1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/acpi.h>
5 #include <linux/device.h>
6 #include <linux/etherdevice.h>
7 #include <linux/init.h>
8 #include <linux/interrupt.h>
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/pci.h>
13 #include <linux/platform_device.h>
14 #include <linux/if_vlan.h>
15 #include <linux/crash_dump.h>
16 #include <net/ipv6.h>
17 #include <net/rtnetlink.h>
18 #include "hclge_cmd.h"
19 #include "hclge_dcb.h"
20 #include "hclge_main.h"
21 #include "hclge_mbx.h"
22 #include "hclge_mdio.h"
23 #include "hclge_tm.h"
24 #include "hclge_err.h"
25 #include "hnae3.h"
26 #include "hclge_devlink.h"
27 #include "hclge_comm_cmd.h"
28 
29 #define HCLGE_NAME			"hclge"
30 
31 #define HCLGE_BUF_SIZE_UNIT	256U
32 #define HCLGE_BUF_MUL_BY	2
33 #define HCLGE_BUF_DIV_BY	2
34 #define NEED_RESERVE_TC_NUM	2
35 #define BUF_MAX_PERCENT		100
36 #define BUF_RESERVE_PERCENT	90
37 
38 #define HCLGE_RESET_MAX_FAIL_CNT	5
39 #define HCLGE_RESET_SYNC_TIME		100
40 #define HCLGE_PF_RESET_SYNC_TIME	20
41 #define HCLGE_PF_RESET_SYNC_CNT		1500
42 
43 /* Get DFX BD number offset */
44 #define HCLGE_DFX_BIOS_BD_OFFSET        1
45 #define HCLGE_DFX_SSU_0_BD_OFFSET       2
46 #define HCLGE_DFX_SSU_1_BD_OFFSET       3
47 #define HCLGE_DFX_IGU_BD_OFFSET         4
48 #define HCLGE_DFX_RPU_0_BD_OFFSET       5
49 #define HCLGE_DFX_RPU_1_BD_OFFSET       6
50 #define HCLGE_DFX_NCSI_BD_OFFSET        7
51 #define HCLGE_DFX_RTC_BD_OFFSET         8
52 #define HCLGE_DFX_PPP_BD_OFFSET         9
53 #define HCLGE_DFX_RCB_BD_OFFSET         10
54 #define HCLGE_DFX_TQP_BD_OFFSET         11
55 #define HCLGE_DFX_SSU_2_BD_OFFSET       12
56 
57 #define HCLGE_LINK_STATUS_MS	10
58 
59 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps);
60 static int hclge_init_vlan_config(struct hclge_dev *hdev);
61 static void hclge_sync_vlan_filter(struct hclge_dev *hdev);
62 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev);
63 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle);
64 static void hclge_rfs_filter_expire(struct hclge_dev *hdev);
65 static int hclge_clear_arfs_rules(struct hclge_dev *hdev);
66 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
67 						   unsigned long *addr);
68 static int hclge_set_default_loopback(struct hclge_dev *hdev);
69 
70 static void hclge_sync_mac_table(struct hclge_dev *hdev);
71 static void hclge_restore_hw_table(struct hclge_dev *hdev);
72 static void hclge_sync_promisc_mode(struct hclge_dev *hdev);
73 static void hclge_sync_fd_table(struct hclge_dev *hdev);
74 
75 static struct hnae3_ae_algo ae_algo;
76 
77 static struct workqueue_struct *hclge_wq;
78 
79 static const struct pci_device_id ae_algo_pci_tbl[] = {
80 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
81 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
82 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 0},
83 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 0},
84 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 0},
85 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 0},
86 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 0},
87 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 0},
88 	/* required last entry */
89 	{0, }
90 };
91 
92 MODULE_DEVICE_TABLE(pci, ae_algo_pci_tbl);
93 
94 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
95 					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
96 					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
97 					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
98 					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
99 					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
100 					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
101 					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
102 					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
103 					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
104 					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
105 					 HCLGE_COMM_CMDQ_INTR_STS_REG,
106 					 HCLGE_COMM_CMDQ_INTR_EN_REG,
107 					 HCLGE_COMM_CMDQ_INTR_GEN_REG};
108 
109 static const u32 common_reg_addr_list[] = {HCLGE_MISC_VECTOR_REG_BASE,
110 					   HCLGE_PF_OTHER_INT_REG,
111 					   HCLGE_MISC_RESET_STS_REG,
112 					   HCLGE_MISC_VECTOR_INT_STS,
113 					   HCLGE_GLOBAL_RESET_REG,
114 					   HCLGE_FUN_RST_ING,
115 					   HCLGE_GRO_EN_REG};
116 
117 static const u32 ring_reg_addr_list[] = {HCLGE_RING_RX_ADDR_L_REG,
118 					 HCLGE_RING_RX_ADDR_H_REG,
119 					 HCLGE_RING_RX_BD_NUM_REG,
120 					 HCLGE_RING_RX_BD_LENGTH_REG,
121 					 HCLGE_RING_RX_MERGE_EN_REG,
122 					 HCLGE_RING_RX_TAIL_REG,
123 					 HCLGE_RING_RX_HEAD_REG,
124 					 HCLGE_RING_RX_FBD_NUM_REG,
125 					 HCLGE_RING_RX_OFFSET_REG,
126 					 HCLGE_RING_RX_FBD_OFFSET_REG,
127 					 HCLGE_RING_RX_STASH_REG,
128 					 HCLGE_RING_RX_BD_ERR_REG,
129 					 HCLGE_RING_TX_ADDR_L_REG,
130 					 HCLGE_RING_TX_ADDR_H_REG,
131 					 HCLGE_RING_TX_BD_NUM_REG,
132 					 HCLGE_RING_TX_PRIORITY_REG,
133 					 HCLGE_RING_TX_TC_REG,
134 					 HCLGE_RING_TX_MERGE_EN_REG,
135 					 HCLGE_RING_TX_TAIL_REG,
136 					 HCLGE_RING_TX_HEAD_REG,
137 					 HCLGE_RING_TX_FBD_NUM_REG,
138 					 HCLGE_RING_TX_OFFSET_REG,
139 					 HCLGE_RING_TX_EBD_NUM_REG,
140 					 HCLGE_RING_TX_EBD_OFFSET_REG,
141 					 HCLGE_RING_TX_BD_ERR_REG,
142 					 HCLGE_RING_EN_REG};
143 
144 static const u32 tqp_intr_reg_addr_list[] = {HCLGE_TQP_INTR_CTRL_REG,
145 					     HCLGE_TQP_INTR_GL0_REG,
146 					     HCLGE_TQP_INTR_GL1_REG,
147 					     HCLGE_TQP_INTR_GL2_REG,
148 					     HCLGE_TQP_INTR_RL_REG};
149 
150 static const char hns3_nic_test_strs[][ETH_GSTRING_LEN] = {
151 	"App    Loopback test",
152 	"Serdes serial Loopback test",
153 	"Serdes parallel Loopback test",
154 	"Phy    Loopback test"
155 };
156 
157 static const struct hclge_comm_stats_str g_mac_stats_string[] = {
158 	{"mac_tx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1,
159 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_mac_pause_num)},
160 	{"mac_rx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1,
161 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_mac_pause_num)},
162 	{"mac_tx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
163 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pause_xoff_time)},
164 	{"mac_rx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
165 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pause_xoff_time)},
166 	{"mac_tx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
167 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_ctrl_pkt_num)},
168 	{"mac_rx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
169 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_ctrl_pkt_num)},
170 	{"mac_tx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
171 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pause_pkt_num)},
172 	{"mac_tx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
173 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_pkt_num)},
174 	{"mac_tx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
175 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_pkt_num)},
176 	{"mac_tx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
177 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_pkt_num)},
178 	{"mac_tx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
179 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_pkt_num)},
180 	{"mac_tx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
181 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_pkt_num)},
182 	{"mac_tx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
183 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_pkt_num)},
184 	{"mac_tx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
185 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_pkt_num)},
186 	{"mac_tx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
187 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_pkt_num)},
188 	{"mac_tx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
189 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_xoff_time)},
190 	{"mac_tx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
191 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_xoff_time)},
192 	{"mac_tx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
193 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_xoff_time)},
194 	{"mac_tx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
195 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_xoff_time)},
196 	{"mac_tx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
197 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_xoff_time)},
198 	{"mac_tx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
199 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_xoff_time)},
200 	{"mac_tx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
201 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_xoff_time)},
202 	{"mac_tx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
203 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_xoff_time)},
204 	{"mac_rx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
205 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pause_pkt_num)},
206 	{"mac_rx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
207 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_pkt_num)},
208 	{"mac_rx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
209 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_pkt_num)},
210 	{"mac_rx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
211 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_pkt_num)},
212 	{"mac_rx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
213 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_pkt_num)},
214 	{"mac_rx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
215 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_pkt_num)},
216 	{"mac_rx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
217 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_pkt_num)},
218 	{"mac_rx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
219 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_pkt_num)},
220 	{"mac_rx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
221 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_pkt_num)},
222 	{"mac_rx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
223 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_xoff_time)},
224 	{"mac_rx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
225 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_xoff_time)},
226 	{"mac_rx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
