1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
27 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
28 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
29 					 HCLGEVF_CMDQ_TX_TAIL_REG,
30 					 HCLGEVF_CMDQ_TX_HEAD_REG,
31 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
32 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
33 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
34 					 HCLGEVF_CMDQ_RX_TAIL_REG,
35 					 HCLGEVF_CMDQ_RX_HEAD_REG,
36 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
37 					 HCLGEVF_CMDQ_INTR_STS_REG,
38 					 HCLGEVF_CMDQ_INTR_EN_REG,
39 					 HCLGEVF_CMDQ_INTR_GEN_REG};
40 
41 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
42 					   HCLGEVF_RST_ING,
43 					   HCLGEVF_GRO_EN_REG};
44 
45 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
46 					 HCLGEVF_RING_RX_ADDR_H_REG,
47 					 HCLGEVF_RING_RX_BD_NUM_REG,
48 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
49 					 HCLGEVF_RING_RX_MERGE_EN_REG,
50 					 HCLGEVF_RING_RX_TAIL_REG,
51 					 HCLGEVF_RING_RX_HEAD_REG,
52 					 HCLGEVF_RING_RX_FBD_NUM_REG,
53 					 HCLGEVF_RING_RX_OFFSET_REG,
54 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
55 					 HCLGEVF_RING_RX_STASH_REG,
56 					 HCLGEVF_RING_RX_BD_ERR_REG,
57 					 HCLGEVF_RING_TX_ADDR_L_REG,
58 					 HCLGEVF_RING_TX_ADDR_H_REG,
59 					 HCLGEVF_RING_TX_BD_NUM_REG,
60 					 HCLGEVF_RING_TX_PRIORITY_REG,
61 					 HCLGEVF_RING_TX_TC_REG,
62 					 HCLGEVF_RING_TX_MERGE_EN_REG,
63 					 HCLGEVF_RING_TX_TAIL_REG,
64 					 HCLGEVF_RING_TX_HEAD_REG,
65 					 HCLGEVF_RING_TX_FBD_NUM_REG,
66 					 HCLGEVF_RING_TX_OFFSET_REG,
67 					 HCLGEVF_RING_TX_EBD_NUM_REG,
68 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
69 					 HCLGEVF_RING_TX_BD_ERR_REG,
70 					 HCLGEVF_RING_EN_REG};
71 
72 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
73 					     HCLGEVF_TQP_INTR_GL0_REG,
74 					     HCLGEVF_TQP_INTR_GL1_REG,
75 					     HCLGEVF_TQP_INTR_GL2_REG,
76 					     HCLGEVF_TQP_INTR_RL_REG};
77 
78 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
79 	struct hnae3_handle *handle)
80 {
81 	return container_of(handle, struct hclgevf_dev, nic);
82 }
83 
84 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
85 {
86 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
87 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
88 	struct hclgevf_desc desc;
89 	struct hclgevf_tqp *tqp;
90 	int status;
91 	int i;
92 
93 	for (i = 0; i < kinfo->num_tqps; i++) {
94 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
95 		hclgevf_cmd_setup_basic_desc(&desc,
96 					     HCLGEVF_OPC_QUERY_RX_STATUS,
97 					     true);
98 
99 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
100 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
101 		if (status) {
102 			dev_err(&hdev->pdev->dev,
103 				"Query tqp stat fail, status = %d,queue = %d\n",
104 				status,	i);
105 			return status;
106 		}
107 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
108 			le32_to_cpu(desc.data[1]);
109 
110 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
111 					     true);
112 
113 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 		if (status) {
116 			dev_err(&hdev->pdev->dev,
117 				"Query tqp stat fail, status = %d,queue = %d\n",
118 				status, i);
119 			return status;
120 		}
121 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
122 			le32_to_cpu(desc.data[1]);
123 	}
124 
125 	return 0;
126 }
127 
128 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
129 {
130 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
131 	struct hclgevf_tqp *tqp;
132 	u64 *buff = data;
133 	int i;
134 
135 	for (i = 0; i < kinfo->num_tqps; i++) {
136 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
137 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
138 	}
139 	for (i = 0; i < kinfo->num_tqps; i++) {
140 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
141 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
142 	}
143 
144 	return buff;
145 }
146 
147 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
148 {
149 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
150 
151 	return kinfo->num_tqps * 2;
152 }
153 
154 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
155 {
156 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
157 	u8 *buff = data;
158 	int i = 0;
159 
160 	for (i = 0; i < kinfo->num_tqps; i++) {
161 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
162 						       struct hclgevf_tqp, q);
163 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
164 			 tqp->index);
165 		buff += ETH_GSTRING_LEN;
166 	}
167 
168 	for (i = 0; i < kinfo->num_tqps; i++) {
169 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
170 						       struct hclgevf_tqp, q);
171 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
172 			 tqp->index);
173 		buff += ETH_GSTRING_LEN;
174 	}
175 
176 	return buff;
177 }
178 
179 static void hclgevf_update_stats(struct hnae3_handle *handle,
180 				 struct net_device_stats *net_stats)
181 {
182 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
183 	int status;
184 
185 	status = hclgevf_tqps_update_stats(handle);
186 	if (status)
187 		dev_err(&hdev->pdev->dev,
188 			"VF update of TQPS stats fail, status = %d.\n",
189 			status);
190 }
191 
192 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
193 {
194 	if (strset == ETH_SS_TEST)
195 		return -EOPNOTSUPP;
196 	else if (strset == ETH_SS_STATS)
197 		return hclgevf_tqps_get_sset_count(handle, strset);
198 
199 	return 0;
200 }
201 
202 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
203 				u8 *data)
204 {
205 	u8 *p = (char *)data;
206 
207 	if (strset == ETH_SS_STATS)
208 		p = hclgevf_tqps_get_strings(handle, p);
209 }
210 
211 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
212 {
213 	hclgevf_tqps_get_stats(handle, data);
214 }
215 
216 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
217 {
218 	u8 resp_msg;
219 	int status;
220 
221 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
222 				      true, &resp_msg, sizeof(u8));
223 	if (status) {
224 		dev_err(&hdev->pdev->dev,
225 			"VF request to get TC info from PF failed %d",
226 			status);
227 		return status;
228 	}
229 
230 	hdev->hw_tc_map = resp_msg;
231 
232 	return 0;
233 }
234 
235 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
236 {
237 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
238 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
239 	int status;
240 
241 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
242 				      true, resp_msg,
243 				      HCLGEVF_TQPS_RSS_INFO_LEN);
244 	if (status) {
245 		dev_err(&hdev->pdev->dev,
246 			"VF request to get tqp info from PF failed %d",
247 			status);
248 		return status;
249 	}
250 
251 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
252 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
253 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
254 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
255 
256 	return 0;
257 }
258 
259 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
260 {
261 	struct hclgevf_tqp *tqp;
262 	int i;
263 
264 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
265 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
266 	if (!hdev->htqp)
267 		return -ENOMEM;
268 
269 	tqp = hdev->htqp;
270 
271 	for (i = 0; i < hdev->num_tqps; i++) {
272 		tqp->dev = &hdev->pdev->dev;
273 		tqp->index = i;
274 
275 		tqp->q.ae_algo = &ae_algovf;
276 		tqp->q.buf_size = hdev->rx_buf_len;
277 		tqp->q.desc_num = hdev->num_desc;
278 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
279 			i * HCLGEVF_TQP_REG_SIZE;
280 
281 		tqp++;
282 	}
283 
284 	return 0;
285 }
286 
287 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
288 {
289 	struct hnae3_handle *nic = &hdev->nic;
290 	struct hnae3_knic_private_info *kinfo;
291 	u16 new_tqps = hdev->num_tqps;
292 	int i;
293 
294 	kinfo = &nic->kinfo;
295 	kinfo->num_tc = 0;
296 	kinfo->num_desc = hdev->num_desc;
297 	kinfo->rx_buf_len = hdev->rx_buf_len;
298 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
299 		if (hdev->hw_tc_map & BIT(i))
300 			kinfo->num_tc++;
301 
302 	kinfo->rss_size
303 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
304 	new_tqps = kinfo->rss_size * kinfo->num_tc;
305 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
306 
307 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
308 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
309 	if (!kinfo->tqp)
310 		return -ENOMEM;
311 
312 	for (i = 0; i < kinfo->num_tqps; i++) {
313 		hdev->htqp[i].q.handle = &hdev->nic;
314 		hdev->htqp[i].q.tqp_index = i;
315 		kinfo->tqp[i] = &hdev->htqp[i].q;
316 	}
317 
318 	return 0;
319 }
320 
321 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
322 {
323 	int status;
324 	u8 resp_msg;
325 
326 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
327 				      0, false, &resp_msg, sizeof(u8));
328 	if (status)
329 		dev_err(&hdev->pdev->dev,
330 			"VF failed to fetch link status(%d) from PF", status);
331 }
332 
333 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
334 {
335 	struct hnae3_handle *handle = &hdev->nic;
336 	struct hnae3_client *client;
337 
338 	client = handle->client;
339 
340 	link_state =
341 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
342 
343 	if (link_state != hdev->hw.mac.link) {
344 		client->ops->link_status_change(handle, !!link_state);
345 		hdev->hw.mac.link = link_state;
346 	}
347 }
348 
349 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
350 {
351 	struct hnae3_handle *nic = &hdev->nic;
352 	int ret;
353 
354 	nic->ae_algo = &ae_algovf;
355 	nic->pdev = hdev->pdev;
356 	nic->numa_node_mask = hdev->numa_node_mask;
357 	nic->flags |= HNAE3_SUPPORT_VF;
358 
359 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
360 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
361 			hdev->ae_dev->dev_type);
362 		return -EINVAL;
363 	}
364 
365 	ret = hclgevf_knic_setup(hdev);
366 	if (ret)
367 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
368 			ret);
369 	return ret;
370 }
371 
372 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
373 {
374 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
375 		dev_warn(&hdev->pdev->dev,
376 			 "vector(vector_id %d) has been freed.\n", vector_id);
377 		return;
378 	}
379 
380 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
381 	hdev->num_msi_left += 1;
382 	hdev->num_msi_used -= 1;
383 }
384 
385 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
386 			      struct hnae3_vector_info *vector_info)
387 {
388 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
389 	struct hnae3_vector_info *vector = vector_info;
390 	int alloc = 0;
391 	int i, j;
392 
393 	vector_num = min(hdev->num_msi_left, vector_num);
394 
395 	for (j = 0; j < vector_num; j++) {
396 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
397 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
398 				vector->vector = pci_irq_vector(hdev->pdev, i);
399 				vector->io_addr = hdev->hw.io_base +
400 					HCLGEVF_VECTOR_REG_BASE +
401 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
