xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16 
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 	/* required last entry */
21 	{0, }
22 };
23 
24 static const u8 hclgevf_hash_key[] = {
25 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
26 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
27 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
28 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
29 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
30 };
31 
32 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
33 
34 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
35 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
36 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
37 					 HCLGEVF_CMDQ_TX_TAIL_REG,
38 					 HCLGEVF_CMDQ_TX_HEAD_REG,
39 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
40 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
41 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
42 					 HCLGEVF_CMDQ_RX_TAIL_REG,
43 					 HCLGEVF_CMDQ_RX_HEAD_REG,
44 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
45 					 HCLGEVF_CMDQ_INTR_STS_REG,
46 					 HCLGEVF_CMDQ_INTR_EN_REG,
47 					 HCLGEVF_CMDQ_INTR_GEN_REG};
48 
49 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
50 					   HCLGEVF_RST_ING,
51 					   HCLGEVF_GRO_EN_REG};
52 
53 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
54 					 HCLGEVF_RING_RX_ADDR_H_REG,
55 					 HCLGEVF_RING_RX_BD_NUM_REG,
56 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
57 					 HCLGEVF_RING_RX_MERGE_EN_REG,
58 					 HCLGEVF_RING_RX_TAIL_REG,
59 					 HCLGEVF_RING_RX_HEAD_REG,
60 					 HCLGEVF_RING_RX_FBD_NUM_REG,
61 					 HCLGEVF_RING_RX_OFFSET_REG,
62 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
63 					 HCLGEVF_RING_RX_STASH_REG,
64 					 HCLGEVF_RING_RX_BD_ERR_REG,
65 					 HCLGEVF_RING_TX_ADDR_L_REG,
66 					 HCLGEVF_RING_TX_ADDR_H_REG,
67 					 HCLGEVF_RING_TX_BD_NUM_REG,
68 					 HCLGEVF_RING_TX_PRIORITY_REG,
69 					 HCLGEVF_RING_TX_TC_REG,
70 					 HCLGEVF_RING_TX_MERGE_EN_REG,
71 					 HCLGEVF_RING_TX_TAIL_REG,
72 					 HCLGEVF_RING_TX_HEAD_REG,
73 					 HCLGEVF_RING_TX_FBD_NUM_REG,
74 					 HCLGEVF_RING_TX_OFFSET_REG,
75 					 HCLGEVF_RING_TX_EBD_NUM_REG,
76 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
77 					 HCLGEVF_RING_TX_BD_ERR_REG,
78 					 HCLGEVF_RING_EN_REG};
79 
80 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
81 					     HCLGEVF_TQP_INTR_GL0_REG,
82 					     HCLGEVF_TQP_INTR_GL1_REG,
83 					     HCLGEVF_TQP_INTR_GL2_REG,
84 					     HCLGEVF_TQP_INTR_RL_REG};
85 
86 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
87 	struct hnae3_handle *handle)
88 {
89 	if (!handle->client)
90 		return container_of(handle, struct hclgevf_dev, nic);
91 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
92 		return container_of(handle, struct hclgevf_dev, roce);
93 	else
94 		return container_of(handle, struct hclgevf_dev, nic);
95 }
96 
97 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
98 {
99 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
101 	struct hclgevf_desc desc;
102 	struct hclgevf_tqp *tqp;
103 	int status;
104 	int i;
105 
106 	for (i = 0; i < kinfo->num_tqps; i++) {
107 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
108 		hclgevf_cmd_setup_basic_desc(&desc,
109 					     HCLGEVF_OPC_QUERY_RX_STATUS,
110 					     true);
111 
112 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
113 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
114 		if (status) {
115 			dev_err(&hdev->pdev->dev,
116 				"Query tqp stat fail, status = %d,queue = %d\n",
117 				status,	i);
118 			return status;
119 		}
120 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
121 			le32_to_cpu(desc.data[1]);
122 
123 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
124 					     true);
125 
126 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
127 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
128 		if (status) {
129 			dev_err(&hdev->pdev->dev,
130 				"Query tqp stat fail, status = %d,queue = %d\n",
131 				status, i);
132 			return status;
133 		}
134 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
135 			le32_to_cpu(desc.data[1]);
136 	}
137 
138 	return 0;
139 }
140 
141 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
144 	struct hclgevf_tqp *tqp;
145 	u64 *buff = data;
146 	int i;
147 
148 	for (i = 0; i < kinfo->num_tqps; i++) {
149 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
150 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
151 	}
152 	for (i = 0; i < kinfo->num_tqps; i++) {
153 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
154 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
155 	}
156 
157 	return buff;
158 }
159 
160 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
161 {
162 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
163 
164 	return kinfo->num_tqps * 2;
165 }
166 
167 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 	u8 *buff = data;
171 	int i = 0;
172 
173 	for (i = 0; i < kinfo->num_tqps; i++) {
174 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
175 						       struct hclgevf_tqp, q);
176 		snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
177 			 tqp->index);
178 		buff += ETH_GSTRING_LEN;
179 	}
180 
181 	for (i = 0; i < kinfo->num_tqps; i++) {
182 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 						       struct hclgevf_tqp, q);
184 		snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
185 			 tqp->index);
186 		buff += ETH_GSTRING_LEN;
187 	}
188 
189 	return buff;
190 }
191 
192 static void hclgevf_update_stats(struct hnae3_handle *handle,
193 				 struct net_device_stats *net_stats)
194 {
195 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
196 	int status;
197 
198 	status = hclgevf_tqps_update_stats(handle);
199 	if (status)
200 		dev_err(&hdev->pdev->dev,
201 			"VF update of TQPS stats fail, status = %d.\n",
202 			status);
203 }
204 
205 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
206 {
207 	if (strset == ETH_SS_TEST)
208 		return -EOPNOTSUPP;
209 	else if (strset == ETH_SS_STATS)
210 		return hclgevf_tqps_get_sset_count(handle, strset);
211 
212 	return 0;
213 }
214 
215 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
216 				u8 *data)
217 {
218 	u8 *p = (char *)data;
219 
220 	if (strset == ETH_SS_STATS)
221 		p = hclgevf_tqps_get_strings(handle, p);
222 }
223 
224 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
225 {
226 	hclgevf_tqps_get_stats(handle, data);
227 }
228 
229 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
230 {
231 	u8 resp_msg;
232 	int status;
233 
234 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
235 				      true, &resp_msg, sizeof(u8));
236 	if (status) {
237 		dev_err(&hdev->pdev->dev,
238 			"VF request to get TC info from PF failed %d",
239 			status);
240 		return status;
241 	}
242 
243 	hdev->hw_tc_map = resp_msg;
244 
245 	return 0;
246 }
247 
248 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
249 {
250 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
251 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
252 	int status;
253 
254 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
255 				      true, resp_msg,
256 				      HCLGEVF_TQPS_RSS_INFO_LEN);
257 	if (status) {
258 		dev_err(&hdev->pdev->dev,
259 			"VF request to get tqp info from PF failed %d",
260 			status);
261 		return status;
262 	}
263 
264 	memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
265 	memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
266 	memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
267 
268 	return 0;
269 }
270 
271 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
272 {
273 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
274 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
275 	int ret;
276 
277 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
278 				   true, resp_msg,
279 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
280 	if (ret) {
281 		dev_err(&hdev->pdev->dev,
282 			"VF request to get tqp depth info from PF failed %d",
283 			ret);
284 		return ret;
285 	}
286 
287 	memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
288 	memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
289 
290 	return 0;
291 }
292 
293 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
294 {
295 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
296 	u8 msg_data[2], resp_data[2];
297 	u16 qid_in_pf = 0;
298 	int ret;
299 
300 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
301 
302 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
303 				   2, true, resp_data, 2);
304 	if (!ret)
305 		qid_in_pf = *(u16 *)resp_data;
306 
307 	return qid_in_pf;
308 }
309 
310 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
311 {
312 	struct hclgevf_tqp *tqp;
313 	int i;
314 
315 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
316 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
317 	if (!hdev->htqp)
318 		return -ENOMEM;
319 
320 	tqp = hdev->htqp;
321 
322 	for (i = 0; i < hdev->num_tqps; i++) {
323 		tqp->dev = &hdev->pdev->dev;
324 		tqp->index = i;
325 
326 		tqp->q.ae_algo = &ae_algovf;
327 		tqp->q.buf_size = hdev->rx_buf_len;
328 		tqp->q.tx_desc_num = hdev->num_tx_desc;
329 		tqp->q.rx_desc_num = hdev->num_rx_desc;
330 		tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
331 			i * HCLGEVF_TQP_REG_SIZE;
332 
333 		tqp++;
334 	}
335 
336 	return 0;
337 }
338 
339 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
340 {
341 	struct hnae3_handle *nic = &hdev->nic;
342 	struct hnae3_knic_private_info *kinfo;
343 	u16 new_tqps = hdev->num_tqps;
344 	int i;
345 
346 	kinfo = &nic->kinfo;
347 	kinfo->num_tc = 0;
348 	kinfo->num_tx_desc = hdev->num_tx_desc;
349 	kinfo->num_rx_desc = hdev->num_rx_desc;
350 	kinfo->rx_buf_len = hdev->rx_buf_len;
351 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
352 		if (hdev->hw_tc_map & BIT(i))
353 			kinfo->num_tc++;
354 
355 	kinfo->rss_size
356 		= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
357 	new_tqps = kinfo->rss_size * kinfo->num_tc;
358 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
359 
360 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
361 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
362 	if (!kinfo->tqp)
363 		return -ENOMEM;
364 
365 	for (i = 0; i < kinfo->num_tqps; i++) {
366 		hdev->htqp[i].q.handle = &hdev->nic;
367 		hdev->htqp[i].q.tqp_index = i;
368 		kinfo->tqp[i] = &hdev->htqp[i].q;
369 	}
370 
371 	return 0;
372 }
373 
374 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
375 {
376 	int status;
377 	u8 resp_msg;
378 
379 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
380 				      0, false, &resp_msg, sizeof(u8));
