1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/etherdevice.h> 5 #include <linux/iopoll.h> 6 #include <net/rtnetlink.h> 7 #include "hclgevf_cmd.h" 8 #include "hclgevf_main.h" 9 #include "hclge_mbx.h" 10 #include "hnae3.h" 11 #include "hclgevf_devlink.h" 12 13 #define HCLGEVF_NAME "hclgevf" 14 15 #define HCLGEVF_RESET_MAX_FAIL_CNT 5 16 17 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev); 18 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 19 unsigned long delay); 20 21 static struct hnae3_ae_algo ae_algovf; 22 23 static struct workqueue_struct *hclgevf_wq; 24 25 static const struct pci_device_id ae_algovf_pci_tbl[] = { 26 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, 27 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), 28 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 29 /* required last entry */ 30 {0, } 31 }; 32 33 static const u8 hclgevf_hash_key[] = { 34 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2, 35 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0, 36 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4, 37 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C, 38 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA 39 }; 40 41 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); 42 43 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_NIC_CSQ_BASEADDR_L_REG, 44 HCLGEVF_NIC_CSQ_BASEADDR_H_REG, 45 HCLGEVF_NIC_CSQ_DEPTH_REG, 46 HCLGEVF_NIC_CSQ_TAIL_REG, 47 HCLGEVF_NIC_CSQ_HEAD_REG, 48 HCLGEVF_NIC_CRQ_BASEADDR_L_REG, 49 HCLGEVF_NIC_CRQ_BASEADDR_H_REG, 50 HCLGEVF_NIC_CRQ_DEPTH_REG, 51 HCLGEVF_NIC_CRQ_TAIL_REG, 52 HCLGEVF_NIC_CRQ_HEAD_REG, 53 HCLGEVF_VECTOR0_CMDQ_SRC_REG, 54 HCLGEVF_VECTOR0_CMDQ_STATE_REG, 55 HCLGEVF_CMDQ_INTR_EN_REG, 56 HCLGEVF_CMDQ_INTR_GEN_REG}; 57 58 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE, 59 HCLGEVF_RST_ING, 60 HCLGEVF_GRO_EN_REG}; 61 62 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG, 63 HCLGEVF_RING_RX_ADDR_H_REG, 64 HCLGEVF_RING_RX_BD_NUM_REG, 65 HCLGEVF_RING_RX_BD_LENGTH_REG, 66 HCLGEVF_RING_RX_MERGE_EN_REG, 67 HCLGEVF_RING_RX_TAIL_REG, 68 HCLGEVF_RING_RX_HEAD_REG, 69 HCLGEVF_RING_RX_FBD_NUM_REG, 70 HCLGEVF_RING_RX_OFFSET_REG, 71 HCLGEVF_RING_RX_FBD_OFFSET_REG, 72 HCLGEVF_RING_RX_STASH_REG, 73 HCLGEVF_RING_RX_BD_ERR_REG, 74 HCLGEVF_RING_TX_ADDR_L_REG, 75 HCLGEVF_RING_TX_ADDR_H_REG, 76 HCLGEVF_RING_TX_BD_NUM_REG, 77 HCLGEVF_RING_TX_PRIORITY_REG, 78 HCLGEVF_RING_TX_TC_REG, 79 HCLGEVF_RING_TX_MERGE_EN_REG, 80 HCLGEVF_RING_TX_TAIL_REG, 81 HCLGEVF_RING_TX_HEAD_REG, 82 HCLGEVF_RING_TX_FBD_NUM_REG, 83 HCLGEVF_RING_TX_OFFSET_REG, 84 HCLGEVF_RING_TX_EBD_NUM_REG, 85 HCLGEVF_RING_TX_EBD_OFFSET_REG, 86 HCLGEVF_RING_TX_BD_ERR_REG, 87 HCLGEVF_RING_EN_REG}; 88 89 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG, 90 HCLGEVF_TQP_INTR_GL0_REG, 91 HCLGEVF_TQP_INTR_GL1_REG, 92 HCLGEVF_TQP_INTR_GL2_REG, 93 HCLGEVF_TQP_INTR_RL_REG}; 94 95 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle) 96 { 97 if (!handle->client) 98 return container_of(handle, struct hclgevf_dev, nic); 99 else if (handle->client->type == HNAE3_CLIENT_ROCE) 100 return container_of(handle, struct hclgevf_dev, roce); 101 else 102 return container_of(handle, struct hclgevf_dev, nic); 103 } 104 105 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle) 106 { 107 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 108 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 109 struct hclgevf_desc desc; 110 struct hclgevf_tqp *tqp; 111 int status; 112 int i; 113 114 for (i = 0; i < kinfo->num_tqps; i++) { 115 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 116 hclgevf_cmd_setup_basic_desc(&desc, 117 HCLGEVF_OPC_QUERY_RX_STATUS, 118 true); 119 120 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); 121 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 122 if (status) { 123 dev_err(&hdev->pdev->dev, 124 "Query tqp stat fail, status = %d,queue = %d\n", 125 status, i); 126 return status; 127 } 128 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd += 129 le32_to_cpu(desc.data[1]); 130 131 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS, 132 true); 133 134 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff); 135 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 136 if (status) { 137 dev_err(&hdev->pdev->dev, 138 "Query tqp stat fail, status = %d,queue = %d\n", 139 status, i); 140 return status; 141 } 142 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd += 143 le32_to_cpu(desc.data[1]); 144 } 145 146 return 0; 147 } 148 149 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data) 150 { 151 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 152 struct hclgevf_tqp *tqp; 153 u64 *buff = data; 154 int i; 155 156 for (i = 0; i < kinfo->num_tqps; i++) { 157 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 158 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd; 159 } 160 for (i = 0; i < kinfo->num_tqps; i++) { 161 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 162 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd; 163 } 164 165 return buff; 166 } 167 168 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset) 169 { 170 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 171 172 return kinfo->num_tqps * 2; 173 } 174 175 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data) 176 { 177 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 178 u8 *buff = data; 179 int i; 180 181 for (i = 0; i < kinfo->num_tqps; i++) { 182 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i], 183 struct hclgevf_tqp, q); 184 snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd", 185 tqp->index); 186 buff += ETH_GSTRING_LEN; 187 } 188 189 for (i = 0; i < kinfo->num_tqps; i++) { 190 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i], 191 struct hclgevf_tqp, q); 192 snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd", 193 tqp->index); 194 buff += ETH_GSTRING_LEN; 195 } 196 197 return buff; 198 } 199 200 static void hclgevf_update_stats(struct hnae3_handle *handle, 201 struct net_device_stats *net_stats) 202 { 203 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 204 int status; 205 206 status = hclgevf_tqps_update_stats(handle); 207 if (status) 208 dev_err(&hdev->pdev->dev, 209 "VF update of TQPS stats fail, status = %d.\n", 210 status); 211 } 212 213 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) 214 { 215 if (strset == ETH_SS_TEST) 216 return -EOPNOTSUPP; 217 else if (strset == ETH_SS_STATS) 218 return hclgevf_tqps_get_sset_count(handle, strset); 219 220 return 0; 221 } 222 223 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, 224 u8 *data) 225 { 226 u8 *p = (char *)data; 227 228 if (strset == ETH_SS_STATS) 229 p = hclgevf_tqps_get_strings(handle, p); 230 } 231 232 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) 233 { 234 hclgevf_tqps_get_stats(handle, data); 235 } 236 237 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code, 238 u8 subcode) 239 { 240 if (msg) { 241 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg)); 242 msg->code = code; 243 msg->subcode = subcode; 244 } 245 } 246 247 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev) 248 { 249 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 250 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE]; 251 struct hclge_basic_info *basic_info; 252 struct hclge_vf_to_pf_msg send_msg; 253 unsigned long caps; 254 int status; 255 256 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0); 257 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 258 sizeof(resp_msg)); 259 if (status) { 260 dev_err(&hdev->pdev->dev, 261 "failed to get basic info from pf, ret = %d", status); 262 return status; 263 } 264 265 basic_info = (struct hclge_basic_info *)resp_msg; 266 267 hdev->hw_tc_map = basic_info->hw_tc_map; 268 hdev->mbx_api_version = basic_info->mbx_api_version; 269 caps = basic_info->pf_caps; 270 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps)) 271 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps); 272 273 return 0; 274 } 275 276 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev) 277 { 278 struct hnae3_handle *nic = &hdev->nic; 279 struct hclge_vf_to_pf_msg send_msg; 280 u8 resp_msg; 281 int ret; 282 283 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 284 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE); 285 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg, 286 sizeof(u8)); 287 if (ret) { 288 dev_err(&hdev->pdev->dev, 289 "VF request to get port based vlan state failed %d", 290 ret); 291 return ret; 292 } 293 294 nic->port_base_vlan_state = resp_msg; 295 296 return 0; 297 } 298 299 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev) 300 { 301 #define HCLGEVF_TQPS_RSS_INFO_LEN 6 302 #define HCLGEVF_TQPS_ALLOC_OFFSET 0 303 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET 2 304 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET 4 305 306 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; 307 struct hclge_vf_to_pf_msg send_msg; 308 int status; 309 310 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0); 311 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 312 HCLGEVF_TQPS_RSS_INFO_LEN); 313 if (status) { 314 dev_err(&hdev->pdev->dev, 315 "VF request to get tqp info from PF failed %d", 316 status); 317 return status; 318 } 319 320 memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET], 321 sizeof(u16)); 322 memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET], 323 sizeof(u16)); 324 memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET], 325 sizeof(u16)); 326 327 return 0; 328 } 329 330 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev) 331 { 332 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4 333 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0 334 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2 335 336 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN]; 337 struct hclge_vf_to_pf_msg send_msg; 338 int ret; 339 340 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0); 341 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 342 HCLGEVF_TQPS_DEPTH_INFO_LEN); 343 if (ret) { 344 dev_err(&hdev->pdev->dev, 345 "VF request to get tqp depth info from PF failed %d", 346 ret); 347 return ret; 348 } 349 350 memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET], 351 sizeof(u16)); 352 memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET], 353 sizeof(u16)); 354 355 return 0; 356 } 357 358 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id) 359 { 360 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 361 struct hclge_vf_to_pf_msg send_msg; 362 u16 qid_in_pf = 0; 363 u8 resp_data[2]; 364 int ret; 365 366 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0); 367 memcpy(send_msg.data, &queue_id, sizeof(queue_id)); 368 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data, 369 sizeof(resp_data)); 370 if (!ret) 371 qid_in_pf = *(u16 *)resp_data; 372 373 return qid_in_pf; 374 } 375 376 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev) 377 { 378 struct hclge_vf_to_pf_msg send_msg; 379 u8 resp_msg[2]; 380 int ret; 381 382 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0); 383 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 384 sizeof(resp_msg)); 385 if (ret) { 386 dev_err(&hdev->pdev->dev, 387 "VF request to get the pf port media type failed %d", 388 ret); 389 return ret; 390 } 391 392 hdev->hw.mac.media_type = resp_msg[0]; 393 hdev->hw.mac.module_type = resp_msg[1]; 394 395 return 0; 396 } 397 398 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) 399 { 400 struct hclgevf_tqp *tqp; 401 int i; 402 403 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 404 sizeof(struct hclgevf_tqp), GFP_KERNEL); 405 if (!hdev->htqp) 406 return -ENOMEM; 407 408 tqp = hdev->htqp; 409 410 for (i = 0; i < hdev->num_tqps; i++) { 411 tqp->dev = &hdev->pdev->dev; 412 tqp->index = i; 413 414 tqp->q.ae_algo = &ae_algovf; 415 tqp->q.buf_size = hdev->rx_buf_len; 416 tqp->q.tx_desc_num = hdev->num_tx_desc; 417 tqp->q.rx_desc_num = hdev->num_rx_desc; 418 419 /* need an extended offset to configure queues >= 420 * HCLGEVF_TQP_MAX_SIZE_DEV_V2. 421 */ 422 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2) 423 tqp->q.io_base = hdev->hw.io_base + 424 HCLGEVF_TQP_REG_OFFSET + 425 i * HCLGEVF_TQP_REG_SIZE; 426 else 427 tqp->q.io_base = hdev->hw.io_base + 428 HCLGEVF_TQP_REG_OFFSET + 429 HCLGEVF_TQP_EXT_REG_OFFSET + 430 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) * 431 HCLGEVF_TQP_REG_SIZE; 432 433 tqp++; 434 } 435 436 return 0; 437 } 438 439 static int hclgevf_knic_setup(struct hclgevf_dev *hdev) 440 { 441 struct hnae3_handle *nic = &hdev->nic; 442 struct hnae3_knic_private_info *kinfo; 443 u16 new_tqps = hdev->num_tqps; 444 unsigned int i; 445 u8 num_tc = 0; 446 447 kinfo = &nic->kinfo; 448 kinfo->num_tx_desc = hdev->num_tx_desc; 449 kinfo->num_rx_desc = hdev->num_rx_desc; 450 kinfo->rx_buf_len = hdev->rx_buf_len; 451 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) 452 if (hdev->hw_tc_map & BIT(i)) 453 num_tc++; 454 455 num_tc = num_tc ? num_tc : 1; 456 kinfo->tc_info.num_tc = num_tc; 457 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc); 458 new_tqps = kinfo->rss_size * num_tc; 459 kinfo->num_tqps = min(new_tqps, hdev->num_tqps); 460 461 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, 462 sizeof(struct hnae3_queue *), GFP_KERNEL); 463 if (!kinfo->tqp) 464 return -ENOMEM; 465 466 for (i = 0; i < kinfo->num_tqps; i++) { 467 hdev->htqp[i].q.handle = &hdev->nic; 468 hdev->htqp[i].q.tqp_index = i; 469 kinfo->tqp[i] = &hdev->htqp[i].q; 470 } 471 472 /* after init the max rss_size and tqps, adjust the default tqp numbers 473 * and rss size with the actual vector numbers 474 */ 475 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps); 476 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc, 477 kinfo->rss_size); 478 479 return 0; 480 } 481 482 static void hclgevf_request_link_info(struct hclgevf_dev *hdev) 483 { 484 struct hclge_vf_to_pf_msg send_msg; 485 int status; 486 487 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0); 488 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 489 if (status) 490 dev_err(&hdev->pdev->dev, 491 "VF failed to fetch link status(%d) from PF", status); 492 } 493 494 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) 495 { 496 struct hnae3_handle *rhandle = &hdev->roce; 497 struct hnae3_handle *handle = &hdev->nic; 498 struct hnae3_client *rclient; 499 struct hnae3_client *client; 500 501 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state)) 502 return; 503 504 client = handle->client; 505 rclient = hdev->roce_client; 506 507 link_state = 508 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state; 509 if (link_state != hdev->hw.mac.link) { 510 hdev->hw.mac.link = link_state; 511 client->ops->link_status_change(handle, !!link_state); 512 if (rclient && rclient->ops->link_status_change) 513 rclient->ops->link_status_change(rhandle, !!link_state); 514 } 515 516 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state); 517 } 518 519 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev) 520 { 521 #define HCLGEVF_ADVERTISING 0 522 #define HCLGEVF_SUPPORTED 1 523 524 struct hclge_vf_to_pf_msg send_msg; 525 526 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0); 527 send_msg.data[0] = HCLGEVF_ADVERTISING; 528 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 529 send_msg.data[0] = HCLGEVF_SUPPORTED; 530 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 531 } 532 533 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) 534 { 535 struct hnae3_handle *nic = &hdev->nic; 536 int ret; 537 538 nic->ae_algo = &ae_algovf; 539 nic->pdev = hdev->pdev; 540 nic->numa_node_mask = hdev->numa_node_mask; 541 nic->flags |= HNAE3_SUPPORT_VF; 542 nic->kinfo.io_base = hdev->hw.io_base; 543 544 ret = hclgevf_knic_setup(hdev); 545 if (ret) 546 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", 547 ret); 548 return ret; 549 } 550 551 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) 552 { 553 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { 554 dev_warn(&hdev->pdev->dev, 555 "vector(vector_id %d) has been freed.