1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <net/rtnetlink.h>
6 #include "hclgevf_cmd.h"
7 #include "hclgevf_main.h"
8 #include "hclge_mbx.h"
9 #include "hnae3.h"
10 
11 #define HCLGEVF_NAME	"hclgevf"
12 
13 static int hclgevf_init_hdev(struct hclgevf_dev *hdev);
14 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
27 	struct hnae3_handle *handle)
28 {
29 	return container_of(handle, struct hclgevf_dev, nic);
30 }
31 
32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
33 {
34 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
35 	struct hnae3_queue *queue;
36 	struct hclgevf_desc desc;
37 	struct hclgevf_tqp *tqp;
38 	int status;
39 	int i;
40 
41 	for (i = 0; i < hdev->num_tqps; i++) {
42 		queue = handle->kinfo.tqp[i];
43 		tqp = container_of(queue, struct hclgevf_tqp, q);
44 		hclgevf_cmd_setup_basic_desc(&desc,
45 					     HCLGEVF_OPC_QUERY_RX_STATUS,
46 					     true);
47 
48 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
49 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
50 		if (status) {
51 			dev_err(&hdev->pdev->dev,
52 				"Query tqp stat fail, status = %d,queue = %d\n",
53 				status,	i);
54 			return status;
55 		}
56 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
57 			le32_to_cpu(desc.data[1]);
58 
59 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
60 					     true);
61 
62 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
63 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
64 		if (status) {
65 			dev_err(&hdev->pdev->dev,
66 				"Query tqp stat fail, status = %d,queue = %d\n",
67 				status, i);
68 			return status;
69 		}
70 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
71 			le32_to_cpu(desc.data[1]);
72 	}
73 
74 	return 0;
75 }
76 
77 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
78 {
79 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
80 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
81 	struct hclgevf_tqp *tqp;
82 	u64 *buff = data;
83 	int i;
84 
85 	for (i = 0; i < hdev->num_tqps; i++) {
86 		tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
87 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
88 	}
89 	for (i = 0; i < kinfo->num_tqps; i++) {
90 		tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
91 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
92 	}
93 
94 	return buff;
95 }
96 
97 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
98 {
99 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
100 
101 	return hdev->num_tqps * 2;
102 }
103 
104 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
105 {
106 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
107 	u8 *buff = data;
108 	int i = 0;
109 
110 	for (i = 0; i < hdev->num_tqps; i++) {
111 		struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
112 			struct hclgevf_tqp, q);
113 		snprintf(buff, ETH_GSTRING_LEN, "txq#%d_pktnum_rcd",
114 			 tqp->index);
115 		buff += ETH_GSTRING_LEN;
116 	}
117 
118 	for (i = 0; i < hdev->num_tqps; i++) {
119 		struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
120 			struct hclgevf_tqp, q);
121 		snprintf(buff, ETH_GSTRING_LEN, "rxq#%d_pktnum_rcd",
122 			 tqp->index);
123 		buff += ETH_GSTRING_LEN;
124 	}
125 
126 	return buff;
127 }
128 
129 static void hclgevf_update_stats(struct hnae3_handle *handle,
130 				 struct net_device_stats *net_stats)
131 {
132 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
133 	int status;
134 
135 	status = hclgevf_tqps_update_stats(handle);
136 	if (status)
137 		dev_err(&hdev->pdev->dev,
138 			"VF update of TQPS stats fail, status = %d.\n",
139 			status);
140 }
141 
142 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
143 {
144 	if (strset == ETH_SS_TEST)
145 		return -EOPNOTSUPP;
146 	else if (strset == ETH_SS_STATS)
147 		return hclgevf_tqps_get_sset_count(handle, strset);
148 
149 	return 0;
150 }
151 
152 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
153 				u8 *data)
154 {
155 	u8 *p = (char *)data;
156 
157 	if (strset == ETH_SS_STATS)
158 		p = hclgevf_tqps_get_strings(handle, p);
159 }
160 
161 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
162 {
163 	hclgevf_tqps_get_stats(handle, data);
164 }
165 
166 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
167 {
168 	u8 resp_msg;
169 	int status;
170 
171 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
172 				      true, &resp_msg, sizeof(u8));
173 	if (status) {
174 		dev_err(&hdev->pdev->dev,
175 			"VF request to get TC info from PF failed %d",
176 			status);
177 		return status;
178 	}
179 
180 	hdev->hw_tc_map = resp_msg;
181 
182 	return 0;
183 }
184 
185 static int hclge_get_queue_info(struct hclgevf_dev *hdev)
186 {
187 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
188 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
189 	int status;
190 
191 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
192 				      true, resp_msg,
193 				      HCLGEVF_TQPS_RSS_INFO_LEN);
194 	if (status) {
195 		dev_err(&hdev->pdev->dev,
196 			"VF request to get tqp info from PF failed %d",
197 			status);
198 		return status;
199 	}
200 
201 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
202 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
203 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
204 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
205 
206 	return 0;
207 }
208 
209 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
210 {
211 	struct hclgevf_tqp *tqp;
212 	int i;
213 
214 	/* if this is on going reset then we need to re-allocate the TPQs
215 	 * since we cannot assume we would get same number of TPQs back from PF
216 	 */
217 	if (hclgevf_dev_ongoing_reset(hdev))
218 		devm_kfree(&hdev->pdev->dev, hdev->htqp);
219 
220 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
221 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
222 	if (!hdev->htqp)
223 		return -ENOMEM;
224 
225 	tqp = hdev->htqp;
226 
227 	for (i = 0; i < hdev->num_tqps; i++) {
228 		tqp->dev = &hdev->pdev->dev;
229 		tqp->index = i;
230 
231 		tqp->q.ae_algo = &ae_algovf;
232 		tqp->q.buf_size = hdev->rx_buf_len;
233 		tqp->q.desc_num = hdev->num_desc;
234 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
235 			i * HCLGEVF_TQP_REG_SIZE;
236 
237 		tqp++;
238 	}
239 
240 	return 0;
241 }
242 
243 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
244 {
245 	struct hnae3_handle *nic = &hdev->nic;
246 	struct hnae3_knic_private_info *kinfo;
247 	u16 new_tqps = hdev->num_tqps;
248 	int i;
249 
250 	kinfo = &nic->kinfo;
251 	kinfo->num_tc = 0;
252 	kinfo->num_desc = hdev->num_desc;
253 	kinfo->rx_buf_len = hdev->rx_buf_len;
254 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
255 		if (hdev->hw_tc_map & BIT(i))
256 			kinfo->num_tc++;
257 
258 	kinfo->rss_size
259 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
260 	new_tqps = kinfo->rss_size * kinfo->num_tc;
261 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
262 
263 	/* if this is on going reset then we need to re-allocate the hnae queues
264 	 * as well since number of TPQs from PF might have changed.
