1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12 #include "hclge_comm_rss.h"
13 
14 #define HCLGEVF_NAME	"hclgevf"
15 
16 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
17 
18 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
19 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
20 				  unsigned long delay);
21 
22 static struct hnae3_ae_algo ae_algovf;
23 
24 static struct workqueue_struct *hclgevf_wq;
25 
26 static const struct pci_device_id ae_algovf_pci_tbl[] = {
27 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
28 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
29 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
30 	/* required last entry */
31 	{0, }
32 };
33 
34 static const u8 hclgevf_hash_key[] = {
35 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
36 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
37 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
38 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
39 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
40 };
41 
42 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
43 
44 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
45 					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
46 					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
47 					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
48 					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
49 					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
50 					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
51 					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
52 					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
53 					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
54 					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
55 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG,
56 					 HCLGE_COMM_CMDQ_INTR_EN_REG,
57 					 HCLGE_COMM_CMDQ_INTR_GEN_REG};
58 
59 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
60 					   HCLGEVF_RST_ING,
61 					   HCLGEVF_GRO_EN_REG};
62 
63 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
64 					 HCLGEVF_RING_RX_ADDR_H_REG,
65 					 HCLGEVF_RING_RX_BD_NUM_REG,
66 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
67 					 HCLGEVF_RING_RX_MERGE_EN_REG,
68 					 HCLGEVF_RING_RX_TAIL_REG,
69 					 HCLGEVF_RING_RX_HEAD_REG,
70 					 HCLGEVF_RING_RX_FBD_NUM_REG,
71 					 HCLGEVF_RING_RX_OFFSET_REG,
72 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
73 					 HCLGEVF_RING_RX_STASH_REG,
74 					 HCLGEVF_RING_RX_BD_ERR_REG,
75 					 HCLGEVF_RING_TX_ADDR_L_REG,
76 					 HCLGEVF_RING_TX_ADDR_H_REG,
77 					 HCLGEVF_RING_TX_BD_NUM_REG,
78 					 HCLGEVF_RING_TX_PRIORITY_REG,
79 					 HCLGEVF_RING_TX_TC_REG,
80 					 HCLGEVF_RING_TX_MERGE_EN_REG,
81 					 HCLGEVF_RING_TX_TAIL_REG,
82 					 HCLGEVF_RING_TX_HEAD_REG,
83 					 HCLGEVF_RING_TX_FBD_NUM_REG,
84 					 HCLGEVF_RING_TX_OFFSET_REG,
85 					 HCLGEVF_RING_TX_EBD_NUM_REG,
86 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
87 					 HCLGEVF_RING_TX_BD_ERR_REG,
88 					 HCLGEVF_RING_EN_REG};
89 
90 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
91 					     HCLGEVF_TQP_INTR_GL0_REG,
92 					     HCLGEVF_TQP_INTR_GL1_REG,
93 					     HCLGEVF_TQP_INTR_GL2_REG,
94 					     HCLGEVF_TQP_INTR_RL_REG};
95 
96 /* hclgevf_cmd_send - send command to command queue
97  * @hw: pointer to the hw struct
98  * @desc: prefilled descriptor for describing the command
99  * @num : the number of descriptors to be sent
100  *
101  * This is the main send command for command queue, it
102  * sends the queue, cleans the queue, etc
103  */
104 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
105 {
106 	return hclge_comm_cmd_send(&hw->hw, desc, num);
107 }
108 
109 void hclgevf_arq_init(struct hclgevf_dev *hdev)
110 {
111 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
112 
113 	spin_lock(&cmdq->crq.lock);
114 	/* initialize the pointers of async rx queue of mailbox */
115 	hdev->arq.hdev = hdev;
116 	hdev->arq.head = 0;
117 	hdev->arq.tail = 0;
118 	atomic_set(&hdev->arq.count, 0);
119 	spin_unlock(&cmdq->crq.lock);
120 }
121 
122 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
123 {
124 	if (!handle->client)
125 		return container_of(handle, struct hclgevf_dev, nic);
126 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
127 		return container_of(handle, struct hclgevf_dev, roce);
128 	else
129 		return container_of(handle, struct hclgevf_dev, nic);
130 }
131 
132 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
133 {
134 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
135 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
136 	struct hclge_desc desc;
137 	struct hclgevf_tqp *tqp;
138 	int status;
139 	int i;
140 
141 	for (i = 0; i < kinfo->num_tqps; i++) {
142 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
143 		hclgevf_cmd_setup_basic_desc(&desc,
144 					     HCLGEVF_OPC_QUERY_RX_STATUS,
145 					     true);
146 
147 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
148 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
149 		if (status) {
150 			dev_err(&hdev->pdev->dev,
151 				"Query tqp stat fail, status = %d,queue = %d\n",
152 				status,	i);
153 			return status;
154 		}
155 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
156 			le32_to_cpu(desc.data[1]);
157 
158 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
159 					     true);
160 
161 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
162 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
163 		if (status) {
164 			dev_err(&hdev->pdev->dev,
165 				"Query tqp stat fail, status = %d,queue = %d\n",
166 				status, i);
167 			return status;
168 		}
169 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
170 			le32_to_cpu(desc.data[1]);
171 	}
172 
173 	return 0;
174 }
175 
176 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
177 {
178 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
179 	struct hclgevf_tqp *tqp;
180 	u64 *buff = data;
181 	int i;
182 
183 	for (i = 0; i < kinfo->num_tqps; i++) {
184 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
185 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
186 	}
187 	for (i = 0; i < kinfo->num_tqps; i++) {
188 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
189 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
190 	}
191 
192 	return buff;
193 }
194 
195 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
196 {
197 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
198 
199 	return kinfo->num_tqps * 2;
200 }
201 
202 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
203 {
204 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
205 	u8 *buff = data;
206 	int i;
207 
208 	for (i = 0; i < kinfo->num_tqps; i++) {
209 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
210 						       struct hclgevf_tqp, q);
211 		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
212 			 tqp->index);
213 		buff += ETH_GSTRING_LEN;
214 	}
215 
216 	for (i = 0; i < kinfo->num_tqps; i++) {
217 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
218 						       struct hclgevf_tqp, q);
219 		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
220 			 tqp->index);
221 		buff += ETH_GSTRING_LEN;
222 	}
223 
224 	return buff;
225 }
226 
227 static void hclgevf_update_stats(struct hnae3_handle *handle,
228 				 struct net_device_stats *net_stats)
229 {
230 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
231 	int status;
232 
233 	status = hclgevf_tqps_update_stats(handle);
234 	if (status)
235 		dev_err(&hdev->pdev->dev,
236 			"VF update of TQPS stats fail, status = %d.\n",
237 			status);
238 }
239 
240 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
241 {
242 	if (strset == ETH_SS_TEST)
243 		return -EOPNOTSUPP;
244 	else if (strset == ETH_SS_STATS)
245 		return hclgevf_tqps_get_sset_count(handle, strset);
246 
247 	return 0;
248 }
249 
250 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
251 				u8 *data)
252 {
253 	u8 *p = (char *)data;
254 
255 	if (strset == ETH_SS_STATS)
256 		p = hclgevf_tqps_get_strings(handle, p);
257 }
258 
259 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
260 {
261 	hclgevf_tqps_get_stats(handle, data);
262 }
263 
264 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
265 				   u8 subcode)
266 {
267 	if (msg) {
268 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
269 		msg->code = code;
270 		msg->subcode = subcode;
271 	}
272 }
273 
274 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
275 {
276 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
277 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
278 	struct hclge_basic_info *basic_info;
279 	struct hclge_vf_to_pf_msg send_msg;
280 	unsigned long caps;
281 	int status;
282 
283 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
284 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
285 				      sizeof(resp_msg));
286 	if (status) {
287 		dev_err(&hdev->pdev->dev,
288 			"failed to get basic info from pf, ret = %d", status);
289 		return status;
290 	}
291 
292 	basic_info = (struct hclge_basic_info *)resp_msg;
293 
294 	hdev->hw_tc_map = basic_info->hw_tc_map;
295 	hdev->mbx_api_version = basic_info->mbx_api_version;
296 	caps = basic_info->pf_caps;
297 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
298 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
299 
300 	return 0;
301 }
302 
303 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
304 {
305 	struct hnae3_handle *nic = &hdev->nic;
306 	struct hclge_vf_to_pf_msg send_msg;
307 	u8 resp_msg;
308 	int ret;
309 
310 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
311 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
312 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
313 				   sizeof(u8));
314 	if (ret) {
315 		dev_err(&hdev->pdev->dev,
316 			"VF request to get port based vlan state failed %d",
317 			ret);
318 		return ret;
319 	}
320 
321 	nic->port_base_vlan_state = resp_msg;
322 
323 	return 0;
324 }
325 
326 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
327 {
328 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
329 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
330 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
331 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
332 
333 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
334 	struct hclge_vf_to_pf_msg send_msg;
335 	int status;
336 
337 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
338 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
339 				      HCLGEVF_TQPS_RSS_INFO_LEN);
340 	if (status) {
341 		dev_err(&hdev->pdev->dev,
342 			"VF request to get tqp info from PF failed %d",
343 			status);
344 		return status;
345 	}
346 
347 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
348 	       sizeof(u16));
349 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
350 	       sizeof(u16));
351 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
352 	       sizeof(u16));
353 
354 	return 0;
355 }
356 
357 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
358 {
359 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
360 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
361 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
362 
363 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
364 	struct hclge_vf_to_pf_msg send_msg;
365 	int ret;
366 
367 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
368 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
369 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
370 	if (ret) {
371 		dev_err(&hdev->pdev->dev,
372 			"VF request to get tqp depth info from PF failed %d",
373 			ret);
374 		return ret;
375 	}
376 
377 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
378 	       sizeof(u16));
379 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
380 	       sizeof(u16));
381 
382 	return 0;
383 }
384 
385 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
386 {
387 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
388 	struct hclge_vf_to_pf_msg send_msg;
389 	u16 qid_in_pf = 0;
390 	u8 resp_data[2];
391 	int ret;
392 
393 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
394 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
395 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
396 				   sizeof(resp_data));
397 	if (!ret)
398 		qid_in_pf = *(u16 *)resp_data;
399 
400 	return qid_in_pf;
401 }
402 
403 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
404 {
405 	struct hclge_vf_to_pf_msg send_msg;
406 	u8 resp_msg[2];
407 	int ret;
408 
409 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
410 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
411 				   sizeof(resp_msg));
412 	if (ret) {
413 		dev_err(&hdev->pdev->dev,
414 			"VF request to get the pf port media type failed %d",
415 			ret);
416 		return ret;
417 	}
418 
419 	hdev->hw.mac.media_type = resp_msg[0];
420 	hdev->hw.mac.module_type = resp_msg[1];
421 
422 	return 0;
423 }
424 
425 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
426 {
427 	struct hclgevf_tqp *tqp;
428 	int i;
429 
430 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
431 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
432 	if (!hdev->htqp)
433 		return -ENOMEM;
434 
435 	tqp = hdev->htqp;
436 
437 	for (i = 0; i < hdev->num_tqps; i++) {
438 		tqp->dev = &hdev->pdev->dev;
439 		tqp->index = i;
440 
441 		tqp->q.ae_algo = &ae_algovf;
442 		tqp->q.buf_size = hdev->rx_buf_len;
443 		tqp->q.tx_desc_num = hdev->num_tx_desc;
444 		tqp->q.rx_desc_num = hdev->num_rx_desc;
445 
446 		/* need an extended offset to configure queues >=
447 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
448 		 */
449 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
450 			tqp->q.io_base = hdev->hw.hw.io_base +
451 					 HCLGEVF_TQP_REG_OFFSET +
452 					 i * HCLGEVF_TQP_REG_SIZE;
453 		else
454 			tqp->q.io_base = hdev->hw.hw.io_base +
455 					 HCLGEVF_TQP_REG_OFFSET +
456 					 HCLGEVF_TQP_EXT_REG_OFFSET +
457 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
458 					 HCLGEVF_TQP_REG_SIZE;
459 
460 		tqp++;
461 	}
462 
463 	return 0;
464 }
465 
466 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
467 {
468 	struct hnae3_handle *nic = &hdev->nic;
469 	struct hnae3_knic_private_info *kinfo;
470 	u16 new_tqps = hdev->num_tqps;
471 	unsigned int i;
472 	u8 num_tc = 0;
473 
474 	kinfo = &nic->kinfo;
475 	kinfo->num_tx_desc = hdev->num_tx_desc;
476 	kinfo->num_rx_desc = hdev->num_rx_desc;
477 	kinfo->rx_buf_len = hdev->rx_buf_len;
478 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
479 		if (hdev->hw_tc_map & BIT(i))
480 			num_tc++;
481 
482 	num_tc = num_tc ? num_tc : 1;
483 	kinfo->tc_info.num_tc = num_tc;
484 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
485 	new_tqps = kinfo->rss_size * num_tc;
486 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
487 
488 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
489 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
490 	if (!kinfo->tqp)
491 		return -ENOMEM;
492 
493 	for (i = 0; i < kinfo->num_tqps; i++) {
494 		hdev->htqp[i].q.handle = &hdev->nic;
495 		hdev->htqp[i].q.tqp_index = i;
496 		kinfo->tqp[i] = &hdev->htqp[i].q;
497 	}
498 
499 	/* after init the max rss_size and tqps, adjust the default tqp numbers
500 	 * and rss size with the actual vector numbers
501 	 */
502 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
503 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
504 				kinfo->rss_size);
505 
506 	return 0;
507 }
508 
509 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
510 {
511 	struct hclge_vf_to_pf_msg send_msg;
512 	int status;
513 
