1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/etherdevice.h> 5 #include <linux/iopoll.h> 6 #include <net/rtnetlink.h> 7 #include "hclgevf_cmd.h" 8 #include "hclgevf_main.h" 9 #include "hclge_mbx.h" 10 #include "hnae3.h" 11 12 #define HCLGEVF_NAME "hclgevf" 13 14 #define HCLGEVF_RESET_MAX_FAIL_CNT 5 15 16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev); 17 static struct hnae3_ae_algo ae_algovf; 18 19 static struct workqueue_struct *hclgevf_wq; 20 21 static const struct pci_device_id ae_algovf_pci_tbl[] = { 22 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0}, 23 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0}, 24 /* required last entry */ 25 {0, } 26 }; 27 28 static const u8 hclgevf_hash_key[] = { 29 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2, 30 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0, 31 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4, 32 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C, 33 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA 34 }; 35 36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); 37 38 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG, 39 HCLGEVF_CMDQ_TX_ADDR_H_REG, 40 HCLGEVF_CMDQ_TX_DEPTH_REG, 41 HCLGEVF_CMDQ_TX_TAIL_REG, 42 HCLGEVF_CMDQ_TX_HEAD_REG, 43 HCLGEVF_CMDQ_RX_ADDR_L_REG, 44 HCLGEVF_CMDQ_RX_ADDR_H_REG, 45 HCLGEVF_CMDQ_RX_DEPTH_REG, 46 HCLGEVF_CMDQ_RX_TAIL_REG, 47 HCLGEVF_CMDQ_RX_HEAD_REG, 48 HCLGEVF_VECTOR0_CMDQ_SRC_REG, 49 HCLGEVF_VECTOR0_CMDQ_STATE_REG, 50 HCLGEVF_CMDQ_INTR_EN_REG, 51 HCLGEVF_CMDQ_INTR_GEN_REG}; 52 53 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE, 54 HCLGEVF_RST_ING, 55 HCLGEVF_GRO_EN_REG}; 56 57 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG, 58 HCLGEVF_RING_RX_ADDR_H_REG, 59 HCLGEVF_RING_RX_BD_NUM_REG, 60 HCLGEVF_RING_RX_BD_LENGTH_REG, 61 HCLGEVF_RING_RX_MERGE_EN_REG, 62 HCLGEVF_RING_RX_TAIL_REG, 63 HCLGEVF_RING_RX_HEAD_REG, 64 HCLGEVF_RING_RX_FBD_NUM_REG, 65 HCLGEVF_RING_RX_OFFSET_REG, 66 HCLGEVF_RING_RX_FBD_OFFSET_REG, 67 HCLGEVF_RING_RX_STASH_REG, 68 HCLGEVF_RING_RX_BD_ERR_REG, 69 HCLGEVF_RING_TX_ADDR_L_REG, 70 HCLGEVF_RING_TX_ADDR_H_REG, 71 HCLGEVF_RING_TX_BD_NUM_REG, 72 HCLGEVF_RING_TX_PRIORITY_REG, 73 HCLGEVF_RING_TX_TC_REG, 74 HCLGEVF_RING_TX_MERGE_EN_REG, 75 HCLGEVF_RING_TX_TAIL_REG, 76 HCLGEVF_RING_TX_HEAD_REG, 77 HCLGEVF_RING_TX_FBD_NUM_REG, 78 HCLGEVF_RING_TX_OFFSET_REG, 79 HCLGEVF_RING_TX_EBD_NUM_REG, 80 HCLGEVF_RING_TX_EBD_OFFSET_REG, 81 HCLGEVF_RING_TX_BD_ERR_REG, 82 HCLGEVF_RING_EN_REG}; 83 84 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG, 85 HCLGEVF_TQP_INTR_GL0_REG, 86 HCLGEVF_TQP_INTR_GL1_REG, 87 HCLGEVF_TQP_INTR_GL2_REG, 88 HCLGEVF_TQP_INTR_RL_REG}; 89 90 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle) 91 { 92 if (!handle->client) 93 return container_of(handle, struct hclgevf_dev, nic); 94 else if (handle->client->type == HNAE3_CLIENT_ROCE) 95 return container_of(handle, struct hclgevf_dev, roce); 96 else 97 return container_of(handle, struct hclgevf_dev, nic); 98 } 99 100 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle) 101 { 102 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 103 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 104 struct hclgevf_desc desc; 105 struct hclgevf_tqp *tqp; 106 int status; 107 int i; 108 109 for (i = 0; i < kinfo->num_tqps; i++) { 110 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 111 hclgevf_cmd_setup_basic_desc(&desc, 112 HCLGEVF_OPC_QUERY_RX_STATUS, 113 true); 114 115 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); 116 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 117 if (status) { 118 dev_err(&hdev->pdev->dev, 119 "Query tqp stat fail, status = %d,queue = %d\n", 120 status, i); 121 return status; 122 } 123 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd += 124 le32_to_cpu(desc.data[1]); 125 126 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS, 127 true); 128 129 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); 130 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 131 if (status) { 132 dev_err(&hdev->pdev->dev, 133 "Query tqp stat fail, status = %d,queue = %d\n", 134 status, i); 135 return status; 136 } 137 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd += 138 le32_to_cpu(desc.data[1]); 139 } 140 141 return 0; 142 } 143 144 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data) 145 { 146 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 147 struct hclgevf_tqp *tqp; 148 u64 *buff = data; 149 int i; 150 151 for (i = 0; i < kinfo->num_tqps; i++) { 152 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 153 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd; 154 } 155 for (i = 0; i < kinfo->num_tqps; i++) { 156 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 157 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd; 158 } 159 160 return buff; 161 } 162 163 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset) 164 { 165 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 166 167 return kinfo->num_tqps * 2; 168 } 169 170 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data) 171 { 172 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 173 u8 *buff = data; 174 int i = 0; 175 176 for (i = 0; i < kinfo->num_tqps; i++) { 177 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i], 178 struct hclgevf_tqp, q); 179 snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd", 180 tqp->index); 181 buff += ETH_GSTRING_LEN; 182 } 183 184 for (i = 0; i < kinfo->num_tqps; i++) { 185 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i], 186 struct hclgevf_tqp, q); 187 snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd", 188 tqp->index); 189 buff += ETH_GSTRING_LEN; 190 } 191 192 return buff; 193 } 194 195 static void hclgevf_update_stats(struct hnae3_handle *handle, 196 struct net_device_stats *net_stats) 197 { 198 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 199 int status; 200 201 status = hclgevf_tqps_update_stats(handle); 202 if (status) 203 dev_err(&hdev->pdev->dev, 204 "VF update of TQPS stats fail, status = %d.\n", 205 status); 206 } 207 208 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) 209 { 210 if (strset == ETH_SS_TEST) 211 return -EOPNOTSUPP; 212 else if (strset == ETH_SS_STATS) 213 return hclgevf_tqps_get_sset_count(handle, strset); 214 215 return 0; 216 } 217 218 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, 219 u8 *data) 220 { 221 u8 *p = (char *)data; 222 223 if (strset == ETH_SS_STATS) 224 p = hclgevf_tqps_get_strings(handle, p); 225 } 226 227 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) 228 { 229 hclgevf_tqps_get_stats(handle, data); 230 } 231 232 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code, 233 u8 subcode) 234 { 235 if (msg) { 236 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg)); 237 msg->code = code; 238 msg->subcode = subcode; 239 } 240 } 241 242 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev) 243 { 244 struct hclge_vf_to_pf_msg send_msg; 245 u8 resp_msg; 246 int status; 247 248 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0); 249 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg, 250 sizeof(resp_msg)); 251 if (status) { 252 dev_err(&hdev->pdev->dev, 253 "VF request to get TC info from PF failed %d", 254 status); 255 return status; 256 } 257 258 hdev->hw_tc_map = resp_msg; 259 260 return 0; 261 } 262 263 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev) 264 { 265 struct hnae3_handle *nic = &hdev->nic; 266 struct hclge_vf_to_pf_msg send_msg; 267 u8 resp_msg; 268 int ret; 269 270 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 271 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE); 272 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg, 273 sizeof(u8)); 274 if (ret) { 275 dev_err(&hdev->pdev->dev, 276 "VF request to get port based vlan state failed %d", 277 ret); 278 return ret; 279 } 280 281 nic->port_base_vlan_state = resp_msg; 282 283 return 0; 284 } 285 286 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev) 287 { 288 #define HCLGEVF_TQPS_RSS_INFO_LEN 6 289 #define HCLGEVF_TQPS_ALLOC_OFFSET 0 290 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET 2 291 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET 4 292 293 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; 294 struct hclge_vf_to_pf_msg send_msg; 295 int status; 296 297 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0); 298 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 299 HCLGEVF_TQPS_RSS_INFO_LEN); 300 if (status) { 301 dev_err(&hdev->pdev->dev, 302 "VF request to get tqp info from PF failed %d", 303 status); 304 return status; 305 } 306 307 memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET], 308 sizeof(u16)); 309 memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET], 310 sizeof(u16)); 311 memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET], 312 sizeof(u16)); 313 314 return 0; 315 } 316 317 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev) 318 { 319 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4 320 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0 321 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2 322 323 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN]; 324 struct hclge_vf_to_pf_msg send_msg; 325 int ret; 326 327 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0); 328 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 329 HCLGEVF_TQPS_DEPTH_INFO_LEN); 330 if (ret) { 331 dev_err(&hdev->pdev->dev, 332 "VF request to get tqp depth info from PF failed %d", 333 ret); 334 return ret; 335 } 336 337 memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET], 338 sizeof(u16)); 339 memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET], 340 sizeof(u16)); 341 342 return 0; 343 } 344 345 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id) 346 { 347 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 348 struct hclge_vf_to_pf_msg send_msg; 349 u16 qid_in_pf = 0; 350 u8 resp_data[2]; 351 int ret; 352 353 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0); 354 memcpy(send_msg.data, &queue_id, sizeof(queue_id)); 355 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data, 356 sizeof(resp_data)); 357 if (!ret) 358 qid_in_pf = *(u16 *)resp_data; 359 360 return qid_in_pf; 361 } 362 363 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev) 364 { 365 struct hclge_vf_to_pf_msg send_msg; 366 u8 resp_msg[2]; 367 int ret; 368 369 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0); 370 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 371 sizeof(resp_msg)); 372 if (ret) { 373 dev_err(&hdev->pdev->dev, 374 "VF request to get the pf port media type failed %d", 375 ret); 376 return ret; 377 } 378 379 hdev->hw.mac.media_type = resp_msg[0]; 380 hdev->hw.mac.module_type = resp_msg[1]; 381 382 return 0; 383 } 384 385 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) 386 { 387 struct hclgevf_tqp *tqp; 388 int i; 389 390 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 391 sizeof(struct hclgevf_tqp), GFP_KERNEL); 392 if (!hdev->htqp) 393 return -ENOMEM; 394 395 tqp = hdev->htqp; 396 397 for (i = 0; i < hdev->num_tqps; i++) { 398 tqp->dev = &hdev->pdev->dev; 399 tqp->index = i; 400 401 tqp->q.ae_algo = &ae_algovf; 402 tqp->q.buf_size = hdev->rx_buf_len; 403 tqp->q.tx_desc_num = hdev->num_tx_desc; 404 tqp->q.rx_desc_num = hdev->num_rx_desc; 405 tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET + 406 i * HCLGEVF_TQP_REG_SIZE; 407 408 tqp++; 409 } 410 411 return 0; 412 } 413 414 static int hclgevf_knic_setup(struct hclgevf_dev *hdev) 415 { 416 struct hnae3_handle *nic = &hdev->nic; 417 struct hnae3_knic_private_info *kinfo; 418 u16 new_tqps = hdev->num_tqps; 419 unsigned int i; 420 421 kinfo = &nic->kinfo; 422 kinfo->num_tc = 0; 423 kinfo->num_tx_desc = hdev->num_tx_desc; 424 kinfo->num_rx_desc = hdev->num_rx_desc; 425 kinfo->rx_buf_len = hdev->rx_buf_len; 426 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) 427 if (hdev->hw_tc_map & BIT(i)) 428 kinfo->num_tc++; 429 430 kinfo->rss_size 431 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc); 432 new_tqps = kinfo->rss_size * kinfo->num_tc; 433 kinfo->num_tqps = min(new_tqps, hdev->num_tqps); 434 435 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, 436 sizeof(struct hnae3_queue *), GFP_KERNEL); 437 if (!kinfo->tqp) 438 return -ENOMEM; 439 440 for (i = 0; i < kinfo->num_tqps; i++) { 441 hdev->htqp[i].q.handle = &hdev->nic; 442 hdev->htqp[i].q.tqp_index = i; 443 kinfo->tqp[i] = &hdev->htqp[i].q; 444 } 445 446 /* after init the max rss_size and tqps, adjust the default tqp numbers 447 * and rss size with the actual vector numbers 448 */ 449 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps); 450 kinfo->rss_size = min_t(u16, kinfo->num_tqps / kinfo->num_tc, 451 kinfo->rss_size); 452 453 return 0; 454 } 455 456 static void hclgevf_request_link_info(struct hclgevf_dev *hdev) 457 { 458 struct hclge_vf_to_pf_msg send_msg; 459 int status; 460 461 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0); 462 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 463 if (status) 464 dev_err(&hdev->pdev->dev, 465 "VF failed to fetch link status(%d) from PF", status); 466 } 467 468 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) 469 { 470 struct hnae3_handle *rhandle = &hdev->roce; 471 struct hnae3_handle *handle = &hdev->nic; 472 struct hnae3_client *rclient; 473 struct hnae3_client *client; 474 475 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state)) 476 return; 477 478 client = handle->client; 479 rclient = hdev->roce_client; 480 481 link_state = 482 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state; 483 484 if (link_state != hdev->hw.mac.link) { 485 client->ops->link_status_change(handle, !!link_state); 486 if (rclient && rclient->ops->link_status_change) 487 rclient->ops->link_status_change(rhandle, !!link_state); 488 hdev->hw.mac.link = link_state; 489 } 490 491 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state); 492 } 493 494 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev) 495 { 496 #define HCLGEVF_ADVERTISING 0 497 #define HCLGEVF_SUPPORTED 1 498 499 struct hclge_vf_to_pf_msg send_msg; 500 501 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0); 502 send_msg.data[0] = HCLGEVF_ADVERTISING; 503 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 504 send_msg.data[0] = HCLGEVF_SUPPORTED; 505 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 506 } 507 508 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) 509 { 510 struct hnae3_handle *nic = &hdev->nic; 511 int ret; 512 513 nic->ae_algo = &ae_algovf; 514 nic->pdev = hdev->pdev; 515 nic->numa_node_mask = hdev->numa_node_mask; 516 nic->flags |= HNAE3_SUPPORT_VF; 517 518 ret = hclgevf_knic_setup(hdev); 519 if (ret) 520 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", 521 ret); 522 return ret; 523 } 524 525 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) 526 { 527 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { 528 dev_warn(&hdev->pdev->dev, 529 "vector(vector_id %d) has been freed.