227 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_xoff_time)},
228 	{"mac_rx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
229 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_xoff_time)},
230 	{"mac_rx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
231 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_xoff_time)},
232 	{"mac_rx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
233 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_xoff_time)},
234 	{"mac_rx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
235 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_xoff_time)},
236 	{"mac_rx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
237 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_xoff_time)},
238 	{"mac_tx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
239 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_pkt_num)},
240 	{"mac_tx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
241 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_oct_num)},
242 	{"mac_tx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
243 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_pkt_num)},
244 	{"mac_tx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
245 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_pkt_num)},
246 	{"mac_tx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
247 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_oct_num)},
248 	{"mac_tx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
249 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_oct_num)},
250 	{"mac_tx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
251 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_uni_pkt_num)},
252 	{"mac_tx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
253 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_multi_pkt_num)},
254 	{"mac_tx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
255 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_broad_pkt_num)},
256 	{"mac_tx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
257 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undersize_pkt_num)},
258 	{"mac_tx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
259 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_oversize_pkt_num)},
260 	{"mac_tx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
261 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_64_oct_pkt_num)},
262 	{"mac_tx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
263 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_65_127_oct_pkt_num)},
264 	{"mac_tx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
265 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_128_255_oct_pkt_num)},
266 	{"mac_tx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
267 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_256_511_oct_pkt_num)},
268 	{"mac_tx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
269 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_512_1023_oct_pkt_num)},
270 	{"mac_tx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
271 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1024_1518_oct_pkt_num)},
272 	{"mac_tx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
273 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_2047_oct_pkt_num)},
274 	{"mac_tx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
275 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_2048_4095_oct_pkt_num)},
276 	{"mac_tx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
277 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_4096_8191_oct_pkt_num)},
278 	{"mac_tx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
279 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_8192_9216_oct_pkt_num)},
280 	{"mac_tx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
281 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_9217_12287_oct_pkt_num)},
282 	{"mac_tx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
283 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_12288_16383_oct_pkt_num)},
284 	{"mac_tx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
285 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_good_oct_pkt_num)},
286 	{"mac_tx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
287 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_bad_oct_pkt_num)},
288 	{"mac_rx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
289 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_pkt_num)},
290 	{"mac_rx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
291 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_oct_num)},
292 	{"mac_rx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
293 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_pkt_num)},
294 	{"mac_rx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
295 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_pkt_num)},
296 	{"mac_rx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
297 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_oct_num)},
298 	{"mac_rx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
299 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_oct_num)},
300 	{"mac_rx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
301 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_uni_pkt_num)},
302 	{"mac_rx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
303 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_multi_pkt_num)},
304 	{"mac_rx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
305 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_broad_pkt_num)},
306 	{"mac_rx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
307 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undersize_pkt_num)},
308 	{"mac_rx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
309 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_oversize_pkt_num)},
310 	{"mac_rx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
311 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_64_oct_pkt_num)},
312 	{"mac_rx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
313 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_65_127_oct_pkt_num)},
314 	{"mac_rx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
315 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_128_255_oct_pkt_num)},
316 	{"mac_rx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
317 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_256_511_oct_pkt_num)},
318 	{"mac_rx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
319 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_512_1023_oct_pkt_num)},
320 	{"mac_rx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
321 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1024_1518_oct_pkt_num)},
322 	{"mac_rx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
323 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_2047_oct_pkt_num)},
324 	{"mac_rx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
325 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_2048_4095_oct_pkt_num)},
326 	{"mac_rx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
327 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_4096_8191_oct_pkt_num)},
328 	{"mac_rx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
329 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_8192_9216_oct_pkt_num)},
330 	{"mac_rx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
331 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_9217_12287_oct_pkt_num)},
332 	{"mac_rx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
333 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_12288_16383_oct_pkt_num)},
334 	{"mac_rx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
335 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_good_oct_pkt_num)},
336 	{"mac_rx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
337 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_bad_oct_pkt_num)},
338 
339 	{"mac_tx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
340 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_fragment_pkt_num)},
341 	{"mac_tx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
342 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undermin_pkt_num)},
343 	{"mac_tx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
344 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_jabber_pkt_num)},
345 	{"mac_tx_err_all_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
346 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_err_all_pkt_num)},
347 	{"mac_tx_from_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
348 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_good_pkt_num)},
349 	{"mac_tx_from_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
350 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_bad_pkt_num)},
351 	{"mac_rx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
352 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fragment_pkt_num)},
353 	{"mac_rx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
354 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undermin_pkt_num)},
355 	{"mac_rx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
356 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_jabber_pkt_num)},
357 	{"mac_rx_fcs_err_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
358 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fcs_err_pkt_num)},
359 	{"mac_rx_send_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
360 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_good_pkt_num)},
361 	{"mac_rx_send_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
362 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_bad_pkt_num)}
363 };
364 
365 static const struct hclge_mac_mgr_tbl_entry_cmd hclge_mgr_table[] = {
366 	{
367 		.flags = HCLGE_MAC_MGR_MASK_VLAN_B,
368 		.ethter_type = cpu_to_le16(ETH_P_LLDP),
369 		.mac_addr = {0x01, 0x80, 0xc2, 0x00, 0x00, 0x0e},
370 		.i_port_bitmap = 0x1,
371 	},
372 };
373 
374 static const u32 hclge_dfx_bd_offset_list[] = {
375 	HCLGE_DFX_BIOS_BD_OFFSET,
376 	HCLGE_DFX_SSU_0_BD_OFFSET,
377 	HCLGE_DFX_SSU_1_BD_OFFSET,
378 	HCLGE_DFX_IGU_BD_OFFSET,
379 	HCLGE_DFX_RPU_0_BD_OFFSET,
380 	HCLGE_DFX_RPU_1_BD_OFFSET,
381 	HCLGE_DFX_NCSI_BD_OFFSET,
382 	HCLGE_DFX_RTC_BD_OFFSET,
383 	HCLGE_DFX_PPP_BD_OFFSET,
384 	HCLGE_DFX_RCB_BD_OFFSET,
385 	HCLGE_DFX_TQP_BD_OFFSET,
386 	HCLGE_DFX_SSU_2_BD_OFFSET
387 };
388 
389 static const enum hclge_opcode_type hclge_dfx_reg_opcode_list[] = {
390 	HCLGE_OPC_DFX_BIOS_COMMON_REG,
391 	HCLGE_OPC_DFX_SSU_REG_0,
392 	HCLGE_OPC_DFX_SSU_REG_1,
393 	HCLGE_OPC_DFX_IGU_EGU_REG,
