1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
27 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
28 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
29 					 HCLGEVF_CMDQ_TX_TAIL_REG,
30 					 HCLGEVF_CMDQ_TX_HEAD_REG,
31 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
32 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
33 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
34 					 HCLGEVF_CMDQ_RX_TAIL_REG,
35 					 HCLGEVF_CMDQ_RX_HEAD_REG,
36 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
37 					 HCLGEVF_CMDQ_INTR_STS_REG,
38 					 HCLGEVF_CMDQ_INTR_EN_REG,
39 					 HCLGEVF_CMDQ_INTR_GEN_REG};
40 
41 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
42 					   HCLGEVF_RST_ING,
43 					   HCLGEVF_GRO_EN_REG};
44 
45 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
46 					 HCLGEVF_RING_RX_ADDR_H_REG,
47 					 HCLGEVF_RING_RX_BD_NUM_REG,
48 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
49 					 HCLGEVF_RING_RX_MERGE_EN_REG,
50 					 HCLGEVF_RING_RX_TAIL_REG,
51 					 HCLGEVF_RING_RX_HEAD_REG,
52 					 HCLGEVF_RING_RX_FBD_NUM_REG,
53 					 HCLGEVF_RING_RX_OFFSET_REG,
54 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
55 					 HCLGEVF_RING_RX_STASH_REG,
56 					 HCLGEVF_RING_RX_BD_ERR_REG,
57 					 HCLGEVF_RING_TX_ADDR_L_REG,
58 					 HCLGEVF_RING_TX_ADDR_H_REG,
59 					 HCLGEVF_RING_TX_BD_NUM_REG,
60 					 HCLGEVF_RING_TX_PRIORITY_REG,
61 					 HCLGEVF_RING_TX_TC_REG,
62 					 HCLGEVF_RING_TX_MERGE_EN_REG,
63 					 HCLGEVF_RING_TX_TAIL_REG,
64 					 HCLGEVF_RING_TX_HEAD_REG,
65 					 HCLGEVF_RING_TX_FBD_NUM_REG,
66 					 HCLGEVF_RING_TX_OFFSET_REG,
67 					 HCLGEVF_RING_TX_EBD_NUM_REG,
68 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
69 					 HCLGEVF_RING_TX_BD_ERR_REG,
70 					 HCLGEVF_RING_EN_REG};
71 
72 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
73 					     HCLGEVF_TQP_INTR_GL0_REG,
74 					     HCLGEVF_TQP_INTR_GL1_REG,
75 					     HCLGEVF_TQP_INTR_GL2_REG,
76 					     HCLGEVF_TQP_INTR_RL_REG};
77 
78 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
79 	struct hnae3_handle *handle)
80 {
81 	return container_of(handle, struct hclgevf_dev, nic);
82 }
83 
84 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
85 {
86 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
87 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
88 	struct hclgevf_desc desc;
89 	struct hclgevf_tqp *tqp;
90 	int status;
91 	int i;
92 
93 	for (i = 0; i < kinfo->num_tqps; i++) {
94 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
95 		hclgevf_cmd_setup_basic_desc(&desc,
96 					     HCLGEVF_OPC_QUERY_RX_STATUS,
97 					     true);
98 
99 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
100 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
101 		if (status) {
102 			dev_err(&hdev->pdev->dev,
103 				"Query tqp stat fail, status = %d,queue = %d\n",
104 				status,	i);
105 			return status;
106 		}
107 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
108 			le32_to_cpu(desc.data[1]);
109 
110 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
111 					     true);
112 
113 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 		if (status) {
116 			dev_err(&hdev->pdev->dev,
117 				"Query tqp stat fail, status = %d,queue = %d\n",
118 				status, i);
119 			return status;
120 		}
121 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
122 			le32_to_cpu(desc.data[1]);
123 	}
124 
125 	return 0;
126 }
127 
128 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
129 {
130 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
131 	struct hclgevf_tqp *tqp;
132 	u64 *buff = data;
133 	int i;
134 
135 	for (i = 0; i < kinfo->num_tqps; i++) {
136 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
137 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
138 	}
139 	for (i = 0; i < kinfo->num_tqps; i++) {
140 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
141 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
142 	}
143 
144 	return buff;
145 }
146 
147 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
148 {
149 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
150 
151 	return kinfo->num_tqps * 2;
152 }
153 
154 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
155 {
156 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
157 	u8 *buff = data;
158 	int i = 0;
159 
160 	for (i = 0; i < kinfo->num_tqps; i++) {
161 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
162 						       struct hclgevf_tqp, q);
163 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
164 			 tqp->index);
165 		buff += ETH_GSTRING_LEN;
166 	}
167 
168 	for (i = 0; i < kinfo->num_tqps; i++) {
169 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
170 						       struct hclgevf_tqp, q);
171 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
172 			 tqp->index);
173 		buff += ETH_GSTRING_LEN;
174 	}
175 
176 	return buff;
177 }
178 
179 static void hclgevf_update_stats(struct hnae3_handle *handle,
180 				 struct net_device_stats *net_stats)
181 {
182 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
183 	int status;
184 
185 	status = hclgevf_tqps_update_stats(handle);
186 	if (status)
187 		dev_err(&hdev->pdev->dev,
188 			"VF update of TQPS stats fail, status = %d.\n",
189 			status);
190 }
191 
192 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
193 {
194 	if (strset == ETH_SS_TEST)
195 		return -EOPNOTSUPP;
196 	else if (strset == ETH_SS_STATS)
197 		return hclgevf_tqps_get_sset_count(handle, strset);
198 
199 	return 0;
200 }
201 
202 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
203 				u8 *data)
204 {
205 	u8 *p = (char *)data;
206 
207 	if (strset == ETH_SS_STATS)
208 		p = hclgevf_tqps_get_strings(handle, p);
209 }
210 
211 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
212 {
213 	hclgevf_tqps_get_stats(handle, data);
214 }
215 
216 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
217 {
218 	u8 resp_msg;
219 	int status;
220 
221 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
222 				      true, &resp_msg, sizeof(u8));
223 	if (status) {
224 		dev_err(&hdev->pdev->dev,
225 			"VF request to get TC info from PF failed %d",
226 			status);
227 		return status;
228 	}
229 
230 	hdev->hw_tc_map = resp_msg;
231 
232 	return 0;
233 }
234 
235 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
236 {
237 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
238 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
239 	int status;
240 
241 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
242 				      true, resp_msg,
243 				      HCLGEVF_TQPS_RSS_INFO_LEN);
244 	if (status) {
245 		dev_err(&hdev->pdev->dev,
246 			"VF request to get tqp info from PF failed %d",
247 			status);
248 		return status;
249 	}
250 
251 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
252 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
253 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
254 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
255 
256 	return 0;
257 }
258 
259 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
260 {
261 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
262 	u8 msg_data[2], resp_data[2];
263 	u16 qid_in_pf = 0;
264 	int ret;
265 
266 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
267 
268 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
269 				   2, true, resp_data, 2);
270 	if (!ret)
271 		qid_in_pf = *(u16 *)resp_data;
272 
273 	return qid_in_pf;
274 }
275 
276 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
277 {
278 	struct hclgevf_tqp *tqp;
279 	int i;
280 
281 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
282 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
283 	if (!hdev->htqp)
284 		return -ENOMEM;
285 
286 	tqp = hdev->htqp;
287 
288 	for (i = 0; i < hdev->num_tqps; i++) {
289 		tqp->dev = &hdev->pdev->dev;
290 		tqp->index = i;
291 
292 		tqp->q.ae_algo = &ae_algovf;
293 		tqp->q.buf_size = hdev->rx_buf_len;
294 		tqp->q.desc_num = hdev->num_desc;
295 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
296 			i * HCLGEVF_TQP_REG_SIZE;
297 
298 		tqp++;
299 	}
300 
301 	return 0;
302 }
303 
304 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
305 {
306 	struct hnae3_handle *nic = &hdev->nic;
307 	struct hnae3_knic_private_info *kinfo;
308 	u16 new_tqps = hdev->num_tqps;
309 	int i;
310 
311 	kinfo = &nic->kinfo;
312 	kinfo->num_tc = 0;
313 	kinfo->num_desc = hdev->num_desc;
314 	kinfo->rx_buf_len = hdev->rx_buf_len;
315 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
316 		if (hdev->hw_tc_map & BIT(i))
317 			kinfo->num_tc++;
318 
319 	kinfo->rss_size
320 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
321 	new_tqps = kinfo->rss_size * kinfo->num_tc;
322 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
323 
324 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
325 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
326 	if (!kinfo->tqp)
327 		return -ENOMEM;
328 
329 	for (i = 0; i < kinfo->num_tqps; i++) {
330 		hdev->htqp[i].q.handle = &hdev->nic;
331 		hdev->htqp[i].q.tqp_index = i;
332 		kinfo->tqp[i] = &hdev->htqp[i].q;
333 	}
334 
335 	return 0;
336 }
337 
338 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
339 {
340 	int status;
341 	u8 resp_msg;
342 
343 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
344 				      0, false, &resp_msg, sizeof(u8));
345 	if (status)
346 		dev_err(&hdev->pdev->dev,
347 			"VF failed to fetch link status(%d) from PF", status);
348 }
349 
350 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
351 {
352 	struct hnae3_handle *handle = &hdev->nic;
353 	struct hnae3_client *client;
354 
355 	client = handle->client;
356 
357 	link_state =
358 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
359 
360 	if (link_state != hdev->hw.mac.link) {
361 		client->ops->link_status_change(handle, !!link_state);
362 		hdev->hw.mac.link = link_state;
363 	}
364 }
365 
366 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
367 {
368 	struct hnae3_handle *nic = &hdev->nic;
369 	int ret;
370 
371 	nic->ae_algo = &ae_algovf;
372 	nic->pdev = hdev->pdev;
373 	nic->numa_node_mask = hdev->numa_node_mask;
374 	nic->flags |= HNAE3_SUPPORT_VF;
375 
376 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
377 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
378 			hdev->ae_dev->dev_type);
379 		return -EINVAL;
380 	}
381 
382 	ret = hclgevf_knic_setup(hdev);
383 	if (ret)
384 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
385 			ret);
386 	return ret;
387 }
388 
389 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
390 {
391 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
392 		dev_warn(&hdev->pdev->dev,
393 			 "vector(vector_id %d) has been freed.\n", vector_id);
394 		return;
395 	}
396 
397 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
398 	hdev->num_msi_left += 1;
399 	hdev->num_msi_used -= 1;
400 }
401 
402 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
403 			      struct hnae3_vector_info *vector_info)
404 {
405 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
406 	struct hnae3_vector_info *vector = vector_info;
407 	int alloc = 0;
408 	int i, j;
409 
410 	vector_num = min(hdev->num_msi_left, vector_num);