\n", vector_id); 530 return; 531 } 532 533 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; 534 hdev->num_msi_left += 1; 535 hdev->num_msi_used -= 1; 536 } 537 538 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, 539 struct hnae3_vector_info *vector_info) 540 { 541 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 542 struct hnae3_vector_info *vector = vector_info; 543 int alloc = 0; 544 int i, j; 545 546 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num); 547 vector_num = min(hdev->num_msi_left, vector_num); 548 549 for (j = 0; j < vector_num; j++) { 550 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { 551 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { 552 vector->vector = pci_irq_vector(hdev->pdev, i); 553 vector->io_addr = hdev->hw.io_base + 554 HCLGEVF_VECTOR_REG_BASE + 555 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; 556 hdev->vector_status[i] = 0; 557 hdev->vector_irq[i] = vector->vector; 558 559 vector++; 560 alloc++; 561 562 break; 563 } 564 } 565 } 566 hdev->num_msi_left -= alloc; 567 hdev->num_msi_used += alloc; 568 569 return alloc; 570 } 571 572 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) 573 { 574 int i; 575 576 for (i = 0; i < hdev->num_msi; i++) 577 if (vector == hdev->vector_irq[i]) 578 return i; 579 580 return -EINVAL; 581 } 582 583 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev, 584 const u8 hfunc, const u8 *key) 585 { 586 struct hclgevf_rss_config_cmd *req; 587 unsigned int key_offset = 0; 588 struct hclgevf_desc desc; 589 int key_counts; 590 int key_size; 591 int ret; 592 593 key_counts = HCLGEVF_RSS_KEY_SIZE; 594 req = (struct hclgevf_rss_config_cmd *)desc.data; 595 596 while (key_counts) { 597 hclgevf_cmd_setup_basic_desc(&desc, 598 HCLGEVF_OPC_RSS_GENERIC_CONFIG, 599 false); 600 601 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK); 602 req->hash_config |= 603 (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B); 604 605 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts); 606 memcpy(req->hash_key, 607 key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size); 608 609 key_counts -= key_size; 610 key_offset++; 611 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 612 if (ret) { 613 dev_err(&hdev->pdev->dev, 614 "Configure RSS config fail, status = %d\n", 615 ret); 616 return ret; 617 } 618 } 619 620 return 0; 621 } 622 623 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle) 624 { 625 return HCLGEVF_RSS_KEY_SIZE; 626 } 627 628 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle) 629 { 630 return HCLGEVF_RSS_IND_TBL_SIZE; 631 } 632 633 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev) 634 { 635 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl; 636 struct hclgevf_rss_indirection_table_cmd *req; 637 struct hclgevf_desc desc; 638 int status; 639 int i, j; 640 641 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data; 642 643 for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) { 644 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE, 645 false); 646 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE; 647 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK; 648 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++) 649 req->rss_result[j] = 650 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j]; 651 652 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 653 if (status) { 654 dev_err(&hdev->pdev->dev, 655 "VF failed(=%d) to set RSS indirection table\n", 656 status); 657 return status; 658 } 659 } 660 661 return 0; 662 } 663 664 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size) 665 { 666 struct hclgevf_rss_tc_mode_cmd *req; 667 u16 tc_offset[HCLGEVF_MAX_TC_NUM]; 668 u16 tc_valid[HCLGEVF_MAX_TC_NUM]; 669 u16 tc_size[HCLGEVF_MAX_TC_NUM]; 670 struct hclgevf_desc desc; 671 u16 roundup_size; 672 unsigned int i; 673 int status; 674 675 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data; 676 677 roundup_size = roundup_pow_of_two(rss_size); 678 roundup_size = ilog2(roundup_size); 679 680 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { 681 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i)); 682 tc_size[i] = roundup_size; 683 tc_offset[i] = rss_size * i; 684 } 685 686 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false); 687 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { 688 hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B, 689 (tc_valid[i] & 0x1)); 690 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M, 691 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]); 692 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M, 693 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]); 694 } 695 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 696 if (status) 697 dev_err(&hdev->pdev->dev, 698 "VF failed(=%d) to set rss tc mode\n", status); 699 700 return status; 701 } 702 703 /* for revision 0x20, vf shared the same rss config with pf */ 704 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev) 705 { 706 #define HCLGEVF_RSS_MBX_RESP_LEN 8 707 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 708 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN]; 709 struct hclge_vf_to_pf_msg send_msg; 710 u16 msg_num, hash_key_index; 711 u8 index; 712 int ret; 713 714 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0); 715 msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) / 716 HCLGEVF_RSS_MBX_RESP_LEN; 717 for (index = 0; index < msg_num; index++) { 718 send_msg.data[0] = index; 719 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 720 HCLGEVF_RSS_MBX_RESP_LEN); 721 if (ret) { 722 dev_err(&hdev->pdev->dev, 723 "VF get rss hash key from PF failed, ret=%d", 724 ret); 725 return ret; 726 } 727 728 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index; 729 if (index == msg_num - 1) 730 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 731 &resp_msg[0], 732 HCLGEVF_RSS_KEY_SIZE - hash_key_index); 733 else 734 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 735 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN); 736 } 737 738 return 0; 739 } 740 741 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, 742 u8 *hfunc) 743 { 744 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 745 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 746 int i, ret; 747 748 if (handle->pdev->revision >= 0x21) { 749 /* Get hash algorithm */ 750 if (hfunc) { 751 switch (rss_cfg->hash_algo) { 752 case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ: 753 *hfunc = ETH_RSS_HASH_TOP; 754 break; 755 case HCLGEVF_RSS_HASH_ALGO_SIMPLE: 756 *hfunc = ETH_RSS_HASH_XOR; 757 break; 758 default: 759 *hfunc = ETH_RSS_HASH_UNKNOWN; 760 break; 761 } 762 } 763 764 /* Get the RSS Key required by the user */ 765 if (key) 766 memcpy(key, rss_cfg->rss_hash_key, 767 HCLGEVF_RSS_KEY_SIZE); 768 } else { 769 if (hfunc) 770 *hfunc = ETH_RSS_HASH_TOP; 771 if (key) { 772 ret = hclgevf_get_rss_hash_key(hdev); 773 if (ret) 774 return ret; 775 memcpy(key, rss_cfg->rss_hash_key, 776 HCLGEVF_RSS_KEY_SIZE); 777 } 778 } 779 780 if (indir) 781 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 782 indir[i] = rss_cfg->rss_indirection_tbl[i]; 783 784 return 0; 785 } 786 787 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, 788 const u8 *key, const u8 hfunc) 789 { 790 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 791 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 792 int ret, i; 793 794 if (handle->pdev->revision >= 0x21) { 795 /* Set the RSS Hash Key if specififed by the user */ 796 if (key) { 797 switch (hfunc) { 798 case ETH_RSS_HASH_TOP: 799 rss_cfg->hash_algo = 800 HCLGEVF_RSS_HASH_ALGO_TOEPLITZ; 801 break; 802 case ETH_RSS_HASH_XOR: 803 rss_cfg->hash_algo = 804 HCLGEVF_RSS_HASH_ALGO_SIMPLE; 805 break; 806 case ETH_RSS_HASH_NO_CHANGE: 807 break; 808 default: 809 return -EINVAL; 810 } 811 812 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo, 813 key); 814 if (ret) 815 return ret; 816 817 /* Update the shadow RSS key with user specified qids */ 818 memcpy(rss_cfg->rss_hash_key, key, 819 HCLGEVF_RSS_KEY_SIZE); 820 } 821 } 822 823 /* update the shadow RSS table with user specified qids */ 824 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 825 rss_cfg->rss_indirection_tbl[i] = indir[i]; 826 827 /* update the hardware */ 828 return hclgevf_set_rss_indir_table(hdev); 829 } 830 831 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc) 832 { 833 u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0; 834 835 if (nfc->data & RXH_L4_B_2_3) 836 hash_sets |= HCLGEVF_D_PORT_BIT; 837 else 838 hash_sets &= ~HCLGEVF_D_PORT_BIT; 839 840 if (nfc->data & RXH_IP_SRC) 841 hash_sets |= HCLGEVF_S_IP_BIT; 842 else 843 hash_sets &= ~HCLGEVF_S_IP_BIT; 844 845 if (nfc->data & RXH_IP_DST) 846 hash_sets |= HCLGEVF_D_IP_BIT; 847 else 848 hash_sets &= ~HCLGEVF_D_IP_BIT; 849 850 if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW) 851 hash_sets |= HCLGEVF_V_TAG_BIT; 852 853 return hash_sets; 854 } 855 856 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle, 857 struct ethtool_rxnfc *nfc) 858 { 859 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 860 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 861 struct hclgevf_rss_input_tuple_cmd *req; 862 struct hclgevf_desc desc; 863 u8 tuple_sets; 864 int ret; 865 866 if (handle->pdev->revision == 0x20) 867 return -EOPNOTSUPP; 868 869 if (nfc->data & 870 ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3)) 871 return -EINVAL; 872 873 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data; 874 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false); 875 876 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en; 877 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en; 878 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en; 879 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en; 880 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en; 881 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en; 882 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en; 883 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en; 884 885 tuple_sets = hclgevf_get_rss_hash_bits(nfc); 886 switch (nfc->flow_type) { 887 case TCP_V4_FLOW: 888 req->ipv4_tcp_en = tuple_sets; 889 break; 890 case TCP_V6_FLOW: 891 req->ipv6_tcp_en = tuple_sets; 892 break; 893 case UDP_V4_FLOW: 894 req->ipv4_udp_en = tuple_sets; 895 break; 896 case UDP_V6_FLOW: 897 req->ipv6_udp_en = tuple_sets; 898 break; 899 case SCTP_V4_FLOW: 900 req->ipv4_sctp_en = tuple_sets; 901 break; 902 case SCTP_V6_FLOW: 903 if ((nfc->data & RXH_L4_B_0_1) || 904 (nfc->data & RXH_L4_B_2_3)) 905 return -EINVAL; 906 907 req->ipv6_sctp_en = tuple_sets; 908 break; 909 case IPV4_FLOW: 910 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 911 break; 912 case IPV6_FLOW: 913 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 914 break; 915 default: 916 return -EINVAL; 917 } 918 919 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 920 if (ret) { 921 dev_err(&hdev->pdev->dev, 922 "Set rss tuple fail, status = %d\n", ret); 923 return ret; 924 } 925 926 rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en; 927 rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en; 928 rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en; 929 rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en; 930 rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en; 931 rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en; 932 rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en; 933 rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en; 934 return 0; 935 } 