394 	HCLGE_OPC_DFX_RPU_REG_0,
395 	HCLGE_OPC_DFX_RPU_REG_1,
396 	HCLGE_OPC_DFX_NCSI_REG,
397 	HCLGE_OPC_DFX_RTC_REG,
398 	HCLGE_OPC_DFX_PPP_REG,
399 	HCLGE_OPC_DFX_RCB_REG,
400 	HCLGE_OPC_DFX_TQP_REG,
401 	HCLGE_OPC_DFX_SSU_REG_2
402 };
403 
404 static const struct key_info meta_data_key_info[] = {
405 	{ PACKET_TYPE_ID, 6 },
406 	{ IP_FRAGEMENT, 1 },
407 	{ ROCE_TYPE, 1 },
408 	{ NEXT_KEY, 5 },
409 	{ VLAN_NUMBER, 2 },
410 	{ SRC_VPORT, 12 },
411 	{ DST_VPORT, 12 },
412 	{ TUNNEL_PACKET, 1 },
413 };
414 
415 static const struct key_info tuple_key_info[] = {
416 	{ OUTER_DST_MAC, 48, KEY_OPT_MAC, -1, -1 },
417 	{ OUTER_SRC_MAC, 48, KEY_OPT_MAC, -1, -1 },
418 	{ OUTER_VLAN_TAG_FST, 16, KEY_OPT_LE16, -1, -1 },
419 	{ OUTER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 },
420 	{ OUTER_ETH_TYPE, 16, KEY_OPT_LE16, -1, -1 },
421 	{ OUTER_L2_RSV, 16, KEY_OPT_LE16, -1, -1 },
422 	{ OUTER_IP_TOS, 8, KEY_OPT_U8, -1, -1 },
423 	{ OUTER_IP_PROTO, 8, KEY_OPT_U8, -1, -1 },
424 	{ OUTER_SRC_IP, 32, KEY_OPT_IP, -1, -1 },
425 	{ OUTER_DST_IP, 32, KEY_OPT_IP, -1, -1 },
426 	{ OUTER_L3_RSV, 16, KEY_OPT_LE16, -1, -1 },
427 	{ OUTER_SRC_PORT, 16, KEY_OPT_LE16, -1, -1 },
428 	{ OUTER_DST_PORT, 16, KEY_OPT_LE16, -1, -1 },
429 	{ OUTER_L4_RSV, 32, KEY_OPT_LE32, -1, -1 },
430 	{ OUTER_TUN_VNI, 24, KEY_OPT_VNI, -1, -1 },
431 	{ OUTER_TUN_FLOW_ID, 8, KEY_OPT_U8, -1, -1 },
432 	{ INNER_DST_MAC, 48, KEY_OPT_MAC,
433 	  offsetof(struct hclge_fd_rule, tuples.dst_mac),
434 	  offsetof(struct hclge_fd_rule, tuples_mask.dst_mac) },
435 	{ INNER_SRC_MAC, 48, KEY_OPT_MAC,
436 	  offsetof(struct hclge_fd_rule, tuples.src_mac),
437 	  offsetof(struct hclge_fd_rule, tuples_mask.src_mac) },
438 	{ INNER_VLAN_TAG_FST, 16, KEY_OPT_LE16,
439 	  offsetof(struct hclge_fd_rule, tuples.vlan_tag1),
440 	  offsetof(struct hclge_fd_rule, tuples_mask.vlan_tag1) },
441 	{ INNER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 },
442 	{ INNER_ETH_TYPE, 16, KEY_OPT_LE16,
443 	  offsetof(struct hclge_fd_rule, tuples.ether_proto),
444 	  offsetof(struct hclge_fd_rule, tuples_mask.ether_proto) },
445 	{ INNER_L2_RSV, 16, KEY_OPT_LE16,
446 	  offsetof(struct hclge_fd_rule, tuples.l2_user_def),
447 	  offsetof(struct hclge_fd_rule, tuples_mask.l2_user_def) },
448 	{ INNER_IP_TOS, 8, KEY_OPT_U8,
449 	  offsetof(struct hclge_fd_rule, tuples.ip_tos),
450 	  offsetof(struct hclge_fd_rule, tuples_mask.ip_tos) },
451 	{ INNER_IP_PROTO, 8, KEY_OPT_U8,
452 	  offsetof(struct hclge_fd_rule, tuples.ip_proto),
453 	  offsetof(struct hclge_fd_rule, tuples_mask.ip_proto) },
454 	{ INNER_SRC_IP, 32, KEY_OPT_IP,
455 	  offsetof(struct hclge_fd_rule, tuples.src_ip),
456 	  offsetof(struct hclge_fd_rule, tuples_mask.src_ip) },
457 	{ INNER_DST_IP, 32, KEY_OPT_IP,
458 	  offsetof(struct hclge_fd_rule, tuples.dst_ip),
459 	  offsetof(struct hclge_fd_rule, tuples_mask.dst_ip) },
460 	{ INNER_L3_RSV, 16, KEY_OPT_LE16,
461 	  offsetof(struct hclge_fd_rule, tuples.l3_user_def),
462 	  offsetof(struct hclge_fd_rule, tuples_mask.l3_user_def) },
463 	{ INNER_SRC_PORT, 16, KEY_OPT_LE16,
464 	  offsetof(struct hclge_fd_rule, tuples.src_port),
465 	  offsetof(struct hclge_fd_rule, tuples_mask.src_port) },
466 	{ INNER_DST_PORT, 16, KEY_OPT_LE16,
467 	  offsetof(struct hclge_fd_rule, tuples.dst_port),
468 	  offsetof(struct hclge_fd_rule, tuples_mask.dst_port) },
469 	{ INNER_L4_RSV, 32, KEY_OPT_LE32,
470 	  offsetof(struct hclge_fd_rule, tuples.l4_user_def),
471 	  offsetof(struct hclge_fd_rule, tuples_mask.l4_user_def) },
472 };
473 
474 /**
475  * hclge_cmd_send - send command to command queue
476  * @hw: pointer to the hw struct
477  * @desc: prefilled descriptor for describing the command
478  * @num : the number of descriptors to be sent
479  *
480  * This is the main send command for command queue, it
481  * sends the queue, cleans the queue, etc
482  **/
483 int hclge_cmd_send(struct hclge_hw *hw, struct hclge_desc *desc, int num)
484 {
485 	return hclge_comm_cmd_send(&hw->hw, desc, num);
486 }
487 
488 static int hclge_mac_update_stats_defective(struct hclge_dev *hdev)
489 {
490 #define HCLGE_MAC_CMD_NUM 21
491 
492 	u64 *data = (u64 *)(&hdev->mac_stats);
493 	struct hclge_desc desc[HCLGE_MAC_CMD_NUM];
494 	__le64 *desc_data;
495 	u32 data_size;
496 	int ret;
497 	u32 i;
498 
499 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC, true);
500 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_MAC_CMD_NUM);
501 	if (ret) {
502 		dev_err(&hdev->pdev->dev,
503 			"Get MAC pkt stats fail, status = %d.\n", ret);
504 
505 		return ret;
506 	}
507 
508 	/* The first desc has a 64-bit header, so data size need to minus 1 */
509 	data_size = sizeof(desc) / (sizeof(u64)) - 1;
510 
511 	desc_data = (__le64 *)(&desc[0].data[0]);
512 	for (i = 0; i < data_size; i++) {
513 		/* data memory is continuous becase only the first desc has a
514 		 * header in this command
515 		 */
516 		*data += le64_to_cpu(*desc_data);
517 		data++;
518 		desc_data++;
519 	}
520 
521 	return 0;
522 }
523 
524 static int hclge_mac_update_stats_complete(struct hclge_dev *hdev)
525 {
526 #define HCLGE_REG_NUM_PER_DESC		4
527 
528 	u32 reg_num = hdev->ae_dev->dev_specs.mac_stats_num;
529 	u64 *data = (u64 *)(&hdev->mac_stats);
530 	struct hclge_desc *desc;
531 	__le64 *desc_data;
532 	u32 data_size;
533 	u32 desc_num;
534 	int ret;
535 	u32 i;
536 
537 	/* The first desc has a 64-bit header, so need to consider it */
538 	desc_num = reg_num / HCLGE_REG_NUM_PER_DESC + 1;
539 
540 	/* This may be called inside atomic sections,
541 	 * so GFP_ATOMIC is more suitalbe here
542 	 */
543 	desc = kcalloc(desc_num, sizeof(struct hclge_desc), GFP_ATOMIC);
544 	if (!desc)
545 		return -ENOMEM;
546 
547 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC_ALL, true);
548 	ret = hclge_cmd_send(&hdev->hw, desc, desc_num);
549 	if (ret) {
550 		kfree(desc);
551 		return ret;
552 	}
553 
554 	data_size = min_t(u32, sizeof(hdev->mac_stats) / sizeof(u64), reg_num);
555 
556 	desc_data = (__le64 *)(&desc[0].data[0]);
557 	for (i = 0; i < data_size; i++) {
558 		/* data memory is continuous becase only the first desc has a
559 		 * header in this command
560 		 */
561 		*data += le64_to_cpu(*desc_data);
562 		data++;
563 		desc_data++;
564 	}
565 
566 	kfree(desc);
567 
568 	return 0;
569 }
570 
571 static int hclge_mac_query_reg_num(struct hclge_dev *hdev, u32 *reg_num)
572 {
573 	struct hclge_desc desc;
574 	int ret;
575 
576 	/* Driver needs total register number of both valid registers and
577 	 * reserved registers, but the old firmware only returns number
578 	 * of valid registers in device V2. To be compatible with these
579 	 * devices, driver uses a fixed value.
580 	 */
581 	if (hdev->ae_dev->dev_version == HNAE3_DEVICE_VERSION_V2) {
582 		*reg_num = HCLGE_MAC_STATS_MAX_NUM_V1;
583 		return 0;
584 	}
585 
586 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_MAC_REG_NUM, true);
587 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
588 	if (ret) {
589 		dev_err(&hdev->pdev->dev,
590 			"failed to query mac statistic reg number, ret = %d\n",
591 			ret);
592 		return ret;
593 	}
594 
595 	*reg_num = le32_to_cpu(desc.data[0]);
596 	if (*reg_num == 0) {
597 		dev_err(&hdev->pdev->dev,
598 			"mac statistic reg number is invalid!\n");
599 		return -ENODATA;
600 	}
601 
602 	return 0;
603 }
604 
605 int hclge_mac_update_stats(struct hclge_dev *hdev)
606 {
607 	/* The firmware supports the new statistics acquisition method */
608 	if (hdev->ae_dev->dev_specs.mac_stats_num)
609 		return hclge_mac_update_stats_complete(hdev);
610 	else
611 		return hclge_mac_update_stats_defective(hdev);
612 }
613 
614 static int hclge_comm_get_count(struct hclge_dev *hdev,
615 				const struct hclge_comm_stats_str strs[],
616 				u32 size)
617 {
618 	int count = 0;
619 	u32 i;
620 
621 	for (i = 0; i < size; i++)
622 		if (strs[i].stats_num <= hdev->ae_dev->dev_specs.mac_stats_num)
623 			count++;
624 
625 	return count;
626 }
627 
628 static u64 *hclge_comm_get_stats(struct hclge_dev *hdev,
629 				 const struct hclge_comm_stats_str strs[],
630 				 int size, u64 *data)
631 {
632 	u64 *buf = data;
633 	u32 i;
634 
635 	for (i = 0; i < size; i++) {
636 		if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num)
637 			continue;
638 
639 		*buf = HCLGE_STATS_READ(&hdev->mac_stats, strs[i].offset);
640 		buf++;
641 	}
642 
643 	return buf;
644 }
645 
646 static u8 *hclge_comm_get_strings(struct hclge_dev *hdev, u32 stringset,
647 				  const struct hclge_comm_stats_str strs[],
648 				  int size, u8 *data)
649 {
650 	char *buff = (char *)data;
651 	u32 i;
652 
653 	if (stringset != ETH_SS_STATS)
654 		return buff;
655 
656 	for (i = 0; i < size; i++) {
657 		if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num)
658 			continue;
659 
660 		snprintf(buff, ETH_GSTRING_LEN, "%s", strs[i].desc);
661 		buff = buff + ETH_GSTRING_LEN;
662 	}
663 
664 	return (u8 *)buff;
665 }
666 
667 static void hclge_update_stats_for_all(struct hclge_dev *hdev)
668 {
669 	struct hnae3_handle *handle;
670 	int status;
671 
672 	handle = &hdev->vport[0].nic;
673 	if (handle->client) {
674 		status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
675 		if (status) {
676 			dev_err(&hdev->pdev->dev,
677 				"Update TQPS stats fail, status = %d.\n",
678 				status);
679 		}
680 	}
681 
682 	status = hclge_mac_update_stats(hdev);
683 	if (status)
684 		dev_err(&hdev->pdev->dev,
685 			"Update MAC stats fail, status = %d.\n", status);
686 }
687 
688 static void hclge_update_stats(struct hnae3_handle *handle,
689 			       struct net_device_stats *net_stats)
690 {
691 	struct hclge_vport *vport = hclge_get_vport(handle);
692 	struct hclge_dev *hdev = vport->back;
693 	int status;
694 
695 	if (test_and_set_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state))
696 		return;
697 
698 	status = hclge_mac_update_stats(hdev);
699 	if (status)
700 		dev_err(&hdev->pdev->dev,
701 			"Update MAC stats fail, status = %d.\n",
702 			status);
703 
704 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
705 	if (status)
706 		dev_err(&hdev->pdev->dev,
707 			"Update TQPS stats fail, status = %d.\n",
708 			status);
709 
710 	clear_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state);
711 }
712 
713 static int hclge_get_sset_count(struct hnae3_handle *handle, int stringset)
714 {
715 #define HCLGE_LOOPBACK_TEST_FLAGS (HNAE3_SUPPORT_APP_LOOPBACK | \
716 		HNAE3_SUPPORT_PHY_LOOPBACK | \
717 		HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK | \
718 		HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK)
719 