265 	 */
266 	if (hclgevf_dev_ongoing_reset(hdev))
267 		devm_kfree(&hdev->pdev->dev, kinfo->tqp);
268 
269 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
270 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
271 	if (!kinfo->tqp)
272 		return -ENOMEM;
273 
274 	for (i = 0; i < kinfo->num_tqps; i++) {
275 		hdev->htqp[i].q.handle = &hdev->nic;
276 		hdev->htqp[i].q.tqp_index = i;
277 		kinfo->tqp[i] = &hdev->htqp[i].q;
278 	}
279 
280 	return 0;
281 }
282 
283 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
284 {
285 	int status;
286 	u8 resp_msg;
287 
288 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
289 				      0, false, &resp_msg, sizeof(u8));
290 	if (status)
291 		dev_err(&hdev->pdev->dev,
292 			"VF failed to fetch link status(%d) from PF", status);
293 }
294 
295 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
296 {
297 	struct hnae3_handle *handle = &hdev->nic;
298 	struct hnae3_client *client;
299 
300 	client = handle->client;
301 
302 	if (link_state != hdev->hw.mac.link) {
303 		client->ops->link_status_change(handle, !!link_state);
304 		hdev->hw.mac.link = link_state;
305 	}
306 }
307 
308 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
309 {
310 	struct hnae3_handle *nic = &hdev->nic;
311 	int ret;
312 
313 	nic->ae_algo = &ae_algovf;
314 	nic->pdev = hdev->pdev;
315 	nic->numa_node_mask = hdev->numa_node_mask;
316 	nic->flags |= HNAE3_SUPPORT_VF;
317 
318 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
319 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
320 			hdev->ae_dev->dev_type);
321 		return -EINVAL;
322 	}
323 
324 	ret = hclgevf_knic_setup(hdev);
325 	if (ret)
326 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
327 			ret);
328 	return ret;
329 }
330 
331 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
332 {
333 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
334 	hdev->num_msi_left += 1;
335 	hdev->num_msi_used -= 1;
336 }
337 
338 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
339 			      struct hnae3_vector_info *vector_info)
340 {
341 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
342 	struct hnae3_vector_info *vector = vector_info;
343 	int alloc = 0;
344 	int i, j;
345 
346 	vector_num = min(hdev->num_msi_left, vector_num);
347 
348 	for (j = 0; j < vector_num; j++) {
349 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
350 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
351 				vector->vector = pci_irq_vector(hdev->pdev, i);
352 				vector->io_addr = hdev->hw.io_base +
353 					HCLGEVF_VECTOR_REG_BASE +
354 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
355 				hdev->vector_status[i] = 0;
356 				hdev->vector_irq[i] = vector->vector;
357 
358 				vector++;
359 				alloc++;
360 
361 				break;
362 			}
363 		}
364 	}
365 	hdev->num_msi_left -= alloc;
366 	hdev->num_msi_used += alloc;
367 
368 	return alloc;
369 }
370 
371 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
372 {
373 	int i;
374 
375 	for (i = 0; i < hdev->num_msi; i++)
376 		if (vector == hdev->vector_irq[i])
377 			return i;
378 
379 	return -EINVAL;
380 }
381 
382 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
383 {
384 	return HCLGEVF_RSS_KEY_SIZE;
385 }
386 
387 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
388 {
389 	return HCLGEVF_RSS_IND_TBL_SIZE;
390 }
391 
392 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
393 {
394 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
395 	struct hclgevf_rss_indirection_table_cmd *req;
396 	struct hclgevf_desc desc;
397 	int status;
398 	int i, j;
399 
400 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
401 
402 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
403 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
404 					     false);
405 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
406 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
407 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
408 			req->rss_result[j] =
409 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
410 
411 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
412 		if (status) {
413 			dev_err(&hdev->pdev->dev,
414 				"VF failed(=%d) to set RSS indirection table\n",
415 				status);
416 			return status;
417 		}
418 	}
419 
420 	return 0;
421 }
422 
423 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
424 {
425 	struct hclgevf_rss_tc_mode_cmd *req;
426 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
427 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
428 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
429 	struct hclgevf_desc desc;
430 	u16 roundup_size;
431 	int status;
432 	int i;
433 
434 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
435 
436 	roundup_size = roundup_pow_of_two(rss_size);
437 	roundup_size = ilog2(roundup_size);
438 
439 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
440 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
441 		tc_size[i] = roundup_size;
442 		tc_offset[i] = rss_size * i;
443 	}
444 
445 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
446 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
447 		hnae_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
448 			     (tc_valid[i] & 0x1));
449 		hnae_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
450 			       HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
451 		hnae_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
452 			       HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
453 	}
454 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
455 	if (status)
456 		dev_err(&hdev->pdev->dev,
457 			"VF failed(=%d) to set rss tc mode\n", status);
458 
459 	return status;
460 }
461 
462 static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash,
463 				  u8 *key)
464 {
465 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
466 	struct hclgevf_rss_config_cmd *req;
467 	int lkup_times = key ? 3 : 1;
468 	struct hclgevf_desc desc;
469 	int key_offset;
470 	int key_size;
471 	int status;
472 
473 	req = (struct hclgevf_rss_config_cmd *)desc.data;
474 	lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0);
475 
476 	for (key_offset = 0; key_offset < lkup_times; key_offset++) {
477 		hclgevf_cmd_setup_basic_desc(&desc,
478 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
479 					     true);
480 		req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET);
481 
482 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
483 		if (status) {
484 			dev_err(&hdev->pdev->dev,
485 				"failed to get hardware RSS cfg, status = %d\n",
486 				status);
487 			return status;
488 		}
489 
490 		if (key_offset == 2)
491 			key_size =
492 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
493 		else
494 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
495 
496 		if (key)
497 			memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM,
498 			       req->hash_key,
499 			       key_size);
500 	}
501 
502 	if (hash) {
503 		if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ)
504 			*hash = ETH_RSS_HASH_TOP;
505 		else
506 			*hash = ETH_RSS_HASH_UNKNOWN;
507 	}
508 
509 	return 0;
510 }
511 
512 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
513 			   u8 *hfunc)
514 {
515 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
516 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
517 	int i;
518 
519 	if (indir)
520 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
521 			indir[i] = rss_cfg->rss_indirection_tbl[i];
522 
523 	return hclgevf_get_rss_hw_cfg(handle, hfunc, key);
524 }
525 
526 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
527 			   const  u8 *key, const  u8 hfunc)
528 {
529 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
530 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
531 	int i;
532 
533 	/* update the shadow RSS table with user specified qids */
534 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
535 		rss_cfg->rss_indirection_tbl[i] = indir[i];
536 
537 	/* update the hardware */
538 	return hclgevf_set_rss_indir_table(hdev);
539 }
540 
541 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
542 {
543 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
544 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
545 
546 	return rss_cfg->rss_size;
547 }
548 
549 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
550 				       int vector,
551 				       struct hnae3_ring_chain_node *ring_chain)
552 {
553 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
554 	struct hnae3_ring_chain_node *node;
555 	struct hclge_mbx_vf_to_pf_cmd *req;
556 	struct hclgevf_desc desc;
557 	int i = 0, vector_id;
558 	int status;
559 	u8 type;
560 
561 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
562 	vector_id = hclgevf_get_vector_index(hdev, vector);
563 	if (vector_id < 0) {
564 		dev_err(&handle->pdev->dev,
565 			"Get vector index fail. ret =%d\n", vector_id);
566 		return vector_id;
567 	}
568 
569 	for (node = ring_chain; node; node = node->next) {
570 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
571 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
572 
573 		if (i == 0) {
574 			hclgevf_cmd_setup_basic_desc(&desc,
575 						     HCLGEVF_OPC_MBX_VF_TO_PF,
576 						     false);
577 			type = en ?