936 937 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle, 938 struct ethtool_rxnfc *nfc) 939 { 940 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 941 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 942 u8 tuple_sets; 943 944 if (handle->pdev->revision == 0x20) 945 return -EOPNOTSUPP; 946 947 nfc->data = 0; 948 949 switch (nfc->flow_type) { 950 case TCP_V4_FLOW: 951 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en; 952 break; 953 case UDP_V4_FLOW: 954 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en; 955 break; 956 case TCP_V6_FLOW: 957 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en; 958 break; 959 case UDP_V6_FLOW: 960 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en; 961 break; 962 case SCTP_V4_FLOW: 963 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en; 964 break; 965 case SCTP_V6_FLOW: 966 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en; 967 break; 968 case IPV4_FLOW: 969 case IPV6_FLOW: 970 tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT; 971 break; 972 default: 973 return -EINVAL; 974 } 975 976 if (!tuple_sets) 977 return 0; 978 979 if (tuple_sets & HCLGEVF_D_PORT_BIT) 980 nfc->data |= RXH_L4_B_2_3; 981 if (tuple_sets & HCLGEVF_S_PORT_BIT) 982 nfc->data |= RXH_L4_B_0_1; 983 if (tuple_sets & HCLGEVF_D_IP_BIT) 984 nfc->data |= RXH_IP_DST; 985 if (tuple_sets & HCLGEVF_S_IP_BIT) 986 nfc->data |= RXH_IP_SRC; 987 988 return 0; 989 } 990 991 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev, 992 struct hclgevf_rss_cfg *rss_cfg) 993 { 994 struct hclgevf_rss_input_tuple_cmd *req; 995 struct hclgevf_desc desc; 996 int ret; 997 998 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false); 999 1000 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data; 1001 1002 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en; 1003 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en; 1004 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en; 1005 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en; 1006 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en; 1007 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en; 1008 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en; 1009 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en; 1010 1011 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 1012 if (ret) 1013 dev_err(&hdev->pdev->dev, 1014 "Configure rss input fail, status = %d\n", ret); 1015 return ret; 1016 } 1017 1018 static int hclgevf_get_tc_size(struct hnae3_handle *handle) 1019 { 1020 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1021 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 1022 1023 return rss_cfg->rss_size; 1024 } 1025 1026 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, 1027 int vector_id, 1028 struct hnae3_ring_chain_node *ring_chain) 1029 { 1030 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1031 struct hclge_vf_to_pf_msg send_msg; 1032 struct hnae3_ring_chain_node *node; 1033 int status; 1034 int i = 0; 1035 1036 memset(&send_msg, 0, sizeof(send_msg)); 1037 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR : 1038 HCLGE_MBX_UNMAP_RING_TO_VECTOR; 1039 send_msg.vector_id = vector_id; 1040 1041 for (node = ring_chain; node; node = node->next) { 1042 send_msg.param[i].ring_type = 1043 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); 1044 1045 send_msg.param[i].tqp_index = node->tqp_index; 1046 send_msg.param[i].int_gl_index = 1047 hnae3_get_field(node->int_gl_idx, 1048 HNAE3_RING_GL_IDX_M, 1049 HNAE3_RING_GL_IDX_S); 1050 1051 i++; 1052 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) { 1053 send_msg.ring_num = i; 1054 1055 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, 1056 NULL, 0); 1057 if (status) { 1058 dev_err(&hdev->pdev->dev, 1059 "Map TQP fail, status is %d.\n", 1060 status); 1061 return status; 1062 } 1063 i = 0; 1064 } 1065 } 1066 1067 return 0; 1068 } 1069 1070 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, 1071 struct hnae3_ring_chain_node *ring_chain) 1072 { 1073 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1074 int vector_id; 1075 1076 vector_id = hclgevf_get_vector_index(hdev, vector); 1077 if (vector_id < 0) { 1078 dev_err(&handle->pdev->dev, 1079 "Get vector index fail. ret =%d\n", vector_id); 1080 return vector_id; 1081 } 1082 1083 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); 1084 } 1085 1086 static int hclgevf_unmap_ring_from_vector( 1087 struct hnae3_handle *handle, 1088 int vector, 1089 struct hnae3_ring_chain_node *ring_chain) 1090 { 1091 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1092 int ret, vector_id; 1093 1094 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 1095 return 0; 1096 1097 vector_id = hclgevf_get_vector_index(hdev, vector); 1098 if (vector_id < 0) { 1099 dev_err(&handle->pdev->dev, 1100 "Get vector index fail. ret =%d\n", vector_id); 1101 return vector_id; 1102 } 1103 1104 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); 1105 if (ret) 1106 dev_err(&handle->pdev->dev, 1107 "Unmap ring from vector fail. vector=%d, ret =%d\n", 1108 vector_id, 1109 ret); 1110 1111 return ret; 1112 } 1113 1114 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) 1115 { 1116 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1117 int vector_id; 1118 1119 vector_id = hclgevf_get_vector_index(hdev, vector); 1120 if (vector_id < 0) { 1121 dev_err(&handle->pdev->dev, 1122 "hclgevf_put_vector get vector index fail. ret =%d\n", 1123 vector_id); 1124 return vector_id; 1125 } 1126 1127 hclgevf_free_vector(hdev, vector_id); 1128 1129 return 0; 1130 } 1131 1132 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, 1133 bool en_uc_pmc, bool en_mc_pmc, 1134 bool en_bc_pmc) 1135 { 1136 struct hclge_vf_to_pf_msg send_msg; 1137 int ret; 1138 1139 memset(&send_msg, 0, sizeof(send_msg)); 1140 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE; 1141 send_msg.en_bc = en_bc_pmc ? 1 : 0; 1142 send_msg.en_uc = en_uc_pmc ? 1 : 0; 1143 send_msg.en_mc = en_mc_pmc ? 1 : 0; 1144 1145 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1146 if (ret) 1147 dev_err(&hdev->pdev->dev, 1148 "Set promisc mode fail, status is %d.\n", ret); 1149 1150 return ret; 1151 } 1152 1153 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, 1154 bool en_mc_pmc) 1155 { 1156 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1157 struct pci_dev *pdev = hdev->pdev; 1158 bool en_bc_pmc; 1159 1160 en_bc_pmc = pdev->revision != 0x20; 1161 1162 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc, 1163 en_bc_pmc); 1164 } 1165 1166 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle) 1167 { 1168 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1169 1170 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 1171 } 1172 1173 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev) 1174 { 1175 struct hnae3_handle *handle = &hdev->nic; 1176 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE; 1177 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE; 1178 int ret; 1179 1180 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) { 1181 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc); 1182 if (!ret) 1183 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 1184 } 1185 } 1186 1187 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id, 1188 int stream_id, bool enable) 1189 { 1190 struct hclgevf_cfg_com_tqp_queue_cmd *req; 1191 struct hclgevf_desc desc; 1192 int status; 1193 1194 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; 1195 1196 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE, 1197 false); 1198 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); 1199 req->stream_id = cpu_to_le16(stream_id); 1200 if (enable) 1201 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B; 1202 1203 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 1204 if (status) 1205 dev_err(&hdev->pdev->dev, 1206 "TQP enable fail, status =%d.\n", status); 1207 1208 return status; 1209 } 1210 1211 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle) 1212 { 1213 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 1214 struct hclgevf_tqp *tqp; 1215 int i; 1216 1217 for (i = 0; i < kinfo->num_tqps; i++) { 1218 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 1219 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats)); 1220 } 1221 } 1222 1223 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p) 1224 { 1225 struct hclge_vf_to_pf_msg send_msg; 1226 u8 host_mac[ETH_ALEN]; 1227 int status; 1228 1229 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0); 1230 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac, 1231 ETH_ALEN); 1232 if (status) { 1233 dev_err(&hdev->pdev->dev, 1234 "fail to get VF MAC from host %d", status); 1235 return status; 1236 } 1237 1238 ether_addr_copy(p, host_mac); 1239 1240 return 0; 1241 } 1242 1243 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) 1244 { 1245 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1246 u8 host_mac_addr[ETH_ALEN]; 1247 1248 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr)) 1249 return; 1250 1251 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr); 1252 if (hdev->has_pf_mac) 1253 ether_addr_copy(p, host_mac_addr); 1254 else 1255 ether_addr_copy(p, hdev->hw.mac.mac_addr); 1256 } 1257 1258 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p, 1259 bool is_first) 1260 { 1261 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1262 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; 1263 struct hclge_vf_to_pf_msg send_msg; 1264 u8 *new_mac_addr = (u8 *)p; 1265 int status; 1266 1267 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0); 1268 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY; 1269 ether_addr_copy(send_msg.data, new_mac_addr); 1270 if (is_first && !hdev->has_pf_mac) 1271 eth_zero_addr(&send_msg.data[ETH_ALEN]); 1272 else 1273 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr); 1274 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1275 if (!status) 1276 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); 1277 1278 return status; 1279 } 1280 1281 static struct hclgevf_mac_addr_node * 1282 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr) 1283 { 1284 struct hclgevf_mac_addr_node *mac_node, *tmp; 1285 1286 list_for_each_entry_safe(mac_node, tmp, list, node) 1287 if (ether_addr_equal(mac_addr, mac_node->mac_addr)) 1288 return mac_node; 1289 1290 return NULL; 1291 } 1292 1293 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node, 1294 enum HCLGEVF_MAC_NODE_STATE state) 1295 { 1296 switch (state) { 1297 /* from set_rx_mode or tmp_add_list */ 1298 case HCLGEVF_MAC_TO_ADD: 1299 if (mac_node->state == HCLGEVF_MAC_TO_DEL) 1300 mac_node->state = HCLGEVF_MAC_ACTIVE; 1301 break; 1302 /* only from set_rx_mode */ 1303 case HCLGEVF_MAC_TO_DEL: 1304 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1305 list_del(&mac_node->node); 1306 kfree(mac_node); 1307 } else { 1308 mac_node->state = HCLGEVF_MAC_TO_DEL; 1309 } 1310 break; 1311 /* only from tmp_add_list, the mac_node->state won't be 1312 * HCLGEVF_MAC_ACTIVE 1313 */ 1314 case HCLGEVF_MAC_ACTIVE: 1315 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1316 mac_node->state = HCLGEVF_MAC_ACTIVE; 1317 break; 1318 } 1319 } 1320 1321 static int hclgevf_update_mac_list(struct hnae3_handle *handle, 1322 enum HCLGEVF_MAC_NODE_STATE state, 1323 enum HCLGEVF_MAC_ADDR_TYPE mac_type, 1324 const unsigned char *addr) 1325 { 1326 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1327 struct hclgevf_mac_addr_node *mac_node; 1328 struct list_head *list; 1329 1330 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1331 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1332 1333 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1334 1335 /* if the mac addr is already in the mac list, no need to add a new 1336 * one into it, just check the mac addr state, convert it to a new 1337 * new state, or just remove it, or do nothing. 