402 				hdev->vector_status[i] = 0;
403 				hdev->vector_irq[i] = vector->vector;
404 
405 				vector++;
406 				alloc++;
407 
408 				break;
409 			}
410 		}
411 	}
412 	hdev->num_msi_left -= alloc;
413 	hdev->num_msi_used += alloc;
414 
415 	return alloc;
416 }
417 
418 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
419 {
420 	int i;
421 
422 	for (i = 0; i < hdev->num_msi; i++)
423 		if (vector == hdev->vector_irq[i])
424 			return i;
425 
426 	return -EINVAL;
427 }
428 
429 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
430 				    const u8 hfunc, const u8 *key)
431 {
432 	struct hclgevf_rss_config_cmd *req;
433 	struct hclgevf_desc desc;
434 	int key_offset;
435 	int key_size;
436 	int ret;
437 
438 	req = (struct hclgevf_rss_config_cmd *)desc.data;
439 
440 	for (key_offset = 0; key_offset < 3; key_offset++) {
441 		hclgevf_cmd_setup_basic_desc(&desc,
442 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
443 					     false);
444 
445 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
446 		req->hash_config |=
447 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
448 
449 		if (key_offset == 2)
450 			key_size =
451 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
452 		else
453 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
454 
455 		memcpy(req->hash_key,
456 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
457 
458 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
459 		if (ret) {
460 			dev_err(&hdev->pdev->dev,
461 				"Configure RSS config fail, status = %d\n",
462 				ret);
463 			return ret;
464 		}
465 	}
466 
467 	return 0;
468 }
469 
470 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
471 {
472 	return HCLGEVF_RSS_KEY_SIZE;
473 }
474 
475 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
476 {
477 	return HCLGEVF_RSS_IND_TBL_SIZE;
478 }
479 
480 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
481 {
482 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
483 	struct hclgevf_rss_indirection_table_cmd *req;
484 	struct hclgevf_desc desc;
485 	int status;
486 	int i, j;
487 
488 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
489 
490 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
491 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
492 					     false);
493 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
494 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
495 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
496 			req->rss_result[j] =
497 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
498 
499 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
500 		if (status) {
501 			dev_err(&hdev->pdev->dev,
502 				"VF failed(=%d) to set RSS indirection table\n",
503 				status);
504 			return status;
505 		}
506 	}
507 
508 	return 0;
509 }
510 
511 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
512 {
513 	struct hclgevf_rss_tc_mode_cmd *req;
514 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
515 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
516 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
517 	struct hclgevf_desc desc;
518 	u16 roundup_size;
519 	int status;
520 	int i;
521 
522 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
523 
524 	roundup_size = roundup_pow_of_two(rss_size);
525 	roundup_size = ilog2(roundup_size);
526 
527 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
528 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
529 		tc_size[i] = roundup_size;
530 		tc_offset[i] = rss_size * i;
531 	}
532 
533 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
534 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
535 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
536 			      (tc_valid[i] & 0x1));
537 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
538 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
539 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
540 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
541 	}
542 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
543 	if (status)
544 		dev_err(&hdev->pdev->dev,
545 			"VF failed(=%d) to set rss tc mode\n", status);
546 
547 	return status;
548 }
549 
550 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
551 			   u8 *hfunc)
552 {
553 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
554 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
555 	int i;
556 
557 	if (handle->pdev->revision >= 0x21) {
558 		/* Get hash algorithm */
559 		if (hfunc) {
560 			switch (rss_cfg->hash_algo) {
561 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
562 				*hfunc = ETH_RSS_HASH_TOP;
563 				break;
564 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
565 				*hfunc = ETH_RSS_HASH_XOR;
566 				break;
567 			default:
568 				*hfunc = ETH_RSS_HASH_UNKNOWN;
569 				break;
570 			}
571 		}
572 
573 		/* Get the RSS Key required by the user */
574 		if (key)
575 			memcpy(key, rss_cfg->rss_hash_key,
576 			       HCLGEVF_RSS_KEY_SIZE);
577 	}
578 
579 	if (indir)
580 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
581 			indir[i] = rss_cfg->rss_indirection_tbl[i];
582 
583 	return 0;
584 }
585 
586 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
587 			   const  u8 *key, const  u8 hfunc)
588 {
589 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
590 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
591 	int ret, i;
592 
593 	if (handle->pdev->revision >= 0x21) {
594 		/* Set the RSS Hash Key if specififed by the user */
595 		if (key) {
596 			switch (hfunc) {
597 			case ETH_RSS_HASH_TOP:
598 				rss_cfg->hash_algo =
599 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
600 				break;
601 			case ETH_RSS_HASH_XOR:
602 				rss_cfg->hash_algo =
603 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
604 				break;
605 			case ETH_RSS_HASH_NO_CHANGE:
606 				break;
607 			default:
608 				return -EINVAL;
609 			}
610 
611 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
612 						       key);
613 			if (ret)
614 				return ret;
615 
616 			/* Update the shadow RSS key with user specified qids */
617 			memcpy(rss_cfg->rss_hash_key, key,
618 			       HCLGEVF_RSS_KEY_SIZE);
619 		}
620 	}
621 
622 	/* update the shadow RSS table with user specified qids */
623 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
624 		rss_cfg->rss_indirection_tbl[i] = indir[i];
625 
626 	/* update the hardware */
627 	return hclgevf_set_rss_indir_table(hdev);
628 }
629 
630 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
631 {
632 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
633 
634 	if (nfc->data & RXH_L4_B_2_3)
635 		hash_sets |= HCLGEVF_D_PORT_BIT;
636 	else
637 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
638 
639 	if (nfc->data & RXH_IP_SRC)
640 		hash_sets |= HCLGEVF_S_IP_BIT;
641 	else
642 		hash_sets &= ~HCLGEVF_S_IP_BIT;
643 
644 	if (nfc->data & RXH_IP_DST)
645 		hash_sets |= HCLGEVF_D_IP_BIT;
646 	else
647 		hash_sets &= ~HCLGEVF_D_IP_BIT;
648 
649 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
650 		hash_sets |= HCLGEVF_V_TAG_BIT;
651 
652 	return hash_sets;
653 }
654 
655 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
656 				 struct ethtool_rxnfc *nfc)
657 {
658 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
659 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
660 	struct hclgevf_rss_input_tuple_cmd *req;
661 	struct hclgevf_desc desc;
662 	u8 tuple_sets;
663 	int ret;
664 
665 	if (handle->pdev->revision == 0x20)
666 		return -EOPNOTSUPP;
667 
668 	if (nfc->data &
669 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
670 		return -EINVAL;
671 
672 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
673 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
674 
675 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
676 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
677 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
678 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
679 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
680 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
681 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
682 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
683 
684 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
685 	switch (nfc->flow_type) {
686 	case TCP_V4_FLOW:
687 		req->ipv4_tcp_en = tuple_sets;
688 		break;
689 	case TCP_V6_FLOW:
690 		req->ipv6_tcp_en = tuple_sets;
691 		break;
692 	case UDP_V4_FLOW:
693 		req->ipv4_udp_en = tuple_sets;
694 		break;
695 	case UDP_V6_FLOW:
696 		req->ipv6_udp_en = tuple_sets;
697 		break;
698 	case SCTP_V4_FLOW:
699 		req->ipv4_sctp_en = tuple_sets;
700 		break;
701 	case SCTP_V6_FLOW:
702 		if ((nfc->data & RXH_L4_B_0_1) ||
703 		    (nfc->data & RXH_L4_B_2_3))
704 			return -EINVAL;
705 
706 		req->ipv6_sctp_en = tuple_sets;
707 		break;
708 	case IPV4_FLOW:
709 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
710 		break;
711 	case IPV6_FLOW:
712 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
713 		break;
714 	default:
715 		return -EINVAL;
716 	}
717 
718 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
719 	if (ret) {
720 		dev_err(&hdev->pdev->dev,
721 			"Set rss tuple fail, status = %d\n", ret);
722 		return ret;
723 	}
724 
725 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
726 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
727 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
728 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
729 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
730 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
731 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
732 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
733 	return 0;
734 }
735 
736 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
737 				 struct ethtool_rxnfc *nfc)
738 {
739 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
740 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
741 	u8 tuple_sets;
742 
743 	if (handle->pdev->revision == 0x20)
744 		return -EOPNOTSUPP;
745 
746 	nfc->data = 0;
747 
748 	switch (nfc->flow_type) {
749 	case TCP_V4_FLOW:
750 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
751 		break;
752 	case UDP_V4_FLOW:
753 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
754 		break;
755 	case TCP_V6_FLOW:
756 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
757 		break;
758 	case UDP_V6_FLOW:
759 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
760 		break;
761 	case SCTP_V4_FLOW:
762 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
763 		break;
764 	case SCTP_V6_FLOW:
765 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
766 		break;
767 	case IPV4_FLOW:
768 	case IPV6_FLOW:
769 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
770 		break;
771 	default:
772 		return -EINVAL;
773 	}
774 
775 	if (!tuple_sets)
776 		return 0;
777 
778 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
779 		nfc->data |= RXH_L4_B_2_3;
780 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
781 		nfc->data |= RXH_L4_B_0_1;
782 	if (tuple_sets & HCLGEVF_D_IP_BIT)