381 	if (status)
382 		dev_err(&hdev->pdev->dev,
383 			"VF failed to fetch link status(%d) from PF", status);
384 }
385 
386 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
387 {
388 	struct hnae3_handle *rhandle = &hdev->roce;
389 	struct hnae3_handle *handle = &hdev->nic;
390 	struct hnae3_client *rclient;
391 	struct hnae3_client *client;
392 
393 	client = handle->client;
394 	rclient = hdev->roce_client;
395 
396 	link_state =
397 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
398 
399 	if (link_state != hdev->hw.mac.link) {
400 		client->ops->link_status_change(handle, !!link_state);
401 		if (rclient && rclient->ops->link_status_change)
402 			rclient->ops->link_status_change(rhandle, !!link_state);
403 		hdev->hw.mac.link = link_state;
404 	}
405 }
406 
407 void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
408 {
409 #define HCLGEVF_ADVERTISING 0
410 #define HCLGEVF_SUPPORTED   1
411 	u8 send_msg;
412 	u8 resp_msg;
413 
414 	send_msg = HCLGEVF_ADVERTISING;
415 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
416 			     sizeof(u8), false, &resp_msg, sizeof(u8));
417 	send_msg = HCLGEVF_SUPPORTED;
418 	hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0, &send_msg,
419 			     sizeof(u8), false, &resp_msg, sizeof(u8));
420 }
421 
422 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
423 {
424 	struct hnae3_handle *nic = &hdev->nic;
425 	int ret;
426 
427 	nic->ae_algo = &ae_algovf;
428 	nic->pdev = hdev->pdev;
429 	nic->numa_node_mask = hdev->numa_node_mask;
430 	nic->flags |= HNAE3_SUPPORT_VF;
431 
432 	if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
433 		dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
434 			hdev->ae_dev->dev_type);
435 		return -EINVAL;
436 	}
437 
438 	ret = hclgevf_knic_setup(hdev);
439 	if (ret)
440 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
441 			ret);
442 	return ret;
443 }
444 
445 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
446 {
447 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
448 		dev_warn(&hdev->pdev->dev,
449 			 "vector(vector_id %d) has been freed.\n", vector_id);
450 		return;
451 	}
452 
453 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
454 	hdev->num_msi_left += 1;
455 	hdev->num_msi_used -= 1;
456 }
457 
458 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
459 			      struct hnae3_vector_info *vector_info)
460 {
461 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
462 	struct hnae3_vector_info *vector = vector_info;
463 	int alloc = 0;
464 	int i, j;
465 
466 	vector_num = min(hdev->num_msi_left, vector_num);
467 
468 	for (j = 0; j < vector_num; j++) {
469 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
470 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
471 				vector->vector = pci_irq_vector(hdev->pdev, i);
472 				vector->io_addr = hdev->hw.io_base +
473 					HCLGEVF_VECTOR_REG_BASE +
474 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
475 				hdev->vector_status[i] = 0;
476 				hdev->vector_irq[i] = vector->vector;
477 
478 				vector++;
479 				alloc++;
480 
481 				break;
482 			}
483 		}
484 	}
485 	hdev->num_msi_left -= alloc;
486 	hdev->num_msi_used += alloc;
487 
488 	return alloc;
489 }
490 
491 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
492 {
493 	int i;
494 
495 	for (i = 0; i < hdev->num_msi; i++)
496 		if (vector == hdev->vector_irq[i])
497 			return i;
498 
499 	return -EINVAL;
500 }
501 
502 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
503 				    const u8 hfunc, const u8 *key)
504 {
505 	struct hclgevf_rss_config_cmd *req;
506 	struct hclgevf_desc desc;
507 	int key_offset;
508 	int key_size;
509 	int ret;
510 
511 	req = (struct hclgevf_rss_config_cmd *)desc.data;
512 
513 	for (key_offset = 0; key_offset < 3; key_offset++) {
514 		hclgevf_cmd_setup_basic_desc(&desc,
515 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
516 					     false);
517 
518 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
519 		req->hash_config |=
520 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
521 
522 		if (key_offset == 2)
523 			key_size =
524 			HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
525 		else
526 			key_size = HCLGEVF_RSS_HASH_KEY_NUM;
527 
528 		memcpy(req->hash_key,
529 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
530 
531 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
532 		if (ret) {
533 			dev_err(&hdev->pdev->dev,
534 				"Configure RSS config fail, status = %d\n",
535 				ret);
536 			return ret;
537 		}
538 	}
539 
540 	return 0;
541 }
542 
543 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
544 {
545 	return HCLGEVF_RSS_KEY_SIZE;
546 }
547 
548 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
549 {
550 	return HCLGEVF_RSS_IND_TBL_SIZE;
551 }
552 
553 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
554 {
555 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
556 	struct hclgevf_rss_indirection_table_cmd *req;
557 	struct hclgevf_desc desc;
558 	int status;
559 	int i, j;
560 
561 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
562 
563 	for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
564 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
565 					     false);
566 		req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
567 		req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
568 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
569 			req->rss_result[j] =
570 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
571 
572 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
573 		if (status) {
574 			dev_err(&hdev->pdev->dev,
575 				"VF failed(=%d) to set RSS indirection table\n",
576 				status);
577 			return status;
578 		}
579 	}
580 
581 	return 0;
582 }
583 
584 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
585 {
586 	struct hclgevf_rss_tc_mode_cmd *req;
587 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
588 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
589 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
590 	struct hclgevf_desc desc;
591 	u16 roundup_size;
592 	int status;
593 	int i;
594 
595 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
596 
597 	roundup_size = roundup_pow_of_two(rss_size);
598 	roundup_size = ilog2(roundup_size);
599 
600 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
601 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
602 		tc_size[i] = roundup_size;
603 		tc_offset[i] = rss_size * i;
604 	}
605 
606 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
607 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
608 		hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
609 			      (tc_valid[i] & 0x1));
610 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
611 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
612 		hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
613 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
614 	}
615 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
616 	if (status)
617 		dev_err(&hdev->pdev->dev,
618 			"VF failed(=%d) to set rss tc mode\n", status);
619 
620 	return status;
621 }
622 
623 /* for revision 0x20, vf shared the same rss config with pf */
624 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
625 {
626 #define HCLGEVF_RSS_MBX_RESP_LEN	8
627 
628 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
629 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
630 	u16 msg_num, hash_key_index;
631 	u8 index;
632 	int ret;
633 
634 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
635 			HCLGEVF_RSS_MBX_RESP_LEN;
636 	for (index = 0; index < msg_num; index++) {
637 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
638 					   &index, sizeof(index),
639 					   true, resp_msg,
640 					   HCLGEVF_RSS_MBX_RESP_LEN);
641 		if (ret) {
642 			dev_err(&hdev->pdev->dev,
643 				"VF get rss hash key from PF failed, ret=%d",
644 				ret);
645 			return ret;
646 		}
647 
648 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
649 		if (index == msg_num - 1)
650 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
651 			       &resp_msg[0],
652 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
653 		else
654 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
655 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
656 	}
657 
658 	return 0;
659 }
660 
661 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
662 			   u8 *hfunc)
663 {
664 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
665 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
666 	int i, ret;
667 
668 	if (handle->pdev->revision >= 0x21) {
669 		/* Get hash algorithm */
670 		if (hfunc) {
671 			switch (rss_cfg->hash_algo) {
672 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
673 				*hfunc = ETH_RSS_HASH_TOP;
674 				break;
675 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
676 				*hfunc = ETH_RSS_HASH_XOR;
677 				break;
678 			default:
679 				*hfunc = ETH_RSS_HASH_UNKNOWN;
680 				break;
681 			}
682 		}
683 
684 		/* Get the RSS Key required by the user */
685 		if (key)
686 			memcpy(key, rss_cfg->rss_hash_key,
687 			       HCLGEVF_RSS_KEY_SIZE);
688 	} else {
689 		if (hfunc)
690 			*hfunc = ETH_RSS_HASH_TOP;
691 		if (key) {
692 			ret = hclgevf_get_rss_hash_key(hdev);
693 			if (ret)
694 				return ret;
695 			memcpy(key, rss_cfg->rss_hash_key,
696 			       HCLGEVF_RSS_KEY_SIZE);
697 		}
698 	}
699 
700 	if (indir)
701 		for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
702 			indir[i] = rss_cfg->rss_indirection_tbl[i];
703 
704 	return 0;
705 }
706 
707 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
708 			   const  u8 *key, const  u8 hfunc)
709 {
710 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
711 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
712 	int ret, i;
713 
714 	if (handle->pdev->revision >= 0x21) {
715 		/* Set the RSS Hash Key if specififed by the user */
716 		if (key) {
717 			switch (hfunc) {
718 			case ETH_RSS_HASH_TOP:
719 				rss_cfg->hash_algo =
720 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
721 				break;
722 			case ETH_RSS_HASH_XOR:
723 				rss_cfg->hash_algo =
724 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
725 				break;
726 			case ETH_RSS_HASH_NO_CHANGE:
727 				break;
728 			default:
729 				return -EINVAL;
730 			}
731 
732 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
733 						       key);
734 			if (ret)
735 				return ret;
736 
737 			/* Update the shadow RSS key with user specified qids */
738 			memcpy(rss_cfg->rss_hash_key, key,
739 			       HCLGEVF_RSS_KEY_SIZE);
740 		}
741 	}
742 
743 	/* update the shadow RSS table with user specified qids */
744 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