1338 */ 1339 mac_node = hclgevf_find_mac_node(list, addr); 1340 if (mac_node) { 1341 hclgevf_update_mac_node(mac_node, state); 1342 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1343 return 0; 1344 } 1345 /* if this address is never added, unnecessary to delete */ 1346 if (state == HCLGEVF_MAC_TO_DEL) { 1347 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1348 return -ENOENT; 1349 } 1350 1351 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); 1352 if (!mac_node) { 1353 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1354 return -ENOMEM; 1355 } 1356 1357 mac_node->state = state; 1358 ether_addr_copy(mac_node->mac_addr, addr); 1359 list_add_tail(&mac_node->node, list); 1360 1361 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1362 return 0; 1363 } 1364 1365 static int hclgevf_add_uc_addr(struct hnae3_handle *handle, 1366 const unsigned char *addr) 1367 { 1368 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1369 HCLGEVF_MAC_ADDR_UC, addr); 1370 } 1371 1372 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, 1373 const unsigned char *addr) 1374 { 1375 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1376 HCLGEVF_MAC_ADDR_UC, addr); 1377 } 1378 1379 static int hclgevf_add_mc_addr(struct hnae3_handle *handle, 1380 const unsigned char *addr) 1381 { 1382 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1383 HCLGEVF_MAC_ADDR_MC, addr); 1384 } 1385 1386 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, 1387 const unsigned char *addr) 1388 { 1389 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1390 HCLGEVF_MAC_ADDR_MC, addr); 1391 } 1392 1393 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev, 1394 struct hclgevf_mac_addr_node *mac_node, 1395 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1396 { 1397 struct hclge_vf_to_pf_msg send_msg; 1398 u8 code, subcode; 1399 1400 if (mac_type == HCLGEVF_MAC_ADDR_UC) { 1401 code = HCLGE_MBX_SET_UNICAST; 1402 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1403 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD; 1404 else 1405 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE; 1406 } else { 1407 code = HCLGE_MBX_SET_MULTICAST; 1408 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1409 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD; 1410 else 1411 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE; 1412 } 1413 1414 hclgevf_build_send_msg(&send_msg, code, subcode); 1415 ether_addr_copy(send_msg.data, mac_node->mac_addr); 1416 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1417 } 1418 1419 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev, 1420 struct list_head *list, 1421 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1422 { 1423 struct hclgevf_mac_addr_node *mac_node, *tmp; 1424 int ret; 1425 1426 list_for_each_entry_safe(mac_node, tmp, list, node) { 1427 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type); 1428 if (ret) { 1429 dev_err(&hdev->pdev->dev, 1430 "failed to configure mac %pM, state = %d, ret = %d\n", 1431 mac_node->mac_addr, mac_node->state, ret); 1432 return; 1433 } 1434 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1435 mac_node->state = HCLGEVF_MAC_ACTIVE; 1436 } else { 1437 list_del(&mac_node->node); 1438 kfree(mac_node); 1439 } 1440 } 1441 } 1442 1443 static void hclgevf_sync_from_add_list(struct list_head *add_list, 1444 struct list_head *mac_list) 1445 { 1446 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1447 1448 list_for_each_entry_safe(mac_node, tmp, add_list, node) { 1449 /* if the mac address from tmp_add_list is not in the 1450 * uc/mc_mac_list, it means have received a TO_DEL request 1451 * during the time window of sending mac config request to PF 1452 * If mac_node state is ACTIVE, then change its state to TO_DEL, 1453 * then it will be removed at next time. If is TO_ADD, it means 1454 * send TO_ADD request failed, so just remove the mac node. 1455 */ 1456 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1457 if (new_node) { 1458 hclgevf_update_mac_node(new_node, mac_node->state); 1459 list_del(&mac_node->node); 1460 kfree(mac_node); 1461 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) { 1462 mac_node->state = HCLGEVF_MAC_TO_DEL; 1463 list_del(&mac_node->node); 1464 list_add_tail(&mac_node->node, mac_list); 1465 } else { 1466 list_del(&mac_node->node); 1467 kfree(mac_node); 1468 } 1469 } 1470 } 1471 1472 static void hclgevf_sync_from_del_list(struct list_head *del_list, 1473 struct list_head *mac_list) 1474 { 1475 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1476 1477 list_for_each_entry_safe(mac_node, tmp, del_list, node) { 1478 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1479 if (new_node) { 1480 /* If the mac addr is exist in the mac list, it means 1481 * received a new request TO_ADD during the time window 1482 * of sending mac addr configurrequest to PF, so just 1483 * change the mac state to ACTIVE. 1484 */ 1485 new_node->state = HCLGEVF_MAC_ACTIVE; 1486 list_del(&mac_node->node); 1487 kfree(mac_node); 1488 } else { 1489 list_del(&mac_node->node); 1490 list_add_tail(&mac_node->node, mac_list); 1491 } 1492 } 1493 } 1494 1495 static void hclgevf_clear_list(struct list_head *list) 1496 { 1497 struct hclgevf_mac_addr_node *mac_node, *tmp; 1498 1499 list_for_each_entry_safe(mac_node, tmp, list, node) { 1500 list_del(&mac_node->node); 1501 kfree(mac_node); 1502 } 1503 } 1504 1505 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev, 1506 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1507 { 1508 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1509 struct list_head tmp_add_list, tmp_del_list; 1510 struct list_head *list; 1511 1512 INIT_LIST_HEAD(&tmp_add_list); 1513 INIT_LIST_HEAD(&tmp_del_list); 1514 1515 /* move the mac addr to the tmp_add_list and tmp_del_list, then 1516 * we can add/delete these mac addr outside the spin lock 1517 */ 1518 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1519 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1520 1521 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1522 1523 list_for_each_entry_safe(mac_node, tmp, list, node) { 1524 switch (mac_node->state) { 1525 case HCLGEVF_MAC_TO_DEL: 1526 list_del(&mac_node->node); 1527 list_add_tail(&mac_node->node, &tmp_del_list); 1528 break; 1529 case HCLGEVF_MAC_TO_ADD: 1530 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 1531 if (!new_node) 1532 goto stop_traverse; 1533 1534 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); 1535 new_node->state = mac_node->state; 1536 list_add_tail(&new_node->node, &tmp_add_list); 1537 break; 1538 default: 1539 break; 1540 } 1541 } 1542 1543 stop_traverse: 1544 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1545 1546 /* delete first, in order to get max mac table space for adding */ 1547 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type); 1548 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type); 1549 1550 /* if some mac addresses were added/deleted fail, move back to the 1551 * mac_list, and retry at next time. 1552 */ 1553 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1554 1555 hclgevf_sync_from_del_list(&tmp_del_list, list); 1556 hclgevf_sync_from_add_list(&tmp_add_list, list); 1557 1558 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1559 } 1560 1561 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev) 1562 { 1563 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC); 1564 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC); 1565 } 1566 1567 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev) 1568 { 1569 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1570 1571 hclgevf_clear_list(&hdev->mac_table.uc_mac_list); 1572 hclgevf_clear_list(&hdev->mac_table.mc_mac_list); 1573 1574 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1575 } 1576 1577 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, 1578 __be16 proto, u16 vlan_id, 1579 bool is_kill) 1580 { 1581 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0 1582 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1 1583 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET 3 1584 1585 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1586 struct hclge_vf_to_pf_msg send_msg; 1587 int ret; 1588 1589 if (vlan_id > HCLGEVF_MAX_VLAN_ID) 1590 return -EINVAL; 1591 1592 if (proto != htons(ETH_P_8021Q)) 1593 return -EPROTONOSUPPORT; 1594 1595 /* When device is resetting or reset failed, firmware is unable to 1596 * handle mailbox. Just record the vlan id, and remove it after 1597 * reset finished. 1598 */ 1599 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 1600 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) { 1601 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1602 return -EBUSY; 1603 } 1604 1605 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1606 HCLGE_MBX_VLAN_FILTER); 1607 send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill; 1608 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id, 1609 sizeof(vlan_id)); 1610 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto, 1611 sizeof(proto)); 1612 /* when remove hw vlan filter failed, record the vlan id, 1613 * and try to remove it from hw later, to be consistence 1614 * with stack. 1615 */ 1616 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1617 if (is_kill && ret) 1618 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1619 1620 return ret; 1621 } 1622 1623 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev) 1624 { 1625 #define HCLGEVF_MAX_SYNC_COUNT 60 1626 struct hnae3_handle *handle = &hdev->nic; 1627 int ret, sync_cnt = 0; 1628 u16 vlan_id; 1629 1630 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1631 while (vlan_id != VLAN_N_VID) { 1632 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q), 1633 vlan_id, true); 1634 if (ret) 1635 return; 1636 1637 clear_bit(vlan_id, hdev->vlan_del_fail_bmap); 1638 sync_cnt++; 1639 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT) 1640 return; 1641 1642 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1643 } 1644 } 1645 1646 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 1647 { 1648 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1649 struct hclge_vf_to_pf_msg send_msg; 1650 1651 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1652 HCLGE_MBX_VLAN_RX_OFF_CFG); 1653 send_msg.data[0] = enable ? 1 : 0; 1654 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1655 } 1656 1657 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id) 1658 { 1659 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1660 struct hclge_vf_to_pf_msg send_msg; 1661 int ret; 1662 1663 /* disable vf queue before send queue reset msg to PF */ 1664 ret = hclgevf_tqp_enable(hdev, queue_id, 0, false); 1665 if (ret) 1666 return ret; 1667 1668 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1669 memcpy(send_msg.data, &queue_id, sizeof(queue_id)); 1670 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1671 } 1672 1673 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu) 1674 { 1675 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1676 struct hclge_vf_to_pf_msg send_msg; 1677 1678 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0); 1679 memcpy(send_msg.data, &new_mtu, sizeof(new_mtu)); 1680 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1681 } 1682 1683 static int hclgevf_notify_client(struct hclgevf_dev *hdev, 1684 enum hnae3_reset_notify_type type) 1685 { 1686 struct hnae3_client *client = hdev->nic_client; 1687 struct hnae3_handle *handle = &hdev->nic; 1688 int ret; 1689 1690 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) || 1691 !client) 1692 return 0; 1693 1694 if (!client->ops->reset_notify) 1695 return -EOPNOTSUPP; 1696 1697 ret = client->ops->reset_notify(handle, type); 1698 if (ret) 1699 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", 1700 type, ret); 1701 1702 return ret; 1703 } 1704 1705 static int hclgevf_reset_wait(struct hclgevf_dev *hdev) 1706 { 1707 #define HCLGEVF_RESET_WAIT_US 20000 1708 #define HCLGEVF_RESET_WAIT_CNT 2000 1709 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \ 1710 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT) 1711 1712 u32 val; 1713 int ret; 1714 1715 if (hdev->reset_type == HNAE3_VF_RESET) 1716 ret = readl_poll_timeout(hdev->hw.io_base + 1717 HCLGEVF_VF_RST_ING, val, 1718 !(val & HCLGEVF_VF_RST_ING_BIT), 1719 HCLGEVF_RESET_WAIT_US, 1720 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1721 else 1722 ret = readl_poll_timeout(hdev->hw.io_base + 1723 HCLGEVF_RST_ING, val, 1724 !(val & HCLGEVF_RST_ING_BITS), 1725 HCLGEVF_RESET_WAIT_US, 1726 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1727 1728 /* hardware completion status should be available by this time */ 1729 if (ret) { 1730 dev_err(&hdev->pdev->dev, 1731 "couldn't get reset done status from h/w, timeout!\n"); 1732 return ret; 1733 } 1734 1735 /* we will wait a bit more to let reset of the stack to complete. This 1736 * might happen in case reset assertion was made by PF. Yes, this also 1737 * means we might end up waiting bit more even for VF reset. 1738 */ 1739 msleep(5000); 1740 1741 return 0; 1742 } 1743 1744 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable) 1745 { 1746 u32 reg_val; 1747 1748 reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG); 1749 if (enable) 1750 reg_val |= HCLGEVF_NIC_SW_RST_RDY; 1751 else 1752 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY; 1753 1754 hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG, 1755 reg_val); 1756 } 1757 1758 static int hclgevf_reset_stack(struct hclgevf_dev *hdev) 1759 { 1760 int ret; 1761 1762 /* uninitialize the nic client */ 1763 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 1764 if (ret) 1765 return ret; 1766 1767 /* re-initialize the hclge device */ 1768 ret = hclgevf_reset_hdev(hdev); 1769 if (ret) { 1770 dev_err(&hdev->pdev->dev, 1771 "hclge device re-init failed, VF is disabled!