1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <net/rtnetlink.h>
6 #include "hclgevf_cmd.h"
7 #include "hclgevf_main.h"
8 #include "hclge_mbx.h"
9 #include "hnae3.h"
10 
11 #define HCLGEVF_NAME	"hclgevf"
12 
13 static int hclgevf_init_hdev(struct hclgevf_dev *hdev);
14 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
27 	struct hnae3_handle *handle)
28 {
29 	return container_of(handle, struct hclgevf_dev, nic);
30 }
31 
32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
33 {
34 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
35 	struct hnae3_queue *queue;
36 	struct hclgevf_desc desc;
37 	struct hclgevf_tqp *tqp;
38 	int status;
39 	int i;
40 
41 	for (i = 0; i < hdev->num_tqps; i++) {
42 		queue = handle->kinfo.tqp[i];
43 		tqp = container_of(queue, struct hclgevf_tqp, q);
44 		hclgevf_cmd_setup_basic_desc(&desc,
45 					     HCLGEVF_OPC_QUERY_RX_STATUS,
46 					     true);
47 
48 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
49 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
50 		if (status) {
51 			dev_err(&hdev->pdev->dev,
52 				"Query tqp stat fail, status = %d,queue = %d\n",
53 				status,	i);
54 			return status;
55 		}
56 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
57 			le32_to_cpu(desc.data[1]);
58 
59 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
60 					     true);
61 
62 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
63 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
64 		if (status) {
65 			dev_err(&hdev->pdev->dev,
66 				"Query tqp stat fail, status = %d,queue = %d\n",
67 				status, i);
68 			return status;
69 		}
70 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
71 			le32_to_cpu(desc.data[1]);
72 	}
73 
74 	return 0;
75 }
76 
77 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
78 {
79 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
80 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
81 	struct hclgevf_tqp *tqp;
82 	u64 *buff = data;
83 	int i;
84 
85 	for (i = 0; i < hdev->num_tqps; i++) {
86 		tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
87 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
88 	}
89 	for (i = 0; i < kinfo->num_tqps; i++) {
90 		tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
91 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
92 	}
93 
94 	return buff;
95 }
96 
97 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
98 {
99 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
100 
101 	return hdev->num_tqps * 2;
102 }
103 
104 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
105 {
106 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
107 	u8 *buff = data;
108 	int i = 0;
109 
110 	for (i = 0; i < hdev->num_tqps; i++) {
111 		struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
112 			struct hclgevf_tqp, q);
113 		snprintf(buff, ETH_GSTRING_LEN, "txq#%d_pktnum_rcd",
114 			 tqp->index);
115 		buff += ETH_GSTRING_LEN;
116 	}
117 
118 	for (i = 0; i < hdev->num_tqps; i++) {
119 		struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
120 			struct hclgevf_tqp, q);
121 		snprintf(buff, ETH_GSTRING_LEN, "rxq#%d_pktnum_rcd",
122 			 tqp->index);
123 		buff += ETH_GSTRING_LEN;
124 	}
125 
126 	return buff;
127 }
128 
129 static void hclgevf_update_stats(struct hnae3_handle *handle,
130 				 struct net_device_stats *net_stats)
131 {
132 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
133 	int status;
134 
135 	status = hclgevf_tqps_update_stats(handle);
136 	if (status)
137 		dev_err(&hdev->pdev->dev,
138 			"VF update of TQPS stats fail, status = %d.\n",
139 			status);
140 }
141 
142 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
143 {
144 	if (strset == ETH_SS_TEST)
145 		return -EOPNOTSUPP;
146 	else if (strset == ETH_SS_STATS)
147 		return hclgevf_tqps_get_sset_count(handle, strset);
148 
149 	return 0;
150 }
151 
152 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
153 				u8 *data)
154 {
155 	u8 *p = (char *)data;
156 
157 	if (strset == ETH_SS_STATS)
158 		p = hclgevf_tqps_get_strings(handle, p);
159 }
160 
161 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
162 {
163 	hclgevf_tqps_get_stats(handle, data);
164 }
165 
166 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
167 {
168 	u8 resp_msg;
169 	int status;
170 
171 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
172 				      true, &resp_msg, sizeof(u8));
173 	if (status) {
174 		dev_err(&hdev->pdev->dev,
175 			"VF request to get TC info from PF failed %d",
176 			status);
177 		return status;
178 	}
179 
180 	hdev->hw_tc_map = resp_msg;
181 
182 	return 0;
183 }
184 
185 static int hclge_get_queue_info(struct hclgevf_dev *hdev)
186 {
187 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
188 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
189 	int status;
190 
191 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
192 				      true, resp_msg,
193 				      HCLGEVF_TQPS_RSS_INFO_LEN);
194 	if (status) {
195 		dev_err(&hdev->pdev->dev,
196 			"VF request to get tqp info from PF failed %d",
197 			status);
198 		return status;
199 	}
200 
201 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
202 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
203 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
204 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
205 
206 	return 0;
207 }
208 
209 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
210 {
211 	struct hclgevf_tqp *tqp;
212 	int i;
213 
214 	/* if this is on going reset then we need to re-allocate the TPQs
215 	 * since we cannot assume we would get same number of TPQs back from PF
216 	 */
217 	if (hclgevf_dev_ongoing_reset(hdev))
218 		devm_kfree(&hdev->pdev->dev, hdev->htqp);
219 
220 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
221 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
222 	if (!hdev->htqp)
223 		return -ENOMEM;
224 
225 	tqp = hdev->htqp;
226 
227 	for (i = 0; i < hdev->num_tqps; i++) {
228 		tqp->dev = &hdev->pdev->dev;
229 		tqp->index = i;
230 
231 		tqp->q.ae_algo = &ae_algovf;
232 		tqp->q.buf_size = hdev->rx_buf_len;
233 		tqp->q.desc_num = hdev->num_desc;
234 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
235 			i * HCLGEVF_TQP_REG_SIZE;
236 
237 		tqp++;
238 	}
239 
240 	return 0;
241 }
242 
243 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
244 {
245 	struct hnae3_handle *nic = &hdev->nic;
246 	struct hnae3_knic_private_info *kinfo;
247 	u16 new_tqps = hdev->num_tqps;
248 	int i;
249 
250 	kinfo = &nic->kinfo;
251 	kinfo->num_tc = 0;
252 	kinfo->num_desc = hdev->num_desc;
253 	kinfo->rx_buf_len = hdev->rx_buf_len;
254 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
255 		if (hdev->hw_tc_map & BIT(i))
256 			kinfo->num_tc++;
257 
258 	kinfo->rss_size
259 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
260 	new_tqps = kinfo->rss_size * kinfo->num_tc;
261 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
262 
263 	/* if this is on going reset then we need to re-allocate the hnae queues
264 	 * as well since number of TPQs from PF might have changed.