783 		nfc->data |= RXH_IP_DST;
784 	if (tuple_sets & HCLGEVF_S_IP_BIT)
785 		nfc->data |= RXH_IP_SRC;
786 
787 	return 0;
788 }
789 
790 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
791 				       struct hclgevf_rss_cfg *rss_cfg)
792 {
793 	struct hclgevf_rss_input_tuple_cmd *req;
794 	struct hclgevf_desc desc;
795 	int ret;
796 
797 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
798 
799 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
800 
801 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
802 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
803 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
804 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
805 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
806 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
807 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
808 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
809 
810 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
811 	if (ret)
812 		dev_err(&hdev->pdev->dev,
813 			"Configure rss input fail, status = %d\n", ret);
814 	return ret;
815 }
816 
817 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
818 {
819 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
820 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
821 
822 	return rss_cfg->rss_size;
823 }
824 
825 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
826 				       int vector_id,
827 				       struct hnae3_ring_chain_node *ring_chain)
828 {
829 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
830 	struct hnae3_ring_chain_node *node;
831 	struct hclge_mbx_vf_to_pf_cmd *req;
832 	struct hclgevf_desc desc;
833 	int i = 0;
834 	int status;
835 	u8 type;
836 
837 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
838 
839 	for (node = ring_chain; node; node = node->next) {
840 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
841 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
842 
843 		if (i == 0) {
844 			hclgevf_cmd_setup_basic_desc(&desc,
845 						     HCLGEVF_OPC_MBX_VF_TO_PF,
846 						     false);
847 			type = en ?
848 				HCLGE_MBX_MAP_RING_TO_VECTOR :
849 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
850 			req->msg[0] = type;
851 			req->msg[1] = vector_id;
852 		}
853 
854 		req->msg[idx_offset] =
855 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
856 		req->msg[idx_offset + 1] = node->tqp_index;
857 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
858 							   HNAE3_RING_GL_IDX_M,
859 							   HNAE3_RING_GL_IDX_S);
860 
861 		i++;
862 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
863 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
864 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
865 		    !node->next) {
866 			req->msg[2] = i;
867 
868 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
869 			if (status) {
870 				dev_err(&hdev->pdev->dev,
871 					"Map TQP fail, status is %d.\n",
872 					status);
873 				return status;
874 			}
875 			i = 0;
876 			hclgevf_cmd_setup_basic_desc(&desc,
877 						     HCLGEVF_OPC_MBX_VF_TO_PF,
878 						     false);
879 			req->msg[0] = type;
880 			req->msg[1] = vector_id;
881 		}
882 	}
883 
884 	return 0;
885 }
886 
887 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
888 				      struct hnae3_ring_chain_node *ring_chain)
889 {
890 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891 	int vector_id;
892 
893 	vector_id = hclgevf_get_vector_index(hdev, vector);
894 	if (vector_id < 0) {
895 		dev_err(&handle->pdev->dev,
896 			"Get vector index fail. ret =%d\n", vector_id);
897 		return vector_id;
898 	}
899 
900 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
901 }
902 
903 static int hclgevf_unmap_ring_from_vector(
904 				struct hnae3_handle *handle,
905 				int vector,
906 				struct hnae3_ring_chain_node *ring_chain)
907 {
908 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
909 	int ret, vector_id;
910 
911 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
912 		return 0;
913 
914 	vector_id = hclgevf_get_vector_index(hdev, vector);
915 	if (vector_id < 0) {
916 		dev_err(&handle->pdev->dev,
917 			"Get vector index fail. ret =%d\n", vector_id);
918 		return vector_id;
919 	}
920 
921 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
922 	if (ret)
923 		dev_err(&handle->pdev->dev,
924 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
925 			vector_id,
926 			ret);
927 
928 	return ret;
929 }
930 
931 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
932 {
933 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
934 	int vector_id;
935 
936 	vector_id = hclgevf_get_vector_index(hdev, vector);
937 	if (vector_id < 0) {
938 		dev_err(&handle->pdev->dev,
939 			"hclgevf_put_vector get vector index fail. ret =%d\n",
940 			vector_id);
941 		return vector_id;
942 	}
943 
944 	hclgevf_free_vector(hdev, vector_id);
945 
946 	return 0;
947 }
948 
949 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
950 					bool en_uc_pmc, bool en_mc_pmc)
951 {
952 	struct hclge_mbx_vf_to_pf_cmd *req;
953 	struct hclgevf_desc desc;
954 	int status;
955 
956 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
957 
958 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
959 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
960 	req->msg[1] = en_uc_pmc ? 1 : 0;
961 	req->msg[2] = en_mc_pmc ? 1 : 0;
962 
963 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
964 	if (status)
965 		dev_err(&hdev->pdev->dev,
966 			"Set promisc mode fail, status is %d.\n", status);
967 
968 	return status;
969 }
970 
971 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle,
972 				    bool en_uc_pmc, bool en_mc_pmc)
973 {
974 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
975 
976 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
977 }
978 
979 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
980 			      int stream_id, bool enable)
981 {
982 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
983 	struct hclgevf_desc desc;
984 	int status;
985 
986 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
987 
988 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
989 				     false);
990 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
991 	req->stream_id = cpu_to_le16(stream_id);
992 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
993 
994 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
995 	if (status)
996 		dev_err(&hdev->pdev->dev,
997 			"TQP enable fail, status =%d.\n", status);
998 
999 	return status;
1000 }
1001 
1002 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1003 {
1004 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1005 	struct hclgevf_tqp *tqp;
1006 	int i;
1007 
1008 	for (i = 0; i < kinfo->num_tqps; i++) {
1009 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1010 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1011 	}
1012 }
1013 
1014 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1015 {
1016 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1017 
1018 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1019 }
1020 
1021 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1022 				bool is_first)
1023 {
1024 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1025 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1026 	u8 *new_mac_addr = (u8 *)p;
1027 	u8 msg_data[ETH_ALEN * 2];
1028 	u16 subcode;
1029 	int status;
1030 
1031 	ether_addr_copy(msg_data, new_mac_addr);
1032 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1033 
1034 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1035 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1036 
1037 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1038 				      subcode, msg_data, ETH_ALEN * 2,
1039 				      true, NULL, 0);
1040 	if (!status)
1041 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1042 
1043 	return status;
1044 }
1045 
1046 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1047 			       const unsigned char *addr)
1048 {
1049 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1050 
1051 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1052 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1053 				    addr, ETH_ALEN, false, NULL, 0);
1054 }
1055 
1056 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1057 			      const unsigned char *addr)
1058 {
1059 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1060 
1061 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1062 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1063 				    addr, ETH_ALEN, false, NULL, 0);
1064 }
1065 
1066 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1067 			       const unsigned char *addr)
1068 {
1069 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1070 
1071 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1072 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1073 				    addr, ETH_ALEN, false, NULL, 0);
1074 }
1075 
1076 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1077 			      const unsigned char *addr)
1078 {
1079 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1080 
1081 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1082 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1083 				    addr, ETH_ALEN, false, NULL, 0);
1084 }
1085 
1086 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1087 				   __be16 proto, u16 vlan_id,
1088 				   bool is_kill)
1089 {
1090 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1091 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1092 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1093 
1094 	if (vlan_id > 4095)
1095 		return -EINVAL;
1096 
1097 	if (proto != htons(ETH_P_8021Q))
1098 		return -EPROTONOSUPPORT;
1099 
1100 	msg_data[0] = is_kill;
1101 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1102 	memcpy(&msg_data[3], &proto, sizeof(proto));
1103 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1104 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1105 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1106 }
1107 
1108 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1109 {
1110 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1111 	u8 msg_data;
1112 
1113 	msg_data = enable ? 1 : 0;
1114 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1115 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1116 				    1, false, NULL, 0);
1117 }
1118 
1119 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1120 {
1121 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1122 	u8 msg_data[2];
1123 	int ret;
1124 
1125 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1126 
1127 	/* disable vf queue before send queue reset msg to PF */
1128 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1129 	if (ret)
1130 		return ret;
1131 
1132 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1133 				    2, true, NULL, 0);
1134 }
1135 
1136 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1137 {
1138 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1139 
1140 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1141 				    sizeof(new_mtu), true, NULL, 0);