745 		rss_cfg->rss_indirection_tbl[i] = indir[i];
746 
747 	/* update the hardware */
748 	return hclgevf_set_rss_indir_table(hdev);
749 }
750 
751 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
752 {
753 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
754 
755 	if (nfc->data & RXH_L4_B_2_3)
756 		hash_sets |= HCLGEVF_D_PORT_BIT;
757 	else
758 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
759 
760 	if (nfc->data & RXH_IP_SRC)
761 		hash_sets |= HCLGEVF_S_IP_BIT;
762 	else
763 		hash_sets &= ~HCLGEVF_S_IP_BIT;
764 
765 	if (nfc->data & RXH_IP_DST)
766 		hash_sets |= HCLGEVF_D_IP_BIT;
767 	else
768 		hash_sets &= ~HCLGEVF_D_IP_BIT;
769 
770 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
771 		hash_sets |= HCLGEVF_V_TAG_BIT;
772 
773 	return hash_sets;
774 }
775 
776 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
777 				 struct ethtool_rxnfc *nfc)
778 {
779 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
780 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
781 	struct hclgevf_rss_input_tuple_cmd *req;
782 	struct hclgevf_desc desc;
783 	u8 tuple_sets;
784 	int ret;
785 
786 	if (handle->pdev->revision == 0x20)
787 		return -EOPNOTSUPP;
788 
789 	if (nfc->data &
790 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
791 		return -EINVAL;
792 
793 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
794 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
795 
796 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
797 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
798 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
799 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
800 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
801 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
802 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
803 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
804 
805 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
806 	switch (nfc->flow_type) {
807 	case TCP_V4_FLOW:
808 		req->ipv4_tcp_en = tuple_sets;
809 		break;
810 	case TCP_V6_FLOW:
811 		req->ipv6_tcp_en = tuple_sets;
812 		break;
813 	case UDP_V4_FLOW:
814 		req->ipv4_udp_en = tuple_sets;
815 		break;
816 	case UDP_V6_FLOW:
817 		req->ipv6_udp_en = tuple_sets;
818 		break;
819 	case SCTP_V4_FLOW:
820 		req->ipv4_sctp_en = tuple_sets;
821 		break;
822 	case SCTP_V6_FLOW:
823 		if ((nfc->data & RXH_L4_B_0_1) ||
824 		    (nfc->data & RXH_L4_B_2_3))
825 			return -EINVAL;
826 
827 		req->ipv6_sctp_en = tuple_sets;
828 		break;
829 	case IPV4_FLOW:
830 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
831 		break;
832 	case IPV6_FLOW:
833 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
834 		break;
835 	default:
836 		return -EINVAL;
837 	}
838 
839 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
840 	if (ret) {
841 		dev_err(&hdev->pdev->dev,
842 			"Set rss tuple fail, status = %d\n", ret);
843 		return ret;
844 	}
845 
846 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
847 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
848 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
849 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
850 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
851 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
852 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
853 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
854 	return 0;
855 }
856 
857 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
858 				 struct ethtool_rxnfc *nfc)
859 {
860 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
861 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
862 	u8 tuple_sets;
863 
864 	if (handle->pdev->revision == 0x20)
865 		return -EOPNOTSUPP;
866 
867 	nfc->data = 0;
868 
869 	switch (nfc->flow_type) {
870 	case TCP_V4_FLOW:
871 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
872 		break;
873 	case UDP_V4_FLOW:
874 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
875 		break;
876 	case TCP_V6_FLOW:
877 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
878 		break;
879 	case UDP_V6_FLOW:
880 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
881 		break;
882 	case SCTP_V4_FLOW:
883 		tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
884 		break;
885 	case SCTP_V6_FLOW:
886 		tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
887 		break;
888 	case IPV4_FLOW:
889 	case IPV6_FLOW:
890 		tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
891 		break;
892 	default:
893 		return -EINVAL;
894 	}
895 
896 	if (!tuple_sets)
897 		return 0;
898 
899 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
900 		nfc->data |= RXH_L4_B_2_3;
901 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
902 		nfc->data |= RXH_L4_B_0_1;
903 	if (tuple_sets & HCLGEVF_D_IP_BIT)
904 		nfc->data |= RXH_IP_DST;
905 	if (tuple_sets & HCLGEVF_S_IP_BIT)
906 		nfc->data |= RXH_IP_SRC;
907 
908 	return 0;
909 }
910 
911 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
912 				       struct hclgevf_rss_cfg *rss_cfg)
913 {
914 	struct hclgevf_rss_input_tuple_cmd *req;
915 	struct hclgevf_desc desc;
916 	int ret;
917 
918 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
919 
920 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
921 
922 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
923 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
924 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
925 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
926 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
927 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
928 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
929 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
930 
931 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
932 	if (ret)
933 		dev_err(&hdev->pdev->dev,
934 			"Configure rss input fail, status = %d\n", ret);
935 	return ret;
936 }
937 
938 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
939 {
940 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
941 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
942 
943 	return rss_cfg->rss_size;
944 }
945 
946 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
947 				       int vector_id,
948 				       struct hnae3_ring_chain_node *ring_chain)
949 {
950 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
951 	struct hnae3_ring_chain_node *node;
952 	struct hclge_mbx_vf_to_pf_cmd *req;
953 	struct hclgevf_desc desc;
954 	int i = 0;
955 	int status;
956 	u8 type;
957 
958 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
959 
960 	for (node = ring_chain; node; node = node->next) {
961 		int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
962 					HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
963 
964 		if (i == 0) {
965 			hclgevf_cmd_setup_basic_desc(&desc,
966 						     HCLGEVF_OPC_MBX_VF_TO_PF,
967 						     false);
968 			type = en ?
969 				HCLGE_MBX_MAP_RING_TO_VECTOR :
970 				HCLGE_MBX_UNMAP_RING_TO_VECTOR;
971 			req->msg[0] = type;
972 			req->msg[1] = vector_id;
973 		}
974 
975 		req->msg[idx_offset] =
976 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
977 		req->msg[idx_offset + 1] = node->tqp_index;
978 		req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
979 							   HNAE3_RING_GL_IDX_M,
980 							   HNAE3_RING_GL_IDX_S);
981 
982 		i++;
983 		if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
984 		     HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
985 		     HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
986 		    !node->next) {
987 			req->msg[2] = i;
988 
989 			status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
990 			if (status) {
991 				dev_err(&hdev->pdev->dev,
992 					"Map TQP fail, status is %d.\n",
993 					status);
994 				return status;
995 			}
996 			i = 0;
997 			hclgevf_cmd_setup_basic_desc(&desc,
998 						     HCLGEVF_OPC_MBX_VF_TO_PF,
999 						     false);
1000 			req->msg[0] = type;
1001 			req->msg[1] = vector_id;
1002 		}
1003 	}
1004 
1005 	return 0;
1006 }
1007 
1008 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1009 				      struct hnae3_ring_chain_node *ring_chain)
1010 {
1011 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1012 	int vector_id;
1013 
1014 	vector_id = hclgevf_get_vector_index(hdev, vector);
1015 	if (vector_id < 0) {
1016 		dev_err(&handle->pdev->dev,
1017 			"Get vector index fail. ret =%d\n", vector_id);
1018 		return vector_id;
1019 	}
1020 
1021 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1022 }
1023 
1024 static int hclgevf_unmap_ring_from_vector(
1025 				struct hnae3_handle *handle,
1026 				int vector,
1027 				struct hnae3_ring_chain_node *ring_chain)
1028 {
1029 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1030 	int ret, vector_id;
1031 
1032 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1033 		return 0;
1034 
1035 	vector_id = hclgevf_get_vector_index(hdev, vector);
1036 	if (vector_id < 0) {
1037 		dev_err(&handle->pdev->dev,
1038 			"Get vector index fail. ret =%d\n", vector_id);
1039 		return vector_id;
1040 	}
1041 
1042 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1043 	if (ret)
1044 		dev_err(&handle->pdev->dev,
1045 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1046 			vector_id,
1047 			ret);
1048 
1049 	return ret;
1050 }
1051 
1052 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1053 {
1054 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1055 	int vector_id;
1056 
1057 	vector_id = hclgevf_get_vector_index(hdev, vector);
1058 	if (vector_id < 0) {
1059 		dev_err(&handle->pdev->dev,
1060 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1061 			vector_id);
1062 		return vector_id;
1063 	}
1064 
1065 	hclgevf_free_vector(hdev, vector_id);
1066 
1067 	return 0;
1068 }
1069 
1070 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1071 					bool en_bc_pmc)
1072 {
1073 	struct hclge_mbx_vf_to_pf_cmd *req;
1074 	struct hclgevf_desc desc;
1075 	int ret;
1076 
1077 	req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1078 
1079 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1080 	req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1081 	req->msg[1] = en_bc_pmc ? 1 : 0;
1082 
1083 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1084 	if (ret)
1085 		dev_err(&hdev->pdev->dev,
1086 			"Set promisc mode fail, status is %d.\n", ret);
1087 
1088 	return ret;
1089 }
1090 
1091 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1092 {
1093 	return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1094 }
1095 
1096 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
1097 			      int stream_id, bool enable)
1098 {
1099 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1100 	struct hclgevf_desc desc;