265 	 */
266 	if (hclgevf_dev_ongoing_reset(hdev))
267 		devm_kfree(&hdev->pdev->dev, kinfo->tqp);
268 
269 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
270 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
271 	if (!kinfo->tqp)
272 		return -ENOMEM;
273 
274 	for (i = 0; i < kinfo->num_tqps; i++) {
275 		hdev->htqp[i].q.handle = &hdev->nic;
276 		hdev->htqp[i].q.tqp_index = i;
277 		kinfo->tqp[i] = &hdev->htqp[i].q;
278 	}
279 
280 	return 0;
281 }
282 
283 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
284 {
285 	int status;
286 	u8 resp_msg;
287 
288 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
289 				      0, false, &resp_msg, sizeof(u8));
290 	if (status)
291 		dev_err(&hdev->pdev->dev,
292 			"VF failed to fetch link status(%d) from PF", status);
293 }
294 
295 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
296 {
297 	struct hnae3_handle *handle = &hdev->nic;
298 	struct hnae3_client *client;
299 
300 	client = handle->client;
301 
302 	if (link_state != hdev->hw.mac.link) {
303 		client->ops->link_status_change(handle, !!link_state);
304 		hdev->hw.mac.link = link_state;
305 	}
306 }
307 
308 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
309 {
310 	struct hnae3_handle *nic = &hdev->nic;
311 	int ret;
312 
313 	nic->ae_algo = &ae_algovf;
314 	nic->pdev = hdev->pdev;
315 	nic->numa_node_mask = hdev->numa_node_mask;
316 	nic->flags |= HNAE3_SUPPORT_VF;
317 
318 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
319 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
320 			hdev->ae_dev->dev_type);
321 		return -EINVAL;
322 	}
323 
324 	ret = hclgevf_knic_setup(hdev);
325 	if (ret)
326 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
327 			ret);
328 	return ret;
329 }
330 
331 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
332 {
333 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
334 	hdev->num_msi_left += 1;
335 	hdev->num_msi_used -= 1;
336 }
337 
338 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
339 			      struct hnae3_vector_info *vector_info)
340 {
341 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
342 	struct hnae3_vector_info *vector = vector_info;
343 	int alloc = 0;
344 	int i, j;
345 
346 	vector_num = min(hdev->num_msi_left, vector_num);
347 
348 	for (j = 0; j < vector_num; j++) {
349 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
350 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
351 				vector->vector = pci_irq_vector(hdev->pdev, i);
352 				vector->io_addr = hdev->hw.io_base +
353 					HCLGEVF_VECTOR_REG_BASE +
354 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
355 				hdev->vector_status[i] = 0;
356 				hdev->vector_irq[i] = vector->vector;
357 
358 				vector++;
359 				alloc++;
360 
361 				break;
362 			}
363 		}
364 	}
365 	hdev->num_msi_left -= alloc;
366 	hdev->num_msi_used += alloc;
367 
368 	return alloc;
369 }
370 
371 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
372 {
373 	int i;
374 
375 	for (i = 0; i < hdev->num_msi; i++)
376 		if (vector == hdev->vector_irq[i])
377 			return i;
378 
379 	return -EINVAL;
380 }
381 
382 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
383 {
384 	return HCLGEVF_RSS_KEY_SIZE;
385 }
386 
387 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
388 {
389 	return HCLGEVF_RSS_IND_TBL_SIZE;
390 }
391 
392 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
393 {
394 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
395 	struct hclgevf_rss_indirection_table_cmd *req;
396 	struct hclgevf_desc desc;
397 	int status;
398 	int i, j;
399 
400 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
401 
402 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
403 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
404 					     false);
405 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
406 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
407 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
408 			req->rss_result[j] =
409 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
410 
411 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
412 		if (status) {
413 			dev_err(&hdev->pdev->dev,
414 				"VF failed(=%d) to set RSS indirection table\n",
415 				status);
416 			return status;
417 		}
418 	}
419 
420 	return 0;
421 }
422 
423 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
424 {
425 	struct hclgevf_rss_tc_mode_cmd *req;
426 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
427 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
428 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
429 	struct hclgevf_desc desc;
430 	u16 roundup_size;
431 	int status;
432 	int i;
433 
434 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
435 
436 	roundup_size = roundup_pow_of_two(rss_size);
437 	roundup_size = ilog2(roundup_size);
438 
439 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
440 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
441 		tc_size[i] = roundup_size;
442 		tc_offset[i] = rss_size * i;
443 	}
444 
445 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
446 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
447 		hnae_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
448 			     (tc_valid[i] & 0x1));
449 		hnae_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
450 			       HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
451 		hnae_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
452 			       HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
453 	}
454 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
455 	if (status)
456 		dev_err(&hdev->pdev->dev,
457 			"VF failed(=%d) to set rss tc mode\n", status);
458 
459 	return status;
460 }
461 
462 static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash,
463 				  u8 *key)
464 {
465 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
466 	struct hclgevf_rss_config_cmd *req;
467 	int lkup_times = key ? 3 : 1;
468 	struct hclgevf_desc desc;
469 	int key_offset;
470 	int key_size;
471 	int status;
472 
473 	req = (struct hclgevf_rss_config_cmd *)desc.data;
474 	lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0);
475 
476 	for (key_offset = 0; key_offset < lkup_times; key_offset++) {
477 		hclgevf_cmd_setup_basic_desc(&desc,
478 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
479 					     true);
480 		req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET);
481 
482 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
483 		if (status) {
484 			dev_err(&hdev->pdev->dev,
485 				"failed to get hardware RSS cfg, status = %d\n",
486 				status);
487 			return status;
488 		}
489 
490 		if (key_offset == 2)
491 			key_size =
492 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
493 		else
494 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
495 
496 		if (key)
497 			memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM,
498 			       req->hash_key,
499 			       key_size);
500 	}
501 
502 	if (hash) {
503 		if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ)
504 			*hash = ETH_RSS_HASH_TOP;
505 		else
506 			*hash = ETH_RSS_HASH_UNKNOWN;
507 	}
508 
509 	return 0;
510 }
511 
512 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
513 			   u8 *hfunc)
514 {
515 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
516 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
517 	int i;
518 
519 	if (indir)
520 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
521 			indir[i] = rss_cfg->rss_indirection_tbl[i];
522 
523 	return hclgevf_get_rss_hw_cfg(handle, hfunc, key);
524 }
525 
526 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
527 			   const  u8 *key, const  u8 hfunc)
528 {
529 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
530 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
531 	int i;
532 
533 	/* update the shadow RSS table with user specified qids */
534 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
535 		rss_cfg->rss_indirection_tbl[i] = indir[i];
536 
537 	/* update the hardware */
538 	return hclgevf_set_rss_indir_table(hdev);
539 }
540 
541 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
542 {
543 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
544 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
545 
546 	return rss_cfg->rss_size;
547 }
548 
549 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
550 				       int vector,
551 				       struct hnae3_ring_chain_node *ring_chain)
552 {
553 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
554 	struct hnae3_ring_chain_node *node;
555 	struct hclge_mbx_vf_to_pf_cmd *req;
556 	struct hclgevf_desc desc;
557 	int i = 0, vector_id;
558 	int status;
559 	u8 type;
560 
561 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
562 	vector_id = hclgevf_get_vector_index(hdev, vector);
563 	if (vector_id < 0) {
564 		dev_err(&handle->pdev->dev,
565 			"Get vector index fail. ret =%d\n", vector_id);
566 		return vector_id;
567 	}
568 
569 	for (node = ring_chain; node; node = node->next) {
570 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
571 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
572 
573 		if (i == 0) {
574 			hclgevf_cmd_setup_basic_desc(&desc,
575 						     HCLGEVF_OPC_MBX_VF_TO_PF,
576 						     false);
577 			type = en ?
