xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <net/rtnetlink.h>
6 #include "hclgevf_cmd.h"
7 #include "hclgevf_main.h"
8 #include "hclge_mbx.h"
9 #include "hnae3.h"
10 
11 #define HCLGEVF_NAME	"hclgevf"
12 
13 static int hclgevf_init_hdev(struct hclgevf_dev *hdev);
14 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25 
26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
27 	struct hnae3_handle *handle)
28 {
29 	return container_of(handle, struct hclgevf_dev, nic);
30 }
31 
32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
33 {
34 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
35 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
36 	struct hclgevf_desc desc;
37 	struct hclgevf_tqp *tqp;
38 	int status;
39 	int i;
40 
41 	for (i = 0; i < kinfo->num_tqps; i++) {
42 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
43 		hclgevf_cmd_setup_basic_desc(&desc,
44 					     HCLGEVF_OPC_QUERY_RX_STATUS,
45 					     true);
46 
47 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
48 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
49 		if (status) {
50 			dev_err(&hdev->pdev->dev,
51 				"Query tqp stat fail, status = %d,queue = %d\n",
52 				status,	i);
53 			return status;
54 		}
55 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
56 			le32_to_cpu(desc.data[1]);
57 
58 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
59 					     true);
60 
61 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
62 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
63 		if (status) {
64 			dev_err(&hdev->pdev->dev,
65 				"Query tqp stat fail, status = %d,queue = %d\n",
66 				status, i);
67 			return status;
68 		}
69 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
70 			le32_to_cpu(desc.data[1]);
71 	}
72 
73 	return 0;
74 }
75 
76 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
77 {
78 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
79 	struct hclgevf_tqp *tqp;
80 	u64 *buff = data;
81 	int i;
82 
83 	for (i = 0; i < kinfo->num_tqps; i++) {
84 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
85 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
86 	}
87 	for (i = 0; i < kinfo->num_tqps; i++) {
88 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
89 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
90 	}
91 
92 	return buff;
93 }
94 
95 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
96 {
97 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
98 
99 	return kinfo->num_tqps * 2;
100 }
101 
102 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
103 {
104 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
105 	u8 *buff = data;
106 	int i = 0;
107 
108 	for (i = 0; i < kinfo->num_tqps; i++) {
109 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
110 						       struct hclgevf_tqp, q);
111 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
112 			 tqp->index);
113 		buff += ETH_GSTRING_LEN;
114 	}
115 
116 	for (i = 0; i < kinfo->num_tqps; i++) {
117 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
118 						       struct hclgevf_tqp, q);
119 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
120 			 tqp->index);
121 		buff += ETH_GSTRING_LEN;
122 	}
123 
124 	return buff;
125 }
126 
127 static void hclgevf_update_stats(struct hnae3_handle *handle,
128 				 struct net_device_stats *net_stats)
129 {
130 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
131 	int status;
132 
133 	status = hclgevf_tqps_update_stats(handle);
134 	if (status)
135 		dev_err(&hdev->pdev->dev,
136 			"VF update of TQPS stats fail, status = %d.\n",
137 			status);
138 }
139 
140 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
141 {
142 	if (strset == ETH_SS_TEST)
143 		return -EOPNOTSUPP;
144 	else if (strset == ETH_SS_STATS)
145 		return hclgevf_tqps_get_sset_count(handle, strset);
146 
147 	return 0;
148 }
149 
150 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
151 				u8 *data)
152 {
153 	u8 *p = (char *)data;
154 
155 	if (strset == ETH_SS_STATS)
156 		p = hclgevf_tqps_get_strings(handle, p);
157 }
158 
159 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
160 {
161 	hclgevf_tqps_get_stats(handle, data);
162 }
163 
164 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
165 {
166 	u8 resp_msg;
167 	int status;
168 
169 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
170 				      true, &resp_msg, sizeof(u8));
171 	if (status) {
172 		dev_err(&hdev->pdev->dev,
173 			"VF request to get TC info from PF failed %d",
174 			status);
175 		return status;
176 	}
177 
178 	hdev->hw_tc_map = resp_msg;
179 
180 	return 0;
181 }
182 
183 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
184 {
185 #define HCLGEVF_TQPS_RSS_INFO_LEN	8
186 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
187 	int status;
188 
189 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
190 				      true, resp_msg,
191 				      HCLGEVF_TQPS_RSS_INFO_LEN);
192 	if (status) {
193 		dev_err(&hdev->pdev->dev,
194 			"VF request to get tqp info from PF failed %d",
195 			status);
196 		return status;
197 	}
198 
199 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
200 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
201 	memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
202 	memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
203 
204 	return 0;
205 }
206 
207 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
208 {
209 	struct hclgevf_tqp *tqp;
210 	int i;
211 
212 	/* if this is on going reset then we need to re-allocate the TPQs
213 	 * since we cannot assume we would get same number of TPQs back from PF
214 	 */
215 	if (hclgevf_dev_ongoing_reset(hdev))
216 		devm_kfree(&hdev->pdev->dev, hdev->htqp);
217 
218 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
219 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
220 	if (!hdev->htqp)
221 		return -ENOMEM;
222 
223 	tqp = hdev->htqp;
224 
225 	for (i = 0; i < hdev->num_tqps; i++) {
226 		tqp->dev = &hdev->pdev->dev;
227 		tqp->index = i;
228 
229 		tqp->q.ae_algo = &ae_algovf;
230 		tqp->q.buf_size = hdev->rx_buf_len;
231 		tqp->q.desc_num = hdev->num_desc;
232 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
233 			i * HCLGEVF_TQP_REG_SIZE;
234 
235 		tqp++;
236 	}
237 
238 	return 0;
239 }
240 
241 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
242 {
243 	struct hnae3_handle *nic = &hdev->nic;
244 	struct hnae3_knic_private_info *kinfo;
245 	u16 new_tqps = hdev->num_tqps;
246 	int i;
247 
248 	kinfo = &nic->kinfo;
249 	kinfo->num_tc = 0;
250 	kinfo->num_desc = hdev->num_desc;
251 	kinfo->rx_buf_len = hdev->rx_buf_len;
252 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
253 		if (hdev->hw_tc_map & BIT(i))
254 			kinfo->num_tc++;
255 
256 	kinfo->rss_size
257 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
258 	new_tqps = kinfo->rss_size * kinfo->num_tc;
259 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
260 
261 	/* if this is on going reset then we need to re-allocate the hnae queues
262 	 * as well since number of TPQs from PF might have changed.