514 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
515 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
516 	if (status)
517 		dev_err(&hdev->pdev->dev,
518 			"VF failed to fetch link status(%d) from PF", status);
519 }
520 
521 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
522 {
523 	struct hnae3_handle *rhandle = &hdev->roce;
524 	struct hnae3_handle *handle = &hdev->nic;
525 	struct hnae3_client *rclient;
526 	struct hnae3_client *client;
527 
528 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
529 		return;
530 
531 	client = handle->client;
532 	rclient = hdev->roce_client;
533 
534 	link_state =
535 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
536 	if (link_state != hdev->hw.mac.link) {
537 		hdev->hw.mac.link = link_state;
538 		client->ops->link_status_change(handle, !!link_state);
539 		if (rclient && rclient->ops->link_status_change)
540 			rclient->ops->link_status_change(rhandle, !!link_state);
541 	}
542 
543 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
544 }
545 
546 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
547 {
548 #define HCLGEVF_ADVERTISING	0
549 #define HCLGEVF_SUPPORTED	1
550 
551 	struct hclge_vf_to_pf_msg send_msg;
552 
553 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
554 	send_msg.data[0] = HCLGEVF_ADVERTISING;
555 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
556 	send_msg.data[0] = HCLGEVF_SUPPORTED;
557 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
558 }
559 
560 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
561 {
562 	struct hnae3_handle *nic = &hdev->nic;
563 	int ret;
564 
565 	nic->ae_algo = &ae_algovf;
566 	nic->pdev = hdev->pdev;
567 	nic->numa_node_mask = hdev->numa_node_mask;
568 	nic->flags |= HNAE3_SUPPORT_VF;
569 	nic->kinfo.io_base = hdev->hw.hw.io_base;
570 
571 	ret = hclgevf_knic_setup(hdev);
572 	if (ret)
573 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
574 			ret);
575 	return ret;
576 }
577 
578 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
579 {
580 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
581 		dev_warn(&hdev->pdev->dev,
582 			 "vector(vector_id %d) has been freed.\n", vector_id);
583 		return;
584 	}
585 
586 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
587 	hdev->num_msi_left += 1;
588 	hdev->num_msi_used -= 1;
589 }
590 
591 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
592 			      struct hnae3_vector_info *vector_info)
593 {
594 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
595 	struct hnae3_vector_info *vector = vector_info;
596 	int alloc = 0;
597 	int i, j;
598 
599 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
600 	vector_num = min(hdev->num_msi_left, vector_num);
601 
602 	for (j = 0; j < vector_num; j++) {
603 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
604 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
605 				vector->vector = pci_irq_vector(hdev->pdev, i);
606 				vector->io_addr = hdev->hw.hw.io_base +
607 					HCLGEVF_VECTOR_REG_BASE +
608 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
609 				hdev->vector_status[i] = 0;
610 				hdev->vector_irq[i] = vector->vector;
611 
612 				vector++;
613 				alloc++;
614 
615 				break;
616 			}
617 		}
618 	}
619 	hdev->num_msi_left -= alloc;
620 	hdev->num_msi_used += alloc;
621 
622 	return alloc;
623 }
624 
625 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
626 {
627 	int i;
628 
629 	for (i = 0; i < hdev->num_msi; i++)
630 		if (vector == hdev->vector_irq[i])
631 			return i;
632 
633 	return -EINVAL;
634 }
635 
636 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
637 				    const u8 hfunc, const u8 *key)
638 {
639 	struct hclgevf_rss_config_cmd *req;
640 	unsigned int key_offset = 0;
641 	struct hclge_desc desc;
642 	int key_counts;
643 	int key_size;
644 	int ret;
645 
646 	key_counts = HCLGEVF_RSS_KEY_SIZE;
647 	req = (struct hclgevf_rss_config_cmd *)desc.data;
648 
649 	while (key_counts) {
650 		hclgevf_cmd_setup_basic_desc(&desc,
651 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
652 					     false);
653 
654 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
655 		req->hash_config |=
656 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
657 
658 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
659 		memcpy(req->hash_key,
660 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
661 
662 		key_counts -= key_size;
663 		key_offset++;
664 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
665 		if (ret) {
666 			dev_err(&hdev->pdev->dev,
667 				"Configure RSS config fail, status = %d\n",
668 				ret);
669 			return ret;
670 		}
671 	}
672 
673 	return 0;
674 }
675 
676 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
677 {
678 	const u16 *indir = hdev->rss_cfg.rss_indirection_tbl;
679 	struct hclgevf_rss_indirection_table_cmd *req;
680 	struct hclge_desc desc;
681 	int rss_cfg_tbl_num;
682 	int status;
683 	int i, j;
684 
685 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
686 	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
687 			  HCLGEVF_RSS_CFG_TBL_SIZE;
688 
689 	for (i = 0; i < rss_cfg_tbl_num; i++) {
690 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
691 					     false);
692 		req->start_table_index =
693 			cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
694 		req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
695 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
696 			req->rss_result[j] =
697 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
698 
699 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
700 		if (status) {
701 			dev_err(&hdev->pdev->dev,
702 				"VF failed(=%d) to set RSS indirection table\n",
703 				status);
704 			return status;
705 		}
706 	}
707 
708 	return 0;
709 }
710 
711 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
712 {
713 	struct hclgevf_rss_tc_mode_cmd *req;
714 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
715 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
716 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
717 	struct hclge_desc desc;
718 	u16 roundup_size;
719 	unsigned int i;
720 	int status;
721 
722 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
723 
724 	roundup_size = roundup_pow_of_two(rss_size);
725 	roundup_size = ilog2(roundup_size);
726 
727 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
728 		tc_valid[i] = 1;
729 		tc_size[i] = roundup_size;
730 		tc_offset[i] = (hdev->hw_tc_map & BIT(i)) ? rss_size * i : 0;
731 	}
732 
733 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
734 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
735 		u16 mode = 0;
736 
737 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
738 			      (tc_valid[i] & 0x1));
739 		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
740 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
741 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
742 			      tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
743 			      0x1);
744 		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
745 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
746 
747 		req->rss_tc_mode[i] = cpu_to_le16(mode);
748 	}
749 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
750 	if (status)
751 		dev_err(&hdev->pdev->dev,
752 			"VF failed(=%d) to set rss tc mode\n", status);
753 
754 	return status;
755 }
756 
757 /* for revision 0x20, vf shared the same rss config with pf */
758 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
759 {
760 #define HCLGEVF_RSS_MBX_RESP_LEN	8
761 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
762 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
763 	struct hclge_vf_to_pf_msg send_msg;
764 	u16 msg_num, hash_key_index;
765 	u8 index;
766 	int ret;
767 
768 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
769 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
770 			HCLGEVF_RSS_MBX_RESP_LEN;
771 	for (index = 0; index < msg_num; index++) {
772 		send_msg.data[0] = index;
773 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
774 					   HCLGEVF_RSS_MBX_RESP_LEN);
775 		if (ret) {
776 			dev_err(&hdev->pdev->dev,
777 				"VF get rss hash key from PF failed, ret=%d",
778 				ret);
779 			return ret;
780 		}
781 
782 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
783 		if (index == msg_num - 1)
784 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
785 			       &resp_msg[0],
786 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
787 		else
788 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
789 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
790 	}
791 
792 	return 0;
793 }
794 
795 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
796 			   u8 *hfunc)
797 {
798 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
799 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
800 	int i, ret;
801 
802 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
803 		/* Get hash algorithm */
804 		if (hfunc) {
805 			switch (rss_cfg->rss_algo) {
806 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
807 				*hfunc = ETH_RSS_HASH_TOP;
808 				break;
809 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
810 				*hfunc = ETH_RSS_HASH_XOR;
811 				break;
812 			default:
813 				*hfunc = ETH_RSS_HASH_UNKNOWN;
814 				break;
815 			}
816 		}
817 
818 		/* Get the RSS Key required by the user */
819 		if (key)
820 			memcpy(key, rss_cfg->rss_hash_key,
821 			       HCLGEVF_RSS_KEY_SIZE);
822 	} else {
823 		if (hfunc)
824 			*hfunc = ETH_RSS_HASH_TOP;
825 		if (key) {
826 			ret = hclgevf_get_rss_hash_key(hdev);
827 			if (ret)
828 				return ret;
829 			memcpy(key, rss_cfg->rss_hash_key,
830 			       HCLGEVF_RSS_KEY_SIZE);
831 		}
832 	}
833 
834 	if (indir)
835 		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
836 			indir[i] = rss_cfg->rss_indirection_tbl[i];
837 
838 	return 0;
839 }
840 
841 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
842 			   const u8 *key, const u8 hfunc)
843 {
844 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
845 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
846 	u8 hash_algo;
847 	int ret, i;
848 
849 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
850 		ret = hclge_comm_parse_rss_hfunc(rss_cfg, hfunc, &hash_algo);
851 		if (ret)
852 			return ret;
853 
854 		/* Set the RSS Hash Key if specififed by the user */
855 		if (key) {
856 			ret = hclgevf_set_rss_algo_key(hdev, hash_algo, key);
857 			if (ret) {
858 				dev_err(&hdev->pdev->dev,
859 					"invalid hfunc type %u\n", hfunc);
860 				return ret;
861 			}
862 
863 			/* Update the shadow RSS key with user specified qids */
864 			memcpy(rss_cfg->rss_hash_key, key,
865 			       HCLGEVF_RSS_KEY_SIZE);
866 		} else {
867 			ret = hclgevf_set_rss_algo_key(hdev, hash_algo,
868 						       rss_cfg->rss_hash_key);
869 			if (ret)
870 				return ret;
871 		}
872 		rss_cfg->rss_algo = hash_algo;
873 	}
874 
875 	/* update the shadow RSS table with user specified qids */
876 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
877 		rss_cfg->rss_indirection_tbl[i] = indir[i];
878 
879 	/* update the hardware */
880 	return hclgevf_set_rss_indir_table(hdev);
881 }
882 
883 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
884 {
885 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
886 
887 	if (nfc->data & RXH_L4_B_2_3)
888 		hash_sets |= HCLGEVF_D_PORT_BIT;
889 	else
890 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
891 
892 	if (nfc->data & RXH_IP_SRC)
893 		hash_sets |= HCLGEVF_S_IP_BIT;
894 	else
895 		hash_sets &= ~HCLGEVF_S_IP_BIT;
896 
897 	if (nfc->data & RXH_IP_DST)
898 		hash_sets |= HCLGEVF_D_IP_BIT;
899 	else
900 		hash_sets &= ~HCLGEVF_D_IP_BIT;
901 
902 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
903 		hash_sets |= HCLGEVF_V_TAG_BIT;
904 
905 	return hash_sets;
906 }
907 
908 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
909 				      struct ethtool_rxnfc *nfc,
910 				      struct hclgevf_rss_input_tuple_cmd *req)
911 {
912 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
913 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
914 	u8 tuple_sets;
915 
916 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
917 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
918 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
919 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
920 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
921 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
922 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
923 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
924 
925 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
926 	switch (nfc->flow_type) {
927 	case TCP_V4_FLOW:
928 		req->ipv4_tcp_en = tuple_sets;
929 		break;
930 	case TCP_V6_FLOW:
931 		req->ipv6_tcp_en = tuple_sets;
932 		break;
933 	case UDP_V4_FLOW:
934 		req->ipv4_udp_en = tuple_sets;
935 		break;
936 	case UDP_V6_FLOW:
937 		req->ipv6_udp_en = tuple_sets;
938 		break;
939 	case SCTP_V4_FLOW:
940 		req->ipv4_sctp_en = tuple_sets;
941 		break;
942 	case SCTP_V6_FLOW:
943 		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
944 		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
945 			return -EINVAL;
946 
947 		req->ipv6_sctp_en = tuple_sets;
948 		break;
949 	case IPV4_FLOW:
950 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
951 		break;
952 	case IPV6_FLOW:
953 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
954 		break;
955 	default:
956 		return -EINVAL;
957 	}
958 
959 	return 0;
960 }
961 
962 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
963 				 struct ethtool_rxnfc *nfc)
964 {
965 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
966 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
967 	struct hclgevf_rss_input_tuple_cmd *req;
968 	struct hclge_desc desc;
969 	int ret;
970 
971 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
972 		return -EOPNOTSUPP;
973 
974 	if (nfc->data &
975 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
976 		return -EINVAL;
977 
978 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
979 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
980 
981 	ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
982 	if (ret) {
983 		dev_err(&hdev->pdev->dev,
984 			"failed to init rss tuple cmd, ret = %d\n", ret);
985 		return ret;
986 	}
987 
988 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
989 	if (ret) {
990 		dev_err(&hdev->pdev->dev,
991 			"Set rss tuple fail, status = %d\n", ret);
992 		return ret;
993 	}
994 
995 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
996 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
997 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
998 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
999 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
1000 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
1001 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
1002 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
1003 	return 0;
1004 }
1005 
1006 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1007 {
1008 	u64 tuple_data = 0;
1009 
1010 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
1011 		tuple_data |= RXH_L4_B_2_3;
1012 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
1013 		tuple_data |= RXH_L4_B_0_1;
1014 	if (tuple_sets & HCLGEVF_D_IP_BIT)
1015 		tuple_data |= RXH_IP_DST;
1016 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1017 		tuple_data |= RXH_IP_SRC;
1018 
1019 	return tuple_data;
1020 }
1021 
1022 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1023 				 struct ethtool_rxnfc *nfc)
1024 {
1025 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1026 	u8 tuple_sets;
1027 	int ret;
1028 