578 				HCLGE_MBX_MAP_RING_TO_VECTOR :
579 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
580 			req->msg[0] = type;
581 			req->msg[1] = vector_id;
582 		}
583 
584 		req->msg[idx_offset] =
585 				hnae_get_bit(node->flag, HNAE3_RING_TYPE_B);
586 		req->msg[idx_offset + 1] = node->tqp_index;
587 		req->msg[idx_offset + 2] = hnae_get_field(node->int_gl_idx,
588 							  HNAE3_RING_GL_IDX_M,
589 							  HNAE3_RING_GL_IDX_S);
590 
591 		i++;
592 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
593 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
594 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
595 		    !node->next) {
596 			req->msg[2] = i;
597 
598 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
599 			if (status) {
600 				dev_err(&hdev->pdev->dev,
601 					"Map TQP fail, status is %d.\n",
602 					status);
603 				return status;
604 			}
605 			i = 0;
606 			hclgevf_cmd_setup_basic_desc(&desc,
607 						     HCLGEVF_OPC_MBX_VF_TO_PF,
608 						     false);
609 			req->msg[0] = type;
610 			req->msg[1] = vector_id;
611 		}
612 	}
613 
614 	return 0;
615 }
616 
617 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
618 				      struct hnae3_ring_chain_node *ring_chain)
619 {
620 	return hclgevf_bind_ring_to_vector(handle, true, vector, ring_chain);
621 }
622 
623 static int hclgevf_unmap_ring_from_vector(
624 				struct hnae3_handle *handle,
625 				int vector,
626 				struct hnae3_ring_chain_node *ring_chain)
627 {
628 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
629 	int ret, vector_id;
630 
631 	vector_id = hclgevf_get_vector_index(hdev, vector);
632 	if (vector_id < 0) {
633 		dev_err(&handle->pdev->dev,
634 			"Get vector index fail. ret =%d\n", vector_id);
635 		return vector_id;
636 	}
637 
638 	ret = hclgevf_bind_ring_to_vector(handle, false, vector, ring_chain);
639 	if (ret)
640 		dev_err(&handle->pdev->dev,
641 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
642 			vector_id,
643 			ret);
644 
645 	return ret;
646 }
647 
648 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
649 {
650 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
651 
652 	hclgevf_free_vector(hdev, vector);
653 
654 	return 0;
655 }
656 
657 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
658 					bool en_uc_pmc, bool en_mc_pmc)
659 {
660 	struct hclge_mbx_vf_to_pf_cmd *req;
661 	struct hclgevf_desc desc;
662 	int status;
663 
664 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
665 
666 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
667 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
668 	req->msg[1] = en_uc_pmc ? 1 : 0;
669 	req->msg[2] = en_mc_pmc ? 1 : 0;
670 
671 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
672 	if (status)
673 		dev_err(&hdev->pdev->dev,
674 			"Set promisc mode fail, status is %d.\n", status);
675 
676 	return status;
677 }
678 
679 static void hclgevf_set_promisc_mode(struct hnae3_handle *handle,
680 				     bool en_uc_pmc, bool en_mc_pmc)
681 {
682 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
683 
684 	hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
685 }
686 
687 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
688 			      int stream_id, bool enable)
689 {
690 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
691 	struct hclgevf_desc desc;
692 	int status;
693 
694 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
695 
696 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
697 				     false);
698 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
699 	req->stream_id = cpu_to_le16(stream_id);
700 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
701 
702 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
703 	if (status)
704 		dev_err(&hdev->pdev->dev,
705 			"TQP enable fail, status =%d.\n", status);
706 
707 	return status;
708 }
709 
710 static int hclgevf_get_queue_id(struct hnae3_queue *queue)
711 {
712 	struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q);
713 
714 	return tqp->index;
715 }
716 
717 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
718 {
719 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
720 	struct hnae3_queue *queue;
721 	struct hclgevf_tqp *tqp;
722 	int i;
723 
724 	for (i = 0; i < hdev->num_tqps; i++) {
725 		queue = handle->kinfo.tqp[i];
726 		tqp = container_of(queue, struct hclgevf_tqp, q);
727 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
728 	}
729 }
730 
731 static int hclgevf_cfg_func_mta_type(struct hclgevf_dev *hdev)
732 {
733 	u8 resp_msg = HCLGEVF_MTA_TYPE_SEL_MAX;
734 	int ret;
735 
736 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
737 				   HCLGE_MBX_MAC_VLAN_MTA_TYPE_READ,
738 				   NULL, 0, true, &resp_msg, sizeof(u8));
739 
740 	if (ret) {
741 		dev_err(&hdev->pdev->dev,
742 			"Read mta type fail, ret=%d.\n", ret);
743 		return ret;
744 	}
745 
746 	if (resp_msg > HCLGEVF_MTA_TYPE_SEL_MAX) {
747 		dev_err(&hdev->pdev->dev,
748 			"Read mta type invalid, resp=%d.\n", resp_msg);
749 		return -EINVAL;
750 	}
751 
752 	hdev->mta_mac_sel_type = resp_msg;
753 
754 	return 0;
755 }
756 
757 static u16 hclgevf_get_mac_addr_to_mta_index(struct hclgevf_dev *hdev,
758 					     const u8 *addr)
759 {
760 	u32 rsh = HCLGEVF_MTA_TYPE_SEL_MAX - hdev->mta_mac_sel_type;
761 	u16 high_val = addr[1] | (addr[0] << 8);
762 
763 	return (high_val >> rsh) & 0xfff;
764 }
765 
766 static int hclgevf_do_update_mta_status(struct hclgevf_dev *hdev,
767 					unsigned long *status)
768 {
769 #define HCLGEVF_MTA_STATUS_MSG_SIZE 13
770 #define HCLGEVF_MTA_STATUS_MSG_BITS \
771 			(HCLGEVF_MTA_STATUS_MSG_SIZE * BITS_PER_BYTE)
772 #define HCLGEVF_MTA_STATUS_MSG_END_BITS \
773 			(HCLGEVF_MTA_TBL_SIZE % HCLGEVF_MTA_STATUS_MSG_BITS)
774 	u16 tbl_cnt;
775 	u16 tbl_idx;
776 	u8 msg_cnt;
777 	u8 msg_idx;
778 	int ret;
779 
780 	msg_cnt = DIV_ROUND_UP(HCLGEVF_MTA_TBL_SIZE,
781 			       HCLGEVF_MTA_STATUS_MSG_BITS);
782 	tbl_idx = 0;
783 	msg_idx = 0;
784 	while (msg_cnt--) {
785 		u8 msg[HCLGEVF_MTA_STATUS_MSG_SIZE + 1];
786 		u8 *p = &msg[1];
787 		u8 msg_ofs;
788 		u8 msg_bit;
789 
790 		memset(msg, 0, sizeof(msg));
791 
792 		/* set index field */
793 		msg[0] = 0x7F & msg_idx;
794 
795 		/* set end flag field */
796 		if (msg_cnt == 0) {
797 			msg[0] |= 0x80;
798 			tbl_cnt = HCLGEVF_MTA_STATUS_MSG_END_BITS;
799 		} else {
800 			tbl_cnt = HCLGEVF_MTA_STATUS_MSG_BITS;
801 		}
802 
803 		/* set status field */