263 	 */
264 	if (hclgevf_dev_ongoing_reset(hdev))
265 		devm_kfree(&hdev->pdev->dev, kinfo->tqp);
266 
267 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
268 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
269 	if (!kinfo->tqp)
270 		return -ENOMEM;
271 
272 	for (i = 0; i < kinfo->num_tqps; i++) {
273 		hdev->htqp[i].q.handle = &hdev->nic;
274 		hdev->htqp[i].q.tqp_index = i;
275 		kinfo->tqp[i] = &hdev->htqp[i].q;
276 	}
277 
278 	return 0;
279 }
280 
281 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
282 {
283 	int status;
284 	u8 resp_msg;
285 
286 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
287 				      0, false, &resp_msg, sizeof(u8));
288 	if (status)
289 		dev_err(&hdev->pdev->dev,
290 			"VF failed to fetch link status(%d) from PF", status);
291 }
292 
293 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
294 {
295 	struct hnae3_handle *handle = &hdev->nic;
296 	struct hnae3_client *client;
297 
298 	client = handle->client;
299 
300 	link_state =
301 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
302 
303 	if (link_state != hdev->hw.mac.link) {
304 		client->ops->link_status_change(handle, !!link_state);
305 		hdev->hw.mac.link = link_state;
306 	}
307 }
308 
309 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
310 {
311 	struct hnae3_handle *nic = &hdev->nic;
312 	int ret;
313 
314 	nic->ae_algo = &ae_algovf;
315 	nic->pdev = hdev->pdev;
316 	nic->numa_node_mask = hdev->numa_node_mask;
317 	nic->flags |= HNAE3_SUPPORT_VF;
318 
319 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
320 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
321 			hdev->ae_dev->dev_type);
322 		return -EINVAL;
323 	}
324 
325 	ret = hclgevf_knic_setup(hdev);
326 	if (ret)
327 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
328 			ret);
329 	return ret;
330 }
331 
332 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
333 {
334 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
335 		dev_warn(&hdev->pdev->dev,
336 			 "vector(vector_id %d) has been freed.\n", vector_id);
337 		return;
338 	}
339 
340 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
341 	hdev->num_msi_left += 1;
342 	hdev->num_msi_used -= 1;
343 }
344 
345 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
346 			      struct hnae3_vector_info *vector_info)
347 {
348 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
349 	struct hnae3_vector_info *vector = vector_info;
350 	int alloc = 0;
351 	int i, j;
352 
353 	vector_num = min(hdev->num_msi_left, vector_num);
354 
355 	for (j = 0; j < vector_num; j++) {
356 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
357 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
358 				vector->vector = pci_irq_vector(hdev->pdev, i);
359 				vector->io_addr = hdev->hw.io_base +
360 					HCLGEVF_VECTOR_REG_BASE +
361 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
362 				hdev->vector_status[i] = 0;
363 				hdev->vector_irq[i] = vector->vector;
364 
365 				vector++;
366 				alloc++;
367 
368 				break;
369 			}
370 		}
371 	}
372 	hdev->num_msi_left -= alloc;
373 	hdev->num_msi_used += alloc;
374 
375 	return alloc;
376 }
377 
378 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
379 {
380 	int i;
381 
382 	for (i = 0; i < hdev->num_msi; i++)
383 		if (vector == hdev->vector_irq[i])
384 			return i;
385 
386 	return -EINVAL;
387 }
388 
389 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
390 				    const u8 hfunc, const u8 *key)
391 {
392 	struct hclgevf_rss_config_cmd *req;
393 	struct hclgevf_desc desc;
394 	int key_offset;
395 	int key_size;
396 	int ret;
397 
398 	req = (struct hclgevf_rss_config_cmd *)desc.data;
399 
400 	for (key_offset = 0; key_offset < 3; key_offset++) {
401 		hclgevf_cmd_setup_basic_desc(&desc,
402 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
403 					     false);
404 
405 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
406 		req->hash_config |=
407 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
408 
409 		if (key_offset == 2)
410 			key_size =
411 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
412 		else
413 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
414 
415 		memcpy(req->hash_key,
416 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
417 
418 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
419 		if (ret) {
420 			dev_err(&hdev->pdev->dev,
421 				"Configure RSS config fail, status = %d\n",
422 				ret);
423 			return ret;
424 		}
425 	}
426 
427 	return 0;
428 }
429 
430 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
431 {
432 	return HCLGEVF_RSS_KEY_SIZE;
433 }
434 
435 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
436 {
437 	return HCLGEVF_RSS_IND_TBL_SIZE;
438 }
439 
440 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
441 {
442 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
443 	struct hclgevf_rss_indirection_table_cmd *req;
444 	struct hclgevf_desc desc;
445 	int status;
446 	int i, j;
447 
448 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
449 
450 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
451 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
452 					     false);
453 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
454 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
455 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
456 			req->rss_result[j] =
457 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
458 
459 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
460 		if (status) {
461 			dev_err(&hdev->pdev->dev,
462 				"VF failed(=%d) to set RSS indirection table\n",
463 				status);
464 			return status;
465 		}
466 	}
467 
468 	return 0;
469 }
470 
471 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
472 {
473 	struct hclgevf_rss_tc_mode_cmd *req;
474 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
475 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
476 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
477 	struct hclgevf_desc desc;
478 	u16 roundup_size;
479 	int status;
480 	int i;
481 
482 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
483 
484 	roundup_size = roundup_pow_of_two(rss_size);
485 	roundup_size = ilog2(roundup_size);
486 
487 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
488 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
489 		tc_size[i] = roundup_size;
490 		tc_offset[i] = rss_size * i;
491 	}
492 
493 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
494 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
495 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
496 			      (tc_valid[i] & 0x1));
497 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
498 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
499 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
500 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
501 	}
502 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
503 	if (status)
504 		dev_err(&hdev->pdev->dev,
505 			"VF failed(=%d) to set rss tc mode\n", status);
506 
507 	return status;
508 }
509 
510 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
511 			   u8 *hfunc)
512 {
513 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
514 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
515 	int i;
516 
517 	if (handle->pdev->revision >= 0x21) {
518 		/* Get hash algorithm */
519 		if (hfunc) {
520 			switch (rss_cfg->hash_algo) {
521 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
522 				*hfunc = ETH_RSS_HASH_TOP;
523 				break;
524 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
525 				*hfunc = ETH_RSS_HASH_XOR;
526 				break;
527 			default:
528 				*hfunc = ETH_RSS_HASH_UNKNOWN;
529 				break;
530 			}
531 		}
532 
533 		/* Get the RSS Key required by the user */
534 		if (key)
535 			memcpy(key, rss_cfg->rss_hash_key,
536 			       HCLGEVF_RSS_KEY_SIZE);
537 	}
538 
539 	if (indir)
540 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
541 			indir[i] = rss_cfg->rss_indirection_tbl[i];
542 
543 	return 0;
544 }
545 
546 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
547 			   const  u8 *key, const  u8 hfunc)
548 {
549 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
550 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
551 	int ret, i;
552 
553 	if (handle->pdev->revision >= 0x21) {
554 		/* Set the RSS Hash Key if specififed by the user */
555 		if (key) {
556 			switch (hfunc) {
557 			case ETH_RSS_HASH_TOP:
558 				rss_cfg->hash_algo =
559 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
560 				break;
561 			case ETH_RSS_HASH_XOR:
562 				rss_cfg->hash_algo =
563 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
564 				break;
565 			case ETH_RSS_HASH_NO_CHANGE:
566 				break;
567 			default:
568 				return -EINVAL;
569 			}
570 
571 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
572 						       key);
573 			if (ret)
574 				return ret;
575 
576 			/* Update the shadow RSS key with user specified qids */
577 			memcpy(rss_cfg->rss_hash_key, key,
578 			       HCLGEVF_RSS_KEY_SIZE);
579 		}
580 	}
581 
582 	/* update the shadow RSS table with user specified qids */
583 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
584 		rss_cfg->rss_indirection_tbl[i] = indir[i];
585 
586 	/* update the hardware */
587 	return hclgevf_set_rss_indir_table(hdev);
588 }
589 
590 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
591 {
592 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
593 
594 	if (nfc->data & RXH_L4_B_2_3)
595 		hash_sets |= HCLGEVF_D_PORT_BIT;
596 	else
597 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
598 
599 	if (nfc->data & RXH_IP_SRC)
600 		hash_sets |= HCLGEVF_S_IP_BIT;
601 	else
602 		hash_sets &= ~HCLGEVF_S_IP_BIT;
603 
604 	if (nfc->data & RXH_IP_DST)
605 		hash_sets |= HCLGEVF_D_IP_BIT;
606 	else
607 		hash_sets &= ~HCLGEVF_D_IP_BIT;
608 
609 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
610 		hash_sets |= HCLGEVF_V_TAG_BIT;
611 
612 	return hash_sets;
613 }
614 
615 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
616 				 struct ethtool_rxnfc *nfc)
617 {
618 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
619 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
620 	struct hclgevf_rss_input_tuple_cmd *req;
621 	struct hclgevf_desc desc;
622 	u8 tuple_sets;
623 	int ret;
624 
625 	if (handle->pdev->revision == 0x20)
626 		return -EOPNOTSUPP;
627 
628 	if (nfc->data &
629 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
630 		return -EINVAL;
631 