\n", vector_id); 556 return; 557 } 558 559 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; 560 hdev->num_msi_left += 1; 561 hdev->num_msi_used -= 1; 562 } 563 564 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, 565 struct hnae3_vector_info *vector_info) 566 { 567 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 568 struct hnae3_vector_info *vector = vector_info; 569 int alloc = 0; 570 int i, j; 571 572 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num); 573 vector_num = min(hdev->num_msi_left, vector_num); 574 575 for (j = 0; j < vector_num; j++) { 576 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { 577 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { 578 vector->vector = pci_irq_vector(hdev->pdev, i); 579 vector->io_addr = hdev->hw.io_base + 580 HCLGEVF_VECTOR_REG_BASE + 581 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; 582 hdev->vector_status[i] = 0; 583 hdev->vector_irq[i] = vector->vector; 584 585 vector++; 586 alloc++; 587 588 break; 589 } 590 } 591 } 592 hdev->num_msi_left -= alloc; 593 hdev->num_msi_used += alloc; 594 595 return alloc; 596 } 597 598 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) 599 { 600 int i; 601 602 for (i = 0; i < hdev->num_msi; i++) 603 if (vector == hdev->vector_irq[i]) 604 return i; 605 606 return -EINVAL; 607 } 608 609 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev, 610 const u8 hfunc, const u8 *key) 611 { 612 struct hclgevf_rss_config_cmd *req; 613 unsigned int key_offset = 0; 614 struct hclgevf_desc desc; 615 int key_counts; 616 int key_size; 617 int ret; 618 619 key_counts = HCLGEVF_RSS_KEY_SIZE; 620 req = (struct hclgevf_rss_config_cmd *)desc.data; 621 622 while (key_counts) { 623 hclgevf_cmd_setup_basic_desc(&desc, 624 HCLGEVF_OPC_RSS_GENERIC_CONFIG, 625 false); 626 627 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK); 628 req->hash_config |= 629 (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B); 630 631 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts); 632 memcpy(req->hash_key, 633 key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size); 634 635 key_counts -= key_size; 636 key_offset++; 637 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 638 if (ret) { 639 dev_err(&hdev->pdev->dev, 640 "Configure RSS config fail, status = %d\n", 641 ret); 642 return ret; 643 } 644 } 645 646 return 0; 647 } 648 649 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle) 650 { 651 return HCLGEVF_RSS_KEY_SIZE; 652 } 653 654 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev) 655 { 656 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl; 657 struct hclgevf_rss_indirection_table_cmd *req; 658 struct hclgevf_desc desc; 659 int rss_cfg_tbl_num; 660 int status; 661 int i, j; 662 663 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data; 664 rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size / 665 HCLGEVF_RSS_CFG_TBL_SIZE; 666 667 for (i = 0; i < rss_cfg_tbl_num; i++) { 668 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE, 669 false); 670 req->start_table_index = 671 cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE); 672 req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK); 673 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++) 674 req->rss_result[j] = 675 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j]; 676 677 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 678 if (status) { 679 dev_err(&hdev->pdev->dev, 680 "VF failed(=%d) to set RSS indirection table\n", 681 status); 682 return status; 683 } 684 } 685 686 return 0; 687 } 688 689 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size) 690 { 691 struct hclgevf_rss_tc_mode_cmd *req; 692 u16 tc_offset[HCLGEVF_MAX_TC_NUM]; 693 u16 tc_valid[HCLGEVF_MAX_TC_NUM]; 694 u16 tc_size[HCLGEVF_MAX_TC_NUM]; 695 struct hclgevf_desc desc; 696 u16 roundup_size; 697 unsigned int i; 698 int status; 699 700 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data; 701 702 roundup_size = roundup_pow_of_two(rss_size); 703 roundup_size = ilog2(roundup_size); 704 705 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { 706 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i)); 707 tc_size[i] = roundup_size; 708 tc_offset[i] = rss_size * i; 709 } 710 711 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false); 712 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) { 713 u16 mode = 0; 714 715 hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B, 716 (tc_valid[i] & 0x1)); 717 hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M, 718 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]); 719 hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B, 720 tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET & 721 0x1); 722 hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M, 723 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]); 724 725 req->rss_tc_mode[i] = cpu_to_le16(mode); 726 } 727 status = hclgevf_cmd_send(&hdev->hw, &desc, 1); 728 if (status) 729 dev_err(&hdev->pdev->dev, 730 "VF failed(=%d) to set rss tc mode\n", status); 731 732 return status; 733 } 734 735 /* for revision 0x20, vf shared the same rss config with pf */ 736 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev) 737 { 738 #define HCLGEVF_RSS_MBX_RESP_LEN 8 739 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 740 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN]; 741 struct hclge_vf_to_pf_msg send_msg; 742 u16 msg_num, hash_key_index; 743 u8 index; 744 int ret; 745 746 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0); 747 msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) / 748 HCLGEVF_RSS_MBX_RESP_LEN; 749 for (index = 0; index < msg_num; index++) { 750 send_msg.data[0] = index; 751 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 752 HCLGEVF_RSS_MBX_RESP_LEN); 753 if (ret) { 754 dev_err(&hdev->pdev->dev, 755 "VF get rss hash key from PF failed, ret=%d", 756 ret); 757 return ret; 758 } 759 760 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index; 761 if (index == msg_num - 1) 762 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 763 &resp_msg[0], 764 HCLGEVF_RSS_KEY_SIZE - hash_key_index); 765 else 766 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 767 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN); 768 } 769 770 return 0; 771 } 772 773 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, 774 u8 *hfunc) 775 { 776 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 777 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 778 int i, ret; 779 780 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 781 /* Get hash algorithm */ 782 if (hfunc) { 783 switch (rss_cfg->hash_algo) { 784 case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ: 785 *hfunc = ETH_RSS_HASH_TOP; 786 break; 787 case HCLGEVF_RSS_HASH_ALGO_SIMPLE: 788 *hfunc = ETH_RSS_HASH_XOR; 789 break; 790 default: 791 *hfunc = ETH_RSS_HASH_UNKNOWN; 792 break; 793 } 794 } 795 796 /* Get the RSS Key required by the user */ 797 if (key) 798 memcpy(key, rss_cfg->rss_hash_key, 799 HCLGEVF_RSS_KEY_SIZE); 800 } else { 801 if (hfunc) 802 *hfunc = ETH_RSS_HASH_TOP; 803 if (key) { 804 ret = hclgevf_get_rss_hash_key(hdev); 805 if (ret) 806 return ret; 807 memcpy(key, rss_cfg->rss_hash_key, 808 HCLGEVF_RSS_KEY_SIZE); 809 } 810 } 811 812 if (indir) 813 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 814 indir[i] = rss_cfg->rss_indirection_tbl[i]; 815 816 return 0; 817 } 818 819 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, 820 const u8 *key, const u8 hfunc) 821 { 822 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 823 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 824 int ret, i; 825 826 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 827 /* Set the RSS Hash Key if specififed by the user */ 828 if (key) { 829 switch (hfunc) { 830 case ETH_RSS_HASH_TOP: 831 rss_cfg->hash_algo = 832 HCLGEVF_RSS_HASH_ALGO_TOEPLITZ; 833 break; 834 case ETH_RSS_HASH_XOR: 835 rss_cfg->hash_algo = 836 HCLGEVF_RSS_HASH_ALGO_SIMPLE; 837 break; 838 case ETH_RSS_HASH_NO_CHANGE: 839 break; 840 default: 841 return -EINVAL; 842 } 843 844 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo, 845 key); 846 if (ret) 847 return ret; 848 849 /* Update the shadow RSS key with user specified qids */ 850 memcpy(rss_cfg->rss_hash_key, key, 851 HCLGEVF_RSS_KEY_SIZE); 852 } 853 } 854 855 /* update the shadow RSS table with user specified qids */ 856 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 857 rss_cfg->rss_indirection_tbl[i] = indir[i]; 858 859 /* update the hardware */ 860 return hclgevf_set_rss_indir_table(hdev); 861 } 862 863 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc) 864 { 865 u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0; 866 867 if (nfc->data & RXH_L4_B_2_3) 868 hash_sets |= HCLGEVF_D_PORT_BIT; 869 else 870 hash_sets &= ~HCLGEVF_D_PORT_BIT; 871 872 if (nfc->data & RXH_IP_SRC) 873 hash_sets |= HCLGEVF_S_IP_BIT; 874 else 875 hash_sets &= ~HCLGEVF_S_IP_BIT; 876 877 if (nfc->data & RXH_IP_DST) 878 hash_sets |= HCLGEVF_D_IP_BIT; 879 else 880 hash_sets &= ~HCLGEVF_D_IP_BIT; 881 882 if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW) 883 hash_sets |= HCLGEVF_V_TAG_BIT; 884 885 return hash_sets; 886 } 887 888 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle, 889 struct ethtool_rxnfc *nfc, 890 struct hclgevf_rss_input_tuple_cmd *req) 891 { 892 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 893 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 894 u8 tuple_sets; 895 896 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en; 897 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en; 898 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en; 899 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en; 900 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en; 901 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en; 902 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en; 903 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en; 904 905 tuple_sets = hclgevf_get_rss_hash_bits(nfc); 906 switch (nfc->flow_type) { 907 case TCP_V4_FLOW: 908 req->ipv4_tcp_en = tuple_sets; 909 break; 910 case TCP_V6_FLOW: 911 req->ipv6_tcp_en = tuple_sets; 912 break; 913 case UDP_V4_FLOW: 914 req->ipv4_udp_en = tuple_sets; 915 break; 916 case UDP_V6_FLOW: 917 req->ipv6_udp_en = tuple_sets; 918 break; 919 case SCTP_V4_FLOW: 920 req->ipv4_sctp_en = tuple_sets; 921 break; 922 case SCTP_V6_FLOW: 923 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 && 924 (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3))) 925 return -EINVAL; 926 927 req->ipv6_sctp_en = tuple_sets; 928 break; 929 case IPV4_FLOW: 930 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 931 break; 932 case IPV6_FLOW: 933 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 934 break; 935 default: 936 return -EINVAL; 937 } 938 939 return 0; 940 } 941 942 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle, 943 struct ethtool_rxnfc *nfc) 944 { 945 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 946 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 947 struct hclgevf_rss_input_tuple_cmd *req; 948 struct hclgevf_desc desc; 949 int ret; 950 951 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 952 return -EOPNOTSUPP; 953 954 if (nfc->data & 955 ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3)) 956 return -EINVAL; 957 958 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data; 959 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false); 960 961 ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req); 962 if (ret) { 963 dev_err(&hdev->pdev->dev, 964 "failed to init rss tuple cmd, ret = %d\n", ret); 965 return ret; 966 } 967 968 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 969 if (ret) { 970 dev_err(&hdev->pdev->dev, 971 "Set rss tuple fail, status = %d\n", ret); 972 return ret; 973 } 974 975 rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en; 976 rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en; 977 rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en; 978 rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en; 979 rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en; 980 rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en; 981 rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en; 982 rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en; 983 return 0; 984 } 985 986 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev, 987 int flow_type, u8 *tuple_sets) 988 { 989 switch (flow_type) { 990 case TCP_V4_FLOW: 991 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en; 992 break; 993 case UDP_V4_FLOW: 994 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en; 995 break; 996 case TCP_V6_FLOW: 997 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en; 998 break; 999 case UDP_V6_FLOW: 1000 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en; 1001 break; 1002 case SCTP_V4_FLOW: 1003 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en; 1004 break; 1005 case SCTP_V6_FLOW: 1006 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en; 1007 break; 1008 case IPV4_FLOW: 1009 case IPV6_FLOW: 1010 *tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT; 1011 break; 1012 default: 1013 return -EINVAL; 1014 } 1015 1016 