1101 	int status;
1102 
1103 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1104 
1105 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1106 				     false);
1107 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1108 	req->stream_id = cpu_to_le16(stream_id);
1109 	req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
1110 
1111 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1112 	if (status)
1113 		dev_err(&hdev->pdev->dev,
1114 			"TQP enable fail, status =%d.\n", status);
1115 
1116 	return status;
1117 }
1118 
1119 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1120 {
1121 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1122 	struct hclgevf_tqp *tqp;
1123 	int i;
1124 
1125 	for (i = 0; i < kinfo->num_tqps; i++) {
1126 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1127 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1128 	}
1129 }
1130 
1131 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1132 {
1133 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1134 
1135 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
1136 }
1137 
1138 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1139 				bool is_first)
1140 {
1141 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1142 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1143 	u8 *new_mac_addr = (u8 *)p;
1144 	u8 msg_data[ETH_ALEN * 2];
1145 	u16 subcode;
1146 	int status;
1147 
1148 	ether_addr_copy(msg_data, new_mac_addr);
1149 	ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1150 
1151 	subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1152 			HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1153 
1154 	status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1155 				      subcode, msg_data, ETH_ALEN * 2,
1156 				      true, NULL, 0);
1157 	if (!status)
1158 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1159 
1160 	return status;
1161 }
1162 
1163 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1164 			       const unsigned char *addr)
1165 {
1166 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1167 
1168 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1169 				    HCLGE_MBX_MAC_VLAN_UC_ADD,
1170 				    addr, ETH_ALEN, false, NULL, 0);
1171 }
1172 
1173 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1174 			      const unsigned char *addr)
1175 {
1176 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1177 
1178 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1179 				    HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1180 				    addr, ETH_ALEN, false, NULL, 0);
1181 }
1182 
1183 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1184 			       const unsigned char *addr)
1185 {
1186 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1187 
1188 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1189 				    HCLGE_MBX_MAC_VLAN_MC_ADD,
1190 				    addr, ETH_ALEN, false, NULL, 0);
1191 }
1192 
1193 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1194 			      const unsigned char *addr)
1195 {
1196 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1197 
1198 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1199 				    HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1200 				    addr, ETH_ALEN, false, NULL, 0);
1201 }
1202 
1203 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1204 				   __be16 proto, u16 vlan_id,
1205 				   bool is_kill)
1206 {
1207 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1208 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1209 	u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1210 
1211 	if (vlan_id > 4095)
1212 		return -EINVAL;
1213 
1214 	if (proto != htons(ETH_P_8021Q))
1215 		return -EPROTONOSUPPORT;
1216 
1217 	msg_data[0] = is_kill;
1218 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1219 	memcpy(&msg_data[3], &proto, sizeof(proto));
1220 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1221 				    HCLGE_MBX_VLAN_FILTER, msg_data,
1222 				    HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1223 }
1224 
1225 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1226 {
1227 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1228 	u8 msg_data;
1229 
1230 	msg_data = enable ? 1 : 0;
1231 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1232 				    HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1233 				    1, false, NULL, 0);
1234 }
1235 
1236 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1237 {
1238 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1239 	u8 msg_data[2];
1240 	int ret;
1241 
1242 	memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1243 
1244 	/* disable vf queue before send queue reset msg to PF */
1245 	ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1246 	if (ret)
1247 		return ret;
1248 
1249 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1250 				    2, true, NULL, 0);
1251 }
1252 
1253 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1254 {
1255 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1256 
1257 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1258 				    sizeof(new_mtu), true, NULL, 0);
1259 }
1260 
1261 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1262 				 enum hnae3_reset_notify_type type)
1263 {
1264 	struct hnae3_client *client = hdev->nic_client;
1265 	struct hnae3_handle *handle = &hdev->nic;
1266 	int ret;
1267 
1268 	if (!client->ops->reset_notify)
1269 		return -EOPNOTSUPP;
1270 
1271 	ret = client->ops->reset_notify(handle, type);
1272 	if (ret)
1273 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1274 			type, ret);
1275 
1276 	return ret;
1277 }
1278 
1279 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1280 {
1281 	struct hclgevf_dev *hdev = ae_dev->priv;
1282 
1283 	set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1284 }
1285 
1286 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1287 				    unsigned long delay_us,
1288 				    unsigned long wait_cnt)
1289 {
1290 	unsigned long cnt = 0;
1291 
1292 	while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1293 	       cnt++ < wait_cnt)
1294 		usleep_range(delay_us, delay_us * 2);
1295 
1296 	if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1297 		dev_err(&hdev->pdev->dev,
1298 			"flr wait timeout\n");
1299 		return -ETIMEDOUT;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1306 {
1307 #define HCLGEVF_RESET_WAIT_US	20000
1308 #define HCLGEVF_RESET_WAIT_CNT	2000
1309 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1310 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1311 
1312 	u32 val;
1313 	int ret;
1314 
1315 	/* wait to check the hardware reset completion status */
1316 	val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1317 	dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1318 
1319 	if (hdev->reset_type == HNAE3_FLR_RESET)
1320 		return hclgevf_flr_poll_timeout(hdev,
1321 						HCLGEVF_RESET_WAIT_US,
1322 						HCLGEVF_RESET_WAIT_CNT);
1323 
1324 	ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1325 				 !(val & HCLGEVF_RST_ING_BITS),
1326 				 HCLGEVF_RESET_WAIT_US,
1327 				 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1328 
1329 	/* hardware completion status should be available by this time */
1330 	if (ret) {
1331 		dev_err(&hdev->pdev->dev,
1332 			"could'nt get reset done status from h/w, timeout!\n");
1333 		return ret;
1334 	}
1335 
1336 	/* we will wait a bit more to let reset of the stack to complete. This
1337 	 * might happen in case reset assertion was made by PF. Yes, this also
1338 	 * means we might end up waiting bit more even for VF reset.
1339 	 */
1340 	msleep(5000);
1341 
1342 	return 0;
1343 }
1344 
1345 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1346 {
1347 	int ret;
1348 
1349 	/* uninitialize the nic client */
1350 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1351 	if (ret)
1352 		return ret;
1353 
1354 	/* re-initialize the hclge device */
1355 	ret = hclgevf_reset_hdev(hdev);
1356 	if (ret) {
1357 		dev_err(&hdev->pdev->dev,
1358 			"hclge device re-init failed, VF is disabled!\n");
1359 		return ret;
1360 	}
1361 
1362 	/* bring up the nic client again */
1363 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1364 	if (ret)
1365 		return ret;
1366 
1367 	return hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1368 }
1369 
1370 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1371 {
1372 	int ret = 0;
1373 
1374 	switch (hdev->reset_type) {
1375 	case HNAE3_VF_FUNC_RESET:
1376 		ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1377 					   0, true, NULL, sizeof(u8));
1378 		break;
1379 	case HNAE3_FLR_RESET:
1380 		set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1381 		break;
1382 	default:
1383 		break;
1384 	}
1385 
1386 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1387 
1388 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1389 		 hdev->reset_type, ret);
1390 
1391 	return ret;
1392 }
1393 
1394 static int hclgevf_reset(struct hclgevf_dev *hdev)
1395 {
1396 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1397 	int ret;
1398 
1399 	/* Initialize ae_dev reset status as well, in case enet layer wants to
1400 	 * know if device is undergoing reset
1401 	 */
1402 	ae_dev->reset_type = hdev->reset_type;
1403 	hdev->reset_count++;
1404 	rtnl_lock();
1405 
1406 	/* bring down the nic to stop any ongoing TX/RX */
1407 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1408 	if (ret)
1409 		goto err_reset_lock;
1410 
1411 	rtnl_unlock();
1412 
1413 	ret = hclgevf_reset_prepare_wait(hdev);
1414 	if (ret)
1415 		goto err_reset;
1416 
1417 	/* check if VF could successfully fetch the hardware reset completion
1418 	 * status from the hardware
1419 	 */
1420 	ret = hclgevf_reset_wait(hdev);
1421 	if (ret) {
1422 		/* can't do much in this situation, will disable VF */
1423 		dev_err(&hdev->pdev->dev,
1424 			"VF failed(=%d) to fetch H/W reset completion status\n",
1425 			ret);
1426 		goto err_reset;
1427 	}
1428 
1429 	rtnl_lock();
1430 
1431 	/* now, re-initialize the nic client and ae device*/
1432 	ret = hclgevf_reset_stack(hdev);
1433 	if (ret) {
1434 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1435 		goto err_reset_lock;
1436 	}
1437 
1438 	/* bring up the nic to enable TX/RX again */
1439 	ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1440 	if (ret)
1441 		goto err_reset_lock;
1442 
1443 	rtnl_unlock();
1444 
1445 	hdev->last_reset_time = jiffies;
1446 	ae_dev->reset_type = HNAE3_NONE_RESET;
1447 
1448 	return ret;
1449 err_reset_lock:
1450 	rtnl_unlock();
1451 err_reset:
1452 	/* When VF reset failed, only the higher level reset asserted by PF
1453 	 * can restore it, so re-initialize the command queue to receive
1454 	 * this higher reset event.