632 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
633 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
634 
635 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
636 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
637 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
638 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
639 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
640 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
641 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
642 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
643 
644 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
645 	switch (nfc->flow_type) {
646 	case TCP_V4_FLOW:
647 		req->ipv4_tcp_en = tuple_sets;
648 		break;
649 	case TCP_V6_FLOW:
650 		req->ipv6_tcp_en = tuple_sets;
651 		break;
652 	case UDP_V4_FLOW:
653 		req->ipv4_udp_en = tuple_sets;
654 		break;
655 	case UDP_V6_FLOW:
656 		req->ipv6_udp_en = tuple_sets;
657 		break;
658 	case SCTP_V4_FLOW:
659 		req->ipv4_sctp_en = tuple_sets;
660 		break;
661 	case SCTP_V6_FLOW:
662 		if ((nfc->data & RXH_L4_B_0_1) ||
663 		    (nfc->data & RXH_L4_B_2_3))
664 			return -EINVAL;
665 
666 		req->ipv6_sctp_en = tuple_sets;
667 		break;
668 	case IPV4_FLOW:
669 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
670 		break;
671 	case IPV6_FLOW:
672 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
673 		break;
674 	default:
675 		return -EINVAL;
676 	}
677 
678 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
679 	if (ret) {
680 		dev_err(&hdev->pdev->dev,
681 			"Set rss tuple fail, status = %d\n", ret);
682 		return ret;
683 	}
684 
685 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
686 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
687 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
688 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
689 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
690 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
691 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
692 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
693 	return 0;
694 }
695 
696 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
697 				 struct ethtool_rxnfc *nfc)
698 {
699 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
700 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
701 	u8 tuple_sets;
702 
703 	if (handle->pdev->revision == 0x20)
704 		return -EOPNOTSUPP;
705 
706 	nfc->data = 0;
707 
708 	switch (nfc->flow_type) {
709 	case TCP_V4_FLOW:
710 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
711 		break;
712 	case UDP_V4_FLOW:
713 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
714 		break;
715 	case TCP_V6_FLOW:
716 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
717 		break;
718 	case UDP_V6_FLOW:
719 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
720 		break;
721 	case SCTP_V4_FLOW:
722 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
723 		break;
724 	case SCTP_V6_FLOW:
725 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
726 		break;
727 	case IPV4_FLOW:
728 	case IPV6_FLOW:
729 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
730 		break;
731 	default:
732 		return -EINVAL;
733 	}
734 
735 	if (!tuple_sets)
736 		return 0;
737 
738 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
739 		nfc->data |= RXH_L4_B_2_3;
740 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
741 		nfc->data |= RXH_L4_B_0_1;
742 	if (tuple_sets & HCLGEVF_D_IP_BIT)
743 		nfc->data |= RXH_IP_DST;
744 	if (tuple_sets & HCLGEVF_S_IP_BIT)
745 		nfc->data |= RXH_IP_SRC;
746 
747 	return 0;
748 }
749 
750 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
751 				       struct hclgevf_rss_cfg *rss_cfg)
752 {
753 	struct hclgevf_rss_input_tuple_cmd *req;
754 	struct hclgevf_desc desc;
755 	int ret;
756 
757 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
758 
759 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
760 
761 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
762 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
763 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
764 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
765 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
766 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
767 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
768 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
769 
770 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
771 	if (ret)
772 		dev_err(&hdev->pdev->dev,
773 			"Configure rss input fail, status = %d\n", ret);
774 	return ret;
775 }
776 
777 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
778 {
779 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
780 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
781 
782 	return rss_cfg->rss_size;
783 }
784 
785 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
786 				       int vector_id,
787 				       struct hnae3_ring_chain_node *ring_chain)
788 {
789 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
790 	struct hnae3_ring_chain_node *node;
791 	struct hclge_mbx_vf_to_pf_cmd *req;
792 	struct hclgevf_desc desc;
793 	int i = 0;
794 	int status;
795 	u8 type;
796 
797 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
798 
799 	for (node = ring_chain; node; node = node->next) {
800 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
801 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
802 
803 		if (i == 0) {
804 			hclgevf_cmd_setup_basic_desc(&desc,
805 						     HCLGEVF_OPC_MBX_VF_TO_PF,
806 						     false);
807 			type = en ?
808 				HCLGE_MBX_MAP_RING_TO_VECTOR :
809 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
810 			req->msg[0] = type;
811 			req->msg[1] = vector_id;
812 		}
813 
814 		req->msg[idx_offset] =
815 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
816 		req->msg[idx_offset + 1] = node->tqp_index;
817 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
818 							   HNAE3_RING_GL_IDX_M,
819 							   HNAE3_RING_GL_IDX_S);
820 
821 		i++;
822 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
823 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
824 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
825 		    !node->next) {
826 			req->msg[2] = i;
827 
828 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
829 			if (status) {
830 				dev_err(&hdev->pdev->dev,
831 					"Map TQP fail, status is %d.\n",
832 					status);
833 				return status;
834 			}
835 			i = 0;
836 			hclgevf_cmd_setup_basic_desc(&desc,
837 						     HCLGEVF_OPC_MBX_VF_TO_PF,
838 						     false);
839 			req->msg[0] = type;
840 			req->msg[1] = vector_id;
841 		}
842 	}
843 
844 	return 0;
845 }
846 
847 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
848 				      struct hnae3_ring_chain_node *ring_chain)
849 {
850 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
851 	int vector_id;
852 
853 	vector_id = hclgevf_get_vector_index(hdev, vector);
854 	if (vector_id < 0) {
855 		dev_err(&handle->pdev->dev,
856 			"Get vector index fail. ret =%d\n", vector_id);
857 		return vector_id;
858 	}
859 
860 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
861 }
862 
863 static int hclgevf_unmap_ring_from_vector(
864 				struct hnae3_handle *handle,
865 				int vector,
866 				struct hnae3_ring_chain_node *ring_chain)
867 {
868 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
869 	int ret, vector_id;
870 
871 	vector_id = hclgevf_get_vector_index(hdev, vector);
872 	if (vector_id < 0) {
873 		dev_err(&handle->pdev->dev,
874 			"Get vector index fail. ret =%d\n", vector_id);
875 		return vector_id;
876 	}
877 
878 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
879 	if (ret)
880 		dev_err(&handle->pdev->dev,
881 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
882 			vector_id,
883 			ret);
884 
885 	return ret;
886 }
887 
888 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
889 {
890 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891 	int vector_id;
892 
893 	vector_id = hclgevf_get_vector_index(hdev, vector);
894 	if (vector_id < 0) {
895 		dev_err(&handle->pdev->dev,
896 			"hclgevf_put_vector get vector index fail. ret =%d\n",
897 			vector_id);
898 		return vector_id;
899 	}
900 
901 	hclgevf_free_vector(hdev, vector_id);
902 
903 	return 0;
904 }
905 
906 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
907 					bool en_uc_pmc, bool en_mc_pmc)
908 {
909 	struct hclge_mbx_vf_to_pf_cmd *req;
910 	struct hclgevf_desc desc;
911 	int status;
912 
913 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
914 
915 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
916 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
917 	req->msg[1] = en_uc_pmc ? 1 : 0;
918 	req->msg[2] = en_mc_pmc ? 1 : 0;
919 
920 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
921 	if (status)
922 		dev_err(&hdev->pdev->dev,
923 			"Set promisc mode fail, status is %d.\n", status);
924 
925 	return status;
926 }
927 
928 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle,
929 				    bool en_uc_pmc, bool en_mc_pmc)
930 {
931 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
932 
933 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
934 }
935 
936 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
937 			      int stream_id, bool enable)
938 {
939 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
940 	struct hclgevf_desc desc;
941 	int status;
942 
943 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
944 
945 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
946 				     false);
947 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
948 	req->stream_id = cpu_to_le16(stream_id);
949 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
950 
951 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
952 	if (status)
953 		dev_err(&hdev->pdev->dev,
954 			"TQP enable fail, status =%d.\n", status);
955 
956 	return status;
957 }
958 
959 static int hclgevf_get_queue_id(struct hnae3_queue *queue)
960 {
961 	struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q);
962 
963 	return tqp->index;
964 }
965 
966 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
967 {
968 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
969 	struct hclgevf_tqp *tqp;
970 	int i;
971 
972 	for (i = 0; i < kinfo->num_tqps; i++) {
973 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
974 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
975 	}
976 }
977 
978 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
979 {