720 	struct hclge_vport *vport = hclge_get_vport(handle);
721 	struct hclge_dev *hdev = vport->back;
722 	int count = 0;
723 
724 	/* Loopback test support rules:
725 	 * mac: only GE mode support
726 	 * serdes: all mac mode will support include GE/XGE/LGE/CGE
727 	 * phy: only support when phy device exist on board
728 	 */
729 	if (stringset == ETH_SS_TEST) {
730 		/* clear loopback bit flags at first */
731 		handle->flags = (handle->flags & (~HCLGE_LOOPBACK_TEST_FLAGS));
732 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 ||
733 		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_10M ||
734 		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_100M ||
735 		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_1G) {
736 			count += 1;
737 			handle->flags |= HNAE3_SUPPORT_APP_LOOPBACK;
738 		}
739 
740 		count += 2;
741 		handle->flags |= HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK;
742 		handle->flags |= HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK;
743 
744 		if ((hdev->hw.mac.phydev && hdev->hw.mac.phydev->drv &&
745 		     hdev->hw.mac.phydev->drv->set_loopback) ||
746 		    hnae3_dev_phy_imp_supported(hdev)) {
747 			count += 1;
748 			handle->flags |= HNAE3_SUPPORT_PHY_LOOPBACK;
749 		}
750 	} else if (stringset == ETH_SS_STATS) {
751 		count = hclge_comm_get_count(hdev, g_mac_stats_string,
752 					     ARRAY_SIZE(g_mac_stats_string)) +
753 			hclge_comm_tqps_get_sset_count(handle);
754 	}
755 
756 	return count;
757 }
758 
759 static void hclge_get_strings(struct hnae3_handle *handle, u32 stringset,
760 			      u8 *data)
761 {
762 	struct hclge_vport *vport = hclge_get_vport(handle);
763 	struct hclge_dev *hdev = vport->back;
764 	u8 *p = (char *)data;
765 	int size;
766 
767 	if (stringset == ETH_SS_STATS) {
768 		size = ARRAY_SIZE(g_mac_stats_string);
769 		p = hclge_comm_get_strings(hdev, stringset, g_mac_stats_string,
770 					   size, p);
771 		p = hclge_comm_tqps_get_strings(handle, p);
772 	} else if (stringset == ETH_SS_TEST) {
773 		if (handle->flags & HNAE3_SUPPORT_APP_LOOPBACK) {
774 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_APP],
775 			       ETH_GSTRING_LEN);
776 			p += ETH_GSTRING_LEN;
777 		}
778 		if (handle->flags & HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK) {
779 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_SERIAL_SERDES],
780 			       ETH_GSTRING_LEN);
781 			p += ETH_GSTRING_LEN;
782 		}
783 		if (handle->flags & HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK) {
784 			memcpy(p,
785 			       hns3_nic_test_strs[HNAE3_LOOP_PARALLEL_SERDES],
786 			       ETH_GSTRING_LEN);
787 			p += ETH_GSTRING_LEN;
788 		}
789 		if (handle->flags & HNAE3_SUPPORT_PHY_LOOPBACK) {
790 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_PHY],
791 			       ETH_GSTRING_LEN);
792 			p += ETH_GSTRING_LEN;
793 		}
794 	}
795 }
796 
797 static void hclge_get_stats(struct hnae3_handle *handle, u64 *data)
798 {
799 	struct hclge_vport *vport = hclge_get_vport(handle);
800 	struct hclge_dev *hdev = vport->back;
801 	u64 *p;
802 
803 	p = hclge_comm_get_stats(hdev, g_mac_stats_string,
804 				 ARRAY_SIZE(g_mac_stats_string), data);
805 	p = hclge_comm_tqps_get_stats(handle, p);
806 }
807 
808 static void hclge_get_mac_stat(struct hnae3_handle *handle,
809 			       struct hns3_mac_stats *mac_stats)
810 {
811 	struct hclge_vport *vport = hclge_get_vport(handle);
812 	struct hclge_dev *hdev = vport->back;
813 
814 	hclge_update_stats(handle, NULL);
815 
816 	mac_stats->tx_pause_cnt = hdev->mac_stats.mac_tx_mac_pause_num;
817 	mac_stats->rx_pause_cnt = hdev->mac_stats.mac_rx_mac_pause_num;
818 }
819 
820 static int hclge_parse_func_status(struct hclge_dev *hdev,
821 				   struct hclge_func_status_cmd *status)
822 {
823 #define HCLGE_MAC_ID_MASK	0xF
824 
825 	if (!(status->pf_state & HCLGE_PF_STATE_DONE))
826 		return -EINVAL;
827 
828 	/* Set the pf to main pf */
829 	if (status->pf_state & HCLGE_PF_STATE_MAIN)
830 		hdev->flag |= HCLGE_FLAG_MAIN;
831 	else
832 		hdev->flag &= ~HCLGE_FLAG_MAIN;
833 
834 	hdev->hw.mac.mac_id = status->mac_id & HCLGE_MAC_ID_MASK;
835 	return 0;
836 }
837 
838 static int hclge_query_function_status(struct hclge_dev *hdev)
839 {
840 #define HCLGE_QUERY_MAX_CNT	5
841 
842 	struct hclge_func_status_cmd *req;
843 	struct hclge_desc desc;
844 	int timeout = 0;
845 	int ret;
846 
847 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_FUNC_STATUS, true);
848 	req = (struct hclge_func_status_cmd *)desc.data;
849 
850 	do {
851 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
852 		if (ret) {
853 			dev_err(&hdev->pdev->dev,
854 				"query function status failed %d.\n", ret);
855 			return ret;
856 		}
857 
858 		/* Check pf reset is done */
859 		if (req->pf_state)
860 			break;
861 		usleep_range(1000, 2000);
862 	} while (timeout++ < HCLGE_QUERY_MAX_CNT);
863 
864 	return hclge_parse_func_status(hdev, req);
865 }
866 
867 static int hclge_query_pf_resource(struct hclge_dev *hdev)
868 {
869 	struct hclge_pf_res_cmd *req;
870 	struct hclge_desc desc;
871 	int ret;
872 
873 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_PF_RSRC, true);
874 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
875 	if (ret) {
876 		dev_err(&hdev->pdev->dev,
877 			"query pf resource failed %d.\n", ret);
878 		return ret;
879 	}
880 
881 	req = (struct hclge_pf_res_cmd *)desc.data;
882 	hdev->num_tqps = le16_to_cpu(req->tqp_num) +
883 			 le16_to_cpu(req->ext_tqp_num);
884 	hdev->pkt_buf_size = le16_to_cpu(req->buf_size) << HCLGE_BUF_UNIT_S;
885 
886 	if (req->tx_buf_size)
887 		hdev->tx_buf_size =
888 			le16_to_cpu(req->tx_buf_size) << HCLGE_BUF_UNIT_S;
889 	else
890 		hdev->tx_buf_size = HCLGE_DEFAULT_TX_BUF;
891 
892 	hdev->tx_buf_size = roundup(hdev->tx_buf_size, HCLGE_BUF_SIZE_UNIT);
893 
894 	if (req->dv_buf_size)
895 		hdev->dv_buf_size =
896 			le16_to_cpu(req->dv_buf_size) << HCLGE_BUF_UNIT_S;
897 	else
898 		hdev->dv_buf_size = HCLGE_DEFAULT_DV;
899 
900 	hdev->dv_buf_size = roundup(hdev->dv_buf_size, HCLGE_BUF_SIZE_UNIT);
901 
902 	hdev->num_nic_msi = le16_to_cpu(req->msixcap_localid_number_nic);
903 	if (hdev->num_nic_msi < HNAE3_MIN_VECTOR_NUM) {
904 		dev_err(&hdev->pdev->dev,
905 			"only %u msi resources available, not enough for pf(min:2).\n",
906 			hdev->num_nic_msi);
907 		return -EINVAL;
908 	}
909 
910 	if (hnae3_dev_roce_supported(hdev)) {
911 		hdev->num_roce_msi =
912 			le16_to_cpu(req->pf_intr_vector_number_roce);
913 
914 		/* PF should have NIC vectors and Roce vectors,
915 		 * NIC vectors are queued before Roce vectors.
916 		 */
917 		hdev->num_msi = hdev->num_nic_msi + hdev->num_roce_msi;
918 	} else {
919 		hdev->num_msi = hdev->num_nic_msi;
920 	}
921 
922 	return 0;
923 }
924 
925 static int hclge_parse_speed(u8 speed_cmd, u32 *speed)
926 {
927 	switch (speed_cmd) {
928 	case HCLGE_FW_MAC_SPEED_10M:
929 		*speed = HCLGE_MAC_SPEED_10M;
930 		break;
931 	case HCLGE_FW_MAC_SPEED_100M:
932 		*speed = HCLGE_MAC_SPEED_100M;
933 		break;
934 	case HCLGE_FW_MAC_SPEED_1G:
935 		*speed = HCLGE_MAC_SPEED_1G;
936 		break;
937 	case HCLGE_FW_MAC_SPEED_10G:
938 		*speed = HCLGE_MAC_SPEED_10G;
939 		break;
940 	case HCLGE_FW_MAC_SPEED_25G:
941 		*speed = HCLGE_MAC_SPEED_25G;
942 		break;
943 	case HCLGE_FW_MAC_SPEED_40G:
944 		*speed = HCLGE_MAC_SPEED_40G;
945 		break;
946 	case HCLGE_FW_MAC_SPEED_50G:
947 		*speed = HCLGE_MAC_SPEED_50G;
948 		break;
949 	case HCLGE_FW_MAC_SPEED_100G:
950 		*speed = HCLGE_MAC_SPEED_100G;
951 		break;
952 	case HCLGE_FW_MAC_SPEED_200G:
953 		*speed = HCLGE_MAC_SPEED_200G;
954 		break;
955 	default:
956 		return -EINVAL;
957 	}
958 
959 	return 0;
960 }
961 
962 static const struct hclge_speed_bit_map speed_bit_map[] = {
963 	{HCLGE_MAC_SPEED_10M, HCLGE_SUPPORT_10M_BIT},
964 	{HCLGE_MAC_SPEED_100M, HCLGE_SUPPORT_100M_BIT},
965 	{HCLGE_MAC_SPEED_1G, HCLGE_SUPPORT_1G_BIT},
966 	{HCLGE_MAC_SPEED_10G, HCLGE_SUPPORT_10G_BIT},
967 	{HCLGE_MAC_SPEED_25G, HCLGE_SUPPORT_25G_BIT},
968 	{HCLGE_MAC_SPEED_40G, HCLGE_SUPPORT_40G_BIT},
969 	{HCLGE_MAC_SPEED_50G, HCLGE_SUPPORT_50G_BIT},
970 	{HCLGE_MAC_SPEED_100G, HCLGE_SUPPORT_100G_BIT},
971 	{HCLGE_MAC_SPEED_200G, HCLGE_SUPPORT_200G_BIT},
972 };
973 
974 static int hclge_get_speed_bit(u32 speed, u32 *speed_bit)
975 {
976 	u16 i;
977 
978 	for (i = 0; i < ARRAY_SIZE(speed_bit_map); i++) {
979 		if (speed == speed_bit_map[i].speed) {
980 			*speed_bit = speed_bit_map[i].speed_bit;
981 			return 0;
982 		}
983 	}
984 
985 	return -EINVAL;
986 }
987 
988 static int hclge_check_port_speed(struct hnae3_handle *handle, u32 speed)
989 {
990 	struct hclge_vport *vport = hclge_get_vport(handle);
991 	struct hclge_dev *hdev = vport->back;
992 	u32 speed_ability = hdev->hw.mac.speed_ability;
993 	u32 speed_bit = 0;
994 	int ret;
995 
996 	ret = hclge_get_speed_bit(speed, &speed_bit);
997 	if (ret)
998 		return ret;
999 
1000 	if (speed_bit & speed_ability)
1001 		return 0;
1002 
1003 	return -EINVAL;
1004 }
1005 
1006 static void hclge_convert_setting_sr(u16 speed_ability,
1007 				     unsigned long *link_mode)
1008 {
1009 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1010 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
1011 				 link_mode);
1012 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1013 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
1014 				 link_mode);
1015 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1016 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
1017 				 link_mode);
1018 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1019 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
1020 				 link_mode);
1021 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1022 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
1023 				 link_mode);
1024 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1025 		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT,
1026 				 link_mode);
1027 }
1028 
1029 static void hclge_convert_setting_lr(u16 speed_ability,
1030 				     unsigned long *link_mode)
1031 {
1032 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1033 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
1034 				 link_mode);
1035 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1036 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
1037 				 link_mode);
1038 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1039 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT,
1040 				 link_mode);
1041 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1042 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
1043 				 link_mode);