1142 }
1143 
1144 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1145 				 enum hnae3_reset_notify_type type)
1146 {
1147 	struct hnae3_client *client = hdev->nic_client;
1148 	struct hnae3_handle *handle = &hdev->nic;
1149 	int ret;
1150 
1151 	if (!client->ops->reset_notify)
1152 		return -EOPNOTSUPP;
1153 
1154 	ret = client->ops->reset_notify(handle, type);
1155 	if (ret)
1156 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1157 			type, ret);
1158 
1159 	return ret;
1160 }
1161 
1162 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1163 {
1164 	struct hclgevf_dev *hdev = ae_dev->priv;
1165 
1166 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1167 }
1168 
1169 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1170 				    unsigned long delay_us,
1171 				    unsigned long wait_cnt)
1172 {
1173 	unsigned long cnt = 0;
1174 
1175 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1176 	       cnt++ < wait_cnt)
1177 		usleep_range(delay_us, delay_us * 2);
1178 
1179 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1180 		dev_err(&hdev->pdev->dev,
1181 			"flr wait timeout\n");
1182 		return -ETIMEDOUT;
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1189 {
1190 #define HCLGEVF_RESET_WAIT_US	20000
1191 #define HCLGEVF_RESET_WAIT_CNT	2000
1192 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1193 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1194 
1195 	u32 val;
1196 	int ret;
1197 
1198 	/* wait to check the hardware reset completion status */
1199 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1200 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1201 
1202 	if (hdev->reset_type == HNAE3_FLR_RESET)
1203 		return hclgevf_flr_poll_timeout(hdev,
1204 						HCLGEVF_RESET_WAIT_US,
1205 						HCLGEVF_RESET_WAIT_CNT);
1206 
1207 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1208 				 !(val & HCLGEVF_RST_ING_BITS),
1209 				 HCLGEVF_RESET_WAIT_US,
1210 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1211 
1212 	/* hardware completion status should be available by this time */
1213 	if (ret) {
1214 		dev_err(&hdev->pdev->dev,
1215 			"could'nt get reset done status from h/w, timeout!\n");
1216 		return ret;
1217 	}
1218 
1219 	/* we will wait a bit more to let reset of the stack to complete. This
1220 	 * might happen in case reset assertion was made by PF. Yes, this also
1221 	 * means we might end up waiting bit more even for VF reset.
1222 	 */
1223 	msleep(5000);
1224 
1225 	return 0;
1226 }
1227 
1228 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1229 {
1230 	int ret;
1231 
1232 	/* uninitialize the nic client */
1233 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1234 	if (ret)
1235 		return ret;
1236 
1237 	/* re-initialize the hclge device */
1238 	ret = hclgevf_reset_hdev(hdev);
1239 	if (ret) {
1240 		dev_err(&hdev->pdev->dev,
1241 			"hclge device re-init failed, VF is disabled!\n");
1242 		return ret;
1243 	}
1244 
1245 	/* bring up the nic client again */
1246 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1247 	if (ret)
1248 		return ret;
1249 
1250 	return 0;
1251 }
1252 
1253 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1254 {
1255 	int ret = 0;
1256 
1257 	switch (hdev->reset_type) {
1258 	case HNAE3_VF_FUNC_RESET:
1259 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1260 					   0, true, NULL, sizeof(u8));
1261 		break;
1262 	case HNAE3_FLR_RESET:
1263 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1264 		break;
1265 	default:
1266 		break;
1267 	}
1268 
1269 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1270 
1271 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1272 		 hdev->reset_type, ret);
1273 
1274 	return ret;
1275 }
1276 
1277 static int hclgevf_reset(struct hclgevf_dev *hdev)
1278 {
1279 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1280 	int ret;
1281 
1282 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1283 	 * know if device is undergoing reset
1284 	 */
1285 	ae_dev->reset_type = hdev->reset_type;
1286 	hdev->reset_count++;
1287 	rtnl_lock();
1288 
1289 	/* bring down the nic to stop any ongoing TX/RX */
1290 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1291 	if (ret)
1292 		goto err_reset_lock;
1293 
1294 	rtnl_unlock();
1295 
1296 	ret = hclgevf_reset_prepare_wait(hdev);
1297 	if (ret)
1298 		goto err_reset;
1299 
1300 	/* check if VF could successfully fetch the hardware reset completion
1301 	 * status from the hardware
1302 	 */
1303 	ret = hclgevf_reset_wait(hdev);
1304 	if (ret) {
1305 		/* can't do much in this situation, will disable VF */
1306 		dev_err(&hdev->pdev->dev,
1307 			"VF failed(=%d) to fetch H/W reset completion status\n",
1308 			ret);
1309 		goto err_reset;
1310 	}
1311 
1312 	rtnl_lock();
1313 
1314 	/* now, re-initialize the nic client and ae device*/
1315 	ret = hclgevf_reset_stack(hdev);
1316 	if (ret) {
1317 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1318 		goto err_reset_lock;
1319 	}
1320 
1321 	/* bring up the nic to enable TX/RX again */
1322 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1323 	if (ret)
1324 		goto err_reset_lock;
1325 
1326 	rtnl_unlock();
1327 
1328 	return ret;
1329 err_reset_lock:
1330 	rtnl_unlock();
1331 err_reset:
1332 	/* When VF reset failed, only the higher level reset asserted by PF
1333 	 * can restore it, so re-initialize the command queue to receive
1334 	 * this higher reset event.
1335 	 */
1336 	hclgevf_cmd_init(hdev);
1337 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1338 
1339 	return ret;
1340 }
1341 
1342 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1343 						     unsigned long *addr)
1344 {
1345 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1346 
1347 	/* return the highest priority reset level amongst all */
1348 	if (test_bit(HNAE3_VF_RESET, addr)) {
1349 		rst_level = HNAE3_VF_RESET;
1350 		clear_bit(HNAE3_VF_RESET, addr);
1351 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1352 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1353 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1354 		rst_level = HNAE3_VF_FULL_RESET;
1355 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1356 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1357 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1358 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1359 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1360 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1361 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1362 		rst_level = HNAE3_VF_FUNC_RESET;
1363 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1364 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1365 		rst_level = HNAE3_FLR_RESET;
1366 		clear_bit(HNAE3_FLR_RESET, addr);
1367 	}
1368 
1369 	return rst_level;
1370 }
1371 
1372 static void hclgevf_reset_event(struct pci_dev *pdev,
1373 				struct hnae3_handle *handle)
1374 {
1375 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1376 	struct hclgevf_dev *hdev = ae_dev->priv;
1377 
1378 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1379 
1380 	if (hdev->default_reset_request)
1381 		hdev->reset_level =
1382 			hclgevf_get_reset_level(hdev,
1383 						&hdev->default_reset_request);
1384 	else
1385 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1386 
1387 	/* reset of this VF requested */
1388 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1389 	hclgevf_reset_task_schedule(hdev);
1390 
1391 	hdev->last_reset_time = jiffies;
1392 }
1393 
1394 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1395 					  enum hnae3_reset_type rst_type)
1396 {
1397 	struct hclgevf_dev *hdev = ae_dev->priv;
1398 
1399 	set_bit(rst_type, &hdev->default_reset_request);
1400 }
1401 
1402 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1403 {
1404 #define HCLGEVF_FLR_WAIT_MS	100
1405 #define HCLGEVF_FLR_WAIT_CNT	50
1406 	struct hclgevf_dev *hdev = ae_dev->priv;
1407 	int cnt = 0;
1408 
1409 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1410 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1411 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1412 	hclgevf_reset_event(hdev->pdev, NULL);
1413 
1414 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1415 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1416 		msleep(HCLGEVF_FLR_WAIT_MS);
1417 
1418 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1419 		dev_err(&hdev->pdev->dev,
1420 			"flr wait down timeout: %d\n", cnt);
1421 }
1422 
1423 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1424 {
1425 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1426 
1427 	return hdev->fw_version;
1428 }
1429 
1430 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1431 {
1432 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1433 
1434 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1435 					    HCLGEVF_MISC_VECTOR_NUM);
1436 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1437 	/* vector status always valid for Vector 0 */
1438 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1439 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1440 
1441 	hdev->num_msi_left -= 1;
1442 	hdev->num_msi_used += 1;
1443 }
1444 
1445 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1446 {
1447 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1448 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1449 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1450 		schedule_work(&hdev->rst_service_task);
1451 	}
1452 }
1453 
1454 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1455 {
1456 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1457 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1458 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1459 		schedule_work(&hdev->mbx_service_task);
1460 	}
1461 }
1462 
1463 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1464 {
1465 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1466 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1467 		schedule_work(&hdev->service_task);
1468 }
1469 
1470 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1471 {
1472 	/* if we have any pending mailbox event then schedule the mbx task */
1473 	if (hdev->mbx_event_pending)
1474 		hclgevf_mbx_task_schedule(hdev);
1475 
1476 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1477 		hclgevf_reset_task_schedule(hdev);
1478 }
1479 
1480 static void hclgevf_service_timer(struct timer_list *t)
1481 {
1482 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1483 
1484 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1485 
1486 	hclgevf_task_schedule(hdev);
1487 }
1488 
1489 static void hclgevf_reset_service_task(struct work_struct *work)
1490 {
1491 	struct hclgevf_dev *hdev =
1492 		container_of(work, struct hclgevf_dev, rst_service_task);
1493 	int ret;
1494 
1495 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1496 		return;
1497 
1498 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1499 
1500 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1501 			       &hdev->reset_state)) {
1502 		/* PF has initmated that it is about to reset the hardware.