980 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
981 
982 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
983 }
984 
985 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
986 				bool is_first)
987 {
988 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
989 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
990 	u8 *new_mac_addr = (u8 *)p;
991 	u8 msg_data[ETH_ALEN * 2];
992 	u16 subcode;
993 	int status;
994 
995 	ether_addr_copy(msg_data, new_mac_addr);
996 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
997 
998 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
999 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1000 
1001 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1002 				      subcode, msg_data, ETH_ALEN * 2,
1003 				      true, NULL, 0);
1004 	if (!status)
1005 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1006 
1007 	return status;
1008 }
1009 
1010 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1011 			       const unsigned char *addr)
1012 {
1013 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1014 
1015 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1016 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1017 				    addr, ETH_ALEN, false, NULL, 0);
1018 }
1019 
1020 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1021 			      const unsigned char *addr)
1022 {
1023 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1024 
1025 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1026 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1027 				    addr, ETH_ALEN, false, NULL, 0);
1028 }
1029 
1030 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1031 			       const unsigned char *addr)
1032 {
1033 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1034 
1035 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1036 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1037 				    addr, ETH_ALEN, false, NULL, 0);
1038 }
1039 
1040 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1041 			      const unsigned char *addr)
1042 {
1043 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1044 
1045 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1046 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1047 				    addr, ETH_ALEN, false, NULL, 0);
1048 }
1049 
1050 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1051 				   __be16 proto, u16 vlan_id,
1052 				   bool is_kill)
1053 {
1054 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1055 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1056 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1057 
1058 	if (vlan_id > 4095)
1059 		return -EINVAL;
1060 
1061 	if (proto != htons(ETH_P_8021Q))
1062 		return -EPROTONOSUPPORT;
1063 
1064 	msg_data[0] = is_kill;
1065 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1066 	memcpy(&msg_data[3], &proto, sizeof(proto));
1067 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1068 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1069 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1070 }
1071 
1072 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1073 {
1074 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1075 	u8 msg_data;
1076 
1077 	msg_data = enable ? 1 : 0;
1078 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1079 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1080 				    1, false, NULL, 0);
1081 }
1082 
1083 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1084 {
1085 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1086 	u8 msg_data[2];
1087 	int ret;
1088 
1089 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1090 
1091 	/* disable vf queue before send queue reset msg to PF */
1092 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1093 	if (ret)
1094 		return ret;
1095 
1096 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1097 				    2, true, NULL, 0);
1098 }
1099 
1100 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1101 				 enum hnae3_reset_notify_type type)
1102 {
1103 	struct hnae3_client *client = hdev->nic_client;
1104 	struct hnae3_handle *handle = &hdev->nic;
1105 
1106 	if (!client->ops->reset_notify)
1107 		return -EOPNOTSUPP;
1108 
1109 	return client->ops->reset_notify(handle, type);
1110 }
1111 
1112 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1113 {
1114 #define HCLGEVF_RESET_WAIT_MS	500
1115 #define HCLGEVF_RESET_WAIT_CNT	20
1116 	u32 val, cnt = 0;
1117 
1118 	/* wait to check the hardware reset completion status */
1119 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
1120 	while (hnae3_get_bit(val, HCLGEVF_FUN_RST_ING_B) &&
1121 	       (cnt < HCLGEVF_RESET_WAIT_CNT)) {
1122 		msleep(HCLGEVF_RESET_WAIT_MS);
1123 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
1124 		cnt++;
1125 	}
1126 
1127 	/* hardware completion status should be available by this time */
1128 	if (cnt >= HCLGEVF_RESET_WAIT_CNT) {
1129 		dev_warn(&hdev->pdev->dev,
1130 			 "could'nt get reset done status from h/w, timeout!\n");
1131 		return -EBUSY;
1132 	}
1133 
1134 	/* we will wait a bit more to let reset of the stack to complete. This
1135 	 * might happen in case reset assertion was made by PF. Yes, this also
1136 	 * means we might end up waiting bit more even for VF reset.
1137 	 */
1138 	msleep(5000);
1139 
1140 	return 0;
1141 }
1142 
1143 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1144 {
1145 	int ret;
1146 
1147 	/* uninitialize the nic client */
1148 	hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1149 
1150 	/* re-initialize the hclge device */
1151 	ret = hclgevf_init_hdev(hdev);
1152 	if (ret) {
1153 		dev_err(&hdev->pdev->dev,
1154 			"hclge device re-init failed, VF is disabled!\n");
1155 		return ret;
1156 	}
1157 
1158 	/* bring up the nic client again */
1159 	hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1160 
1161 	return 0;
1162 }
1163 
1164 static int hclgevf_reset(struct hclgevf_dev *hdev)
1165 {
1166 	int ret;
1167 
1168 	rtnl_lock();
1169 
1170 	/* bring down the nic to stop any ongoing TX/RX */
1171 	hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1172 
1173 	rtnl_unlock();
1174 
1175 	/* check if VF could successfully fetch the hardware reset completion
1176 	 * status from the hardware
1177 	 */
1178 	ret = hclgevf_reset_wait(hdev);
1179 	if (ret) {
1180 		/* can't do much in this situation, will disable VF */
1181 		dev_err(&hdev->pdev->dev,
1182 			"VF failed(=%d) to fetch H/W reset completion status\n",
1183 			ret);
1184 
1185 		dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n");
1186 		rtnl_lock();
1187 		hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1188 
1189 		rtnl_unlock();
1190 		return ret;
1191 	}
1192 
1193 	rtnl_lock();
1194 
1195 	/* now, re-initialize the nic client and ae device*/
1196 	ret = hclgevf_reset_stack(hdev);
1197 	if (ret)
1198 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1199 
1200 	/* bring up the nic to enable TX/RX again */
1201 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1202 
1203 	rtnl_unlock();
1204 
1205 	return ret;
1206 }
1207 
1208 static int hclgevf_do_reset(struct hclgevf_dev *hdev)
1209 {
1210 	int status;
1211 	u8 respmsg;
1212 
1213 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1214 				      0, false, &respmsg, sizeof(u8));
1215 	if (status)
1216 		dev_err(&hdev->pdev->dev,
1217 			"VF reset request to PF failed(=%d)\n", status);
1218 
1219 	return status;
1220 }
1221 
1222 static void hclgevf_reset_event(struct pci_dev *pdev,
1223 				struct hnae3_handle *handle)
1224 {
1225 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1226 
1227 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1228 
1229 	handle->reset_level = HNAE3_VF_RESET;
1230 
1231 	/* reset of this VF requested */
1232 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1233 	hclgevf_reset_task_schedule(hdev);
1234 
1235 	handle->last_reset_time = jiffies;
1236 }
1237 
1238 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1239 {
1240 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1241 
1242 	return hdev->fw_version;
1243 }
1244 
1245 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1246 {
1247 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1248 
1249 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1250 					    HCLGEVF_MISC_VECTOR_NUM);
1251 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1252 	/* vector status always valid for Vector 0 */
1253 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1254 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1255 
1256 	hdev->num_msi_left -= 1;
1257 	hdev->num_msi_used += 1;
1258 }
1259 
1260 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1261 {
1262 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1263 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1264 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1265 		schedule_work(&hdev->rst_service_task);
1266 	}
1267 }
1268 
1269 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1270 {
1271 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1272 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1273 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1274 		schedule_work(&hdev->mbx_service_task);
1275 	}
1276 }
1277 
1278 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1279 {
1280 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1281 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1282 		schedule_work(&hdev->service_task);
1283 }
1284 
1285 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1286 {
1287 	/* if we have any pending mailbox event then schedule the mbx task */
1288 	if (hdev->mbx_event_pending)
1289 		hclgevf_mbx_task_schedule(hdev);
1290 
1291 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1292 		hclgevf_reset_task_schedule(hdev);
1293 }
1294 
1295 static void hclgevf_service_timer(struct timer_list *t)
1296 {
1297 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1298 
1299 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1300 
1301 	hclgevf_task_schedule(hdev);
1302 }
1303 
1304 static void hclgevf_reset_service_task(struct work_struct *work)
1305 {
1306 	struct hclgevf_dev *hdev =
1307 		container_of(work, struct hclgevf_dev, rst_service_task);
1308 	int ret;
1309 
1310 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1311 		return;
1312 
1313 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1314 
1315 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1316 			       &hdev->reset_state)) {
1317 		/* PF has initmated that it is about to reset the hardware.