1044 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1045 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
1046 				 link_mode);
1047 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1048 		linkmode_set_bit(
1049 			ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT,
1050 			link_mode);
1051 }
1052 
1053 static void hclge_convert_setting_cr(u16 speed_ability,
1054 				     unsigned long *link_mode)
1055 {
1056 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1057 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseCR_Full_BIT,
1058 				 link_mode);
1059 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1060 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
1061 				 link_mode);
1062 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1063 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
1064 				 link_mode);
1065 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1066 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
1067 				 link_mode);
1068 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1069 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
1070 				 link_mode);
1071 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1072 		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT,
1073 				 link_mode);
1074 }
1075 
1076 static void hclge_convert_setting_kr(u16 speed_ability,
1077 				     unsigned long *link_mode)
1078 {
1079 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1080 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
1081 				 link_mode);
1082 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1083 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
1084 				 link_mode);
1085 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1086 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
1087 				 link_mode);
1088 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1089 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
1090 				 link_mode);
1091 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1092 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
1093 				 link_mode);
1094 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1095 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
1096 				 link_mode);
1097 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1098 		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT,
1099 				 link_mode);
1100 }
1101 
1102 static void hclge_convert_setting_fec(struct hclge_mac *mac)
1103 {
1104 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, mac->supported);
1105 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, mac->supported);
1106 
1107 	switch (mac->speed) {
1108 	case HCLGE_MAC_SPEED_10G:
1109 	case HCLGE_MAC_SPEED_40G:
1110 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT,
1111 				 mac->supported);
1112 		mac->fec_ability =
1113 			BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_AUTO);
1114 		break;
1115 	case HCLGE_MAC_SPEED_25G:
1116 	case HCLGE_MAC_SPEED_50G:
1117 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT,
1118 				 mac->supported);
1119 		mac->fec_ability =
1120 			BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_RS) |
1121 			BIT(HNAE3_FEC_AUTO);
1122 		break;
1123 	case HCLGE_MAC_SPEED_100G:
1124 	case HCLGE_MAC_SPEED_200G:
1125 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, mac->supported);
1126 		mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO);
1127 		break;
1128 	default:
1129 		mac->fec_ability = 0;
1130 		break;
1131 	}
1132 }
1133 
1134 static void hclge_parse_fiber_link_mode(struct hclge_dev *hdev,
1135 					u16 speed_ability)
1136 {
1137 	struct hclge_mac *mac = &hdev->hw.mac;
1138 
1139 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1140 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
1141 				 mac->supported);
1142 
1143 	hclge_convert_setting_sr(speed_ability, mac->supported);
1144 	hclge_convert_setting_lr(speed_ability, mac->supported);
1145 	hclge_convert_setting_cr(speed_ability, mac->supported);
1146 	if (hnae3_dev_fec_supported(hdev))
1147 		hclge_convert_setting_fec(mac);
1148 
1149 	if (hnae3_dev_pause_supported(hdev))
1150 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported);
1151 
1152 	linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, mac->supported);
1153 	linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
1154 }
1155 
1156 static void hclge_parse_backplane_link_mode(struct hclge_dev *hdev,
1157 					    u16 speed_ability)
1158 {
1159 	struct hclge_mac *mac = &hdev->hw.mac;
1160 
1161 	hclge_convert_setting_kr(speed_ability, mac->supported);
1162 	if (hnae3_dev_fec_supported(hdev))
1163 		hclge_convert_setting_fec(mac);
1164 
1165 	if (hnae3_dev_pause_supported(hdev))
1166 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported);
1167 
1168 	linkmode_set_bit(ETHTOOL_LINK_MODE_Backplane_BIT, mac->supported);
1169 	linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
1170 }
1171 
1172 static void hclge_parse_copper_link_mode(struct hclge_dev *hdev,
1173 					 u16 speed_ability)
1174 {
1175 	unsigned long *supported = hdev->hw.mac.supported;
1176 
1177 	/* default to support all speed for GE port */
1178 	if (!speed_ability)
1179 		speed_ability = HCLGE_SUPPORT_GE;
1180 
1181 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1182 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
1183 				 supported);
1184 
1185 	if (speed_ability & HCLGE_SUPPORT_100M_BIT) {
1186 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
1187 				 supported);
1188 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT,
1189 				 supported);
1190 	}
1191 
1192 	if (speed_ability & HCLGE_SUPPORT_10M_BIT) {
1193 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, supported);
1194 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, supported);
1195 	}
1196 
1197 	if (hnae3_dev_pause_supported(hdev)) {
1198 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, supported);
1199 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, supported);
1200 	}
1201 
1202 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, supported);
1203 	linkmode_set_bit(ETHTOOL_LINK_MODE_TP_BIT, supported);
1204 }
1205 
1206 static void hclge_parse_link_mode(struct hclge_dev *hdev, u16 speed_ability)
1207 {
1208 	u8 media_type = hdev->hw.mac.media_type;
1209 
1210 	if (media_type == HNAE3_MEDIA_TYPE_FIBER)
1211 		hclge_parse_fiber_link_mode(hdev, speed_ability);
1212 	else if (media_type == HNAE3_MEDIA_TYPE_COPPER)
1213 		hclge_parse_copper_link_mode(hdev, speed_ability);
1214 	else if (media_type == HNAE3_MEDIA_TYPE_BACKPLANE)
1215 		hclge_parse_backplane_link_mode(hdev, speed_ability);
1216 }
1217 
1218 static u32 hclge_get_max_speed(u16 speed_ability)
1219 {
1220 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1221 		return HCLGE_MAC_SPEED_200G;
1222 
1223 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1224 		return HCLGE_MAC_SPEED_100G;
1225 
1226 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1227 		return HCLGE_MAC_SPEED_50G;
1228 
1229 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1230 		return HCLGE_MAC_SPEED_40G;
1231 
1232 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1233 		return HCLGE_MAC_SPEED_25G;
1234 
1235 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1236 		return HCLGE_MAC_SPEED_10G;
1237 
1238 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1239 		return HCLGE_MAC_SPEED_1G;
1240 
1241 	if (speed_ability & HCLGE_SUPPORT_100M_BIT)
1242 		return HCLGE_MAC_SPEED_100M;
1243 
1244 	if (speed_ability & HCLGE_SUPPORT_10M_BIT)
1245 		return HCLGE_MAC_SPEED_10M;
1246 
1247 	return HCLGE_MAC_SPEED_1G;
1248 }
1249 
1250 static void hclge_parse_cfg(struct hclge_cfg *cfg, struct hclge_desc *desc)
1251 {
1252 #define HCLGE_TX_SPARE_SIZE_UNIT		4096
1253 #define SPEED_ABILITY_EXT_SHIFT			8
1254 
1255 	struct hclge_cfg_param_cmd *req;
1256 	u64 mac_addr_tmp_high;
1257 	u16 speed_ability_ext;
1258 	u64 mac_addr_tmp;
1259 	unsigned int i;
1260 
1261 	req = (struct hclge_cfg_param_cmd *)desc[0].data;
1262 
1263 	/* get the configuration */
1264 	cfg->tc_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
1265 				      HCLGE_CFG_TC_NUM_M, HCLGE_CFG_TC_NUM_S);
1266 	cfg->tqp_desc_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
1267 					    HCLGE_CFG_TQP_DESC_N_M,
1268 					    HCLGE_CFG_TQP_DESC_N_S);
1269 
1270 	cfg->phy_addr = hnae3_get_field(__le32_to_cpu(req->param[1]),
1271 					HCLGE_CFG_PHY_ADDR_M,
1272 					HCLGE_CFG_PHY_ADDR_S);
1273 	cfg->media_type = hnae3_get_field(__le32_to_cpu(req->param[1]),
1274 					  HCLGE_CFG_MEDIA_TP_M,
1275 					  HCLGE_CFG_MEDIA_TP_S);
1276 	cfg->rx_buf_len = hnae3_get_field(__le32_to_cpu(req->param[1]),
1277 					  HCLGE_CFG_RX_BUF_LEN_M,
1278 					  HCLGE_CFG_RX_BUF_LEN_S);
1279 	/* get mac_address */
1280 	mac_addr_tmp = __le32_to_cpu(req->param[2]);
1281 	mac_addr_tmp_high = hnae3_get_field(__le32_to_cpu(req->param[3]),
1282 					    HCLGE_CFG_MAC_ADDR_H_M,
1283 					    HCLGE_CFG_MAC_ADDR_H_S);
1284 
1285 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
1286 
1287 	cfg->default_speed = hnae3_get_field(__le32_to_cpu(req->param[3]),
1288 					     HCLGE_CFG_DEFAULT_SPEED_M,
1289 					     HCLGE_CFG_DEFAULT_SPEED_S);
1290 	cfg->vf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[3]),
1291 					       HCLGE_CFG_RSS_SIZE_M,
1292 					       HCLGE_CFG_RSS_SIZE_S);
1293 
1294 	for (i = 0; i < ETH_ALEN; i++)
1295 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
1296 
1297 	req = (struct hclge_cfg_param_cmd *)desc[1].data;
1298 	cfg->numa_node_map = __le32_to_cpu(req->param[0]);
1299 
1300 	cfg->speed_ability = hnae3_get_field(__le32_to_cpu(req->param[1]),
1301 					     HCLGE_CFG_SPEED_ABILITY_M,
1302 					     HCLGE_CFG_SPEED_ABILITY_S);
1303 	speed_ability_ext = hnae3_get_field(__le32_to_cpu(req->param[1]),
1304 					    HCLGE_CFG_SPEED_ABILITY_EXT_M,
1305 					    HCLGE_CFG_SPEED_ABILITY_EXT_S);
1306 	cfg->speed_ability |= speed_ability_ext << SPEED_ABILITY_EXT_SHIFT;
1307 
1308 	cfg->vlan_fliter_cap = hnae3_get_field(__le32_to_cpu(req->param[1]),
1309 					       HCLGE_CFG_VLAN_FLTR_CAP_M,
1310 					       HCLGE_CFG_VLAN_FLTR_CAP_S);
1311 
1312 	cfg->umv_space = hnae3_get_field(__le32_to_cpu(req->param[1]),
1313 					 HCLGE_CFG_UMV_TBL_SPACE_M,
1314 					 HCLGE_CFG_UMV_TBL_SPACE_S);
1315 
1316 	cfg->pf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[2]),
1317 					       HCLGE_CFG_PF_RSS_SIZE_M,
1318 					       HCLGE_CFG_PF_RSS_SIZE_S);
1319 
1320 	/* HCLGE_CFG_PF_RSS_SIZE_M is the PF max rss size, which is a
1321 	 * power of 2, instead of reading out directly. This would
1322 	 * be more flexible for future changes and expansions.
