
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1391 {
1392 #define HCLGEVF_RESET_WAIT_US	20000
1393 #define HCLGEVF_RESET_WAIT_CNT	2000
1394 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1395 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1396 
1397 	u32 val;
1398 	int ret;
1399 
1400 	/* wait to check the hardware reset completion status */
1401 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1402 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1403 
1404 	if (hdev->reset_type == HNAE3_FLR_RESET)
1405 		return hclgevf_flr_poll_timeout(hdev,
1406 						HCLGEVF_RESET_WAIT_US,
1407 						HCLGEVF_RESET_WAIT_CNT);
1408 
1409 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1410 				 !(val & HCLGEVF_RST_ING_BITS),
1411 				 HCLGEVF_RESET_WAIT_US,
1412 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1413 
1414 	/* hardware completion status should be available by this time */
1415 	if (ret) {
1416 		dev_err(&hdev->pdev->dev,
1417 			"could'nt get reset done status from h/w, timeout!\n");
1418 		return ret;
1419 	}
1420 
1421 	/* we will wait a bit more to let reset of the stack to complete. This
1422 	 * might happen in case reset assertion was made by PF. Yes, this also
1423 	 * means we might end up waiting bit more even for VF reset.
1424 	 */
1425 	msleep(5000);
1426 
1427 	return 0;
1428 }
1429 
1430 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1431 {
1432 	int ret;
1433 
1434 	/* uninitialize the nic client */
1435 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1436 	if (ret)
1437 		return ret;
1438 
1439 	/* re-initialize the hclge device */
1440 	ret = hclgevf_reset_hdev(hdev);
1441 	if (ret) {
1442 		dev_err(&hdev->pdev->dev,
1443 			"hclge device re-init failed, VF is disabled!\n");
1444 		return ret;
1445 	}
1446 
1447 	/* bring up the nic client again */
1448 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1449 	if (ret)
1450 		return ret;
1451 
1452 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1453 }
1454 
1455 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1456 {
1457 #define HCLGEVF_RESET_SYNC_TIME 100
1458 
1459 	int ret = 0;
1460 
1461 	switch (hdev->reset_type) {
1462 	case HNAE3_VF_FUNC_RESET:
1463 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1464 					   0, true, NULL, sizeof(u8));
1465 		hdev->rst_stats.vf_func_rst_cnt++;
1466 		break;
1467 	case HNAE3_FLR_RESET:
1468 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1469 		hdev->rst_stats.flr_rst_cnt++;
1470 		break;
1471 	default:
1472 		break;
1473 	}
1474 
1475 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1476 	/* inform hardware that preparatory work is done */
1477 	msleep(HCLGEVF_RESET_SYNC_TIME);
1478 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1479 			  HCLGEVF_NIC_CMQ_ENABLE);
1480 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1481 		 hdev->reset_type, ret);
1482 
1483 	return ret;
1484 }
1485 
1486 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1487 {
1488 	hdev->rst_stats.rst_fail_cnt++;
1489 	dev_err(&hdev->pdev->dev, "failed to reset VF(%d)\n",
1490 		hdev->rst_stats.rst_fail_cnt);
1491 
1492 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1493 		set_bit(hdev->reset_type, &hdev->reset_pending);
1494 
1495 	if (hclgevf_is_reset_pending(hdev)) {
1496 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1497 		hclgevf_reset_task_schedule(hdev);
1498 	} else {
1499 		hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1500 				  HCLGEVF_NIC_CMQ_ENABLE);
1501 	}
1502 }
1503 
1504 static int hclgevf_reset(struct hclgevf_dev *hdev)
1505 {
1506 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1507 	int ret;
1508 
1509 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1510 	 * know if device is undergoing reset
1511 	 */
1512 	ae_dev->reset_type = hdev->reset_type;
1513 	hdev->rst_stats.rst_cnt++;
1514 	rtnl_lock();
1515 
1516 	/* bring down the nic to stop any ongoing TX/RX */
1517 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1518 	if (ret)
1519 		goto err_reset_lock;
1520 
1521 	rtnl_unlock();
1522 
1523 	ret = hclgevf_reset_prepare_wait(hdev);
1524 	if (ret)
1525 		goto err_reset;
1526 
1527 	/* check if VF could successfully fetch the hardware reset completion
1528 	 * status from the hardware
1529 	 */
1530 	ret = hclgevf_reset_wait(hdev);
1531 	if (ret) {
1532 		/* can't do much in this situation, will disable VF */
1533 		dev_err(&hdev->pdev->dev,
1534 			"VF failed(=%d) to fetch H/W reset completion status\n",
1535 			ret);
1536 		goto err_reset;
1537 	}
1538 
1539 	hdev->rst_stats.hw_rst_done_cnt++;
1540 
1541 	rtnl_lock();
1542 
1543 	/* now, re-initialize the nic client and ae device*/
1544 	ret = hclgevf_reset_stack(hdev);
1545 	if (ret) {
1546 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1547 		goto err_reset_lock;
1548 	}
1549 
1550 	/* bring up the nic to enable TX/RX again */
1551 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1552 	if (ret)
1553 		goto err_reset_lock;
1554 
1555 	rtnl_unlock();
1556 
1557 	hdev->last_reset_time = jiffies;
1558 	ae_dev->reset_type = HNAE3_NONE_RESET;
1559 	hdev->rst_stats.rst_done_cnt++;
1560 	hdev->rst_stats.rst_fail_cnt = 0;
1561 
1562 	return ret;
1563 err_reset_lock:
1564 	rtnl_unlock();
1565 err_reset:
1566 	hclgevf_reset_err_handle(hdev);
1567 
1568 	return ret;
1569 }
1570 
1571 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1572 						     unsigned long *addr)
1573 {
1574 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1575 
1576 	/* return the highest priority reset level amongst all */
1577 	if (test_bit(HNAE3_VF_RESET, addr)) {
1578 		rst_level = HNAE3_VF_RESET;
1579 		clear_bit(HNAE3_VF_RESET, addr);
1580 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1581 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1582 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1583 		rst_level = HNAE3_VF_FULL_RESET;
1584 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1585 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1586 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1587 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1588 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1589 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1590 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1591 		rst_level = HNAE3_VF_FUNC_RESET;