804 		msg_ofs = 0;
805 		msg_bit = 0;
806 		while (tbl_cnt--) {
807 			if (test_bit(tbl_idx, status))
808 				p[msg_ofs] |= BIT(msg_bit);
809 
810 			tbl_idx++;
811 
812 			msg_bit++;
813 			if (msg_bit == BITS_PER_BYTE) {
814 				msg_bit = 0;
815 				msg_ofs++;
816 			}
817 		}
818 
819 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
820 					   HCLGE_MBX_MAC_VLAN_MTA_STATUS_UPDATE,
821 					   msg, sizeof(msg), false, NULL, 0);
822 		if (ret)
823 			break;
824 
825 		msg_idx++;
826 	}
827 
828 	return ret;
829 }
830 
831 static int hclgevf_update_mta_status(struct hnae3_handle *handle)
832 {
833 	unsigned long mta_status[BITS_TO_LONGS(HCLGEVF_MTA_TBL_SIZE)];
834 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
835 	struct net_device *netdev = hdev->nic.kinfo.netdev;
836 	struct netdev_hw_addr *ha;
837 	u16 tbl_idx;
838 
839 	/* clear status */
840 	memset(mta_status, 0, sizeof(mta_status));
841 
842 	/* update status from mc addr list */
843 	netdev_for_each_mc_addr(ha, netdev) {
844 		tbl_idx = hclgevf_get_mac_addr_to_mta_index(hdev, ha->addr);
845 		set_bit(tbl_idx, mta_status);
846 	}
847 
848 	return hclgevf_do_update_mta_status(hdev, mta_status);
849 }
850 
851 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
852 {
853 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
854 
855 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
856 }
857 
858 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
859 				bool is_first)
860 {
861 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
862 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
863 	u8 *new_mac_addr = (u8 *)p;
864 	u8 msg_data[ETH_ALEN * 2];
865 	u16 subcode;
866 	int status;
867 
868 	ether_addr_copy(msg_data, new_mac_addr);
869 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
870 
871 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
872 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
873 
874 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
875 				      subcode, msg_data, ETH_ALEN * 2,
876 				      true, NULL, 0);
877 	if (!status)
878 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
879 
880 	return status;
881 }
882 
883 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
884 			       const unsigned char *addr)
885 {
886 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
887 
888 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
889 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
890 				    addr, ETH_ALEN, false, NULL, 0);
891 }
892 
893 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
894 			      const unsigned char *addr)
895 {
896 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
897 
898 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
899 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
900 				    addr, ETH_ALEN, false, NULL, 0);
901 }
902 
903 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
904 			       const unsigned char *addr)
905 {
906 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
907 
908 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
909 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
910 				    addr, ETH_ALEN, false, NULL, 0);
911 }
912 
913 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
914 			      const unsigned char *addr)
915 {
916 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
917 
918 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
919 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
920 				    addr, ETH_ALEN, false, NULL, 0);
921 }
922 
923 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
924 				   __be16 proto, u16 vlan_id,
925 				   bool is_kill)
926 {
927 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
928 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
929 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
930 
931 	if (vlan_id > 4095)
932 		return -EINVAL;
933 
934 	if (proto != htons(ETH_P_8021Q))
935 		return -EPROTONOSUPPORT;
936 
937 	msg_data[0] = is_kill;
938 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
939 	memcpy(&msg_data[3], &proto, sizeof(proto));
940 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
941 				    HCLGE_MBX_VLAN_FILTER, msg_data,
942 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
943 }
944 
945 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
946 {
947 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
948 	u8 msg_data;
949 
950 	msg_data = enable ? 1 : 0;
951 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
952 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
953 				    1, false, NULL, 0);
954 }
955 
956 static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
957 {
958 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
959 	u8 msg_data[2];
960 	int ret;
961 
962 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
963 
964 	/* disable vf queue before send queue reset msg to PF */
965 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
966 	if (ret)
967 		return;
968 
969 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
970 			     2, true, NULL, 0);
971 }
972 
973 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
974 				 enum hnae3_reset_notify_type type)
975 {
976 	struct hnae3_client *client = hdev->nic_client;
977 	struct hnae3_handle *handle = &hdev->nic;
978 
979 	if (!client->ops->reset_notify)
980 		return -EOPNOTSUPP;
981 
982 	return client->ops->reset_notify(handle, type);
983 }
984 
985 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
986 {
987 #define HCLGEVF_RESET_WAIT_MS	500
988 #define HCLGEVF_RESET_WAIT_CNT	20
989 	u32 val, cnt = 0;
990 
991 	/* wait to check the hardware reset completion status */
992 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
993 	while (hnae_get_bit(val, HCLGEVF_FUN_RST_ING_B) &&
994 			    (cnt < HCLGEVF_RESET_WAIT_CNT)) {
995 		msleep(HCLGEVF_RESET_WAIT_MS);
996 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
997 		cnt++;
998 	}
999 
1000 	/* hardware completion status should be available by this time */
1001 	if (cnt >= HCLGEVF_RESET_WAIT_CNT) {
1002 		dev_warn(&hdev->pdev->dev,
1003 			 "could'nt get reset done status from h/w, timeout!\n");
1004 		return -EBUSY;
1005 	}
1006 
1007 	/* we will wait a bit more to let reset of the stack to complete. This
1008 	 * might happen in case reset assertion was made by PF. Yes, this also
1009 	 * means we might end up waiting bit more even for VF reset.