578 				HCLGE_MBX_MAP_RING_TO_VECTOR :
579 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
580 			req->msg[0] = type;
581 			req->msg[1] = vector_id;
582 		}
583 
584 		req->msg[idx_offset] =
585 				hnae_get_bit(node->flag, HNAE3_RING_TYPE_B);
586 		req->msg[idx_offset + 1] = node->tqp_index;
587 		req->msg[idx_offset + 2] = hnae_get_field(node->int_gl_idx,
588 							  HNAE3_RING_GL_IDX_M,
589 							  HNAE3_RING_GL_IDX_S);
590 
591 		i++;
592 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
593 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
594 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
595 		    !node->next) {
596 			req->msg[2] = i;
597 
598 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
599 			if (status) {
600 				dev_err(&hdev->pdev->dev,
601 					"Map TQP fail, status is %d.\n",
602 					status);
603 				return status;
604 			}
605 			i = 0;
606 			hclgevf_cmd_setup_basic_desc(&desc,
607 						     HCLGEVF_OPC_MBX_VF_TO_PF,
608 						     false);
609 			req->msg[0] = type;
610 			req->msg[1] = vector_id;
611 		}
612 	}
613 
614 	return 0;
615 }
616 
617 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
618 				      struct hnae3_ring_chain_node *ring_chain)
619 {
620 	return hclgevf_bind_ring_to_vector(handle, true, vector, ring_chain);
621 }
622 
623 static int hclgevf_unmap_ring_from_vector(
624 				struct hnae3_handle *handle,
625 				int vector,
626 				struct hnae3_ring_chain_node *ring_chain)
627 {
628 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
629 	int ret, vector_id;
630 
631 	vector_id = hclgevf_get_vector_index(hdev, vector);
632 	if (vector_id < 0) {
633 		dev_err(&handle->pdev->dev,
634 			"Get vector index fail. ret =%d\n", vector_id);
635 		return vector_id;
636 	}
637 
638 	ret = hclgevf_bind_ring_to_vector(handle, false, vector, ring_chain);
639 	if (ret)
640 		dev_err(&handle->pdev->dev,
641 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
642 			vector_id,
643 			ret);
644 
645 	return ret;
646 }
647 
648 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
649 {
650 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
651 
652 	hclgevf_free_vector(hdev, vector);
653 
654 	return 0;
655 }
656 
657 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, u32 en)
658 {
659 	struct hclge_mbx_vf_to_pf_cmd *req;
660 	struct hclgevf_desc desc;
661 	int status;
662 
663 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
664 
665 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
666 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
667 	req->msg[1] = en;
668 
669 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
670 	if (status)
671 		dev_err(&hdev->pdev->dev,
672 			"Set promisc mode fail, status is %d.\n", status);
673 
674 	return status;
675 }
676 
677 static void hclgevf_set_promisc_mode(struct hnae3_handle *handle, u32 en)
678 {
679 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
680 
681 	hclgevf_cmd_set_promisc_mode(hdev, en);
682 }
683 
684 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
685 			      int stream_id, bool enable)
686 {
687 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
688 	struct hclgevf_desc desc;
689 	int status;
690 
691 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
692 
693 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
694 				     false);
695 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
696 	req->stream_id = cpu_to_le16(stream_id);
697 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
698 
699 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
700 	if (status)
701 		dev_err(&hdev->pdev->dev,
702 			"TQP enable fail, status =%d.\n", status);
703 
704 	return status;
705 }
706 
707 static int hclgevf_get_queue_id(struct hnae3_queue *queue)
708 {
709 	struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q);
710 
711 	return tqp->index;
712 }
713 
714 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
715 {
716 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
717 	struct hnae3_queue *queue;
718 	struct hclgevf_tqp *tqp;
719 	int i;
720 
721 	for (i = 0; i < hdev->num_tqps; i++) {
722 		queue = handle->kinfo.tqp[i];
723 		tqp = container_of(queue, struct hclgevf_tqp, q);
724 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
725 	}
726 }
727 
728 static int hclgevf_cfg_func_mta_filter(struct hnae3_handle *handle, bool en)
729 {
730 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
731 	u8 msg[2] = {0};
732 
733 	msg[0] = en;
734 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
735 				    HCLGE_MBX_MAC_VLAN_MC_FUNC_MTA_ENABLE,
736 				    msg, 1, false, NULL, 0);
737 }
738 
739 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
740 {
741 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
742 
743 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
744 }
745 
746 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
747 				bool is_first)
748 {
749 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
750 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
751 	u8 *new_mac_addr = (u8 *)p;
752 	u8 msg_data[ETH_ALEN * 2];
753 	u16 subcode;
754 	int status;
755 
756 	ether_addr_copy(msg_data, new_mac_addr);
757 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
758 
759 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
760 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
761 
762 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
763 				      subcode, msg_data, ETH_ALEN * 2,
764 				      true, NULL, 0);
765 	if (!status)
766 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
767 
768 	return status;
769 }
770 
771 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
772 			       const unsigned char *addr)
773 {
774 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
775 
776 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
777 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
778 				    addr, ETH_ALEN, false, NULL, 0);
779 }
780 
781 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
782 			      const unsigned char *addr)
783 {
784 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
785 
786 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
787 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
788 				    addr, ETH_ALEN, false, NULL, 0);
789 }
790 
791 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
792 			       const unsigned char *addr)
793 {
794 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
795 
796 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
797 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
798 				    addr, ETH_ALEN, false, NULL, 0);
799 }
800 
801 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
802 			      const unsigned char *addr)
803 {
804 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
805 
806 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
807 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
808 				    addr, ETH_ALEN, false, NULL, 0);
809 }
810 
811 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
812 				   __be16 proto, u16 vlan_id,
813 				   bool is_kill)
814 {
815 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
816 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
817 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
818 
819 	if (vlan_id > 4095)