1323 	 * When VF max  rss size field is HCLGE_CFG_RSS_SIZE_S,
1324 	 * it does not make sense if PF's field is 0. In this case, PF and VF
1325 	 * has the same max rss size filed: HCLGE_CFG_RSS_SIZE_S.
1326 	 */
1327 	cfg->pf_rss_size_max = cfg->pf_rss_size_max ?
1328 			       1U << cfg->pf_rss_size_max :
1329 			       cfg->vf_rss_size_max;
1330 
1331 	/* The unit of the tx spare buffer size queried from configuration
1332 	 * file is HCLGE_TX_SPARE_SIZE_UNIT(4096) bytes, so a conversion is
1333 	 * needed here.
1334 	 */
1335 	cfg->tx_spare_buf_size = hnae3_get_field(__le32_to_cpu(req->param[2]),
1336 						 HCLGE_CFG_TX_SPARE_BUF_SIZE_M,
1337 						 HCLGE_CFG_TX_SPARE_BUF_SIZE_S);
1338 	cfg->tx_spare_buf_size *= HCLGE_TX_SPARE_SIZE_UNIT;
1339 }
1340 
1341 /* hclge_get_cfg: query the static parameter from flash
1342  * @hdev: pointer to struct hclge_dev
1343  * @hcfg: the config structure to be getted
1344  */
1345 static int hclge_get_cfg(struct hclge_dev *hdev, struct hclge_cfg *hcfg)
1346 {
1347 	struct hclge_desc desc[HCLGE_PF_CFG_DESC_NUM];
1348 	struct hclge_cfg_param_cmd *req;
1349 	unsigned int i;
1350 	int ret;
1351 
1352 	for (i = 0; i < HCLGE_PF_CFG_DESC_NUM; i++) {
1353 		u32 offset = 0;
1354 
1355 		req = (struct hclge_cfg_param_cmd *)desc[i].data;
1356 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_CFG_PARAM,
1357 					   true);
1358 		hnae3_set_field(offset, HCLGE_CFG_OFFSET_M,
1359 				HCLGE_CFG_OFFSET_S, i * HCLGE_CFG_RD_LEN_BYTES);
1360 		/* Len should be united by 4 bytes when send to hardware */
1361 		hnae3_set_field(offset, HCLGE_CFG_RD_LEN_M, HCLGE_CFG_RD_LEN_S,
1362 				HCLGE_CFG_RD_LEN_BYTES / HCLGE_CFG_RD_LEN_UNIT);
1363 		req->offset = cpu_to_le32(offset);
1364 	}
1365 
1366 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PF_CFG_DESC_NUM);
1367 	if (ret) {
1368 		dev_err(&hdev->pdev->dev, "get config failed %d.\n", ret);
1369 		return ret;
1370 	}
1371 
1372 	hclge_parse_cfg(hcfg, desc);
1373 
1374 	return 0;
1375 }
1376 
1377 static void hclge_set_default_dev_specs(struct hclge_dev *hdev)
1378 {
1379 #define HCLGE_MAX_NON_TSO_BD_NUM			8U
1380 
1381 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1382 
1383 	ae_dev->dev_specs.max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM;
1384 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE;
1385 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
1386 	ae_dev->dev_specs.max_tm_rate = HCLGE_ETHER_MAX_RATE;
1387 	ae_dev->dev_specs.max_int_gl = HCLGE_DEF_MAX_INT_GL;
1388 	ae_dev->dev_specs.max_frm_size = HCLGE_MAC_MAX_FRAME;
1389 	ae_dev->dev_specs.max_qset_num = HCLGE_MAX_QSET_NUM;
1390 	ae_dev->dev_specs.umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF;
1391 }
1392 
1393 static void hclge_parse_dev_specs(struct hclge_dev *hdev,
1394 				  struct hclge_desc *desc)
1395 {
1396 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1397 	struct hclge_dev_specs_0_cmd *req0;
1398 	struct hclge_dev_specs_1_cmd *req1;
1399 
1400 	req0 = (struct hclge_dev_specs_0_cmd *)desc[0].data;
1401 	req1 = (struct hclge_dev_specs_1_cmd *)desc[1].data;
1402 
1403 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
1404 	ae_dev->dev_specs.rss_ind_tbl_size =
1405 		le16_to_cpu(req0->rss_ind_tbl_size);
1406 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
1407 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
1408 	ae_dev->dev_specs.max_tm_rate = le32_to_cpu(req0->max_tm_rate);
1409 	ae_dev->dev_specs.max_qset_num = le16_to_cpu(req1->max_qset_num);
1410 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
1411 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
1412 	ae_dev->dev_specs.umv_size = le16_to_cpu(req1->umv_size);
1413 	ae_dev->dev_specs.mc_mac_size = le16_to_cpu(req1->mc_mac_size);
1414 }
1415 
1416 static void hclge_check_dev_specs(struct hclge_dev *hdev)
1417 {
1418 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
1419 
1420 	if (!dev_specs->max_non_tso_bd_num)
1421 		dev_specs->max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM;
1422 	if (!dev_specs->rss_ind_tbl_size)
1423 		dev_specs->rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE;
1424 	if (!dev_specs->rss_key_size)
1425 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
1426 	if (!dev_specs->max_tm_rate)
1427 		dev_specs->max_tm_rate = HCLGE_ETHER_MAX_RATE;
1428 	if (!dev_specs->max_qset_num)
1429 		dev_specs->max_qset_num = HCLGE_MAX_QSET_NUM;
1430 	if (!dev_specs->max_int_gl)
1431 		dev_specs->max_int_gl = HCLGE_DEF_MAX_INT_GL;
1432 	if (!dev_specs->max_frm_size)
1433 		dev_specs->max_frm_size = HCLGE_MAC_MAX_FRAME;
1434 	if (!dev_specs->umv_size)
1435 		dev_specs->umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF;
1436 }
1437 
1438 static int hclge_query_mac_stats_num(struct hclge_dev *hdev)
1439 {
1440 	u32 reg_num = 0;
1441 	int ret;
1442 
1443 	ret = hclge_mac_query_reg_num(hdev, &reg_num);
1444 	if (ret && ret != -EOPNOTSUPP)
1445 		return ret;
1446 
1447 	hdev->ae_dev->dev_specs.mac_stats_num = reg_num;
1448 	return 0;
1449 }
1450 
1451 static int hclge_query_dev_specs(struct hclge_dev *hdev)
1452 {
1453 	struct hclge_desc desc[HCLGE_QUERY_DEV_SPECS_BD_NUM];
1454 	int ret;
1455 	int i;
1456 
1457 	ret = hclge_query_mac_stats_num(hdev);
1458 	if (ret)
1459 		return ret;
1460 
1461 	/* set default specifications as devices lower than version V3 do not
1462 	 * support querying specifications from firmware.
1463 	 */
1464 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
1465 		hclge_set_default_dev_specs(hdev);
1466 		return 0;
1467 	}
1468 
1469 	for (i = 0; i < HCLGE_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1470 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS,
1471 					   true);
1472 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
1473 	}
1474 	hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
1475 
1476 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_QUERY_DEV_SPECS_BD_NUM);
1477 	if (ret)
1478 		return ret;
1479 
1480 	hclge_parse_dev_specs(hdev, desc);
1481 	hclge_check_dev_specs(hdev);
1482 
1483 	return 0;
1484 }
1485 
1486 static int hclge_get_cap(struct hclge_dev *hdev)
1487 {
1488 	int ret;
1489 
1490 	ret = hclge_query_function_status(hdev);
1491 	if (ret) {
1492 		dev_err(&hdev->pdev->dev,
1493 			"query function status error %d.\n", ret);
1494 		return ret;
1495 	}
1496 
1497 	/* get pf resource */
1498 	return hclge_query_pf_resource(hdev);
1499 }
1500 
1501 static void hclge_init_kdump_kernel_config(struct hclge_dev *hdev)
1502 {
1503 #define HCLGE_MIN_TX_DESC	64
1504 #define HCLGE_MIN_RX_DESC	64
1505 
1506 	if (!is_kdump_kernel())
1507 		return;
1508 
1509 	dev_info(&hdev->pdev->dev,
1510 		 "Running kdump kernel. Using minimal resources\n");
1511 
1512 	/* minimal queue pairs equals to the number of vports */
1513 	hdev->num_tqps = hdev->num_req_vfs + 1;
1514 	hdev->num_tx_desc = HCLGE_MIN_TX_DESC;
1515 	hdev->num_rx_desc = HCLGE_MIN_RX_DESC;
1516 }
1517 
1518 static void hclge_init_tc_config(struct hclge_dev *hdev)
1519 {
1520 	unsigned int i;
1521 
1522 	if (hdev->tc_max > HNAE3_MAX_TC ||
1523 	    hdev->tc_max < 1) {
1524 		dev_warn(&hdev->pdev->dev, "TC num = %u.\n",
1525 			 hdev->tc_max);
1526 		hdev->tc_max = 1;
1527 	}
1528 
1529 	/* Dev does not support DCB */
1530 	if (!hnae3_dev_dcb_supported(hdev)) {
1531 		hdev->tc_max = 1;
1532 		hdev->pfc_max = 0;
1533 	} else {
1534 		hdev->pfc_max = hdev->tc_max;
1535 	}
1536 
1537 	hdev->tm_info.num_tc = 1;
1538 
1539 	/* Currently not support uncontiuous tc */
1540 	for (i = 0; i < hdev->tm_info.num_tc; i++)
1541 		hnae3_set_bit(hdev->hw_tc_map, i, 1);
1542 
1543 	hdev->tx_sch_mode = HCLGE_FLAG_TC_BASE_SCH_MODE;
1544 }
1545 
1546 static int hclge_configure(struct hclge_dev *hdev)
1547 {
1548 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1549 	struct hclge_cfg cfg;
1550 	int ret;
1551 
1552 	ret = hclge_get_cfg(hdev, &cfg);
1553 	if (ret)
1554 		return ret;
1555 
1556 	hdev->base_tqp_pid = 0;
1557 	hdev->vf_rss_size_max = cfg.vf_rss_size_max;
1558 	hdev->pf_rss_size_max = cfg.pf_rss_size_max;
1559 	hdev->rx_buf_len = cfg.rx_buf_len;