1010 	 */
1011 	msleep(5000);
1012 
1013 	return 0;
1014 }
1015 
1016 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1017 {
1018 	int ret;
1019 
1020 	/* uninitialize the nic client */
1021 	hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1022 
1023 	/* re-initialize the hclge device */
1024 	ret = hclgevf_init_hdev(hdev);
1025 	if (ret) {
1026 		dev_err(&hdev->pdev->dev,
1027 			"hclge device re-init failed, VF is disabled!\n");
1028 		return ret;
1029 	}
1030 
1031 	/* bring up the nic client again */
1032 	hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1033 
1034 	return 0;
1035 }
1036 
1037 static int hclgevf_reset(struct hclgevf_dev *hdev)
1038 {
1039 	int ret;
1040 
1041 	rtnl_lock();
1042 
1043 	/* bring down the nic to stop any ongoing TX/RX */
1044 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1045 
1046 	/* check if VF could successfully fetch the hardware reset completion
1047 	 * status from the hardware
1048 	 */
1049 	ret = hclgevf_reset_wait(hdev);
1050 	if (ret) {
1051 		/* can't do much in this situation, will disable VF */
1052 		dev_err(&hdev->pdev->dev,
1053 			"VF failed(=%d) to fetch H/W reset completion status\n",
1054 			ret);
1055 
1056 		dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n");
1057 		hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1058 
1059 		rtnl_unlock();
1060 		return ret;
1061 	}
1062 
1063 	/* now, re-initialize the nic client and ae device*/
1064 	ret = hclgevf_reset_stack(hdev);
1065 	if (ret)
1066 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1067 
1068 	/* bring up the nic to enable TX/RX again */
1069 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1070 
1071 	rtnl_unlock();
1072 
1073 	return ret;
1074 }
1075 
1076 static int hclgevf_do_reset(struct hclgevf_dev *hdev)
1077 {
1078 	int status;
1079 	u8 respmsg;
1080 
1081 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1082 				      0, false, &respmsg, sizeof(u8));
1083 	if (status)
1084 		dev_err(&hdev->pdev->dev,
1085 			"VF reset request to PF failed(=%d)\n", status);
1086 
1087 	return status;
1088 }
1089 
1090 static void hclgevf_reset_event(struct hnae3_handle *handle)
1091 {
1092 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1093 
1094 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1095 
1096 	handle->reset_level = HNAE3_VF_RESET;
1097 
1098 	/* reset of this VF requested */
1099 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1100 	hclgevf_reset_task_schedule(hdev);
1101 
1102 	handle->last_reset_time = jiffies;
1103 }
1104 
1105 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1106 {
1107 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1108 
1109 	return hdev->fw_version;
1110 }
1111 
1112 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1113 {
1114 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1115 
1116 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1117 					    HCLGEVF_MISC_VECTOR_NUM);
1118 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1119 	/* vector status always valid for Vector 0 */
1120 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1121 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1122 
1123 	hdev->num_msi_left -= 1;
1124 	hdev->num_msi_used += 1;
1125 }
1126 
1127 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1128 {
1129 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1130 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1131 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1132 		schedule_work(&hdev->rst_service_task);
1133 	}
1134 }
1135 
1136 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1137 {
1138 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1139 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1140 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1141 		schedule_work(&hdev->mbx_service_task);
1142 	}
1143 }
1144 
1145 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1146 {
1147 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1148 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1149 		schedule_work(&hdev->service_task);
1150 }
1151 
1152 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1153 {
1154 	/* if we have any pending mailbox event then schedule the mbx task */
1155 	if (hdev->mbx_event_pending)
1156 		hclgevf_mbx_task_schedule(hdev);
1157 
1158 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1159 		hclgevf_reset_task_schedule(hdev);
1160 }
1161 
1162 static void hclgevf_service_timer(struct timer_list *t)
1163 {
1164 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1165 
1166 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1167 
1168 	hclgevf_task_schedule(hdev);
1169 }
1170 
1171 static void hclgevf_reset_service_task(struct work_struct *work)
1172 {
1173 	struct hclgevf_dev *hdev =
1174 		container_of(work, struct hclgevf_dev, rst_service_task);
1175 	int ret;
1176 
1177 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1178 		return;
1179 
1180 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1181 
1182 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1183 			       &hdev->reset_state)) {
1184 		/* PF has initmated that it is about to reset the hardware.
1185 		 * We now have to poll & check if harware has actually completed
1186 		 * the reset sequence. On hardware reset completion, VF needs to
1187 		 * reset the client and ae device.
1188 		 */
1189 		hdev->reset_attempts = 0;
1190 
1191 		ret = hclgevf_reset(hdev);
1192 		if (ret)
1193 			dev_err(&hdev->pdev->dev, "VF stack reset failed.\n");
1194 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1195 				      &hdev->reset_state)) {
1196 		/* we could be here when either of below happens:
1197 		 * 1. reset was initiated due to watchdog timeout due to
1198 		 *    a. IMP was earlier reset and our TX got choked down and
1199 		 *       which resulted in watchdog reacting and inducing VF
1200 		 *       reset. This also means our cmdq would be unreliable.
1201 		 *    b. problem in TX due to other lower layer(example link
1202 		 *       layer not functioning properly etc.)
1203 		 * 2. VF reset might have been initiated due to some config
1204 		 *    change.
1205 		 *
1206 		 * NOTE: Theres no clear way to detect above cases than to react
1207 		 * to the response of PF for this reset request. PF will ack the
1208 		 * 1b and 2. cases but we will not get any intimation about 1a
1209 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1210 		 * communication between PF and VF would be broken.
1211 		 */
1212 
1213 		/* if we are never geting into pending state it means either:
1214 		 * 1. PF is not receiving our request which could be due to IMP
1215 		 *    reset
1216 		 * 2. PF is screwed
1217 		 * We cannot do much for 2. but to check first we can try reset
1218 		 * our PCIe + stack and see if it alleviates the problem.
1219 		 */
1220 		if (hdev->reset_attempts > 3) {
1221 			/* prepare for full reset of stack + pcie interface */
1222 			hdev->nic.reset_level = HNAE3_VF_FULL_RESET;
1223 
1224 			/* "defer" schedule the reset task again */
1225 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1226 		} else {
1227 			hdev->reset_attempts++;
1228 
1229 			/* request PF for resetting this VF via mailbox */
1230 			ret = hclgevf_do_reset(hdev);
1231 			if (ret)
1232 				dev_warn(&hdev->pdev->dev,