\n"); 1772 return ret; 1773 } 1774 1775 /* bring up the nic client again */ 1776 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); 1777 if (ret) 1778 return ret; 1779 1780 /* clear handshake status with IMP */ 1781 hclgevf_reset_handshake(hdev, false); 1782 1783 /* bring up the nic to enable TX/RX again */ 1784 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 1785 } 1786 1787 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev) 1788 { 1789 #define HCLGEVF_RESET_SYNC_TIME 100 1790 1791 struct hclge_vf_to_pf_msg send_msg; 1792 int ret = 0; 1793 1794 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) { 1795 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0); 1796 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1797 if (ret) { 1798 dev_err(&hdev->pdev->dev, 1799 "failed to assert VF reset, ret = %d\n", ret); 1800 return ret; 1801 } 1802 hdev->rst_stats.vf_func_rst_cnt++; 1803 } 1804 1805 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); 1806 /* inform hardware that preparatory work is done */ 1807 msleep(HCLGEVF_RESET_SYNC_TIME); 1808 hclgevf_reset_handshake(hdev, true); 1809 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n", 1810 hdev->reset_type, ret); 1811 1812 return ret; 1813 } 1814 1815 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev) 1816 { 1817 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n", 1818 hdev->rst_stats.vf_func_rst_cnt); 1819 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n", 1820 hdev->rst_stats.flr_rst_cnt); 1821 dev_info(&hdev->pdev->dev, "VF reset count: %u\n", 1822 hdev->rst_stats.vf_rst_cnt); 1823 dev_info(&hdev->pdev->dev, "reset done count: %u\n", 1824 hdev->rst_stats.rst_done_cnt); 1825 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n", 1826 hdev->rst_stats.hw_rst_done_cnt); 1827 dev_info(&hdev->pdev->dev, "reset count: %u\n", 1828 hdev->rst_stats.rst_cnt); 1829 dev_info(&hdev->pdev->dev, "reset fail count: %u\n", 1830 hdev->rst_stats.rst_fail_cnt); 1831 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n", 1832 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE)); 1833 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n", 1834 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG)); 1835 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n", 1836 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG)); 1837 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n", 1838 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING)); 1839 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state); 1840 } 1841 1842 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev) 1843 { 1844 /* recover handshake status with IMP when reset fail */ 1845 hclgevf_reset_handshake(hdev, true); 1846 hdev->rst_stats.rst_fail_cnt++; 1847 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n", 1848 hdev->rst_stats.rst_fail_cnt); 1849 1850 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT) 1851 set_bit(hdev->reset_type, &hdev->reset_pending); 1852 1853 if (hclgevf_is_reset_pending(hdev)) { 1854 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1855 hclgevf_reset_task_schedule(hdev); 1856 } else { 1857 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1858 hclgevf_dump_rst_info(hdev); 1859 } 1860 } 1861 1862 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev) 1863 { 1864 int ret; 1865 1866 hdev->rst_stats.rst_cnt++; 1867 1868 rtnl_lock(); 1869 /* bring down the nic to stop any ongoing TX/RX */ 1870 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 1871 rtnl_unlock(); 1872 if (ret) 1873 return ret; 1874 1875 return hclgevf_reset_prepare_wait(hdev); 1876 } 1877 1878 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev) 1879 { 1880 int ret; 1881 1882 hdev->rst_stats.hw_rst_done_cnt++; 1883 1884 rtnl_lock(); 1885 /* now, re-initialize the nic client and ae device */ 1886 ret = hclgevf_reset_stack(hdev); 1887 rtnl_unlock(); 1888 if (ret) { 1889 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); 1890 return ret; 1891 } 1892 1893 hdev->last_reset_time = jiffies; 1894 hdev->rst_stats.rst_done_cnt++; 1895 hdev->rst_stats.rst_fail_cnt = 0; 1896 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1897 1898 return 0; 1899 } 1900 1901 static void hclgevf_reset(struct hclgevf_dev *hdev) 1902 { 1903 if (hclgevf_reset_prepare(hdev)) 1904 goto err_reset; 1905 1906 /* check if VF could successfully fetch the hardware reset completion 1907 * status from the hardware 1908 */ 1909 if (hclgevf_reset_wait(hdev)) { 1910 /* can't do much in this situation, will disable VF */ 1911 dev_err(&hdev->pdev->dev, 1912 "failed to fetch H/W reset completion status\n"); 1913 goto err_reset; 1914 } 1915 1916 if (hclgevf_reset_rebuild(hdev)) 1917 goto err_reset; 1918 1919 return; 1920 1921 err_reset: 1922 hclgevf_reset_err_handle(hdev); 1923 } 1924 1925 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev, 1926 unsigned long *addr) 1927 { 1928 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; 1929 1930 /* return the highest priority reset level amongst all */ 1931 if (test_bit(HNAE3_VF_RESET, addr)) { 1932 rst_level = HNAE3_VF_RESET; 1933 clear_bit(HNAE3_VF_RESET, addr); 1934 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1935 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1936 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) { 1937 rst_level = HNAE3_VF_FULL_RESET; 1938 clear_bit(HNAE3_VF_FULL_RESET, addr); 1939 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1940 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) { 1941 rst_level = HNAE3_VF_PF_FUNC_RESET; 1942 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1943 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1944 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) { 1945 rst_level = HNAE3_VF_FUNC_RESET; 1946 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1947 } else if (test_bit(HNAE3_FLR_RESET, addr)) { 1948 rst_level = HNAE3_FLR_RESET; 1949 clear_bit(HNAE3_FLR_RESET, addr); 1950 } 1951 1952 return rst_level; 1953 } 1954 1955 static void hclgevf_reset_event(struct pci_dev *pdev, 1956 struct hnae3_handle *handle) 1957 { 1958 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 1959 struct hclgevf_dev *hdev = ae_dev->priv; 1960 1961 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); 1962 1963 if (hdev->default_reset_request) 1964 hdev->reset_level = 1965 hclgevf_get_reset_level(hdev, 1966 &hdev->default_reset_request); 1967 else 1968 hdev->reset_level = HNAE3_VF_FUNC_RESET; 1969 1970 /* reset of this VF requested */ 1971 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); 1972 hclgevf_reset_task_schedule(hdev); 1973 1974 hdev->last_reset_time = jiffies; 1975 } 1976 1977 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev, 1978 enum hnae3_reset_type rst_type) 1979 { 1980 struct hclgevf_dev *hdev = ae_dev->priv; 1981 1982 set_bit(rst_type, &hdev->default_reset_request); 1983 } 1984 1985 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) 1986 { 1987 writel(en ? 1 : 0, vector->addr); 1988 } 1989 1990 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev) 1991 { 1992 #define HCLGEVF_FLR_RETRY_WAIT_MS 500 1993 #define HCLGEVF_FLR_RETRY_CNT 5 1994 1995 struct hclgevf_dev *hdev = ae_dev->priv; 1996 int retry_cnt = 0; 1997 int ret; 1998 1999 retry: 2000 down(&hdev->reset_sem); 2001 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2002 hdev->reset_type = HNAE3_FLR_RESET; 2003 ret = hclgevf_reset_prepare(hdev); 2004 if (ret) { 2005 dev_err(&hdev->pdev->dev, "fail to prepare FLR, ret=%d\n", 2006 ret); 2007 if (hdev->reset_pending || 2008 retry_cnt++ < HCLGEVF_FLR_RETRY_CNT) { 2009 dev_err(&hdev->pdev->dev, 2010 "reset_pending:0x%lx, retry_cnt:%d\n", 2011 hdev->reset_pending, retry_cnt); 2012 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2013 up(&hdev->reset_sem); 2014 msleep(HCLGEVF_FLR_RETRY_WAIT_MS); 2015 goto retry; 2016 } 2017 } 2018 2019 /* disable misc vector before FLR done */ 2020 hclgevf_enable_vector(&hdev->misc_vector, false); 2021 hdev->rst_stats.flr_rst_cnt++; 2022 } 2023 2024 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev) 2025 { 2026 struct hclgevf_dev *hdev = ae_dev->priv; 2027 int ret; 2028 2029 hclgevf_enable_vector(&hdev->misc_vector, true); 2030 2031 ret = hclgevf_reset_rebuild(hdev); 2032 if (ret) 2033 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", 2034 ret); 2035 2036 hdev->reset_type = HNAE3_NONE_RESET; 2037 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2038 up(&hdev->reset_sem); 2039 } 2040 2041 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) 2042 { 2043 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2044 2045 return hdev->fw_version; 2046 } 2047 2048 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) 2049 { 2050 struct hclgevf_misc_vector *vector = &hdev->misc_vector; 2051 2052 vector->vector_irq = pci_irq_vector(hdev->pdev, 2053 HCLGEVF_MISC_VECTOR_NUM); 2054 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; 2055 /* vector status always valid for Vector 0 */ 2056 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; 2057 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; 2058 2059 hdev->num_msi_left -= 1; 2060 hdev->num_msi_used += 1; 2061 } 2062 2063 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) 2064 { 2065 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 2066 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, 2067 &hdev->state)) 2068 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 2069 } 2070 2071 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) 2072 { 2073 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 2074 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, 2075 &hdev->state)) 2076 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 2077 } 2078 2079 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 2080 unsigned long delay) 2081 { 2082 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 2083 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 2084 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay); 2085 } 2086 2087 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev) 2088 { 2089 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3 2090 2091 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) 2092 return; 2093 2094 down(&hdev->reset_sem); 2095 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2096 2097 if (test_and_clear_bit(HCLGEVF_RESET_PENDING, 2098 &hdev->reset_state)) { 2099 /* PF has initmated that it is about to reset the hardware. 2100 * We now have to poll & check if hardware has actually 2101 * completed the reset sequence. On hardware reset completion, 2102 * VF needs to reset the client and ae device. 2103 */ 2104 hdev->reset_attempts = 0; 2105 2106 hdev->last_reset_time = jiffies; 2107 while ((hdev->reset_type = 2108 hclgevf_get_reset_level(hdev, &hdev->reset_pending)) 2109 != HNAE3_NONE_RESET) 2110 hclgevf_reset(hdev); 2111 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, 2112 &hdev->reset_state)) { 2113 /* we could be here when either of below happens: 2114 * 1. reset was initiated due to watchdog timeout caused by 2115 * a. IMP was earlier reset and our TX got choked down and 2116 * which resulted in watchdog reacting and inducing VF 2117 * reset. This also means our cmdq would be unreliable. 2118 * b. problem in TX due to other lower layer(example link 2119 * layer not functioning properly etc.) 2120 * 2. VF reset might have been initiated due to some config 2121 * change. 2122 * 2123 * NOTE: Theres no clear way to detect above cases than to react 2124 * to the response of PF for this reset request. PF will ack the 2125 * 1b and 2. cases but we will not get any intimation about 1a 2126 * from PF as cmdq would be in unreliable state i.e. mailbox 2127 * communication between PF and VF would be broken. 2128 * 2129 * if we are never geting into pending state it means either: 2130 * 1. PF is not receiving our request which could be due to IMP 2131 * reset 2132 * 2. PF is screwed 2133 * We cannot do much for 2. but to check first we can try reset 2134 * our PCIe + stack and see if it alleviates the problem. 2135 */ 2136 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) { 2137 /* prepare for full reset of stack + pcie interface */ 2138 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending); 2139 2140 /* "defer" schedule the reset task again */ 2141 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2142 } else { 2143 hdev->reset_attempts++; 2144 2145 set_bit(hdev->reset_level, &hdev->reset_pending); 2146 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2147 } 2148 hclgevf_reset_task_schedule(hdev); 2149 } 2150 2151 hdev->reset_type = HNAE3_NONE_RESET; 2152 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2153 up(&hdev->reset_sem); 2154 } 2155 2156 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev) 2157 { 2158 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state)) 2159 return; 2160 2161 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) 2162 return; 2163 2164 hclgevf_mbx_async_handler(hdev); 2165 2166 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2167 } 2168 2169 static void hclgevf_keep_alive(struct hclgevf_dev *hdev) 2170 { 2171 struct hclge_vf_to_pf_msg send_msg; 2172 int ret; 2173 2174 if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) 2175 return; 2176 2177 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0); 2178 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2179 if (ret) 2180 dev_err(&hdev->pdev->dev, 2181 "VF sends keep alive cmd failed(=%d)\n", ret); 2182 } 2183 2184 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev) 2185 { 2186 unsigned long delta = round_jiffies_relative(HZ); 2187 struct hnae3_handle *handle = &hdev->nic; 2188 2189 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { 2190 delta = jiffies - hdev->last_serv_processed; 2191 2192 if (delta < round_jiffies_relative(HZ)) { 2193 delta = round_jiffies_relative(HZ) - delta; 2194 goto out; 2195 } 2196 } 2197 2198 hdev->serv_processed_cnt++; 2199 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL)) 2200 hclgevf_keep_alive(hdev); 2201 2202 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) { 2203 hdev->last_serv_processed = jiffies; 2204 goto out; 2205 } 2206 2207 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL)) 2208 hclgevf_tqps_update_stats(handle); 2209 2210 /* request the link status from the PF. PF would be able to tell VF 2211 * about such updates in future so we might remove this later 2212 */ 2213 hclgevf_request_link_info(hdev); 2214 2215 hclgevf_update_link_mode(hdev); 2216 2217 hclgevf_sync_vlan_filter(hdev); 2218 2219 hclgevf_sync_mac_table(hdev); 2220 2221 hclgevf_sync_promisc_mode(hdev); 2222 2223 hdev->last_serv_processed = jiffies; 2224 2225 out: 2226 hclgevf_task_schedule(hdev, delta); 2227 } 2228 2229 static void hclgevf_service_task(struct work_struct *work) 2230 { 2231 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev, 2232 service_task.work); 2233 2234 hclgevf_reset_service_task(hdev); 2235 hclgevf_mailbox_service_task(hdev); 2236 hclgevf_periodic_service_task(hdev); 2237 2238 /* Handle reset and mbx again in case periodical task delays the 2239 * handling by calling hclgevf_task_schedule() in 2240 * hclgevf_periodic_service_task() 2241 */ 2242 hclgevf_reset_service_task(hdev); 2243 hclgevf_mailbox_service_task(hdev); 2244 } 2245 2246 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) 2247 { 2248 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr); 2249 } 2250 2251 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev, 2252 u32 *clearval) 2253 { 2254 u32 val, cmdq_stat_reg, rst_ing_reg; 2255 2256 /* fetch the events from their corresponding regs */ 2257 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw, 2258 HCLGEVF_VECTOR0_CMDQ_STATE_REG); 2259 2260 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) { 2261 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 2262 dev_info(&hdev->pdev->dev, 2263 "receive reset interrupt 0x%x!