820 		return -EINVAL;
821 
822 	if (proto != htons(ETH_P_8021Q))
823 		return -EPROTONOSUPPORT;
824 
825 	msg_data[0] = is_kill;
826 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
827 	memcpy(&msg_data[3], &proto, sizeof(proto));
828 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
829 				    HCLGE_MBX_VLAN_FILTER, msg_data,
830 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
831 }
832 
833 static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
834 {
835 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
836 	u8 msg_data[2];
837 	int ret;
838 
839 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
840 
841 	/* disable vf queue before send queue reset msg to PF */
842 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
843 	if (ret)
844 		return;
845 
846 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
847 			     2, true, NULL, 0);
848 }
849 
850 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
851 				 enum hnae3_reset_notify_type type)
852 {
853 	struct hnae3_client *client = hdev->nic_client;
854 	struct hnae3_handle *handle = &hdev->nic;
855 
856 	if (!client->ops->reset_notify)
857 		return -EOPNOTSUPP;
858 
859 	return client->ops->reset_notify(handle, type);
860 }
861 
862 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
863 {
864 #define HCLGEVF_RESET_WAIT_MS	500
865 #define HCLGEVF_RESET_WAIT_CNT	20
866 	u32 val, cnt = 0;
867 
868 	/* wait to check the hardware reset completion status */
869 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
870 	while (hnae_get_bit(val, HCLGEVF_FUN_RST_ING_B) &&
871 			    (cnt < HCLGEVF_RESET_WAIT_CNT)) {
872 		msleep(HCLGEVF_RESET_WAIT_MS);
873 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
874 		cnt++;
875 	}
876 
877 	/* hardware completion status should be available by this time */
878 	if (cnt >= HCLGEVF_RESET_WAIT_CNT) {
879 		dev_warn(&hdev->pdev->dev,
880 			 "could'nt get reset done status from h/w, timeout!\n");
881 		return -EBUSY;
882 	}
883 
884 	/* we will wait a bit more to let reset of the stack to complete. This
885 	 * might happen in case reset assertion was made by PF. Yes, this also
886 	 * means we might end up waiting bit more even for VF reset.
887 	 */
888 	msleep(5000);
889 
890 	return 0;
891 }
892 
893 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
894 {
895 	int ret;
896 
897 	/* uninitialize the nic client */
898 	hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
899 
900 	/* re-initialize the hclge device */
901 	ret = hclgevf_init_hdev(hdev);
902 	if (ret) {
903 		dev_err(&hdev->pdev->dev,
904 			"hclge device re-init failed, VF is disabled!\n");
905 		return ret;
906 	}
907 
908 	/* bring up the nic client again */
909 	hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
910 
911 	return 0;
912 }
913 
914 static int hclgevf_reset(struct hclgevf_dev *hdev)
915 {
916 	int ret;
917 
918 	rtnl_lock();
919 
920 	/* bring down the nic to stop any ongoing TX/RX */
921 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
922 
923 	/* check if VF could successfully fetch the hardware reset completion
924 	 * status from the hardware
925 	 */
926 	ret = hclgevf_reset_wait(hdev);
927 	if (ret) {
928 		/* can't do much in this situation, will disable VF */
929 		dev_err(&hdev->pdev->dev,
930 			"VF failed(=%d) to fetch H/W reset completion status\n",
931 			ret);
932 
933 		dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n");
934 		hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
935 
936 		rtnl_unlock();
937 		return ret;
938 	}
939 
940 	/* now, re-initialize the nic client and ae device*/
941 	ret = hclgevf_reset_stack(hdev);
942 	if (ret)
943 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
944 
945 	/* bring up the nic to enable TX/RX again */
946 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
947 
948 	rtnl_unlock();
949 
950 	return ret;
951 }
952 
953 static int hclgevf_do_reset(struct hclgevf_dev *hdev)
954 {
955 	int status;
956 	u8 respmsg;
957 
958 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
959 				      0, false, &respmsg, sizeof(u8));
960 	if (status)
961 		dev_err(&hdev->pdev->dev,
962 			"VF reset request to PF failed(=%d)\n", status);
963 
964 	return status;
965 }
966 
967 static void hclgevf_reset_event(struct hnae3_handle *handle)
968 {
969 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
970 
971 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
972 
973 	handle->reset_level = HNAE3_VF_RESET;
974 
975 	/* reset of this VF requested */
976 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
977 	hclgevf_reset_task_schedule(hdev);
978 
979 	handle->last_reset_time = jiffies;
980 }
981 
982 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
983 {
984 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
985 
986 	return hdev->fw_version;
987 }
988 
989 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
990 {
991 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
992 
993 	vector->vector_irq = pci_irq_vector(hdev->pdev,
994 					    HCLGEVF_MISC_VECTOR_NUM);
995 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
996 	/* vector status always valid for Vector 0 */
997 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
998 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
999 
1000 	hdev->num_msi_left -= 1;
1001 	hdev->num_msi_used += 1;
1002 }
1003 
1004 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1005 {
1006 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1007 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1008 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1009 		schedule_work(&hdev->rst_service_task);
1010 	}
1011 }
1012 
1013 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1014 {
1015 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1016 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1017 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1018 		schedule_work(&hdev->mbx_service_task);
1019 	}
1020 }
1021 
1022 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1023 {
1024 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1025 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1026 		schedule_work(&hdev->service_task);
1027 }
1028 
1029 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1030 {
1031 	/* if we have any pending mailbox event then schedule the mbx task */
1032 	if (hdev->mbx_event_pending)
1033 		hclgevf_mbx_task_schedule(hdev);
1034 
1035 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1036 		hclgevf_reset_task_schedule(hdev);
1037 }
1038 
1039 static void hclgevf_service_timer(struct timer_list *t)
1040 {
1041 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1042 
1043 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1044 
1045 	hclgevf_task_schedule(hdev);
1046 }
1047 
1048 static void hclgevf_reset_service_task(struct work_struct *work)
1049 {
1050 	struct hclgevf_dev *hdev =
1051 		container_of(work, struct hclgevf_dev, rst_service_task);
1052 	int ret;
1053 
1054 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1055 		return;
1056 
1057 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1058 
1059 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1060 			       &hdev->reset_state)) {
1061 		/* PF has initmated that it is about to reset the hardware.