1029 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1030 		return -EOPNOTSUPP;
1031 
1032 	nfc->data = 0;
1033 
1034 	ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
1035 				       &tuple_sets);
1036 	if (ret || !tuple_sets)
1037 		return ret;
1038 
1039 	nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1040 
1041 	return 0;
1042 }
1043 
1044 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1045 				       struct hclge_comm_rss_cfg *rss_cfg)
1046 {
1047 	struct hclgevf_rss_input_tuple_cmd *req;
1048 	struct hclge_desc desc;
1049 	int ret;
1050 
1051 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1052 
1053 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1054 
1055 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1056 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1057 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1058 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1059 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1060 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1061 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1062 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1063 
1064 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1065 	if (ret)
1066 		dev_err(&hdev->pdev->dev,
1067 			"Configure rss input fail, status = %d\n", ret);
1068 	return ret;
1069 }
1070 
1071 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1072 {
1073 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1074 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
1075 
1076 	return rss_cfg->rss_size;
1077 }
1078 
1079 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1080 				       int vector_id,
1081 				       struct hnae3_ring_chain_node *ring_chain)
1082 {
1083 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1084 	struct hclge_vf_to_pf_msg send_msg;
1085 	struct hnae3_ring_chain_node *node;
1086 	int status;
1087 	int i = 0;
1088 
1089 	memset(&send_msg, 0, sizeof(send_msg));
1090 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1091 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1092 	send_msg.vector_id = vector_id;
1093 
1094 	for (node = ring_chain; node; node = node->next) {
1095 		send_msg.param[i].ring_type =
1096 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1097 
1098 		send_msg.param[i].tqp_index = node->tqp_index;
1099 		send_msg.param[i].int_gl_index =
1100 					hnae3_get_field(node->int_gl_idx,
1101 							HNAE3_RING_GL_IDX_M,
1102 							HNAE3_RING_GL_IDX_S);
1103 
1104 		i++;
1105 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1106 			send_msg.ring_num = i;
1107 
1108 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1109 						      NULL, 0);
1110 			if (status) {
1111 				dev_err(&hdev->pdev->dev,
1112 					"Map TQP fail, status is %d.\n",
1113 					status);
1114 				return status;
1115 			}
1116 			i = 0;
1117 		}
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1124 				      struct hnae3_ring_chain_node *ring_chain)
1125 {
1126 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1127 	int vector_id;
1128 
1129 	vector_id = hclgevf_get_vector_index(hdev, vector);
1130 	if (vector_id < 0) {
1131 		dev_err(&handle->pdev->dev,
1132 			"Get vector index fail. ret =%d\n", vector_id);
1133 		return vector_id;
1134 	}
1135 
1136 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1137 }
1138 
1139 static int hclgevf_unmap_ring_from_vector(
1140 				struct hnae3_handle *handle,
1141 				int vector,
1142 				struct hnae3_ring_chain_node *ring_chain)
1143 {
1144 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1145 	int ret, vector_id;
1146 
1147 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1148 		return 0;
1149 
1150 	vector_id = hclgevf_get_vector_index(hdev, vector);
1151 	if (vector_id < 0) {
1152 		dev_err(&handle->pdev->dev,
1153 			"Get vector index fail. ret =%d\n", vector_id);
1154 		return vector_id;
1155 	}
1156 
1157 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1158 	if (ret)
1159 		dev_err(&handle->pdev->dev,
1160 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1161 			vector_id,
1162 			ret);
1163 
1164 	return ret;
1165 }
1166 
1167 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1168 {
1169 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1170 	int vector_id;
1171 
1172 	vector_id = hclgevf_get_vector_index(hdev, vector);
1173 	if (vector_id < 0) {
1174 		dev_err(&handle->pdev->dev,
1175 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1176 			vector_id);
1177 		return vector_id;
1178 	}
1179 
1180 	hclgevf_free_vector(hdev, vector_id);
1181 
1182 	return 0;
1183 }
1184 
1185 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1186 					bool en_uc_pmc, bool en_mc_pmc,
1187 					bool en_bc_pmc)
1188 {
1189 	struct hnae3_handle *handle = &hdev->nic;
1190 	struct hclge_vf_to_pf_msg send_msg;
1191 	int ret;
1192 
1193 	memset(&send_msg, 0, sizeof(send_msg));
1194 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1195 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1196 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1197 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1198 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1199 					     &handle->priv_flags) ? 1 : 0;
1200 
1201 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1202 	if (ret)
1203 		dev_err(&hdev->pdev->dev,
1204 			"Set promisc mode fail, status is %d.\n", ret);
1205 
1206 	return ret;
1207 }
1208 
1209 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1210 				    bool en_mc_pmc)
1211 {
1212 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1213 	bool en_bc_pmc;
1214 
1215 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1216 
1217 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1218 					    en_bc_pmc);
1219 }
1220 
1221 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1222 {
1223 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1224 
1225 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1226 	hclgevf_task_schedule(hdev, 0);
1227 }
1228 
1229 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1230 {
1231 	struct hnae3_handle *handle = &hdev->nic;
1232 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1233 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1234 	int ret;
1235 
1236 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1237 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1238 		if (!ret)
1239 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1240 	}
1241 }
1242 
1243 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
1244 				       u16 stream_id, bool enable)
1245 {
1246 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1247 	struct hclge_desc desc;
1248 
1249 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1250 
1251 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1252 				     false);
1253 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1254 	req->stream_id = cpu_to_le16(stream_id);
1255 	if (enable)
1256 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1257 
1258 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
1259 }
1260 
1261 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
1262 {
1263 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1264 	int ret;
1265 	u16 i;
1266 
1267 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
1268 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
1269 		if (ret)
1270 			return ret;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1277 {
1278 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1279 	struct hclgevf_tqp *tqp;
1280 	int i;
1281 
1282 	for (i = 0; i < kinfo->num_tqps; i++) {
1283 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1284 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1285 	}
1286 }
1287 
1288 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1289 {
1290 	struct hclge_vf_to_pf_msg send_msg;
1291 	u8 host_mac[ETH_ALEN];
1292 	int status;
1293 
1294 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1295 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1296 				      ETH_ALEN);
1297 	if (status) {
1298 		dev_err(&hdev->pdev->dev,
1299 			"fail to get VF MAC from host %d", status);
1300 		return status;
1301 	}
1302 
1303 	ether_addr_copy(p, host_mac);
1304 
1305 	return 0;
1306 }
1307 
1308 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1309 {
1310 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1311 	u8 host_mac_addr[ETH_ALEN];
1312 
1313 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1314 		return;
1315 
1316 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1317 	if (hdev->has_pf_mac)
1318 		ether_addr_copy(p, host_mac_addr);
1319 	else
1320 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1321 }
1322 
1323 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
1324 				bool is_first)
1325 {
1326 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1327 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1328 	struct hclge_vf_to_pf_msg send_msg;
1329 	u8 *new_mac_addr = (u8 *)p;
1330 	int status;
1331 
1332 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1333 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1334 	ether_addr_copy(send_msg.data, new_mac_addr);
1335 	if (is_first && !hdev->has_pf_mac)
1336 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1337 	else
1338 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1339 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1340 	if (!status)
1341 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1342 
1343 	return status;
1344 }
1345 
1346 static struct hclgevf_mac_addr_node *
1347 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1348 {
1349 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1350 
1351 	list_for_each_entry_safe(mac_node, tmp, list, node)
1352 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1353 			return mac_node;
1354 
1355 	return NULL;
1356 }
1357 
1358 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1359 				    enum HCLGEVF_MAC_NODE_STATE state)
1360 {
1361 	switch (state) {
1362 	/* from set_rx_mode or tmp_add_list */
1363 	case HCLGEVF_MAC_TO_ADD:
1364 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1365 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1366 		break;
1367 	/* only from set_rx_mode */
1368 	case HCLGEVF_MAC_TO_DEL:
1369 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1370 			list_del(&mac_node->node);
1371 			kfree(mac_node);
1372 		} else {
1373 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1374 		}
1375 		break;
1376 	/* only from tmp_add_list, the mac_node->state won't be
1377 	 * HCLGEVF_MAC_ACTIVE
1378 	 */
1379 	case HCLGEVF_MAC_ACTIVE:
1380 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1381 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1382 		break;
1383 	}
1384 }
1385 
1386 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1387 				   enum HCLGEVF_MAC_NODE_STATE state,
1388 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1389 				   const unsigned char *addr)
1390 {
1391 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1392 	struct hclgevf_mac_addr_node *mac_node;
1393 	struct list_head *list;
1394 
1395 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1396 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1397 
1398 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1399 
1400 	/* if the mac addr is already in the mac list, no need to add a new
1401 	 * one into it, just check the mac addr state, convert it to a new
1402 	 * new state, or just remove it, or do nothing.
1403 	 */
1404 	mac_node = hclgevf_find_mac_node(list, addr);
1405 	if (mac_node) {
1406 		hclgevf_update_mac_node(mac_node, state);
1407 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1408 		return 0;
1409 	}
1410 	/* if this address is never added, unnecessary to delete */
1411 	if (state == HCLGEVF_MAC_TO_DEL) {
1412 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1413 		return -ENOENT;
1414 	}
1415 
1416 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1417 	if (!mac_node) {
1418 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1419 		return -ENOMEM;
1420 	}
1421 
1422 	mac_node->state = state;
1423 	ether_addr_copy(mac_node->mac_addr, addr);
1424 	list_add_tail(&mac_node->node, list);
1425 
1426 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1427 	return 0;
1428 }
1429 
1430 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1431 			       const unsigned char *addr)
1432 {
1433 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1434 				       HCLGEVF_MAC_ADDR_UC, addr);
1435 }
1436 
1437 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1438 			      const unsigned char *addr)
1439 {
1440 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1441 				       HCLGEVF_MAC_ADDR_UC, addr);
1442 }
1443 
1444 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1445 			       const unsigned char *addr)
1446 {
1447 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1448 				       HCLGEVF_MAC_ADDR_MC, addr);
1449 }
1450 
1451 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1452 			      const unsigned char *addr)
1453 {
1454 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1455 				       HCLGEVF_MAC_ADDR_MC, addr);
1456 }
1457 
1458 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1459 				    struct hclgevf_mac_addr_node *mac_node,
1460 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1461 {
1462 	struct hclge_vf_to_pf_msg send_msg;
1463 	u8 code, subcode;
1464 
1465 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1466 		code = HCLGE_MBX_SET_UNICAST;
1467 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1468 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1469 		else
1470 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1471 	} else {
1472 		code = HCLGE_MBX_SET_MULTICAST;
1473 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1474 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1475 		else
1476 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1477 	}
1478 
1479 	hclgevf_build_send_msg(&send_msg, code, subcode);
1480 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1481 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1482 }
1483 
1484 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1485 				    struct list_head *list,
1486 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1487 {
1488 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1489 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1490 	int ret;
1491 
1492 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1493 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1494 		if  (ret) {
1495 			hnae3_format_mac_addr(format_mac_addr,
1496 					      mac_node->mac_addr);
1497 			dev_err(&hdev->pdev->dev,
1498 				"failed to configure mac %s, state = %d, ret = %d\n",
1499 				format_mac_addr, mac_node->state, ret);
1500 			return;
1501 		}
1502 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1503 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1504 		} else {
1505 			list_del(&mac_node->node);
1506 			kfree(mac_node);
1507 		}
1508 	}
1509 }
1510 
1511 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1512 				       struct list_head *mac_list)
1513 {
1514 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1515 
1516 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1517 		/* if the mac address from tmp_add_list is not in the
1518 		 * uc/mc_mac_list, it means have received a TO_DEL request
1519 		 * during the time window of sending mac config request to PF
1520 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1521 		 * then it will be removed at next time. If is TO_ADD, it means
1522 		 * send TO_ADD request failed, so just remove the mac node.