1503 		 * We now have to poll & check if harware has actually completed
1504 		 * the reset sequence. On hardware reset completion, VF needs to
1505 		 * reset the client and ae device.
1506 		 */
1507 		hdev->reset_attempts = 0;
1508 
1509 		hdev->last_reset_time = jiffies;
1510 		while ((hdev->reset_type =
1511 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1512 		       != HNAE3_NONE_RESET) {
1513 			ret = hclgevf_reset(hdev);
1514 			if (ret)
1515 				dev_err(&hdev->pdev->dev,
1516 					"VF stack reset failed %d.\n", ret);
1517 		}
1518 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1519 				      &hdev->reset_state)) {
1520 		/* we could be here when either of below happens:
1521 		 * 1. reset was initiated due to watchdog timeout due to
1522 		 *    a. IMP was earlier reset and our TX got choked down and
1523 		 *       which resulted in watchdog reacting and inducing VF
1524 		 *       reset. This also means our cmdq would be unreliable.
1525 		 *    b. problem in TX due to other lower layer(example link
1526 		 *       layer not functioning properly etc.)
1527 		 * 2. VF reset might have been initiated due to some config
1528 		 *    change.
1529 		 *
1530 		 * NOTE: Theres no clear way to detect above cases than to react
1531 		 * to the response of PF for this reset request. PF will ack the
1532 		 * 1b and 2. cases but we will not get any intimation about 1a
1533 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1534 		 * communication between PF and VF would be broken.
1535 		 */
1536 
1537 		/* if we are never geting into pending state it means either:
1538 		 * 1. PF is not receiving our request which could be due to IMP
1539 		 *    reset
1540 		 * 2. PF is screwed
1541 		 * We cannot do much for 2. but to check first we can try reset
1542 		 * our PCIe + stack and see if it alleviates the problem.
1543 		 */
1544 		if (hdev->reset_attempts > 3) {
1545 			/* prepare for full reset of stack + pcie interface */
1546 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1547 
1548 			/* "defer" schedule the reset task again */
1549 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1550 		} else {
1551 			hdev->reset_attempts++;
1552 
1553 			set_bit(hdev->reset_level, &hdev->reset_pending);
1554 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1555 		}
1556 		hclgevf_reset_task_schedule(hdev);
1557 	}
1558 
1559 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1560 }
1561 
1562 static void hclgevf_mailbox_service_task(struct work_struct *work)
1563 {
1564 	struct hclgevf_dev *hdev;
1565 
1566 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1567 
1568 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1569 		return;
1570 
1571 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1572 
1573 	hclgevf_mbx_async_handler(hdev);
1574 
1575 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1576 }
1577 
1578 static void hclgevf_keep_alive_timer(struct timer_list *t)
1579 {
1580 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1581 
1582 	schedule_work(&hdev->keep_alive_task);
1583 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1584 }
1585 
1586 static void hclgevf_keep_alive_task(struct work_struct *work)
1587 {
1588 	struct hclgevf_dev *hdev;
1589 	u8 respmsg;
1590 	int ret;
1591 
1592 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1593 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1594 				   0, false, &respmsg, sizeof(u8));
1595 	if (ret)
1596 		dev_err(&hdev->pdev->dev,
1597 			"VF sends keep alive cmd failed(=%d)\n", ret);
1598 }
1599 
1600 static void hclgevf_service_task(struct work_struct *work)
1601 {
1602 	struct hclgevf_dev *hdev;
1603 
1604 	hdev = container_of(work, struct hclgevf_dev, service_task);
1605 
1606 	/* request the link status from the PF. PF would be able to tell VF
1607 	 * about such updates in future so we might remove this later
1608 	 */
1609 	hclgevf_request_link_info(hdev);
1610 
1611 	hclgevf_deferred_task_schedule(hdev);
1612 
1613 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1614 }
1615 
1616 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1617 {
1618 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1619 }
1620 
1621 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1622 						      u32 *clearval)
1623 {
1624 	u32 cmdq_src_reg, rst_ing_reg;
1625 
1626 	/* fetch the events from their corresponding regs */
1627 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1628 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1629 
1630 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1631 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1632 		dev_info(&hdev->pdev->dev,
1633 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1634 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1635 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1636 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1637 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1638 		*clearval = cmdq_src_reg;
1639 		return HCLGEVF_VECTOR0_EVENT_RST;
1640 	}
1641 
1642 	/* check for vector0 mailbox(=CMDQ RX) event source */
1643 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1644 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1645 		*clearval = cmdq_src_reg;
1646 		return HCLGEVF_VECTOR0_EVENT_MBX;
1647 	}
1648 
1649 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1650 
1651 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1652 }
1653 
1654 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1655 {
1656 	writel(en ? 1 : 0, vector->addr);
1657 }
1658 
1659 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1660 {
1661 	enum hclgevf_evt_cause event_cause;
1662 	struct hclgevf_dev *hdev = data;
1663 	u32 clearval;
1664 
1665 	hclgevf_enable_vector(&hdev->misc_vector, false);
1666 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1667 
1668 	switch (event_cause) {
1669 	case HCLGEVF_VECTOR0_EVENT_RST:
1670 		hclgevf_reset_task_schedule(hdev);
1671 		break;
1672 	case HCLGEVF_VECTOR0_EVENT_MBX:
1673 		hclgevf_mbx_handler(hdev);
1674 		break;
1675 	default:
1676 		break;
1677 	}
1678 
1679 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1680 		hclgevf_clear_event_cause(hdev, clearval);
1681 		hclgevf_enable_vector(&hdev->misc_vector, true);
1682 	}
1683 
1684 	return IRQ_HANDLED;
1685 }
1686 
1687 static int hclgevf_configure(struct hclgevf_dev *hdev)
1688 {
1689 	int ret;
1690 
1691 	hdev->hw.mac.media_type = HNAE3_MEDIA_TYPE_NONE;
1692 
1693 	/* get queue configuration from PF */
1694 	ret = hclgevf_get_queue_info(hdev);
1695 	if (ret)
1696 		return ret;
1697 	/* get tc configuration from PF */
1698 	return hclgevf_get_tc_info(hdev);
1699 }
1700 
1701 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1702 {
1703 	struct pci_dev *pdev = ae_dev->pdev;
1704 	struct hclgevf_dev *hdev = ae_dev->priv;
1705 
1706 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1707 	if (!hdev)
1708 		return -ENOMEM;
1709 
1710 	hdev->pdev = pdev;
1711 	hdev->ae_dev = ae_dev;
1712 	ae_dev->priv = hdev;
1713 
1714 	return 0;
1715 }
1716 
1717 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1718 {
1719 	struct hnae3_handle *roce = &hdev->roce;
1720 	struct hnae3_handle *nic = &hdev->nic;
1721 
1722 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1723 
1724 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1725 	    hdev->num_msi_left == 0)
1726 		return -EINVAL;
1727 
1728 	roce->rinfo.base_vector = hdev->roce_base_vector;
1729 
1730 	roce->rinfo.netdev = nic->kinfo.netdev;
1731 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1732 
1733 	roce->pdev = nic->pdev;
1734 	roce->ae_algo = nic->ae_algo;
1735 	roce->numa_node_mask = nic->numa_node_mask;
1736 
1737 	return 0;
1738 }
1739 
1740 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1741 {
1742 	struct hclgevf_cfg_gro_status_cmd *req;
1743 	struct hclgevf_desc desc;
1744 	int ret;
1745 
1746 	if (!hnae3_dev_gro_supported(hdev))
1747 		return 0;
1748 
1749 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1750 				     false);
1751 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1752 
1753 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1754 
1755 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1756 	if (ret)
1757 		dev_err(&hdev->pdev->dev,
1758 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1759 
1760 	return ret;
1761 }
1762 
1763 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1764 {
1765 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1766 	int i, ret;
1767 
1768 	rss_cfg->rss_size = hdev->rss_size_max;
1769 
1770 	if (hdev->pdev->revision >= 0x21) {
1771 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
1772 		netdev_rss_key_fill(rss_cfg->rss_hash_key,
1773 				    HCLGEVF_RSS_KEY_SIZE);
1774 
1775 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1776 					       rss_cfg->rss_hash_key);
1777 		if (ret)
1778 			return ret;
1779 