411 
412 	for (j = 0; j < vector_num; j++) {
413 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
414 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
415 				vector->vector = pci_irq_vector(hdev->pdev, i);
416 				vector->io_addr = hdev->hw.io_base +
417 					HCLGEVF_VECTOR_REG_BASE +
418 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
419 				hdev->vector_status[i] = 0;
420 				hdev->vector_irq[i] = vector->vector;
421 
422 				vector++;
423 				alloc++;
424 
425 				break;
426 			}
427 		}
428 	}
429 	hdev->num_msi_left -= alloc;
430 	hdev->num_msi_used += alloc;
431 
432 	return alloc;
433 }
434 
435 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
436 {
437 	int i;
438 
439 	for (i = 0; i < hdev->num_msi; i++)
440 		if (vector == hdev->vector_irq[i])
441 			return i;
442 
443 	return -EINVAL;
444 }
445 
446 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
447 				    const u8 hfunc, const u8 *key)
448 {
449 	struct hclgevf_rss_config_cmd *req;
450 	struct hclgevf_desc desc;
451 	int key_offset;
452 	int key_size;
453 	int ret;
454 
455 	req = (struct hclgevf_rss_config_cmd *)desc.data;
456 
457 	for (key_offset = 0; key_offset < 3; key_offset++) {
458 		hclgevf_cmd_setup_basic_desc(&desc,
459 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
460 					     false);
461 
462 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
463 		req->hash_config |=
464 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
465 
466 		if (key_offset == 2)
467 			key_size =
468 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
469 		else
470 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
471 
472 		memcpy(req->hash_key,
473 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
474 
475 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
476 		if (ret) {
477 			dev_err(&hdev->pdev->dev,
478 				"Configure RSS config fail, status = %d\n",
479 				ret);
480 			return ret;
481 		}
482 	}
483 
484 	return 0;
485 }
486 
487 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
488 {
489 	return HCLGEVF_RSS_KEY_SIZE;
490 }
491 
492 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
493 {
494 	return HCLGEVF_RSS_IND_TBL_SIZE;
495 }
496 
497 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
498 {
499 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
500 	struct hclgevf_rss_indirection_table_cmd *req;
501 	struct hclgevf_desc desc;
502 	int status;
503 	int i, j;
504 
505 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
506 
507 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
508 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
509 					     false);
510 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
511 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
512 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
513 			req->rss_result[j] =
514 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
515 
516 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
517 		if (status) {
518 			dev_err(&hdev->pdev->dev,
519 				"VF failed(=%d) to set RSS indirection table\n",
520 				status);
521 			return status;
522 		}
523 	}
524 
525 	return 0;
526 }
527 
528 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
529 {
530 	struct hclgevf_rss_tc_mode_cmd *req;
531 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
532 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
533 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
534 	struct hclgevf_desc desc;
535 	u16 roundup_size;
536 	int status;
537 	int i;
538 
539 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
540 
541 	roundup_size = roundup_pow_of_two(rss_size);
542 	roundup_size = ilog2(roundup_size);
543 
544 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
545 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
546 		tc_size[i] = roundup_size;
547 		tc_offset[i] = rss_size * i;
548 	}
549 
550 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
551 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
552 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
553 			      (tc_valid[i] & 0x1));
554 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
555 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
556 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
557 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
558 	}
559 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
560 	if (status)
561 		dev_err(&hdev->pdev->dev,
562 			"VF failed(=%d) to set rss tc mode\n", status);
563 
564 	return status;
565 }
566 
567 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
568 			   u8 *hfunc)
569 {
570 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
571 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
572 	int i;
573 
574 	if (handle->pdev->revision >= 0x21) {
575 		/* Get hash algorithm */
576 		if (hfunc) {
577 			switch (rss_cfg->hash_algo) {
578 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
579 				*hfunc = ETH_RSS_HASH_TOP;
580 				break;
581 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
582 				*hfunc = ETH_RSS_HASH_XOR;
583 				break;
584 			default:
585 				*hfunc = ETH_RSS_HASH_UNKNOWN;
586 				break;
587 			}
588 		}
589 
590 		/* Get the RSS Key required by the user */
591 		if (key)
592 			memcpy(key, rss_cfg->rss_hash_key,
593 			       HCLGEVF_RSS_KEY_SIZE);
594 	}
595 
596 	if (indir)
597 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
598 			indir[i] = rss_cfg->rss_indirection_tbl[i];
599 
600 	return 0;
601 }
602 
603 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
604 			   const  u8 *key, const  u8 hfunc)
605 {
606 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
607 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
608 	int ret, i;
609 
610 	if (handle->pdev->revision >= 0x21) {
611 		/* Set the RSS Hash Key if specififed by the user */
612 		if (key) {
613 			switch (hfunc) {
614 			case ETH_RSS_HASH_TOP:
615 				rss_cfg->hash_algo =
616 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
617 				break;
618 			case ETH_RSS_HASH_XOR:
619 				rss_cfg->hash_algo =
620 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
621 				break;
622 			case ETH_RSS_HASH_NO_CHANGE:
623 				break;
624 			default:
625 				return -EINVAL;
626 			}
627 
628 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
629 						       key);
630 			if (ret)
631 				return ret;
632 
633 			/* Update the shadow RSS key with user specified qids */
634 			memcpy(rss_cfg->rss_hash_key, key,
635 			       HCLGEVF_RSS_KEY_SIZE);
636 		}
637 	}
638 
639 	/* update the shadow RSS table with user specified qids */
640 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
641 		rss_cfg->rss_indirection_tbl[i] = indir[i];
642 
643 	/* update the hardware */
644 	return hclgevf_set_rss_indir_table(hdev);
645 }
646 
647 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
648 {
649 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
650 
651 	if (nfc->data & RXH_L4_B_2_3)
652 		hash_sets |= HCLGEVF_D_PORT_BIT;
653 	else
654 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
655 
656 	if (nfc->data & RXH_IP_SRC)
657 		hash_sets |= HCLGEVF_S_IP_BIT;
658 	else
659 		hash_sets &= ~HCLGEVF_S_IP_BIT;
660 
661 	if (nfc->data & RXH_IP_DST)
662 		hash_sets |= HCLGEVF_D_IP_BIT;
663 	else
664 		hash_sets &= ~HCLGEVF_D_IP_BIT;
665 
666 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
667 		hash_sets |= HCLGEVF_V_TAG_BIT;
668 
669 	return hash_sets;
670 }
671 
672 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
673 				 struct ethtool_rxnfc *nfc)
674 {
675 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
676 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
677 	struct hclgevf_rss_input_tuple_cmd *req;
678 	struct hclgevf_desc desc;
679 	u8 tuple_sets;
680 	int ret;
681 
682 	if (handle->pdev->revision == 0x20)
683 		return -EOPNOTSUPP;
684 
685 	if (nfc->data &
686 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
687 		return -EINVAL;
688 
689 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
690 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
691 
692 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
693 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
694 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
695 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
696 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
697 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
698 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
699 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
700 
701 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
702 	switch (nfc->flow_type) {
703 	case TCP_V4_FLOW:
704 		req->ipv4_tcp_en = tuple_sets;
705 		break;
706 	case TCP_V6_FLOW:
707 		req->ipv6_tcp_en = tuple_sets;
708 		break;
709 	case UDP_V4_FLOW:
710 		req->ipv4_udp_en = tuple_sets;
711 		break;
712 	case UDP_V6_FLOW:
713 		req->ipv6_udp_en = tuple_sets;
714 		break;
715 	case SCTP_V4_FLOW:
716 		req->ipv4_sctp_en = tuple_sets;
717 		break;
718 	case SCTP_V6_FLOW:
719 		if ((nfc->data & RXH_L4_B_0_1) ||
720 		    (nfc->data & RXH_L4_B_2_3))
721 			return -EINVAL;
722 
723 		req->ipv6_sctp_en = tuple_sets;
724 		break;
725 	case IPV4_FLOW:
726 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
727 		break;
728 	case IPV6_FLOW:
729 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
730 		break;
731 	default:
732 		return -EINVAL;
733 	}
734 
735 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
736 	if (ret) {
737 		dev_err(&hdev->pdev->dev,
738 			"Set rss tuple fail, status = %d\n", ret);
739 		return ret;
740 	}
741 
742 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
743 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
744 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
745 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
746 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
747 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
748 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
749 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
750 	return 0;
751 }
752 
753 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
754 				 struct ethtool_rxnfc *nfc)
755 {
756 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
757 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
758 	u8 tuple_sets;
759 
760 	if (handle->pdev->revision == 0x20)
761 		return -EOPNOTSUPP;
762 
763 	nfc->data = 0;
764 
765 	switch (nfc->flow_type) {
766 	case TCP_V4_FLOW:
767 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
768 		break;
769 	case UDP_V4_FLOW:
770 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
771 		break;
772 	case TCP_V6_FLOW:
773 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
774 		break;
775 	case UDP_V6_FLOW:
776 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
777 		break;
778 	case SCTP_V4_FLOW:
779 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
780 		break;
781 	case SCTP_V6_FLOW:
782 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
783 		break;
784 	case IPV4_FLOW:
785 	case IPV6_FLOW:
786 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
787 		break;
788 	default:
789 		return -EINVAL;
790 	}
791 
792 	if (!tuple_sets)
793 		return 0;