1523 		 */
1524 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1525 		if (new_node) {
1526 			hclgevf_update_mac_node(new_node, mac_node->state);
1527 			list_del(&mac_node->node);
1528 			kfree(mac_node);
1529 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1530 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1531 			list_move_tail(&mac_node->node, mac_list);
1532 		} else {
1533 			list_del(&mac_node->node);
1534 			kfree(mac_node);
1535 		}
1536 	}
1537 }
1538 
1539 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1540 				       struct list_head *mac_list)
1541 {
1542 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1543 
1544 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1545 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1546 		if (new_node) {
1547 			/* If the mac addr is exist in the mac list, it means
1548 			 * received a new request TO_ADD during the time window
1549 			 * of sending mac addr configurrequest to PF, so just
1550 			 * change the mac state to ACTIVE.
1551 			 */
1552 			new_node->state = HCLGEVF_MAC_ACTIVE;
1553 			list_del(&mac_node->node);
1554 			kfree(mac_node);
1555 		} else {
1556 			list_move_tail(&mac_node->node, mac_list);
1557 		}
1558 	}
1559 }
1560 
1561 static void hclgevf_clear_list(struct list_head *list)
1562 {
1563 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1564 
1565 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1566 		list_del(&mac_node->node);
1567 		kfree(mac_node);
1568 	}
1569 }
1570 
1571 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1572 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1573 {
1574 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1575 	struct list_head tmp_add_list, tmp_del_list;
1576 	struct list_head *list;
1577 
1578 	INIT_LIST_HEAD(&tmp_add_list);
1579 	INIT_LIST_HEAD(&tmp_del_list);
1580 
1581 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1582 	 * we can add/delete these mac addr outside the spin lock
1583 	 */
1584 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1585 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1586 
1587 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1588 
1589 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1590 		switch (mac_node->state) {
1591 		case HCLGEVF_MAC_TO_DEL:
1592 			list_move_tail(&mac_node->node, &tmp_del_list);
1593 			break;
1594 		case HCLGEVF_MAC_TO_ADD:
1595 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1596 			if (!new_node)
1597 				goto stop_traverse;
1598 
1599 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1600 			new_node->state = mac_node->state;
1601 			list_add_tail(&new_node->node, &tmp_add_list);
1602 			break;
1603 		default:
1604 			break;
1605 		}
1606 	}
1607 
1608 stop_traverse:
1609 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1610 
1611 	/* delete first, in order to get max mac table space for adding */
1612 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1613 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1614 
1615 	/* if some mac addresses were added/deleted fail, move back to the
1616 	 * mac_list, and retry at next time.
1617 	 */
1618 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1619 
1620 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1621 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1622 
1623 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1624 }
1625 
1626 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1627 {
1628 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1629 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1630 }
1631 
1632 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1633 {
1634 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1635 
1636 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1637 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1638 
1639 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1640 }
1641 
1642 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1643 {
1644 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1645 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1646 	struct hclge_vf_to_pf_msg send_msg;
1647 
1648 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1649 		return -EOPNOTSUPP;
1650 
1651 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1652 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1653 	send_msg.data[0] = enable ? 1 : 0;
1654 
1655 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1656 }
1657 
1658 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1659 				   __be16 proto, u16 vlan_id,
1660 				   bool is_kill)
1661 {
1662 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1663 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1664 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1665 
1666 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1667 	struct hclge_vf_to_pf_msg send_msg;
1668 	int ret;
1669 
1670 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1671 		return -EINVAL;
1672 
1673 	if (proto != htons(ETH_P_8021Q))
1674 		return -EPROTONOSUPPORT;
1675 
1676 	/* When device is resetting or reset failed, firmware is unable to
1677 	 * handle mailbox. Just record the vlan id, and remove it after
1678 	 * reset finished.
1679 	 */
1680 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1681 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1682 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1683 		return -EBUSY;
1684 	}
1685 
1686 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1687 			       HCLGE_MBX_VLAN_FILTER);
1688 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1689 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1690 	       sizeof(vlan_id));
1691 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1692 	       sizeof(proto));
1693 	/* when remove hw vlan filter failed, record the vlan id,
1694 	 * and try to remove it from hw later, to be consistence
1695 	 * with stack.
1696 	 */
1697 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1698 	if (is_kill && ret)
1699 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1700 
1701 	return ret;
1702 }
1703 
1704 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1705 {
1706 #define HCLGEVF_MAX_SYNC_COUNT	60
1707 	struct hnae3_handle *handle = &hdev->nic;
1708 	int ret, sync_cnt = 0;
1709 	u16 vlan_id;
1710 
1711 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1712 	while (vlan_id != VLAN_N_VID) {
1713 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1714 					      vlan_id, true);
1715 		if (ret)
1716 			return;
1717 
1718 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1719 		sync_cnt++;
1720 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1721 			return;
1722 
1723 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1724 	}
1725 }
1726 
1727 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1728 {
1729 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1730 	struct hclge_vf_to_pf_msg send_msg;
1731 
1732 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1733 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1734 	send_msg.data[0] = enable ? 1 : 0;
1735 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1736 }
1737 
1738 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1739 {
1740 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1741 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1742 	struct hclge_vf_to_pf_msg send_msg;
1743 	u8 return_status = 0;
1744 	int ret;
1745 	u16 i;
1746 
1747 	/* disable vf queue before send queue reset msg to PF */
1748 	ret = hclgevf_tqp_enable(handle, false);
1749 	if (ret) {
1750 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1751 			ret);
1752 		return ret;
1753 	}
1754 
1755 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1756 
1757 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1758 				   sizeof(return_status));
1759 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1760 		return ret;
1761 
1762 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1763 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1764 		memcpy(send_msg.data, &i, sizeof(i));
1765 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1766 		if (ret)
1767 			return ret;
1768 	}
1769 
1770 	return 0;
1771 }
1772 
1773 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1774 {
1775 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1776 	struct hclge_vf_to_pf_msg send_msg;
1777 
1778 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1779 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1780 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1781 }
1782 
1783 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1784 				 enum hnae3_reset_notify_type type)
1785 {
1786 	struct hnae3_client *client = hdev->nic_client;
1787 	struct hnae3_handle *handle = &hdev->nic;
1788 	int ret;
1789 
1790 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1791 	    !client)
1792 		return 0;
1793 
1794 	if (!client->ops->reset_notify)
1795 		return -EOPNOTSUPP;
1796 
1797 	ret = client->ops->reset_notify(handle, type);
1798 	if (ret)
1799 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1800 			type, ret);
1801 
1802 	return ret;
1803 }
1804 
1805 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1806 				      enum hnae3_reset_notify_type type)
1807 {
1808 	struct hnae3_client *client = hdev->roce_client;
1809 	struct hnae3_handle *handle = &hdev->roce;
1810 	int ret;
1811 
1812 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1813 		return 0;
1814 
1815 	if (!client->ops->reset_notify)
1816 		return -EOPNOTSUPP;
1817 
1818 	ret = client->ops->reset_notify(handle, type);
1819 	if (ret)
1820 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1821 			type, ret);
1822 	return ret;
1823 }
1824 
1825 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1826 {
1827 #define HCLGEVF_RESET_WAIT_US	20000
1828 #define HCLGEVF_RESET_WAIT_CNT	2000
1829 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1830 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1831 
1832 	u32 val;
1833 	int ret;
1834 
1835 	if (hdev->reset_type == HNAE3_VF_RESET)
1836 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1837 					 HCLGEVF_VF_RST_ING, val,
1838 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1839 					 HCLGEVF_RESET_WAIT_US,
1840 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1841 	else
1842 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1843 					 HCLGEVF_RST_ING, val,
1844 					 !(val & HCLGEVF_RST_ING_BITS),
1845 					 HCLGEVF_RESET_WAIT_US,
1846 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1847 
1848 	/* hardware completion status should be available by this time */
1849 	if (ret) {
1850 		dev_err(&hdev->pdev->dev,
1851 			"couldn't get reset done status from h/w, timeout!\n");
1852 		return ret;
1853 	}
1854 
1855 	/* we will wait a bit more to let reset of the stack to complete. This
1856 	 * might happen in case reset assertion was made by PF. Yes, this also
1857 	 * means we might end up waiting bit more even for VF reset.
1858 	 */
1859 	msleep(5000);
1860 
1861 	return 0;
1862 }
1863 
1864 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1865 {
1866 	u32 reg_val;
1867 
1868 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1869 	if (enable)
1870 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1871 	else
1872 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1873 
1874 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1875 			  reg_val);
1876 }
1877 
1878 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1879 {
1880 	int ret;
1881 
1882 	/* uninitialize the nic client */
1883 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1884 	if (ret)
1885 		return ret;
1886 
1887 	/* re-initialize the hclge device */
1888 	ret = hclgevf_reset_hdev(hdev);
1889 	if (ret) {
1890 		dev_err(&hdev->pdev->dev,
1891 			"hclge device re-init failed, VF is disabled!\n");
1892 		return ret;
1893 	}
1894 
1895 	/* bring up the nic client again */
1896 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1897 	if (ret)
1898 		return ret;
1899 
1900 	/* clear handshake status with IMP */
1901 	hclgevf_reset_handshake(hdev, false);
1902 
1903 	/* bring up the nic to enable TX/RX again */
1904 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1905 }
1906 
1907 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1908 {
1909 #define HCLGEVF_RESET_SYNC_TIME 100
1910 
1911 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1912 		struct hclge_vf_to_pf_msg send_msg;
1913 		int ret;
1914 
1915 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1916 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1917 		if (ret) {
1918 			dev_err(&hdev->pdev->dev,
1919 				"failed to assert VF reset, ret = %d\n", ret);
1920 			return ret;
1921 		}
1922 		hdev->rst_stats.vf_func_rst_cnt++;
1923 	}
1924 
1925 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1926 	/* inform hardware that preparatory work is done */
1927 	msleep(HCLGEVF_RESET_SYNC_TIME);
1928 	hclgevf_reset_handshake(hdev, true);
1929 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1930 		 hdev->reset_type);
1931 
1932 	return 0;
1933 }
1934 
1935 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1936 {
1937 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1938 		 hdev->rst_stats.vf_func_rst_cnt);
1939 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1940 		 hdev->rst_stats.flr_rst_cnt);
1941 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1942 		 hdev->rst_stats.vf_rst_cnt);
1943 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1944 		 hdev->rst_stats.rst_done_cnt);
1945 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1946 		 hdev->rst_stats.hw_rst_done_cnt);
1947 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1948 		 hdev->rst_stats.rst_cnt);
1949 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1950 		 hdev->rst_stats.rst_fail_cnt);
1951 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1952 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1953 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1954 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1955 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1956 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1957 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1958 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1959 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1960 }
1961 
1962 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1963 {
1964 	/* recover handshake status with IMP when reset fail */
1965 	hclgevf_reset_handshake(hdev, true);
1966 	hdev->rst_stats.rst_fail_cnt++;
1967 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1968 		hdev->rst_stats.rst_fail_cnt);
1969 
1970 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1971 		set_bit(hdev->reset_type, &hdev->reset_pending);
1972 
1973 	if (hclgevf_is_reset_pending(hdev)) {
1974 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1975 		hclgevf_reset_task_schedule(hdev);
1976 	} else {
1977 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1978 		hclgevf_dump_rst_info(hdev);