1062 		 * We now have to poll & check if harware has actually completed
1063 		 * the reset sequence. On hardware reset completion, VF needs to
1064 		 * reset the client and ae device.
1065 		 */
1066 		hdev->reset_attempts = 0;
1067 
1068 		ret = hclgevf_reset(hdev);
1069 		if (ret)
1070 			dev_err(&hdev->pdev->dev, "VF stack reset failed.\n");
1071 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1072 				      &hdev->reset_state)) {
1073 		/* we could be here when either of below happens:
1074 		 * 1. reset was initiated due to watchdog timeout due to
1075 		 *    a. IMP was earlier reset and our TX got choked down and
1076 		 *       which resulted in watchdog reacting and inducing VF
1077 		 *       reset. This also means our cmdq would be unreliable.
1078 		 *    b. problem in TX due to other lower layer(example link
1079 		 *       layer not functioning properly etc.)
1080 		 * 2. VF reset might have been initiated due to some config
1081 		 *    change.
1082 		 *
1083 		 * NOTE: Theres no clear way to detect above cases than to react
1084 		 * to the response of PF for this reset request. PF will ack the
1085 		 * 1b and 2. cases but we will not get any intimation about 1a
1086 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1087 		 * communication between PF and VF would be broken.
1088 		 */
1089 
1090 		/* if we are never geting into pending state it means either:
1091 		 * 1. PF is not receiving our request which could be due to IMP
1092 		 *    reset
1093 		 * 2. PF is screwed
1094 		 * We cannot do much for 2. but to check first we can try reset
1095 		 * our PCIe + stack and see if it alleviates the problem.
1096 		 */
1097 		if (hdev->reset_attempts > 3) {
1098 			/* prepare for full reset of stack + pcie interface */
1099 			hdev->nic.reset_level = HNAE3_VF_FULL_RESET;
1100 
1101 			/* "defer" schedule the reset task again */
1102 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1103 		} else {
1104 			hdev->reset_attempts++;
1105 
1106 			/* request PF for resetting this VF via mailbox */
1107 			ret = hclgevf_do_reset(hdev);
1108 			if (ret)
1109 				dev_warn(&hdev->pdev->dev,
1110 					 "VF rst fail, stack will call\n");
1111 		}
1112 	}
1113 
1114 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1115 }
1116 
1117 static void hclgevf_mailbox_service_task(struct work_struct *work)
1118 {
1119 	struct hclgevf_dev *hdev;
1120 
1121 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1122 
1123 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1124 		return;
1125 
1126 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1127 
1128 	hclgevf_mbx_async_handler(hdev);
1129 
1130 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1131 }
1132 
1133 static void hclgevf_service_task(struct work_struct *work)
1134 {
1135 	struct hclgevf_dev *hdev;
1136 
1137 	hdev = container_of(work, struct hclgevf_dev, service_task);
1138 
1139 	/* request the link status from the PF. PF would be able to tell VF
1140 	 * about such updates in future so we might remove this later
1141 	 */
1142 	hclgevf_request_link_info(hdev);
1143 
1144 	hclgevf_deferred_task_schedule(hdev);
1145 
1146 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1147 }
1148 
1149 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1150 {
1151 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1152 }
1153 
1154 static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval)
1155 {
1156 	u32 cmdq_src_reg;
1157 
1158 	/* fetch the events from their corresponding regs */
1159 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1160 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1161 
1162 	/* check for vector0 mailbox(=CMDQ RX) event source */
1163 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1164 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1165 		*clearval = cmdq_src_reg;
1166 		return true;
1167 	}
1168 
1169 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1170 
1171 	return false;
1172 }
1173 
1174 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1175 {
1176 	writel(en ? 1 : 0, vector->addr);
1177 }
1178 
1179 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1180 {
1181 	struct hclgevf_dev *hdev = data;
1182 	u32 clearval;
1183 
1184 	hclgevf_enable_vector(&hdev->misc_vector, false);
1185 	if (!hclgevf_check_event_cause(hdev, &clearval))
1186 		goto skip_sched;
1187 
1188 	hclgevf_mbx_handler(hdev);
1189 
1190 	hclgevf_clear_event_cause(hdev, clearval);
1191 
1192 skip_sched:
1193 	hclgevf_enable_vector(&hdev->misc_vector, true);
1194 
1195 	return IRQ_HANDLED;
1196 }
1197 
1198 static int hclgevf_configure(struct hclgevf_dev *hdev)
1199 {
1200 	int ret;
1201 
1202 	/* get queue configuration from PF */
1203 	ret = hclge_get_queue_info(hdev);
1204 	if (ret)
1205 		return ret;
1206 	/* get tc configuration from PF */
1207 	return hclgevf_get_tc_info(hdev);
1208 }
1209 
1210 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1211 {
1212 	struct pci_dev *pdev = ae_dev->pdev;
1213 	struct hclgevf_dev *hdev = ae_dev->priv;
1214 
1215 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1216 	if (!hdev)
1217 		return -ENOMEM;
1218 
1219 	hdev->pdev = pdev;
1220 	hdev->ae_dev = ae_dev;
1221 	ae_dev->priv = hdev;
1222 
1223 	return 0;
1224 }
1225 
1226 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1227 {
1228 	struct hnae3_handle *roce = &hdev->roce;
1229 	struct hnae3_handle *nic = &hdev->nic;
1230 
1231 	roce->rinfo.num_vectors = HCLGEVF_ROCEE_VECTOR_NUM;
1232 
1233 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1234 	    hdev->num_msi_left == 0)
1235 		return -EINVAL;
1236 
1237 	roce->rinfo.base_vector =
1238 		hdev->vector_status[hdev->num_msi_used];
1239 
1240 	roce->rinfo.netdev = nic->kinfo.netdev;
1241 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1242 
1243 	roce->pdev = nic->pdev;
1244 	roce->ae_algo = nic->ae_algo;
1245 	roce->numa_node_mask = nic->numa_node_mask;
1246 
1247 	return 0;
1248 }
1249 
1250 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1251 {
1252 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1253 	int i, ret;
1254 
1255 	rss_cfg->rss_size = hdev->rss_size_max;
1256 
1257 	/* Initialize RSS indirect table for each vport */
1258 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1259 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1260 
1261 	ret = hclgevf_set_rss_indir_table(hdev);
1262 	if (ret)
1263 		return ret;
1264 
1265 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1266 }
1267 
1268 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1269 {
1270 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1271 	 * here later