\n", rst_ing_reg); 2264 set_bit(HNAE3_VF_RESET, &hdev->reset_pending); 2265 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2266 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); 2267 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B); 2268 hdev->rst_stats.vf_rst_cnt++; 2269 /* set up VF hardware reset status, its PF will clear 2270 * this status when PF has initialized done. 2271 */ 2272 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING); 2273 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING, 2274 val | HCLGEVF_VF_RST_ING_BIT); 2275 return HCLGEVF_VECTOR0_EVENT_RST; 2276 } 2277 2278 /* check for vector0 mailbox(=CMDQ RX) event source */ 2279 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) { 2280 /* for revision 0x21, clearing interrupt is writing bit 0 2281 * to the clear register, writing bit 1 means to keep the 2282 * old value. 2283 * for revision 0x20, the clear register is a read & write 2284 * register, so we should just write 0 to the bit we are 2285 * handling, and keep other bits as cmdq_stat_reg. 2286 */ 2287 if (hdev->pdev->revision >= 0x21) 2288 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2289 else 2290 *clearval = cmdq_stat_reg & 2291 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2292 2293 return HCLGEVF_VECTOR0_EVENT_MBX; 2294 } 2295 2296 /* print other vector0 event source */ 2297 dev_info(&hdev->pdev->dev, 2298 "vector 0 interrupt from unknown source, cmdq_src = %#x\n", 2299 cmdq_stat_reg); 2300 2301 return HCLGEVF_VECTOR0_EVENT_OTHER; 2302 } 2303 2304 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) 2305 { 2306 enum hclgevf_evt_cause event_cause; 2307 struct hclgevf_dev *hdev = data; 2308 u32 clearval; 2309 2310 hclgevf_enable_vector(&hdev->misc_vector, false); 2311 event_cause = hclgevf_check_evt_cause(hdev, &clearval); 2312 2313 switch (event_cause) { 2314 case HCLGEVF_VECTOR0_EVENT_RST: 2315 hclgevf_reset_task_schedule(hdev); 2316 break; 2317 case HCLGEVF_VECTOR0_EVENT_MBX: 2318 hclgevf_mbx_handler(hdev); 2319 break; 2320 default: 2321 break; 2322 } 2323 2324 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) { 2325 hclgevf_clear_event_cause(hdev, clearval); 2326 hclgevf_enable_vector(&hdev->misc_vector, true); 2327 } 2328 2329 return IRQ_HANDLED; 2330 } 2331 2332 static int hclgevf_configure(struct hclgevf_dev *hdev) 2333 { 2334 int ret; 2335 2336 /* get current port based vlan state from PF */ 2337 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2338 if (ret) 2339 return ret; 2340 2341 /* get queue configuration from PF */ 2342 ret = hclgevf_get_queue_info(hdev); 2343 if (ret) 2344 return ret; 2345 2346 /* get queue depth info from PF */ 2347 ret = hclgevf_get_queue_depth(hdev); 2348 if (ret) 2349 return ret; 2350 2351 ret = hclgevf_get_pf_media_type(hdev); 2352 if (ret) 2353 return ret; 2354 2355 /* get tc configuration from PF */ 2356 return hclgevf_get_tc_info(hdev); 2357 } 2358 2359 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) 2360 { 2361 struct pci_dev *pdev = ae_dev->pdev; 2362 struct hclgevf_dev *hdev; 2363 2364 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 2365 if (!hdev) 2366 return -ENOMEM; 2367 2368 hdev->pdev = pdev; 2369 hdev->ae_dev = ae_dev; 2370 ae_dev->priv = hdev; 2371 2372 return 0; 2373 } 2374 2375 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) 2376 { 2377 struct hnae3_handle *roce = &hdev->roce; 2378 struct hnae3_handle *nic = &hdev->nic; 2379 2380 roce->rinfo.num_vectors = hdev->num_roce_msix; 2381 2382 if (hdev->num_msi_left < roce->rinfo.num_vectors || 2383 hdev->num_msi_left == 0) 2384 return -EINVAL; 2385 2386 roce->rinfo.base_vector = hdev->roce_base_vector; 2387 2388 roce->rinfo.netdev = nic->kinfo.netdev; 2389 roce->rinfo.roce_io_base = hdev->hw.io_base; 2390 2391 roce->pdev = nic->pdev; 2392 roce->ae_algo = nic->ae_algo; 2393 roce->numa_node_mask = nic->numa_node_mask; 2394 2395 return 0; 2396 } 2397 2398 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en) 2399 { 2400 struct hclgevf_cfg_gro_status_cmd *req; 2401 struct hclgevf_desc desc; 2402 int ret; 2403 2404 if (!hnae3_dev_gro_supported(hdev)) 2405 return 0; 2406 2407 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG, 2408 false); 2409 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data; 2410 2411 req->gro_en = en ? 1 : 0; 2412 2413 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2414 if (ret) 2415 dev_err(&hdev->pdev->dev, 2416 "VF GRO hardware config cmd failed, ret = %d.\n", ret); 2417 2418 return ret; 2419 } 2420 2421 static void hclgevf_rss_init_cfg(struct hclgevf_dev *hdev) 2422 { 2423 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 2424 struct hclgevf_rss_tuple_cfg *tuple_sets; 2425 u32 i; 2426 2427 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ; 2428 rss_cfg->rss_size = hdev->nic.kinfo.rss_size; 2429 tuple_sets = &rss_cfg->rss_tuple_sets; 2430 if (hdev->pdev->revision >= 0x21) { 2431 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE; 2432 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key, 2433 HCLGEVF_RSS_KEY_SIZE); 2434 2435 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2436 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2437 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP; 2438 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2439 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2440 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2441 tuple_sets->ipv6_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP; 2442 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2443 } 2444 2445 /* Initialize RSS indirect table */ 2446 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 2447 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size; 2448 } 2449 2450 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) 2451 { 2452 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 2453 int ret; 2454 2455 if (hdev->pdev->revision >= 0x21) { 2456 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo, 2457 rss_cfg->rss_hash_key); 2458 if (ret) 2459 return ret; 2460 2461 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg); 2462 if (ret) 2463 return ret; 2464 } 2465 2466 ret = hclgevf_set_rss_indir_table(hdev); 2467 if (ret) 2468 return ret; 2469 2470 return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size); 2471 } 2472 2473 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) 2474 { 2475 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, 2476 false); 2477 } 2478 2479 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev) 2480 { 2481 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000 2482 2483 unsigned long last = hdev->serv_processed_cnt; 2484 int i = 0; 2485 2486 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) && 2487 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT && 2488 last == hdev->serv_processed_cnt) 2489 usleep_range(1, 1); 2490 } 2491 2492 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable) 2493 { 2494 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2495 2496 if (enable) { 2497 hclgevf_task_schedule(hdev, 0); 2498 } else { 2499 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2500 2501 /* flush memory to make sure DOWN is seen by service task */ 2502 smp_mb__before_atomic(); 2503 hclgevf_flush_link_update(hdev); 2504 } 2505 } 2506 2507 static int hclgevf_ae_start(struct hnae3_handle *handle) 2508 { 2509 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2510 2511 hclgevf_reset_tqp_stats(handle); 2512 2513 hclgevf_request_link_info(hdev); 2514 2515 hclgevf_update_link_mode(hdev); 2516 2517 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2518 2519 return 0; 2520 } 2521 2522 static void hclgevf_ae_stop(struct hnae3_handle *handle) 2523 { 2524 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2525 int i; 2526 2527 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2528 2529 if (hdev->reset_type != HNAE3_VF_RESET) 2530 for (i = 0; i < handle->kinfo.num_tqps; i++) 2531 if (hclgevf_reset_tqp(handle, i)) 2532 break; 2533 2534 hclgevf_reset_tqp_stats(handle); 2535 hclgevf_update_link_status(hdev, 0); 2536 } 2537 2538 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive) 2539 { 2540 #define HCLGEVF_STATE_ALIVE 1 2541 #define HCLGEVF_STATE_NOT_ALIVE 0 2542 2543 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2544 struct hclge_vf_to_pf_msg send_msg; 2545 2546 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0); 2547 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE : 2548 HCLGEVF_STATE_NOT_ALIVE; 2549 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2550 } 2551 2552 static int hclgevf_client_start(struct hnae3_handle *handle) 2553 { 2554 int ret; 2555 2556 ret = hclgevf_set_alive(handle, true); 2557 if (ret) 2558 return ret; 2559 2560 return 0; 2561 } 2562 2563 static void hclgevf_client_stop(struct hnae3_handle *handle) 2564 { 2565 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2566 int ret; 2567 2568 ret = hclgevf_set_alive(handle, false); 2569 if (ret) 2570 dev_warn(&hdev->pdev->dev, 2571 "%s failed %d\n", __func__, ret); 2572 } 2573 2574 static void hclgevf_state_init(struct hclgevf_dev *hdev) 2575 { 2576 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 2577 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2578 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 2579 2580 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task); 2581 2582 mutex_init(&hdev->mbx_resp.mbx_mutex); 2583 sema_init(&hdev->reset_sem, 1); 2584 2585 spin_lock_init(&hdev->mac_table.mac_list_lock); 2586 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list); 2587 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list); 2588 2589 /* bring the device down */ 2590 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2591 } 2592 2593 static void hclgevf_state_uninit(struct hclgevf_dev *hdev) 2594 { 2595 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2596 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state); 2597 2598 if (hdev->service_task.work.func) 2599 cancel_delayed_work_sync(&hdev->service_task); 2600 2601 mutex_destroy(&hdev->mbx_resp.mbx_mutex); 2602 } 2603 2604 static int hclgevf_init_msi(struct hclgevf_dev *hdev) 2605 { 2606 struct pci_dev *pdev = hdev->pdev; 2607 int vectors; 2608 int i; 2609 2610 if (hnae3_dev_roce_supported(hdev)) 2611 vectors = pci_alloc_irq_vectors(pdev, 2612 hdev->roce_base_msix_offset + 1, 2613 hdev->num_msi, 2614 PCI_IRQ_MSIX); 2615 else 2616 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, 2617 hdev->num_msi, 2618 PCI_IRQ_MSI | PCI_IRQ_MSIX); 2619 2620 if (vectors < 0) { 2621 dev_err(&pdev->dev, 2622 "failed(%d) to allocate MSI/MSI-X vectors\n", 2623 vectors); 2624 return vectors; 2625 } 2626 if (vectors < hdev->num_msi) 2627 dev_warn(&hdev->pdev->dev, 2628 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", 2629 hdev->num_msi, vectors); 2630 2631 hdev->num_msi = vectors; 2632 hdev->num_msi_left = vectors; 2633 2634 hdev->base_msi_vector = pdev->irq; 2635 hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset; 2636 2637 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 2638 sizeof(u16), GFP_KERNEL); 2639 if (!hdev->vector_status) { 2640 pci_free_irq_vectors(pdev); 2641 return -ENOMEM; 2642 } 2643 2644 for (i = 0; i < hdev->num_msi; i++) 2645 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; 2646 2647 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 2648 sizeof(int), GFP_KERNEL); 2649 if (!hdev->vector_irq) { 2650 devm_kfree(&pdev->dev, hdev->vector_status); 2651 pci_free_irq_vectors(pdev); 2652 return -ENOMEM; 2653 } 2654 2655 return 0; 2656 } 2657 2658 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) 2659 { 2660 struct pci_dev *pdev = hdev->pdev; 2661 2662 devm_kfree(&pdev->dev, hdev->vector_status); 2663 devm_kfree(&pdev->dev, hdev->vector_irq); 2664 pci_free_irq_vectors(pdev); 2665 } 2666 2667 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) 2668 { 2669 int ret; 2670 2671 hclgevf_get_misc_vector(hdev); 2672 2673 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", 2674 HCLGEVF_NAME, pci_name(hdev->pdev)); 2675 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 2676 0, hdev->misc_vector.name, hdev); 2677 if (ret) { 2678 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", 2679 hdev->misc_vector.vector_irq); 2680 return ret; 2681 } 2682 2683 hclgevf_clear_event_cause(hdev, 0); 2684 2685 /* enable misc. vector(vector 0) */ 2686 hclgevf_enable_vector(&hdev->misc_vector, true); 2687 2688 return ret; 2689 } 2690 2691 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) 2692 { 2693 /* disable misc vector(vector 0) */ 2694 hclgevf_enable_vector(&hdev->misc_vector, false); 2695 synchronize_irq(hdev->misc_vector.vector_irq); 2696 free_irq(hdev->misc_vector.vector_irq, hdev); 2697 hclgevf_free_vector(hdev, 0); 2698 } 2699 2700 static void hclgevf_info_show(struct hclgevf_dev *hdev) 2701 { 2702 struct device *dev = &hdev->pdev->dev; 2703 2704 dev_info(dev, "VF info begin:\n"); 2705 2706 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); 2707 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); 2708 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); 2709 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); 2710 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); 2711 dev_info(dev, "PF media type of this VF: %u\n", 2712 hdev->hw.mac.media_type); 2713 2714 dev_info(dev, "VF info end.