1979 	}
1980 }
1981 
1982 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1983 {
1984 	int ret;
1985 
1986 	hdev->rst_stats.rst_cnt++;
1987 
1988 	/* perform reset of the stack & ae device for a client */
1989 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1990 	if (ret)
1991 		return ret;
1992 
1993 	rtnl_lock();
1994 	/* bring down the nic to stop any ongoing TX/RX */
1995 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1996 	rtnl_unlock();
1997 	if (ret)
1998 		return ret;
1999 
2000 	return hclgevf_reset_prepare_wait(hdev);
2001 }
2002 
2003 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
2004 {
2005 	int ret;
2006 
2007 	hdev->rst_stats.hw_rst_done_cnt++;
2008 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
2009 	if (ret)
2010 		return ret;
2011 
2012 	rtnl_lock();
2013 	/* now, re-initialize the nic client and ae device */
2014 	ret = hclgevf_reset_stack(hdev);
2015 	rtnl_unlock();
2016 	if (ret) {
2017 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2018 		return ret;
2019 	}
2020 
2021 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
2022 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
2023 	 * times
2024 	 */
2025 	if (ret &&
2026 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
2027 		return ret;
2028 
2029 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
2030 	if (ret)
2031 		return ret;
2032 
2033 	hdev->last_reset_time = jiffies;
2034 	hdev->rst_stats.rst_done_cnt++;
2035 	hdev->rst_stats.rst_fail_cnt = 0;
2036 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2037 
2038 	return 0;
2039 }
2040 
2041 static void hclgevf_reset(struct hclgevf_dev *hdev)
2042 {
2043 	if (hclgevf_reset_prepare(hdev))
2044 		goto err_reset;
2045 
2046 	/* check if VF could successfully fetch the hardware reset completion
2047 	 * status from the hardware
2048 	 */
2049 	if (hclgevf_reset_wait(hdev)) {
2050 		/* can't do much in this situation, will disable VF */
2051 		dev_err(&hdev->pdev->dev,
2052 			"failed to fetch H/W reset completion status\n");
2053 		goto err_reset;
2054 	}
2055 
2056 	if (hclgevf_reset_rebuild(hdev))
2057 		goto err_reset;
2058 
2059 	return;
2060 
2061 err_reset:
2062 	hclgevf_reset_err_handle(hdev);
2063 }
2064 
2065 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2066 						     unsigned long *addr)
2067 {
2068 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2069 
2070 	/* return the highest priority reset level amongst all */
2071 	if (test_bit(HNAE3_VF_RESET, addr)) {
2072 		rst_level = HNAE3_VF_RESET;
2073 		clear_bit(HNAE3_VF_RESET, addr);
2074 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2075 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2076 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2077 		rst_level = HNAE3_VF_FULL_RESET;
2078 		clear_bit(HNAE3_VF_FULL_RESET, addr);
2079 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2080 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2081 		rst_level = HNAE3_VF_PF_FUNC_RESET;
2082 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2083 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2084 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2085 		rst_level = HNAE3_VF_FUNC_RESET;
2086 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2087 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2088 		rst_level = HNAE3_FLR_RESET;
2089 		clear_bit(HNAE3_FLR_RESET, addr);
2090 	}
2091 
2092 	return rst_level;
2093 }
2094 
2095 static void hclgevf_reset_event(struct pci_dev *pdev,
2096 				struct hnae3_handle *handle)
2097 {
2098 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2099 	struct hclgevf_dev *hdev = ae_dev->priv;
2100 
2101 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2102 
2103 	if (hdev->default_reset_request)
2104 		hdev->reset_level =
2105 			hclgevf_get_reset_level(hdev,
2106 						&hdev->default_reset_request);
2107 	else
2108 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2109 
2110 	/* reset of this VF requested */
2111 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2112 	hclgevf_reset_task_schedule(hdev);
2113 
2114 	hdev->last_reset_time = jiffies;
2115 }
2116 
2117 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2118 					  enum hnae3_reset_type rst_type)
2119 {
2120 	struct hclgevf_dev *hdev = ae_dev->priv;
2121 
2122 	set_bit(rst_type, &hdev->default_reset_request);
2123 }
2124 
2125 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2126 {
2127 	writel(en ? 1 : 0, vector->addr);
2128 }
2129 
2130 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
2131 					  enum hnae3_reset_type rst_type)
2132 {
2133 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
2134 #define HCLGEVF_RESET_RETRY_CNT		5
2135 
2136 	struct hclgevf_dev *hdev = ae_dev->priv;
2137 	int retry_cnt = 0;
2138 	int ret;
2139 
2140 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
2141 		down(&hdev->reset_sem);
2142 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2143 		hdev->reset_type = rst_type;
2144 		ret = hclgevf_reset_prepare(hdev);
2145 		if (!ret && !hdev->reset_pending)
2146 			break;
2147 
2148 		dev_err(&hdev->pdev->dev,
2149 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
2150 			ret, hdev->reset_pending, retry_cnt);
2151 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2152 		up(&hdev->reset_sem);
2153 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
2154 	}
2155 
2156 	/* disable misc vector before reset done */
2157 	hclgevf_enable_vector(&hdev->misc_vector, false);
2158 
2159 	if (hdev->reset_type == HNAE3_FLR_RESET)
2160 		hdev->rst_stats.flr_rst_cnt++;
2161 }
2162 
2163 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
2164 {
2165 	struct hclgevf_dev *hdev = ae_dev->priv;
2166 	int ret;
2167 
2168 	hclgevf_enable_vector(&hdev->misc_vector, true);
2169 
2170 	ret = hclgevf_reset_rebuild(hdev);
2171 	if (ret)
2172 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2173 			 ret);
2174 
2175 	hdev->reset_type = HNAE3_NONE_RESET;
2176 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2177 	up(&hdev->reset_sem);
2178 }
2179 
2180 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2181 {
2182 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2183 
2184 	return hdev->fw_version;
2185 }
2186 
2187 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2188 {
2189 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2190 
2191 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2192 					    HCLGEVF_MISC_VECTOR_NUM);
2193 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2194 	/* vector status always valid for Vector 0 */
2195 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2196 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2197 
2198 	hdev->num_msi_left -= 1;
2199 	hdev->num_msi_used += 1;
2200 }
2201 
2202 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2203 {
2204 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2205 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
2206 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2207 			      &hdev->state))
2208 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2209 }
2210 
2211 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2212 {
2213 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2214 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2215 			      &hdev->state))
2216 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2217 }
2218 
2219 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2220 				  unsigned long delay)
2221 {
2222 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2223 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2224 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2225 }
2226 
2227 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2228 {
2229 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2230 
2231 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2232 		return;
2233 
2234 	down(&hdev->reset_sem);
2235 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2236 
2237 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2238 			       &hdev->reset_state)) {
2239 		/* PF has intimated that it is about to reset the hardware.
2240 		 * We now have to poll & check if hardware has actually
2241 		 * completed the reset sequence. On hardware reset completion,
2242 		 * VF needs to reset the client and ae device.
2243 		 */
2244 		hdev->reset_attempts = 0;
2245 
2246 		hdev->last_reset_time = jiffies;
2247 		hdev->reset_type =
2248 			hclgevf_get_reset_level(hdev, &hdev->reset_pending);
2249 		if (hdev->reset_type != HNAE3_NONE_RESET)
2250 			hclgevf_reset(hdev);
2251 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2252 				      &hdev->reset_state)) {
2253 		/* we could be here when either of below happens:
2254 		 * 1. reset was initiated due to watchdog timeout caused by
2255 		 *    a. IMP was earlier reset and our TX got choked down and
2256 		 *       which resulted in watchdog reacting and inducing VF
2257 		 *       reset. This also means our cmdq would be unreliable.
2258 		 *    b. problem in TX due to other lower layer(example link
2259 		 *       layer not functioning properly etc.)
2260 		 * 2. VF reset might have been initiated due to some config
2261 		 *    change.
2262 		 *
2263 		 * NOTE: Theres no clear way to detect above cases than to react
2264 		 * to the response of PF for this reset request. PF will ack the
2265 		 * 1b and 2. cases but we will not get any intimation about 1a
2266 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2267 		 * communication between PF and VF would be broken.
2268 		 *
2269 		 * if we are never geting into pending state it means either:
2270 		 * 1. PF is not receiving our request which could be due to IMP
2271 		 *    reset
2272 		 * 2. PF is screwed
2273 		 * We cannot do much for 2. but to check first we can try reset
2274 		 * our PCIe + stack and see if it alleviates the problem.
2275 		 */
2276 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2277 			/* prepare for full reset of stack + pcie interface */
2278 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2279 
2280 			/* "defer" schedule the reset task again */
2281 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2282 		} else {
2283 			hdev->reset_attempts++;
2284 
2285 			set_bit(hdev->reset_level, &hdev->reset_pending);
2286 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2287 		}
2288 		hclgevf_reset_task_schedule(hdev);
2289 	}
2290 
2291 	hdev->reset_type = HNAE3_NONE_RESET;
2292 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2293 	up(&hdev->reset_sem);
2294 }
2295 
2296 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2297 {
2298 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2299 		return;
2300 
2301 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2302 		return;
2303 
2304 	hclgevf_mbx_async_handler(hdev);
2305 
2306 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2307 }
2308 
2309 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2310 {
2311 	struct hclge_vf_to_pf_msg send_msg;
2312 	int ret;
2313 
2314 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
2315 		return;
2316 
2317 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2318 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2319 	if (ret)
2320 		dev_err(&hdev->pdev->dev,
2321 			"VF sends keep alive cmd failed(=%d)\n", ret);
2322 }
2323 
2324 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2325 {
2326 	unsigned long delta = round_jiffies_relative(HZ);
2327 	struct hnae3_handle *handle = &hdev->nic;
2328 
2329 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2330 		return;
2331 
2332 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2333 		delta = jiffies - hdev->last_serv_processed;
2334 
2335 		if (delta < round_jiffies_relative(HZ)) {
2336 			delta = round_jiffies_relative(HZ) - delta;
2337 			goto out;
2338 		}
2339 	}
2340 
2341 	hdev->serv_processed_cnt++;
2342 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2343 		hclgevf_keep_alive(hdev);
2344 
2345 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2346 		hdev->last_serv_processed = jiffies;
2347 		goto out;
2348 	}
2349 
2350 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2351 		hclgevf_tqps_update_stats(handle);
2352 
2353 	/* VF does not need to request link status when this bit is set, because
2354 	 * PF will push its link status to VFs when link status changed.
2355 	 */
2356 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
2357 		hclgevf_request_link_info(hdev);
2358 
2359 	hclgevf_update_link_mode(hdev);
2360 
2361 	hclgevf_sync_vlan_filter(hdev);
2362 
2363 	hclgevf_sync_mac_table(hdev);
2364 
2365 	hclgevf_sync_promisc_mode(hdev);
2366 
2367 	hdev->last_serv_processed = jiffies;
2368 
2369 out:
2370 	hclgevf_task_schedule(hdev, delta);
2371 }
2372 
2373 static void hclgevf_service_task(struct work_struct *work)
2374 {
2375 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2376 						service_task.work);
2377 
2378 	hclgevf_reset_service_task(hdev);
2379 	hclgevf_mailbox_service_task(hdev);
2380 	hclgevf_periodic_service_task(hdev);
2381 
2382 	/* Handle reset and mbx again in case periodical task delays the
2383 	 * handling by calling hclgevf_task_schedule() in
2384 	 * hclgevf_periodic_service_task()
2385 	 */
2386 	hclgevf_reset_service_task(hdev);
2387 	hclgevf_mailbox_service_task(hdev);
2388 }
2389 
2390 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2391 {
2392 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
2393 }
2394 
2395 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2396 						      u32 *clearval)
2397 {
2398 	u32 val, cmdq_stat_reg, rst_ing_reg;
2399 
2400 	/* fetch the events from their corresponding regs */
2401 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2402 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
2403 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2404 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2405 		dev_info(&hdev->pdev->dev,
2406 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2407 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2408 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2409 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
2410 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2411 		hdev->rst_stats.vf_rst_cnt++;
2412 		/* set up VF hardware reset status, its PF will clear
2413 		 * this status when PF has initialized done.
2414 		 */
2415 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2416 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2417 				  val | HCLGEVF_VF_RST_ING_BIT);
2418 		return HCLGEVF_VECTOR0_EVENT_RST;
2419 	}
2420 
2421 	/* check for vector0 mailbox(=CMDQ RX) event source */
2422 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2423 		/* for revision 0x21, clearing interrupt is writing bit 0
2424 		 * to the clear register, writing bit 1 means to keep the
2425 		 * old value.
2426 		 * for revision 0x20, the clear register is a read & write
2427 		 * register, so we should just write 0 to the bit we are
2428 		 * handling, and keep other bits as cmdq_stat_reg.