1560 	ether_addr_copy(hdev->hw.mac.mac_addr, cfg.mac_addr);
1561 	hdev->hw.mac.media_type = cfg.media_type;
1562 	hdev->hw.mac.phy_addr = cfg.phy_addr;
1563 	hdev->num_tx_desc = cfg.tqp_desc_num;
1564 	hdev->num_rx_desc = cfg.tqp_desc_num;
1565 	hdev->tm_info.num_pg = 1;
1566 	hdev->tc_max = cfg.tc_num;
1567 	hdev->tm_info.hw_pfc_map = 0;
1568 	if (cfg.umv_space)
1569 		hdev->wanted_umv_size = cfg.umv_space;
1570 	else
1571 		hdev->wanted_umv_size = hdev->ae_dev->dev_specs.umv_size;
1572 	hdev->tx_spare_buf_size = cfg.tx_spare_buf_size;
1573 	hdev->gro_en = true;
1574 	if (cfg.vlan_fliter_cap == HCLGE_VLAN_FLTR_CAN_MDF)
1575 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
1576 
1577 	if (hnae3_dev_fd_supported(hdev)) {
1578 		hdev->fd_en = true;
1579 		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
1580 	}
1581 
1582 	ret = hclge_parse_speed(cfg.default_speed, &hdev->hw.mac.speed);
1583 	if (ret) {
1584 		dev_err(&hdev->pdev->dev, "failed to parse speed %u, ret = %d\n",
1585 			cfg.default_speed, ret);
1586 		return ret;
1587 	}
1588 
1589 	hclge_parse_link_mode(hdev, cfg.speed_ability);
1590 
1591 	hdev->hw.mac.max_speed = hclge_get_max_speed(cfg.speed_ability);
1592 
1593 	hclge_init_tc_config(hdev);
1594 	hclge_init_kdump_kernel_config(hdev);
1595 
1596 	return ret;
1597 }
1598 
1599 static int hclge_config_tso(struct hclge_dev *hdev, u16 tso_mss_min,
1600 			    u16 tso_mss_max)
1601 {
1602 	struct hclge_cfg_tso_status_cmd *req;
1603 	struct hclge_desc desc;
1604 
1605 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TSO_GENERIC_CONFIG, false);
1606 
1607 	req = (struct hclge_cfg_tso_status_cmd *)desc.data;
1608 	req->tso_mss_min = cpu_to_le16(tso_mss_min);
1609 	req->tso_mss_max = cpu_to_le16(tso_mss_max);
1610 
1611 	return hclge_cmd_send(&hdev->hw, &desc, 1);
1612 }
1613 
1614 static int hclge_config_gro(struct hclge_dev *hdev)
1615 {
1616 	struct hclge_cfg_gro_status_cmd *req;
1617 	struct hclge_desc desc;
1618 	int ret;
1619 
1620 	if (!hnae3_dev_gro_supported(hdev))
1621 		return 0;
1622 
1623 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, false);
1624 	req = (struct hclge_cfg_gro_status_cmd *)desc.data;
1625 
1626 	req->gro_en = hdev->gro_en ? 1 : 0;
1627 
1628 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1629 	if (ret)
1630 		dev_err(&hdev->pdev->dev,
1631 			"GRO hardware config cmd failed, ret = %d\n", ret);
1632 
1633 	return ret;
1634 }
1635 
1636 static int hclge_alloc_tqps(struct hclge_dev *hdev)
1637 {
1638 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1639 	struct hclge_comm_tqp *tqp;
1640 	int i;
1641 
1642 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
1643 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
1644 	if (!hdev->htqp)
1645 		return -ENOMEM;
1646 
1647 	tqp = hdev->htqp;
1648 
1649 	for (i = 0; i < hdev->num_tqps; i++) {
1650 		tqp->dev = &hdev->pdev->dev;
1651 		tqp->index = i;
1652 
1653 		tqp->q.ae_algo = &ae_algo;
1654 		tqp->q.buf_size = hdev->rx_buf_len;
1655 		tqp->q.tx_desc_num = hdev->num_tx_desc;
1656 		tqp->q.rx_desc_num = hdev->num_rx_desc;
1657 
1658 		/* need an extended offset to configure queues >=
1659 		 * HCLGE_TQP_MAX_SIZE_DEV_V2
1660 		 */
1661 		if (i < HCLGE_TQP_MAX_SIZE_DEV_V2)
1662 			tqp->q.io_base = hdev->hw.hw.io_base +
1663 					 HCLGE_TQP_REG_OFFSET +
1664 					 i * HCLGE_TQP_REG_SIZE;
1665 		else
1666 			tqp->q.io_base = hdev->hw.hw.io_base +
1667 					 HCLGE_TQP_REG_OFFSET +
1668 					 HCLGE_TQP_EXT_REG_OFFSET +
1669 					 (i - HCLGE_TQP_MAX_SIZE_DEV_V2) *
1670 					 HCLGE_TQP_REG_SIZE;
1671 
1672 		/* when device supports tx push and has device memory,
1673 		 * the queue can execute push mode or doorbell mode on
1674 		 * device memory.
1675 		 */
1676 		if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
1677 			tqp->q.mem_base = hdev->hw.hw.mem_base +
1678 					  HCLGE_TQP_MEM_OFFSET(hdev, i);
1679 
1680 		tqp++;
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 static int hclge_map_tqps_to_func(struct hclge_dev *hdev, u16 func_id,
1687 				  u16 tqp_pid, u16 tqp_vid, bool is_pf)
1688 {
1689 	struct hclge_tqp_map_cmd *req;
1690 	struct hclge_desc desc;
1691 	int ret;
1692 
1693 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SET_TQP_MAP, false);
1694 
1695 	req = (struct hclge_tqp_map_cmd *)desc.data;
1696 	req->tqp_id = cpu_to_le16(tqp_pid);
1697 	req->tqp_vf = func_id;
1698 	req->tqp_flag = 1U << HCLGE_TQP_MAP_EN_B;
1699 	if (!is_pf)
1700 		req->tqp_flag |= 1U << HCLGE_TQP_MAP_TYPE_B;
1701 	req->tqp_vid = cpu_to_le16(tqp_vid);
1702 
1703 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1704 	if (ret)
1705 		dev_err(&hdev->pdev->dev, "TQP map failed %d.\n", ret);
1706 
1707 	return ret;
1708 }
1709 
1710 static int  hclge_assign_tqp(struct hclge_vport *vport, u16 num_tqps)
1711 {
1712 	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
1713 	struct hclge_dev *hdev = vport->back;
1714 	int i, alloced;
1715 
1716 	for (i = 0, alloced = 0; i < hdev->num_tqps &&
1717 	     alloced < num_tqps; i++) {
1718 		if (!hdev->htqp[i].alloced) {
1719 			hdev->htqp[i].q.handle = &vport->nic;
1720 			hdev->htqp[i].q.tqp_index = alloced;
1721 			hdev->htqp[i].q.tx_desc_num = kinfo->num_tx_desc;
1722 			hdev->htqp[i].q.rx_desc_num = kinfo->num_rx_desc;
1723 			kinfo->tqp[alloced] = &hdev->htqp[i].q;
1724 			hdev->htqp[i].alloced = true;
1725 			alloced++;
1726 		}
1727 	}
1728 	vport->alloc_tqps = alloced;
1729 	kinfo->rss_size = min_t(u16, hdev->pf_rss_size_max,
1730 				vport->alloc_tqps / hdev->tm_info.num_tc);
1731 
1732 	/* ensure one to one mapping between irq and queue at default */
1733 	kinfo->rss_size = min_t(u16, kinfo->rss_size,
1734 				(hdev->num_nic_msi - 1) / hdev->tm_info.num_tc);
1735 
1736 	return 0;
1737 }
1738 
1739 static int hclge_knic_setup(struct hclge_vport *vport, u16 num_tqps,
1740 			    u16 num_tx_desc, u16 num_rx_desc)
1741 
1742 {
1743 	struct hnae3_handle *nic = &vport->nic;
1744 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1745 	struct hclge_dev *hdev = vport->back;
1746 	int ret;
1747 
1748 	kinfo->num_tx_desc = num_tx_desc;
1749 	kinfo->num_rx_desc = num_rx_desc;
1750 
1751 	kinfo->rx_buf_len = hdev->rx_buf_len;
1752 	kinfo->tx_spare_buf_size = hdev->tx_spare_buf_size;
1753 
1754 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, num_tqps,
1755 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
1756 	if (!kinfo->tqp)
1757 		return -ENOMEM;
1758 
1759 	ret = hclge_assign_tqp(vport, num_tqps);
1760 	if (ret)
1761 		dev_err(&hdev->pdev->dev, "fail to assign TQPs %d.\n", ret);
1762 
1763 	return ret;
1764 }
1765 
1766 static int hclge_map_tqp_to_vport(struct hclge_dev *hdev,
1767 				  struct hclge_vport *vport)
1768 {
1769 	struct hnae3_handle *nic = &vport->nic;
1770 	struct hnae3_knic_private_info *kinfo;
1771 	u16 i;
1772 
1773 	kinfo = &nic->kinfo;
1774 	for (i = 0; i < vport->alloc_tqps; i++) {
1775 		struct hclge_comm_tqp *q =
1776 			container_of(kinfo->tqp[i], struct hclge_comm_tqp, q);
1777 		bool is_pf;
1778 		int ret;
1779 
1780 		is_pf = !(vport->vport_id);
1781 		ret = hclge_map_tqps_to_func(hdev, vport->vport_id, q->index,
1782 					     i, is_pf);
1783 		if (ret)
1784 			return ret;
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 static int hclge_map_tqp(struct hclge_dev *hdev)
1791 {
1792 	struct hclge_vport *vport = hdev->vport;
1793 	u16 i, num_vport;
1794 
1795 	num_vport = hdev->num_req_vfs + 1;
1796 	for (i = 0; i < num_vport; i++) {
1797 		int ret;
1798 
1799 		ret = hclge_map_tqp_to_vport(hdev, vport);
1800 		if (ret)
1801 			return ret;
1802 
1803 		vport++;
1804 	}
1805 
1806 	return 0;
1807 }
1808 
1809 static int hclge_vport_setup(struct hclge_vport *vport, u16 num_tqps)
1810 {
1811 	struct hnae3_handle *nic = &vport->nic;
1812 	struct hclge_dev *hdev = vport->back;
1813 	int ret;
1814 
1815 	nic->pdev = hdev->pdev;
1816 	nic->ae_algo = &ae_algo;
1817 	nic->numa_node_mask = hdev->numa_node_mask;
1818 	nic->kinfo.io_base = hdev->hw.hw.io_base;
1819 
1820 	ret = hclge_knic_setup(vport, num_tqps,
1821 			       hdev->num_tx_desc, hdev->num_rx_desc);
1822 	if (ret)
1823 		dev_err(&hdev->pdev->dev, "knic setup failed %d\n", ret);