1592 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1593 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1594 		rst_level = HNAE3_FLR_RESET;
1595 		clear_bit(HNAE3_FLR_RESET, addr);
1596 	}
1597 
1598 	return rst_level;
1599 }
1600 
1601 static void hclgevf_reset_event(struct pci_dev *pdev,
1602 				struct hnae3_handle *handle)
1603 {
1604 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1605 	struct hclgevf_dev *hdev = ae_dev->priv;
1606 
1607 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1608 
1609 	if (hdev->default_reset_request)
1610 		hdev->reset_level =
1611 			hclgevf_get_reset_level(hdev,
1612 						&hdev->default_reset_request);
1613 	else
1614 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1615 
1616 	/* reset of this VF requested */
1617 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1618 	hclgevf_reset_task_schedule(hdev);
1619 
1620 	hdev->last_reset_time = jiffies;
1621 }
1622 
1623 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1624 					  enum hnae3_reset_type rst_type)
1625 {
1626 	struct hclgevf_dev *hdev = ae_dev->priv;
1627 
1628 	set_bit(rst_type, &hdev->default_reset_request);
1629 }
1630 
1631 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1632 {
1633 #define HCLGEVF_FLR_WAIT_MS	100
1634 #define HCLGEVF_FLR_WAIT_CNT	50
1635 	struct hclgevf_dev *hdev = ae_dev->priv;
1636 	int cnt = 0;
1637 
1638 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1639 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1640 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1641 	hclgevf_reset_event(hdev->pdev, NULL);
1642 
1643 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1644 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1645 		msleep(HCLGEVF_FLR_WAIT_MS);
1646 
1647 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1648 		dev_err(&hdev->pdev->dev,
1649 			"flr wait down timeout: %d\n", cnt);
1650 }
1651 
1652 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1653 {
1654 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1655 
1656 	return hdev->fw_version;
1657 }
1658 
1659 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1660 {
1661 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1662 
1663 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1664 					    HCLGEVF_MISC_VECTOR_NUM);
1665 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1666 	/* vector status always valid for Vector 0 */
1667 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1668 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1669 
1670 	hdev->num_msi_left -= 1;
1671 	hdev->num_msi_used += 1;
1672 }
1673 
1674 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1675 {
1676 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1677 	    !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1678 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1679 		schedule_work(&hdev->rst_service_task);
1680 	}
1681 }
1682 
1683 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1684 {
1685 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1686 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1687 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1688 		schedule_work(&hdev->mbx_service_task);
1689 	}
1690 }
1691 
1692 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1693 {
1694 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1695 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1696 		schedule_work(&hdev->service_task);
1697 }
1698 
1699 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1700 {
1701 	/* if we have any pending mailbox event then schedule the mbx task */
1702 	if (hdev->mbx_event_pending)
1703 		hclgevf_mbx_task_schedule(hdev);
1704 
1705 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1706 		hclgevf_reset_task_schedule(hdev);
1707 }
1708 
1709 static void hclgevf_service_timer(struct timer_list *t)
1710 {
1711 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1712 
1713 	mod_timer(&hdev->service_timer, jiffies +
1714 		  HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1715 
1716 	hdev->stats_timer++;
1717 	hclgevf_task_schedule(hdev);
1718 }
1719 
1720 static void hclgevf_reset_service_task(struct work_struct *work)
1721 {
1722 	struct hclgevf_dev *hdev =
1723 		container_of(work, struct hclgevf_dev, rst_service_task);
1724 	int ret;
1725 
1726 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1727 		return;
1728 
1729 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1730 
1731 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1732 			       &hdev->reset_state)) {
1733 		/* PF has initmated that it is about to reset the hardware.
1734 		 * We now have to poll & check if hardware has actually
1735 		 * completed the reset sequence. On hardware reset completion,
1736 		 * VF needs to reset the client and ae device.
1737 		 */
1738 		hdev->reset_attempts = 0;
1739 
1740 		hdev->last_reset_time = jiffies;
1741 		while ((hdev->reset_type =
1742 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1743 		       != HNAE3_NONE_RESET) {
1744 			ret = hclgevf_reset(hdev);
1745 			if (ret)
1746 				dev_err(&hdev->pdev->dev,
1747 					"VF stack reset failed %d.\n", ret);
1748 		}
1749 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1750 				      &hdev->reset_state)) {
1751 		/* we could be here when either of below happens:
1752 		 * 1. reset was initiated due to watchdog timeout caused by
1753 		 *    a. IMP was earlier reset and our TX got choked down and
1754 		 *       which resulted in watchdog reacting and inducing VF
1755 		 *       reset. This also means our cmdq would be unreliable.
1756 		 *    b. problem in TX due to other lower layer(example link
1757 		 *       layer not functioning properly etc.)
1758 		 * 2. VF reset might have been initiated due to some config
1759 		 *    change.
1760 		 *
1761 		 * NOTE: Theres no clear way to detect above cases than to react
1762 		 * to the response of PF for this reset request. PF will ack the
1763 		 * 1b and 2. cases but we will not get any intimation about 1a
1764 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1765 		 * communication between PF and VF would be broken.
1766 		 */
1767 
1768 		/* if we are never geting into pending state it means either:
1769 		 * 1. PF is not receiving our request which could be due to IMP
1770 		 *    reset
1771 		 * 2. PF is screwed
1772 		 * We cannot do much for 2. but to check first we can try reset
1773 		 * our PCIe + stack and see if it alleviates the problem.