\n"); 2715 } 2716 2717 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, 2718 struct hnae3_client *client) 2719 { 2720 struct hclgevf_dev *hdev = ae_dev->priv; 2721 int rst_cnt = hdev->rst_stats.rst_cnt; 2722 int ret; 2723 2724 ret = client->ops->init_instance(&hdev->nic); 2725 if (ret) 2726 return ret; 2727 2728 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2729 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 2730 rst_cnt != hdev->rst_stats.rst_cnt) { 2731 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2732 2733 client->ops->uninit_instance(&hdev->nic, 0); 2734 return -EBUSY; 2735 } 2736 2737 hnae3_set_client_init_flag(client, ae_dev, 1); 2738 2739 if (netif_msg_drv(&hdev->nic)) 2740 hclgevf_info_show(hdev); 2741 2742 return 0; 2743 } 2744 2745 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, 2746 struct hnae3_client *client) 2747 { 2748 struct hclgevf_dev *hdev = ae_dev->priv; 2749 int ret; 2750 2751 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || 2752 !hdev->nic_client) 2753 return 0; 2754 2755 ret = hclgevf_init_roce_base_info(hdev); 2756 if (ret) 2757 return ret; 2758 2759 ret = client->ops->init_instance(&hdev->roce); 2760 if (ret) 2761 return ret; 2762 2763 hnae3_set_client_init_flag(client, ae_dev, 1); 2764 2765 return 0; 2766 } 2767 2768 static int hclgevf_init_client_instance(struct hnae3_client *client, 2769 struct hnae3_ae_dev *ae_dev) 2770 { 2771 struct hclgevf_dev *hdev = ae_dev->priv; 2772 int ret; 2773 2774 switch (client->type) { 2775 case HNAE3_CLIENT_KNIC: 2776 hdev->nic_client = client; 2777 hdev->nic.client = client; 2778 2779 ret = hclgevf_init_nic_client_instance(ae_dev, client); 2780 if (ret) 2781 goto clear_nic; 2782 2783 ret = hclgevf_init_roce_client_instance(ae_dev, 2784 hdev->roce_client); 2785 if (ret) 2786 goto clear_roce; 2787 2788 break; 2789 case HNAE3_CLIENT_ROCE: 2790 if (hnae3_dev_roce_supported(hdev)) { 2791 hdev->roce_client = client; 2792 hdev->roce.client = client; 2793 } 2794 2795 ret = hclgevf_init_roce_client_instance(ae_dev, client); 2796 if (ret) 2797 goto clear_roce; 2798 2799 break; 2800 default: 2801 return -EINVAL; 2802 } 2803 2804 return 0; 2805 2806 clear_nic: 2807 hdev->nic_client = NULL; 2808 hdev->nic.client = NULL; 2809 return ret; 2810 clear_roce: 2811 hdev->roce_client = NULL; 2812 hdev->roce.client = NULL; 2813 return ret; 2814 } 2815 2816 static void hclgevf_uninit_client_instance(struct hnae3_client *client, 2817 struct hnae3_ae_dev *ae_dev) 2818 { 2819 struct hclgevf_dev *hdev = ae_dev->priv; 2820 2821 /* un-init roce, if it exists */ 2822 if (hdev->roce_client) { 2823 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); 2824 hdev->roce_client = NULL; 2825 hdev->roce.client = NULL; 2826 } 2827 2828 /* un-init nic/unic, if this was not called by roce client */ 2829 if (client->ops->uninit_instance && hdev->nic_client && 2830 client->type != HNAE3_CLIENT_ROCE) { 2831 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2832 2833 client->ops->uninit_instance(&hdev->nic, 0); 2834 hdev->nic_client = NULL; 2835 hdev->nic.client = NULL; 2836 } 2837 } 2838 2839 static int hclgevf_pci_init(struct hclgevf_dev *hdev) 2840 { 2841 struct pci_dev *pdev = hdev->pdev; 2842 struct hclgevf_hw *hw; 2843 int ret; 2844 2845 ret = pci_enable_device(pdev); 2846 if (ret) { 2847 dev_err(&pdev->dev, "failed to enable PCI device\n"); 2848 return ret; 2849 } 2850 2851 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2852 if (ret) { 2853 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); 2854 goto err_disable_device; 2855 } 2856 2857 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); 2858 if (ret) { 2859 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 2860 goto err_disable_device; 2861 } 2862 2863 pci_set_master(pdev); 2864 hw = &hdev->hw; 2865 hw->hdev = hdev; 2866 hw->io_base = pci_iomap(pdev, 2, 0); 2867 if (!hw->io_base) { 2868 dev_err(&pdev->dev, "can't map configuration register space\n"); 2869 ret = -ENOMEM; 2870 goto err_clr_master; 2871 } 2872 2873 return 0; 2874 2875 err_clr_master: 2876 pci_clear_master(pdev); 2877 pci_release_regions(pdev); 2878 err_disable_device: 2879 pci_disable_device(pdev); 2880 2881 return ret; 2882 } 2883 2884 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) 2885 { 2886 struct pci_dev *pdev = hdev->pdev; 2887 2888 pci_iounmap(pdev, hdev->hw.io_base); 2889 pci_clear_master(pdev); 2890 pci_release_regions(pdev); 2891 pci_disable_device(pdev); 2892 } 2893 2894 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev) 2895 { 2896 struct hclgevf_query_res_cmd *req; 2897 struct hclgevf_desc desc; 2898 int ret; 2899 2900 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true); 2901 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2902 if (ret) { 2903 dev_err(&hdev->pdev->dev, 2904 "query vf resource failed, ret = %d.\n", ret); 2905 return ret; 2906 } 2907 2908 req = (struct hclgevf_query_res_cmd *)desc.data; 2909 2910 if (hnae3_dev_roce_supported(hdev)) { 2911 hdev->roce_base_msix_offset = 2912 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee), 2913 HCLGEVF_MSIX_OFT_ROCEE_M, 2914 HCLGEVF_MSIX_OFT_ROCEE_S); 2915 hdev->num_roce_msix = 2916 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2917 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2918 2919 /* nic's msix numbers is always equals to the roce's. */ 2920 hdev->num_nic_msix = hdev->num_roce_msix; 2921 2922 /* VF should have NIC vectors and Roce vectors, NIC vectors 2923 * are queued before Roce vectors. The offset is fixed to 64. 2924 */ 2925 hdev->num_msi = hdev->num_roce_msix + 2926 hdev->roce_base_msix_offset; 2927 } else { 2928 hdev->num_msi = 2929 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2930 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2931 2932 hdev->num_nic_msix = hdev->num_msi; 2933 } 2934 2935 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) { 2936 dev_err(&hdev->pdev->dev, 2937 "Just %u msi resources, not enough for vf(min:2).\n", 2938 hdev->num_nic_msix); 2939 return -EINVAL; 2940 } 2941 2942 return 0; 2943 } 2944 2945 static int hclgevf_pci_reset(struct hclgevf_dev *hdev) 2946 { 2947 struct pci_dev *pdev = hdev->pdev; 2948 int ret = 0; 2949 2950 if (hdev->reset_type == HNAE3_VF_FULL_RESET && 2951 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2952 hclgevf_misc_irq_uninit(hdev); 2953 hclgevf_uninit_msi(hdev); 2954 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2955 } 2956 2957 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2958 pci_set_master(pdev); 2959 ret = hclgevf_init_msi(hdev); 2960 if (ret) { 2961 dev_err(&pdev->dev, 2962 "failed(%d) to init MSI/MSI-X\n", ret); 2963 return ret; 2964 } 2965 2966 ret = hclgevf_misc_irq_init(hdev); 2967 if (ret) { 2968 hclgevf_uninit_msi(hdev); 2969 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", 2970 ret); 2971 return ret; 2972 } 2973 2974 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2975 } 2976 2977 return ret; 2978 } 2979 2980 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev) 2981 { 2982 struct hclge_vf_to_pf_msg send_msg; 2983 2984 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL, 2985 HCLGE_MBX_VPORT_LIST_CLEAR); 2986 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2987 } 2988 2989 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev) 2990 { 2991 struct pci_dev *pdev = hdev->pdev; 2992 int ret; 2993 2994 ret = hclgevf_pci_reset(hdev); 2995 if (ret) { 2996 dev_err(&pdev->dev, "pci reset failed %d\n", ret); 2997 return ret; 2998 } 2999 3000 ret = hclgevf_cmd_init(hdev); 3001 if (ret) { 3002 dev_err(&pdev->dev, "cmd failed %d\n", ret); 3003 return ret; 3004 } 3005 3006 ret = hclgevf_rss_init_hw(hdev); 3007 if (ret) { 3008 dev_err(&hdev->pdev->dev, 3009 "failed(%d) to initialize RSS\n", ret); 3010 return ret; 3011 } 3012 3013 ret = hclgevf_config_gro(hdev, true); 3014 if (ret) 3015 return ret; 3016 3017 ret = hclgevf_init_vlan_config(hdev); 3018 if (ret) { 3019 dev_err(&hdev->pdev->dev, 3020 "failed(%d) to initialize VLAN config\n", ret); 3021 return ret; 3022 } 3023 3024 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 3025 3026 dev_info(&hdev->pdev->dev, "Reset done\n"); 3027 3028 return 0; 3029 } 3030 3031 static int hclgevf_init_hdev(struct hclgevf_dev *hdev) 3032 { 3033 struct pci_dev *pdev = hdev->pdev; 3034 int ret; 3035 3036 ret = hclgevf_pci_init(hdev); 3037 if (ret) 3038 return ret; 3039 3040 ret = hclgevf_cmd_queue_init(hdev); 3041 if (ret) 3042 goto err_cmd_queue_init; 3043 3044 ret = hclgevf_cmd_init(hdev); 3045 if (ret) 3046 goto err_cmd_init; 3047 3048 /* Get vf resource */ 3049 ret = hclgevf_query_vf_resource(hdev); 3050 if (ret) 3051 goto err_cmd_init; 3052 3053 ret = hclgevf_init_msi(hdev); 3054 if (ret) { 3055 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); 3056 goto err_cmd_init; 3057 } 3058 3059 hclgevf_state_init(hdev); 3060 hdev->reset_level = HNAE3_VF_FUNC_RESET; 3061 hdev->reset_type = HNAE3_NONE_RESET; 3062 3063 ret = hclgevf_misc_irq_init(hdev); 3064 if (ret) 3065 goto err_misc_irq_init; 3066 3067 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3068 3069 ret = hclgevf_configure(hdev); 3070 if (ret) { 3071 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); 3072 goto err_config; 3073 } 3074 3075 ret = hclgevf_alloc_tqps(hdev); 3076 if (ret) { 3077 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); 3078 goto err_config; 3079 } 3080 3081 ret = hclgevf_set_handle_info(hdev); 3082 if (ret) 3083 goto err_config; 3084 3085 ret = hclgevf_config_gro(hdev, true); 3086 if (ret) 3087 goto err_config; 3088 3089 /* Initialize RSS for this VF */ 3090 hclgevf_rss_init_cfg(hdev); 3091 ret = hclgevf_rss_init_hw(hdev); 3092 if (ret) { 3093 dev_err(&hdev->pdev->dev, 3094 "failed(%d) to initialize RSS\n", ret); 3095 goto err_config; 3096 } 3097 3098 /* ensure vf tbl list as empty before init*/ 3099 ret = hclgevf_clear_vport_list(hdev); 3100 if (ret) { 3101 dev_err(&pdev->dev, 3102 "failed to clear tbl list configuration, ret = %d.\n", 3103 ret); 3104 goto err_config; 3105 } 3106 3107 ret = hclgevf_init_vlan_config(hdev); 3108 if (ret) { 3109 dev_err(&hdev->pdev->dev, 3110 "failed(%d) to initialize VLAN config\n", ret); 3111 goto err_config; 3112 } 3113 3114 hdev->last_reset_time = jiffies; 3115 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n", 3116 HCLGEVF_DRIVER_NAME); 3117 3118 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ)); 3119 3120 return 0; 3121 3122 err_config: 3123 hclgevf_misc_irq_uninit(hdev); 3124 err_misc_irq_init: 3125 hclgevf_state_uninit(hdev); 3126 hclgevf_uninit_msi(hdev); 3127 err_cmd_init: 3128 hclgevf_cmd_uninit(hdev); 3129 err_cmd_queue_init: 3130 hclgevf_pci_uninit(hdev); 3131 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3132 return ret; 3133 } 3134 3135 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) 3136 { 3137 struct hclge_vf_to_pf_msg send_msg; 3138 3139 hclgevf_state_uninit(hdev); 3140 3141 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0); 3142 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3143 3144 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3145 hclgevf_misc_irq_uninit(hdev); 3146 hclgevf_uninit_msi(hdev); 3147 } 3148 3149 hclgevf_pci_uninit(hdev); 3150 hclgevf_cmd_uninit(hdev); 3151 hclgevf_uninit_mac_list(hdev); 3152 } 3153 3154 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) 3155 { 3156 struct pci_dev *pdev = ae_dev->pdev; 3157 int ret; 3158 3159 ret = hclgevf_alloc_hdev(ae_dev); 3160 if (ret) { 3161 dev_err(&pdev->dev, "hclge device allocation failed\n"); 3162 return ret; 3163 } 3164 3165 ret = hclgevf_init_hdev(ae_dev->priv); 3166 if (ret) { 3167 dev_err(&pdev->dev, "hclge device initialization failed\n"); 3168 return ret; 3169 } 3170 3171 return 0; 3172 } 3173 3174 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 3175 { 3176 struct hclgevf_dev *hdev = ae_dev->priv; 3177 3178 hclgevf_uninit_hdev(hdev); 3179 ae_dev->priv = NULL; 3180 } 3181 3182 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) 3183 { 3184 struct hnae3_handle *nic = &hdev->nic; 3185 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 3186 3187 return min_t(u32, hdev->rss_size_max, 3188 hdev->num_tqps / kinfo->num_tc); 3189 } 3190 3191 /** 3192 * hclgevf_get_channels - Get the current channels enabled and max supported. 