794 
795 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
796 		nfc->data |= RXH_L4_B_2_3;
797 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
798 		nfc->data |= RXH_L4_B_0_1;
799 	if (tuple_sets & HCLGEVF_D_IP_BIT)
800 		nfc->data |= RXH_IP_DST;
801 	if (tuple_sets & HCLGEVF_S_IP_BIT)
802 		nfc->data |= RXH_IP_SRC;
803 
804 	return 0;
805 }
806 
807 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
808 				       struct hclgevf_rss_cfg *rss_cfg)
809 {
810 	struct hclgevf_rss_input_tuple_cmd *req;
811 	struct hclgevf_desc desc;
812 	int ret;
813 
814 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
815 
816 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
817 
818 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
819 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
820 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
821 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
822 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
823 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
824 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
825 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
826 
827 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
828 	if (ret)
829 		dev_err(&hdev->pdev->dev,
830 			"Configure rss input fail, status = %d\n", ret);
831 	return ret;
832 }
833 
834 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
835 {
836 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
837 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
838 
839 	return rss_cfg->rss_size;
840 }
841 
842 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
843 				       int vector_id,
844 				       struct hnae3_ring_chain_node *ring_chain)
845 {
846 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
847 	struct hnae3_ring_chain_node *node;
848 	struct hclge_mbx_vf_to_pf_cmd *req;
849 	struct hclgevf_desc desc;
850 	int i = 0;
851 	int status;
852 	u8 type;
853 
854 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
855 
856 	for (node = ring_chain; node; node = node->next) {
857 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
858 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
859 
860 		if (i == 0) {
861 			hclgevf_cmd_setup_basic_desc(&desc,
862 						     HCLGEVF_OPC_MBX_VF_TO_PF,
863 						     false);
864 			type = en ?
865 				HCLGE_MBX_MAP_RING_TO_VECTOR :
866 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
867 			req->msg[0] = type;
868 			req->msg[1] = vector_id;
869 		}
870 
871 		req->msg[idx_offset] =
872 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
873 		req->msg[idx_offset + 1] = node->tqp_index;
874 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
875 							   HNAE3_RING_GL_IDX_M,
876 							   HNAE3_RING_GL_IDX_S);
877 
878 		i++;
879 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
880 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
881 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
882 		    !node->next) {
883 			req->msg[2] = i;
884 
885 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
886 			if (status) {
887 				dev_err(&hdev->pdev->dev,
888 					"Map TQP fail, status is %d.\n",
889 					status);
890 				return status;
891 			}
892 			i = 0;
893 			hclgevf_cmd_setup_basic_desc(&desc,
894 						     HCLGEVF_OPC_MBX_VF_TO_PF,
895 						     false);
896 			req->msg[0] = type;
897 			req->msg[1] = vector_id;
898 		}
899 	}
900 
901 	return 0;
902 }
903 
904 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
905 				      struct hnae3_ring_chain_node *ring_chain)
906 {
907 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
908 	int vector_id;
909 
910 	vector_id = hclgevf_get_vector_index(hdev, vector);
911 	if (vector_id < 0) {
912 		dev_err(&handle->pdev->dev,
913 			"Get vector index fail. ret =%d\n", vector_id);
914 		return vector_id;
915 	}
916 
917 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
918 }
919 
920 static int hclgevf_unmap_ring_from_vector(
921 				struct hnae3_handle *handle,
922 				int vector,
923 				struct hnae3_ring_chain_node *ring_chain)
924 {
925 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
926 	int ret, vector_id;
927 
928 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
929 		return 0;
930 
931 	vector_id = hclgevf_get_vector_index(hdev, vector);
932 	if (vector_id < 0) {
933 		dev_err(&handle->pdev->dev,
934 			"Get vector index fail. ret =%d\n", vector_id);
935 		return vector_id;
936 	}
937 
938 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
939 	if (ret)
940 		dev_err(&handle->pdev->dev,
941 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
942 			vector_id,
943 			ret);
944 
945 	return ret;
946 }
947 
948 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
949 {
950 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
951 	int vector_id;
952 
953 	vector_id = hclgevf_get_vector_index(hdev, vector);
954 	if (vector_id < 0) {
955 		dev_err(&handle->pdev->dev,
956 			"hclgevf_put_vector get vector index fail. ret =%d\n",
957 			vector_id);
958 		return vector_id;
959 	}
960 
961 	hclgevf_free_vector(hdev, vector_id);
962 
963 	return 0;
964 }
965 
966 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
967 					bool en_uc_pmc, bool en_mc_pmc)
968 {
969 	struct hclge_mbx_vf_to_pf_cmd *req;
970 	struct hclgevf_desc desc;
971 	int status;
972 
973 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
974 
975 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
976 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
977 	req->msg[1] = en_uc_pmc ? 1 : 0;
978 	req->msg[2] = en_mc_pmc ? 1 : 0;
979 
980 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
981 	if (status)
982 		dev_err(&hdev->pdev->dev,
983 			"Set promisc mode fail, status is %d.\n", status);
984 
985 	return status;
986 }
987 
988 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle,
989 				    bool en_uc_pmc, bool en_mc_pmc)
990 {
991 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
992 
993 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
994 }
995 
996 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
997 			      int stream_id, bool enable)
998 {
999 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1000 	struct hclgevf_desc desc;
1001 	int status;
1002 
1003 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1004 
1005 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1006 				     false);
1007 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1008 	req->stream_id = cpu_to_le16(stream_id);
1009 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1010 
1011 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1012 	if (status)
1013 		dev_err(&hdev->pdev->dev,
1014 			"TQP enable fail, status =%d.\n", status);
1015 
1016 	return status;
1017 }
1018 
1019 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1020 {
1021 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1022 	struct hclgevf_tqp *tqp;
1023 	int i;
1024 
1025 	for (i = 0; i < kinfo->num_tqps; i++) {
1026 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1027 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1028 	}
1029 }
1030 
1031 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1032 {
1033 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1034 
1035 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1036 }
1037 
1038 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1039 				bool is_first)
1040 {
1041 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1042 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1043 	u8 *new_mac_addr = (u8 *)p;
1044 	u8 msg_data[ETH_ALEN * 2];
1045 	u16 subcode;
1046 	int status;
1047 
1048 	ether_addr_copy(msg_data, new_mac_addr);
1049 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1050 
1051 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1052 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1053 
1054 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1055 				      subcode, msg_data, ETH_ALEN * 2,
1056 				      true, NULL, 0);
1057 	if (!status)
1058 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1059 
1060 	return status;
1061 }
1062 
1063 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1064 			       const unsigned char *addr)
1065 {
1066 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1067 
1068 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1069 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1070 				    addr, ETH_ALEN, false, NULL, 0);
1071 }
1072 
1073 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1074 			      const unsigned char *addr)
1075 {
1076 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1077 
1078 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1079 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1080 				    addr, ETH_ALEN, false, NULL, 0);
1081 }
1082 
1083 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1084 			       const unsigned char *addr)
1085 {
1086 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1087 
1088 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1089 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1090 				    addr, ETH_ALEN, false, NULL, 0);
1091 }
1092 
1093 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1094 			      const unsigned char *addr)
1095 {
1096 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1097 
1098 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1099 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1100 				    addr, ETH_ALEN, false, NULL, 0);
1101 }
1102 
1103 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1104 				   __be16 proto, u16 vlan_id,
1105 				   bool is_kill)
1106 {
1107 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1108 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1109 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1110 
1111 	if (vlan_id > 4095)
1112 		return -EINVAL;
1113 
1114 	if (proto != htons(ETH_P_8021Q))
1115 		return -EPROTONOSUPPORT;
1116 
1117 	msg_data[0] = is_kill;
1118 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1119 	memcpy(&msg_data[3], &proto, sizeof(proto));
1120 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1121 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1122 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1123 }
1124 
1125 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1126 {
1127 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1128 	u8 msg_data;
1129 
1130 	msg_data = enable ? 1 : 0;
1131 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1132 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1133 				    1, false, NULL, 0);
1134 }
1135 
1136 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1137 {
1138 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1139 	u8 msg_data[2];
1140 	int ret;
1141 
1142 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1143 
1144 	/* disable vf queue before send queue reset msg to PF */
1145 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1146 	if (ret)
1147 		return ret;
1148 
1149 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1150 				    2, true, NULL, 0);
1151 }
1152 
1153 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1154 {
1155 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1156 