1774 		 */
1775 		if (hdev->reset_attempts > 3) {
1776 			/* prepare for full reset of stack + pcie interface */
1777 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1778 
1779 			/* "defer" schedule the reset task again */
1780 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1781 		} else {
1782 			hdev->reset_attempts++;
1783 
1784 			set_bit(hdev->reset_level, &hdev->reset_pending);
1785 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1786 		}
1787 		hclgevf_reset_task_schedule(hdev);
1788 	}
1789 
1790 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1791 }
1792 
1793 static void hclgevf_mailbox_service_task(struct work_struct *work)
1794 {
1795 	struct hclgevf_dev *hdev;
1796 
1797 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1798 
1799 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1800 		return;
1801 
1802 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1803 
1804 	hclgevf_mbx_async_handler(hdev);
1805 
1806 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1807 }
1808 
1809 static void hclgevf_keep_alive_timer(struct timer_list *t)
1810 {
1811 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1812 
1813 	schedule_work(&hdev->keep_alive_task);
1814 	mod_timer(&hdev->keep_alive_timer, jiffies +
1815 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1816 }
1817 
1818 static void hclgevf_keep_alive_task(struct work_struct *work)
1819 {
1820 	struct hclgevf_dev *hdev;
1821 	u8 respmsg;
1822 	int ret;
1823 
1824 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1825 
1826 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1827 		return;
1828 
1829 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1830 				   0, false, &respmsg, sizeof(respmsg));
1831 	if (ret)
1832 		dev_err(&hdev->pdev->dev,
1833 			"VF sends keep alive cmd failed(=%d)\n", ret);
1834 }
1835 
1836 static void hclgevf_service_task(struct work_struct *work)
1837 {
1838 	struct hnae3_handle *handle;
1839 	struct hclgevf_dev *hdev;
1840 
1841 	hdev = container_of(work, struct hclgevf_dev, service_task);
1842 	handle = &hdev->nic;
1843 
1844 	if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1845 		hclgevf_tqps_update_stats(handle);
1846 		hdev->stats_timer = 0;
1847 	}
1848 
1849 	/* request the link status from the PF. PF would be able to tell VF
1850 	 * about such updates in future so we might remove this later
1851 	 */
1852 	hclgevf_request_link_info(hdev);
1853 
1854 	hclgevf_update_link_mode(hdev);
1855 
1856 	hclgevf_sync_vlan_filter(hdev);
1857 
1858 	hclgevf_deferred_task_schedule(hdev);
1859 
1860 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1861 }
1862 
1863 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1864 {
1865 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1866 }
1867 
1868 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1869 						      u32 *clearval)
1870 {
1871 	u32 cmdq_src_reg, rst_ing_reg;
1872 
1873 	/* fetch the events from their corresponding regs */
1874 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1875 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1876 
1877 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1878 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1879 		dev_info(&hdev->pdev->dev,
1880 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1881 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1882 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1883 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1884 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1885 		*clearval = cmdq_src_reg;
1886 		hdev->rst_stats.vf_rst_cnt++;
1887 		return HCLGEVF_VECTOR0_EVENT_RST;
1888 	}
1889 
1890 	/* check for vector0 mailbox(=CMDQ RX) event source */
1891 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1892 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1893 		*clearval = cmdq_src_reg;
1894 		return HCLGEVF_VECTOR0_EVENT_MBX;
1895 	}
1896 
1897 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1898 
1899 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1900 }
1901 
1902 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1903 {
1904 	writel(en ? 1 : 0, vector->addr);
1905 }
1906 
1907 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1908 {
1909 	enum hclgevf_evt_cause event_cause;
1910 	struct hclgevf_dev *hdev = data;
1911 	u32 clearval;
1912 
1913 	hclgevf_enable_vector(&hdev->misc_vector, false);
1914 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1915 
1916 	switch (event_cause) {
1917 	case HCLGEVF_VECTOR0_EVENT_RST:
1918 		hclgevf_reset_task_schedule(hdev);
1919 		break;
1920 	case HCLGEVF_VECTOR0_EVENT_MBX:
1921 		hclgevf_mbx_handler(hdev);
1922 		break;
1923 	default:
1924 		break;
1925 	}
1926 
1927 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1928 		hclgevf_clear_event_cause(hdev, clearval);
1929 		hclgevf_enable_vector(&hdev->misc_vector, true);
1930 	}
1931 
1932 	return IRQ_HANDLED;
1933 }
1934 
1935 static int hclgevf_configure(struct hclgevf_dev *hdev)
1936 {
1937 	int ret;
1938 
1939 	/* get current port based vlan state from PF */
1940 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1941 	if (ret)
1942 		return ret;
1943 
1944 	/* get queue configuration from PF */
1945 	ret = hclgevf_get_queue_info(hdev);
1946 	if (ret)
1947 		return ret;
1948 
1949 	/* get queue depth info from PF */
1950 	ret = hclgevf_get_queue_depth(hdev);
1951 	if (ret)
1952 		return ret;
1953 
1954 	ret = hclgevf_get_pf_media_type(hdev);
1955 	if (ret)
1956 		return ret;
1957 
1958 	/* get tc configuration from PF */
1959 	return hclgevf_get_tc_info(hdev);
1960 }
1961 
1962 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1963 {
1964 	struct pci_dev *pdev = ae_dev->pdev;
1965 	struct hclgevf_dev *hdev;
1966 
1967 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1968 	if (!hdev)
1969 		return -ENOMEM;
1970 
1971 	hdev->pdev = pdev;
1972 	hdev->ae_dev = ae_dev;
1973 	ae_dev->priv = hdev;
1974 
1975 	return 0;
1976 }
1977 
1978 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1979 {
1980 	struct hnae3_handle *roce = &hdev->roce;
1981 	struct hnae3_handle *nic = &hdev->nic;
1982 
1983 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1984 
1985 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1986 	    hdev->num_msi_left == 0)
1987 		return -EINVAL;
1988 
1989 	roce->rinfo.base_vector = hdev->roce_base_vector;
1990 
1991 	roce->rinfo.netdev = nic->kinfo.netdev;
1992 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1993 
1994 	roce->pdev = nic->pdev;
1995 	roce->ae_algo = nic->ae_algo;
1996 	roce->numa_node_mask = nic->numa_node_mask;
1997 
1998 	return 0;
1999 }
2000 
2001 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2002 {
2003 	struct hclgevf_cfg_gro_status_cmd *req;
2004 	struct hclgevf_desc desc;
2005 	int ret;
2006 
2007 	if (!hnae3_dev_gro_supported(hdev))
2008 		return 0;
2009 
2010 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2011 				     false);
2012 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2013 
2014 	req->gro_en = cpu_to_le16(en ? 1 : 0);
2015 
2016 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2017 	if (ret)
2018 		dev_err(&hdev->pdev->dev,
2019 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2020 
2021 	return ret;