1272 	 */
1273 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1274 				       false);
1275 }
1276 
1277 static int hclgevf_ae_start(struct hnae3_handle *handle)
1278 {
1279 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1280 	int i, queue_id;
1281 
1282 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
1283 		/* ring enable */
1284 		queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1285 		if (queue_id < 0) {
1286 			dev_warn(&hdev->pdev->dev,
1287 				 "Get invalid queue id, ignore it\n");
1288 			continue;
1289 		}
1290 
1291 		hclgevf_tqp_enable(hdev, queue_id, 0, true);
1292 	}
1293 
1294 	/* reset tqp stats */
1295 	hclgevf_reset_tqp_stats(handle);
1296 
1297 	hclgevf_request_link_info(hdev);
1298 
1299 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1300 	mod_timer(&hdev->service_timer, jiffies + HZ);
1301 
1302 	return 0;
1303 }
1304 
1305 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1306 {
1307 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1308 	int i, queue_id;
1309 
1310 	for (i = 0; i < hdev->num_tqps; i++) {
1311 		/* Ring disable */
1312 		queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1313 		if (queue_id < 0) {
1314 			dev_warn(&hdev->pdev->dev,
1315 				 "Get invalid queue id, ignore it\n");
1316 			continue;
1317 		}
1318 
1319 		hclgevf_tqp_enable(hdev, queue_id, 0, false);
1320 	}
1321 
1322 	/* reset tqp stats */
1323 	hclgevf_reset_tqp_stats(handle);
1324 	del_timer_sync(&hdev->service_timer);
1325 	cancel_work_sync(&hdev->service_task);
1326 	hclgevf_update_link_status(hdev, 0);
1327 }
1328 
1329 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1330 {
1331 	/* if this is on going reset then skip this initialization */
1332 	if (hclgevf_dev_ongoing_reset(hdev))
1333 		return;
1334 
1335 	/* setup tasks for the MBX */
1336 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1337 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1338 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1339 
1340 	/* setup tasks for service timer */
1341 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1342 
1343 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1344 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1345 
1346 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1347 
1348 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1349 
1350 	/* bring the device down */
1351 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1352 }
1353 
1354 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1355 {
1356 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1357 
1358 	if (hdev->service_timer.function)
1359 		del_timer_sync(&hdev->service_timer);
1360 	if (hdev->service_task.func)
1361 		cancel_work_sync(&hdev->service_task);
1362 	if (hdev->mbx_service_task.func)
1363 		cancel_work_sync(&hdev->mbx_service_task);
1364 	if (hdev->rst_service_task.func)
1365 		cancel_work_sync(&hdev->rst_service_task);
1366 
1367 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1368 }
1369 
1370 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1371 {
1372 	struct pci_dev *pdev = hdev->pdev;
1373 	int vectors;
1374 	int i;
1375 
1376 	/* if this is on going reset then skip this initialization */
1377 	if (hclgevf_dev_ongoing_reset(hdev))
1378 		return 0;
1379 
1380 	hdev->num_msi = HCLGEVF_MAX_VF_VECTOR_NUM;
1381 
1382 	vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1383 					PCI_IRQ_MSI | PCI_IRQ_MSIX);
1384 	if (vectors < 0) {
1385 		dev_err(&pdev->dev,
1386 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1387 			vectors);
1388 		return vectors;
1389 	}
1390 	if (vectors < hdev->num_msi)
1391 		dev_warn(&hdev->pdev->dev,
1392 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1393 			 hdev->num_msi, vectors);
1394 
1395 	hdev->num_msi = vectors;
1396 	hdev->num_msi_left = vectors;
1397 	hdev->base_msi_vector = pdev->irq;
1398 
1399 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1400 					   sizeof(u16), GFP_KERNEL);
1401 	if (!hdev->vector_status) {
1402 		pci_free_irq_vectors(pdev);
1403 		return -ENOMEM;
1404 	}
1405 
1406 	for (i = 0; i < hdev->num_msi; i++)
1407 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1408 
1409 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1410 					sizeof(int), GFP_KERNEL);
1411 	if (!hdev->vector_irq) {
1412 		pci_free_irq_vectors(pdev);
1413 		return -ENOMEM;
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1420 {
1421 	struct pci_dev *pdev = hdev->pdev;
1422 
1423 	pci_free_irq_vectors(pdev);
1424 }
1425 
1426 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1427 {
1428 	int ret = 0;
1429 
1430 	/* if this is on going reset then skip this initialization */
1431 	if (hclgevf_dev_ongoing_reset(hdev))
1432 		return 0;
1433 
1434 	hclgevf_get_misc_vector(hdev);
1435 
1436 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1437 			  0, "hclgevf_cmd", hdev);
1438 	if (ret) {
1439 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1440 			hdev->misc_vector.vector_irq);
1441 		return ret;
1442 	}
1443 
1444 	/* enable misc. vector(vector 0) */
1445 	hclgevf_enable_vector(&hdev->misc_vector, true);
1446 
1447 	return ret;
1448 }
1449 
1450 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
1451 {
1452 	/* disable misc vector(vector 0) */
1453 	hclgevf_enable_vector(&hdev->misc_vector, false);
1454 	free_irq(hdev->misc_vector.vector_irq, hdev);
1455 	hclgevf_free_vector(hdev, 0);
1456 }
1457 
1458 static int hclgevf_init_instance(struct hclgevf_dev *hdev,
1459 				 struct hnae3_client *client)
1460 {
1461 	int ret;
1462 
1463 	switch (client->type) {
1464 	case HNAE3_CLIENT_KNIC:
1465 		hdev->nic_client = client;
1466 		hdev->nic.client = client;
1467 
1468 		ret = client->ops->init_instance(&hdev->nic);
1469 		if (ret)
1470 			return ret;
1471 
1472 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1473 			struct hnae3_client *rc = hdev->roce_client;
1474 
1475 			ret = hclgevf_init_roce_base_info(hdev);
1476 			if (ret)
1477 				return ret;
1478 			ret = rc->ops->init_instance(&hdev->roce);
1479 			if (ret)
1480 				return ret;
1481 		}
1482 		break;
1483 	case HNAE3_CLIENT_UNIC:
1484 		hdev->nic_client = client;
1485 		hdev->nic.client = client;
1486 
1487 		ret = client->ops->init_instance(&hdev->nic);
1488 		if (ret)
1489 			return ret;
1490 		break;
1491 	case HNAE3_CLIENT_ROCE:
1492 		hdev->roce_client = client;
1493 		hdev->roce.client = client;
1494 
1495 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1496 			ret = hclgevf_init_roce_base_info(hdev);
1497 			if (ret)
1498 				return ret;
1499 