return 0; 1017 } 1018 1019 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets) 1020 { 1021 u64 tuple_data = 0; 1022 1023 if (tuple_sets & HCLGEVF_D_PORT_BIT) 1024 tuple_data |= RXH_L4_B_2_3; 1025 if (tuple_sets & HCLGEVF_S_PORT_BIT) 1026 tuple_data |= RXH_L4_B_0_1; 1027 if (tuple_sets & HCLGEVF_D_IP_BIT) 1028 tuple_data |= RXH_IP_DST; 1029 if (tuple_sets & HCLGEVF_S_IP_BIT) 1030 tuple_data |= RXH_IP_SRC; 1031 1032 return tuple_data; 1033 } 1034 1035 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle, 1036 struct ethtool_rxnfc *nfc) 1037 { 1038 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1039 u8 tuple_sets; 1040 int ret; 1041 1042 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 1043 return -EOPNOTSUPP; 1044 1045 nfc->data = 0; 1046 1047 ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type, 1048 &tuple_sets); 1049 if (ret || !tuple_sets) 1050 return ret; 1051 1052 nfc->data = hclgevf_convert_rss_tuple(tuple_sets); 1053 1054 return 0; 1055 } 1056 1057 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev, 1058 struct hclgevf_rss_cfg *rss_cfg) 1059 { 1060 struct hclgevf_rss_input_tuple_cmd *req; 1061 struct hclgevf_desc desc; 1062 int ret; 1063 1064 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false); 1065 1066 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data; 1067 1068 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en; 1069 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en; 1070 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en; 1071 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en; 1072 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en; 1073 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en; 1074 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en; 1075 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en; 1076 1077 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 1078 if (ret) 1079 dev_err(&hdev->pdev->dev, 1080 "Configure rss input fail, status = %d\n", ret); 1081 return ret; 1082 } 1083 1084 static int hclgevf_get_tc_size(struct hnae3_handle *handle) 1085 { 1086 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1087 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 1088 1089 return rss_cfg->rss_size; 1090 } 1091 1092 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, 1093 int vector_id, 1094 struct hnae3_ring_chain_node *ring_chain) 1095 { 1096 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1097 struct hclge_vf_to_pf_msg send_msg; 1098 struct hnae3_ring_chain_node *node; 1099 int status; 1100 int i = 0; 1101 1102 memset(&send_msg, 0, sizeof(send_msg)); 1103 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR : 1104 HCLGE_MBX_UNMAP_RING_TO_VECTOR; 1105 send_msg.vector_id = vector_id; 1106 1107 for (node = ring_chain; node; node = node->next) { 1108 send_msg.param[i].ring_type = 1109 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); 1110 1111 send_msg.param[i].tqp_index = node->tqp_index; 1112 send_msg.param[i].int_gl_index = 1113 hnae3_get_field(node->int_gl_idx, 1114 HNAE3_RING_GL_IDX_M, 1115 HNAE3_RING_GL_IDX_S); 1116 1117 i++; 1118 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) { 1119 send_msg.ring_num = i; 1120 1121 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, 1122 NULL, 0); 1123 if (status) { 1124 dev_err(&hdev->pdev->dev, 1125 "Map TQP fail, status is %d.\n", 1126 status); 1127 return status; 1128 } 1129 i = 0; 1130 } 1131 } 1132 1133 return 0; 1134 } 1135 1136 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, 1137 struct hnae3_ring_chain_node *ring_chain) 1138 { 1139 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1140 int vector_id; 1141 1142 vector_id = hclgevf_get_vector_index(hdev, vector); 1143 if (vector_id < 0) { 1144 dev_err(&handle->pdev->dev, 1145 "Get vector index fail. ret =%d\n", vector_id); 1146 return vector_id; 1147 } 1148 1149 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); 1150 } 1151 1152 static int hclgevf_unmap_ring_from_vector( 1153 struct hnae3_handle *handle, 1154 int vector, 1155 struct hnae3_ring_chain_node *ring_chain) 1156 { 1157 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1158 int ret, vector_id; 1159 1160 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 1161 return 0; 1162 1163 vector_id = hclgevf_get_vector_index(hdev, vector); 1164 if (vector_id < 0) { 1165 dev_err(&handle->pdev->dev, 1166 "Get vector index fail. ret =%d\n", vector_id); 1167 return vector_id; 1168 } 1169 1170 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); 1171 if (ret) 1172 dev_err(&handle->pdev->dev, 1173 "Unmap ring from vector fail. vector=%d, ret =%d\n", 1174 vector_id, 1175 ret); 1176 1177 return ret; 1178 } 1179 1180 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) 1181 { 1182 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1183 int vector_id; 1184 1185 vector_id = hclgevf_get_vector_index(hdev, vector); 1186 if (vector_id < 0) { 1187 dev_err(&handle->pdev->dev, 1188 "hclgevf_put_vector get vector index fail. ret =%d\n", 1189 vector_id); 1190 return vector_id; 1191 } 1192 1193 hclgevf_free_vector(hdev, vector_id); 1194 1195 return 0; 1196 } 1197 1198 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, 1199 bool en_uc_pmc, bool en_mc_pmc, 1200 bool en_bc_pmc) 1201 { 1202 struct hnae3_handle *handle = &hdev->nic; 1203 struct hclge_vf_to_pf_msg send_msg; 1204 int ret; 1205 1206 memset(&send_msg, 0, sizeof(send_msg)); 1207 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE; 1208 send_msg.en_bc = en_bc_pmc ? 1 : 0; 1209 send_msg.en_uc = en_uc_pmc ? 1 : 0; 1210 send_msg.en_mc = en_mc_pmc ? 1 : 0; 1211 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC, 1212 &handle->priv_flags) ? 1 : 0; 1213 1214 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1215 if (ret) 1216 dev_err(&hdev->pdev->dev, 1217 "Set promisc mode fail, status is %d.\n", ret); 1218 1219 return ret; 1220 } 1221 1222 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, 1223 bool en_mc_pmc) 1224 { 1225 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1226 bool en_bc_pmc; 1227 1228 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2; 1229 1230 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc, 1231 en_bc_pmc); 1232 } 1233 1234 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle) 1235 { 1236 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1237 1238 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 1239 hclgevf_task_schedule(hdev, 0); 1240 } 1241 1242 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev) 1243 { 1244 struct hnae3_handle *handle = &hdev->nic; 1245 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE; 1246 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE; 1247 int ret; 1248 1249 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) { 1250 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc); 1251 if (!ret) 1252 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 1253 } 1254 } 1255 1256 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id, 1257 u16 stream_id, bool enable) 1258 { 1259 struct hclgevf_cfg_com_tqp_queue_cmd *req; 1260 struct hclgevf_desc desc; 1261 1262 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; 1263 1264 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE, 1265 false); 1266 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); 1267 req->stream_id = cpu_to_le16(stream_id); 1268 if (enable) 1269 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B; 1270 1271 return hclgevf_cmd_send(&hdev->hw, &desc, 1); 1272 } 1273 1274 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable) 1275 { 1276 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1277 int ret; 1278 u16 i; 1279 1280 for (i = 0; i < handle->kinfo.num_tqps; i++) { 1281 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable); 1282 if (ret) 1283 return ret; 1284 } 1285 1286 return 0; 1287 } 1288 1289 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle) 1290 { 1291 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 1292 struct hclgevf_tqp *tqp; 1293 int i; 1294 1295 for (i = 0; i < kinfo->num_tqps; i++) { 1296 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q); 1297 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats)); 1298 } 1299 } 1300 1301 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p) 1302 { 1303 struct hclge_vf_to_pf_msg send_msg; 1304 u8 host_mac[ETH_ALEN]; 1305 int status; 1306 1307 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0); 1308 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac, 1309 ETH_ALEN); 1310 if (status) { 1311 dev_err(&hdev->pdev->dev, 1312 "fail to get VF MAC from host %d", status); 1313 return status; 1314 } 1315 1316 ether_addr_copy(p, host_mac); 1317 1318 return 0; 1319 } 1320 1321 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) 1322 { 1323 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1324 u8 host_mac_addr[ETH_ALEN]; 1325 1326 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr)) 1327 return; 1328 1329 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr); 1330 if (hdev->has_pf_mac) 1331 ether_addr_copy(p, host_mac_addr); 1332 else 1333 ether_addr_copy(p, hdev->hw.mac.mac_addr); 1334 } 1335 1336 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p, 1337 bool is_first) 1338 { 1339 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1340 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; 1341 struct hclge_vf_to_pf_msg send_msg; 1342 u8 *new_mac_addr = (u8 *)p; 1343 int status; 1344 1345 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0); 1346 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY; 1347 ether_addr_copy(send_msg.data, new_mac_addr); 1348 if (is_first && !hdev->has_pf_mac) 1349 eth_zero_addr(&send_msg.data[ETH_ALEN]); 1350 else 1351 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr); 1352 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1353 if (!status) 1354 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); 1355 1356 return status; 1357 } 1358 1359 static struct hclgevf_mac_addr_node * 1360 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr) 1361 { 1362 struct hclgevf_mac_addr_node *mac_node, *tmp; 1363 1364 list_for_each_entry_safe(mac_node, tmp, list, node) 1365 if (ether_addr_equal(mac_addr, mac_node->mac_addr)) 1366 return mac_node; 1367 1368 return NULL; 1369 } 1370 1371 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node, 1372 enum HCLGEVF_MAC_NODE_STATE state) 1373 { 1374 switch (state) { 1375 /* from set_rx_mode or tmp_add_list */ 1376 case HCLGEVF_MAC_TO_ADD: 1377 if (mac_node->state == HCLGEVF_MAC_TO_DEL) 1378 mac_node->state = HCLGEVF_MAC_ACTIVE; 1379 break; 1380 /* only from set_rx_mode */ 1381 case HCLGEVF_MAC_TO_DEL: 1382 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1383 list_del(&mac_node->node); 1384 kfree(mac_node); 1385 } else { 1386 mac_node->state = HCLGEVF_MAC_TO_DEL; 1387 } 1388 break; 1389 /* only from tmp_add_list, the mac_node->state won't be 1390 * HCLGEVF_MAC_ACTIVE 1391 */ 1392 case HCLGEVF_MAC_ACTIVE: 1393 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1394 mac_node->state = HCLGEVF_MAC_ACTIVE; 1395 break; 1396 } 1397 } 1398 1399 static int hclgevf_update_mac_list(struct hnae3_handle *handle, 1400 enum HCLGEVF_MAC_NODE_STATE state, 1401 enum HCLGEVF_MAC_ADDR_TYPE mac_type, 1402 const unsigned char *addr) 1403 { 1404 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1405 struct hclgevf_mac_addr_node *mac_node; 1406 struct list_head *list; 1407 1408 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1409 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1410 1411 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1412 1413 /* if the mac addr is already in the mac list, no need to add a new 1414 * one into it, just check the mac addr state, convert it to a new 1415 * new state, or just remove it, or do nothing. 1416 */ 1417 mac_node = hclgevf_find_mac_node(list, addr); 1418 if (mac_node) { 1419 hclgevf_update_mac_node(mac_node, state); 1420 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1421 return 0; 1422 } 1423 /* if this address is never added, unnecessary to delete */ 1424 if (state == HCLGEVF_MAC_TO_DEL) { 1425 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1426 return -ENOENT; 1427 } 1428 1429 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); 1430 if (!mac_node) { 1431 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1432 return -ENOMEM; 1433 } 1434 1435 mac_node->state = state; 1436 ether_addr_copy(mac_node->mac_addr, addr); 1437 list_add_tail(&mac_node->node, list); 1438 1439 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1440 return 0; 1441 } 1442 1443 static int hclgevf_add_uc_addr(struct hnae3_handle *handle, 1444 const unsigned char *addr) 1445 { 1446 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1447 HCLGEVF_MAC_ADDR_UC, addr); 1448 } 1449 1450 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, 1451 const unsigned char *addr) 1452 { 1453 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1454 HCLGEVF_MAC_ADDR_UC, addr); 1455 } 1456 1457 static int hclgevf_add_mc_addr(struct hnae3_handle *handle, 1458 const unsigned char *addr) 1459 { 1460 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1461 HCLGEVF_MAC_ADDR_MC, addr); 1462 } 1463 1464 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, 1465 const unsigned char *addr) 1466 { 1467 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1468 HCLGEVF_MAC_ADDR_MC, addr); 1469 } 1470 1471 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev, 1472 struct hclgevf_mac_addr_node *mac_node, 1473 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1474 { 1475 struct hclge_vf_to_pf_msg send_msg; 1476 u8 code, subcode; 1477 1478 if (mac_type == HCLGEVF_MAC_ADDR_UC) { 1479 code = HCLGE_MBX_SET_UNICAST; 1480 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1481 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD; 1482 else 1483 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE; 1484 } else { 1485 code = HCLGE_MBX_SET_MULTICAST; 1486 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1487 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD; 1488 else 1489 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE; 1490 } 1491 1492 hclgevf_build_send_msg(&send_msg, code, subcode); 1493 ether_addr_copy(send_msg.data, mac_node->mac_addr); 1494 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1495 } 1496 1497 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev, 1498 struct list_head *list, 1499 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1500 { 1501 struct hclgevf_mac_addr_node *mac_node, *tmp; 1502 int ret; 1503 1504 list_for_each_entry_safe(mac_node, tmp, list, node) { 1505 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type); 1506 if (ret) { 1507 dev_err(&hdev->pdev->dev, 1508 "failed to configure mac %pM, state = %d, ret = %d\n", 1509 mac_node->mac_addr, mac_node->state, ret); 1510 return; 1511 } 1512 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1513 mac_node->state = HCLGEVF_MAC_ACTIVE; 1514 } else { 1515 list_del(&mac_node->node); 1516 kfree(mac_node); 1517 } 1518 } 1519 } 1520 1521 static void hclgevf_sync_from_add_list(struct list_head *add_list, 1522 struct list_head *mac_list) 1523 { 1524 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1525 1526 list_for_each_entry_safe(mac_node, tmp, add_list, node) { 1527 /* if the mac address from tmp_add_list is not in the 1528 * uc/mc_mac_list, it means have received a TO_DEL request 1529 * during the time window of sending mac config request to PF 1530 * If mac_node state is ACTIVE, then change its state to TO_DEL, 1531 * then it will be removed at next time. If is TO_ADD, it means 1532 * send TO_ADD request failed, so just remove the mac node. 1533 */ 1534 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1535 if (new_node) { 1536 hclgevf_update_mac_node(new_node, mac_node->state); 1537 list_del(&mac_node->node); 1538 kfree(mac_node); 1539 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) { 1540 mac_node->state = HCLGEVF_MAC_TO_DEL; 1541 list_move_tail(&mac_node->node, mac_list); 1542 } else { 1543 list_del(&mac_node->node); 1544 kfree(mac_node); 1545 } 1546 } 1547 } 1548 1549 static void hclgevf_sync_from_del_list(struct list_head *del_list, 1550 struct list_head *mac_list) 1551 { 1552 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1553 1554 list_for_each_entry_safe(mac_node, tmp, del_list, node) { 1555 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1556 if (new_node) { 1557 /* If the mac addr is exist in the mac list, it means 1558 * received a new request TO_ADD during the time window 1559 * of sending mac addr configurrequest to PF, so just 1560 * change the mac state to ACTIVE. 