2022 }
2023 
2024 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2025 {
2026 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2027 	int i, ret;
2028 
2029 	rss_cfg->rss_size = hdev->rss_size_max;
2030 
2031 	if (hdev->pdev->revision >= 0x21) {
2032 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2033 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2034 		       HCLGEVF_RSS_KEY_SIZE);
2035 
2036 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2037 					       rss_cfg->rss_hash_key);
2038 		if (ret)
2039 			return ret;
2040 
2041 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
2042 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2043 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
2044 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2045 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
2046 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2047 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
2048 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2049 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
2050 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2051 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
2052 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2053 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
2054 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2055 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2056 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2057 
2058 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2059 		if (ret)
2060 			return ret;
2061 
2062 	}
2063 
2064 	/* Initialize RSS indirect table */
2065 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2066 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
2067 
2068 	ret = hclgevf_set_rss_indir_table(hdev);
2069 	if (ret)
2070 		return ret;
2071 
2072 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
2073 }
2074 
2075 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2076 {
2077 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2078 				       false);
2079 }
2080 
2081 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2082 {
2083 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2084 
2085 	if (enable) {
2086 		mod_timer(&hdev->service_timer, jiffies + HZ);
2087 	} else {
2088 		del_timer_sync(&hdev->service_timer);
2089 		cancel_work_sync(&hdev->service_task);
2090 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2091 	}
2092 }
2093 
2094 static int hclgevf_ae_start(struct hnae3_handle *handle)
2095 {
2096 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2097 
2098 	hclgevf_reset_tqp_stats(handle);
2099 
2100 	hclgevf_request_link_info(hdev);
2101 
2102 	hclgevf_update_link_mode(hdev);
2103 
2104 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2105 
2106 	return 0;
2107 }
2108 
2109 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2110 {
2111 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2112 	int i;
2113 
2114 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2115 
2116 	if (hdev->reset_type != HNAE3_VF_RESET)
2117 		for (i = 0; i < handle->kinfo.num_tqps; i++)
2118 			if (hclgevf_reset_tqp(handle, i))
2119 				break;
2120 
2121 	hclgevf_reset_tqp_stats(handle);
2122 	hclgevf_update_link_status(hdev, 0);
2123 }
2124 
2125 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2126 {
2127 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2128 	u8 msg_data;
2129 
2130 	msg_data = alive ? 1 : 0;
2131 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2132 				    0, &msg_data, 1, false, NULL, 0);
2133 }
2134 
2135 static int hclgevf_client_start(struct hnae3_handle *handle)
2136 {
2137 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2138 	int ret;
2139 
2140 	ret = hclgevf_set_alive(handle, true);
2141 	if (ret)
2142 		return ret;
2143 
2144 	mod_timer(&hdev->keep_alive_timer, jiffies +
2145 		  HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2146 
2147 	return 0;
2148 }
2149 
2150 static void hclgevf_client_stop(struct hnae3_handle *handle)
2151 {
2152 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2153 	int ret;
2154 
2155 	ret = hclgevf_set_alive(handle, false);
2156 	if (ret)
2157 		dev_warn(&hdev->pdev->dev,
2158 			 "%s failed %d\n", __func__, ret);
2159 
2160 	del_timer_sync(&hdev->keep_alive_timer);
2161 	cancel_work_sync(&hdev->keep_alive_task);
2162 }
2163 
2164 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2165 {
2166 	/* setup tasks for the MBX */
2167 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2168 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2169 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2170 
2171 	/* setup tasks for service timer */
2172 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2173 
2174 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2175 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2176 
2177 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2178 
2179 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2180 
2181 	/* bring the device down */
2182 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2183 }
2184 
2185 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2186 {
2187 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2188 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2189 
2190 	if (hdev->keep_alive_timer.function)
2191 		del_timer_sync(&hdev->keep_alive_timer);
2192 	if (hdev->keep_alive_task.func)
2193 		cancel_work_sync(&hdev->keep_alive_task);
2194 	if (hdev->service_timer.function)
2195 		del_timer_sync(&hdev->service_timer);
2196 	if (hdev->service_task.func)
2197 		cancel_work_sync(&hdev->service_task);
2198 	if (hdev->mbx_service_task.func)
2199 		cancel_work_sync(&hdev->mbx_service_task);
2200 	if (hdev->rst_service_task.func)
2201 		cancel_work_sync(&hdev->rst_service_task);
2202 
2203 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2204 }
2205 
2206 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2207 {
2208 	struct pci_dev *pdev = hdev->pdev;
2209 	int vectors;
2210 	int i;
2211 
2212 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2213 		vectors = pci_alloc_irq_vectors(pdev,
2214 						hdev->roce_base_msix_offset + 1,
2215 						hdev->num_msi,
2216 						PCI_IRQ_MSIX);
2217 	else
2218 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2219 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2220 
2221 	if (vectors < 0) {
2222 		dev_err(&pdev->dev,
2223 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2224 			vectors);
2225 		return vectors;
2226 	}
2227 	if (vectors < hdev->num_msi)
2228 		dev_warn(&hdev->pdev->dev,
2229 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2230 			 hdev->num_msi, vectors);
2231 
2232 	hdev->num_msi = vectors;
2233 	hdev->num_msi_left = vectors;
2234 	hdev->base_msi_vector = pdev->irq;
2235 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2236 
2237 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2238 					   sizeof(u16), GFP_KERNEL);
2239 	if (!hdev->vector_status) {
2240 		pci_free_irq_vectors(pdev);
2241 		return -ENOMEM;
2242 	}
2243 
2244 	for (i = 0; i < hdev->num_msi; i++)
2245 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2246 
2247 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2248 					sizeof(int), GFP_KERNEL);