1157 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1158 				    sizeof(new_mtu), true, NULL, 0);
1159 }
1160 
1161 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1162 				 enum hnae3_reset_notify_type type)
1163 {
1164 	struct hnae3_client *client = hdev->nic_client;
1165 	struct hnae3_handle *handle = &hdev->nic;
1166 	int ret;
1167 
1168 	if (!client->ops->reset_notify)
1169 		return -EOPNOTSUPP;
1170 
1171 	ret = client->ops->reset_notify(handle, type);
1172 	if (ret)
1173 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1174 			type, ret);
1175 
1176 	return ret;
1177 }
1178 
1179 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1180 {
1181 	struct hclgevf_dev *hdev = ae_dev->priv;
1182 
1183 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1184 }
1185 
1186 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1187 				    unsigned long delay_us,
1188 				    unsigned long wait_cnt)
1189 {
1190 	unsigned long cnt = 0;
1191 
1192 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1193 	       cnt++ < wait_cnt)
1194 		usleep_range(delay_us, delay_us * 2);
1195 
1196 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1197 		dev_err(&hdev->pdev->dev,
1198 			"flr wait timeout\n");
1199 		return -ETIMEDOUT;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1206 {
1207 #define HCLGEVF_RESET_WAIT_US	20000
1208 #define HCLGEVF_RESET_WAIT_CNT	2000
1209 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1210 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1211 
1212 	u32 val;
1213 	int ret;
1214 
1215 	/* wait to check the hardware reset completion status */
1216 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1217 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1218 
1219 	if (hdev->reset_type == HNAE3_FLR_RESET)
1220 		return hclgevf_flr_poll_timeout(hdev,
1221 						HCLGEVF_RESET_WAIT_US,
1222 						HCLGEVF_RESET_WAIT_CNT);
1223 
1224 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1225 				 !(val & HCLGEVF_RST_ING_BITS),
1226 				 HCLGEVF_RESET_WAIT_US,
1227 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1228 
1229 	/* hardware completion status should be available by this time */
1230 	if (ret) {
1231 		dev_err(&hdev->pdev->dev,
1232 			"could'nt get reset done status from h/w, timeout!\n");
1233 		return ret;
1234 	}
1235 
1236 	/* we will wait a bit more to let reset of the stack to complete. This
1237 	 * might happen in case reset assertion was made by PF. Yes, this also
1238 	 * means we might end up waiting bit more even for VF reset.
1239 	 */
1240 	msleep(5000);
1241 
1242 	return 0;
1243 }
1244 
1245 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1246 {
1247 	int ret;
1248 
1249 	/* uninitialize the nic client */
1250 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1251 	if (ret)
1252 		return ret;
1253 
1254 	/* re-initialize the hclge device */
1255 	ret = hclgevf_reset_hdev(hdev);
1256 	if (ret) {
1257 		dev_err(&hdev->pdev->dev,
1258 			"hclge device re-init failed, VF is disabled!\n");
1259 		return ret;
1260 	}
1261 
1262 	/* bring up the nic client again */
1263 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1264 	if (ret)
1265 		return ret;
1266 
1267 	return 0;
1268 }
1269 
1270 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1271 {
1272 	int ret = 0;
1273 
1274 	switch (hdev->reset_type) {
1275 	case HNAE3_VF_FUNC_RESET:
1276 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1277 					   0, true, NULL, sizeof(u8));
1278 		break;
1279 	case HNAE3_FLR_RESET:
1280 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1281 		break;
1282 	default:
1283 		break;
1284 	}
1285 
1286 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1287 
1288 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1289 		 hdev->reset_type, ret);
1290 
1291 	return ret;
1292 }
1293 
1294 static int hclgevf_reset(struct hclgevf_dev *hdev)
1295 {
1296 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1297 	int ret;
1298 
1299 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1300 	 * know if device is undergoing reset
1301 	 */
1302 	ae_dev->reset_type = hdev->reset_type;
1303 	hdev->reset_count++;
1304 	rtnl_lock();
1305 
1306 	/* bring down the nic to stop any ongoing TX/RX */
1307 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1308 	if (ret)
1309 		goto err_reset_lock;
1310 
1311 	rtnl_unlock();
1312 
1313 	ret = hclgevf_reset_prepare_wait(hdev);
1314 	if (ret)
1315 		goto err_reset;
1316 
1317 	/* check if VF could successfully fetch the hardware reset completion
1318 	 * status from the hardware
1319 	 */
1320 	ret = hclgevf_reset_wait(hdev);
1321 	if (ret) {
1322 		/* can't do much in this situation, will disable VF */
1323 		dev_err(&hdev->pdev->dev,
1324 			"VF failed(=%d) to fetch H/W reset completion status\n",
1325 			ret);
1326 		goto err_reset;
1327 	}
1328 
1329 	rtnl_lock();
1330 
1331 	/* now, re-initialize the nic client and ae device*/
1332 	ret = hclgevf_reset_stack(hdev);
1333 	if (ret) {
1334 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1335 		goto err_reset_lock;
1336 	}
1337 
1338 	/* bring up the nic to enable TX/RX again */
1339 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1340 	if (ret)
1341 		goto err_reset_lock;
1342 
1343 	rtnl_unlock();
1344 
1345 	return ret;
1346 err_reset_lock:
1347 	rtnl_unlock();
1348 err_reset:
1349 	/* When VF reset failed, only the higher level reset asserted by PF
1350 	 * can restore it, so re-initialize the command queue to receive
1351 	 * this higher reset event.
1352 	 */
1353 	hclgevf_cmd_init(hdev);
1354 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1355 
1356 	return ret;
1357 }
1358 
1359 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1360 						     unsigned long *addr)
1361 {
1362 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1363 
1364 	/* return the highest priority reset level amongst all */
1365 	if (test_bit(HNAE3_VF_RESET, addr)) {
1366 		rst_level = HNAE3_VF_RESET;
1367 		clear_bit(HNAE3_VF_RESET, addr);
1368 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1369 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1370 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1371 		rst_level = HNAE3_VF_FULL_RESET;
1372 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1373 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1374 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1375 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1376 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1377 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1378 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1379 		rst_level = HNAE3_VF_FUNC_RESET;
1380 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1381 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1382 		rst_level = HNAE3_FLR_RESET;
1383 		clear_bit(HNAE3_FLR_RESET, addr);
1384 	}
1385 
1386 	return rst_level;
1387 }
1388 
1389 static void hclgevf_reset_event(struct pci_dev *pdev,
1390 				struct hnae3_handle *handle)
1391 {
1392 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1393 	struct hclgevf_dev *hdev = ae_dev->priv;
1394 
1395 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1396 
1397 	if (hdev->default_reset_request)
1398 		hdev->reset_level =
1399 			hclgevf_get_reset_level(hdev,
1400 						&hdev->default_reset_request);
1401 	else
1402 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1403 
1404 	/* reset of this VF requested */
1405 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1406 	hclgevf_reset_task_schedule(hdev);
1407 
1408 	hdev->last_reset_time = jiffies;
1409 }
1410 
1411 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1412 					  enum hnae3_reset_type rst_type)
1413 {
1414 	struct hclgevf_dev *hdev = ae_dev->priv;
1415 
1416 	set_bit(rst_type, &hdev->default_reset_request);
1417 }
1418 
1419 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1420 {
1421 #define HCLGEVF_FLR_WAIT_MS	100
1422 #define HCLGEVF_FLR_WAIT_CNT	50
1423 	struct hclgevf_dev *hdev = ae_dev->priv;
1424 	int cnt = 0;
1425 
1426 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1427 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1428 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1429 	hclgevf_reset_event(hdev->pdev, NULL);
1430 
1431 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1432 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1433 		msleep(HCLGEVF_FLR_WAIT_MS);
1434 
1435 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1436 		dev_err(&hdev->pdev->dev,
1437 			"flr wait down timeout: %d\n", cnt);
1438 }
1439 
1440 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1441 {
1442 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1443 
1444 	return hdev->fw_version;
1445 }
1446 
1447 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1448 {
1449 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1450 
1451 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1452 					    HCLGEVF_MISC_VECTOR_NUM);
1453 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1454 	/* vector status always valid for Vector 0 */
1455 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1456 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1457 
1458 	hdev->num_msi_left -= 1;
1459 	hdev->num_msi_used += 1;
1460 }
1461 
1462 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1463 {
1464 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1465 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1466 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1467 		schedule_work(&hdev->rst_service_task);
1468 	}
1469 }
1470 
1471 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1472 {
1473 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1474 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1475 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1476 		schedule_work(&hdev->mbx_service_task);
1477 	}
1478 }
1479 
1480 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1481 {
1482 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1483 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1484 		schedule_work(&hdev->service_task);
1485 }
1486 
1487 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1488 {
1489 	/* if we have any pending mailbox event then schedule the mbx task */
1490 	if (hdev->mbx_event_pending)
1491 		hclgevf_mbx_task_schedule(hdev);
1492 
1493 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1494 		hclgevf_reset_task_schedule(hdev);
1495 }
1496 
1497 static void hclgevf_service_timer(struct timer_list *t)
1498 {
1499 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1500 
1501 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1502 
1503 	hclgevf_task_schedule(hdev);
1504 }
1505 
1506 static void hclgevf_reset_service_task(struct work_struct *work)
1507 {
1508 	struct hclgevf_dev *hdev =
1509 		container_of(work, struct hclgevf_dev, rst_service_task);
1510 	int ret;
1511 
1512 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1513 		return;
1514 
1515 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1516 
1517 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1518 			       &hdev->reset_state)) {
1519 		/* PF has initmated that it is about to reset the hardware.