1561 */ 1562 new_node->state = HCLGEVF_MAC_ACTIVE; 1563 list_del(&mac_node->node); 1564 kfree(mac_node); 1565 } else { 1566 list_move_tail(&mac_node->node, mac_list); 1567 } 1568 } 1569 } 1570 1571 static void hclgevf_clear_list(struct list_head *list) 1572 { 1573 struct hclgevf_mac_addr_node *mac_node, *tmp; 1574 1575 list_for_each_entry_safe(mac_node, tmp, list, node) { 1576 list_del(&mac_node->node); 1577 kfree(mac_node); 1578 } 1579 } 1580 1581 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev, 1582 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1583 { 1584 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1585 struct list_head tmp_add_list, tmp_del_list; 1586 struct list_head *list; 1587 1588 INIT_LIST_HEAD(&tmp_add_list); 1589 INIT_LIST_HEAD(&tmp_del_list); 1590 1591 /* move the mac addr to the tmp_add_list and tmp_del_list, then 1592 * we can add/delete these mac addr outside the spin lock 1593 */ 1594 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1595 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1596 1597 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1598 1599 list_for_each_entry_safe(mac_node, tmp, list, node) { 1600 switch (mac_node->state) { 1601 case HCLGEVF_MAC_TO_DEL: 1602 list_move_tail(&mac_node->node, &tmp_del_list); 1603 break; 1604 case HCLGEVF_MAC_TO_ADD: 1605 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 1606 if (!new_node) 1607 goto stop_traverse; 1608 1609 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); 1610 new_node->state = mac_node->state; 1611 list_add_tail(&new_node->node, &tmp_add_list); 1612 break; 1613 default: 1614 break; 1615 } 1616 } 1617 1618 stop_traverse: 1619 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1620 1621 /* delete first, in order to get max mac table space for adding */ 1622 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type); 1623 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type); 1624 1625 /* if some mac addresses were added/deleted fail, move back to the 1626 * mac_list, and retry at next time. 1627 */ 1628 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1629 1630 hclgevf_sync_from_del_list(&tmp_del_list, list); 1631 hclgevf_sync_from_add_list(&tmp_add_list, list); 1632 1633 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1634 } 1635 1636 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev) 1637 { 1638 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC); 1639 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC); 1640 } 1641 1642 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev) 1643 { 1644 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1645 1646 hclgevf_clear_list(&hdev->mac_table.uc_mac_list); 1647 hclgevf_clear_list(&hdev->mac_table.mc_mac_list); 1648 1649 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1650 } 1651 1652 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable) 1653 { 1654 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1655 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 1656 struct hclge_vf_to_pf_msg send_msg; 1657 1658 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 1659 return -EOPNOTSUPP; 1660 1661 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1662 HCLGE_MBX_ENABLE_VLAN_FILTER); 1663 send_msg.data[0] = enable ? 1 : 0; 1664 1665 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1666 } 1667 1668 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, 1669 __be16 proto, u16 vlan_id, 1670 bool is_kill) 1671 { 1672 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0 1673 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1 1674 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET 3 1675 1676 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1677 struct hclge_vf_to_pf_msg send_msg; 1678 int ret; 1679 1680 if (vlan_id > HCLGEVF_MAX_VLAN_ID) 1681 return -EINVAL; 1682 1683 if (proto != htons(ETH_P_8021Q)) 1684 return -EPROTONOSUPPORT; 1685 1686 /* When device is resetting or reset failed, firmware is unable to 1687 * handle mailbox. Just record the vlan id, and remove it after 1688 * reset finished. 1689 */ 1690 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 1691 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) { 1692 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1693 return -EBUSY; 1694 } 1695 1696 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1697 HCLGE_MBX_VLAN_FILTER); 1698 send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill; 1699 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id, 1700 sizeof(vlan_id)); 1701 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto, 1702 sizeof(proto)); 1703 /* when remove hw vlan filter failed, record the vlan id, 1704 * and try to remove it from hw later, to be consistence 1705 * with stack. 1706 */ 1707 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1708 if (is_kill && ret) 1709 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1710 1711 return ret; 1712 } 1713 1714 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev) 1715 { 1716 #define HCLGEVF_MAX_SYNC_COUNT 60 1717 struct hnae3_handle *handle = &hdev->nic; 1718 int ret, sync_cnt = 0; 1719 u16 vlan_id; 1720 1721 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1722 while (vlan_id != VLAN_N_VID) { 1723 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q), 1724 vlan_id, true); 1725 if (ret) 1726 return; 1727 1728 clear_bit(vlan_id, hdev->vlan_del_fail_bmap); 1729 sync_cnt++; 1730 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT) 1731 return; 1732 1733 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1734 } 1735 } 1736 1737 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 1738 { 1739 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1740 struct hclge_vf_to_pf_msg send_msg; 1741 1742 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1743 HCLGE_MBX_VLAN_RX_OFF_CFG); 1744 send_msg.data[0] = enable ? 1 : 0; 1745 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1746 } 1747 1748 static int hclgevf_reset_tqp(struct hnae3_handle *handle) 1749 { 1750 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U 1751 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1752 struct hclge_vf_to_pf_msg send_msg; 1753 u8 return_status = 0; 1754 int ret; 1755 u16 i; 1756 1757 /* disable vf queue before send queue reset msg to PF */ 1758 ret = hclgevf_tqp_enable(handle, false); 1759 if (ret) { 1760 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n", 1761 ret); 1762 return ret; 1763 } 1764 1765 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1766 1767 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status, 1768 sizeof(return_status)); 1769 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE) 1770 return ret; 1771 1772 for (i = 1; i < handle->kinfo.num_tqps; i++) { 1773 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1774 memcpy(send_msg.data, &i, sizeof(i)); 1775 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1776 if (ret) 1777 return ret; 1778 } 1779 1780 return 0; 1781 } 1782 1783 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu) 1784 { 1785 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1786 struct hclge_vf_to_pf_msg send_msg; 1787 1788 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0); 1789 memcpy(send_msg.data, &new_mtu, sizeof(new_mtu)); 1790 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1791 } 1792 1793 static int hclgevf_notify_client(struct hclgevf_dev *hdev, 1794 enum hnae3_reset_notify_type type) 1795 { 1796 struct hnae3_client *client = hdev->nic_client; 1797 struct hnae3_handle *handle = &hdev->nic; 1798 int ret; 1799 1800 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) || 1801 !client) 1802 return 0; 1803 1804 if (!client->ops->reset_notify) 1805 return -EOPNOTSUPP; 1806 1807 ret = client->ops->reset_notify(handle, type); 1808 if (ret) 1809 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", 1810 type, ret); 1811 1812 return ret; 1813 } 1814 1815 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev, 1816 enum hnae3_reset_notify_type type) 1817 { 1818 struct hnae3_client *client = hdev->roce_client; 1819 struct hnae3_handle *handle = &hdev->roce; 1820 int ret; 1821 1822 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client) 1823 return 0; 1824 1825 if (!client->ops->reset_notify) 1826 return -EOPNOTSUPP; 1827 1828 ret = client->ops->reset_notify(handle, type); 1829 if (ret) 1830 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", 1831 type, ret); 1832 return ret; 1833 } 1834 1835 static int hclgevf_reset_wait(struct hclgevf_dev *hdev) 1836 { 1837 #define HCLGEVF_RESET_WAIT_US 20000 1838 #define HCLGEVF_RESET_WAIT_CNT 2000 1839 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \ 1840 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT) 1841 1842 u32 val; 1843 int ret; 1844 1845 if (hdev->reset_type == HNAE3_VF_RESET) 1846 ret = readl_poll_timeout(hdev->hw.io_base + 1847 HCLGEVF_VF_RST_ING, val, 1848 !(val & HCLGEVF_VF_RST_ING_BIT), 1849 HCLGEVF_RESET_WAIT_US, 1850 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1851 else 1852 ret = readl_poll_timeout(hdev->hw.io_base + 1853 HCLGEVF_RST_ING, val, 1854 !(val & HCLGEVF_RST_ING_BITS), 1855 HCLGEVF_RESET_WAIT_US, 1856 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1857 1858 /* hardware completion status should be available by this time */ 1859 if (ret) { 1860 dev_err(&hdev->pdev->dev, 1861 "couldn't get reset done status from h/w, timeout!\n"); 1862 return ret; 1863 } 1864 1865 /* we will wait a bit more to let reset of the stack to complete. This 1866 * might happen in case reset assertion was made by PF. Yes, this also 1867 * means we might end up waiting bit more even for VF reset. 1868 */ 1869 msleep(5000); 1870 1871 return 0; 1872 } 1873 1874 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable) 1875 { 1876 u32 reg_val; 1877 1878 reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG); 1879 if (enable) 1880 reg_val |= HCLGEVF_NIC_SW_RST_RDY; 1881 else 1882 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY; 1883 1884 hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG, 1885 reg_val); 1886 } 1887 1888 static int hclgevf_reset_stack(struct hclgevf_dev *hdev) 1889 { 1890 int ret; 1891 1892 /* uninitialize the nic client */ 1893 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 1894 if (ret) 1895 return ret; 1896 1897 /* re-initialize the hclge device */ 1898 ret = hclgevf_reset_hdev(hdev); 1899 if (ret) { 1900 dev_err(&hdev->pdev->dev, 1901 "hclge device re-init failed, VF is disabled!