1780 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1781 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1782 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1783 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1784 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1785 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1786 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1787 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1788 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1789 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1790 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1791 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1792 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1793 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1794 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1795 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1796 
1797 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1798 		if (ret)
1799 			return ret;
1800 
1801 	}
1802 
1803 	/* Initialize RSS indirect table for each vport */
1804 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1805 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1806 
1807 	ret = hclgevf_set_rss_indir_table(hdev);
1808 	if (ret)
1809 		return ret;
1810 
1811 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1812 }
1813 
1814 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1815 {
1816 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1817 	 * here later
1818 	 */
1819 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1820 				       false);
1821 }
1822 
1823 static int hclgevf_ae_start(struct hnae3_handle *handle)
1824 {
1825 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1826 
1827 	/* reset tqp stats */
1828 	hclgevf_reset_tqp_stats(handle);
1829 
1830 	hclgevf_request_link_info(hdev);
1831 
1832 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1833 	mod_timer(&hdev->service_timer, jiffies + HZ);
1834 
1835 	return 0;
1836 }
1837 
1838 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1839 {
1840 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1841 
1842 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1843 
1844 	/* reset tqp stats */
1845 	hclgevf_reset_tqp_stats(handle);
1846 	del_timer_sync(&hdev->service_timer);
1847 	cancel_work_sync(&hdev->service_task);
1848 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1849 	hclgevf_update_link_status(hdev, 0);
1850 }
1851 
1852 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
1853 {
1854 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1855 	u8 msg_data;
1856 
1857 	msg_data = alive ? 1 : 0;
1858 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
1859 				    0, &msg_data, 1, false, NULL, 0);
1860 }
1861 
1862 static int hclgevf_client_start(struct hnae3_handle *handle)
1863 {
1864 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1865 
1866 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1867 	return hclgevf_set_alive(handle, true);
1868 }
1869 
1870 static void hclgevf_client_stop(struct hnae3_handle *handle)
1871 {
1872 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1873 	int ret;
1874 
1875 	ret = hclgevf_set_alive(handle, false);
1876 	if (ret)
1877 		dev_warn(&hdev->pdev->dev,
1878 			 "%s failed %d\n", __func__, ret);
1879 
1880 	del_timer_sync(&hdev->keep_alive_timer);
1881 	cancel_work_sync(&hdev->keep_alive_task);
1882 }
1883 
1884 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1885 {
1886 	/* setup tasks for the MBX */
1887 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1888 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1889 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1890 
1891 	/* setup tasks for service timer */
1892 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1893 
1894 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1895 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1896 
1897 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1898 
1899 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1900 
1901 	/* bring the device down */
1902 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1903 }
1904 
1905 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1906 {
1907 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1908 
1909 	if (hdev->service_timer.function)
1910 		del_timer_sync(&hdev->service_timer);
1911 	if (hdev->service_task.func)
1912 		cancel_work_sync(&hdev->service_task);
1913 	if (hdev->mbx_service_task.func)
1914 		cancel_work_sync(&hdev->mbx_service_task);
1915 	if (hdev->rst_service_task.func)
1916 		cancel_work_sync(&hdev->rst_service_task);
1917 
1918 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1919 }
1920 
1921 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1922 {
1923 	struct pci_dev *pdev = hdev->pdev;
1924 	int vectors;
1925 	int i;
1926 
1927 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1928 		vectors = pci_alloc_irq_vectors(pdev,
1929 						hdev->roce_base_msix_offset + 1,
1930 						hdev->num_msi,
1931 						PCI_IRQ_MSIX);
1932 	else
1933 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1934 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
1935 
1936 	if (vectors < 0) {
1937 		dev_err(&pdev->dev,
1938 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1939 			vectors);
1940 		return vectors;
1941 	}
1942 	if (vectors < hdev->num_msi)
1943 		dev_warn(&hdev->pdev->dev,
1944 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1945 			 hdev->num_msi, vectors);
1946 
1947 	hdev->num_msi = vectors;
1948 	hdev->num_msi_left = vectors;
1949 	hdev->base_msi_vector = pdev->irq;
1950 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
1951 
1952 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1953 					   sizeof(u16), GFP_KERNEL);
1954 	if (!hdev->vector_status) {
1955 		pci_free_irq_vectors(pdev);
1956 		return -ENOMEM;
1957 	}
1958 
1959 	for (i = 0; i < hdev->num_msi; i++)
1960 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1961 
1962 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1963 					sizeof(int), GFP_KERNEL);
1964 	if (!hdev->vector_irq) {
1965 		devm_kfree(&pdev->dev, hdev->vector_status);
1966 		pci_free_irq_vectors(pdev);
1967 		return -ENOMEM;
1968 	}
1969 
1970 	return 0;
1971 }
1972 
1973 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1974 {
1975 	struct pci_dev *pdev = hdev->pdev;
1976 
1977 	devm_kfree(&pdev->dev, hdev->vector_status);
1978 	devm_kfree(&pdev->dev, hdev->vector_irq);
1979 	pci_free_irq_vectors(pdev);
1980 }
1981 
1982 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1983 {
1984 	int ret = 0;
1985 
1986 	hclgevf_get_misc_vector(hdev);
1987 
1988 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1989 			  0, "hclgevf_cmd", hdev);
1990 	if (ret) {
1991 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1992 			hdev->misc_vector.vector_irq);
1993 		return ret;
1994 	}
1995 
1996 	hclgevf_clear_event_cause(hdev, 0);
1997 
1998 	/* enable misc. vector(vector 0) */
1999 	hclgevf_enable_vector(&hdev->misc_vector, true);
2000 
2001 	return ret;
2002 }
2003 
2004 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2005 {
2006 	/* disable misc vector(vector 0) */
2007 	hclgevf_enable_vector(&hdev->misc_vector, false);
2008 	synchronize_irq(hdev->misc_vector.vector_irq);
2009 	free_irq(hdev->misc_vector.vector_irq, hdev);
2010 	hclgevf_free_vector(hdev, 0);
2011 }
2012 
2013 static int hclgevf_init_client_instance(struct hnae3_client *client,
2014 					struct hnae3_ae_dev *ae_dev)
2015 {
2016 	struct hclgevf_dev *hdev = ae_dev->priv;
2017 	int ret;
2018 
2019 	switch (client->type) {
2020 	case HNAE3_CLIENT_KNIC:
2021 		hdev->nic_client = client;
2022 		hdev->nic.client = client;
2023 
2024 		ret = client->ops->init_instance(&hdev->nic);
2025 		if (ret)
2026 			goto clear_nic;
2027 
2028 		hnae3_set_client_init_flag(client, ae_dev, 1);
2029 
2030 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
2031 			struct hnae3_client *rc = hdev->roce_client;
2032 
2033 			ret = hclgevf_init_roce_base_info(hdev);
2034 			if (ret)
2035 				goto clear_roce;
2036 			ret = rc->ops->init_instance(&hdev->roce);
2037 			if (ret)
2038 				goto clear_roce;
2039 
2040 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
2041 						   1);
2042 		}
2043 		break;
2044 	case HNAE3_CLIENT_UNIC:
2045 		hdev->nic_client = client;
2046 		hdev->nic.client = client;
2047 
2048 		ret = client->ops->init_instance(&hdev->nic);
2049 		if (ret)
2050 			goto clear_nic;
2051 
2052 		hnae3_set_client_init_flag(client, ae_dev, 1);
2053 		break;
2054 	case HNAE3_CLIENT_ROCE:
2055 		if (hnae3_dev_roce_supported(hdev)) {
2056 			hdev->roce_client = client;
2057 			hdev->roce.client = client;
2058 		}
2059 
2060 		if (hdev->roce_client && hdev->nic_client) {
2061 			ret = hclgevf_init_roce_base_info(hdev);
2062 			if (ret)
2063 				goto clear_roce;
2064 
2065 			ret = client->ops->init_instance(&hdev->roce);
2066 			if (ret)
2067 				goto clear_roce;
2068 		}
2069 
2070 		hnae3_set_client_init_flag(client, ae_dev, 1);
2071 		break;
2072 	default:
2073 		return -EINVAL;
2074 	}
2075 
2076 	return 0;
2077 
2078 clear_nic:
2079 	hdev->nic_client = NULL;
2080 	hdev->nic.client = NULL;
2081 	return ret;
2082 clear_roce:
2083 	hdev->roce_client = NULL;
2084 	hdev->roce.client = NULL;
2085 	return ret;
2086 }
2087 
2088 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2089 					   struct hnae3_ae_dev *ae_dev)
2090 {
2091 	struct hclgevf_dev *hdev = ae_dev->priv;