1520 		 * We now have to poll & check if harware has actually completed
1521 		 * the reset sequence. On hardware reset completion, VF needs to
1522 		 * reset the client and ae device.
1523 		 */
1524 		hdev->reset_attempts = 0;
1525 
1526 		hdev->last_reset_time = jiffies;
1527 		while ((hdev->reset_type =
1528 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1529 		       != HNAE3_NONE_RESET) {
1530 			ret = hclgevf_reset(hdev);
1531 			if (ret)
1532 				dev_err(&hdev->pdev->dev,
1533 					"VF stack reset failed %d.\n", ret);
1534 		}
1535 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1536 				      &hdev->reset_state)) {
1537 		/* we could be here when either of below happens:
1538 		 * 1. reset was initiated due to watchdog timeout due to
1539 		 *    a. IMP was earlier reset and our TX got choked down and
1540 		 *       which resulted in watchdog reacting and inducing VF
1541 		 *       reset. This also means our cmdq would be unreliable.
1542 		 *    b. problem in TX due to other lower layer(example link
1543 		 *       layer not functioning properly etc.)
1544 		 * 2. VF reset might have been initiated due to some config
1545 		 *    change.
1546 		 *
1547 		 * NOTE: Theres no clear way to detect above cases than to react
1548 		 * to the response of PF for this reset request. PF will ack the
1549 		 * 1b and 2. cases but we will not get any intimation about 1a
1550 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1551 		 * communication between PF and VF would be broken.
1552 		 */
1553 
1554 		/* if we are never geting into pending state it means either:
1555 		 * 1. PF is not receiving our request which could be due to IMP
1556 		 *    reset
1557 		 * 2. PF is screwed
1558 		 * We cannot do much for 2. but to check first we can try reset
1559 		 * our PCIe + stack and see if it alleviates the problem.
1560 		 */
1561 		if (hdev->reset_attempts > 3) {
1562 			/* prepare for full reset of stack + pcie interface */
1563 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1564 
1565 			/* "defer" schedule the reset task again */
1566 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1567 		} else {
1568 			hdev->reset_attempts++;
1569 
1570 			set_bit(hdev->reset_level, &hdev->reset_pending);
1571 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1572 		}
1573 		hclgevf_reset_task_schedule(hdev);
1574 	}
1575 
1576 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1577 }
1578 
1579 static void hclgevf_mailbox_service_task(struct work_struct *work)
1580 {
1581 	struct hclgevf_dev *hdev;
1582 
1583 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1584 
1585 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1586 		return;
1587 
1588 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1589 
1590 	hclgevf_mbx_async_handler(hdev);
1591 
1592 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1593 }
1594 
1595 static void hclgevf_keep_alive_timer(struct timer_list *t)
1596 {
1597 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1598 
1599 	schedule_work(&hdev->keep_alive_task);
1600 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1601 }
1602 
1603 static void hclgevf_keep_alive_task(struct work_struct *work)
1604 {
1605 	struct hclgevf_dev *hdev;
1606 	u8 respmsg;
1607 	int ret;
1608 
1609 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1610 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1611 				   0, false, &respmsg, sizeof(u8));
1612 	if (ret)
1613 		dev_err(&hdev->pdev->dev,
1614 			"VF sends keep alive cmd failed(=%d)\n", ret);
1615 }
1616 
1617 static void hclgevf_service_task(struct work_struct *work)
1618 {
1619 	struct hclgevf_dev *hdev;
1620 
1621 	hdev = container_of(work, struct hclgevf_dev, service_task);
1622 
1623 	/* request the link status from the PF. PF would be able to tell VF
1624 	 * about such updates in future so we might remove this later
1625 	 */
1626 	hclgevf_request_link_info(hdev);
1627 
1628 	hclgevf_deferred_task_schedule(hdev);
1629 
1630 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1631 }
1632 
1633 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1634 {
1635 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1636 }
1637 
1638 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1639 						      u32 *clearval)
1640 {
1641 	u32 cmdq_src_reg, rst_ing_reg;
1642 
1643 	/* fetch the events from their corresponding regs */
1644 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1645 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1646 
1647 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1648 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1649 		dev_info(&hdev->pdev->dev,
1650 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1651 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1652 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1653 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1654 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1655 		*clearval = cmdq_src_reg;
1656 		return HCLGEVF_VECTOR0_EVENT_RST;
1657 	}
1658 
1659 	/* check for vector0 mailbox(=CMDQ RX) event source */
1660 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1661 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1662 		*clearval = cmdq_src_reg;
1663 		return HCLGEVF_VECTOR0_EVENT_MBX;
1664 	}
1665 
1666 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1667 
1668 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1669 }
1670 
1671 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1672 {
1673 	writel(en ? 1 : 0, vector->addr);
1674 }
1675 
1676 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1677 {
1678 	enum hclgevf_evt_cause event_cause;
1679 	struct hclgevf_dev *hdev = data;
1680 	u32 clearval;
1681 
1682 	hclgevf_enable_vector(&hdev->misc_vector, false);
1683 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1684 
1685 	switch (event_cause) {
1686 	case HCLGEVF_VECTOR0_EVENT_RST:
1687 		hclgevf_reset_task_schedule(hdev);
1688 		break;
1689 	case HCLGEVF_VECTOR0_EVENT_MBX:
1690 		hclgevf_mbx_handler(hdev);
1691 		break;
1692 	default:
1693 		break;
1694 	}
1695 
1696 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1697 		hclgevf_clear_event_cause(hdev, clearval);
1698 		hclgevf_enable_vector(&hdev->misc_vector, true);
1699 	}
1700 
1701 	return IRQ_HANDLED;
1702 }
1703 
1704 static int hclgevf_configure(struct hclgevf_dev *hdev)
1705 {
1706 	int ret;
1707 
1708 	hdev->hw.mac.media_type = HNAE3_MEDIA_TYPE_NONE;
1709 
1710 	/* get queue configuration from PF */
1711 	ret = hclgevf_get_queue_info(hdev);
1712 	if (ret)
1713 		return ret;
1714 	/* get tc configuration from PF */
1715 	return hclgevf_get_tc_info(hdev);
1716 }
1717 
1718 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1719 {
1720 	struct pci_dev *pdev = ae_dev->pdev;
1721 	struct hclgevf_dev *hdev = ae_dev->priv;
1722 
1723 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1724 	if (!hdev)
1725 		return -ENOMEM;
1726 
1727 	hdev->pdev = pdev;
1728 	hdev->ae_dev = ae_dev;
1729 	ae_dev->priv = hdev;
1730 
1731 	return 0;
1732 }
1733 
1734 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1735 {
1736 	struct hnae3_handle *roce = &hdev->roce;
1737 	struct hnae3_handle *nic = &hdev->nic;
1738 
1739 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1740 
1741 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1742 	    hdev->num_msi_left == 0)
1743 		return -EINVAL;
1744 
1745 	roce->rinfo.base_vector = hdev->roce_base_vector;
1746 
1747 	roce->rinfo.netdev = nic->kinfo.netdev;
1748 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1749 
1750 	roce->pdev = nic->pdev;
1751 	roce->ae_algo = nic->ae_algo;
1752 	roce->numa_node_mask = nic->numa_node_mask;
1753 
1754 	return 0;
1755 }
1756 
1757 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1758 {
1759 	struct hclgevf_cfg_gro_status_cmd *req;
1760 	struct hclgevf_desc desc;
1761 	int ret;
1762 
1763 	if (!hnae3_dev_gro_supported(hdev))
1764 		return 0;
1765 
1766 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1767 				     false);
1768 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1769 
1770 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1771 
1772 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1773 	if (ret)
1774 		dev_err(&hdev->pdev->dev,
1775 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1776 
1777 	return ret;
1778 }
1779 
1780 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1781 {
1782 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1783 	int i, ret;
1784 
1785 	rss_cfg->rss_size = hdev->rss_size_max;
1786 
1787 	if (hdev->pdev->revision >= 0x21) {
1788 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
1789 		netdev_rss_key_fill(rss_cfg->rss_hash_key,
1790 				    HCLGEVF_RSS_KEY_SIZE);
1791 
1792 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1793 					       rss_cfg->rss_hash_key);
1794 		if (ret)
1795 			return ret;
1796 