3193 * @handle: hardware information for network interface 3194 * @ch: ethtool channels structure 3195 * 3196 * We don't support separate tx and rx queues as channels. The other count 3197 * represents how many queues are being used for control. max_combined counts 3198 * how many queue pairs we can support. They may not be mapped 1 to 1 with 3199 * q_vectors since we support a lot more queue pairs than q_vectors. 3200 **/ 3201 static void hclgevf_get_channels(struct hnae3_handle *handle, 3202 struct ethtool_channels *ch) 3203 { 3204 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3205 3206 ch->max_combined = hclgevf_get_max_channels(hdev); 3207 ch->other_count = 0; 3208 ch->max_other = 0; 3209 ch->combined_count = handle->kinfo.rss_size; 3210 } 3211 3212 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, 3213 u16 *alloc_tqps, u16 *max_rss_size) 3214 { 3215 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3216 3217 *alloc_tqps = hdev->num_tqps; 3218 *max_rss_size = hdev->rss_size_max; 3219 } 3220 3221 static void hclgevf_update_rss_size(struct hnae3_handle *handle, 3222 u32 new_tqps_num) 3223 { 3224 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3225 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3226 u16 max_rss_size; 3227 3228 kinfo->req_rss_size = new_tqps_num; 3229 3230 max_rss_size = min_t(u16, hdev->rss_size_max, 3231 hdev->num_tqps / kinfo->num_tc); 3232 3233 /* Use the user's configuration when it is not larger than 3234 * max_rss_size, otherwise, use the maximum specification value. 3235 */ 3236 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size && 3237 kinfo->req_rss_size <= max_rss_size) 3238 kinfo->rss_size = kinfo->req_rss_size; 3239 else if (kinfo->rss_size > max_rss_size || 3240 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size)) 3241 kinfo->rss_size = max_rss_size; 3242 3243 kinfo->num_tqps = kinfo->num_tc * kinfo->rss_size; 3244 } 3245 3246 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, 3247 bool rxfh_configured) 3248 { 3249 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3250 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3251 u16 cur_rss_size = kinfo->rss_size; 3252 u16 cur_tqps = kinfo->num_tqps; 3253 u32 *rss_indir; 3254 unsigned int i; 3255 int ret; 3256 3257 hclgevf_update_rss_size(handle, new_tqps_num); 3258 3259 ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size); 3260 if (ret) 3261 return ret; 3262 3263 /* RSS indirection table has been configuared by user */ 3264 if (rxfh_configured) 3265 goto out; 3266 3267 /* Reinitializes the rss indirect table according to the new RSS size */ 3268 rss_indir = kcalloc(HCLGEVF_RSS_IND_TBL_SIZE, sizeof(u32), GFP_KERNEL); 3269 if (!rss_indir) 3270 return -ENOMEM; 3271 3272 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++) 3273 rss_indir[i] = i % kinfo->rss_size; 3274 3275 hdev->rss_cfg.rss_size = kinfo->rss_size; 3276 3277 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0); 3278 if (ret) 3279 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", 3280 ret); 3281 3282 kfree(rss_indir); 3283 3284 out: 3285 if (!ret) 3286 dev_info(&hdev->pdev->dev, 3287 "Channels changed, rss_size from %u to %u, tqps from %u to %u", 3288 cur_rss_size, kinfo->rss_size, 3289 cur_tqps, kinfo->rss_size * kinfo->num_tc); 3290 3291 return ret; 3292 } 3293 3294 static int hclgevf_get_status(struct hnae3_handle *handle) 3295 { 3296 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3297 3298 return hdev->hw.mac.link; 3299 } 3300 3301 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, 3302 u8 *auto_neg, u32 *speed, 3303 u8 *duplex) 3304 { 3305 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3306 3307 if (speed) 3308 *speed = hdev->hw.mac.speed; 3309 if (duplex) 3310 *duplex = hdev->hw.mac.duplex; 3311 if (auto_neg) 3312 *auto_neg = AUTONEG_DISABLE; 3313 } 3314 3315 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, 3316 u8 duplex) 3317 { 3318 hdev->hw.mac.speed = speed; 3319 hdev->hw.mac.duplex = duplex; 3320 } 3321 3322 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable) 3323 { 3324 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3325 3326 return hclgevf_config_gro(hdev, enable); 3327 } 3328 3329 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type, 3330 u8 *module_type) 3331 { 3332 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3333 3334 if (media_type) 3335 *media_type = hdev->hw.mac.media_type; 3336 3337 if (module_type) 3338 *module_type = hdev->hw.mac.module_type; 3339 } 3340 3341 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle) 3342 { 3343 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3344 3345 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 3346 } 3347 3348 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle) 3349 { 3350 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3351 3352 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 3353 } 3354 3355 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle) 3356 { 3357 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3358 3359 return hdev->rst_stats.hw_rst_done_cnt; 3360 } 3361 3362 static void hclgevf_get_link_mode(struct hnae3_handle *handle, 3363 unsigned long *supported, 3364 unsigned long *advertising) 3365 { 3366 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3367 3368 *supported = hdev->hw.mac.supported; 3369 *advertising = hdev->hw.mac.advertising; 3370 } 3371 3372 #define MAX_SEPARATE_NUM 4 3373 #define SEPARATOR_VALUE 0xFFFFFFFF 3374 #define REG_NUM_PER_LINE 4 3375 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32)) 3376 3377 static int hclgevf_get_regs_len(struct hnae3_handle *handle) 3378 { 3379 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines; 3380 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3381 3382 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1; 3383 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1; 3384 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1; 3385 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1; 3386 3387 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps + 3388 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE; 3389 } 3390 3391 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version, 3392 void *data) 3393 { 3394 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3395 int i, j, reg_um, separator_num; 3396 u32 *reg = data; 3397 3398 *version = hdev->fw_version; 3399 3400 /* fetching per-VF registers values from VF PCIe register space */ 3401 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32); 3402 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3403 for (i = 0; i < reg_um; i++) 3404 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]); 3405 for (i = 0; i < separator_num; i++) 3406 *reg++ = SEPARATOR_VALUE; 3407 3408 reg_um = sizeof(common_reg_addr_list) / sizeof(u32); 3409 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3410 for (i = 0; i < reg_um; i++) 3411 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]); 3412 for (i = 0; i < separator_num; i++) 3413 *reg++ = SEPARATOR_VALUE; 3414 3415 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32); 3416 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3417 for (j = 0; j < hdev->num_tqps; j++) { 3418 for (i = 0; i < reg_um; i++) 3419 *reg++ = hclgevf_read_dev(&hdev->hw, 3420 ring_reg_addr_list[i] + 3421 0x200 * j); 3422 for (i = 0; i < separator_num; i++) 3423 *reg++ = SEPARATOR_VALUE; 3424 } 3425 3426 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32); 3427 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3428 for (j = 0; j < hdev->num_msi_used - 1; j++) { 3429 for (i = 0; i < reg_um; i++) 3430 *reg++ = hclgevf_read_dev(&hdev->hw, 3431 tqp_intr_reg_addr_list[i] + 3432 4 * j); 3433 for (i = 0; i < separator_num; i++) 3434 *reg++ = SEPARATOR_VALUE; 3435 } 3436 } 3437 3438 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state, 3439 u8 *port_base_vlan_info, u8 data_size) 3440 { 3441 struct hnae3_handle *nic = &hdev->nic; 3442 struct hclge_vf_to_pf_msg send_msg; 3443 int ret; 3444 3445 rtnl_lock(); 3446 3447 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 3448 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) { 3449 dev_warn(&hdev->pdev->dev, 3450 "is resetting when updating port based vlan info\n"); 3451 rtnl_unlock(); 3452 return; 3453 } 3454 3455 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 3456 if (ret) { 3457 rtnl_unlock(); 3458 return; 3459 } 3460 3461 /* send msg to PF and wait update port based vlan info */ 3462 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 3463 HCLGE_MBX_PORT_BASE_VLAN_CFG); 3464 memcpy(send_msg.data, port_base_vlan_info, data_size); 3465 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3466 if (!ret) { 3467 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) 3468 nic->port_base_vlan_state = state; 3469 else 3470 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; 3471 } 3472 3473 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 3474 rtnl_unlock(); 3475 } 3476 3477 static const struct hnae3_ae_ops hclgevf_ops = { 3478 .init_ae_dev = hclgevf_init_ae_dev, 3479 .uninit_ae_dev = hclgevf_uninit_ae_dev, 3480 .flr_prepare = hclgevf_flr_prepare, 3481 .flr_done = hclgevf_flr_done, 3482 .init_client_instance = hclgevf_init_client_instance, 3483 .uninit_client_instance = hclgevf_uninit_client_instance, 3484 .start = hclgevf_ae_start, 3485 .stop = hclgevf_ae_stop, 3486 .client_start = hclgevf_client_start, 3487 .client_stop = hclgevf_client_stop, 3488 .map_ring_to_vector = hclgevf_map_ring_to_vector, 3489 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, 3490 .get_vector = hclgevf_get_vector, 3491 .put_vector = hclgevf_put_vector, 3492 .reset_queue = hclgevf_reset_tqp, 3493 .get_mac_addr = hclgevf_get_mac_addr, 3494 .set_mac_addr = hclgevf_set_mac_addr, 3495 .add_uc_addr = hclgevf_add_uc_addr, 3496 .rm_uc_addr = hclgevf_rm_uc_addr, 3497 .add_mc_addr = hclgevf_add_mc_addr, 3498 .rm_mc_addr = hclgevf_rm_mc_addr, 3499 .get_stats = hclgevf_get_stats, 3500 .update_stats = hclgevf_update_stats, 3501 .get_strings = hclgevf_get_strings, 3502 .get_sset_count = hclgevf_get_sset_count, 3503 .get_rss_key_size = hclgevf_get_rss_key_size, 3504 .get_rss_indir_size = hclgevf_get_rss_indir_size, 3505 .get_rss = hclgevf_get_rss, 3506 .set_rss = hclgevf_set_rss, 3507 .get_rss_tuple = hclgevf_get_rss_tuple, 3508 .set_rss_tuple = hclgevf_set_rss_tuple, 3509 .get_tc_size = hclgevf_get_tc_size, 3510 .get_fw_version = hclgevf_get_fw_version, 3511 .set_vlan_filter = hclgevf_set_vlan_filter, 3512 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, 3513 .reset_event = hclgevf_reset_event, 3514 .set_default_reset_request = hclgevf_set_def_reset_request, 3515 .set_channels = hclgevf_set_channels, 3516 .get_channels = hclgevf_get_channels, 3517 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, 3518 .get_regs_len = hclgevf_get_regs_len, 3519 .get_regs = hclgevf_get_regs, 3520 .get_status = hclgevf_get_status, 3521 .get_ksettings_an_result = hclgevf_get_ksettings_an_result, 3522 .get_media_type = hclgevf_get_media_type, 3523 .get_hw_reset_stat = hclgevf_get_hw_reset_stat, 3524 .ae_dev_resetting = hclgevf_ae_dev_resetting, 3525 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt, 3526 .set_gro_en = hclgevf_gro_en, 3527 .set_mtu = hclgevf_set_mtu, 3528 .get_global_queue_id = hclgevf_get_qid_global, 3529 .set_timer_task = hclgevf_set_timer_task, 3530 .get_link_mode = hclgevf_get_link_mode, 3531 .set_promisc_mode = hclgevf_set_promisc_mode, 3532 .request_update_promisc_mode = hclgevf_request_update_promisc_mode, 3533 }; 3534 3535 static struct hnae3_ae_algo ae_algovf = { 3536 .ops = &hclgevf_ops, 3537 .pdev_id_table = ae_algovf_pci_tbl, 3538 }; 3539 3540 static int hclgevf_init(void) 3541 { 3542 pr_info("%s is initializing\n", HCLGEVF_NAME); 3543 3544 hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME); 3545 if (!hclgevf_wq) { 3546 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME); 3547 return -ENOMEM; 3548 } 3549 3550 hnae3_register_ae_algo(&ae_algovf); 3551 3552 return 0; 3553 } 3554 3555 static void hclgevf_exit(void) 3556 { 3557 hnae3_unregister_ae_algo(&ae_algovf); 3558 destroy_workqueue(hclgevf_wq); 3559 } 3560 module_init(hclgevf_init); 3561 module_exit(hclgevf_exit); 3562 3563 MODULE_LICENSE("GPL"); 3564 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 3565 MODULE_DESCRIPTION("HCLGEVF Driver"); 3566 MODULE_VERSION(HCLGEVF_MOD_VERSION); 3567