2429 		 */
2430 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2431 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2432 		else
2433 			*clearval = cmdq_stat_reg &
2434 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2435 
2436 		return HCLGEVF_VECTOR0_EVENT_MBX;
2437 	}
2438 
2439 	/* print other vector0 event source */
2440 	dev_info(&hdev->pdev->dev,
2441 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2442 		 cmdq_stat_reg);
2443 
2444 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2445 }
2446 
2447 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2448 {
2449 	enum hclgevf_evt_cause event_cause;
2450 	struct hclgevf_dev *hdev = data;
2451 	u32 clearval;
2452 
2453 	hclgevf_enable_vector(&hdev->misc_vector, false);
2454 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2455 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2456 		hclgevf_clear_event_cause(hdev, clearval);
2457 
2458 	switch (event_cause) {
2459 	case HCLGEVF_VECTOR0_EVENT_RST:
2460 		hclgevf_reset_task_schedule(hdev);
2461 		break;
2462 	case HCLGEVF_VECTOR0_EVENT_MBX:
2463 		hclgevf_mbx_handler(hdev);
2464 		break;
2465 	default:
2466 		break;
2467 	}
2468 
2469 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2470 		hclgevf_enable_vector(&hdev->misc_vector, true);
2471 
2472 	return IRQ_HANDLED;
2473 }
2474 
2475 static int hclgevf_configure(struct hclgevf_dev *hdev)
2476 {
2477 	int ret;
2478 
2479 	hdev->gro_en = true;
2480 
2481 	ret = hclgevf_get_basic_info(hdev);
2482 	if (ret)
2483 		return ret;
2484 
2485 	/* get current port based vlan state from PF */
2486 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2487 	if (ret)
2488 		return ret;
2489 
2490 	/* get queue configuration from PF */
2491 	ret = hclgevf_get_queue_info(hdev);
2492 	if (ret)
2493 		return ret;
2494 
2495 	/* get queue depth info from PF */
2496 	ret = hclgevf_get_queue_depth(hdev);
2497 	if (ret)
2498 		return ret;
2499 
2500 	return hclgevf_get_pf_media_type(hdev);
2501 }
2502 
2503 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2504 {
2505 	struct pci_dev *pdev = ae_dev->pdev;
2506 	struct hclgevf_dev *hdev;
2507 
2508 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2509 	if (!hdev)
2510 		return -ENOMEM;
2511 
2512 	hdev->pdev = pdev;
2513 	hdev->ae_dev = ae_dev;
2514 	ae_dev->priv = hdev;
2515 
2516 	return 0;
2517 }
2518 
2519 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2520 {
2521 	struct hnae3_handle *roce = &hdev->roce;
2522 	struct hnae3_handle *nic = &hdev->nic;
2523 
2524 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2525 
2526 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2527 	    hdev->num_msi_left == 0)
2528 		return -EINVAL;
2529 
2530 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2531 
2532 	roce->rinfo.netdev = nic->kinfo.netdev;
2533 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2534 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2535 
2536 	roce->pdev = nic->pdev;
2537 	roce->ae_algo = nic->ae_algo;
2538 	roce->numa_node_mask = nic->numa_node_mask;
2539 
2540 	return 0;
2541 }
2542 
2543 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2544 {
2545 	struct hclgevf_cfg_gro_status_cmd *req;
2546 	struct hclge_desc desc;
2547 	int ret;
2548 
2549 	if (!hnae3_dev_gro_supported(hdev))
2550 		return 0;
2551 
2552 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2553 				     false);
2554 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2555 
2556 	req->gro_en = hdev->gro_en ? 1 : 0;
2557 
2558 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2559 	if (ret)
2560 		dev_err(&hdev->pdev->dev,
2561 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2562 
2563 	return ret;
2564 }
2565 
2566 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2567 {
2568 	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2569 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2570 	struct hclge_comm_rss_tuple_cfg *tuple_sets;
2571 	u32 i;
2572 
2573 	rss_cfg->rss_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2574 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2575 	tuple_sets = &rss_cfg->rss_tuple_sets;
2576 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2577 		u16 *rss_ind_tbl;
2578 
2579 		rss_cfg->rss_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2580 
2581 		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2582 					   sizeof(*rss_ind_tbl), GFP_KERNEL);
2583 		if (!rss_ind_tbl)
2584 			return -ENOMEM;
2585 
2586 		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2587 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2588 		       HCLGEVF_RSS_KEY_SIZE);
2589 
2590 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2591 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2592 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2593 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2594 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2595 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2596 		tuple_sets->ipv6_sctp_en =
2597 			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2598 					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2599 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2600 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2601 	}
2602 
2603 	/* Initialize RSS indirect table */
2604 	for (i = 0; i < rss_ind_tbl_size; i++)
2605 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2606 
2607 	return 0;
2608 }
2609 
2610 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2611 {
2612 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2613 	int ret;
2614 
2615 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2616 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->rss_algo,
2617 					       rss_cfg->rss_hash_key);
2618 		if (ret)
2619 			return ret;
2620 
2621 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2622 		if (ret)
2623 			return ret;
2624 	}
2625 
2626 	ret = hclgevf_set_rss_indir_table(hdev);
2627 	if (ret)
2628 		return ret;
2629 
2630 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2631 }
2632 
2633 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2634 {
2635 	struct hnae3_handle *nic = &hdev->nic;
2636 	int ret;
2637 
2638 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2639 	if (ret) {
2640 		dev_err(&hdev->pdev->dev,
2641 			"failed to enable rx vlan offload, ret = %d\n", ret);
2642 		return ret;
2643 	}
2644 
2645 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2646 				       false);
2647 }
2648 
2649 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2650 {
2651 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2652 
2653 	unsigned long last = hdev->serv_processed_cnt;
2654 	int i = 0;
2655 
2656 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2657 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2658 	       last == hdev->serv_processed_cnt)
2659 		usleep_range(1, 1);
2660 }
2661 
2662 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2663 {
2664 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2665 
2666 	if (enable) {
2667 		hclgevf_task_schedule(hdev, 0);
2668 	} else {
2669 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2670 
2671 		/* flush memory to make sure DOWN is seen by service task */
2672 		smp_mb__before_atomic();
2673 		hclgevf_flush_link_update(hdev);
2674 	}
2675 }
2676 
2677 static int hclgevf_ae_start(struct hnae3_handle *handle)
2678 {
2679 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2680 
2681 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2682 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2683 
2684 	hclgevf_reset_tqp_stats(handle);
2685 
2686 	hclgevf_request_link_info(hdev);
2687 
2688 	hclgevf_update_link_mode(hdev);
2689 
2690 	return 0;
2691 }
2692 
2693 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2694 {
2695 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2696 
2697 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2698 
2699 	if (hdev->reset_type != HNAE3_VF_RESET)
2700 		hclgevf_reset_tqp(handle);
2701 
2702 	hclgevf_reset_tqp_stats(handle);
2703 	hclgevf_update_link_status(hdev, 0);
2704 }
2705 
2706 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2707 {
2708 #define HCLGEVF_STATE_ALIVE	1
2709 #define HCLGEVF_STATE_NOT_ALIVE	0
2710 
2711 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2712 	struct hclge_vf_to_pf_msg send_msg;
2713 
2714 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2715 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2716 				HCLGEVF_STATE_NOT_ALIVE;
2717 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2718 }
2719 
2720 static int hclgevf_client_start(struct hnae3_handle *handle)
2721 {
2722 	return hclgevf_set_alive(handle, true);
2723 }
2724 
2725 static void hclgevf_client_stop(struct hnae3_handle *handle)
2726 {
2727 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2728 	int ret;
2729 
2730 	ret = hclgevf_set_alive(handle, false);
2731 	if (ret)
2732 		dev_warn(&hdev->pdev->dev,
2733 			 "%s failed %d\n", __func__, ret);
2734 }
2735 
2736 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2737 {
2738 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2739 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2740 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2741 
2742 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2743 
2744 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2745 	sema_init(&hdev->reset_sem, 1);
2746 
2747 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2748 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2749 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2750 
2751 	/* bring the device down */
2752 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2753 }
2754 
2755 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2756 {
2757 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2758 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2759 
2760 	if (hdev->service_task.work.func)
2761 		cancel_delayed_work_sync(&hdev->service_task);
2762 
2763 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2764 }
2765 
2766 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2767 {
2768 	struct pci_dev *pdev = hdev->pdev;
2769 	int vectors;
2770 	int i;
2771 
2772 	if (hnae3_dev_roce_supported(hdev))
2773 		vectors = pci_alloc_irq_vectors(pdev,
2774 						hdev->roce_base_msix_offset + 1,
2775 						hdev->num_msi,
2776 						PCI_IRQ_MSIX);
2777 	else
2778 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2779 						hdev->num_msi,
2780 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2781 
2782 	if (vectors < 0) {
2783 		dev_err(&pdev->dev,
2784 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2785 			vectors);
2786 		return vectors;
2787 	}
2788 	if (vectors < hdev->num_msi)
2789 		dev_warn(&hdev->pdev->dev,
2790 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2791 			 hdev->num_msi, vectors);
2792 
2793 	hdev->num_msi = vectors;
2794 	hdev->num_msi_left = vectors;
2795 
2796 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2797 					   sizeof(u16), GFP_KERNEL);
2798 	if (!hdev->vector_status) {
2799 		pci_free_irq_vectors(pdev);
2800 		return -ENOMEM;
2801 	}
2802 
2803 	for (i = 0; i < hdev->num_msi; i++)
2804 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2805 
2806 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2807 					sizeof(int), GFP_KERNEL);
2808 	if (!hdev->vector_irq) {
2809 		devm_kfree(&pdev->dev, hdev->vector_status);
2810 		pci_free_irq_vectors(pdev);
2811 		return -ENOMEM;
2812 	}
2813 
2814 	return 0;
2815 }
2816 
2817 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2818 {
2819 	struct pci_dev *pdev = hdev->pdev;
2820 
2821 	devm_kfree(&pdev->dev, hdev->vector_status);
2822 	devm_kfree(&pdev->dev, hdev->vector_irq);
2823 	pci_free_irq_vectors(pdev);
2824 }
2825 
2826 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2827 {
2828 	int ret;
2829 
2830 	hclgevf_get_misc_vector(hdev);
2831 
2832 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2833 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2834 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2835 			  0, hdev->misc_vector.name, hdev);
2836 	if (ret) {
2837 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2838 			hdev->misc_vector.vector_irq);
2839 		return ret;
2840 	}
2841 
2842 	hclgevf_clear_event_cause(hdev, 0);
2843 
2844 	/* enable misc. vector(vector 0) */
2845 	hclgevf_enable_vector(&hdev->misc_vector, true);
2846 
2847 	return ret;
2848 }
2849 
2850 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2851 {
2852 	/* disable misc vector(vector 0) */
2853 	hclgevf_enable_vector(&hdev->misc_vector, false);
2854 	synchronize_irq(hdev->misc_vector.vector_irq);
2855 	free_irq(hdev->misc_vector.vector_irq, hdev);
2856 	hclgevf_free_vector(hdev, 0);
2857 }
2858 
2859 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2860 {
2861 	struct device *dev = &hdev->pdev->dev;
2862 
2863 	dev_info(dev, "VF info begin:\n");
2864 
2865 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2866 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2867 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2868 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2869 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2870 	dev_info(dev, "PF media type of this VF: %u\n",
2871 		 hdev->hw.mac.media_type);
2872 
2873 	dev_info(dev, "VF info end.\n");
2874 }
2875 
2876 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2877 					    struct hnae3_client *client)
2878 {
2879 	struct hclgevf_dev *hdev = ae_dev->priv;
2880 	int rst_cnt = hdev->rst_stats.rst_cnt;
2881 	int ret;
2882 
2883 	ret = client->ops->init_instance(&hdev->nic);
2884 	if (ret)
2885 		return ret;
2886 
2887 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2888 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2889 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2890 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2891 
2892 		client->ops->uninit_instance(&hdev->nic, 0);
2893 		return -EBUSY;
2894 	}
2895 
2896 	hnae3_set_client_init_flag(client, ae_dev, 1);
2897 
2898 	if (netif_msg_drv(&hdev->nic))
2899 		hclgevf_info_show(hdev);
2900 
2901 	return 0;
2902 }
2903 
2904 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2905 					     struct hnae3_client *client)
2906 {
2907 	struct hclgevf_dev *hdev = ae_dev->priv;
2908 	int ret;
2909 
2910 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2911 	    !hdev->nic_client)
2912 		return 0;
2913 
2914 	ret = hclgevf_init_roce_base_info(hdev);
2915 	if (ret)
2916 		return ret;
2917 
2918 	ret = client->ops->init_instance(&hdev->roce);
2919 	if (ret)
2920 		return ret;
2921 
2922 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2923 	hnae3_set_client_init_flag(client, ae_dev, 1);
2924 
2925 	return 0;
2926 }
2927 
2928 static int hclgevf_init_client_instance(struct hnae3_client *client,
2929 					struct hnae3_ae_dev *ae_dev)
2930 {
2931 	struct hclgevf_dev *hdev = ae_dev->priv;
2932 	int ret;
2933 
2934 	switch (client->type) {
2935 	case HNAE3_CLIENT_KNIC:
2936 		hdev->nic_client = client;
2937 		hdev->nic.client = client;
2938 
2939 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2940 		if (ret)
2941 			goto clear_nic;
2942 
2943 		ret = hclgevf_init_roce_client_instance(ae_dev,
2944 							hdev->roce_client);
2945 		if (ret)
2946 			goto clear_roce;
2947 
2948 		break;
2949 	case HNAE3_CLIENT_ROCE:
2950 		if (hnae3_dev_roce_supported(hdev)) {
2951 			hdev->roce_client = client;
2952 			hdev->roce.client = client;
2953 		}
2954 
2955 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2956 		if (ret)
2957 			goto clear_roce;
2958 
2959 		break;
2960 	default:
2961 		return -EINVAL;
2962 	}
2963 
2964 	return 0;
2965 
2966 clear_nic:
2967 	hdev->nic_client = NULL;
2968 	hdev->nic.client = NULL;