1318 		 * We now have to poll & check if harware has actually completed
1319 		 * the reset sequence. On hardware reset completion, VF needs to
1320 		 * reset the client and ae device.
1321 		 */
1322 		hdev->reset_attempts = 0;
1323 
1324 		ret = hclgevf_reset(hdev);
1325 		if (ret)
1326 			dev_err(&hdev->pdev->dev, "VF stack reset failed.\n");
1327 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1328 				      &hdev->reset_state)) {
1329 		/* we could be here when either of below happens:
1330 		 * 1. reset was initiated due to watchdog timeout due to
1331 		 *    a. IMP was earlier reset and our TX got choked down and
1332 		 *       which resulted in watchdog reacting and inducing VF
1333 		 *       reset. This also means our cmdq would be unreliable.
1334 		 *    b. problem in TX due to other lower layer(example link
1335 		 *       layer not functioning properly etc.)
1336 		 * 2. VF reset might have been initiated due to some config
1337 		 *    change.
1338 		 *
1339 		 * NOTE: Theres no clear way to detect above cases than to react
1340 		 * to the response of PF for this reset request. PF will ack the
1341 		 * 1b and 2. cases but we will not get any intimation about 1a
1342 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1343 		 * communication between PF and VF would be broken.
1344 		 */
1345 
1346 		/* if we are never geting into pending state it means either:
1347 		 * 1. PF is not receiving our request which could be due to IMP
1348 		 *    reset
1349 		 * 2. PF is screwed
1350 		 * We cannot do much for 2. but to check first we can try reset
1351 		 * our PCIe + stack and see if it alleviates the problem.
1352 		 */
1353 		if (hdev->reset_attempts > 3) {
1354 			/* prepare for full reset of stack + pcie interface */
1355 			hdev->nic.reset_level = HNAE3_VF_FULL_RESET;
1356 
1357 			/* "defer" schedule the reset task again */
1358 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1359 		} else {
1360 			hdev->reset_attempts++;
1361 
1362 			/* request PF for resetting this VF via mailbox */
1363 			ret = hclgevf_do_reset(hdev);
1364 			if (ret)
1365 				dev_warn(&hdev->pdev->dev,
1366 					 "VF rst fail, stack will call\n");
1367 		}
1368 	}
1369 
1370 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1371 }
1372 
1373 static void hclgevf_mailbox_service_task(struct work_struct *work)
1374 {
1375 	struct hclgevf_dev *hdev;
1376 
1377 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1378 
1379 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1380 		return;
1381 
1382 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1383 
1384 	hclgevf_mbx_async_handler(hdev);
1385 
1386 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1387 }
1388 
1389 static void hclgevf_service_task(struct work_struct *work)
1390 {
1391 	struct hclgevf_dev *hdev;
1392 
1393 	hdev = container_of(work, struct hclgevf_dev, service_task);
1394 
1395 	/* request the link status from the PF. PF would be able to tell VF
1396 	 * about such updates in future so we might remove this later
1397 	 */
1398 	hclgevf_request_link_info(hdev);
1399 
1400 	hclgevf_deferred_task_schedule(hdev);
1401 
1402 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1403 }
1404 
1405 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1406 {
1407 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1408 }
1409 
1410 static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval)
1411 {
1412 	u32 cmdq_src_reg;
1413 
1414 	/* fetch the events from their corresponding regs */
1415 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1416 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1417 
1418 	/* check for vector0 mailbox(=CMDQ RX) event source */
1419 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1420 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1421 		*clearval = cmdq_src_reg;
1422 		return true;
1423 	}
1424 
1425 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1426 
1427 	return false;
1428 }
1429 
1430 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1431 {
1432 	writel(en ? 1 : 0, vector->addr);
1433 }
1434 
1435 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1436 {
1437 	struct hclgevf_dev *hdev = data;
1438 	u32 clearval;
1439 
1440 	hclgevf_enable_vector(&hdev->misc_vector, false);
1441 	if (!hclgevf_check_event_cause(hdev, &clearval))
1442 		goto skip_sched;
1443 
1444 	hclgevf_mbx_handler(hdev);
1445 
1446 	hclgevf_clear_event_cause(hdev, clearval);
1447 
1448 skip_sched:
1449 	hclgevf_enable_vector(&hdev->misc_vector, true);
1450 
1451 	return IRQ_HANDLED;
1452 }
1453 
1454 static int hclgevf_configure(struct hclgevf_dev *hdev)
1455 {
1456 	int ret;
1457 
1458 	hdev->hw.mac.media_type = HNAE3_MEDIA_TYPE_NONE;
1459 
1460 	/* get queue configuration from PF */
1461 	ret = hclgevf_get_queue_info(hdev);
1462 	if (ret)
1463 		return ret;
1464 	/* get tc configuration from PF */
1465 	return hclgevf_get_tc_info(hdev);
1466 }
1467 
1468 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1469 {
1470 	struct pci_dev *pdev = ae_dev->pdev;
1471 	struct hclgevf_dev *hdev = ae_dev->priv;
1472 
1473 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1474 	if (!hdev)
1475 		return -ENOMEM;
1476 
1477 	hdev->pdev = pdev;
1478 	hdev->ae_dev = ae_dev;
1479 	ae_dev->priv = hdev;
1480 
1481 	return 0;
1482 }
1483 
1484 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1485 {
1486 	struct hnae3_handle *roce = &hdev->roce;
1487 	struct hnae3_handle *nic = &hdev->nic;
1488 
1489 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1490 
1491 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1492 	    hdev->num_msi_left == 0)
1493 		return -EINVAL;
1494 
1495 	roce->rinfo.base_vector = hdev->roce_base_vector;
1496 
1497 	roce->rinfo.netdev = nic->kinfo.netdev;
1498 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1499 
1500 	roce->pdev = nic->pdev;
1501 	roce->ae_algo = nic->ae_algo;
1502 	roce->numa_node_mask = nic->numa_node_mask;
1503 
1504 	return 0;
1505 }
1506 
1507 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1508 {
1509 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1510 	int i, ret;
1511 
1512 	rss_cfg->rss_size = hdev->rss_size_max;
1513 
1514 	if (hdev->pdev->revision >= 0x21) {
1515 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
1516 		netdev_rss_key_fill(rss_cfg->rss_hash_key,
1517 				    HCLGEVF_RSS_KEY_SIZE);
1518 
1519 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1520 					       rss_cfg->rss_hash_key);