2092 
2093 	/* un-init roce, if it exists */
2094 	if (hdev->roce_client) {
2095 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2096 		hdev->roce_client = NULL;
2097 		hdev->roce.client = NULL;
2098 	}
2099 
2100 	/* un-init nic/unic, if this was not called by roce client */
2101 	if (client->ops->uninit_instance && hdev->nic_client &&
2102 	    client->type != HNAE3_CLIENT_ROCE) {
2103 		client->ops->uninit_instance(&hdev->nic, 0);
2104 		hdev->nic_client = NULL;
2105 		hdev->nic.client = NULL;
2106 	}
2107 }
2108 
2109 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2110 {
2111 	struct pci_dev *pdev = hdev->pdev;
2112 	struct hclgevf_hw *hw;
2113 	int ret;
2114 
2115 	ret = pci_enable_device(pdev);
2116 	if (ret) {
2117 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2118 		return ret;
2119 	}
2120 
2121 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2122 	if (ret) {
2123 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2124 		goto err_disable_device;
2125 	}
2126 
2127 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2128 	if (ret) {
2129 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2130 		goto err_disable_device;
2131 	}
2132 
2133 	pci_set_master(pdev);
2134 	hw = &hdev->hw;
2135 	hw->hdev = hdev;
2136 	hw->io_base = pci_iomap(pdev, 2, 0);
2137 	if (!hw->io_base) {
2138 		dev_err(&pdev->dev, "can't map configuration register space\n");
2139 		ret = -ENOMEM;
2140 		goto err_clr_master;
2141 	}
2142 
2143 	return 0;
2144 
2145 err_clr_master:
2146 	pci_clear_master(pdev);
2147 	pci_release_regions(pdev);
2148 err_disable_device:
2149 	pci_disable_device(pdev);
2150 
2151 	return ret;
2152 }
2153 
2154 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2155 {
2156 	struct pci_dev *pdev = hdev->pdev;
2157 
2158 	pci_iounmap(pdev, hdev->hw.io_base);
2159 	pci_clear_master(pdev);
2160 	pci_release_regions(pdev);
2161 	pci_disable_device(pdev);
2162 }
2163 
2164 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2165 {
2166 	struct hclgevf_query_res_cmd *req;
2167 	struct hclgevf_desc desc;
2168 	int ret;
2169 
2170 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2171 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2172 	if (ret) {
2173 		dev_err(&hdev->pdev->dev,
2174 			"query vf resource failed, ret = %d.\n", ret);
2175 		return ret;
2176 	}
2177 
2178 	req = (struct hclgevf_query_res_cmd *)desc.data;
2179 
2180 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2181 		hdev->roce_base_msix_offset =
2182 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2183 				HCLGEVF_MSIX_OFT_ROCEE_M,
2184 				HCLGEVF_MSIX_OFT_ROCEE_S);
2185 		hdev->num_roce_msix =
2186 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2187 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2188 
2189 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2190 		 * are queued before Roce vectors. The offset is fixed to 64.
2191 		 */
2192 		hdev->num_msi = hdev->num_roce_msix +
2193 				hdev->roce_base_msix_offset;
2194 	} else {
2195 		hdev->num_msi =
2196 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2197 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2198 	}
2199 
2200 	return 0;
2201 }
2202 
2203 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2204 {
2205 	struct pci_dev *pdev = hdev->pdev;
2206 	int ret = 0;
2207 
2208 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2209 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2210 		hclgevf_misc_irq_uninit(hdev);
2211 		hclgevf_uninit_msi(hdev);
2212 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2213 	}
2214 
2215 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2216 		pci_set_master(pdev);
2217 		ret = hclgevf_init_msi(hdev);
2218 		if (ret) {
2219 			dev_err(&pdev->dev,
2220 				"failed(%d) to init MSI/MSI-X\n", ret);
2221 			return ret;
2222 		}
2223 
2224 		ret = hclgevf_misc_irq_init(hdev);
2225 		if (ret) {
2226 			hclgevf_uninit_msi(hdev);
2227 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2228 				ret);
2229 			return ret;
2230 		}
2231 
2232 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2233 	}
2234 
2235 	return ret;
2236 }
2237 
2238 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2239 {
2240 	struct pci_dev *pdev = hdev->pdev;
2241 	int ret;
2242 
2243 	ret = hclgevf_pci_reset(hdev);
2244 	if (ret) {
2245 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2246 		return ret;
2247 	}
2248 
2249 	ret = hclgevf_cmd_init(hdev);
2250 	if (ret) {
2251 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2252 		return ret;
2253 	}
2254 
2255 	ret = hclgevf_rss_init_hw(hdev);
2256 	if (ret) {
2257 		dev_err(&hdev->pdev->dev,
2258 			"failed(%d) to initialize RSS\n", ret);
2259 		return ret;
2260 	}
2261 
2262 	ret = hclgevf_config_gro(hdev, true);
2263 	if (ret)
2264 		return ret;
2265 
2266 	ret = hclgevf_init_vlan_config(hdev);
2267 	if (ret) {
2268 		dev_err(&hdev->pdev->dev,
2269 			"failed(%d) to initialize VLAN config\n", ret);
2270 		return ret;
2271 	}
2272 
2273 	dev_info(&hdev->pdev->dev, "Reset done\n");
2274 
2275 	return 0;
2276 }
2277 
2278 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2279 {
2280 	struct pci_dev *pdev = hdev->pdev;
2281 	int ret;
2282 
2283 	ret = hclgevf_pci_init(hdev);
2284 	if (ret) {
2285 		dev_err(&pdev->dev, "PCI initialization failed\n");
2286 		return ret;
2287 	}
2288 
2289 	ret = hclgevf_cmd_queue_init(hdev);
2290 	if (ret) {
2291 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2292 		goto err_cmd_queue_init;
2293 	}
2294 
2295 	ret = hclgevf_cmd_init(hdev);
2296 	if (ret)
2297 		goto err_cmd_init;
2298 
2299 	/* Get vf resource */
2300 	ret = hclgevf_query_vf_resource(hdev);
2301 	if (ret) {
2302 		dev_err(&hdev->pdev->dev,
2303 			"Query vf status error, ret = %d.\n", ret);
2304 		goto err_cmd_init;
2305 	}
2306 
2307 	ret = hclgevf_init_msi(hdev);
2308 	if (ret) {
2309 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2310 		goto err_cmd_init;
2311 	}
2312 
2313 	hclgevf_state_init(hdev);
2314 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2315 
2316 	ret = hclgevf_misc_irq_init(hdev);
2317 	if (ret) {
2318 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2319 			ret);
2320 		goto err_misc_irq_init;
2321 	}
2322 
2323 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2324 
2325 	ret = hclgevf_configure(hdev);
2326 	if (ret) {
2327 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2328 		goto err_config;
2329 	}
2330 
2331 	ret = hclgevf_alloc_tqps(hdev);
2332 	if (ret) {
2333 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2334 		goto err_config;
2335 	}
2336 
2337 	ret = hclgevf_set_handle_info(hdev);
2338 	if (ret) {
2339 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2340 		goto err_config;
2341 	}
2342 
2343 	ret = hclgevf_config_gro(hdev, true);
2344 	if (ret)
2345 		goto err_config;
2346 
2347 	/* Initialize RSS for this VF */
2348 	ret = hclgevf_rss_init_hw(hdev);
2349 	if (ret) {
2350 		dev_err(&hdev->pdev->dev,
2351 			"failed(%d) to initialize RSS\n", ret);
2352 		goto err_config;
2353 	}
2354 
2355 	ret = hclgevf_init_vlan_config(hdev);
2356 	if (ret) {
2357 		dev_err(&hdev->pdev->dev,
2358 			"failed(%d) to initialize VLAN config\n", ret);
2359 		goto err_config;
2360 	}
2361 
2362 	hdev->last_reset_time = jiffies;
2363 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2364 
2365 	return 0;
2366 
2367 err_config:
2368 	hclgevf_misc_irq_uninit(hdev);
2369 err_misc_irq_init:
2370 	hclgevf_state_uninit(hdev);
2371 	hclgevf_uninit_msi(hdev);
2372 err_cmd_init:
2373 	hclgevf_cmd_uninit(hdev);
2374 err_cmd_queue_init:
2375 	hclgevf_pci_uninit(hdev);
2376 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2377 	return ret;
2378 }
2379 
2380 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2381 {
2382 	hclgevf_state_uninit(hdev);
2383 
2384 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2385 		hclgevf_misc_irq_uninit(hdev);
2386 		hclgevf_uninit_msi(hdev);
2387 		hclgevf_pci_uninit(hdev);
2388 	}
2389 
2390 	hclgevf_cmd_uninit(hdev);
2391 }
2392 
2393 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2394 {
2395 	struct pci_dev *pdev = ae_dev->pdev;
2396 	struct hclgevf_dev *hdev;
2397 	int ret;
2398 
2399 	ret = hclgevf_alloc_hdev(ae_dev);
2400 	if (ret) {
2401 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2402 		return ret;
2403 	}
2404 
2405 	ret = hclgevf_init_hdev(ae_dev->priv);
2406 	if (ret) {
2407 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2408 		return ret;
2409 	}
2410 
2411 	hdev = ae_dev->priv;
2412 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2413 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2414 
2415 	return 0;
2416 }
2417 
2418 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2419 {
2420 	struct hclgevf_dev *hdev = ae_dev->priv;
2421 
2422 	hclgevf_uninit_hdev(hdev);
2423 	ae_dev->priv = NULL;
2424 }
2425 
2426 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2427 {
2428 	struct hnae3_handle *nic = &hdev->nic;
2429 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2430 
2431 	return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
2432 }
2433 
2434 /**
2435  * hclgevf_get_channels - Get the current channels enabled and max supported.