1455 	 */
1456 	hclgevf_cmd_init(hdev);
1457 	dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1458 
1459 	return ret;
1460 }
1461 
1462 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1463 						     unsigned long *addr)
1464 {
1465 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1466 
1467 	/* return the highest priority reset level amongst all */
1468 	if (test_bit(HNAE3_VF_RESET, addr)) {
1469 		rst_level = HNAE3_VF_RESET;
1470 		clear_bit(HNAE3_VF_RESET, addr);
1471 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1472 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1473 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1474 		rst_level = HNAE3_VF_FULL_RESET;
1475 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1476 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1477 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1478 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1479 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1480 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1481 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1482 		rst_level = HNAE3_VF_FUNC_RESET;
1483 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1484 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1485 		rst_level = HNAE3_FLR_RESET;
1486 		clear_bit(HNAE3_FLR_RESET, addr);
1487 	}
1488 
1489 	return rst_level;
1490 }
1491 
1492 static void hclgevf_reset_event(struct pci_dev *pdev,
1493 				struct hnae3_handle *handle)
1494 {
1495 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1496 	struct hclgevf_dev *hdev = ae_dev->priv;
1497 
1498 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1499 
1500 	if (hdev->default_reset_request)
1501 		hdev->reset_level =
1502 			hclgevf_get_reset_level(hdev,
1503 						&hdev->default_reset_request);
1504 	else
1505 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1506 
1507 	/* reset of this VF requested */
1508 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1509 	hclgevf_reset_task_schedule(hdev);
1510 
1511 	hdev->last_reset_time = jiffies;
1512 }
1513 
1514 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1515 					  enum hnae3_reset_type rst_type)
1516 {
1517 	struct hclgevf_dev *hdev = ae_dev->priv;
1518 
1519 	set_bit(rst_type, &hdev->default_reset_request);
1520 }
1521 
1522 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1523 {
1524 #define HCLGEVF_FLR_WAIT_MS	100
1525 #define HCLGEVF_FLR_WAIT_CNT	50
1526 	struct hclgevf_dev *hdev = ae_dev->priv;
1527 	int cnt = 0;
1528 
1529 	clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1530 	clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1531 	set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1532 	hclgevf_reset_event(hdev->pdev, NULL);
1533 
1534 	while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1535 	       cnt++ < HCLGEVF_FLR_WAIT_CNT)
1536 		msleep(HCLGEVF_FLR_WAIT_MS);
1537 
1538 	if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1539 		dev_err(&hdev->pdev->dev,
1540 			"flr wait down timeout: %d\n", cnt);
1541 }
1542 
1543 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1544 {
1545 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1546 
1547 	return hdev->fw_version;
1548 }
1549 
1550 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1551 {
1552 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1553 
1554 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1555 					    HCLGEVF_MISC_VECTOR_NUM);
1556 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1557 	/* vector status always valid for Vector 0 */
1558 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1559 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1560 
1561 	hdev->num_msi_left -= 1;
1562 	hdev->num_msi_used += 1;
1563 }
1564 
1565 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1566 {
1567 	if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1568 	    !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1569 		set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1570 		schedule_work(&hdev->rst_service_task);
1571 	}
1572 }
1573 
1574 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1575 {
1576 	if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1577 	    !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1578 		set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1579 		schedule_work(&hdev->mbx_service_task);
1580 	}
1581 }
1582 
1583 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1584 {
1585 	if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state)  &&
1586 	    !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1587 		schedule_work(&hdev->service_task);
1588 }
1589 
1590 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1591 {
1592 	/* if we have any pending mailbox event then schedule the mbx task */
1593 	if (hdev->mbx_event_pending)
1594 		hclgevf_mbx_task_schedule(hdev);
1595 
1596 	if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1597 		hclgevf_reset_task_schedule(hdev);
1598 }
1599 
1600 static void hclgevf_service_timer(struct timer_list *t)
1601 {
1602 	struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1603 
1604 	mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1605 
1606 	hclgevf_task_schedule(hdev);
1607 }
1608 
1609 static void hclgevf_reset_service_task(struct work_struct *work)
1610 {
1611 	struct hclgevf_dev *hdev =
1612 		container_of(work, struct hclgevf_dev, rst_service_task);
1613 	int ret;
1614 
1615 	if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1616 		return;
1617 
1618 	clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1619 
1620 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1621 			       &hdev->reset_state)) {
1622 		/* PF has initmated that it is about to reset the hardware.
1623 		 * We now have to poll & check if harware has actually completed
1624 		 * the reset sequence. On hardware reset completion, VF needs to
1625 		 * reset the client and ae device.
1626 		 */
1627 		hdev->reset_attempts = 0;
1628 
1629 		hdev->last_reset_time = jiffies;
1630 		while ((hdev->reset_type =
1631 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1632 		       != HNAE3_NONE_RESET) {
1633 			ret = hclgevf_reset(hdev);
1634 			if (ret)
1635 				dev_err(&hdev->pdev->dev,
1636 					"VF stack reset failed %d.\n", ret);
1637 		}
1638 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1639 				      &hdev->reset_state)) {
1640 		/* we could be here when either of below happens:
1641 		 * 1. reset was initiated due to watchdog timeout due to
1642 		 *    a. IMP was earlier reset and our TX got choked down and
1643 		 *       which resulted in watchdog reacting and inducing VF
1644 		 *       reset. This also means our cmdq would be unreliable.
1645 		 *    b. problem in TX due to other lower layer(example link
1646 		 *       layer not functioning properly etc.)
1647 		 * 2. VF reset might have been initiated due to some config
1648 		 *    change.
1649 		 *
1650 		 * NOTE: Theres no clear way to detect above cases than to react
1651 		 * to the response of PF for this reset request. PF will ack the
1652 		 * 1b and 2. cases but we will not get any intimation about 1a
1653 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1654 		 * communication between PF and VF would be broken.
1655 		 */
1656 
1657 		/* if we are never geting into pending state it means either:
1658 		 * 1. PF is not receiving our request which could be due to IMP
1659 		 *    reset
1660 		 * 2. PF is screwed
1661 		 * We cannot do much for 2. but to check first we can try reset
1662 		 * our PCIe + stack and see if it alleviates the problem.
1663 		 */
1664 		if (hdev->reset_attempts > 3) {
1665 			/* prepare for full reset of stack + pcie interface */
1666 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1667 
1668 			/* "defer" schedule the reset task again */
1669 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1670 		} else {
1671 			hdev->reset_attempts++;
1672 
1673 			set_bit(hdev->reset_level, &hdev->reset_pending);
1674 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1675 		}
1676 		hclgevf_reset_task_schedule(hdev);
1677 	}
1678 
1679 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1680 }
1681 
1682 static void hclgevf_mailbox_service_task(struct work_struct *work)
1683 {
1684 	struct hclgevf_dev *hdev;
1685 
1686 	hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1687 
1688 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1689 		return;
1690 
1691 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1692 
1693 	hclgevf_mbx_async_handler(hdev);
1694 
1695 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1696 }
1697 
1698 static void hclgevf_keep_alive_timer(struct timer_list *t)
1699 {
1700 	struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1701 
1702 	schedule_work(&hdev->keep_alive_task);
1703 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1704 }
1705 
1706 static void hclgevf_keep_alive_task(struct work_struct *work)
1707 {
1708 	struct hclgevf_dev *hdev;
1709 	u8 respmsg;
1710 	int ret;
1711 
1712 	hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1713 
1714 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1715 		return;
1716 
1717 	ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1718 				   0, false, &respmsg, sizeof(u8));
1719 	if (ret)
1720 		dev_err(&hdev->pdev->dev,
1721 			"VF sends keep alive cmd failed(=%d)\n", ret);
1722 }
1723 
1724 static void hclgevf_service_task(struct work_struct *work)
1725 {
1726 	struct hclgevf_dev *hdev;
1727 
1728 	hdev = container_of(work, struct hclgevf_dev, service_task);
1729 
1730 	/* request the link status from the PF. PF would be able to tell VF
1731 	 * about such updates in future so we might remove this later
1732 	 */
1733 	hclgevf_request_link_info(hdev);
1734 
1735 	hclgevf_update_link_mode(hdev);
1736 
1737 	hclgevf_deferred_task_schedule(hdev);
1738 
1739 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1740 }
1741 
1742 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1743 {
1744 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1745 }
1746 
1747 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1748 						      u32 *clearval)
1749 {
1750 	u32 cmdq_src_reg, rst_ing_reg;
1751 
1752 	/* fetch the events from their corresponding regs */
1753 	cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1754 					HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1755 
1756 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1757 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1758 		dev_info(&hdev->pdev->dev,