1521 		if (ret)
1522 			return ret;
1523 
1524 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1525 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1526 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1527 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1528 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1529 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1530 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1531 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1532 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1533 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1534 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1535 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1536 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1537 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1538 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1539 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1540 
1541 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1542 		if (ret)
1543 			return ret;
1544 
1545 	}
1546 
1547 	/* Initialize RSS indirect table for each vport */
1548 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1549 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1550 
1551 	ret = hclgevf_set_rss_indir_table(hdev);
1552 	if (ret)
1553 		return ret;
1554 
1555 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1556 }
1557 
1558 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1559 {
1560 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1561 	 * here later
1562 	 */
1563 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1564 				       false);
1565 }
1566 
1567 static int hclgevf_ae_start(struct hnae3_handle *handle)
1568 {
1569 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1570 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1571 	int i, queue_id;
1572 
1573 	for (i = 0; i < kinfo->num_tqps; i++) {
1574 		/* ring enable */
1575 		queue_id = hclgevf_get_queue_id(kinfo->tqp[i]);
1576 		if (queue_id < 0) {
1577 			dev_warn(&hdev->pdev->dev,
1578 				 "Get invalid queue id, ignore it\n");
1579 			continue;
1580 		}
1581 
1582 		hclgevf_tqp_enable(hdev, queue_id, 0, true);
1583 	}
1584 
1585 	/* reset tqp stats */
1586 	hclgevf_reset_tqp_stats(handle);
1587 
1588 	hclgevf_request_link_info(hdev);
1589 
1590 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1591 	mod_timer(&hdev->service_timer, jiffies + HZ);
1592 
1593 	return 0;
1594 }
1595 
1596 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1597 {
1598 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1599 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1600 	int i, queue_id;
1601 
1602 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1603 
1604 	for (i = 0; i < kinfo->num_tqps; i++) {
1605 		/* Ring disable */
1606 		queue_id = hclgevf_get_queue_id(kinfo->tqp[i]);
1607 		if (queue_id < 0) {
1608 			dev_warn(&hdev->pdev->dev,
1609 				 "Get invalid queue id, ignore it\n");
1610 			continue;
1611 		}
1612 
1613 		hclgevf_tqp_enable(hdev, queue_id, 0, false);
1614 	}
1615 
1616 	/* reset tqp stats */
1617 	hclgevf_reset_tqp_stats(handle);
1618 	del_timer_sync(&hdev->service_timer);
1619 	cancel_work_sync(&hdev->service_task);
1620 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1621 	hclgevf_update_link_status(hdev, 0);
1622 }
1623 
1624 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1625 {
1626 	/* if this is on going reset then skip this initialization */
1627 	if (hclgevf_dev_ongoing_reset(hdev))
1628 		return;
1629 
1630 	/* setup tasks for the MBX */
1631 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1632 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1633 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1634 
1635 	/* setup tasks for service timer */
1636 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1637 
1638 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
1639 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1640 
1641 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1642 
1643 	mutex_init(&hdev->mbx_resp.mbx_mutex);
1644 
1645 	/* bring the device down */
1646 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1647 }
1648 
1649 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1650 {
1651 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1652 
1653 	if (hdev->service_timer.function)
1654 		del_timer_sync(&hdev->service_timer);
1655 	if (hdev->service_task.func)
1656 		cancel_work_sync(&hdev->service_task);
1657 	if (hdev->mbx_service_task.func)
1658 		cancel_work_sync(&hdev->mbx_service_task);
1659 	if (hdev->rst_service_task.func)
1660 		cancel_work_sync(&hdev->rst_service_task);
1661 
1662 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1663 }
1664 
1665 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1666 {
1667 	struct pci_dev *pdev = hdev->pdev;
1668 	int vectors;
1669 	int i;
1670 
1671 	/* if this is on going reset then skip this initialization */
1672 	if (hclgevf_dev_ongoing_reset(hdev))
1673 		return 0;
1674 
1675 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1676 		vectors = pci_alloc_irq_vectors(pdev,
1677 						hdev->roce_base_msix_offset + 1,
1678 						hdev->num_msi,
1679 						PCI_IRQ_MSIX);
1680 	else
1681 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1682 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
1683 
1684 	if (vectors < 0) {
1685 		dev_err(&pdev->dev,
1686 			"failed(%d) to allocate MSI/MSI-X vectors\n",
1687 			vectors);
1688 		return vectors;
1689 	}
1690 	if (vectors < hdev->num_msi)
1691 		dev_warn(&hdev->pdev->dev,
1692 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1693 			 hdev->num_msi, vectors);
1694 
1695 	hdev->num_msi = vectors;
1696 	hdev->num_msi_left = vectors;
1697 	hdev->base_msi_vector = pdev->irq;
1698 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
1699 
1700 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1701 					   sizeof(u16), GFP_KERNEL);
1702 	if (!hdev->vector_status) {
1703 		pci_free_irq_vectors(pdev);
1704 		return -ENOMEM;
1705 	}
1706 
1707 	for (i = 0; i < hdev->num_msi; i++)
1708 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1709 
1710 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1711 					sizeof(int), GFP_KERNEL);
1712 	if (!hdev->vector_irq) {
1713 		pci_free_irq_vectors(pdev);
1714 		return -ENOMEM;
1715 	}
1716 
1717 	return 0;
1718 }
1719 
1720 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1721 {