2969 	return ret;
2970 clear_roce:
2971 	hdev->roce_client = NULL;
2972 	hdev->roce.client = NULL;
2973 	return ret;
2974 }
2975 
2976 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2977 					   struct hnae3_ae_dev *ae_dev)
2978 {
2979 	struct hclgevf_dev *hdev = ae_dev->priv;
2980 
2981 	/* un-init roce, if it exists */
2982 	if (hdev->roce_client) {
2983 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2984 			msleep(HCLGEVF_WAIT_RESET_DONE);
2985 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2986 
2987 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2988 		hdev->roce_client = NULL;
2989 		hdev->roce.client = NULL;
2990 	}
2991 
2992 	/* un-init nic/unic, if this was not called by roce client */
2993 	if (client->ops->uninit_instance && hdev->nic_client &&
2994 	    client->type != HNAE3_CLIENT_ROCE) {
2995 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2996 			msleep(HCLGEVF_WAIT_RESET_DONE);
2997 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2998 
2999 		client->ops->uninit_instance(&hdev->nic, 0);
3000 		hdev->nic_client = NULL;
3001 		hdev->nic.client = NULL;
3002 	}
3003 }
3004 
3005 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
3006 {
3007 #define HCLGEVF_MEM_BAR		4
3008 
3009 	struct pci_dev *pdev = hdev->pdev;
3010 	struct hclgevf_hw *hw = &hdev->hw;
3011 
3012 	/* for device does not have device memory, return directly */
3013 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
3014 		return 0;
3015 
3016 	hw->hw.mem_base =
3017 		devm_ioremap_wc(&pdev->dev,
3018 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
3019 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
3020 	if (!hw->hw.mem_base) {
3021 		dev_err(&pdev->dev, "failed to map device memory\n");
3022 		return -EFAULT;
3023 	}
3024 
3025 	return 0;
3026 }
3027 
3028 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
3029 {
3030 	struct pci_dev *pdev = hdev->pdev;
3031 	struct hclgevf_hw *hw;
3032 	int ret;
3033 
3034 	ret = pci_enable_device(pdev);
3035 	if (ret) {
3036 		dev_err(&pdev->dev, "failed to enable PCI device\n");
3037 		return ret;
3038 	}
3039 
3040 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3041 	if (ret) {
3042 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
3043 		goto err_disable_device;
3044 	}
3045 
3046 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
3047 	if (ret) {
3048 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
3049 		goto err_disable_device;
3050 	}
3051 
3052 	pci_set_master(pdev);
3053 	hw = &hdev->hw;
3054 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
3055 	if (!hw->hw.io_base) {
3056 		dev_err(&pdev->dev, "can't map configuration register space\n");
3057 		ret = -ENOMEM;
3058 		goto err_clr_master;
3059 	}
3060 
3061 	ret = hclgevf_dev_mem_map(hdev);
3062 	if (ret)
3063 		goto err_unmap_io_base;
3064 
3065 	return 0;
3066 
3067 err_unmap_io_base:
3068 	pci_iounmap(pdev, hdev->hw.hw.io_base);
3069 err_clr_master:
3070 	pci_clear_master(pdev);
3071 	pci_release_regions(pdev);
3072 err_disable_device:
3073 	pci_disable_device(pdev);
3074 
3075 	return ret;
3076 }
3077 
3078 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3079 {
3080 	struct pci_dev *pdev = hdev->pdev;
3081 
3082 	if (hdev->hw.hw.mem_base)
3083 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
3084 
3085 	pci_iounmap(pdev, hdev->hw.hw.io_base);
3086 	pci_clear_master(pdev);
3087 	pci_release_regions(pdev);
3088 	pci_disable_device(pdev);
3089 }
3090 
3091 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3092 {
3093 	struct hclgevf_query_res_cmd *req;
3094 	struct hclge_desc desc;
3095 	int ret;
3096 
3097 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3098 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3099 	if (ret) {
3100 		dev_err(&hdev->pdev->dev,
3101 			"query vf resource failed, ret = %d.\n", ret);
3102 		return ret;
3103 	}
3104 
3105 	req = (struct hclgevf_query_res_cmd *)desc.data;
3106 
3107 	if (hnae3_dev_roce_supported(hdev)) {
3108 		hdev->roce_base_msix_offset =
3109 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3110 				HCLGEVF_MSIX_OFT_ROCEE_M,
3111 				HCLGEVF_MSIX_OFT_ROCEE_S);
3112 		hdev->num_roce_msix =
3113 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3114 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3115 
3116 		/* nic's msix numbers is always equals to the roce's. */
3117 		hdev->num_nic_msix = hdev->num_roce_msix;
3118 
3119 		/* VF should have NIC vectors and Roce vectors, NIC vectors
3120 		 * are queued before Roce vectors. The offset is fixed to 64.
3121 		 */
3122 		hdev->num_msi = hdev->num_roce_msix +
3123 				hdev->roce_base_msix_offset;
3124 	} else {
3125 		hdev->num_msi =
3126 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3127 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3128 
3129 		hdev->num_nic_msix = hdev->num_msi;
3130 	}
3131 
3132 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3133 		dev_err(&hdev->pdev->dev,
3134 			"Just %u msi resources, not enough for vf(min:2).\n",
3135 			hdev->num_nic_msix);
3136 		return -EINVAL;
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3143 {
3144 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3145 
3146 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3147 
3148 	ae_dev->dev_specs.max_non_tso_bd_num =
3149 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3150 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3151 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3152 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3153 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3154 }
3155 
3156 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3157 				    struct hclge_desc *desc)
3158 {
3159 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3160 	struct hclgevf_dev_specs_0_cmd *req0;
3161 	struct hclgevf_dev_specs_1_cmd *req1;
3162 
3163 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3164 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3165 
3166 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3167 	ae_dev->dev_specs.rss_ind_tbl_size =
3168 					le16_to_cpu(req0->rss_ind_tbl_size);
3169 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3170 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3171 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3172 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3173 }
3174 
3175 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3176 {
3177 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3178 
3179 	if (!dev_specs->max_non_tso_bd_num)
3180 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3181 	if (!dev_specs->rss_ind_tbl_size)
3182 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3183 	if (!dev_specs->rss_key_size)
3184 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3185 	if (!dev_specs->max_int_gl)
3186 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3187 	if (!dev_specs->max_frm_size)
3188 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3189 }
3190 
3191 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3192 {
3193 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3194 	int ret;
3195 	int i;
3196 
3197 	/* set default specifications as devices lower than version V3 do not
3198 	 * support querying specifications from firmware.
3199 	 */
3200 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3201 		hclgevf_set_default_dev_specs(hdev);
3202 		return 0;
3203 	}
3204 
3205 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3206 		hclgevf_cmd_setup_basic_desc(&desc[i],
3207 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3208 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
3209 	}
3210 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3211 				     true);
3212 
3213 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3214 	if (ret)
3215 		return ret;
3216 
3217 	hclgevf_parse_dev_specs(hdev, desc);
3218 	hclgevf_check_dev_specs(hdev);
3219 
3220 	return 0;
3221 }
3222 
3223 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3224 {
3225 	struct pci_dev *pdev = hdev->pdev;
3226 	int ret = 0;
3227 
3228 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3229 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3230 		hclgevf_misc_irq_uninit(hdev);
3231 		hclgevf_uninit_msi(hdev);
3232 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3233 	}
3234 
3235 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3236 		pci_set_master(pdev);
3237 		ret = hclgevf_init_msi(hdev);
3238 		if (ret) {
3239 			dev_err(&pdev->dev,
3240 				"failed(%d) to init MSI/MSI-X\n", ret);
3241 			return ret;
3242 		}
3243 
3244 		ret = hclgevf_misc_irq_init(hdev);
3245 		if (ret) {
3246 			hclgevf_uninit_msi(hdev);
3247 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3248 				ret);
3249 			return ret;
3250 		}
3251 
3252 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3253 	}
3254 
3255 	return ret;
3256 }
3257 
3258 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3259 {
3260 	struct hclge_vf_to_pf_msg send_msg;
3261 
3262 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3263 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3264 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3265 }
3266 
3267 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
3268 {
3269 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3270 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
3271 }
3272 
3273 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
3274 {
3275 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3276 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
3277 }
3278 
3279 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3280 {
3281 	struct pci_dev *pdev = hdev->pdev;
3282 	int ret;
3283 
3284 	ret = hclgevf_pci_reset(hdev);
3285 	if (ret) {
3286 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3287 		return ret;
3288 	}
3289 
3290 	hclgevf_arq_init(hdev);
3291 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
3292 				  &hdev->fw_version, false,
3293 				  hdev->reset_pending);
3294 	if (ret) {
3295 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3296 		return ret;
3297 	}
3298 
3299 	ret = hclgevf_rss_init_hw(hdev);
3300 	if (ret) {
3301 		dev_err(&hdev->pdev->dev,
3302 			"failed(%d) to initialize RSS\n", ret);
3303 		return ret;
3304 	}
3305 
3306 	ret = hclgevf_config_gro(hdev);
3307 	if (ret)
3308 		return ret;
3309 
3310 	ret = hclgevf_init_vlan_config(hdev);
3311 	if (ret) {
3312 		dev_err(&hdev->pdev->dev,
3313 			"failed(%d) to initialize VLAN config\n", ret);
3314 		return ret;
3315 	}
3316 
3317 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3318 
3319 	hclgevf_init_rxd_adv_layout(hdev);
3320 
3321 	dev_info(&hdev->pdev->dev, "Reset done\n");
3322 
3323 	return 0;
3324 }
3325 
3326 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3327 {
3328 	struct pci_dev *pdev = hdev->pdev;
3329 	int ret;
3330 
3331 	ret = hclgevf_pci_init(hdev);
3332 	if (ret)
3333 		return ret;
3334 
3335 	ret = hclgevf_devlink_init(hdev);
3336 	if (ret)
3337 		goto err_devlink_init;
3338 
3339 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
3340 	if (ret)
3341 		goto err_cmd_queue_init;
3342 
3343 	hclgevf_arq_init(hdev);
3344 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
3345 				  &hdev->fw_version, false,
3346 				  hdev->reset_pending);
3347 	if (ret)
3348 		goto err_cmd_init;
3349 
3350 	/* Get vf resource */
3351 	ret = hclgevf_query_vf_resource(hdev);
3352 	if (ret)
3353 		goto err_cmd_init;
3354 
3355 	ret = hclgevf_query_dev_specs(hdev);
3356 	if (ret) {
3357 		dev_err(&pdev->dev,
3358 			"failed to query dev specifications, ret = %d\n", ret);
3359 		goto err_cmd_init;
3360 	}
3361 
3362 	ret = hclgevf_init_msi(hdev);
3363 	if (ret) {
3364 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3365 		goto err_cmd_init;
3366 	}
3367 
3368 	hclgevf_state_init(hdev);
3369 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3370 	hdev->reset_type = HNAE3_NONE_RESET;
3371 
3372 	ret = hclgevf_misc_irq_init(hdev);
3373 	if (ret)
3374 		goto err_misc_irq_init;
3375 
3376 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3377 
3378 	ret = hclgevf_configure(hdev);
3379 	if (ret) {
3380 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3381 		goto err_config;
3382 	}
3383 
3384 	ret = hclgevf_alloc_tqps(hdev);
3385 	if (ret) {
3386 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3387 		goto err_config;
3388 	}
3389 
3390 	ret = hclgevf_set_handle_info(hdev);
3391 	if (ret)
3392 		goto err_config;
3393 
3394 	ret = hclgevf_config_gro(hdev);
3395 	if (ret)
3396 		goto err_config;
3397 
3398 	/* Initialize RSS for this VF */
3399 	ret = hclgevf_rss_init_cfg(hdev);
3400 	if (ret) {
3401 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3402 		goto err_config;
3403 	}
3404 
3405 	ret = hclgevf_rss_init_hw(hdev);
3406 	if (ret) {
3407 		dev_err(&hdev->pdev->dev,
3408 			"failed(%d) to initialize RSS\n", ret);
3409 		goto err_config;
3410 	}
3411 
3412 	/* ensure vf tbl list as empty before init*/
3413 	ret = hclgevf_clear_vport_list(hdev);
3414 	if (ret) {
3415 		dev_err(&pdev->dev,
3416 			"failed to clear tbl list configuration, ret = %d.\n",
3417 			ret);
3418 		goto err_config;
3419 	}
3420 
3421 	ret = hclgevf_init_vlan_config(hdev);
3422 	if (ret) {
3423 		dev_err(&hdev->pdev->dev,
3424 			"failed(%d) to initialize VLAN config\n", ret);
3425 		goto err_config;
3426 	}
3427 
3428 	hclgevf_init_rxd_adv_layout(hdev);
3429 
3430 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
3431 
3432 	hdev->last_reset_time = jiffies;
3433 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3434 		 HCLGEVF_DRIVER_NAME);
3435 
3436 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3437 
3438 	return 0;
3439 
3440 err_config:
3441 	hclgevf_misc_irq_uninit(hdev);
3442 err_misc_irq_init:
3443 	hclgevf_state_uninit(hdev);
3444 	hclgevf_uninit_msi(hdev);
3445 err_cmd_init:
3446 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3447 err_cmd_queue_init:
3448 	hclgevf_devlink_uninit(hdev);
3449 err_devlink_init:
3450 	hclgevf_pci_uninit(hdev);
3451 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3452 	return ret;
3453 }
3454 
3455 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3456 {
3457 	struct hclge_vf_to_pf_msg send_msg;
3458 
3459 	hclgevf_state_uninit(hdev);
3460 	hclgevf_uninit_rxd_adv_layout(hdev);
3461 
3462 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3463 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3464 
3465 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3466 		hclgevf_misc_irq_uninit(hdev);
3467 		hclgevf_uninit_msi(hdev);
3468 	}
3469 
3470 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3471 	hclgevf_devlink_uninit(hdev);
3472 	hclgevf_pci_uninit(hdev);
3473 	hclgevf_uninit_mac_list(hdev);
3474 }
3475 
3476 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3477 {
3478 	struct pci_dev *pdev = ae_dev->pdev;
3479 	int ret;
3480 
3481 	ret = hclgevf_alloc_hdev(ae_dev);
3482 	if (ret) {
3483 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3484 		return ret;
3485 	}
3486 
3487 	ret = hclgevf_init_hdev(ae_dev->priv);
3488 	if (ret) {
3489 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3490 		return ret;
3491 	}
3492 
3493 	return 0;
3494 }
3495 
3496 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3497 {
3498 	struct hclgevf_dev *hdev = ae_dev->priv;
3499 
3500 	hclgevf_uninit_hdev(hdev);
3501 	ae_dev->priv = NULL;
3502 }
3503 
3504 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3505 {
3506 	struct hnae3_handle *nic = &hdev->nic;
3507 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3508 
3509 	return min_t(u32, hdev->rss_size_max,
3510 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3511 }
3512 
3513 /**
3514  * hclgevf_get_channels - Get the current channels enabled and max supported.