\n"); 1902 return ret; 1903 } 1904 1905 /* bring up the nic client again */ 1906 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); 1907 if (ret) 1908 return ret; 1909 1910 /* clear handshake status with IMP */ 1911 hclgevf_reset_handshake(hdev, false); 1912 1913 /* bring up the nic to enable TX/RX again */ 1914 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 1915 } 1916 1917 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev) 1918 { 1919 #define HCLGEVF_RESET_SYNC_TIME 100 1920 1921 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) { 1922 struct hclge_vf_to_pf_msg send_msg; 1923 int ret; 1924 1925 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0); 1926 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1927 if (ret) { 1928 dev_err(&hdev->pdev->dev, 1929 "failed to assert VF reset, ret = %d\n", ret); 1930 return ret; 1931 } 1932 hdev->rst_stats.vf_func_rst_cnt++; 1933 } 1934 1935 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); 1936 /* inform hardware that preparatory work is done */ 1937 msleep(HCLGEVF_RESET_SYNC_TIME); 1938 hclgevf_reset_handshake(hdev, true); 1939 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n", 1940 hdev->reset_type); 1941 1942 return 0; 1943 } 1944 1945 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev) 1946 { 1947 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n", 1948 hdev->rst_stats.vf_func_rst_cnt); 1949 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n", 1950 hdev->rst_stats.flr_rst_cnt); 1951 dev_info(&hdev->pdev->dev, "VF reset count: %u\n", 1952 hdev->rst_stats.vf_rst_cnt); 1953 dev_info(&hdev->pdev->dev, "reset done count: %u\n", 1954 hdev->rst_stats.rst_done_cnt); 1955 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n", 1956 hdev->rst_stats.hw_rst_done_cnt); 1957 dev_info(&hdev->pdev->dev, "reset count: %u\n", 1958 hdev->rst_stats.rst_cnt); 1959 dev_info(&hdev->pdev->dev, "reset fail count: %u\n", 1960 hdev->rst_stats.rst_fail_cnt); 1961 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n", 1962 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE)); 1963 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n", 1964 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG)); 1965 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n", 1966 hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG)); 1967 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n", 1968 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING)); 1969 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state); 1970 } 1971 1972 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev) 1973 { 1974 /* recover handshake status with IMP when reset fail */ 1975 hclgevf_reset_handshake(hdev, true); 1976 hdev->rst_stats.rst_fail_cnt++; 1977 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n", 1978 hdev->rst_stats.rst_fail_cnt); 1979 1980 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT) 1981 set_bit(hdev->reset_type, &hdev->reset_pending); 1982 1983 if (hclgevf_is_reset_pending(hdev)) { 1984 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1985 hclgevf_reset_task_schedule(hdev); 1986 } else { 1987 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1988 hclgevf_dump_rst_info(hdev); 1989 } 1990 } 1991 1992 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev) 1993 { 1994 int ret; 1995 1996 hdev->rst_stats.rst_cnt++; 1997 1998 /* perform reset of the stack & ae device for a client */ 1999 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); 2000 if (ret) 2001 return ret; 2002 2003 rtnl_lock(); 2004 /* bring down the nic to stop any ongoing TX/RX */ 2005 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 2006 rtnl_unlock(); 2007 if (ret) 2008 return ret; 2009 2010 return hclgevf_reset_prepare_wait(hdev); 2011 } 2012 2013 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev) 2014 { 2015 int ret; 2016 2017 hdev->rst_stats.hw_rst_done_cnt++; 2018 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); 2019 if (ret) 2020 return ret; 2021 2022 rtnl_lock(); 2023 /* now, re-initialize the nic client and ae device */ 2024 ret = hclgevf_reset_stack(hdev); 2025 rtnl_unlock(); 2026 if (ret) { 2027 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); 2028 return ret; 2029 } 2030 2031 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT); 2032 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1 2033 * times 2034 */ 2035 if (ret && 2036 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1) 2037 return ret; 2038 2039 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT); 2040 if (ret) 2041 return ret; 2042 2043 hdev->last_reset_time = jiffies; 2044 hdev->rst_stats.rst_done_cnt++; 2045 hdev->rst_stats.rst_fail_cnt = 0; 2046 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 2047 2048 return 0; 2049 } 2050 2051 static void hclgevf_reset(struct hclgevf_dev *hdev) 2052 { 2053 if (hclgevf_reset_prepare(hdev)) 2054 goto err_reset; 2055 2056 /* check if VF could successfully fetch the hardware reset completion 2057 * status from the hardware 2058 */ 2059 if (hclgevf_reset_wait(hdev)) { 2060 /* can't do much in this situation, will disable VF */ 2061 dev_err(&hdev->pdev->dev, 2062 "failed to fetch H/W reset completion status\n"); 2063 goto err_reset; 2064 } 2065 2066 if (hclgevf_reset_rebuild(hdev)) 2067 goto err_reset; 2068 2069 return; 2070 2071 err_reset: 2072 hclgevf_reset_err_handle(hdev); 2073 } 2074 2075 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev, 2076 unsigned long *addr) 2077 { 2078 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; 2079 2080 /* return the highest priority reset level amongst all */ 2081 if (test_bit(HNAE3_VF_RESET, addr)) { 2082 rst_level = HNAE3_VF_RESET; 2083 clear_bit(HNAE3_VF_RESET, addr); 2084 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 2085 clear_bit(HNAE3_VF_FUNC_RESET, addr); 2086 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) { 2087 rst_level = HNAE3_VF_FULL_RESET; 2088 clear_bit(HNAE3_VF_FULL_RESET, addr); 2089 clear_bit(HNAE3_VF_FUNC_RESET, addr); 2090 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) { 2091 rst_level = HNAE3_VF_PF_FUNC_RESET; 2092 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 2093 clear_bit(HNAE3_VF_FUNC_RESET, addr); 2094 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) { 2095 rst_level = HNAE3_VF_FUNC_RESET; 2096 clear_bit(HNAE3_VF_FUNC_RESET, addr); 2097 } else if (test_bit(HNAE3_FLR_RESET, addr)) { 2098 rst_level = HNAE3_FLR_RESET; 2099 clear_bit(HNAE3_FLR_RESET, addr); 2100 } 2101 2102 return rst_level; 2103 } 2104 2105 static void hclgevf_reset_event(struct pci_dev *pdev, 2106 struct hnae3_handle *handle) 2107 { 2108 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 2109 struct hclgevf_dev *hdev = ae_dev->priv; 2110 2111 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n"); 2112 2113 if (hdev->default_reset_request) 2114 hdev->reset_level = 2115 hclgevf_get_reset_level(hdev, 2116 &hdev->default_reset_request); 2117 else 2118 hdev->reset_level = HNAE3_VF_FUNC_RESET; 2119 2120 /* reset of this VF requested */ 2121 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); 2122 hclgevf_reset_task_schedule(hdev); 2123 2124 hdev->last_reset_time = jiffies; 2125 } 2126 2127 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev, 2128 enum hnae3_reset_type rst_type) 2129 { 2130 struct hclgevf_dev *hdev = ae_dev->priv; 2131 2132 set_bit(rst_type, &hdev->default_reset_request); 2133 } 2134 2135 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) 2136 { 2137 writel(en ? 1 : 0, vector->addr); 2138 } 2139 2140 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev, 2141 enum hnae3_reset_type rst_type) 2142 { 2143 #define HCLGEVF_RESET_RETRY_WAIT_MS 500 2144 #define HCLGEVF_RESET_RETRY_CNT 5 2145 2146 struct hclgevf_dev *hdev = ae_dev->priv; 2147 int retry_cnt = 0; 2148 int ret; 2149 2150 retry: 2151 down(&hdev->reset_sem); 2152 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2153 hdev->reset_type = rst_type; 2154 ret = hclgevf_reset_prepare(hdev); 2155 if (ret) { 2156 dev_err(&hdev->pdev->dev, "fail to prepare to reset, ret=%d\n", 2157 ret); 2158 if (hdev->reset_pending || 2159 retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) { 2160 dev_err(&hdev->pdev->dev, 2161 "reset_pending:0x%lx, retry_cnt:%d\n", 2162 hdev->reset_pending, retry_cnt); 2163 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2164 up(&hdev->reset_sem); 2165 msleep(HCLGEVF_RESET_RETRY_WAIT_MS); 2166 goto retry; 2167 } 2168 } 2169 2170 /* disable misc vector before reset done */ 2171 hclgevf_enable_vector(&hdev->misc_vector, false); 2172 2173 if (hdev->reset_type == HNAE3_FLR_RESET) 2174 hdev->rst_stats.flr_rst_cnt++; 2175 } 2176 2177 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev) 2178 { 2179 struct hclgevf_dev *hdev = ae_dev->priv; 2180 int ret; 2181 2182 hclgevf_enable_vector(&hdev->misc_vector, true); 2183 2184 ret = hclgevf_reset_rebuild(hdev); 2185 if (ret) 2186 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", 2187 ret); 2188 2189 hdev->reset_type = HNAE3_NONE_RESET; 2190 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2191 up(&hdev->reset_sem); 2192 } 2193 2194 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) 2195 { 2196 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2197 2198 return hdev->fw_version; 2199 } 2200 2201 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) 2202 { 2203 struct hclgevf_misc_vector *vector = &hdev->misc_vector; 2204 2205 vector->vector_irq = pci_irq_vector(hdev->pdev, 2206 HCLGEVF_MISC_VECTOR_NUM); 2207 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; 2208 /* vector status always valid for Vector 0 */ 2209 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; 2210 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; 2211 2212 hdev->num_msi_left -= 1; 2213 hdev->num_msi_used += 1; 2214 } 2215 2216 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) 2217 { 2218 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 2219 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, 2220 &hdev->state)) 2221 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 2222 } 2223 2224 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) 2225 { 2226 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 2227 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, 2228 &hdev->state)) 2229 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 2230 } 2231 2232 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 2233 unsigned long delay) 2234 { 2235 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 2236 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 2237 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay); 2238 } 2239 2240 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev) 2241 { 2242 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3 2243 2244 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) 2245 return; 2246 2247 down(&hdev->reset_sem); 2248 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2249 2250 if (test_and_clear_bit(HCLGEVF_RESET_PENDING, 2251 &hdev->reset_state)) { 2252 /* PF has intimated that it is about to reset the hardware. 2253 * We now have to poll & check if hardware has actually 2254 * completed the reset sequence. On hardware reset completion, 2255 * VF needs to reset the client and ae device. 2256 */ 2257 hdev->reset_attempts = 0; 2258 2259 hdev->last_reset_time = jiffies; 2260 while ((hdev->reset_type = 2261 hclgevf_get_reset_level(hdev, &hdev->reset_pending)) 2262 != HNAE3_NONE_RESET) 2263 hclgevf_reset(hdev); 2264 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, 2265 &hdev->reset_state)) { 2266 /* we could be here when either of below happens: 2267 * 1. reset was initiated due to watchdog timeout caused by 2268 * a. IMP was earlier reset and our TX got choked down and 2269 * which resulted in watchdog reacting and inducing VF 2270 * reset. This also means our cmdq would be unreliable. 2271 * b. problem in TX due to other lower layer(example link 2272 * layer not functioning properly etc.) 2273 * 2. VF reset might have been initiated due to some config 2274 * change. 2275 * 2276 * NOTE: Theres no clear way to detect above cases than to react 2277 * to the response of PF for this reset request. PF will ack the 2278 * 1b and 2. cases but we will not get any intimation about 1a 2279 * from PF as cmdq would be in unreliable state i.e. mailbox 2280 * communication between PF and VF would be broken. 2281 * 2282 * if we are never geting into pending state it means either: 2283 * 1. PF is not receiving our request which could be due to IMP 2284 * reset 2285 * 2. PF is screwed 2286 * We cannot do much for 2. but to check first we can try reset 2287 * our PCIe + stack and see if it alleviates the problem. 2288 */ 2289 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) { 2290 /* prepare for full reset of stack + pcie interface */ 2291 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending); 2292 2293 /* "defer" schedule the reset task again */ 2294 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2295 } else { 2296 hdev->reset_attempts++; 2297 2298 set_bit(hdev->reset_level, &hdev->reset_pending); 2299 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2300 } 2301 hclgevf_reset_task_schedule(hdev); 2302 } 2303 2304 hdev->reset_type = HNAE3_NONE_RESET; 2305 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 2306 up(&hdev->reset_sem); 2307 } 2308 2309 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev) 2310 { 2311 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state)) 2312 return; 2313 2314 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) 2315 return; 2316 2317 hclgevf_mbx_async_handler(hdev); 2318 2319 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2320 } 2321 2322 static void hclgevf_keep_alive(struct hclgevf_dev *hdev) 2323 { 2324 struct hclge_vf_to_pf_msg send_msg; 2325 int ret; 2326 2327 if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) 2328 return; 2329 2330 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0); 2331 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2332 if (ret) 2333 dev_err(&hdev->pdev->dev, 2334 "VF sends keep alive cmd failed(=%d)\n", ret); 2335 } 2336 2337 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev) 2338 { 2339 unsigned long delta = round_jiffies_relative(HZ); 2340 struct hnae3_handle *handle = &hdev->nic; 2341 2342 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 2343 return; 2344 2345 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { 2346 delta = jiffies - hdev->last_serv_processed; 2347 2348 if (delta < round_jiffies_relative(HZ)) { 2349 delta = round_jiffies_relative(HZ) - delta; 2350 goto out; 2351 } 2352 } 2353 2354 hdev->serv_processed_cnt++; 2355 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL)) 2356 hclgevf_keep_alive(hdev); 2357 2358 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) { 2359 hdev->last_serv_processed = jiffies; 2360 goto out; 2361 } 2362 2363 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL)) 2364 hclgevf_tqps_update_stats(handle); 2365 2366 /* VF does not need to request link status when this bit is set, because 2367 * PF will push its link status to VFs when link status changed. 2368 */ 2369 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state)) 2370 hclgevf_request_link_info(hdev); 2371 2372 hclgevf_update_link_mode(hdev); 2373 2374 hclgevf_sync_vlan_filter(hdev); 2375 2376 hclgevf_sync_mac_table(hdev); 2377 2378 hclgevf_sync_promisc_mode(hdev); 2379 2380 hdev->last_serv_processed = jiffies; 2381 2382 out: 2383 hclgevf_task_schedule(hdev, delta); 2384 } 2385 2386 static void hclgevf_service_task(struct work_struct *work) 2387 { 2388 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev, 2389 service_task.work); 2390 2391 hclgevf_reset_service_task(hdev); 2392 hclgevf_mailbox_service_task(hdev); 2393 hclgevf_periodic_service_task(hdev); 2394 2395 /* Handle reset and mbx again in case periodical task delays the 2396 * handling by calling hclgevf_task_schedule() in 2397 * hclgevf_periodic_service_task() 2398 */ 2399 hclgevf_reset_service_task(hdev); 2400 hclgevf_mailbox_service_task(hdev); 2401 } 2402 2403 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) 2404 { 2405 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr); 2406 } 2407 2408 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev, 2409 u32 *clearval) 2410 { 2411 u32 val, cmdq_stat_reg, rst_ing_reg; 2412 2413 /* fetch the events from their corresponding regs */ 2414 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw, 2415 HCLGEVF_VECTOR0_CMDQ_STATE_REG); 2416 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) { 2417 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 2418 dev_info(&hdev->pdev->dev, 2419 "receive reset interrupt 0x%x!