1722 	struct pci_dev *pdev = hdev->pdev;
1723 
1724 	pci_free_irq_vectors(pdev);
1725 }
1726 
1727 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1728 {
1729 	int ret = 0;
1730 
1731 	/* if this is on going reset then skip this initialization */
1732 	if (hclgevf_dev_ongoing_reset(hdev))
1733 		return 0;
1734 
1735 	hclgevf_get_misc_vector(hdev);
1736 
1737 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1738 			  0, "hclgevf_cmd", hdev);
1739 	if (ret) {
1740 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1741 			hdev->misc_vector.vector_irq);
1742 		return ret;
1743 	}
1744 
1745 	hclgevf_clear_event_cause(hdev, 0);
1746 
1747 	/* enable misc. vector(vector 0) */
1748 	hclgevf_enable_vector(&hdev->misc_vector, true);
1749 
1750 	return ret;
1751 }
1752 
1753 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
1754 {
1755 	/* disable misc vector(vector 0) */
1756 	hclgevf_enable_vector(&hdev->misc_vector, false);
1757 	synchronize_irq(hdev->misc_vector.vector_irq);
1758 	free_irq(hdev->misc_vector.vector_irq, hdev);
1759 	hclgevf_free_vector(hdev, 0);
1760 }
1761 
1762 static int hclgevf_init_client_instance(struct hnae3_client *client,
1763 					struct hnae3_ae_dev *ae_dev)
1764 {
1765 	struct hclgevf_dev *hdev = ae_dev->priv;
1766 	int ret;
1767 
1768 	switch (client->type) {
1769 	case HNAE3_CLIENT_KNIC:
1770 		hdev->nic_client = client;
1771 		hdev->nic.client = client;
1772 
1773 		ret = client->ops->init_instance(&hdev->nic);
1774 		if (ret)
1775 			goto clear_nic;
1776 
1777 		hnae3_set_client_init_flag(client, ae_dev, 1);
1778 
1779 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1780 			struct hnae3_client *rc = hdev->roce_client;
1781 
1782 			ret = hclgevf_init_roce_base_info(hdev);
1783 			if (ret)
1784 				goto clear_roce;
1785 			ret = rc->ops->init_instance(&hdev->roce);
1786 			if (ret)
1787 				goto clear_roce;
1788 
1789 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
1790 						   1);
1791 		}
1792 		break;
1793 	case HNAE3_CLIENT_UNIC:
1794 		hdev->nic_client = client;
1795 		hdev->nic.client = client;
1796 
1797 		ret = client->ops->init_instance(&hdev->nic);
1798 		if (ret)
1799 			goto clear_nic;
1800 
1801 		hnae3_set_client_init_flag(client, ae_dev, 1);
1802 		break;
1803 	case HNAE3_CLIENT_ROCE:
1804 		if (hnae3_dev_roce_supported(hdev)) {
1805 			hdev->roce_client = client;
1806 			hdev->roce.client = client;
1807 		}
1808 
1809 		if (hdev->roce_client && hdev->nic_client) {
1810 			ret = hclgevf_init_roce_base_info(hdev);
1811 			if (ret)
1812 				goto clear_roce;
1813 
1814 			ret = client->ops->init_instance(&hdev->roce);
1815 			if (ret)
1816 				goto clear_roce;
1817 		}
1818 
1819 		hnae3_set_client_init_flag(client, ae_dev, 1);
1820 		break;
1821 	default:
1822 		return -EINVAL;
1823 	}
1824 
1825 	return 0;
1826 
1827 clear_nic:
1828 	hdev->nic_client = NULL;
1829 	hdev->nic.client = NULL;
1830 	return ret;
1831 clear_roce:
1832 	hdev->roce_client = NULL;
1833 	hdev->roce.client = NULL;
1834 	return ret;
1835 }
1836 
1837 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
1838 					   struct hnae3_ae_dev *ae_dev)
1839 {
1840 	struct hclgevf_dev *hdev = ae_dev->priv;
1841 
1842 	/* un-init roce, if it exists */
1843 	if (hdev->roce_client) {
1844 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
1845 		hdev->roce_client = NULL;
1846 		hdev->roce.client = NULL;
1847 	}
1848 
1849 	/* un-init nic/unic, if this was not called by roce client */
1850 	if (client->ops->uninit_instance && hdev->nic_client &&
1851 	    client->type != HNAE3_CLIENT_ROCE) {
1852 		client->ops->uninit_instance(&hdev->nic, 0);
1853 		hdev->nic_client = NULL;
1854 		hdev->nic.client = NULL;
1855 	}
1856 }
1857 
1858 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
1859 {
1860 	struct pci_dev *pdev = hdev->pdev;
1861 	struct hclgevf_hw *hw;
1862 	int ret;
1863 
1864 	/* check if we need to skip initialization of pci. This will happen if
1865 	 * device is undergoing VF reset. Otherwise, we would need to
1866 	 * re-initialize pci interface again i.e. when device is not going
1867 	 * through *any* reset or actually undergoing full reset.
1868 	 */
1869 	if (hclgevf_dev_ongoing_reset(hdev))
1870 		return 0;
1871 
1872 	ret = pci_enable_device(pdev);
1873 	if (ret) {
1874 		dev_err(&pdev->dev, "failed to enable PCI device\n");
1875 		return ret;
1876 	}
1877 
1878 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1879 	if (ret) {
1880 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
1881 		goto err_disable_device;
1882 	}
1883 
1884 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
1885 	if (ret) {
1886 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
1887 		goto err_disable_device;
1888 	}
1889 
1890 	pci_set_master(pdev);
1891 	hw = &hdev->hw;
1892 	hw->hdev = hdev;
1893 	hw->io_base = pci_iomap(pdev, 2, 0);
1894 	if (!hw->io_base) {
1895 		dev_err(&pdev->dev, "can't map configuration register space\n");
1896 		ret = -ENOMEM;
1897 		goto err_clr_master;
1898 	}
1899 
1900 	return 0;
1901 
1902 err_clr_master:
1903 	pci_clear_master(pdev);
1904 	pci_release_regions(pdev);
1905 err_disable_device:
1906 	pci_disable_device(pdev);
1907 
1908 	return ret;
1909 }
1910 
1911 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
1912 {
1913 	struct pci_dev *pdev = hdev->pdev;
1914 
1915 	pci_iounmap(pdev, hdev->hw.io_base);
1916 	pci_clear_master(pdev);
1917 	pci_release_regions(pdev);
1918 	pci_disable_device(pdev);
1919 }
1920 
1921 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
1922 {
1923 	struct hclgevf_query_res_cmd *req;
1924 	struct hclgevf_desc desc;
1925 	int ret;
1926 
1927 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
1928 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1929 	if (ret) {
1930 		dev_err(&hdev->pdev->dev,
1931 			"query vf resource failed, ret = %d.\n", ret);
1932 		return ret;
1933 	}
1934 
1935 	req = (struct hclgevf_query_res_cmd *)desc.data;
1936 
1937 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
1938 		hdev->roce_base_msix_offset =
1939 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
1940 				HCLGEVF_MSIX_OFT_ROCEE_M,
1941 				HCLGEVF_MSIX_OFT_ROCEE_S);
1942 		hdev->num_roce_msix =
1943 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
1944 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
1945 
1946 		/* VF should have NIC vectors and Roce vectors, NIC vectors
1947 		 * are queued before Roce vectors. The offset is fixed to 64.