1233 					 "VF rst fail, stack will call\n");
1234 		}
1235 	}
1236 
1237 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1238 }
1239 
1240 static void hclgevf_mailbox_service_task(struct work_struct *work)
1241 {
1242 	struct hclgevf_dev *hdev;
1243 
1244 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1245 
1246 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1247 		return;
1248 
1249 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1250 
1251 	hclgevf_mbx_async_handler(hdev);
1252 
1253 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1254 }
1255 
1256 static void hclgevf_service_task(struct work_struct *work)
1257 {
1258 	struct hclgevf_dev *hdev;
1259 
1260 	hdev = container_of(work, struct hclgevf_dev, service_task);
1261 
1262 	/* request the link status from the PF. PF would be able to tell VF
1263 	 * about such updates in future so we might remove this later
1264 	 */
1265 	hclgevf_request_link_info(hdev);
1266 
1267 	hclgevf_deferred_task_schedule(hdev);
1268 
1269 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1270 }
1271 
1272 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1273 {
1274 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1275 }
1276 
1277 static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval)
1278 {
1279 	u32 cmdq_src_reg;
1280 
1281 	/* fetch the events from their corresponding regs */
1282 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1283 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1284 
1285 	/* check for vector0 mailbox(=CMDQ RX) event source */
1286 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1287 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1288 		*clearval = cmdq_src_reg;
1289 		return true;
1290 	}
1291 
1292 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1293 
1294 	return false;
1295 }
1296 
1297 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1298 {
1299 	writel(en ? 1 : 0, vector->addr);
1300 }
1301 
1302 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1303 {
1304 	struct hclgevf_dev *hdev = data;
1305 	u32 clearval;
1306 
1307 	hclgevf_enable_vector(&hdev->misc_vector, false);
1308 	if (!hclgevf_check_event_cause(hdev, &clearval))
1309 		goto skip_sched;
1310 
1311 	hclgevf_mbx_handler(hdev);
1312 
1313 	hclgevf_clear_event_cause(hdev, clearval);
1314 
1315 skip_sched:
1316 	hclgevf_enable_vector(&hdev->misc_vector, true);
1317 
1318 	return IRQ_HANDLED;
1319 }
1320 
1321 static int hclgevf_configure(struct hclgevf_dev *hdev)
1322 {
1323 	int ret;
1324 
1325 	/* get queue configuration from PF */
1326 	ret = hclge_get_queue_info(hdev);
1327 	if (ret)
1328 		return ret;
1329 	/* get tc configuration from PF */
1330 	return hclgevf_get_tc_info(hdev);
1331 }
1332 
1333 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1334 {
1335 	struct pci_dev *pdev = ae_dev->pdev;
1336 	struct hclgevf_dev *hdev = ae_dev->priv;
1337 
1338 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1339 	if (!hdev)
1340 		return -ENOMEM;
1341 
1342 	hdev->pdev = pdev;
1343 	hdev->ae_dev = ae_dev;
1344 	ae_dev->priv = hdev;
1345 
1346 	return 0;
1347 }
1348 
1349 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1350 {
1351 	struct hnae3_handle *roce = &hdev->roce;
1352 	struct hnae3_handle *nic = &hdev->nic;
1353 
1354 	roce->rinfo.num_vectors = HCLGEVF_ROCEE_VECTOR_NUM;
1355 
1356 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1357 	    hdev->num_msi_left == 0)
1358 		return -EINVAL;
1359 
1360 	roce->rinfo.base_vector =
1361 		hdev->vector_status[hdev->num_msi_used];
1362 
1363 	roce->rinfo.netdev = nic->kinfo.netdev;
1364 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1365 
1366 	roce->pdev = nic->pdev;
1367 	roce->ae_algo = nic->ae_algo;
1368 	roce->numa_node_mask = nic->numa_node_mask;
1369 
1370 	return 0;
1371 }
1372 
1373 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1374 {
1375 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1376 	int i, ret;
1377 
1378 	rss_cfg->rss_size = hdev->rss_size_max;
1379 
1380 	/* Initialize RSS indirect table for each vport */
1381 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1382 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1383 
1384 	ret = hclgevf_set_rss_indir_table(hdev);
1385 	if (ret)
1386 		return ret;
1387 
1388 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1389 }
1390 
1391 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1392 {
1393 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1394 	 * here later
1395 	 */
1396 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1397 				       false);
1398 }
1399 
1400 static int hclgevf_ae_start(struct hnae3_handle *handle)
1401 {
1402 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1403 	int i, queue_id;
1404 
1405 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
1406 		/* ring enable */
1407 		queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1408 		if (queue_id < 0) {
1409 			dev_warn(&hdev->pdev->dev,
1410 				 "Get invalid queue id, ignore it\n");
1411 			continue;
1412 		}
1413 
1414 		hclgevf_tqp_enable(hdev, queue_id, 0, true);
1415 	}
1416 
1417 	/* reset tqp stats */
1418 	hclgevf_reset_tqp_stats(handle);
1419 
1420 	hclgevf_request_link_info(hdev);
1421 
1422 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1423 	mod_timer(&hdev->service_timer, jiffies + HZ);
1424 
1425 	return 0;
1426 }
1427 
1428 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1429 {
1430 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1431 	int i, queue_id;
1432 
1433 	for (i = 0; i < hdev->num_tqps; i++) {
1434 		/* Ring disable */
1435 		queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1436 		if (queue_id < 0) {
1437 			dev_warn(&hdev->pdev->dev,
1438 				 "Get invalid queue id, ignore it\n");
1439 			continue;
1440 		}
1441 
1442 		hclgevf_tqp_enable(hdev, queue_id, 0, false);
1443 	}
1444 
1445 	/* reset tqp stats */
1446 	hclgevf_reset_tqp_stats(handle);
1447 	del_timer_sync(&hdev->service_timer);
1448 	cancel_work_sync(&hdev->service_task);
1449 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1450 	hclgevf_update_link_status(hdev, 0);
1451 }
1452 
1453 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1454 {
1455 	/* if this is on going reset then skip this initialization */
1456 	if (hclgevf_dev_ongoing_reset(hdev))
1457 		return;
1458 
1459 	/* setup tasks for the MBX */
1460 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1461 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1462 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1463 
1464 	/* setup tasks for service timer */
1465 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1466 
1467 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1468 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1469 
1470 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1471 
1472 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1473 
1474 	/* bring the device down */
1475 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1476 }
1477 
1478 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1479 {
1480 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1481 
1482 	if (hdev->service_timer.function)
1483 		del_timer_sync(&hdev->service_timer);
1484 	if (hdev->service_task.func)
1485 		cancel_work_sync(&hdev->service_task);