1797 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1798 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1799 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1800 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1801 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1802 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1803 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1804 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1805 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1806 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1807 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1808 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1809 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1810 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1811 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1812 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1813 
1814 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1815 		if (ret)
1816 			return ret;
1817 
1818 	}
1819 
1820 	/* Initialize RSS indirect table for each vport */
1821 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1822 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1823 
1824 	ret = hclgevf_set_rss_indir_table(hdev);
1825 	if (ret)
1826 		return ret;
1827 
1828 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1829 }
1830 
1831 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1832 {
1833 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1834 	 * here later
1835 	 */
1836 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1837 				       false);
1838 }
1839 
1840 static int hclgevf_ae_start(struct hnae3_handle *handle)
1841 {
1842 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1843 
1844 	/* reset tqp stats */
1845 	hclgevf_reset_tqp_stats(handle);
1846 
1847 	hclgevf_request_link_info(hdev);
1848 
1849 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1850 	mod_timer(&hdev->service_timer, jiffies + HZ);
1851 
1852 	return 0;
1853 }
1854 
1855 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1856 {
1857 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1858 
1859 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1860 
1861 	/* reset tqp stats */
1862 	hclgevf_reset_tqp_stats(handle);
1863 	del_timer_sync(&hdev->service_timer);
1864 	cancel_work_sync(&hdev->service_task);
1865 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1866 	hclgevf_update_link_status(hdev, 0);
1867 }
1868 
1869 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
1870 {
1871 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1872 	u8 msg_data;
1873 
1874 	msg_data = alive ? 1 : 0;
1875 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
1876 				    0, &msg_data, 1, false, NULL, 0);
1877 }
1878 
1879 static int hclgevf_client_start(struct hnae3_handle *handle)
1880 {
1881 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1882 
1883 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1884 	return hclgevf_set_alive(handle, true);
1885 }
1886 
1887 static void hclgevf_client_stop(struct hnae3_handle *handle)
1888 {
1889 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1890 	int ret;
1891 
1892 	ret = hclgevf_set_alive(handle, false);
1893 	if (ret)
1894 		dev_warn(&hdev->pdev->dev,
1895 			 "%s failed %d\n", __func__, ret);
1896 
1897 	del_timer_sync(&hdev->keep_alive_timer);
1898 	cancel_work_sync(&hdev->keep_alive_task);
1899 }
1900 
1901 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1902 {
1903 	/* setup tasks for the MBX */
1904 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1905 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1906 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1907 
1908 	/* setup tasks for service timer */
1909 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1910 
1911 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1912 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1913 
1914 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1915 
1916 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1917 
1918 	/* bring the device down */
1919 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1920 }
1921 
1922 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1923 {
1924 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1925 
1926 	if (hdev->service_timer.function)
1927 		del_timer_sync(&hdev->service_timer);
1928 	if (hdev->service_task.func)
1929 		cancel_work_sync(&hdev->service_task);
1930 	if (hdev->mbx_service_task.func)
1931 		cancel_work_sync(&hdev->mbx_service_task);
1932 	if (hdev->rst_service_task.func)
1933 		cancel_work_sync(&hdev->rst_service_task);
1934 
1935 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1936 }
1937 
1938 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1939 {
1940 	struct pci_dev *pdev = hdev->pdev;
1941 	int vectors;
1942 	int i;
1943 
1944 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1945 		vectors = pci_alloc_irq_vectors(pdev,
1946 						hdev->roce_base_msix_offset + 1,
1947 						hdev->num_msi,
1948 						PCI_IRQ_MSIX);
1949 	else
1950 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1951 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
1952 
1953 	if (vectors < 0) {
1954 		dev_err(&pdev->dev,
1955 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1956 			vectors);
1957 		return vectors;
1958 	}
1959 	if (vectors < hdev->num_msi)
1960 		dev_warn(&hdev->pdev->dev,
1961 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1962 			 hdev->num_msi, vectors);
1963 
1964 	hdev->num_msi = vectors;
1965 	hdev->num_msi_left = vectors;
1966 	hdev->base_msi_vector = pdev->irq;
1967 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
1968 
1969 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1970 					   sizeof(u16), GFP_KERNEL);
1971 	if (!hdev->vector_status) {
1972 		pci_free_irq_vectors(pdev);
1973 		return -ENOMEM;
1974 	}
1975 
1976 	for (i = 0; i < hdev->num_msi; i++)
1977 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1978 
1979 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1980 					sizeof(int), GFP_KERNEL);
1981 	if (!hdev->vector_irq) {
1982 		devm_kfree(&pdev->dev, hdev->vector_status);
1983 		pci_free_irq_vectors(pdev);
1984 		return -ENOMEM;
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1991 {
1992 	struct pci_dev *pdev = hdev->pdev;
1993 
1994 	devm_kfree(&pdev->dev, hdev->vector_status);
1995 	devm_kfree(&pdev->dev, hdev->vector_irq);
1996 	pci_free_irq_vectors(pdev);
1997 }
1998 
1999 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2000 {
2001 	int ret = 0;
2002 
2003 	hclgevf_get_misc_vector(hdev);
2004 
2005 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2006 			  0, "hclgevf_cmd", hdev);
2007 	if (ret) {
2008 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2009 			hdev->misc_vector.vector_irq);
2010 		return ret;
2011 	}
2012 
2013 	hclgevf_clear_event_cause(hdev, 0);
2014 
2015 	/* enable misc. vector(vector 0) */
2016 	hclgevf_enable_vector(&hdev->misc_vector, true);
2017 
2018 	return ret;
2019 }
2020 
2021 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2022 {
2023 	/* disable misc vector(vector 0) */
2024 	hclgevf_enable_vector(&hdev->misc_vector, false);
2025 	synchronize_irq(hdev->misc_vector.vector_irq);
2026 	free_irq(hdev->misc_vector.vector_irq, hdev);
2027 	hclgevf_free_vector(hdev, 0);
2028 }
2029 
2030 static int hclgevf_init_client_instance(struct hnae3_client *client,
2031 					struct hnae3_ae_dev *ae_dev)
2032 {
2033 	struct hclgevf_dev *hdev = ae_dev->priv;
2034 	int ret;
2035 
2036 	switch (client->type) {
2037 	case HNAE3_CLIENT_KNIC:
2038 		hdev->nic_client = client;
2039 		hdev->nic.client = client;
2040 
2041 		ret = client->ops->init_instance(&hdev->nic);
2042 		if (ret)
2043 			goto clear_nic;
2044 
2045 		hnae3_set_client_init_flag(client, ae_dev, 1);
2046 
2047 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
2048 			struct hnae3_client *rc = hdev->roce_client;
2049 
2050 			ret = hclgevf_init_roce_base_info(hdev);
2051 			if (ret)
2052 				goto clear_roce;
2053 			ret = rc->ops->init_instance(&hdev->roce);
2054 			if (ret)
2055 				goto clear_roce;
2056 
2057 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
2058 						   1);
2059 		}
2060 		break;
2061 	case HNAE3_CLIENT_UNIC:
2062 		hdev->nic_client = client;
2063 		hdev->nic.client = client;
2064 
2065 		ret = client->ops->init_instance(&hdev->nic);
2066 		if (ret)
2067 			goto clear_nic;
2068 
2069 		hnae3_set_client_init_flag(client, ae_dev, 1);
2070 		break;
2071 	case HNAE3_CLIENT_ROCE:
2072 		if (hnae3_dev_roce_supported(hdev)) {
2073 			hdev->roce_client = client;
2074 			hdev->roce.client = client;
2075 		}
2076 
2077 		if (hdev->roce_client && hdev->nic_client) {
2078 			ret = hclgevf_init_roce_base_info(hdev);
2079 			if (ret)
2080 				goto clear_roce;
2081 
2082 			ret = client->ops->init_instance(&hdev->roce);
2083 			if (ret)
2084 				goto clear_roce;
2085 		}
2086 
2087 		hnae3_set_client_init_flag(client, ae_dev, 1);
2088 		break;
2089 	default:
2090 		return -EINVAL;
2091 	}
2092 
2093 	return 0;
2094 
2095 clear_nic:
2096 	hdev->nic_client = NULL;
2097 	hdev->nic.client = NULL;
2098 	return ret;
2099 clear_roce:
2100 	hdev->roce_client = NULL;
2101 	hdev->roce.client = NULL;
2102 	return ret;
2103 }
2104 
2105 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2106 					   struct hnae3_ae_dev *ae_dev)
2107 {
2108 	struct hclgevf_dev *hdev = ae_dev->priv;
2109 