2249 	if (!hdev->vector_irq) {
2250 		devm_kfree(&pdev->dev, hdev->vector_status);
2251 		pci_free_irq_vectors(pdev);
2252 		return -ENOMEM;
2253 	}
2254 
2255 	return 0;
2256 }
2257 
2258 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2259 {
2260 	struct pci_dev *pdev = hdev->pdev;
2261 
2262 	devm_kfree(&pdev->dev, hdev->vector_status);
2263 	devm_kfree(&pdev->dev, hdev->vector_irq);
2264 	pci_free_irq_vectors(pdev);
2265 }
2266 
2267 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2268 {
2269 	int ret = 0;
2270 
2271 	hclgevf_get_misc_vector(hdev);
2272 
2273 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2274 			  0, "hclgevf_cmd", hdev);
2275 	if (ret) {
2276 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2277 			hdev->misc_vector.vector_irq);
2278 		return ret;
2279 	}
2280 
2281 	hclgevf_clear_event_cause(hdev, 0);
2282 
2283 	/* enable misc. vector(vector 0) */
2284 	hclgevf_enable_vector(&hdev->misc_vector, true);
2285 
2286 	return ret;
2287 }
2288 
2289 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2290 {
2291 	/* disable misc vector(vector 0) */
2292 	hclgevf_enable_vector(&hdev->misc_vector, false);
2293 	synchronize_irq(hdev->misc_vector.vector_irq);
2294 	free_irq(hdev->misc_vector.vector_irq, hdev);
2295 	hclgevf_free_vector(hdev, 0);
2296 }
2297 
2298 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2299 {
2300 	struct device *dev = &hdev->pdev->dev;
2301 
2302 	dev_info(dev, "VF info begin:\n");
2303 
2304 	dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2305 	dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2306 	dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2307 	dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2308 	dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2309 	dev_info(dev, "PF media type of this VF: %d\n",
2310 		 hdev->hw.mac.media_type);
2311 
2312 	dev_info(dev, "VF info end.\n");
2313 }
2314 
2315 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2316 					    struct hnae3_client *client)
2317 {
2318 	struct hclgevf_dev *hdev = ae_dev->priv;
2319 	int ret;
2320 
2321 	ret = client->ops->init_instance(&hdev->nic);
2322 	if (ret)
2323 		return ret;
2324 
2325 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2326 	hnae3_set_client_init_flag(client, ae_dev, 1);
2327 
2328 	if (netif_msg_drv(&hdev->nic))
2329 		hclgevf_info_show(hdev);
2330 
2331 	return 0;
2332 }
2333 
2334 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2335 					     struct hnae3_client *client)
2336 {
2337 	struct hclgevf_dev *hdev = ae_dev->priv;
2338 	int ret;
2339 
2340 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2341 	    !hdev->nic_client)
2342 		return 0;
2343 
2344 	ret = hclgevf_init_roce_base_info(hdev);
2345 	if (ret)
2346 		return ret;
2347 
2348 	ret = client->ops->init_instance(&hdev->roce);
2349 	if (ret)
2350 		return ret;
2351 
2352 	hnae3_set_client_init_flag(client, ae_dev, 1);
2353 
2354 	return 0;
2355 }
2356 
2357 static int hclgevf_init_client_instance(struct hnae3_client *client,
2358 					struct hnae3_ae_dev *ae_dev)
2359 {
2360 	struct hclgevf_dev *hdev = ae_dev->priv;
2361 	int ret;
2362 
2363 	switch (client->type) {
2364 	case HNAE3_CLIENT_KNIC:
2365 		hdev->nic_client = client;
2366 		hdev->nic.client = client;
2367 
2368 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2369 		if (ret)
2370 			goto clear_nic;
2371 
2372 		ret = hclgevf_init_roce_client_instance(ae_dev,
2373 							hdev->roce_client);
2374 		if (ret)
2375 			goto clear_roce;
2376 
2377 		break;
2378 	case HNAE3_CLIENT_ROCE:
2379 		if (hnae3_dev_roce_supported(hdev)) {
2380 			hdev->roce_client = client;
2381 			hdev->roce.client = client;
2382 		}
2383 
2384 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2385 		if (ret)
2386 			goto clear_roce;
2387 
2388 		break;
2389 	default:
2390 		return -EINVAL;
2391 	}
2392 
2393 	return 0;
2394 
2395 clear_nic:
2396 	hdev->nic_client = NULL;
2397 	hdev->nic.client = NULL;
2398 	return ret;
2399 clear_roce:
2400 	hdev->roce_client = NULL;
2401 	hdev->roce.client = NULL;
2402 	return ret;
2403 }
2404 
2405 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2406 					   struct hnae3_ae_dev *ae_dev)
2407 {
2408 	struct hclgevf_dev *hdev = ae_dev->priv;
2409 
2410 	/* un-init roce, if it exists */
2411 	if (hdev->roce_client) {
2412 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2413 		hdev->roce_client = NULL;
2414 		hdev->roce.client = NULL;
2415 	}
2416 
2417 	/* un-init nic/unic, if this was not called by roce client */
2418 	if (client->ops->uninit_instance && hdev->nic_client &&
2419 	    client->type != HNAE3_CLIENT_ROCE) {
2420 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2421 
2422 		client->ops->uninit_instance(&hdev->nic, 0);
2423 		hdev->nic_client = NULL;
2424 		hdev->nic.client = NULL;
2425 	}
2426 }
2427 
2428 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2429 {
2430 	struct pci_dev *pdev = hdev->pdev;
2431 	struct hclgevf_hw *hw;
2432 	int ret;
2433 
2434 	ret = pci_enable_device(pdev);
2435 	if (ret) {
2436 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2437 		return ret;
2438 	}
2439 
2440 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2441 	if (ret) {
2442 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2443 		goto err_disable_device;
2444 	}
2445 
2446 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2447 	if (ret) {
2448 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2449 		goto err_disable_device;
2450 	}
2451 
2452 	pci_set_master(pdev);
2453 	hw = &hdev->hw;
2454 	hw->hdev = hdev;
2455 	hw->io_base = pci_iomap(pdev, 2, 0);
2456 	if (!hw->io_base) {
2457 		dev_err(&pdev->dev, "can't map configuration register space\n");
2458 		ret = -ENOMEM;
2459 		goto err_clr_master;
2460 	}
2461 
2462 	return 0;
2463 
2464 err_clr_master:
2465 	pci_clear_master(pdev);
2466 	pci_release_regions(pdev);
2467 err_disable_device:
2468 	pci_disable_device(pdev);
2469 
2470 	return ret;
2471 }
2472 
2473 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2474 {
2475 	struct pci_dev *pdev = hdev->pdev;
2476 
2477 	pci_iounmap(pdev, hdev->hw.io_base);
2478 	pci_clear_master(pdev);
2479 	pci_release_regions(pdev);
2480 	pci_disable_device(pdev);
2481 }
2482 
2483 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2484 {
2485 	struct hclgevf_query_res_cmd *req;
2486 	struct hclgevf_desc desc;
2487 	int ret;
2488 
2489 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2490 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2491 	if (ret) {
2492 		dev_err(&hdev->pdev->dev,
2493 			"query vf resource failed, ret = %d.\n", ret);
2494 		return ret;
2495 	}
2496 
2497 	req = (struct hclgevf_query_res_cmd *)desc.data;
2498 
2499 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2500 		hdev->roce_base_msix_offset =
2501 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2502 				HCLGEVF_MSIX_OFT_ROCEE_M,
2503 				HCLGEVF_MSIX_OFT_ROCEE_S);
2504 		hdev->num_roce_msix =
2505 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2506 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2507 
2508 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2509 		 * are queued before Roce vectors. The offset is fixed to 64.