\n", rst_ing_reg); 2420 set_bit(HNAE3_VF_RESET, &hdev->reset_pending); 2421 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2422 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); 2423 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B); 2424 hdev->rst_stats.vf_rst_cnt++; 2425 /* set up VF hardware reset status, its PF will clear 2426 * this status when PF has initialized done. 2427 */ 2428 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING); 2429 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING, 2430 val | HCLGEVF_VF_RST_ING_BIT); 2431 return HCLGEVF_VECTOR0_EVENT_RST; 2432 } 2433 2434 /* check for vector0 mailbox(=CMDQ RX) event source */ 2435 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) { 2436 /* for revision 0x21, clearing interrupt is writing bit 0 2437 * to the clear register, writing bit 1 means to keep the 2438 * old value. 2439 * for revision 0x20, the clear register is a read & write 2440 * register, so we should just write 0 to the bit we are 2441 * handling, and keep other bits as cmdq_stat_reg. 2442 */ 2443 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) 2444 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2445 else 2446 *clearval = cmdq_stat_reg & 2447 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2448 2449 return HCLGEVF_VECTOR0_EVENT_MBX; 2450 } 2451 2452 /* print other vector0 event source */ 2453 dev_info(&hdev->pdev->dev, 2454 "vector 0 interrupt from unknown source, cmdq_src = %#x\n", 2455 cmdq_stat_reg); 2456 2457 return HCLGEVF_VECTOR0_EVENT_OTHER; 2458 } 2459 2460 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) 2461 { 2462 enum hclgevf_evt_cause event_cause; 2463 struct hclgevf_dev *hdev = data; 2464 u32 clearval; 2465 2466 hclgevf_enable_vector(&hdev->misc_vector, false); 2467 event_cause = hclgevf_check_evt_cause(hdev, &clearval); 2468 2469 switch (event_cause) { 2470 case HCLGEVF_VECTOR0_EVENT_RST: 2471 hclgevf_reset_task_schedule(hdev); 2472 break; 2473 case HCLGEVF_VECTOR0_EVENT_MBX: 2474 hclgevf_mbx_handler(hdev); 2475 break; 2476 default: 2477 break; 2478 } 2479 2480 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) { 2481 hclgevf_clear_event_cause(hdev, clearval); 2482 hclgevf_enable_vector(&hdev->misc_vector, true); 2483 } 2484 2485 return IRQ_HANDLED; 2486 } 2487 2488 static int hclgevf_configure(struct hclgevf_dev *hdev) 2489 { 2490 int ret; 2491 2492 hdev->gro_en = true; 2493 2494 ret = hclgevf_get_basic_info(hdev); 2495 if (ret) 2496 return ret; 2497 2498 /* get current port based vlan state from PF */ 2499 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2500 if (ret) 2501 return ret; 2502 2503 /* get queue configuration from PF */ 2504 ret = hclgevf_get_queue_info(hdev); 2505 if (ret) 2506 return ret; 2507 2508 /* get queue depth info from PF */ 2509 ret = hclgevf_get_queue_depth(hdev); 2510 if (ret) 2511 return ret; 2512 2513 return hclgevf_get_pf_media_type(hdev); 2514 } 2515 2516 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) 2517 { 2518 struct pci_dev *pdev = ae_dev->pdev; 2519 struct hclgevf_dev *hdev; 2520 2521 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 2522 if (!hdev) 2523 return -ENOMEM; 2524 2525 hdev->pdev = pdev; 2526 hdev->ae_dev = ae_dev; 2527 ae_dev->priv = hdev; 2528 2529 return 0; 2530 } 2531 2532 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) 2533 { 2534 struct hnae3_handle *roce = &hdev->roce; 2535 struct hnae3_handle *nic = &hdev->nic; 2536 2537 roce->rinfo.num_vectors = hdev->num_roce_msix; 2538 2539 if (hdev->num_msi_left < roce->rinfo.num_vectors || 2540 hdev->num_msi_left == 0) 2541 return -EINVAL; 2542 2543 roce->rinfo.base_vector = hdev->roce_base_vector; 2544 2545 roce->rinfo.netdev = nic->kinfo.netdev; 2546 roce->rinfo.roce_io_base = hdev->hw.io_base; 2547 roce->rinfo.roce_mem_base = hdev->hw.mem_base; 2548 2549 roce->pdev = nic->pdev; 2550 roce->ae_algo = nic->ae_algo; 2551 roce->numa_node_mask = nic->numa_node_mask; 2552 2553 return 0; 2554 } 2555 2556 static int hclgevf_config_gro(struct hclgevf_dev *hdev) 2557 { 2558 struct hclgevf_cfg_gro_status_cmd *req; 2559 struct hclgevf_desc desc; 2560 int ret; 2561 2562 if (!hnae3_dev_gro_supported(hdev)) 2563 return 0; 2564 2565 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG, 2566 false); 2567 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data; 2568 2569 req->gro_en = hdev->gro_en ? 1 : 0; 2570 2571 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2572 if (ret) 2573 dev_err(&hdev->pdev->dev, 2574 "VF GRO hardware config cmd failed, ret = %d.\n", ret); 2575 2576 return ret; 2577 } 2578 2579 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev) 2580 { 2581 u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size; 2582 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 2583 struct hclgevf_rss_tuple_cfg *tuple_sets; 2584 u32 i; 2585 2586 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ; 2587 rss_cfg->rss_size = hdev->nic.kinfo.rss_size; 2588 tuple_sets = &rss_cfg->rss_tuple_sets; 2589 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 2590 u8 *rss_ind_tbl; 2591 2592 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE; 2593 2594 rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size, 2595 sizeof(*rss_ind_tbl), GFP_KERNEL); 2596 if (!rss_ind_tbl) 2597 return -ENOMEM; 2598 2599 rss_cfg->rss_indirection_tbl = rss_ind_tbl; 2600 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key, 2601 HCLGEVF_RSS_KEY_SIZE); 2602 2603 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2604 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2605 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP; 2606 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2607 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2608 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2609 tuple_sets->ipv6_sctp_en = 2610 hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ? 2611 HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT : 2612 HCLGEVF_RSS_INPUT_TUPLE_SCTP; 2613 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER; 2614 } 2615 2616 /* Initialize RSS indirect table */ 2617 for (i = 0; i < rss_ind_tbl_size; i++) 2618 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size; 2619 2620 return 0; 2621 } 2622 2623 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) 2624 { 2625 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg; 2626 int ret; 2627 2628 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 2629 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo, 2630 rss_cfg->rss_hash_key); 2631 if (ret) 2632 return ret; 2633 2634 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg); 2635 if (ret) 2636 return ret; 2637 } 2638 2639 ret = hclgevf_set_rss_indir_table(hdev); 2640 if (ret) 2641 return ret; 2642 2643 return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size); 2644 } 2645 2646 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) 2647 { 2648 struct hnae3_handle *nic = &hdev->nic; 2649 int ret; 2650 2651 ret = hclgevf_en_hw_strip_rxvtag(nic, true); 2652 if (ret) { 2653 dev_err(&hdev->pdev->dev, 2654 "failed to enable rx vlan offload, ret = %d\n", ret); 2655 return ret; 2656 } 2657 2658 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, 2659 false); 2660 } 2661 2662 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev) 2663 { 2664 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000 2665 2666 unsigned long last = hdev->serv_processed_cnt; 2667 int i = 0; 2668 2669 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) && 2670 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT && 2671 last == hdev->serv_processed_cnt) 2672 usleep_range(1, 1); 2673 } 2674 2675 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable) 2676 { 2677 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2678 2679 if (enable) { 2680 hclgevf_task_schedule(hdev, 0); 2681 } else { 2682 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2683 2684 /* flush memory to make sure DOWN is seen by service task */ 2685 smp_mb__before_atomic(); 2686 hclgevf_flush_link_update(hdev); 2687 } 2688 } 2689 2690 static int hclgevf_ae_start(struct hnae3_handle *handle) 2691 { 2692 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2693 2694 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2695 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state); 2696 2697 hclgevf_reset_tqp_stats(handle); 2698 2699 hclgevf_request_link_info(hdev); 2700 2701 hclgevf_update_link_mode(hdev); 2702 2703 return 0; 2704 } 2705 2706 static void hclgevf_ae_stop(struct hnae3_handle *handle) 2707 { 2708 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2709 2710 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2711 2712 if (hdev->reset_type != HNAE3_VF_RESET) 2713 hclgevf_reset_tqp(handle); 2714 2715 hclgevf_reset_tqp_stats(handle); 2716 hclgevf_update_link_status(hdev, 0); 2717 } 2718 2719 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive) 2720 { 2721 #define HCLGEVF_STATE_ALIVE 1 2722 #define HCLGEVF_STATE_NOT_ALIVE 0 2723 2724 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2725 struct hclge_vf_to_pf_msg send_msg; 2726 2727 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0); 2728 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE : 2729 HCLGEVF_STATE_NOT_ALIVE; 2730 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2731 } 2732 2733 static int hclgevf_client_start(struct hnae3_handle *handle) 2734 { 2735 return hclgevf_set_alive(handle, true); 2736 } 2737 2738 static void hclgevf_client_stop(struct hnae3_handle *handle) 2739 { 2740 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2741 int ret; 2742 2743 ret = hclgevf_set_alive(handle, false); 2744 if (ret) 2745 dev_warn(&hdev->pdev->dev, 2746 "%s failed %d\n", __func__, ret); 2747 } 2748 2749 static void hclgevf_state_init(struct hclgevf_dev *hdev) 2750 { 2751 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 2752 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2753 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 2754 2755 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task); 2756 2757 mutex_init(&hdev->mbx_resp.mbx_mutex); 2758 sema_init(&hdev->reset_sem, 1); 2759 2760 spin_lock_init(&hdev->mac_table.mac_list_lock); 2761 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list); 2762 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list); 2763 2764 /* bring the device down */ 2765 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2766 } 2767 2768 static void hclgevf_state_uninit(struct hclgevf_dev *hdev) 2769 { 2770 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2771 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state); 2772 2773 if (hdev->service_task.work.func) 2774 cancel_delayed_work_sync(&hdev->service_task); 2775 2776 mutex_destroy(&hdev->mbx_resp.mbx_mutex); 2777 } 2778 2779 static int hclgevf_init_msi(struct hclgevf_dev *hdev) 2780 { 2781 struct pci_dev *pdev = hdev->pdev; 2782 int vectors; 2783 int i; 2784 2785 if (hnae3_dev_roce_supported(hdev)) 2786 vectors = pci_alloc_irq_vectors(pdev, 2787 hdev->roce_base_msix_offset + 1, 2788 hdev->num_msi, 2789 PCI_IRQ_MSIX); 2790 else 2791 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, 2792 hdev->num_msi, 2793 PCI_IRQ_MSI | PCI_IRQ_MSIX); 2794 2795 if (vectors < 0) { 2796 dev_err(&pdev->dev, 2797 "failed(%d) to allocate MSI/MSI-X vectors\n", 2798 vectors); 2799 return vectors; 2800 } 2801 if (vectors < hdev->num_msi) 2802 dev_warn(&hdev->pdev->dev, 2803 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", 2804 hdev->num_msi, vectors); 2805 2806 hdev->num_msi = vectors; 2807 hdev->num_msi_left = vectors; 2808 2809 hdev->base_msi_vector = pdev->irq; 2810 hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset; 2811 2812 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 2813 sizeof(u16), GFP_KERNEL); 2814 if (!hdev->vector_status) { 2815 pci_free_irq_vectors(pdev); 2816 return -ENOMEM; 2817 } 2818 2819 for (i = 0; i < hdev->num_msi; i++) 2820 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; 2821 2822 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 2823 sizeof(int), GFP_KERNEL); 2824 if (!hdev->vector_irq) { 2825 devm_kfree(&pdev->dev, hdev->vector_status); 2826 pci_free_irq_vectors(pdev); 2827 return -ENOMEM; 2828 } 2829 2830 return 0; 2831 } 2832 2833 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) 2834 { 2835 struct pci_dev *pdev = hdev->pdev; 2836 2837 devm_kfree(&pdev->dev, hdev->vector_status); 2838 devm_kfree(&pdev->dev, hdev->vector_irq); 2839 pci_free_irq_vectors(pdev); 2840 } 2841 2842 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) 2843 { 2844 int ret; 2845 2846 hclgevf_get_misc_vector(hdev); 2847 2848 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", 2849 HCLGEVF_NAME, pci_name(hdev->pdev)); 2850 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 2851 0, hdev->misc_vector.name, hdev); 2852 if (ret) { 2853 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", 2854 hdev->misc_vector.vector_irq); 2855 return ret; 2856 } 2857 2858 hclgevf_clear_event_cause(hdev, 0); 2859 2860 /* enable misc. vector(vector 0) */ 2861 hclgevf_enable_vector(&hdev->misc_vector, true); 2862 2863 return ret; 2864 } 2865 2866 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) 2867 { 2868 /* disable misc vector(vector 0) */ 2869 hclgevf_enable_vector(&hdev->misc_vector, false); 2870 synchronize_irq(hdev->misc_vector.vector_irq); 2871 free_irq(hdev->misc_vector.vector_irq, hdev); 2872 hclgevf_free_vector(hdev, 0); 2873 } 2874 2875 static void hclgevf_info_show(struct hclgevf_dev *hdev) 2876 { 2877 struct device *dev = &hdev->pdev->dev; 2878 2879 dev_info(dev, "VF info begin:\n"); 2880 2881 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); 2882 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); 2883 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); 2884 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); 2885 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); 2886 dev_info(dev, "PF media type of this VF: %u\n", 2887 hdev->hw.mac.media_type); 2888 2889 dev_info(dev, "VF info end.