2110 	/* un-init roce, if it exists */
2111 	if (hdev->roce_client) {
2112 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2113 		hdev->roce_client = NULL;
2114 		hdev->roce.client = NULL;
2115 	}
2116 
2117 	/* un-init nic/unic, if this was not called by roce client */
2118 	if (client->ops->uninit_instance && hdev->nic_client &&
2119 	    client->type != HNAE3_CLIENT_ROCE) {
2120 		client->ops->uninit_instance(&hdev->nic, 0);
2121 		hdev->nic_client = NULL;
2122 		hdev->nic.client = NULL;
2123 	}
2124 }
2125 
2126 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2127 {
2128 	struct pci_dev *pdev = hdev->pdev;
2129 	struct hclgevf_hw *hw;
2130 	int ret;
2131 
2132 	ret = pci_enable_device(pdev);
2133 	if (ret) {
2134 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2135 		return ret;
2136 	}
2137 
2138 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2139 	if (ret) {
2140 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2141 		goto err_disable_device;
2142 	}
2143 
2144 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2145 	if (ret) {
2146 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2147 		goto err_disable_device;
2148 	}
2149 
2150 	pci_set_master(pdev);
2151 	hw = &hdev->hw;
2152 	hw->hdev = hdev;
2153 	hw->io_base = pci_iomap(pdev, 2, 0);
2154 	if (!hw->io_base) {
2155 		dev_err(&pdev->dev, "can't map configuration register space\n");
2156 		ret = -ENOMEM;
2157 		goto err_clr_master;
2158 	}
2159 
2160 	return 0;
2161 
2162 err_clr_master:
2163 	pci_clear_master(pdev);
2164 	pci_release_regions(pdev);
2165 err_disable_device:
2166 	pci_disable_device(pdev);
2167 
2168 	return ret;
2169 }
2170 
2171 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2172 {
2173 	struct pci_dev *pdev = hdev->pdev;
2174 
2175 	pci_iounmap(pdev, hdev->hw.io_base);
2176 	pci_clear_master(pdev);
2177 	pci_release_regions(pdev);
2178 	pci_disable_device(pdev);
2179 }
2180 
2181 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2182 {
2183 	struct hclgevf_query_res_cmd *req;
2184 	struct hclgevf_desc desc;
2185 	int ret;
2186 
2187 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2188 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2189 	if (ret) {
2190 		dev_err(&hdev->pdev->dev,
2191 			"query vf resource failed, ret = %d.\n", ret);
2192 		return ret;
2193 	}
2194 
2195 	req = (struct hclgevf_query_res_cmd *)desc.data;
2196 
2197 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2198 		hdev->roce_base_msix_offset =
2199 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2200 				HCLGEVF_MSIX_OFT_ROCEE_M,
2201 				HCLGEVF_MSIX_OFT_ROCEE_S);
2202 		hdev->num_roce_msix =
2203 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2204 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2205 
2206 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2207 		 * are queued before Roce vectors. The offset is fixed to 64.
2208 		 */
2209 		hdev->num_msi = hdev->num_roce_msix +
2210 				hdev->roce_base_msix_offset;
2211 	} else {
2212 		hdev->num_msi =
2213 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2214 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2215 	}
2216 
2217 	return 0;
2218 }
2219 
2220 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2221 {
2222 	struct pci_dev *pdev = hdev->pdev;
2223 	int ret = 0;
2224 
2225 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2226 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2227 		hclgevf_misc_irq_uninit(hdev);
2228 		hclgevf_uninit_msi(hdev);
2229 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2230 	}
2231 
2232 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2233 		pci_set_master(pdev);
2234 		ret = hclgevf_init_msi(hdev);
2235 		if (ret) {
2236 			dev_err(&pdev->dev,
2237 				"failed(%d) to init MSI/MSI-X\n", ret);
2238 			return ret;
2239 		}
2240 
2241 		ret = hclgevf_misc_irq_init(hdev);
2242 		if (ret) {
2243 			hclgevf_uninit_msi(hdev);
2244 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2245 				ret);
2246 			return ret;
2247 		}
2248 
2249 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2250 	}
2251 
2252 	return ret;
2253 }
2254 
2255 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2256 {
2257 	struct pci_dev *pdev = hdev->pdev;
2258 	int ret;
2259 
2260 	ret = hclgevf_pci_reset(hdev);
2261 	if (ret) {
2262 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2263 		return ret;
2264 	}
2265 
2266 	ret = hclgevf_cmd_init(hdev);
2267 	if (ret) {
2268 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2269 		return ret;
2270 	}
2271 
2272 	ret = hclgevf_rss_init_hw(hdev);
2273 	if (ret) {
2274 		dev_err(&hdev->pdev->dev,
2275 			"failed(%d) to initialize RSS\n", ret);
2276 		return ret;
2277 	}
2278 
2279 	ret = hclgevf_config_gro(hdev, true);
2280 	if (ret)
2281 		return ret;
2282 
2283 	ret = hclgevf_init_vlan_config(hdev);
2284 	if (ret) {
2285 		dev_err(&hdev->pdev->dev,
2286 			"failed(%d) to initialize VLAN config\n", ret);
2287 		return ret;
2288 	}
2289 
2290 	dev_info(&hdev->pdev->dev, "Reset done\n");
2291 
2292 	return 0;
2293 }
2294 
2295 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2296 {
2297 	struct pci_dev *pdev = hdev->pdev;
2298 	int ret;
2299 
2300 	ret = hclgevf_pci_init(hdev);
2301 	if (ret) {
2302 		dev_err(&pdev->dev, "PCI initialization failed\n");
2303 		return ret;
2304 	}
2305 
2306 	ret = hclgevf_cmd_queue_init(hdev);
2307 	if (ret) {
2308 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2309 		goto err_cmd_queue_init;
2310 	}
2311 
2312 	ret = hclgevf_cmd_init(hdev);
2313 	if (ret)
2314 		goto err_cmd_init;
2315 
2316 	/* Get vf resource */
2317 	ret = hclgevf_query_vf_resource(hdev);
2318 	if (ret) {
2319 		dev_err(&hdev->pdev->dev,
2320 			"Query vf status error, ret = %d.\n", ret);
2321 		goto err_cmd_init;
2322 	}
2323 
2324 	ret = hclgevf_init_msi(hdev);
2325 	if (ret) {
2326 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2327 		goto err_cmd_init;
2328 	}
2329 
2330 	hclgevf_state_init(hdev);
2331 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2332 
2333 	ret = hclgevf_misc_irq_init(hdev);
2334 	if (ret) {
2335 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2336 			ret);
2337 		goto err_misc_irq_init;
2338 	}
2339 
2340 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2341 
2342 	ret = hclgevf_configure(hdev);
2343 	if (ret) {
2344 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2345 		goto err_config;
2346 	}
2347 
2348 	ret = hclgevf_alloc_tqps(hdev);
2349 	if (ret) {
2350 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2351 		goto err_config;
2352 	}
2353 
2354 	ret = hclgevf_set_handle_info(hdev);
2355 	if (ret) {
2356 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2357 		goto err_config;
2358 	}
2359 
2360 	ret = hclgevf_config_gro(hdev, true);
2361 	if (ret)
2362 		goto err_config;
2363 
2364 	/* Initialize RSS for this VF */
2365 	ret = hclgevf_rss_init_hw(hdev);
2366 	if (ret) {
2367 		dev_err(&hdev->pdev->dev,
2368 			"failed(%d) to initialize RSS\n", ret);
2369 		goto err_config;
2370 	}
2371 
2372 	ret = hclgevf_init_vlan_config(hdev);
2373 	if (ret) {
2374 		dev_err(&hdev->pdev->dev,
2375 			"failed(%d) to initialize VLAN config\n", ret);
2376 		goto err_config;
2377 	}
2378 
2379 	hdev->last_reset_time = jiffies;
2380 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2381 
2382 	return 0;
2383 
2384 err_config:
2385 	hclgevf_misc_irq_uninit(hdev);
2386 err_misc_irq_init:
2387 	hclgevf_state_uninit(hdev);
2388 	hclgevf_uninit_msi(hdev);
2389 err_cmd_init:
2390 	hclgevf_cmd_uninit(hdev);
2391 err_cmd_queue_init:
2392 	hclgevf_pci_uninit(hdev);
2393 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2394 	return ret;
2395 }
2396 
2397 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2398 {
2399 	hclgevf_state_uninit(hdev);
2400 
2401 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2402 		hclgevf_misc_irq_uninit(hdev);
2403 		hclgevf_uninit_msi(hdev);
2404 		hclgevf_pci_uninit(hdev);
2405 	}
2406 
2407 	hclgevf_cmd_uninit(hdev);
2408 }
2409 
2410 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2411 {
2412 	struct pci_dev *pdev = ae_dev->pdev;
2413 	struct hclgevf_dev *hdev;
2414 	int ret;
2415 
2416 	ret = hclgevf_alloc_hdev(ae_dev);
2417 	if (ret) {
2418 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2419 		return ret;
2420 	}
2421 
2422 	ret = hclgevf_init_hdev(ae_dev->priv);
2423 	if (ret) {
2424 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2425 		return ret;
2426 	}
2427 
2428 	hdev = ae_dev->priv;
2429 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2430 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2431 
2432 	return 0;
2433 }
2434 
2435 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2436 {
2437 	struct hclgevf_dev *hdev = ae_dev->priv;
2438 
2439 	hclgevf_uninit_hdev(hdev);
2440 	ae_dev->priv = NULL;
2441 }
2442 
2443 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2444 {
2445 	struct hnae3_handle *nic = &hdev->nic;
2446 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2447 
2448 	return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
2449 }
2450 
2451 /**
2452  * hclgevf_get_channels - Get the current channels enabled and max supported.