2510 		 */
2511 		hdev->num_msi = hdev->num_roce_msix +
2512 				hdev->roce_base_msix_offset;
2513 	} else {
2514 		hdev->num_msi =
2515 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2516 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2517 	}
2518 
2519 	return 0;
2520 }
2521 
2522 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2523 {
2524 	struct pci_dev *pdev = hdev->pdev;
2525 	int ret = 0;
2526 
2527 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2528 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2529 		hclgevf_misc_irq_uninit(hdev);
2530 		hclgevf_uninit_msi(hdev);
2531 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2532 	}
2533 
2534 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2535 		pci_set_master(pdev);
2536 		ret = hclgevf_init_msi(hdev);
2537 		if (ret) {
2538 			dev_err(&pdev->dev,
2539 				"failed(%d) to init MSI/MSI-X\n", ret);
2540 			return ret;
2541 		}
2542 
2543 		ret = hclgevf_misc_irq_init(hdev);
2544 		if (ret) {
2545 			hclgevf_uninit_msi(hdev);
2546 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2547 				ret);
2548 			return ret;
2549 		}
2550 
2551 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2552 	}
2553 
2554 	return ret;
2555 }
2556 
2557 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2558 {
2559 	struct pci_dev *pdev = hdev->pdev;
2560 	int ret;
2561 
2562 	ret = hclgevf_pci_reset(hdev);
2563 	if (ret) {
2564 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2565 		return ret;
2566 	}
2567 
2568 	ret = hclgevf_cmd_init(hdev);
2569 	if (ret) {
2570 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2571 		return ret;
2572 	}
2573 
2574 	ret = hclgevf_rss_init_hw(hdev);
2575 	if (ret) {
2576 		dev_err(&hdev->pdev->dev,
2577 			"failed(%d) to initialize RSS\n", ret);
2578 		return ret;
2579 	}
2580 
2581 	ret = hclgevf_config_gro(hdev, true);
2582 	if (ret)
2583 		return ret;
2584 
2585 	ret = hclgevf_init_vlan_config(hdev);
2586 	if (ret) {
2587 		dev_err(&hdev->pdev->dev,
2588 			"failed(%d) to initialize VLAN config\n", ret);
2589 		return ret;
2590 	}
2591 
2592 	if (pdev->revision >= 0x21) {
2593 		ret = hclgevf_set_promisc_mode(hdev, true);
2594 		if (ret)
2595 			return ret;
2596 	}
2597 
2598 	dev_info(&hdev->pdev->dev, "Reset done\n");
2599 
2600 	return 0;
2601 }
2602 
2603 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2604 {
2605 	struct pci_dev *pdev = hdev->pdev;
2606 	int ret;
2607 
2608 	ret = hclgevf_pci_init(hdev);
2609 	if (ret) {
2610 		dev_err(&pdev->dev, "PCI initialization failed\n");
2611 		return ret;
2612 	}
2613 
2614 	ret = hclgevf_cmd_queue_init(hdev);
2615 	if (ret) {
2616 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2617 		goto err_cmd_queue_init;
2618 	}
2619 
2620 	ret = hclgevf_cmd_init(hdev);
2621 	if (ret)
2622 		goto err_cmd_init;
2623 
2624 	/* Get vf resource */
2625 	ret = hclgevf_query_vf_resource(hdev);
2626 	if (ret) {
2627 		dev_err(&hdev->pdev->dev,
2628 			"Query vf status error, ret = %d.\n", ret);
2629 		goto err_cmd_init;
2630 	}
2631 
2632 	ret = hclgevf_init_msi(hdev);
2633 	if (ret) {
2634 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2635 		goto err_cmd_init;
2636 	}
2637 
2638 	hclgevf_state_init(hdev);
2639 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2640 
2641 	ret = hclgevf_misc_irq_init(hdev);
2642 	if (ret) {
2643 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2644 			ret);
2645 		goto err_misc_irq_init;
2646 	}
2647 
2648 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2649 
2650 	ret = hclgevf_configure(hdev);
2651 	if (ret) {
2652 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2653 		goto err_config;
2654 	}
2655 
2656 	ret = hclgevf_alloc_tqps(hdev);
2657 	if (ret) {
2658 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2659 		goto err_config;
2660 	}
2661 
2662 	ret = hclgevf_set_handle_info(hdev);
2663 	if (ret) {
2664 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2665 		goto err_config;
2666 	}
2667 
2668 	ret = hclgevf_config_gro(hdev, true);
2669 	if (ret)
2670 		goto err_config;
2671 
2672 	/* vf is not allowed to enable unicast/multicast promisc mode.