\n"); 2890 } 2891 2892 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, 2893 struct hnae3_client *client) 2894 { 2895 struct hclgevf_dev *hdev = ae_dev->priv; 2896 int rst_cnt = hdev->rst_stats.rst_cnt; 2897 int ret; 2898 2899 ret = client->ops->init_instance(&hdev->nic); 2900 if (ret) 2901 return ret; 2902 2903 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2904 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 2905 rst_cnt != hdev->rst_stats.rst_cnt) { 2906 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2907 2908 client->ops->uninit_instance(&hdev->nic, 0); 2909 return -EBUSY; 2910 } 2911 2912 hnae3_set_client_init_flag(client, ae_dev, 1); 2913 2914 if (netif_msg_drv(&hdev->nic)) 2915 hclgevf_info_show(hdev); 2916 2917 return 0; 2918 } 2919 2920 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, 2921 struct hnae3_client *client) 2922 { 2923 struct hclgevf_dev *hdev = ae_dev->priv; 2924 int ret; 2925 2926 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || 2927 !hdev->nic_client) 2928 return 0; 2929 2930 ret = hclgevf_init_roce_base_info(hdev); 2931 if (ret) 2932 return ret; 2933 2934 ret = client->ops->init_instance(&hdev->roce); 2935 if (ret) 2936 return ret; 2937 2938 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2939 hnae3_set_client_init_flag(client, ae_dev, 1); 2940 2941 return 0; 2942 } 2943 2944 static int hclgevf_init_client_instance(struct hnae3_client *client, 2945 struct hnae3_ae_dev *ae_dev) 2946 { 2947 struct hclgevf_dev *hdev = ae_dev->priv; 2948 int ret; 2949 2950 switch (client->type) { 2951 case HNAE3_CLIENT_KNIC: 2952 hdev->nic_client = client; 2953 hdev->nic.client = client; 2954 2955 ret = hclgevf_init_nic_client_instance(ae_dev, client); 2956 if (ret) 2957 goto clear_nic; 2958 2959 ret = hclgevf_init_roce_client_instance(ae_dev, 2960 hdev->roce_client); 2961 if (ret) 2962 goto clear_roce; 2963 2964 break; 2965 case HNAE3_CLIENT_ROCE: 2966 if (hnae3_dev_roce_supported(hdev)) { 2967 hdev->roce_client = client; 2968 hdev->roce.client = client; 2969 } 2970 2971 ret = hclgevf_init_roce_client_instance(ae_dev, client); 2972 if (ret) 2973 goto clear_roce; 2974 2975 break; 2976 default: 2977 return -EINVAL; 2978 } 2979 2980 return 0; 2981 2982 clear_nic: 2983 hdev->nic_client = NULL; 2984 hdev->nic.client = NULL; 2985 return ret; 2986 clear_roce: 2987 hdev->roce_client = NULL; 2988 hdev->roce.client = NULL; 2989 return ret; 2990 } 2991 2992 static void hclgevf_uninit_client_instance(struct hnae3_client *client, 2993 struct hnae3_ae_dev *ae_dev) 2994 { 2995 struct hclgevf_dev *hdev = ae_dev->priv; 2996 2997 /* un-init roce, if it exists */ 2998 if (hdev->roce_client) { 2999 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 3000 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); 3001 hdev->roce_client = NULL; 3002 hdev->roce.client = NULL; 3003 } 3004 3005 /* un-init nic/unic, if this was not called by roce client */ 3006 if (client->ops->uninit_instance && hdev->nic_client && 3007 client->type != HNAE3_CLIENT_ROCE) { 3008 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 3009 3010 client->ops->uninit_instance(&hdev->nic, 0); 3011 hdev->nic_client = NULL; 3012 hdev->nic.client = NULL; 3013 } 3014 } 3015 3016 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev) 3017 { 3018 #define HCLGEVF_MEM_BAR 4 3019 3020 struct pci_dev *pdev = hdev->pdev; 3021 struct hclgevf_hw *hw = &hdev->hw; 3022 3023 /* for device does not have device memory, return directly */ 3024 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR))) 3025 return 0; 3026 3027 hw->mem_base = devm_ioremap_wc(&pdev->dev, 3028 pci_resource_start(pdev, 3029 HCLGEVF_MEM_BAR), 3030 pci_resource_len(pdev, HCLGEVF_MEM_BAR)); 3031 if (!hw->mem_base) { 3032 dev_err(&pdev->dev, "failed to map device memory\n"); 3033 return -EFAULT; 3034 } 3035 3036 return 0; 3037 } 3038 3039 static int hclgevf_pci_init(struct hclgevf_dev *hdev) 3040 { 3041 struct pci_dev *pdev = hdev->pdev; 3042 struct hclgevf_hw *hw; 3043 int ret; 3044 3045 ret = pci_enable_device(pdev); 3046 if (ret) { 3047 dev_err(&pdev->dev, "failed to enable PCI device\n"); 3048 return ret; 3049 } 3050 3051 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3052 if (ret) { 3053 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); 3054 goto err_disable_device; 3055 } 3056 3057 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); 3058 if (ret) { 3059 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 3060 goto err_disable_device; 3061 } 3062 3063 pci_set_master(pdev); 3064 hw = &hdev->hw; 3065 hw->hdev = hdev; 3066 hw->io_base = pci_iomap(pdev, 2, 0); 3067 if (!hw->io_base) { 3068 dev_err(&pdev->dev, "can't map configuration register space\n"); 3069 ret = -ENOMEM; 3070 goto err_clr_master; 3071 } 3072 3073 ret = hclgevf_dev_mem_map(hdev); 3074 if (ret) 3075 goto err_unmap_io_base; 3076 3077 return 0; 3078 3079 err_unmap_io_base: 3080 pci_iounmap(pdev, hdev->hw.io_base); 3081 err_clr_master: 3082 pci_clear_master(pdev); 3083 pci_release_regions(pdev); 3084 err_disable_device: 3085 pci_disable_device(pdev); 3086 3087 return ret; 3088 } 3089 3090 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) 3091 { 3092 struct pci_dev *pdev = hdev->pdev; 3093 3094 if (hdev->hw.mem_base) 3095 devm_iounmap(&pdev->dev, hdev->hw.mem_base); 3096 3097 pci_iounmap(pdev, hdev->hw.io_base); 3098 pci_clear_master(pdev); 3099 pci_release_regions(pdev); 3100 pci_disable_device(pdev); 3101 } 3102 3103 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev) 3104 { 3105 struct hclgevf_query_res_cmd *req; 3106 struct hclgevf_desc desc; 3107 int ret; 3108 3109 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true); 3110 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 3111 if (ret) { 3112 dev_err(&hdev->pdev->dev, 3113 "query vf resource failed, ret = %d.\n", ret); 3114 return ret; 3115 } 3116 3117 req = (struct hclgevf_query_res_cmd *)desc.data; 3118 3119 if (hnae3_dev_roce_supported(hdev)) { 3120 hdev->roce_base_msix_offset = 3121 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee), 3122 HCLGEVF_MSIX_OFT_ROCEE_M, 3123 HCLGEVF_MSIX_OFT_ROCEE_S); 3124 hdev->num_roce_msix = 3125 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 3126 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 3127 3128 /* nic's msix numbers is always equals to the roce's. */ 3129 hdev->num_nic_msix = hdev->num_roce_msix; 3130 3131 /* VF should have NIC vectors and Roce vectors, NIC vectors 3132 * are queued before Roce vectors. The offset is fixed to 64. 3133 */ 3134 hdev->num_msi = hdev->num_roce_msix + 3135 hdev->roce_base_msix_offset; 3136 } else { 3137 hdev->num_msi = 3138 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 3139 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 3140 3141 hdev->num_nic_msix = hdev->num_msi; 3142 } 3143 3144 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) { 3145 dev_err(&hdev->pdev->dev, 3146 "Just %u msi resources, not enough for vf(min:2).\n", 3147 hdev->num_nic_msix); 3148 return -EINVAL; 3149 } 3150 3151 return 0; 3152 } 3153 3154 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev) 3155 { 3156 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U 3157 3158 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 3159 3160 ae_dev->dev_specs.max_non_tso_bd_num = 3161 HCLGEVF_MAX_NON_TSO_BD_NUM; 3162 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 3163 ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE; 3164 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 3165 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME; 3166 } 3167 3168 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev, 3169 struct hclgevf_desc *desc) 3170 { 3171 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 3172 struct hclgevf_dev_specs_0_cmd *req0; 3173 struct hclgevf_dev_specs_1_cmd *req1; 3174 3175 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data; 3176 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data; 3177 3178 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num; 3179 ae_dev->dev_specs.rss_ind_tbl_size = 3180 le16_to_cpu(req0->rss_ind_tbl_size); 3181 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max); 3182 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size); 3183 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl); 3184 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size); 3185 } 3186 3187 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev) 3188 { 3189 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs; 3190 3191 if (!dev_specs->max_non_tso_bd_num) 3192 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM; 3193 if (!dev_specs->rss_ind_tbl_size) 3194 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 3195 if (!dev_specs->rss_key_size) 3196 dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE; 3197 if (!dev_specs->max_int_gl) 3198 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 3199 if (!dev_specs->max_frm_size) 3200 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME; 3201 } 3202 3203 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev) 3204 { 3205 struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM]; 3206 int ret; 3207 int i; 3208 3209 /* set default specifications as devices lower than version V3 do not 3210 * support querying specifications from firmware. 3211 */ 3212 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 3213 hclgevf_set_default_dev_specs(hdev); 3214 return 0; 3215 } 3216 3217 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) { 3218 hclgevf_cmd_setup_basic_desc(&desc[i], 3219 HCLGEVF_OPC_QUERY_DEV_SPECS, true); 3220 desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT); 3221 } 3222 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS, 3223 true); 3224 3225 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM); 3226 if (ret) 3227 return ret; 3228 3229 hclgevf_parse_dev_specs(hdev, desc); 3230 hclgevf_check_dev_specs(hdev); 3231 3232 return 0; 3233 } 3234 3235 static int hclgevf_pci_reset(struct hclgevf_dev *hdev) 3236 { 3237 struct pci_dev *pdev = hdev->pdev; 3238 int ret = 0; 3239 3240 if (hdev->reset_type == HNAE3_VF_FULL_RESET && 3241 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3242 hclgevf_misc_irq_uninit(hdev); 3243 hclgevf_uninit_msi(hdev); 3244 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3245 } 3246 3247 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3248 pci_set_master(pdev); 3249 ret = hclgevf_init_msi(hdev); 3250 if (ret) { 3251 dev_err(&pdev->dev, 3252 "failed(%d) to init MSI/MSI-X\n", ret); 3253 return ret; 3254 } 3255 3256 ret = hclgevf_misc_irq_init(hdev); 3257 if (ret) { 3258 hclgevf_uninit_msi(hdev); 3259 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", 3260 ret); 3261 return ret; 3262 } 3263 3264 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3265 } 3266 3267 return ret; 3268 } 3269 3270 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev) 3271 { 3272 struct hclge_vf_to_pf_msg send_msg; 3273 3274 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL, 3275 HCLGE_MBX_VPORT_LIST_CLEAR); 3276 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3277 } 3278 3279 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev) 3280 { 3281 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 3282 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1); 3283 } 3284 3285 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev) 3286 { 3287 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 3288 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0); 3289 } 3290 3291 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev) 3292 { 3293 struct pci_dev *pdev = hdev->pdev; 3294 int ret; 3295 3296 ret = hclgevf_pci_reset(hdev); 3297 if (ret) { 3298 dev_err(&pdev->dev, "pci reset failed %d\n", ret); 3299 return ret; 3300 } 3301 3302 ret = hclgevf_cmd_init(hdev); 3303 if (ret) { 3304 dev_err(&pdev->dev, "cmd failed %d\n", ret); 3305 return ret; 3306 } 3307 3308 ret = hclgevf_rss_init_hw(hdev); 3309 if (ret) { 3310 dev_err(&hdev->pdev->dev, 3311 "failed(%d) to initialize RSS\n", ret); 3312 return ret; 3313 } 3314 3315 ret = hclgevf_config_gro(hdev); 3316 if (ret) 3317 return ret; 3318 3319 ret = hclgevf_init_vlan_config(hdev); 3320 if (ret) { 3321 dev_err(&hdev->pdev->dev, 3322 "failed(%d) to initialize VLAN config\n", ret); 3323 return ret; 3324 } 3325 3326 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 3327 3328 hclgevf_init_rxd_adv_layout(hdev); 3329 3330 dev_info(&hdev->pdev->dev, "Reset done\n"); 3331 3332 return 0; 3333 } 3334 3335 static int hclgevf_init_hdev(struct hclgevf_dev *hdev) 3336 { 3337 struct pci_dev *pdev = hdev->pdev; 3338 int ret; 3339 3340 ret = hclgevf_pci_init(hdev); 3341 if (ret) 3342 return ret; 3343 3344 ret = hclgevf_devlink_init(hdev); 3345 if (ret) 3346 goto err_devlink_init; 3347 3348 ret = hclgevf_cmd_queue_init(hdev); 3349 if (ret) 3350 goto err_cmd_queue_init; 3351 3352 ret = hclgevf_cmd_init(hdev); 3353 if (ret) 3354 goto err_cmd_init; 3355 3356 /* Get vf resource */ 3357 ret = hclgevf_query_vf_resource(hdev); 3358 if (ret) 3359 goto err_cmd_init; 3360 3361 ret = hclgevf_query_dev_specs(hdev); 3362 if (ret) { 3363 dev_err(&pdev->dev, 3364 "failed to query dev specifications, ret = %d\n", ret); 3365 goto err_cmd_init; 3366 } 3367 3368 ret = hclgevf_init_msi(hdev); 3369 if (ret) { 3370 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); 3371 goto err_cmd_init; 3372 } 3373 3374 hclgevf_state_init(hdev); 3375 hdev->reset_level = HNAE3_VF_FUNC_RESET; 3376 hdev->reset_type = HNAE3_NONE_RESET; 3377 3378 ret = hclgevf_misc_irq_init(hdev); 3379 if (ret) 3380 goto err_misc_irq_init; 3381 3382 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3383 3384 ret = hclgevf_configure(hdev); 3385 if (ret) { 3386 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); 3387 goto err_config; 3388 } 3389 3390 ret = hclgevf_alloc_tqps(hdev); 3391 if (ret) { 3392 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); 3393 goto err_config; 3394 } 3395 3396 ret = hclgevf_set_handle_info(hdev); 3397 if (ret) 3398 goto err_config; 3399 3400 ret = hclgevf_config_gro(hdev); 3401 if (ret) 3402 goto err_config; 3403 3404 /* Initialize RSS for this VF */ 3405 ret = hclgevf_rss_init_cfg(hdev); 3406 if (ret) { 3407 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret); 3408 goto err_config; 3409 } 3410 3411 ret = hclgevf_rss_init_hw(hdev); 3412 if (ret) { 3413 dev_err(&hdev->pdev->dev, 3414 "failed(%d) to initialize RSS\n", ret); 3415 goto err_config; 3416 } 3417 3418 /* ensure vf tbl list as empty before init*/ 3419 ret = hclgevf_clear_vport_list(hdev); 3420 if (ret) { 3421 dev_err(&pdev->dev, 3422 "failed to clear tbl list configuration, ret = %d.