2453  * @handle: hardware information for network interface
2454  * @ch: ethtool channels structure
2455  *
2456  * We don't support separate tx and rx queues as channels. The other count
2457  * represents how many queues are being used for control. max_combined counts
2458  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2459  * q_vectors since we support a lot more queue pairs than q_vectors.
2460  **/
2461 static void hclgevf_get_channels(struct hnae3_handle *handle,
2462 				 struct ethtool_channels *ch)
2463 {
2464 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2465 
2466 	ch->max_combined = hclgevf_get_max_channels(hdev);
2467 	ch->other_count = 0;
2468 	ch->max_other = 0;
2469 	ch->combined_count = hdev->num_tqps;
2470 }
2471 
2472 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2473 					  u16 *alloc_tqps, u16 *max_rss_size)
2474 {
2475 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2476 
2477 	*alloc_tqps = hdev->num_tqps;
2478 	*max_rss_size = hdev->rss_size_max;
2479 }
2480 
2481 static int hclgevf_get_status(struct hnae3_handle *handle)
2482 {
2483 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2484 
2485 	return hdev->hw.mac.link;
2486 }
2487 
2488 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2489 					    u8 *auto_neg, u32 *speed,
2490 					    u8 *duplex)
2491 {
2492 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2493 
2494 	if (speed)
2495 		*speed = hdev->hw.mac.speed;
2496 	if (duplex)
2497 		*duplex = hdev->hw.mac.duplex;
2498 	if (auto_neg)
2499 		*auto_neg = AUTONEG_DISABLE;
2500 }
2501 
2502 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2503 				 u8 duplex)
2504 {
2505 	hdev->hw.mac.speed = speed;
2506 	hdev->hw.mac.duplex = duplex;
2507 }
2508 
2509 static int hclgevf_gro_en(struct hnae3_handle *handle, int enable)
2510 {
2511 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2512 
2513 	return hclgevf_config_gro(hdev, enable);
2514 }
2515 
2516 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2517 				  u8 *media_type)
2518 {
2519 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2520 	if (media_type)
2521 		*media_type = hdev->hw.mac.media_type;
2522 }
2523 
2524 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2525 {
2526 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2527 
2528 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2529 }
2530 
2531 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2532 {
2533 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2534 
2535 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2536 }
2537 
2538 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2539 {
2540 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2541 
2542 	return hdev->reset_count;
2543 }
2544 
2545 #define MAX_SEPARATE_NUM	4
2546 #define SEPARATOR_VALUE		0xFFFFFFFF
2547 #define REG_NUM_PER_LINE	4
2548 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2549 
2550 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2551 {
2552 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2553 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2554 
2555 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2556 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2557 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2558 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2559 
2560 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2561 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2562 }
2563 
2564 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2565 			     void *data)
2566 {
2567 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2568 	int i, j, reg_um, separator_num;
2569 	u32 *reg = data;
2570 
2571 	*version = hdev->fw_version;
2572 
2573 	/* fetching per-VF registers values from VF PCIe register space */
2574 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2575 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2576 	for (i = 0; i < reg_um; i++)
2577 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2578 	for (i = 0; i < separator_num; i++)
2579 		*reg++ = SEPARATOR_VALUE;
2580 
2581 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2582 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2583 	for (i = 0; i < reg_um; i++)
2584 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2585 	for (i = 0; i < separator_num; i++)
2586 		*reg++ = SEPARATOR_VALUE;
2587 
2588 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2589 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2590 	for (j = 0; j < hdev->num_tqps; j++) {
2591 		for (i = 0; i < reg_um; i++)
2592 			*reg++ = hclgevf_read_dev(&hdev->hw,
2593 						  ring_reg_addr_list[i] +
2594 						  0x200 * j);
2595 		for (i = 0; i < separator_num; i++)
2596 			*reg++ = SEPARATOR_VALUE;
2597 	}
2598 
2599 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2600 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2601 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2602 		for (i = 0; i < reg_um; i++)
2603 			*reg++ = hclgevf_read_dev(&hdev->hw,
2604 						  tqp_intr_reg_addr_list[i] +
2605 						  4 * j);
2606 		for (i = 0; i < separator_num; i++)
2607 			*reg++ = SEPARATOR_VALUE;
2608 	}
2609 }
2610 
2611 static const struct hnae3_ae_ops hclgevf_ops = {
2612 	.init_ae_dev = hclgevf_init_ae_dev,
2613 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2614 	.flr_prepare = hclgevf_flr_prepare,
2615 	.flr_done = hclgevf_flr_done,
2616 	.init_client_instance = hclgevf_init_client_instance,
2617 	.uninit_client_instance = hclgevf_uninit_client_instance,
2618 	.start = hclgevf_ae_start,
2619 	.stop = hclgevf_ae_stop,
2620 	.client_start = hclgevf_client_start,
2621 	.client_stop = hclgevf_client_stop,
2622 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2623 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2624 	.get_vector = hclgevf_get_vector,
2625 	.put_vector = hclgevf_put_vector,
2626 	.reset_queue = hclgevf_reset_tqp,
2627 	.set_promisc_mode = hclgevf_set_promisc_mode,
2628 	.get_mac_addr = hclgevf_get_mac_addr,
2629 	.set_mac_addr = hclgevf_set_mac_addr,
2630 	.add_uc_addr = hclgevf_add_uc_addr,
2631 	.rm_uc_addr = hclgevf_rm_uc_addr,
2632 	.add_mc_addr = hclgevf_add_mc_addr,
2633 	.rm_mc_addr = hclgevf_rm_mc_addr,
2634 	.get_stats = hclgevf_get_stats,
2635 	.update_stats = hclgevf_update_stats,
2636 	.get_strings = hclgevf_get_strings,
2637 	.get_sset_count = hclgevf_get_sset_count,
2638 	.get_rss_key_size = hclgevf_get_rss_key_size,
2639 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2640 	.get_rss = hclgevf_get_rss,
2641 	.set_rss = hclgevf_set_rss,
2642 	.get_rss_tuple = hclgevf_get_rss_tuple,
2643 	.set_rss_tuple = hclgevf_set_rss_tuple,
2644 	.get_tc_size = hclgevf_get_tc_size,
2645 	.get_fw_version = hclgevf_get_fw_version,
2646 	.set_vlan_filter = hclgevf_set_vlan_filter,
2647 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2648 	.reset_event = hclgevf_reset_event,
2649 	.set_default_reset_request = hclgevf_set_def_reset_request,
2650 	.get_channels = hclgevf_get_channels,
2651 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2652 	.get_regs_len = hclgevf_get_regs_len,
2653 	.get_regs = hclgevf_get_regs,
2654 	.get_status = hclgevf_get_status,
2655 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2656 	.get_media_type = hclgevf_get_media_type,
2657 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2658 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2659 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2660 	.set_gro_en = hclgevf_gro_en,
2661 	.set_mtu = hclgevf_set_mtu,
2662 	.get_global_queue_id = hclgevf_get_qid_global,
2663 };
2664 
2665 static struct hnae3_ae_algo ae_algovf = {
2666 	.ops = &hclgevf_ops,
2667 	.pdev_id_table = ae_algovf_pci_tbl,
2668 };
2669 
2670 static int hclgevf_init(void)
2671 {
2672 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2673 
2674 	hnae3_register_ae_algo(&ae_algovf);
2675 
2676 	return 0;
2677 }
2678 
2679 static void hclgevf_exit(void)
2680 {
2681 	hnae3_unregister_ae_algo(&ae_algovf);
2682 }
2683 module_init(hclgevf_init);
2684 module_exit(hclgevf_exit);
2685 
2686 MODULE_LICENSE("GPL");
2687 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2688 MODULE_DESCRIPTION("HCLGEVF Driver");
2689 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2690