1759 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1760 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1761 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1762 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1763 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1764 		*clearval = cmdq_src_reg;
1765 		return HCLGEVF_VECTOR0_EVENT_RST;
1766 	}
1767 
1768 	/* check for vector0 mailbox(=CMDQ RX) event source */
1769 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1770 		cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1771 		*clearval = cmdq_src_reg;
1772 		return HCLGEVF_VECTOR0_EVENT_MBX;
1773 	}
1774 
1775 	dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1776 
1777 	return HCLGEVF_VECTOR0_EVENT_OTHER;
1778 }
1779 
1780 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1781 {
1782 	writel(en ? 1 : 0, vector->addr);
1783 }
1784 
1785 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1786 {
1787 	enum hclgevf_evt_cause event_cause;
1788 	struct hclgevf_dev *hdev = data;
1789 	u32 clearval;
1790 
1791 	hclgevf_enable_vector(&hdev->misc_vector, false);
1792 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1793 
1794 	switch (event_cause) {
1795 	case HCLGEVF_VECTOR0_EVENT_RST:
1796 		hclgevf_reset_task_schedule(hdev);
1797 		break;
1798 	case HCLGEVF_VECTOR0_EVENT_MBX:
1799 		hclgevf_mbx_handler(hdev);
1800 		break;
1801 	default:
1802 		break;
1803 	}
1804 
1805 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1806 		hclgevf_clear_event_cause(hdev, clearval);
1807 		hclgevf_enable_vector(&hdev->misc_vector, true);
1808 	}
1809 
1810 	return IRQ_HANDLED;
1811 }
1812 
1813 static int hclgevf_configure(struct hclgevf_dev *hdev)
1814 {
1815 	int ret;
1816 
1817 	/* get queue configuration from PF */
1818 	ret = hclgevf_get_queue_info(hdev);
1819 	if (ret)
1820 		return ret;
1821 
1822 	/* get queue depth info from PF */
1823 	ret = hclgevf_get_queue_depth(hdev);
1824 	if (ret)
1825 		return ret;
1826 
1827 	/* get tc configuration from PF */
1828 	return hclgevf_get_tc_info(hdev);
1829 }
1830 
1831 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1832 {
1833 	struct pci_dev *pdev = ae_dev->pdev;
1834 	struct hclgevf_dev *hdev;
1835 
1836 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1837 	if (!hdev)
1838 		return -ENOMEM;
1839 
1840 	hdev->pdev = pdev;
1841 	hdev->ae_dev = ae_dev;
1842 	ae_dev->priv = hdev;
1843 
1844 	return 0;
1845 }
1846 
1847 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1848 {
1849 	struct hnae3_handle *roce = &hdev->roce;
1850 	struct hnae3_handle *nic = &hdev->nic;
1851 
1852 	roce->rinfo.num_vectors = hdev->num_roce_msix;
1853 
1854 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1855 	    hdev->num_msi_left == 0)
1856 		return -EINVAL;
1857 
1858 	roce->rinfo.base_vector = hdev->roce_base_vector;
1859 
1860 	roce->rinfo.netdev = nic->kinfo.netdev;
1861 	roce->rinfo.roce_io_base = hdev->hw.io_base;
1862 
1863 	roce->pdev = nic->pdev;
1864 	roce->ae_algo = nic->ae_algo;
1865 	roce->numa_node_mask = nic->numa_node_mask;
1866 
1867 	return 0;
1868 }
1869 
1870 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1871 {
1872 	struct hclgevf_cfg_gro_status_cmd *req;
1873 	struct hclgevf_desc desc;
1874 	int ret;
1875 
1876 	if (!hnae3_dev_gro_supported(hdev))
1877 		return 0;
1878 
1879 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1880 				     false);
1881 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1882 
1883 	req->gro_en = cpu_to_le16(en ? 1 : 0);
1884 
1885 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1886 	if (ret)
1887 		dev_err(&hdev->pdev->dev,
1888 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
1889 
1890 	return ret;
1891 }
1892 
1893 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1894 {
1895 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1896 	int i, ret;
1897 
1898 	rss_cfg->rss_size = hdev->rss_size_max;
1899 
1900 	if (hdev->pdev->revision >= 0x21) {
1901 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
1902 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
1903 		       HCLGEVF_RSS_KEY_SIZE);
1904 
1905 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1906 					       rss_cfg->rss_hash_key);
1907 		if (ret)
1908 			return ret;
1909 
1910 		rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1911 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1912 		rss_cfg->rss_tuple_sets.ipv4_udp_en =
1913 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1914 		rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1915 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1916 		rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1917 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1918 		rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1919 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1920 		rss_cfg->rss_tuple_sets.ipv6_udp_en =
1921 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1922 		rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1923 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1924 		rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1925 					HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1926 
1927 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1928 		if (ret)
1929 			return ret;
1930 
1931 	}
1932 
1933 	/* Initialize RSS indirect table for each vport */
1934 	for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1935 		rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1936 
1937 	ret = hclgevf_set_rss_indir_table(hdev);
1938 	if (ret)
1939 		return ret;
1940 
1941 	return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1942 }
1943 
1944 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1945 {
1946 	/* other vlan config(like, VLAN TX/RX offload) would also be added
1947 	 * here later
1948 	 */
1949 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1950 				       false);
1951 }
1952 
1953 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
1954 {
1955 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1956 
1957 	if (enable) {
1958 		mod_timer(&hdev->service_timer, jiffies + HZ);
1959 	} else {
1960 		del_timer_sync(&hdev->service_timer);
1961 		cancel_work_sync(&hdev->service_task);
1962 		clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1963 	}
1964 }
1965 
1966 static int hclgevf_ae_start(struct hnae3_handle *handle)
1967 {
1968 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1969 
1970 	/* reset tqp stats */
1971 	hclgevf_reset_tqp_stats(handle);
1972 
1973 	hclgevf_request_link_info(hdev);
1974 
1975 	hclgevf_update_link_mode(hdev);
1976 
1977 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1978 
1979 	return 0;
1980 }
1981 
1982 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1983 {
1984 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1985 	int i;
1986 
1987 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1988 
1989 	for (i = 0; i < handle->kinfo.num_tqps; i++)
1990 		hclgevf_reset_tqp(handle, i);
1991 
1992 	/* reset tqp stats */
1993 	hclgevf_reset_tqp_stats(handle);
1994 	hclgevf_update_link_status(hdev, 0);
1995 }
1996 
1997 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
1998 {
1999 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2000 	u8 msg_data;
2001 
2002 	msg_data = alive ? 1 : 0;
2003 	return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2004 				    0, &msg_data, 1, false, NULL, 0);
2005 }
2006 
2007 static int hclgevf_client_start(struct hnae3_handle *handle)
2008 {
2009 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2010 
2011 	mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
2012 	return hclgevf_set_alive(handle, true);
2013 }
2014 
2015 static void hclgevf_client_stop(struct hnae3_handle *handle)
2016 {
2017 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2018 	int ret;
2019 
2020 	ret = hclgevf_set_alive(handle, false);
2021 	if (ret)
2022 		dev_warn(&hdev->pdev->dev,
2023 			 "%s failed %d\n", __func__, ret);
2024 
2025 	del_timer_sync(&hdev->keep_alive_timer);
2026 	cancel_work_sync(&hdev->keep_alive_task);
2027 }
2028 
2029 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2030 {
2031 	/* setup tasks for the MBX */
2032 	INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2033 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2034 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2035 
2036 	/* setup tasks for service timer */
2037 	timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2038 
2039 	INIT_WORK(&hdev->service_task, hclgevf_service_task);
2040 	clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2041 
2042 	INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2043 
2044 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2045 
2046 	/* bring the device down */
2047 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2048 }
2049 
2050 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2051 {
2052 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2053 
2054 	if (hdev->service_timer.function)
2055 		del_timer_sync(&hdev->service_timer);
2056 	if (hdev->service_task.func)
2057 		cancel_work_sync(&hdev->service_task);
2058 	if (hdev->mbx_service_task.func)
2059 		cancel_work_sync(&hdev->mbx_service_task);
2060 	if (hdev->rst_service_task.func)
2061 		cancel_work_sync(&hdev->rst_service_task);
2062 
2063 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2064 }
2065 
2066 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2067 {
2068 	struct pci_dev *pdev = hdev->pdev;
2069 	int vectors;
2070 	int i;
2071 
2072 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2073 		vectors = pci_alloc_irq_vectors(pdev,
2074 						hdev->roce_base_msix_offset + 1,
2075 						hdev->num_msi,
2076 						PCI_IRQ_MSIX);
2077 	else
2078 		vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2079 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2080 
2081 	if (vectors < 0) {
2082 		dev_err(&pdev->dev,
2083 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2084 			vectors);
2085 		return vectors;
2086 	}
2087 	if (vectors < hdev->num_msi)
2088 		dev_warn(&hdev->pdev->dev,
2089 			 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2090 			 hdev->num_msi, vectors);
2091 
2092 	hdev->num_msi = vectors;
2093 	hdev->num_msi_left = vectors;
2094 	hdev->base_msi_vector = pdev->irq;
2095 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2096 
2097 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2098 					   sizeof(u16), GFP_KERNEL);
2099 	if (!hdev->vector_status) {
2100 		pci_free_irq_vectors(pdev);
2101 		return -ENOMEM;
2102 	}
2103 
2104 	for (i = 0; i < hdev->num_msi; i++)
2105 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2106 