1948 		 */
1949 		hdev->num_msi = hdev->num_roce_msix +
1950 				hdev->roce_base_msix_offset;
1951 	} else {
1952 		hdev->num_msi =
1953 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
1954 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
1961 {
1962 	struct pci_dev *pdev = hdev->pdev;
1963 	int ret;
1964 
1965 	/* check if device is on-going full reset(i.e. pcie as well) */
1966 	if (hclgevf_dev_ongoing_full_reset(hdev)) {
1967 		dev_warn(&pdev->dev, "device is going full reset\n");
1968 		hclgevf_uninit_hdev(hdev);
1969 	}
1970 
1971 	ret = hclgevf_pci_init(hdev);
1972 	if (ret) {
1973 		dev_err(&pdev->dev, "PCI initialization failed\n");
1974 		return ret;
1975 	}
1976 
1977 	ret = hclgevf_cmd_init(hdev);
1978 	if (ret)
1979 		goto err_cmd_init;
1980 
1981 	/* Get vf resource */
1982 	ret = hclgevf_query_vf_resource(hdev);
1983 	if (ret) {
1984 		dev_err(&hdev->pdev->dev,
1985 			"Query vf status error, ret = %d.\n", ret);
1986 		goto err_query_vf;
1987 	}
1988 
1989 	ret = hclgevf_init_msi(hdev);
1990 	if (ret) {
1991 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
1992 		goto err_query_vf;
1993 	}
1994 
1995 	hclgevf_state_init(hdev);
1996 
1997 	ret = hclgevf_misc_irq_init(hdev);
1998 	if (ret) {
1999 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2000 			ret);
2001 		goto err_misc_irq_init;
2002 	}
2003 
2004 	ret = hclgevf_configure(hdev);
2005 	if (ret) {
2006 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2007 		goto err_config;
2008 	}
2009 
2010 	ret = hclgevf_alloc_tqps(hdev);
2011 	if (ret) {
2012 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2013 		goto err_config;
2014 	}
2015 
2016 	ret = hclgevf_set_handle_info(hdev);
2017 	if (ret) {
2018 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2019 		goto err_config;
2020 	}
2021 
2022 	/* Initialize RSS for this VF */
2023 	ret = hclgevf_rss_init_hw(hdev);
2024 	if (ret) {
2025 		dev_err(&hdev->pdev->dev,
2026 			"failed(%d) to initialize RSS\n", ret);
2027 		goto err_config;
2028 	}
2029 
2030 	ret = hclgevf_init_vlan_config(hdev);
2031 	if (ret) {
2032 		dev_err(&hdev->pdev->dev,
2033 			"failed(%d) to initialize VLAN config\n", ret);
2034 		goto err_config;
2035 	}
2036 
2037 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2038 
2039 	return 0;
2040 
2041 err_config:
2042 	hclgevf_misc_irq_uninit(hdev);
2043 err_misc_irq_init:
2044 	hclgevf_state_uninit(hdev);
2045 	hclgevf_uninit_msi(hdev);
2046 err_query_vf:
2047 	hclgevf_cmd_uninit(hdev);
2048 err_cmd_init:
2049 	hclgevf_pci_uninit(hdev);
2050 	return ret;
2051 }
2052 
2053 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2054 {
2055 	hclgevf_state_uninit(hdev);
2056 	hclgevf_misc_irq_uninit(hdev);
2057 	hclgevf_cmd_uninit(hdev);
2058 	hclgevf_uninit_msi(hdev);
2059 	hclgevf_pci_uninit(hdev);
2060 }
2061 
2062 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2063 {
2064 	struct pci_dev *pdev = ae_dev->pdev;
2065 	int ret;
2066 
2067 	ret = hclgevf_alloc_hdev(ae_dev);
2068 	if (ret) {
2069 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2070 		return ret;
2071 	}
2072 
2073 	ret = hclgevf_init_hdev(ae_dev->priv);
2074 	if (ret)
2075 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2076 
2077 	return ret;
2078 }
2079 
2080 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2081 {
2082 	struct hclgevf_dev *hdev = ae_dev->priv;
2083 
2084 	hclgevf_uninit_hdev(hdev);
2085 	ae_dev->priv = NULL;
2086 }
2087 
2088 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2089 {
2090 	struct hnae3_handle *nic = &hdev->nic;
2091 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2092 
2093 	return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
2094 }
2095 
2096 /**
2097  * hclgevf_get_channels - Get the current channels enabled and max supported.
2098  * @handle: hardware information for network interface
2099  * @ch: ethtool channels structure
2100  *
2101  * We don't support separate tx and rx queues as channels. The other count
2102  * represents how many queues are being used for control. max_combined counts
2103  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2104  * q_vectors since we support a lot more queue pairs than q_vectors.
2105  **/
2106 static void hclgevf_get_channels(struct hnae3_handle *handle,
2107 				 struct ethtool_channels *ch)
2108 {
2109 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2110 
2111 	ch->max_combined = hclgevf_get_max_channels(hdev);
2112 	ch->other_count = 0;
2113 	ch->max_other = 0;
2114 	ch->combined_count = hdev->num_tqps;
2115 }
2116 
2117 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2118 					  u16 *alloc_tqps, u16 *max_rss_size)
2119 {
2120 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2121 
2122 	*alloc_tqps = hdev->num_tqps;
2123 	*max_rss_size = hdev->rss_size_max;
2124 }
2125 
2126 static int hclgevf_get_status(struct hnae3_handle *handle)
2127 {
2128 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2129 
2130 	return hdev->hw.mac.link;
2131 }
2132 
2133 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2134 					    u8 *auto_neg, u32 *speed,
2135 					    u8 *duplex)
2136 {
2137 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2138 
2139 	if (speed)
2140 		*speed = hdev->hw.mac.speed;
2141 	if (duplex)
2142 		*duplex = hdev->hw.mac.duplex;
2143 	if (auto_neg)
2144 		*auto_neg = AUTONEG_DISABLE;
2145 }
2146 
2147 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2148 				 u8 duplex)
2149 {
2150 	hdev->hw.mac.speed = speed;
2151 	hdev->hw.mac.duplex = duplex;
2152 }
2153 
2154 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2155 				  u8 *media_type)
2156 {
2157 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2158 	if (media_type)
2159 		*media_type = hdev->hw.mac.media_type;
2160 }
2161 
2162 static const struct hnae3_ae_ops hclgevf_ops = {
2163 	.init_ae_dev = hclgevf_init_ae_dev,
2164 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2165 	.init_client_instance = hclgevf_init_client_instance,
2166 	.uninit_client_instance = hclgevf_uninit_client_instance,
2167 	.start = hclgevf_ae_start,
2168 	.stop = hclgevf_ae_stop,
2169 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2170 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2171 	.get_vector = hclgevf_get_vector,
2172 	.put_vector = hclgevf_put_vector,
2173 	.reset_queue = hclgevf_reset_tqp,
2174 	.set_promisc_mode = hclgevf_set_promisc_mode,
2175 	.get_mac_addr = hclgevf_get_mac_addr,
2176 	.set_mac_addr = hclgevf_set_mac_addr,
2177 	.add_uc_addr = hclgevf_add_uc_addr,
2178 	.rm_uc_addr = hclgevf_rm_uc_addr,
2179 	.add_mc_addr = hclgevf_add_mc_addr,
2180 	.rm_mc_addr = hclgevf_rm_mc_addr,
2181 	.get_stats = hclgevf_get_stats,
2182 	.update_stats = hclgevf_update_stats,
2183 	.get_strings = hclgevf_get_strings,
2184 	.get_sset_count = hclgevf_get_sset_count,
2185 	.get_rss_key_size = hclgevf_get_rss_key_size,
2186 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2187 	.get_rss = hclgevf_get_rss,
2188 	.set_rss = hclgevf_set_rss,
2189 	.get_rss_tuple = hclgevf_get_rss_tuple,
2190 	.set_rss_tuple = hclgevf_set_rss_tuple,
2191 	.get_tc_size = hclgevf_get_tc_size,
2192 	.get_fw_version = hclgevf_get_fw_version,
2193 	.set_vlan_filter = hclgevf_set_vlan_filter,
2194 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2195 	.reset_event = hclgevf_reset_event,
2196 	.get_channels = hclgevf_get_channels,
2197 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2198 	.get_status = hclgevf_get_status,
2199 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2200 	.get_media_type = hclgevf_get_media_type,
2201 };
2202 
2203 static struct hnae3_ae_algo ae_algovf = {
2204 	.ops = &hclgevf_ops,
2205 	.pdev_id_table = ae_algovf_pci_tbl,
2206 };
2207 
2208 static int hclgevf_init(void)
2209 {
2210 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2211 
2212 	hnae3_register_ae_algo(&ae_algovf);
2213 
2214 	return 0;
2215 }
2216 
2217 static void hclgevf_exit(void)
2218 {
2219 	hnae3_unregister_ae_algo(&ae_algovf);
2220 }
2221 module_init(hclgevf_init);
2222 module_exit(hclgevf_exit);
2223 
2224 MODULE_LICENSE("GPL");
2225 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2226 MODULE_DESCRIPTION("HCLGEVF Driver");
2227 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2228