1500 			ret = client->ops->init_instance(&hdev->roce);
1501 			if (ret)
1502 				return ret;
1503 		}
1504 	}
1505 
1506 	return 0;
1507 }
1508 
1509 static void hclgevf_uninit_instance(struct hclgevf_dev *hdev,
1510 				    struct hnae3_client *client)
1511 {
1512 	/* un-init roce, if it exists */
1513 	if (hdev->roce_client)
1514 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
1515 
1516 	/* un-init nic/unic, if this was not called by roce client */
1517 	if ((client->ops->uninit_instance) &&
1518 	    (client->type != HNAE3_CLIENT_ROCE))
1519 		client->ops->uninit_instance(&hdev->nic, 0);
1520 }
1521 
1522 static int hclgevf_register_client(struct hnae3_client *client,
1523 				   struct hnae3_ae_dev *ae_dev)
1524 {
1525 	struct hclgevf_dev *hdev = ae_dev->priv;
1526 
1527 	return hclgevf_init_instance(hdev, client);
1528 }
1529 
1530 static void hclgevf_unregister_client(struct hnae3_client *client,
1531 				      struct hnae3_ae_dev *ae_dev)
1532 {
1533 	struct hclgevf_dev *hdev = ae_dev->priv;
1534 
1535 	hclgevf_uninit_instance(hdev, client);
1536 }
1537 
1538 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
1539 {
1540 	struct pci_dev *pdev = hdev->pdev;
1541 	struct hclgevf_hw *hw;
1542 	int ret;
1543 
1544 	/* check if we need to skip initialization of pci. This will happen if
1545 	 * device is undergoing VF reset. Otherwise, we would need to
1546 	 * re-initialize pci interface again i.e. when device is not going
1547 	 * through *any* reset or actually undergoing full reset.
1548 	 */
1549 	if (hclgevf_dev_ongoing_reset(hdev))
1550 		return 0;
1551 
1552 	ret = pci_enable_device(pdev);
1553 	if (ret) {
1554 		dev_err(&pdev->dev, "failed to enable PCI device\n");
1555 		goto err_no_drvdata;
1556 	}
1557 
1558 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1559 	if (ret) {
1560 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
1561 		goto err_disable_device;
1562 	}
1563 
1564 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
1565 	if (ret) {
1566 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
1567 		goto err_disable_device;
1568 	}
1569 
1570 	pci_set_master(pdev);
1571 	hw = &hdev->hw;
1572 	hw->hdev = hdev;
1573 	hw->io_base = pci_iomap(pdev, 2, 0);
1574 	if (!hw->io_base) {
1575 		dev_err(&pdev->dev, "can't map configuration register space\n");
1576 		ret = -ENOMEM;
1577 		goto err_clr_master;
1578 	}
1579 
1580 	return 0;
1581 
1582 err_clr_master:
1583 	pci_clear_master(pdev);
1584 	pci_release_regions(pdev);
1585 err_disable_device:
1586 	pci_disable_device(pdev);
1587 err_no_drvdata:
1588 	pci_set_drvdata(pdev, NULL);
1589 	return ret;
1590 }
1591 
1592 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
1593 {
1594 	struct pci_dev *pdev = hdev->pdev;
1595 
1596 	pci_iounmap(pdev, hdev->hw.io_base);
1597 	pci_clear_master(pdev);
1598 	pci_release_regions(pdev);
1599 	pci_disable_device(pdev);
1600 	pci_set_drvdata(pdev, NULL);
1601 }
1602 
1603 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
1604 {
1605 	struct pci_dev *pdev = hdev->pdev;
1606 	int ret;
1607 
1608 	/* check if device is on-going full reset(i.e. pcie as well) */
1609 	if (hclgevf_dev_ongoing_full_reset(hdev)) {
1610 		dev_warn(&pdev->dev, "device is going full reset\n");
1611 		hclgevf_uninit_hdev(hdev);
1612 	}
1613 
1614 	ret = hclgevf_pci_init(hdev);
1615 	if (ret) {
1616 		dev_err(&pdev->dev, "PCI initialization failed\n");
1617 		return ret;
1618 	}
1619 
1620 	ret = hclgevf_init_msi(hdev);
1621 	if (ret) {
1622 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
1623 		goto err_irq_init;
1624 	}
1625 
1626 	hclgevf_state_init(hdev);
1627 
1628 	ret = hclgevf_misc_irq_init(hdev);
1629 	if (ret) {
1630 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
1631 			ret);
1632 		goto err_misc_irq_init;
1633 	}
1634 
1635 	ret = hclgevf_cmd_init(hdev);
1636 	if (ret)
1637 		goto err_cmd_init;
1638 
1639 	ret = hclgevf_configure(hdev);
1640 	if (ret) {
1641 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
1642 		goto err_config;
1643 	}
1644 
1645 	ret = hclgevf_alloc_tqps(hdev);
1646 	if (ret) {
1647 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
1648 		goto err_config;
1649 	}
1650 
1651 	ret = hclgevf_set_handle_info(hdev);
1652 	if (ret) {
1653 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
1654 		goto err_config;
1655 	}
1656 
1657 	/* Initialize VF's MTA */
1658 	hdev->accept_mta_mc = true;
1659 	ret = hclgevf_cfg_func_mta_filter(&hdev->nic, hdev->accept_mta_mc);
1660 	if (ret) {
1661 		dev_err(&hdev->pdev->dev,
1662 			"failed(%d) to set mta filter mode\n", ret);
1663 		goto err_config;
1664 	}
1665 
1666 	/* Initialize RSS for this VF */
1667 	ret = hclgevf_rss_init_hw(hdev);
1668 	if (ret) {
1669 		dev_err(&hdev->pdev->dev,
1670 			"failed(%d) to initialize RSS\n", ret);
1671 		goto err_config;
1672 	}
1673 
1674 	ret = hclgevf_init_vlan_config(hdev);
1675 	if (ret) {
1676 		dev_err(&hdev->pdev->dev,
1677 			"failed(%d) to initialize VLAN config\n", ret);
1678 		goto err_config;
1679 	}
1680 
1681 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
1682 
1683 	return 0;
1684 
1685 err_config:
1686 	hclgevf_cmd_uninit(hdev);
1687 err_cmd_init:
1688 	hclgevf_misc_irq_uninit(hdev);
1689 err_misc_irq_init:
1690 	hclgevf_state_uninit(hdev);
1691 	hclgevf_uninit_msi(hdev);
1692 err_irq_init:
1693 	hclgevf_pci_uninit(hdev);
1694 	return ret;
1695 }
1696 
1697 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
1698 {
1699 	hclgevf_cmd_uninit(hdev);
1700 	hclgevf_misc_irq_uninit(hdev);
1701 	hclgevf_state_uninit(hdev);
1702 	hclgevf_uninit_msi(hdev);
1703 	hclgevf_pci_uninit(hdev);
1704 }
1705 
1706 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
1707 {
1708 	struct pci_dev *pdev = ae_dev->pdev;
1709 	int ret;
1710 
1711 	ret = hclgevf_alloc_hdev(ae_dev);
1712 	if (ret) {
1713 		dev_err(&pdev->dev, "hclge device allocation failed\n");
1714 		return ret;
1715 	}
1716 
1717 	ret = hclgevf_init_hdev(ae_dev->priv);
1718 	if (ret)
1719 		dev_err(&pdev->dev, "hclge device initialization failed\n");
1720 
1721 	return ret;
1722 }
1723 
1724 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
1725 {
1726 	struct hclgevf_dev *hdev = ae_dev->priv;
1727 
1728 	hclgevf_uninit_hdev(hdev);
1729 	ae_dev->priv = NULL;
1730 }
1731 
1732 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
1733 {
1734 	struct hnae3_handle *nic = &hdev->nic;
1735 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1736 
1737 	return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
1738 }
1739 
1740 /**
1741  * hclgevf_get_channels - Get the current channels enabled and max supported.