1486 	if (hdev->mbx_service_task.func)
1487 		cancel_work_sync(&hdev->mbx_service_task);
1488 	if (hdev->rst_service_task.func)
1489 		cancel_work_sync(&hdev->rst_service_task);
1490 
1491 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1492 }
1493 
1494 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1495 {
1496 	struct pci_dev *pdev = hdev->pdev;
1497 	int vectors;
1498 	int i;
1499 
1500 	/* if this is on going reset then skip this initialization */
1501 	if (hclgevf_dev_ongoing_reset(hdev))
1502 		return 0;
1503 
1504 	hdev->num_msi = HCLGEVF_MAX_VF_VECTOR_NUM;
1505 
1506 	vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1507 					PCI_IRQ_MSI | PCI_IRQ_MSIX);
1508 	if (vectors < 0) {
1509 		dev_err(&pdev->dev,
1510 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1511 			vectors);
1512 		return vectors;
1513 	}
1514 	if (vectors < hdev->num_msi)
1515 		dev_warn(&hdev->pdev->dev,
1516 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1517 			 hdev->num_msi, vectors);
1518 
1519 	hdev->num_msi = vectors;
1520 	hdev->num_msi_left = vectors;
1521 	hdev->base_msi_vector = pdev->irq;
1522 
1523 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1524 					   sizeof(u16), GFP_KERNEL);
1525 	if (!hdev->vector_status) {
1526 		pci_free_irq_vectors(pdev);
1527 		return -ENOMEM;
1528 	}
1529 
1530 	for (i = 0; i < hdev->num_msi; i++)
1531 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1532 
1533 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1534 					sizeof(int), GFP_KERNEL);
1535 	if (!hdev->vector_irq) {
1536 		pci_free_irq_vectors(pdev);
1537 		return -ENOMEM;
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1544 {
1545 	struct pci_dev *pdev = hdev->pdev;
1546 
1547 	pci_free_irq_vectors(pdev);
1548 }
1549 
1550 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1551 {
1552 	int ret = 0;
1553 
1554 	/* if this is on going reset then skip this initialization */
1555 	if (hclgevf_dev_ongoing_reset(hdev))
1556 		return 0;
1557 
1558 	hclgevf_get_misc_vector(hdev);
1559 
1560 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1561 			  0, "hclgevf_cmd", hdev);
1562 	if (ret) {
1563 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1564 			hdev->misc_vector.vector_irq);
1565 		return ret;
1566 	}
1567 
1568 	hclgevf_clear_event_cause(hdev, 0);
1569 
1570 	/* enable misc. vector(vector 0) */
1571 	hclgevf_enable_vector(&hdev->misc_vector, true);
1572 
1573 	return ret;
1574 }
1575 
1576 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
1577 {
1578 	/* disable misc vector(vector 0) */
1579 	hclgevf_enable_vector(&hdev->misc_vector, false);
1580 	synchronize_irq(hdev->misc_vector.vector_irq);
1581 	free_irq(hdev->misc_vector.vector_irq, hdev);
1582 	hclgevf_free_vector(hdev, 0);
1583 }
1584 
1585 static int hclgevf_init_instance(struct hclgevf_dev *hdev,
1586 				 struct hnae3_client *client)
1587 {
1588 	int ret;
1589 
1590 	switch (client->type) {
1591 	case HNAE3_CLIENT_KNIC:
1592 		hdev->nic_client = client;
1593 		hdev->nic.client = client;
1594 
1595 		ret = client->ops->init_instance(&hdev->nic);
1596 		if (ret)
1597 			return ret;
1598 
1599 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1600 			struct hnae3_client *rc = hdev->roce_client;
1601 
1602 			ret = hclgevf_init_roce_base_info(hdev);
1603 			if (ret)
1604 				return ret;
1605 			ret = rc->ops->init_instance(&hdev->roce);
1606 			if (ret)
1607 				return ret;
1608 		}
1609 		break;
1610 	case HNAE3_CLIENT_UNIC:
1611 		hdev->nic_client = client;
1612 		hdev->nic.client = client;
1613 
1614 		ret = client->ops->init_instance(&hdev->nic);
1615 		if (ret)
1616 			return ret;
1617 		break;
1618 	case HNAE3_CLIENT_ROCE:
1619 		if (hnae3_dev_roce_supported(hdev)) {
1620 			hdev->roce_client = client;
1621 			hdev->roce.client = client;
1622 		}
1623 
1624 		if (hdev->roce_client && hdev->nic_client) {
1625 			ret = hclgevf_init_roce_base_info(hdev);
1626 			if (ret)
1627 				return ret;
1628 
1629 			ret = client->ops->init_instance(&hdev->roce);
1630 			if (ret)
1631 				return ret;
1632 		}
1633 	}
1634 
1635 	return 0;
1636 }
1637 
1638 static void hclgevf_uninit_instance(struct hclgevf_dev *hdev,
1639 				    struct hnae3_client *client)
1640 {
1641 	/* un-init roce, if it exists */
1642 	if (hdev->roce_client)
1643 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
1644 
1645 	/* un-init nic/unic, if this was not called by roce client */
1646 	if ((client->ops->uninit_instance) &&
1647 	    (client->type != HNAE3_CLIENT_ROCE))
1648 		client->ops->uninit_instance(&hdev->nic, 0);
1649 }
1650 
1651 static int hclgevf_register_client(struct hnae3_client *client,
1652 				   struct hnae3_ae_dev *ae_dev)
1653 {
1654 	struct hclgevf_dev *hdev = ae_dev->priv;
1655 
1656 	return hclgevf_init_instance(hdev, client);
1657 }
1658 
1659 static void hclgevf_unregister_client(struct hnae3_client *client,
1660 				      struct hnae3_ae_dev *ae_dev)
1661 {
1662 	struct hclgevf_dev *hdev = ae_dev->priv;
1663 
1664 	hclgevf_uninit_instance(hdev, client);
1665 }
1666 
1667 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
1668 {
1669 	struct pci_dev *pdev = hdev->pdev;
1670 	struct hclgevf_hw *hw;
1671 	int ret;
1672 
1673 	/* check if we need to skip initialization of pci. This will happen if
1674 	 * device is undergoing VF reset. Otherwise, we would need to
1675 	 * re-initialize pci interface again i.e. when device is not going
1676 	 * through *any* reset or actually undergoing full reset.
1677 	 */
1678 	if (hclgevf_dev_ongoing_reset(hdev))
1679 		return 0;
1680 
1681 	ret = pci_enable_device(pdev);
1682 	if (ret) {
1683 		dev_err(&pdev->dev, "failed to enable PCI device\n");
1684 		return ret;
1685 	}
1686 
1687 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1688 	if (ret) {
1689 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
1690 		goto err_disable_device;
1691 	}
1692 
1693 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
1694 	if (ret) {
1695 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
1696 		goto err_disable_device;
1697 	}
1698 
1699 	pci_set_master(pdev);
1700 	hw = &hdev->hw;
1701 	hw->hdev = hdev;
1702 	hw->io_base = pci_iomap(pdev, 2, 0);
1703 	if (!hw->io_base) {
1704 		dev_err(&pdev->dev, "can't map configuration register space\n");
1705 		ret = -ENOMEM;
1706 		goto err_clr_master;
1707 	}
1708 
1709 	return 0;
1710 
1711 err_clr_master:
1712 	pci_clear_master(pdev);
1713 	pci_release_regions(pdev);
1714 err_disable_device:
1715 	pci_disable_device(pdev);
1716 
1717 	return ret;
1718 }
1719 
1720 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
1721 {
1722 	struct pci_dev *pdev = hdev->pdev;
1723 
1724 	pci_iounmap(pdev, hdev->hw.io_base);
1725 	pci_clear_master(pdev);
1726 	pci_release_regions(pdev);
1727 	pci_disable_device(pdev);
1728 }
1729 
1730 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
1731 {
1732 	struct pci_dev *pdev = hdev->pdev;
1733 	int ret;
1734 
1735 	/* check if device is on-going full reset(i.e. pcie as well) */
1736 	if (hclgevf_dev_ongoing_full_reset(hdev)) {
1737 		dev_warn(&pdev->dev, "device is going full reset\n");
1738 		hclgevf_uninit_hdev(hdev);
1739 	}
1740 
1741 	ret = hclgevf_pci_init(hdev);
1742 	if (ret) {
1743 		dev_err(&pdev->dev, "PCI initialization failed\n");
1744 		return ret;