\n", 3423 ret); 3424 goto err_config; 3425 } 3426 3427 ret = hclgevf_init_vlan_config(hdev); 3428 if (ret) { 3429 dev_err(&hdev->pdev->dev, 3430 "failed(%d) to initialize VLAN config\n", ret); 3431 goto err_config; 3432 } 3433 3434 hclgevf_init_rxd_adv_layout(hdev); 3435 3436 hdev->last_reset_time = jiffies; 3437 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n", 3438 HCLGEVF_DRIVER_NAME); 3439 3440 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ)); 3441 3442 return 0; 3443 3444 err_config: 3445 hclgevf_misc_irq_uninit(hdev); 3446 err_misc_irq_init: 3447 hclgevf_state_uninit(hdev); 3448 hclgevf_uninit_msi(hdev); 3449 err_cmd_init: 3450 hclgevf_cmd_uninit(hdev); 3451 err_cmd_queue_init: 3452 hclgevf_devlink_uninit(hdev); 3453 err_devlink_init: 3454 hclgevf_pci_uninit(hdev); 3455 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3456 return ret; 3457 } 3458 3459 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) 3460 { 3461 struct hclge_vf_to_pf_msg send_msg; 3462 3463 hclgevf_state_uninit(hdev); 3464 hclgevf_uninit_rxd_adv_layout(hdev); 3465 3466 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0); 3467 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3468 3469 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3470 hclgevf_misc_irq_uninit(hdev); 3471 hclgevf_uninit_msi(hdev); 3472 } 3473 3474 hclgevf_cmd_uninit(hdev); 3475 hclgevf_devlink_uninit(hdev); 3476 hclgevf_pci_uninit(hdev); 3477 hclgevf_uninit_mac_list(hdev); 3478 } 3479 3480 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) 3481 { 3482 struct pci_dev *pdev = ae_dev->pdev; 3483 int ret; 3484 3485 ret = hclgevf_alloc_hdev(ae_dev); 3486 if (ret) { 3487 dev_err(&pdev->dev, "hclge device allocation failed\n"); 3488 return ret; 3489 } 3490 3491 ret = hclgevf_init_hdev(ae_dev->priv); 3492 if (ret) { 3493 dev_err(&pdev->dev, "hclge device initialization failed\n"); 3494 return ret; 3495 } 3496 3497 return 0; 3498 } 3499 3500 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 3501 { 3502 struct hclgevf_dev *hdev = ae_dev->priv; 3503 3504 hclgevf_uninit_hdev(hdev); 3505 ae_dev->priv = NULL; 3506 } 3507 3508 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) 3509 { 3510 struct hnae3_handle *nic = &hdev->nic; 3511 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 3512 3513 return min_t(u32, hdev->rss_size_max, 3514 hdev->num_tqps / kinfo->tc_info.num_tc); 3515 } 3516 3517 /** 3518 * hclgevf_get_channels - Get the current channels enabled and max supported. 3519 * @handle: hardware information for network interface 3520 * @ch: ethtool channels structure 3521 * 3522 * We don't support separate tx and rx queues as channels. The other count 3523 * represents how many queues are being used for control. max_combined counts 3524 * how many queue pairs we can support. They may not be mapped 1 to 1 with 3525 * q_vectors since we support a lot more queue pairs than q_vectors. 3526 **/ 3527 static void hclgevf_get_channels(struct hnae3_handle *handle, 3528 struct ethtool_channels *ch) 3529 { 3530 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3531 3532 ch->max_combined = hclgevf_get_max_channels(hdev); 3533 ch->other_count = 0; 3534 ch->max_other = 0; 3535 ch->combined_count = handle->kinfo.rss_size; 3536 } 3537 3538 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, 3539 u16 *alloc_tqps, u16 *max_rss_size) 3540 { 3541 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3542 3543 *alloc_tqps = hdev->num_tqps; 3544 *max_rss_size = hdev->rss_size_max; 3545 } 3546 3547 static void hclgevf_update_rss_size(struct hnae3_handle *handle, 3548 u32 new_tqps_num) 3549 { 3550 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3551 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3552 u16 max_rss_size; 3553 3554 kinfo->req_rss_size = new_tqps_num; 3555 3556 max_rss_size = min_t(u16, hdev->rss_size_max, 3557 hdev->num_tqps / kinfo->tc_info.num_tc); 3558 3559 /* Use the user's configuration when it is not larger than 3560 * max_rss_size, otherwise, use the maximum specification value. 3561 */ 3562 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size && 3563 kinfo->req_rss_size <= max_rss_size) 3564 kinfo->rss_size = kinfo->req_rss_size; 3565 else if (kinfo->rss_size > max_rss_size || 3566 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size)) 3567 kinfo->rss_size = max_rss_size; 3568 3569 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size; 3570 } 3571 3572 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, 3573 bool rxfh_configured) 3574 { 3575 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3576 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3577 u16 cur_rss_size = kinfo->rss_size; 3578 u16 cur_tqps = kinfo->num_tqps; 3579 u32 *rss_indir; 3580 unsigned int i; 3581 int ret; 3582 3583 hclgevf_update_rss_size(handle, new_tqps_num); 3584 3585 ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size); 3586 if (ret) 3587 return ret; 3588 3589 /* RSS indirection table has been configured by user */ 3590 if (rxfh_configured) 3591 goto out; 3592 3593 /* Reinitializes the rss indirect table according to the new RSS size */ 3594 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size, 3595 sizeof(u32), GFP_KERNEL); 3596 if (!rss_indir) 3597 return -ENOMEM; 3598 3599 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 3600 rss_indir[i] = i % kinfo->rss_size; 3601 3602 hdev->rss_cfg.rss_size = kinfo->rss_size; 3603 3604 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0); 3605 if (ret) 3606 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", 3607 ret); 3608 3609 kfree(rss_indir); 3610 3611 out: 3612 if (!ret) 3613 dev_info(&hdev->pdev->dev, 3614 "Channels changed, rss_size from %u to %u, tqps from %u to %u", 3615 cur_rss_size, kinfo->rss_size, 3616 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc); 3617 3618 return ret; 3619 } 3620 3621 static int hclgevf_get_status(struct hnae3_handle *handle) 3622 { 3623 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3624 3625 return hdev->hw.mac.link; 3626 } 3627 3628 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, 3629 u8 *auto_neg, u32 *speed, 3630 u8 *duplex) 3631 { 3632 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3633 3634 if (speed) 3635 *speed = hdev->hw.mac.speed; 3636 if (duplex) 3637 *duplex = hdev->hw.mac.duplex; 3638 if (auto_neg) 3639 *auto_neg = AUTONEG_DISABLE; 3640 } 3641 3642 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, 3643 u8 duplex) 3644 { 3645 hdev->hw.mac.speed = speed; 3646 hdev->hw.mac.duplex = duplex; 3647 } 3648 3649 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable) 3650 { 3651 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3652 bool gro_en_old = hdev->gro_en; 3653 int ret; 3654 3655 hdev->gro_en = enable; 3656 ret = hclgevf_config_gro(hdev); 3657 if (ret) 3658 hdev->gro_en = gro_en_old; 3659 3660 return ret; 3661 } 3662 3663 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type, 3664 u8 *module_type) 3665 { 3666 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3667 3668 if (media_type) 3669 *media_type = hdev->hw.mac.media_type; 3670 3671 if (module_type) 3672 *module_type = hdev->hw.mac.module_type; 3673 } 3674 3675 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle) 3676 { 3677 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3678 3679 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 3680 } 3681 3682 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle) 3683 { 3684 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3685 3686 return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state); 3687 } 3688 3689 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle) 3690 { 3691 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3692 3693 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 3694 } 3695 3696 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle) 3697 { 3698 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3699 3700 return hdev->rst_stats.hw_rst_done_cnt; 3701 } 3702 3703 static void hclgevf_get_link_mode(struct hnae3_handle *handle, 3704 unsigned long *supported, 3705 unsigned long *advertising) 3706 { 3707 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3708 3709 *supported = hdev->hw.mac.supported; 3710 *advertising = hdev->hw.mac.advertising; 3711 } 3712 3713 #define MAX_SEPARATE_NUM 4 3714 #define SEPARATOR_VALUE 0xFDFCFBFA 3715 #define REG_NUM_PER_LINE 4 3716 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32)) 3717 3718 static int hclgevf_get_regs_len(struct hnae3_handle *handle) 3719 { 3720 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines; 3721 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3722 3723 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1; 3724 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1; 3725 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1; 3726 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1; 3727 3728 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps + 3729 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE; 3730 } 3731 3732 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version, 3733 void *data) 3734 { 3735 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3736 int i, j, reg_um, separator_num; 3737 u32 *reg = data; 3738 3739 *version = hdev->fw_version; 3740 3741 /* fetching per-VF registers values from VF PCIe register space */ 3742 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32); 3743 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3744 for (i = 0; i < reg_um; i++) 3745 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]); 3746 for (i = 0; i < separator_num; i++) 3747 *reg++ = SEPARATOR_VALUE; 3748 3749 reg_um = sizeof(common_reg_addr_list) / sizeof(u32); 3750 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3751 for (i = 0; i < reg_um; i++) 3752 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]); 3753 for (i = 0; i < separator_num; i++) 3754 *reg++ = SEPARATOR_VALUE; 3755 3756 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32); 3757 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3758 for (j = 0; j < hdev->num_tqps; j++) { 3759 for (i = 0; i < reg_um; i++) 3760 *reg++ = hclgevf_read_dev(&hdev->hw, 3761 ring_reg_addr_list[i] + 3762 0x200 * j); 3763 for (i = 0; i < separator_num; i++) 3764 *reg++ = SEPARATOR_VALUE; 3765 } 3766 3767 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32); 3768 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE; 3769 for (j = 0; j < hdev->num_msi_used - 1; j++) { 3770 for (i = 0; i < reg_um; i++) 3771 *reg++ = hclgevf_read_dev(&hdev->hw, 3772 tqp_intr_reg_addr_list[i] + 3773 4 * j); 3774 for (i = 0; i < separator_num; i++) 3775 *reg++ = SEPARATOR_VALUE; 3776 } 3777 } 3778 3779 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state, 3780 u8 *port_base_vlan_info, u8 data_size) 3781 { 3782 struct hnae3_handle *nic = &hdev->nic; 3783 struct hclge_vf_to_pf_msg send_msg; 3784 int ret; 3785 3786 rtnl_lock(); 3787 3788 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 3789 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) { 3790 dev_warn(&hdev->pdev->dev, 3791 "is resetting when updating port based vlan info\n"); 3792 rtnl_unlock(); 3793 return; 3794 } 3795 3796 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 3797 if (ret) { 3798 rtnl_unlock(); 3799 return; 3800 } 3801 3802 /* send msg to PF and wait update port based vlan info */ 3803 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 3804 HCLGE_MBX_PORT_BASE_VLAN_CFG); 3805 memcpy(send_msg.data, port_base_vlan_info, data_size); 3806 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3807 if (!ret) { 3808 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) 3809 nic->port_base_vlan_state = state; 3810 else 3811 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; 3812 } 3813 3814 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 3815 rtnl_unlock(); 3816 } 3817 3818 static const struct hnae3_ae_ops hclgevf_ops = { 3819 .init_ae_dev = hclgevf_init_ae_dev, 3820 .uninit_ae_dev = hclgevf_uninit_ae_dev, 3821 .reset_prepare = hclgevf_reset_prepare_general, 3822 .reset_done = hclgevf_reset_done, 3823 .init_client_instance = hclgevf_init_client_instance, 3824 .uninit_client_instance = hclgevf_uninit_client_instance, 3825 .start = hclgevf_ae_start, 3826 .stop = hclgevf_ae_stop, 3827 .client_start = hclgevf_client_start, 3828 .client_stop = hclgevf_client_stop, 3829 .map_ring_to_vector = hclgevf_map_ring_to_vector, 3830 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, 3831 .get_vector = hclgevf_get_vector, 3832 .put_vector = hclgevf_put_vector, 3833 .reset_queue = hclgevf_reset_tqp, 3834 .get_mac_addr = hclgevf_get_mac_addr, 3835 .set_mac_addr = hclgevf_set_mac_addr, 3836 .add_uc_addr = hclgevf_add_uc_addr, 3837 .rm_uc_addr = hclgevf_rm_uc_addr, 3838 .add_mc_addr = hclgevf_add_mc_addr, 3839 .rm_mc_addr = hclgevf_rm_mc_addr, 3840 .get_stats = hclgevf_get_stats, 3841 .update_stats = hclgevf_update_stats, 3842 .get_strings = hclgevf_get_strings, 3843 .get_sset_count = hclgevf_get_sset_count, 3844 .get_rss_key_size = hclgevf_get_rss_key_size, 3845 .get_rss = hclgevf_get_rss, 3846 .set_rss = hclgevf_set_rss, 3847 .get_rss_tuple = hclgevf_get_rss_tuple, 3848 .set_rss_tuple = hclgevf_set_rss_tuple, 3849 .get_tc_size = hclgevf_get_tc_size, 3850 .get_fw_version = hclgevf_get_fw_version, 3851 .set_vlan_filter = hclgevf_set_vlan_filter, 3852 .enable_vlan_filter = hclgevf_enable_vlan_filter, 3853 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, 3854 .reset_event = hclgevf_reset_event, 3855 .set_default_reset_request = hclgevf_set_def_reset_request, 3856 .set_channels = hclgevf_set_channels, 3857 .get_channels = hclgevf_get_channels, 3858 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, 3859 .get_regs_len = hclgevf_get_regs_len, 3860 .get_regs = hclgevf_get_regs, 3861 .get_status = hclgevf_get_status, 3862 .get_ksettings_an_result = hclgevf_get_ksettings_an_result, 3863 .get_media_type = hclgevf_get_media_type, 3864 .get_hw_reset_stat = hclgevf_get_hw_reset_stat, 3865 .ae_dev_resetting = hclgevf_ae_dev_resetting, 3866 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt, 3867 .set_gro_en = hclgevf_gro_en, 3868 .set_mtu = hclgevf_set_mtu, 3869 .get_global_queue_id = hclgevf_get_qid_global, 3870 .set_timer_task = hclgevf_set_timer_task, 3871 .get_link_mode = hclgevf_get_link_mode, 3872 .set_promisc_mode = hclgevf_set_promisc_mode, 3873 .request_update_promisc_mode = hclgevf_request_update_promisc_mode, 3874 .get_cmdq_stat = hclgevf_get_cmdq_stat, 3875 }; 3876 3877 static struct hnae3_ae_algo ae_algovf = { 3878 .ops = &hclgevf_ops, 3879 .pdev_id_table = ae_algovf_pci_tbl, 3880 }; 3881 3882 static int hclgevf_init(void) 3883 { 3884 pr_info("%s is initializing\n", HCLGEVF_NAME); 3885 3886 hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME); 3887 if (!hclgevf_wq) { 3888 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME); 3889 return -ENOMEM; 3890 } 3891 3892 hnae3_register_ae_algo(&ae_algovf); 3893 3894 return 0; 3895 } 3896 3897 static void hclgevf_exit(void) 3898 { 3899 hnae3_unregister_ae_algo(&ae_algovf); 3900 destroy_workqueue(hclgevf_wq); 3901 } 3902 module_init(hclgevf_init); 3903 module_exit(hclgevf_exit); 3904 3905 MODULE_LICENSE("GPL"); 3906 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 3907 MODULE_DESCRIPTION("HCLGEVF Driver"); 3908 MODULE_VERSION(HCLGEVF_MOD_VERSION); 3909