1742  * @handle: hardware information for network interface
1743  * @ch: ethtool channels structure
1744  *
1745  * We don't support separate tx and rx queues as channels. The other count
1746  * represents how many queues are being used for control. max_combined counts
1747  * how many queue pairs we can support. They may not be mapped 1 to 1 with
1748  * q_vectors since we support a lot more queue pairs than q_vectors.
1749  **/
1750 static void hclgevf_get_channels(struct hnae3_handle *handle,
1751 				 struct ethtool_channels *ch)
1752 {
1753 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1754 
1755 	ch->max_combined = hclgevf_get_max_channels(hdev);
1756 	ch->other_count = 0;
1757 	ch->max_other = 0;
1758 	ch->combined_count = hdev->num_tqps;
1759 }
1760 
1761 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
1762 					  u16 *free_tqps, u16 *max_rss_size)
1763 {
1764 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1765 
1766 	*free_tqps = 0;
1767 	*max_rss_size = hdev->rss_size_max;
1768 }
1769 
1770 static int hclgevf_get_status(struct hnae3_handle *handle)
1771 {
1772 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1773 
1774 	return hdev->hw.mac.link;
1775 }
1776 
1777 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
1778 					    u8 *auto_neg, u32 *speed,
1779 					    u8 *duplex)
1780 {
1781 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1782 
1783 	if (speed)
1784 		*speed = hdev->hw.mac.speed;
1785 	if (duplex)
1786 		*duplex = hdev->hw.mac.duplex;
1787 	if (auto_neg)
1788 		*auto_neg = AUTONEG_DISABLE;
1789 }
1790 
1791 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
1792 				 u8 duplex)
1793 {
1794 	hdev->hw.mac.speed = speed;
1795 	hdev->hw.mac.duplex = duplex;
1796 }
1797 
1798 static const struct hnae3_ae_ops hclgevf_ops = {
1799 	.init_ae_dev = hclgevf_init_ae_dev,
1800 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
1801 	.init_client_instance = hclgevf_register_client,
1802 	.uninit_client_instance = hclgevf_unregister_client,
1803 	.start = hclgevf_ae_start,
1804 	.stop = hclgevf_ae_stop,
1805 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
1806 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
1807 	.get_vector = hclgevf_get_vector,
1808 	.put_vector = hclgevf_put_vector,
1809 	.reset_queue = hclgevf_reset_tqp,
1810 	.set_promisc_mode = hclgevf_set_promisc_mode,
1811 	.get_mac_addr = hclgevf_get_mac_addr,
1812 	.set_mac_addr = hclgevf_set_mac_addr,
1813 	.add_uc_addr = hclgevf_add_uc_addr,
1814 	.rm_uc_addr = hclgevf_rm_uc_addr,
1815 	.add_mc_addr = hclgevf_add_mc_addr,
1816 	.rm_mc_addr = hclgevf_rm_mc_addr,
1817 	.get_stats = hclgevf_get_stats,
1818 	.update_stats = hclgevf_update_stats,
1819 	.get_strings = hclgevf_get_strings,
1820 	.get_sset_count = hclgevf_get_sset_count,
1821 	.get_rss_key_size = hclgevf_get_rss_key_size,
1822 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
1823 	.get_rss = hclgevf_get_rss,
1824 	.set_rss = hclgevf_set_rss,
1825 	.get_tc_size = hclgevf_get_tc_size,
1826 	.get_fw_version = hclgevf_get_fw_version,
1827 	.set_vlan_filter = hclgevf_set_vlan_filter,
1828 	.reset_event = hclgevf_reset_event,
1829 	.get_channels = hclgevf_get_channels,
1830 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
1831 	.get_status = hclgevf_get_status,
1832 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
1833 };
1834 
1835 static struct hnae3_ae_algo ae_algovf = {
1836 	.ops = &hclgevf_ops,
1837 	.name = HCLGEVF_NAME,
1838 	.pdev_id_table = ae_algovf_pci_tbl,
1839 };
1840 
1841 static int hclgevf_init(void)
1842 {
1843 	pr_info("%s is initializing\n", HCLGEVF_NAME);
1844 
1845 	return hnae3_register_ae_algo(&ae_algovf);
1846 }
1847 
1848 static void hclgevf_exit(void)
1849 {
1850 	hnae3_unregister_ae_algo(&ae_algovf);
1851 }
1852 module_init(hclgevf_init);
1853 module_exit(hclgevf_exit);
1854 
1855 MODULE_LICENSE("GPL");
1856 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
1857 MODULE_DESCRIPTION("HCLGEVF Driver");
1858 MODULE_VERSION(HCLGEVF_MOD_VERSION);
1859