2673 	 * For revision 0x20, default to disable broadcast promisc mode,
2674 	 * firmware makes sure broadcast packets can be accepted.
2675 	 * For revision 0x21, default to enable broadcast promisc mode.
2676 	 */
2677 	if (pdev->revision >= 0x21) {
2678 		ret = hclgevf_set_promisc_mode(hdev, true);
2679 		if (ret)
2680 			goto err_config;
2681 	}
2682 
2683 	/* Initialize RSS for this VF */
2684 	ret = hclgevf_rss_init_hw(hdev);
2685 	if (ret) {
2686 		dev_err(&hdev->pdev->dev,
2687 			"failed(%d) to initialize RSS\n", ret);
2688 		goto err_config;
2689 	}
2690 
2691 	ret = hclgevf_init_vlan_config(hdev);
2692 	if (ret) {
2693 		dev_err(&hdev->pdev->dev,
2694 			"failed(%d) to initialize VLAN config\n", ret);
2695 		goto err_config;
2696 	}
2697 
2698 	hdev->last_reset_time = jiffies;
2699 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2700 
2701 	return 0;
2702 
2703 err_config:
2704 	hclgevf_misc_irq_uninit(hdev);
2705 err_misc_irq_init:
2706 	hclgevf_state_uninit(hdev);
2707 	hclgevf_uninit_msi(hdev);
2708 err_cmd_init:
2709 	hclgevf_cmd_uninit(hdev);
2710 err_cmd_queue_init:
2711 	hclgevf_pci_uninit(hdev);
2712 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2713 	return ret;
2714 }
2715 
2716 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2717 {
2718 	hclgevf_state_uninit(hdev);
2719 
2720 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2721 		hclgevf_misc_irq_uninit(hdev);
2722 		hclgevf_uninit_msi(hdev);
2723 	}
2724 
2725 	hclgevf_pci_uninit(hdev);
2726 	hclgevf_cmd_uninit(hdev);
2727 }
2728 
2729 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2730 {
2731 	struct pci_dev *pdev = ae_dev->pdev;
2732 	struct hclgevf_dev *hdev;
2733 	int ret;
2734 
2735 	ret = hclgevf_alloc_hdev(ae_dev);
2736 	if (ret) {
2737 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2738 		return ret;
2739 	}
2740 
2741 	ret = hclgevf_init_hdev(ae_dev->priv);
2742 	if (ret) {
2743 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2744 		return ret;
2745 	}
2746 
2747 	hdev = ae_dev->priv;
2748 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2749 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2750 
2751 	return 0;
2752 }
2753 
2754 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2755 {
2756 	struct hclgevf_dev *hdev = ae_dev->priv;
2757 
2758 	hclgevf_uninit_hdev(hdev);
2759 	ae_dev->priv = NULL;
2760 }
2761 
2762 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2763 {
2764 	struct hnae3_handle *nic = &hdev->nic;
2765 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2766 
2767 	return min_t(u32, hdev->rss_size_max,
2768 		     hdev->num_tqps / kinfo->num_tc);
2769 }
2770 
2771 /**
2772  * hclgevf_get_channels - Get the current channels enabled and max supported.
2773  * @handle: hardware information for network interface
2774  * @ch: ethtool channels structure
2775  *
2776  * We don't support separate tx and rx queues as channels. The other count
2777  * represents how many queues are being used for control. max_combined counts
2778  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2779  * q_vectors since we support a lot more queue pairs than q_vectors.
2780  **/
2781 static void hclgevf_get_channels(struct hnae3_handle *handle,
2782 				 struct ethtool_channels *ch)
2783 {
2784 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2785 
2786 	ch->max_combined = hclgevf_get_max_channels(hdev);
2787 	ch->other_count = 0;
2788 	ch->max_other = 0;
2789 	ch->combined_count = handle->kinfo.rss_size;
2790 }
2791 
2792 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2793 					  u16 *alloc_tqps, u16 *max_rss_size)
2794 {
2795 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2796 
2797 	*alloc_tqps = hdev->num_tqps;
2798 	*max_rss_size = hdev->rss_size_max;
2799 }
2800 
2801 static int hclgevf_get_status(struct hnae3_handle *handle)
2802 {
2803 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2804 
2805 	return hdev->hw.mac.link;
2806 }
2807 
2808 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2809 					    u8 *auto_neg, u32 *speed,
2810 					    u8 *duplex)
2811 {
2812 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2813 
2814 	if (speed)
2815 		*speed = hdev->hw.mac.speed;
2816 	if (duplex)
2817 		*duplex = hdev->hw.mac.duplex;
2818 	if (auto_neg)
2819 		*auto_neg = AUTONEG_DISABLE;
2820 }
2821 
2822 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2823 				 u8 duplex)
2824 {
2825 	hdev->hw.mac.speed = speed;
2826 	hdev->hw.mac.duplex = duplex;
2827 }
2828 
2829 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2830 {
2831 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2832 
2833 	return hclgevf_config_gro(hdev, enable);
2834 }
2835 
2836 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2837 				   u8 *module_type)
2838 {
2839 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2840 
2841 	if (media_type)
2842 		*media_type = hdev->hw.mac.media_type;
2843 
2844 	if (module_type)
2845 		*module_type = hdev->hw.mac.module_type;
2846 }
2847 
2848 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2849 {
2850 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2851 
2852 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2853 }
2854 
2855 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2856 {
2857 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2858 
2859 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2860 }
2861 
2862 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2863 {
2864 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2865 
2866 	return hdev->rst_stats.hw_rst_done_cnt;
2867 }
2868 
2869 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2870 				  unsigned long *supported,
2871 				  unsigned long *advertising)
2872 {
2873 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2874 
2875 	*supported = hdev->hw.mac.supported;
2876 	*advertising = hdev->hw.mac.advertising;
2877 }
2878 
2879 #define MAX_SEPARATE_NUM	4
2880 #define SEPARATOR_VALUE		0xFFFFFFFF
2881 #define REG_NUM_PER_LINE	4
2882 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2883 
2884 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2885 {