1745 	}
1746 
1747 	ret = hclgevf_init_msi(hdev);
1748 	if (ret) {
1749 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
1750 		goto err_irq_init;
1751 	}
1752 
1753 	hclgevf_state_init(hdev);
1754 
1755 	ret = hclgevf_cmd_init(hdev);
1756 	if (ret)
1757 		goto err_cmd_init;
1758 
1759 	ret = hclgevf_misc_irq_init(hdev);
1760 	if (ret) {
1761 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
1762 			ret);
1763 		goto err_misc_irq_init;
1764 	}
1765 
1766 	ret = hclgevf_configure(hdev);
1767 	if (ret) {
1768 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
1769 		goto err_config;
1770 	}
1771 
1772 	ret = hclgevf_alloc_tqps(hdev);
1773 	if (ret) {
1774 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
1775 		goto err_config;
1776 	}
1777 
1778 	ret = hclgevf_set_handle_info(hdev);
1779 	if (ret) {
1780 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
1781 		goto err_config;
1782 	}
1783 
1784 	/* Initialize mta type for this VF */
1785 	ret = hclgevf_cfg_func_mta_type(hdev);
1786 	if (ret) {
1787 		dev_err(&hdev->pdev->dev,
1788 			"failed(%d) to initialize MTA type\n", ret);
1789 		goto err_config;
1790 	}
1791 
1792 	/* Initialize RSS for this VF */
1793 	ret = hclgevf_rss_init_hw(hdev);
1794 	if (ret) {
1795 		dev_err(&hdev->pdev->dev,
1796 			"failed(%d) to initialize RSS\n", ret);
1797 		goto err_config;
1798 	}
1799 
1800 	ret = hclgevf_init_vlan_config(hdev);
1801 	if (ret) {
1802 		dev_err(&hdev->pdev->dev,
1803 			"failed(%d) to initialize VLAN config\n", ret);
1804 		goto err_config;
1805 	}
1806 
1807 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
1808 
1809 	return 0;
1810 
1811 err_config:
1812 	hclgevf_misc_irq_uninit(hdev);
1813 err_misc_irq_init:
1814 	hclgevf_cmd_uninit(hdev);
1815 err_cmd_init:
1816 	hclgevf_state_uninit(hdev);
1817 	hclgevf_uninit_msi(hdev);
1818 err_irq_init:
1819 	hclgevf_pci_uninit(hdev);
1820 	return ret;
1821 }
1822 
1823 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
1824 {
1825 	hclgevf_state_uninit(hdev);
1826 	hclgevf_misc_irq_uninit(hdev);
1827 	hclgevf_cmd_uninit(hdev);
1828 	hclgevf_uninit_msi(hdev);
1829 	hclgevf_pci_uninit(hdev);
1830 }
1831 
1832 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
1833 {
1834 	struct pci_dev *pdev = ae_dev->pdev;
1835 	int ret;
1836 
1837 	ret = hclgevf_alloc_hdev(ae_dev);
1838 	if (ret) {
1839 		dev_err(&pdev->dev, "hclge device allocation failed\n");
1840 		return ret;
1841 	}
1842 
1843 	ret = hclgevf_init_hdev(ae_dev->priv);
1844 	if (ret)
1845 		dev_err(&pdev->dev, "hclge device initialization failed\n");
1846 
1847 	return ret;
1848 }
1849 
1850 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
1851 {
1852 	struct hclgevf_dev *hdev = ae_dev->priv;
1853 
1854 	hclgevf_uninit_hdev(hdev);
1855 	ae_dev->priv = NULL;
1856 }
1857 
1858 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
1859 {
1860 	struct hnae3_handle *nic = &hdev->nic;
1861 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1862 
1863 	return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
1864 }
1865 
1866 /**
1867  * hclgevf_get_channels - Get the current channels enabled and max supported.
1868  * @handle: hardware information for network interface
1869  * @ch: ethtool channels structure
1870  *
1871  * We don't support separate tx and rx queues as channels. The other count
1872  * represents how many queues are being used for control. max_combined counts
1873  * how many queue pairs we can support. They may not be mapped 1 to 1 with
1874  * q_vectors since we support a lot more queue pairs than q_vectors.
1875  **/
1876 static void hclgevf_get_channels(struct hnae3_handle *handle,
1877 				 struct ethtool_channels *ch)
1878 {
1879 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1880 
1881 	ch->max_combined = hclgevf_get_max_channels(hdev);
1882 	ch->other_count = 0;
1883 	ch->max_other = 0;
1884 	ch->combined_count = hdev->num_tqps;
1885 }
1886 
1887 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
1888 					  u16 *free_tqps, u16 *max_rss_size)
1889 {
1890 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1891 
1892 	*free_tqps = 0;
1893 	*max_rss_size = hdev->rss_size_max;
1894 }
1895 
1896 static int hclgevf_get_status(struct hnae3_handle *handle)
1897 {
1898 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1899 
1900 	return hdev->hw.mac.link;
1901 }
1902 
1903 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
1904 					    u8 *auto_neg, u32 *speed,
1905 					    u8 *duplex)
1906 {
1907 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1908 
1909 	if (speed)
1910 		*speed = hdev->hw.mac.speed;
1911 	if (duplex)
1912 		*duplex = hdev->hw.mac.duplex;
1913 	if (auto_neg)
1914 		*auto_neg = AUTONEG_DISABLE;
1915 }
1916 
1917 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
1918 				 u8 duplex)
1919 {
1920 	hdev->hw.mac.speed = speed;
1921 	hdev->hw.mac.duplex = duplex;
1922 }
1923 
1924 static const struct hnae3_ae_ops hclgevf_ops = {
1925 	.init_ae_dev = hclgevf_init_ae_dev,
1926 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
1927 	.init_client_instance = hclgevf_register_client,
1928 	.uninit_client_instance = hclgevf_unregister_client,
1929 	.start = hclgevf_ae_start,
1930 	.stop = hclgevf_ae_stop,
1931 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
1932 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
1933 	.get_vector = hclgevf_get_vector,
1934 	.put_vector = hclgevf_put_vector,
1935 	.reset_queue = hclgevf_reset_tqp,
1936 	.set_promisc_mode = hclgevf_set_promisc_mode,
1937 	.get_mac_addr = hclgevf_get_mac_addr,
1938 	.set_mac_addr = hclgevf_set_mac_addr,
1939 	.add_uc_addr = hclgevf_add_uc_addr,
1940 	.rm_uc_addr = hclgevf_rm_uc_addr,
1941 	.add_mc_addr = hclgevf_add_mc_addr,
1942 	.rm_mc_addr = hclgevf_rm_mc_addr,
1943 	.update_mta_status = hclgevf_update_mta_status,
1944 	.get_stats = hclgevf_get_stats,
1945 	.update_stats = hclgevf_update_stats,
1946 	.get_strings = hclgevf_get_strings,
1947 	.get_sset_count = hclgevf_get_sset_count,
1948 	.get_rss_key_size = hclgevf_get_rss_key_size,
1949 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
1950 	.get_rss = hclgevf_get_rss,
1951 	.set_rss = hclgevf_set_rss,
1952 	.get_tc_size = hclgevf_get_tc_size,
1953 	.get_fw_version = hclgevf_get_fw_version,
1954 	.set_vlan_filter = hclgevf_set_vlan_filter,
1955 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
1956 	.reset_event = hclgevf_reset_event,
1957 	.get_channels = hclgevf_get_channels,
1958 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
1959 	.get_status = hclgevf_get_status,
1960 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
1961 };
1962 
1963 static struct hnae3_ae_algo ae_algovf = {
1964 	.ops = &hclgevf_ops,
1965 	.name = HCLGEVF_NAME,
1966 	.pdev_id_table = ae_algovf_pci_tbl,
1967 };
1968 
1969 static int hclgevf_init(void)
1970 {
1971 	pr_info("%s is initializing\n", HCLGEVF_NAME);
1972 
1973 	hnae3_register_ae_algo(&ae_algovf);
1974 
1975 	return 0;
1976 }
1977 
1978 static void hclgevf_exit(void)
1979 {
1980 	hnae3_unregister_ae_algo(&ae_algovf);
1981 }
1982 module_init(hclgevf_init);
1983 module_exit(hclgevf_exit);
1984 
1985 MODULE_LICENSE("GPL");
1986 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
1987 MODULE_DESCRIPTION("HCLGEVF Driver");
1988 MODULE_VERSION(HCLGEVF_MOD_VERSION);
1989