3515  * @handle: hardware information for network interface
3516  * @ch: ethtool channels structure
3517  *
3518  * We don't support separate tx and rx queues as channels. The other count
3519  * represents how many queues are being used for control. max_combined counts
3520  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3521  * q_vectors since we support a lot more queue pairs than q_vectors.
3522  **/
3523 static void hclgevf_get_channels(struct hnae3_handle *handle,
3524 				 struct ethtool_channels *ch)
3525 {
3526 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3527 
3528 	ch->max_combined = hclgevf_get_max_channels(hdev);
3529 	ch->other_count = 0;
3530 	ch->max_other = 0;
3531 	ch->combined_count = handle->kinfo.rss_size;
3532 }
3533 
3534 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3535 					  u16 *alloc_tqps, u16 *max_rss_size)
3536 {
3537 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3538 
3539 	*alloc_tqps = hdev->num_tqps;
3540 	*max_rss_size = hdev->rss_size_max;
3541 }
3542 
3543 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3544 				    u32 new_tqps_num)
3545 {
3546 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3547 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3548 	u16 max_rss_size;
3549 
3550 	kinfo->req_rss_size = new_tqps_num;
3551 
3552 	max_rss_size = min_t(u16, hdev->rss_size_max,
3553 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3554 
3555 	/* Use the user's configuration when it is not larger than
3556 	 * max_rss_size, otherwise, use the maximum specification value.
3557 	 */
3558 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3559 	    kinfo->req_rss_size <= max_rss_size)
3560 		kinfo->rss_size = kinfo->req_rss_size;
3561 	else if (kinfo->rss_size > max_rss_size ||
3562 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3563 		kinfo->rss_size = max_rss_size;
3564 
3565 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3566 }
3567 
3568 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3569 				bool rxfh_configured)
3570 {
3571 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3572 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3573 	u16 cur_rss_size = kinfo->rss_size;
3574 	u16 cur_tqps = kinfo->num_tqps;
3575 	u32 *rss_indir;
3576 	unsigned int i;
3577 	int ret;
3578 
3579 	hclgevf_update_rss_size(handle, new_tqps_num);
3580 
3581 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3582 	if (ret)
3583 		return ret;
3584 
3585 	/* RSS indirection table has been configured by user */
3586 	if (rxfh_configured)
3587 		goto out;
3588 
3589 	/* Reinitializes the rss indirect table according to the new RSS size */
3590 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3591 			    sizeof(u32), GFP_KERNEL);
3592 	if (!rss_indir)
3593 		return -ENOMEM;
3594 
3595 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3596 		rss_indir[i] = i % kinfo->rss_size;
3597 
3598 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3599 
3600 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3601 	if (ret)
3602 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3603 			ret);
3604 
3605 	kfree(rss_indir);
3606 
3607 out:
3608 	if (!ret)
3609 		dev_info(&hdev->pdev->dev,
3610 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3611 			 cur_rss_size, kinfo->rss_size,
3612 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3613 
3614 	return ret;
3615 }
3616 
3617 static int hclgevf_get_status(struct hnae3_handle *handle)
3618 {
3619 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3620 
3621 	return hdev->hw.mac.link;
3622 }
3623 
3624 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3625 					    u8 *auto_neg, u32 *speed,
3626 					    u8 *duplex)
3627 {
3628 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3629 
3630 	if (speed)
3631 		*speed = hdev->hw.mac.speed;
3632 	if (duplex)
3633 		*duplex = hdev->hw.mac.duplex;
3634 	if (auto_neg)
3635 		*auto_neg = AUTONEG_DISABLE;
3636 }
3637 
3638 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3639 				 u8 duplex)
3640 {
3641 	hdev->hw.mac.speed = speed;
3642 	hdev->hw.mac.duplex = duplex;
3643 }
3644 
3645 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3646 {
3647 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3648 	bool gro_en_old = hdev->gro_en;
3649 	int ret;
3650 
3651 	hdev->gro_en = enable;
3652 	ret = hclgevf_config_gro(hdev);
3653 	if (ret)
3654 		hdev->gro_en = gro_en_old;
3655 
3656 	return ret;
3657 }
3658 
3659 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3660 				   u8 *module_type)
3661 {
3662 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3663 
3664 	if (media_type)
3665 		*media_type = hdev->hw.mac.media_type;
3666 
3667 	if (module_type)
3668 		*module_type = hdev->hw.mac.module_type;
3669 }
3670 
3671 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3672 {
3673 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3674 
3675 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3676 }
3677 
3678 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3679 {
3680 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3681 
3682 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3683 }
3684 
3685 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3686 {
3687 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3688 
3689 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3690 }
3691 
3692 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3693 {
3694 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3695 
3696 	return hdev->rst_stats.hw_rst_done_cnt;
3697 }
3698 
3699 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3700 				  unsigned long *supported,
3701 				  unsigned long *advertising)
3702 {
3703 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3704 
3705 	*supported = hdev->hw.mac.supported;
3706 	*advertising = hdev->hw.mac.advertising;
3707 }
3708 
3709 #define MAX_SEPARATE_NUM	4
3710 #define SEPARATOR_VALUE		0xFDFCFBFA
3711 #define REG_NUM_PER_LINE	4
3712 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3713 
3714 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3715 {
3716 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3717 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3718 
3719 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3720 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3721 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3722 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3723 
3724 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3725 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3726 }
3727 
3728 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3729 			     void *data)
3730 {
3731 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3732 	int i, j, reg_um, separator_num;
3733 	u32 *reg = data;
3734 
3735 	*version = hdev->fw_version;
3736 
3737 	/* fetching per-VF registers values from VF PCIe register space */
3738 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3739 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3740 	for (i = 0; i < reg_um; i++)
3741 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3742 	for (i = 0; i < separator_num; i++)
3743 		*reg++ = SEPARATOR_VALUE;
3744 
3745 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3746 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3747 	for (i = 0; i < reg_um; i++)
3748 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3749 	for (i = 0; i < separator_num; i++)
3750 		*reg++ = SEPARATOR_VALUE;
3751 
3752 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3753 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3754 	for (j = 0; j < hdev->num_tqps; j++) {
3755 		for (i = 0; i < reg_um; i++)
3756 			*reg++ = hclgevf_read_dev(&hdev->hw,
3757 						  ring_reg_addr_list[i] +
3758 						  0x200 * j);
3759 		for (i = 0; i < separator_num; i++)
3760 			*reg++ = SEPARATOR_VALUE;
3761 	}
3762 
3763 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3764 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3765 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3766 		for (i = 0; i < reg_um; i++)
3767 			*reg++ = hclgevf_read_dev(&hdev->hw,
3768 						  tqp_intr_reg_addr_list[i] +
3769 						  4 * j);
3770 		for (i = 0; i < separator_num; i++)
3771 			*reg++ = SEPARATOR_VALUE;
3772 	}
3773 }
3774 
3775 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3776 					u8 *port_base_vlan_info, u8 data_size)
3777 {
3778 	struct hnae3_handle *nic = &hdev->nic;
3779 	struct hclge_vf_to_pf_msg send_msg;
3780 	int ret;
3781 
3782 	rtnl_lock();
3783 
3784 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3785 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3786 		dev_warn(&hdev->pdev->dev,
3787 			 "is resetting when updating port based vlan info\n");
3788 		rtnl_unlock();
3789 		return;
3790 	}
3791 
3792 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3793 	if (ret) {
3794 		rtnl_unlock();
3795 		return;
3796 	}
3797 
3798 	/* send msg to PF and wait update port based vlan info */
3799 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3800 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3801 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3802 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3803 	if (!ret) {
3804 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3805 			nic->port_base_vlan_state = state;
3806 		else
3807 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3808 	}
3809 
3810 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3811 	rtnl_unlock();
3812 }
3813 
3814 static const struct hnae3_ae_ops hclgevf_ops = {
3815 	.init_ae_dev = hclgevf_init_ae_dev,
3816 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3817 	.reset_prepare = hclgevf_reset_prepare_general,
3818 	.reset_done = hclgevf_reset_done,
3819 	.init_client_instance = hclgevf_init_client_instance,
3820 	.uninit_client_instance = hclgevf_uninit_client_instance,
3821 	.start = hclgevf_ae_start,
3822 	.stop = hclgevf_ae_stop,
3823 	.client_start = hclgevf_client_start,
3824 	.client_stop = hclgevf_client_stop,
3825 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3826 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3827 	.get_vector = hclgevf_get_vector,
3828 	.put_vector = hclgevf_put_vector,
3829 	.reset_queue = hclgevf_reset_tqp,
3830 	.get_mac_addr = hclgevf_get_mac_addr,
3831 	.set_mac_addr = hclgevf_set_mac_addr,
3832 	.add_uc_addr = hclgevf_add_uc_addr,
3833 	.rm_uc_addr = hclgevf_rm_uc_addr,
3834 	.add_mc_addr = hclgevf_add_mc_addr,
3835 	.rm_mc_addr = hclgevf_rm_mc_addr,
3836 	.get_stats = hclgevf_get_stats,
3837 	.update_stats = hclgevf_update_stats,
3838 	.get_strings = hclgevf_get_strings,
3839 	.get_sset_count = hclgevf_get_sset_count,
3840 	.get_rss_key_size = hclge_comm_get_rss_key_size,
3841 	.get_rss = hclgevf_get_rss,
3842 	.set_rss = hclgevf_set_rss,
3843 	.get_rss_tuple = hclgevf_get_rss_tuple,
3844 	.set_rss_tuple = hclgevf_set_rss_tuple,
3845 	.get_tc_size = hclgevf_get_tc_size,
3846 	.get_fw_version = hclgevf_get_fw_version,
3847 	.set_vlan_filter = hclgevf_set_vlan_filter,
3848 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3849 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3850 	.reset_event = hclgevf_reset_event,
3851 	.set_default_reset_request = hclgevf_set_def_reset_request,
3852 	.set_channels = hclgevf_set_channels,
3853 	.get_channels = hclgevf_get_channels,
3854 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3855 	.get_regs_len = hclgevf_get_regs_len,
3856 	.get_regs = hclgevf_get_regs,
3857 	.get_status = hclgevf_get_status,
3858 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3859 	.get_media_type = hclgevf_get_media_type,
3860 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3861 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3862 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3863 	.set_gro_en = hclgevf_gro_en,
3864 	.set_mtu = hclgevf_set_mtu,
3865 	.get_global_queue_id = hclgevf_get_qid_global,
3866 	.set_timer_task = hclgevf_set_timer_task,
3867 	.get_link_mode = hclgevf_get_link_mode,
3868 	.set_promisc_mode = hclgevf_set_promisc_mode,
3869 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3870 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3871 };
3872 
3873 static struct hnae3_ae_algo ae_algovf = {
3874 	.ops = &hclgevf_ops,
3875 	.pdev_id_table = ae_algovf_pci_tbl,
3876 };
3877 
3878 static int hclgevf_init(void)
3879 {
3880 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3881 
3882 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3883 	if (!hclgevf_wq) {
3884 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3885 		return -ENOMEM;
3886 	}
3887 
3888 	hnae3_register_ae_algo(&ae_algovf);
3889 
3890 	return 0;
3891 }
3892 
3893 static void hclgevf_exit(void)
3894 {
3895 	hnae3_unregister_ae_algo(&ae_algovf);
3896 	destroy_workqueue(hclgevf_wq);
3897 }
3898 module_init(hclgevf_init);
3899 module_exit(hclgevf_exit);
3900 
3901 MODULE_LICENSE("GPL");
3902 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3903 MODULE_DESCRIPTION("HCLGEVF Driver");
3904 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3905