2886 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2887 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2888 
2889 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2890 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2891 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2892 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2893 
2894 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2895 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2896 }
2897 
2898 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2899 			     void *data)
2900 {
2901 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2902 	int i, j, reg_um, separator_num;
2903 	u32 *reg = data;
2904 
2905 	*version = hdev->fw_version;
2906 
2907 	/* fetching per-VF registers values from VF PCIe register space */
2908 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2909 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2910 	for (i = 0; i < reg_um; i++)
2911 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2912 	for (i = 0; i < separator_num; i++)
2913 		*reg++ = SEPARATOR_VALUE;
2914 
2915 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2916 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2917 	for (i = 0; i < reg_um; i++)
2918 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2919 	for (i = 0; i < separator_num; i++)
2920 		*reg++ = SEPARATOR_VALUE;
2921 
2922 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2923 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2924 	for (j = 0; j < hdev->num_tqps; j++) {
2925 		for (i = 0; i < reg_um; i++)
2926 			*reg++ = hclgevf_read_dev(&hdev->hw,
2927 						  ring_reg_addr_list[i] +
2928 						  0x200 * j);
2929 		for (i = 0; i < separator_num; i++)
2930 			*reg++ = SEPARATOR_VALUE;
2931 	}
2932 
2933 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2934 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2935 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2936 		for (i = 0; i < reg_um; i++)
2937 			*reg++ = hclgevf_read_dev(&hdev->hw,
2938 						  tqp_intr_reg_addr_list[i] +
2939 						  4 * j);
2940 		for (i = 0; i < separator_num; i++)
2941 			*reg++ = SEPARATOR_VALUE;
2942 	}
2943 }
2944 
2945 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
2946 					u8 *port_base_vlan_info, u8 data_size)
2947 {
2948 	struct hnae3_handle *nic = &hdev->nic;
2949 
2950 	rtnl_lock();
2951 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2952 	rtnl_unlock();
2953 
2954 	/* send msg to PF and wait update port based vlan info */
2955 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
2956 			     HCLGE_MBX_PORT_BASE_VLAN_CFG,
2957 			     port_base_vlan_info, data_size,
2958 			     false, NULL, 0);
2959 
2960 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
2961 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
2962 	else
2963 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
2964 
2965 	rtnl_lock();
2966 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
2967 	rtnl_unlock();
2968 }
2969 
2970 static const struct hnae3_ae_ops hclgevf_ops = {
2971 	.init_ae_dev = hclgevf_init_ae_dev,
2972 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2973 	.flr_prepare = hclgevf_flr_prepare,
2974 	.flr_done = hclgevf_flr_done,
2975 	.init_client_instance = hclgevf_init_client_instance,
2976 	.uninit_client_instance = hclgevf_uninit_client_instance,
2977 	.start = hclgevf_ae_start,
2978 	.stop = hclgevf_ae_stop,
2979 	.client_start = hclgevf_client_start,
2980 	.client_stop = hclgevf_client_stop,
2981 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2982 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2983 	.get_vector = hclgevf_get_vector,
2984 	.put_vector = hclgevf_put_vector,
2985 	.reset_queue = hclgevf_reset_tqp,
2986 	.get_mac_addr = hclgevf_get_mac_addr,
2987 	.set_mac_addr = hclgevf_set_mac_addr,
2988 	.add_uc_addr = hclgevf_add_uc_addr,
2989 	.rm_uc_addr = hclgevf_rm_uc_addr,
2990 	.add_mc_addr = hclgevf_add_mc_addr,
2991 	.rm_mc_addr = hclgevf_rm_mc_addr,
2992 	.get_stats = hclgevf_get_stats,
2993 	.update_stats = hclgevf_update_stats,
2994 	.get_strings = hclgevf_get_strings,
2995 	.get_sset_count = hclgevf_get_sset_count,
2996 	.get_rss_key_size = hclgevf_get_rss_key_size,
2997 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2998 	.get_rss = hclgevf_get_rss,
2999 	.set_rss = hclgevf_set_rss,
3000 	.get_rss_tuple = hclgevf_get_rss_tuple,
3001 	.set_rss_tuple = hclgevf_set_rss_tuple,
3002 	.get_tc_size = hclgevf_get_tc_size,
3003 	.get_fw_version = hclgevf_get_fw_version,
3004 	.set_vlan_filter = hclgevf_set_vlan_filter,
3005 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3006 	.reset_event = hclgevf_reset_event,
3007 	.set_default_reset_request = hclgevf_set_def_reset_request,
3008 	.get_channels = hclgevf_get_channels,
3009 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3010 	.get_regs_len = hclgevf_get_regs_len,
3011 	.get_regs = hclgevf_get_regs,
3012 	.get_status = hclgevf_get_status,
3013 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3014 	.get_media_type = hclgevf_get_media_type,
3015 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3016 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3017 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3018 	.set_gro_en = hclgevf_gro_en,
3019 	.set_mtu = hclgevf_set_mtu,
3020 	.get_global_queue_id = hclgevf_get_qid_global,
3021 	.set_timer_task = hclgevf_set_timer_task,
3022 	.get_link_mode = hclgevf_get_link_mode,
3023 };
3024 
3025 static struct hnae3_ae_algo ae_algovf = {
3026 	.ops = &hclgevf_ops,
3027 	.pdev_id_table = ae_algovf_pci_tbl,
3028 };
3029 
3030 static int hclgevf_init(void)
3031 {
3032 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3033 
3034 	hnae3_register_ae_algo(&ae_algovf);
3035 
3036 	return 0;
3037 }
3038 
3039 static void hclgevf_exit(void)
3040 {
3041 	hnae3_unregister_ae_algo(&ae_algovf);
3042 }
3043 module_init(hclgevf_init);
3044 module_exit(hclgevf_exit);
3045 
3046 MODULE_LICENSE("GPL");
3047 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3048 MODULE_DESCRIPTION("HCLGEVF Driver");
3049 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3050