2107 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2108 					sizeof(int), GFP_KERNEL);
2109 	if (!hdev->vector_irq) {
2110 		devm_kfree(&pdev->dev, hdev->vector_status);
2111 		pci_free_irq_vectors(pdev);
2112 		return -ENOMEM;
2113 	}
2114 
2115 	return 0;
2116 }
2117 
2118 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2119 {
2120 	struct pci_dev *pdev = hdev->pdev;
2121 
2122 	devm_kfree(&pdev->dev, hdev->vector_status);
2123 	devm_kfree(&pdev->dev, hdev->vector_irq);
2124 	pci_free_irq_vectors(pdev);
2125 }
2126 
2127 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2128 {
2129 	int ret = 0;
2130 
2131 	hclgevf_get_misc_vector(hdev);
2132 
2133 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2134 			  0, "hclgevf_cmd", hdev);
2135 	if (ret) {
2136 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2137 			hdev->misc_vector.vector_irq);
2138 		return ret;
2139 	}
2140 
2141 	hclgevf_clear_event_cause(hdev, 0);
2142 
2143 	/* enable misc. vector(vector 0) */
2144 	hclgevf_enable_vector(&hdev->misc_vector, true);
2145 
2146 	return ret;
2147 }
2148 
2149 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2150 {
2151 	/* disable misc vector(vector 0) */
2152 	hclgevf_enable_vector(&hdev->misc_vector, false);
2153 	synchronize_irq(hdev->misc_vector.vector_irq);
2154 	free_irq(hdev->misc_vector.vector_irq, hdev);
2155 	hclgevf_free_vector(hdev, 0);
2156 }
2157 
2158 static int hclgevf_init_client_instance(struct hnae3_client *client,
2159 					struct hnae3_ae_dev *ae_dev)
2160 {
2161 	struct hclgevf_dev *hdev = ae_dev->priv;
2162 	int ret;
2163 
2164 	switch (client->type) {
2165 	case HNAE3_CLIENT_KNIC:
2166 		hdev->nic_client = client;
2167 		hdev->nic.client = client;
2168 
2169 		ret = client->ops->init_instance(&hdev->nic);
2170 		if (ret)
2171 			goto clear_nic;
2172 
2173 		hnae3_set_client_init_flag(client, ae_dev, 1);
2174 
2175 		if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
2176 			struct hnae3_client *rc = hdev->roce_client;
2177 
2178 			ret = hclgevf_init_roce_base_info(hdev);
2179 			if (ret)
2180 				goto clear_roce;
2181 			ret = rc->ops->init_instance(&hdev->roce);
2182 			if (ret)
2183 				goto clear_roce;
2184 
2185 			hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
2186 						   1);
2187 		}
2188 		break;
2189 	case HNAE3_CLIENT_UNIC:
2190 		hdev->nic_client = client;
2191 		hdev->nic.client = client;
2192 
2193 		ret = client->ops->init_instance(&hdev->nic);
2194 		if (ret)
2195 			goto clear_nic;
2196 
2197 		hnae3_set_client_init_flag(client, ae_dev, 1);
2198 		break;
2199 	case HNAE3_CLIENT_ROCE:
2200 		if (hnae3_dev_roce_supported(hdev)) {
2201 			hdev->roce_client = client;
2202 			hdev->roce.client = client;
2203 		}
2204 
2205 		if (hdev->roce_client && hdev->nic_client) {
2206 			ret = hclgevf_init_roce_base_info(hdev);
2207 			if (ret)
2208 				goto clear_roce;
2209 
2210 			ret = client->ops->init_instance(&hdev->roce);
2211 			if (ret)
2212 				goto clear_roce;
2213 		}
2214 
2215 		hnae3_set_client_init_flag(client, ae_dev, 1);
2216 		break;
2217 	default:
2218 		return -EINVAL;
2219 	}
2220 
2221 	return 0;
2222 
2223 clear_nic:
2224 	hdev->nic_client = NULL;
2225 	hdev->nic.client = NULL;
2226 	return ret;
2227 clear_roce:
2228 	hdev->roce_client = NULL;
2229 	hdev->roce.client = NULL;
2230 	return ret;
2231 }
2232 
2233 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2234 					   struct hnae3_ae_dev *ae_dev)
2235 {
2236 	struct hclgevf_dev *hdev = ae_dev->priv;
2237 
2238 	/* un-init roce, if it exists */
2239 	if (hdev->roce_client) {
2240 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2241 		hdev->roce_client = NULL;
2242 		hdev->roce.client = NULL;
2243 	}
2244 
2245 	/* un-init nic/unic, if this was not called by roce client */
2246 	if (client->ops->uninit_instance && hdev->nic_client &&
2247 	    client->type != HNAE3_CLIENT_ROCE) {
2248 		client->ops->uninit_instance(&hdev->nic, 0);
2249 		hdev->nic_client = NULL;
2250 		hdev->nic.client = NULL;
2251 	}
2252 }
2253 
2254 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2255 {
2256 	struct pci_dev *pdev = hdev->pdev;
2257 	struct hclgevf_hw *hw;
2258 	int ret;
2259 
2260 	ret = pci_enable_device(pdev);
2261 	if (ret) {
2262 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2263 		return ret;
2264 	}
2265 
2266 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2267 	if (ret) {
2268 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2269 		goto err_disable_device;
2270 	}
2271 
2272 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2273 	if (ret) {
2274 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2275 		goto err_disable_device;
2276 	}
2277 
2278 	pci_set_master(pdev);
2279 	hw = &hdev->hw;
2280 	hw->hdev = hdev;
2281 	hw->io_base = pci_iomap(pdev, 2, 0);
2282 	if (!hw->io_base) {
2283 		dev_err(&pdev->dev, "can't map configuration register space\n");
2284 		ret = -ENOMEM;
2285 		goto err_clr_master;
2286 	}
2287 
2288 	return 0;
2289 
2290 err_clr_master:
2291 	pci_clear_master(pdev);
2292 	pci_release_regions(pdev);
2293 err_disable_device:
2294 	pci_disable_device(pdev);
2295 
2296 	return ret;
2297 }
2298 
2299 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2300 {
2301 	struct pci_dev *pdev = hdev->pdev;
2302 
2303 	pci_iounmap(pdev, hdev->hw.io_base);
2304 	pci_clear_master(pdev);
2305 	pci_release_regions(pdev);
2306 	pci_disable_device(pdev);
2307 }
2308 
2309 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2310 {
2311 	struct hclgevf_query_res_cmd *req;
2312 	struct hclgevf_desc desc;
2313 	int ret;
2314 
2315 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2316 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2317 	if (ret) {
2318 		dev_err(&hdev->pdev->dev,
2319 			"query vf resource failed, ret = %d.\n", ret);
2320 		return ret;
2321 	}
2322 
2323 	req = (struct hclgevf_query_res_cmd *)desc.data;
2324 
2325 	if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2326 		hdev->roce_base_msix_offset =
2327 		hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2328 				HCLGEVF_MSIX_OFT_ROCEE_M,
2329 				HCLGEVF_MSIX_OFT_ROCEE_S);
2330 		hdev->num_roce_msix =
2331 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2332 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2333 
2334 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2335 		 * are queued before Roce vectors. The offset is fixed to 64.
2336 		 */
2337 		hdev->num_msi = hdev->num_roce_msix +
2338 				hdev->roce_base_msix_offset;
2339 	} else {
2340 		hdev->num_msi =
2341 		hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2342 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2343 	}
2344 
2345 	return 0;
2346 }
2347 
2348 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2349 {
2350 	struct pci_dev *pdev = hdev->pdev;
2351 	int ret = 0;
2352 
2353 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2354 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2355 		hclgevf_misc_irq_uninit(hdev);
2356 		hclgevf_uninit_msi(hdev);
2357 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2358 	}
2359 
2360 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2361 		pci_set_master(pdev);
2362 		ret = hclgevf_init_msi(hdev);
2363 		if (ret) {
2364 			dev_err(&pdev->dev,
2365 				"failed(%d) to init MSI/MSI-X\n", ret);
2366 			return ret;
2367 		}
2368 
2369 		ret = hclgevf_misc_irq_init(hdev);
2370 		if (ret) {
2371 			hclgevf_uninit_msi(hdev);
2372 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2373 				ret);
2374 			return ret;
2375 		}
2376 
2377 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2378 	}
2379 
2380 	return ret;
2381 }
2382 
2383 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2384 {
2385 	struct pci_dev *pdev = hdev->pdev;
2386 	int ret;
2387 
2388 	ret = hclgevf_pci_reset(hdev);
2389 	if (ret) {
2390 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2391 		return ret;
2392 	}
2393 
2394 	ret = hclgevf_cmd_init(hdev);
2395 	if (ret) {
2396 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2397 		return ret;
2398 	}
2399 
2400 	ret = hclgevf_rss_init_hw(hdev);
2401 	if (ret) {
2402 		dev_err(&hdev->pdev->dev,
2403 			"failed(%d) to initialize RSS\n", ret);
2404 		return ret;
2405 	}
2406 
2407 	ret = hclgevf_config_gro(hdev, true);
2408 	if (ret)
2409 		return ret;
2410 
2411 	ret = hclgevf_init_vlan_config(hdev);
2412 	if (ret) {
2413 		dev_err(&hdev->pdev->dev,
2414 			"failed(%d) to initialize VLAN config\n", ret);
2415 		return ret;
2416 	}
2417 
2418 	dev_info(&hdev->pdev->dev, "Reset done\n");
2419 
2420 	return 0;
2421 }
2422 
2423 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2424 {
2425 	struct pci_dev *pdev = hdev->pdev;
2426 	int ret;
2427 
2428 	ret = hclgevf_pci_init(hdev);
2429 	if (ret) {
2430 		dev_err(&pdev->dev, "PCI initialization failed\n");
2431 		return ret;
2432 	}
2433 
2434 	ret = hclgevf_cmd_queue_init(hdev);
2435 	if (ret) {
2436 		dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2437 		goto err_cmd_queue_init;
2438 	}
2439 
2440 	ret = hclgevf_cmd_init(hdev);
2441 	if (ret)
2442 		goto err_cmd_init;
2443 
2444 	/* Get vf resource */
2445 	ret = hclgevf_query_vf_resource(hdev);
2446 	if (ret) {
2447 		dev_err(&hdev->pdev->dev,
2448 			"Query vf status error, ret = %d.\n", ret);
2449 		goto err_cmd_init;
2450 	}
2451 
2452 	ret = hclgevf_init_msi(hdev);
2453 	if (ret) {
2454 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2455 		goto err_cmd_init;
2456 	}
2457 
2458 	hclgevf_state_init(hdev);
2459 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2460 
2461 	ret = hclgevf_misc_irq_init(hdev);
2462 	if (ret) {
2463 		dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2464 			ret);
2465 		goto err_misc_irq_init;
2466 	}
2467 
2468 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2469 
2470 	ret = hclgevf_configure(hdev);
2471 	if (ret) {
2472 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2473 		goto err_config;
2474 	}
2475 
2476 	ret = hclgevf_alloc_tqps(hdev);
2477 	if (ret) {
2478 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2479 		goto err_config;
2480 	}
2481 
2482 	ret = hclgevf_set_handle_info(hdev);
2483 	if (ret) {
2484 		dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2485 		goto err_config;
2486 	}
2487 
2488 	ret = hclgevf_config_gro(hdev, true);
2489 	if (ret)
2490 		goto err_config;
2491 
2492 	/* vf is not allowed to enable unicast/multicast promisc mode.
2493 	 * For revision 0x20, default to disable broadcast promisc mode,
2494 	 * firmware makes sure broadcast packets can be accepted.
2495 	 * For revision 0x21, default to enable broadcast promisc mode.