2436  * @handle: hardware information for network interface
2437  * @ch: ethtool channels structure
2438  *
2439  * We don't support separate tx and rx queues as channels. The other count
2440  * represents how many queues are being used for control. max_combined counts
2441  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2442  * q_vectors since we support a lot more queue pairs than q_vectors.
2443  **/
2444 static void hclgevf_get_channels(struct hnae3_handle *handle,
2445 				 struct ethtool_channels *ch)
2446 {
2447 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2448 
2449 	ch->max_combined = hclgevf_get_max_channels(hdev);
2450 	ch->other_count = 0;
2451 	ch->max_other = 0;
2452 	ch->combined_count = hdev->num_tqps;
2453 }
2454 
2455 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2456 					  u16 *alloc_tqps, u16 *max_rss_size)
2457 {
2458 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2459 
2460 	*alloc_tqps = hdev->num_tqps;
2461 	*max_rss_size = hdev->rss_size_max;
2462 }
2463 
2464 static int hclgevf_get_status(struct hnae3_handle *handle)
2465 {
2466 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2467 
2468 	return hdev->hw.mac.link;
2469 }
2470 
2471 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2472 					    u8 *auto_neg, u32 *speed,
2473 					    u8 *duplex)
2474 {
2475 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2476 
2477 	if (speed)
2478 		*speed = hdev->hw.mac.speed;
2479 	if (duplex)
2480 		*duplex = hdev->hw.mac.duplex;
2481 	if (auto_neg)
2482 		*auto_neg = AUTONEG_DISABLE;
2483 }
2484 
2485 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2486 				 u8 duplex)
2487 {
2488 	hdev->hw.mac.speed = speed;
2489 	hdev->hw.mac.duplex = duplex;
2490 }
2491 
2492 static int hclgevf_gro_en(struct hnae3_handle *handle, int enable)
2493 {
2494 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2495 
2496 	return hclgevf_config_gro(hdev, enable);
2497 }
2498 
2499 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2500 				  u8 *media_type)
2501 {
2502 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2503 	if (media_type)
2504 		*media_type = hdev->hw.mac.media_type;
2505 }
2506 
2507 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2508 {
2509 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2510 
2511 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2512 }
2513 
2514 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2515 {
2516 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2517 
2518 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2519 }
2520 
2521 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2522 {
2523 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2524 
2525 	return hdev->reset_count;
2526 }
2527 
2528 #define MAX_SEPARATE_NUM	4
2529 #define SEPARATOR_VALUE		0xFFFFFFFF
2530 #define REG_NUM_PER_LINE	4
2531 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2532 
2533 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2534 {
2535 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2536 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2537 
2538 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2539 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2540 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2541 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2542 
2543 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2544 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2545 }
2546 
2547 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2548 			     void *data)
2549 {
2550 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2551 	int i, j, reg_um, separator_num;
2552 	u32 *reg = data;
2553 
2554 	*version = hdev->fw_version;
2555 
2556 	/* fetching per-VF registers values from VF PCIe register space */
2557 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2558 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2559 	for (i = 0; i < reg_um; i++)
2560 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2561 	for (i = 0; i < separator_num; i++)
2562 		*reg++ = SEPARATOR_VALUE;
2563 
2564 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2565 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2566 	for (i = 0; i < reg_um; i++)
2567 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2568 	for (i = 0; i < separator_num; i++)
2569 		*reg++ = SEPARATOR_VALUE;
2570 
2571 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2572 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2573 	for (j = 0; j < hdev->num_tqps; j++) {
2574 		for (i = 0; i < reg_um; i++)
2575 			*reg++ = hclgevf_read_dev(&hdev->hw,
2576 						  ring_reg_addr_list[i] +
2577 						  0x200 * j);
2578 		for (i = 0; i < separator_num; i++)
2579 			*reg++ = SEPARATOR_VALUE;
2580 	}
2581 
2582 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2583 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2584 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2585 		for (i = 0; i < reg_um; i++)
2586 			*reg++ = hclgevf_read_dev(&hdev->hw,
2587 						  tqp_intr_reg_addr_list[i] +
2588 						  4 * j);
2589 		for (i = 0; i < separator_num; i++)
2590 			*reg++ = SEPARATOR_VALUE;
2591 	}
2592 }
2593 
2594 static const struct hnae3_ae_ops hclgevf_ops = {
2595 	.init_ae_dev = hclgevf_init_ae_dev,
2596 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2597 	.flr_prepare = hclgevf_flr_prepare,
2598 	.flr_done = hclgevf_flr_done,
2599 	.init_client_instance = hclgevf_init_client_instance,
2600 	.uninit_client_instance = hclgevf_uninit_client_instance,
2601 	.start = hclgevf_ae_start,
2602 	.stop = hclgevf_ae_stop,
2603 	.client_start = hclgevf_client_start,
2604 	.client_stop = hclgevf_client_stop,
2605 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2606 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2607 	.get_vector = hclgevf_get_vector,
2608 	.put_vector = hclgevf_put_vector,
2609 	.reset_queue = hclgevf_reset_tqp,
2610 	.set_promisc_mode = hclgevf_set_promisc_mode,
2611 	.get_mac_addr = hclgevf_get_mac_addr,
2612 	.set_mac_addr = hclgevf_set_mac_addr,
2613 	.add_uc_addr = hclgevf_add_uc_addr,
2614 	.rm_uc_addr = hclgevf_rm_uc_addr,
2615 	.add_mc_addr = hclgevf_add_mc_addr,
2616 	.rm_mc_addr = hclgevf_rm_mc_addr,
2617 	.get_stats = hclgevf_get_stats,
2618 	.update_stats = hclgevf_update_stats,
2619 	.get_strings = hclgevf_get_strings,
2620 	.get_sset_count = hclgevf_get_sset_count,
2621 	.get_rss_key_size = hclgevf_get_rss_key_size,
2622 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2623 	.get_rss = hclgevf_get_rss,
2624 	.set_rss = hclgevf_set_rss,
2625 	.get_rss_tuple = hclgevf_get_rss_tuple,
2626 	.set_rss_tuple = hclgevf_set_rss_tuple,
2627 	.get_tc_size = hclgevf_get_tc_size,
2628 	.get_fw_version = hclgevf_get_fw_version,
2629 	.set_vlan_filter = hclgevf_set_vlan_filter,
2630 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2631 	.reset_event = hclgevf_reset_event,
2632 	.set_default_reset_request = hclgevf_set_def_reset_request,
2633 	.get_channels = hclgevf_get_channels,
2634 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2635 	.get_regs_len = hclgevf_get_regs_len,
2636 	.get_regs = hclgevf_get_regs,
2637 	.get_status = hclgevf_get_status,
2638 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2639 	.get_media_type = hclgevf_get_media_type,
2640 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2641 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2642 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2643 	.set_gro_en = hclgevf_gro_en,
2644 	.set_mtu = hclgevf_set_mtu,
2645 };
2646 
2647 static struct hnae3_ae_algo ae_algovf = {
2648 	.ops = &hclgevf_ops,
2649 	.pdev_id_table = ae_algovf_pci_tbl,
2650 };
2651 
2652 static int hclgevf_init(void)
2653 {
2654 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2655 
2656 	hnae3_register_ae_algo(&ae_algovf);
2657 
2658 	return 0;
2659 }
2660 
2661 static void hclgevf_exit(void)
2662 {
2663 	hnae3_unregister_ae_algo(&ae_algovf);
2664 }
2665 module_init(hclgevf_init);
2666 module_exit(hclgevf_exit);
2667 
2668 MODULE_LICENSE("GPL");
2669 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2670 MODULE_DESCRIPTION("HCLGEVF Driver");
2671 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2672