2496 	 */
2497 	ret = hclgevf_set_promisc_mode(hdev, true);
2498 	if (ret)
2499 		goto err_config;
2500 
2501 	/* Initialize RSS for this VF */
2502 	ret = hclgevf_rss_init_hw(hdev);
2503 	if (ret) {
2504 		dev_err(&hdev->pdev->dev,
2505 			"failed(%d) to initialize RSS\n", ret);
2506 		goto err_config;
2507 	}
2508 
2509 	ret = hclgevf_init_vlan_config(hdev);
2510 	if (ret) {
2511 		dev_err(&hdev->pdev->dev,
2512 			"failed(%d) to initialize VLAN config\n", ret);
2513 		goto err_config;
2514 	}
2515 
2516 	hdev->last_reset_time = jiffies;
2517 	pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2518 
2519 	return 0;
2520 
2521 err_config:
2522 	hclgevf_misc_irq_uninit(hdev);
2523 err_misc_irq_init:
2524 	hclgevf_state_uninit(hdev);
2525 	hclgevf_uninit_msi(hdev);
2526 err_cmd_init:
2527 	hclgevf_cmd_uninit(hdev);
2528 err_cmd_queue_init:
2529 	hclgevf_pci_uninit(hdev);
2530 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2531 	return ret;
2532 }
2533 
2534 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2535 {
2536 	hclgevf_state_uninit(hdev);
2537 
2538 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2539 		hclgevf_misc_irq_uninit(hdev);
2540 		hclgevf_uninit_msi(hdev);
2541 	}
2542 
2543 	hclgevf_pci_uninit(hdev);
2544 	hclgevf_cmd_uninit(hdev);
2545 }
2546 
2547 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2548 {
2549 	struct pci_dev *pdev = ae_dev->pdev;
2550 	struct hclgevf_dev *hdev;
2551 	int ret;
2552 
2553 	ret = hclgevf_alloc_hdev(ae_dev);
2554 	if (ret) {
2555 		dev_err(&pdev->dev, "hclge device allocation failed\n");
2556 		return ret;
2557 	}
2558 
2559 	ret = hclgevf_init_hdev(ae_dev->priv);
2560 	if (ret) {
2561 		dev_err(&pdev->dev, "hclge device initialization failed\n");
2562 		return ret;
2563 	}
2564 
2565 	hdev = ae_dev->priv;
2566 	timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2567 	INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2568 
2569 	return 0;
2570 }
2571 
2572 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2573 {
2574 	struct hclgevf_dev *hdev = ae_dev->priv;
2575 
2576 	hclgevf_uninit_hdev(hdev);
2577 	ae_dev->priv = NULL;
2578 }
2579 
2580 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2581 {
2582 	struct hnae3_handle *nic = &hdev->nic;
2583 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2584 
2585 	return min_t(u32, hdev->rss_size_max,
2586 		     hdev->num_tqps / kinfo->num_tc);
2587 }
2588 
2589 /**
2590  * hclgevf_get_channels - Get the current channels enabled and max supported.
2591  * @handle: hardware information for network interface
2592  * @ch: ethtool channels structure
2593  *
2594  * We don't support separate tx and rx queues as channels. The other count
2595  * represents how many queues are being used for control. max_combined counts
2596  * how many queue pairs we can support. They may not be mapped 1 to 1 with
2597  * q_vectors since we support a lot more queue pairs than q_vectors.
2598  **/
2599 static void hclgevf_get_channels(struct hnae3_handle *handle,
2600 				 struct ethtool_channels *ch)
2601 {
2602 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2603 
2604 	ch->max_combined = hclgevf_get_max_channels(hdev);
2605 	ch->other_count = 0;
2606 	ch->max_other = 0;
2607 	ch->combined_count = handle->kinfo.rss_size;
2608 }
2609 
2610 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2611 					  u16 *alloc_tqps, u16 *max_rss_size)
2612 {
2613 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2614 
2615 	*alloc_tqps = hdev->num_tqps;
2616 	*max_rss_size = hdev->rss_size_max;
2617 }
2618 
2619 static int hclgevf_get_status(struct hnae3_handle *handle)
2620 {
2621 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2622 
2623 	return hdev->hw.mac.link;
2624 }
2625 
2626 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2627 					    u8 *auto_neg, u32 *speed,
2628 					    u8 *duplex)
2629 {
2630 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2631 
2632 	if (speed)
2633 		*speed = hdev->hw.mac.speed;
2634 	if (duplex)
2635 		*duplex = hdev->hw.mac.duplex;
2636 	if (auto_neg)
2637 		*auto_neg = AUTONEG_DISABLE;
2638 }
2639 
2640 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2641 				 u8 duplex)
2642 {
2643 	hdev->hw.mac.speed = speed;
2644 	hdev->hw.mac.duplex = duplex;
2645 }
2646 
2647 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2648 {
2649 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2650 
2651 	return hclgevf_config_gro(hdev, enable);
2652 }
2653 
2654 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2655 				  u8 *media_type)
2656 {
2657 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2658 	if (media_type)
2659 		*media_type = hdev->hw.mac.media_type;
2660 }
2661 
2662 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2663 {
2664 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2665 
2666 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2667 }
2668 
2669 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2670 {
2671 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2672 
2673 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2674 }
2675 
2676 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2677 {
2678 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2679 
2680 	return hdev->reset_count;
2681 }
2682 
2683 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2684 				  unsigned long *supported,
2685 				  unsigned long *advertising)
2686 {
2687 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2688 
2689 	*supported = hdev->hw.mac.supported;
2690 	*advertising = hdev->hw.mac.advertising;
2691 }
2692 
2693 #define MAX_SEPARATE_NUM	4
2694 #define SEPARATOR_VALUE		0xFFFFFFFF
2695 #define REG_NUM_PER_LINE	4
2696 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
2697 
2698 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2699 {
2700 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2701 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2702 
2703 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2704 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2705 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2706 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2707 
2708 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2709 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2710 }
2711 
2712 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2713 			     void *data)
2714 {
2715 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2716 	int i, j, reg_um, separator_num;
2717 	u32 *reg = data;
2718 
2719 	*version = hdev->fw_version;
2720 
2721 	/* fetching per-VF registers values from VF PCIe register space */
2722 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2723 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2724 	for (i = 0; i < reg_um; i++)
2725 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2726 	for (i = 0; i < separator_num; i++)
2727 		*reg++ = SEPARATOR_VALUE;
2728 
2729 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2730 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2731 	for (i = 0; i < reg_um; i++)
2732 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2733 	for (i = 0; i < separator_num; i++)
2734 		*reg++ = SEPARATOR_VALUE;
2735 
2736 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2737 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2738 	for (j = 0; j < hdev->num_tqps; j++) {
2739 		for (i = 0; i < reg_um; i++)
2740 			*reg++ = hclgevf_read_dev(&hdev->hw,
2741 						  ring_reg_addr_list[i] +
2742 						  0x200 * j);
2743 		for (i = 0; i < separator_num; i++)
2744 			*reg++ = SEPARATOR_VALUE;
2745 	}
2746 
2747 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2748 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2749 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
2750 		for (i = 0; i < reg_um; i++)
2751 			*reg++ = hclgevf_read_dev(&hdev->hw,
2752 						  tqp_intr_reg_addr_list[i] +
2753 						  4 * j);
2754 		for (i = 0; i < separator_num; i++)
2755 			*reg++ = SEPARATOR_VALUE;
2756 	}
2757 }
2758 
2759 static const struct hnae3_ae_ops hclgevf_ops = {
2760 	.init_ae_dev = hclgevf_init_ae_dev,
2761 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
2762 	.flr_prepare = hclgevf_flr_prepare,
2763 	.flr_done = hclgevf_flr_done,
2764 	.init_client_instance = hclgevf_init_client_instance,
2765 	.uninit_client_instance = hclgevf_uninit_client_instance,
2766 	.start = hclgevf_ae_start,
2767 	.stop = hclgevf_ae_stop,
2768 	.client_start = hclgevf_client_start,
2769 	.client_stop = hclgevf_client_stop,
2770 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
2771 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2772 	.get_vector = hclgevf_get_vector,
2773 	.put_vector = hclgevf_put_vector,
2774 	.reset_queue = hclgevf_reset_tqp,
2775 	.get_mac_addr = hclgevf_get_mac_addr,
2776 	.set_mac_addr = hclgevf_set_mac_addr,
2777 	.add_uc_addr = hclgevf_add_uc_addr,
2778 	.rm_uc_addr = hclgevf_rm_uc_addr,
2779 	.add_mc_addr = hclgevf_add_mc_addr,
2780 	.rm_mc_addr = hclgevf_rm_mc_addr,
2781 	.get_stats = hclgevf_get_stats,
2782 	.update_stats = hclgevf_update_stats,
2783 	.get_strings = hclgevf_get_strings,
2784 	.get_sset_count = hclgevf_get_sset_count,
2785 	.get_rss_key_size = hclgevf_get_rss_key_size,
2786 	.get_rss_indir_size = hclgevf_get_rss_indir_size,
2787 	.get_rss = hclgevf_get_rss,
2788 	.set_rss = hclgevf_set_rss,
2789 	.get_rss_tuple = hclgevf_get_rss_tuple,
2790 	.set_rss_tuple = hclgevf_set_rss_tuple,
2791 	.get_tc_size = hclgevf_get_tc_size,
2792 	.get_fw_version = hclgevf_get_fw_version,
2793 	.set_vlan_filter = hclgevf_set_vlan_filter,
2794 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2795 	.reset_event = hclgevf_reset_event,
2796 	.set_default_reset_request = hclgevf_set_def_reset_request,
2797 	.get_channels = hclgevf_get_channels,
2798 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2799 	.get_regs_len = hclgevf_get_regs_len,
2800 	.get_regs = hclgevf_get_regs,
2801 	.get_status = hclgevf_get_status,
2802 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2803 	.get_media_type = hclgevf_get_media_type,
2804 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2805 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
2806 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2807 	.set_gro_en = hclgevf_gro_en,
2808 	.set_mtu = hclgevf_set_mtu,
2809 	.get_global_queue_id = hclgevf_get_qid_global,
2810 	.set_timer_task = hclgevf_set_timer_task,
2811 	.get_link_mode = hclgevf_get_link_mode,
2812 };
2813 
2814 static struct hnae3_ae_algo ae_algovf = {
2815 	.ops = &hclgevf_ops,
2816 	.pdev_id_table = ae_algovf_pci_tbl,
2817 };
2818 
2819 static int hclgevf_init(void)
2820 {
2821 	pr_info("%s is initializing\n", HCLGEVF_NAME);
2822 
2823 	hnae3_register_ae_algo(&ae_algovf);
2824 
2825 	return 0;
2826 }
2827 
2828 static void hclgevf_exit(void)
2829 {
2830 	hnae3_unregister_ae_algo(&ae_algovf);
2831 }
2832 module_init(hclgevf_init);
2833 module_exit(hclgevf_exit);
2834 
2835 MODULE_LICENSE("GPL");
2836 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2837 MODULE_DESCRIPTION("HCLGEVF Driver");
2838 MODULE_VERSION(HCLGEVF_MOD_VERSION);
2839