1824 
1825 	return ret;
1826 }
1827 
1828 static int hclge_alloc_vport(struct hclge_dev *hdev)
1829 {
1830 	struct pci_dev *pdev = hdev->pdev;
1831 	struct hclge_vport *vport;
1832 	u32 tqp_main_vport;
1833 	u32 tqp_per_vport;
1834 	int num_vport, i;
1835 	int ret;
1836 
1837 	/* We need to alloc a vport for main NIC of PF */
1838 	num_vport = hdev->num_req_vfs + 1;
1839 
1840 	if (hdev->num_tqps < num_vport) {
1841 		dev_err(&hdev->pdev->dev, "tqps(%u) is less than vports(%d)",
1842 			hdev->num_tqps, num_vport);
1843 		return -EINVAL;
1844 	}
1845 
1846 	/* Alloc the same number of TQPs for every vport */
1847 	tqp_per_vport = hdev->num_tqps / num_vport;
1848 	tqp_main_vport = tqp_per_vport + hdev->num_tqps % num_vport;
1849 
1850 	vport = devm_kcalloc(&pdev->dev, num_vport, sizeof(struct hclge_vport),
1851 			     GFP_KERNEL);
1852 	if (!vport)
1853 		return -ENOMEM;
1854 
1855 	hdev->vport = vport;
1856 	hdev->num_alloc_vport = num_vport;
1857 
1858 	if (IS_ENABLED(CONFIG_PCI_IOV))
1859 		hdev->num_alloc_vfs = hdev->num_req_vfs;
1860 
1861 	for (i = 0; i < num_vport; i++) {
1862 		vport->back = hdev;
1863 		vport->vport_id = i;
1864 		vport->vf_info.link_state = IFLA_VF_LINK_STATE_AUTO;
1865 		vport->mps = HCLGE_MAC_DEFAULT_FRAME;
1866 		vport->port_base_vlan_cfg.state = HNAE3_PORT_BASE_VLAN_DISABLE;
1867 		vport->port_base_vlan_cfg.tbl_sta = true;
1868 		vport->rxvlan_cfg.rx_vlan_offload_en = true;
1869 		vport->req_vlan_fltr_en = true;
1870 		INIT_LIST_HEAD(&vport->vlan_list);
1871 		INIT_LIST_HEAD(&vport->uc_mac_list);
1872 		INIT_LIST_HEAD(&vport->mc_mac_list);
1873 		spin_lock_init(&vport->mac_list_lock);
1874 
1875 		if (i == 0)
1876 			ret = hclge_vport_setup(vport, tqp_main_vport);
1877 		else
1878 			ret = hclge_vport_setup(vport, tqp_per_vport);
1879 		if (ret) {
1880 			dev_err(&pdev->dev,
1881 				"vport setup failed for vport %d, %d\n",
1882 				i, ret);
1883 			return ret;
1884 		}
1885 
1886 		vport++;
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 static int  hclge_cmd_alloc_tx_buff(struct hclge_dev *hdev,
1893 				    struct hclge_pkt_buf_alloc *buf_alloc)
1894 {
1895 /* TX buffer size is unit by 128 byte */
1896 #define HCLGE_BUF_SIZE_UNIT_SHIFT	7
1897 #define HCLGE_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
1898 	struct hclge_tx_buff_alloc_cmd *req;
1899 	struct hclge_desc desc;
1900 	int ret;
1901 	u8 i;
1902 
1903 	req = (struct hclge_tx_buff_alloc_cmd *)desc.data;
1904 
1905 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TX_BUFF_ALLOC, 0);
1906 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
1907 		u32 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
1908 
1909 		req->tx_pkt_buff[i] =
1910 			cpu_to_le16((buf_size >> HCLGE_BUF_SIZE_UNIT_SHIFT) |
1911 				     HCLGE_BUF_SIZE_UPDATE_EN_MSK);
1912 	}
1913 
1914 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1915 	if (ret)
1916 		dev_err(&hdev->pdev->dev, "tx buffer alloc cmd failed %d.\n",
1917 			ret);
1918 
1919 	return ret;
1920 }
1921 
1922 static int hclge_tx_buffer_alloc(struct hclge_dev *hdev,
1923 				 struct hclge_pkt_buf_alloc *buf_alloc)
1924 {
1925 	int ret = hclge_cmd_alloc_tx_buff(hdev, buf_alloc);
1926 
1927 	if (ret)
1928 		dev_err(&hdev->pdev->dev, "tx buffer alloc failed %d\n", ret);
1929 
1930 	return ret;
1931 }
1932 
1933 static u32 hclge_get_tc_num(struct hclge_dev *hdev)
1934 {
1935 	unsigned int i;
1936 	u32 cnt = 0;
1937 
1938 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++)
1939 		if (hdev->hw_tc_map & BIT(i))
1940 			cnt++;
1941 	return cnt;
1942 }
1943 
1944 /* Get the number of pfc enabled TCs, which have private buffer */
1945 static int hclge_get_pfc_priv_num(struct hclge_dev *hdev,
1946 				  struct hclge_pkt_buf_alloc *buf_alloc)
1947 {
1948 	struct hclge_priv_buf *priv;
1949 	unsigned int i;
1950 	int cnt = 0;
1951 
1952 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
1953 		priv = &buf_alloc->priv_buf[i];
1954 		if ((hdev->tm_info.hw_pfc_map & BIT(i)) &&
1955 		    priv->enable)
1956 			cnt++;
1957 	}
1958 
1959 	return cnt;
1960 }
1961 
1962 /* Get the number of pfc disabled TCs, which have private buffer */
1963 static int hclge_get_no_pfc_priv_num(struct hclge_dev *hdev,
1964 				     struct hclge_pkt_buf_alloc *buf_alloc)
1965 {
1966 	struct hclge_priv_buf *priv;
1967 	unsigned int i;
1968 	int cnt = 0;
1969 
1970 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
1971 		priv = &buf_alloc->priv_buf[i];
1972 		if (hdev->hw_tc_map & BIT(i) &&
1973 		    !(hdev->tm_info.hw_pfc_map & BIT(i)) &&
1974 		    priv->enable)
1975 			cnt++;
1976 	}
1977 
1978 	return cnt;
1979 }
1980 
1981 static u32 hclge_get_rx_priv_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc)
1982 {
1983 	struct hclge_priv_buf *priv;
1984 	u32 rx_priv = 0;
1985 	int i;
1986 
1987 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
1988 		priv = &buf_alloc->priv_buf[i];
1989 		if (priv->enable)
1990 			rx_priv += priv->buf_size;
1991 	}
1992 	return rx_priv;
1993 }
1994 
1995 static u32 hclge_get_tx_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc)
1996 {
1997 	u32 i, total_tx_size = 0;
1998 
1999 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++)
2000 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
2001 
2002 	return total_tx_size;
2003 }
2004 
2005 static bool  hclge_is_rx_buf_ok(struct hclge_dev *hdev,
2006 				struct hclge_pkt_buf_alloc *buf_alloc,
2007 				u32 rx_all)
2008 {
2009 	u32 shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
2010 	u32 tc_num = hclge_get_tc_num(hdev);
2011 	u32 shared_buf, aligned_mps;
2012 	u32 rx_priv;
2013 	int i;
2014 
2015 	aligned_mps = roundup(hdev->mps, HCLGE_BUF_SIZE_UNIT);
2016 
2017 	if (hnae3_dev_dcb_supported(hdev))
2018 		shared_buf_min = HCLGE_BUF_MUL_BY * aligned_mps +
2019 					hdev->dv_buf_size;
2020 	else
2021 		shared_buf_min = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF
2022 					+ hdev->dv_buf_size;
2023 
2024 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
2025 	shared_std = roundup(max_t(u32, shared_buf_min, shared_buf_tc),
2026 			     HCLGE_BUF_SIZE_UNIT);
2027 
2028 	rx_priv = hclge_get_rx_priv_buff_alloced(buf_alloc);
2029 	if (rx_all < rx_priv + shared_std)
2030 		return false;
2031 
2032 	shared_buf = rounddown(rx_all - rx_priv, HCLGE_BUF_SIZE_UNIT);
2033 	buf_alloc->s_buf.buf_size = shared_buf;
2034 	if (hnae3_dev_dcb_supported(hdev)) {
2035 		buf_alloc->s_buf.self.high = shared_buf - hdev->dv_buf_size;
2036 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
2037 			- roundup(aligned_mps / HCLGE_BUF_DIV_BY,
2038 				  HCLGE_BUF_SIZE_UNIT);
2039 	} else {
2040 		buf_alloc->s_buf.self.high = aligned_mps +
2041 						HCLGE_NON_DCB_ADDITIONAL_BUF;
2042 		buf_alloc->s_buf.self.low = aligned_mps;
2043 	}
2044 
2045 	if (hnae3_dev_dcb_supported(hdev)) {
2046 		hi_thrd = shared_buf - hdev->dv_buf_size;
2047 
2048 		if (tc_num <= NEED_RESERVE_TC_NUM)
2049 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
2050 					/ BUF_MAX_PERCENT;
2051 
2052 		if (tc_num)
2053 			hi_thrd = hi_thrd / tc_num;
2054 
2055 		hi_thrd = max_t(u32, hi_thrd, HCLGE_BUF_MUL_BY * aligned_mps);
2056 		hi_thrd = rounddown(hi_thrd, HCLGE_BUF_SIZE_UNIT);
2057 		lo_thrd = hi_thrd - aligned_mps / HCLGE_BUF_DIV_BY;
2058 	} else {
2059 		hi_thrd = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF;
2060 		lo_thrd = aligned_mps;
2061 	}
2062 
2063 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2064 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
2065 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
2066 	}
2067 
2068 	return true;
2069 }
2070 
2071 static int hclge_tx_buffer_calc(struct hclge_dev *hdev,
2072 				struct hclge_pkt_buf_alloc *buf_alloc)
2073 {
2074 	u32 i, total_size;
2075 
2076 	total_size = hdev->pkt_buf_size;
2077 
2078 	/* alloc tx buffer for all enabled tc */
2079 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2080 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2081 
2082 		if (hdev->hw_tc_map & BIT(i)) {
2083 			if (total_size < hdev->tx_buf_size)
2084 				return -ENOMEM;
2085 
2086 			priv->tx_buf_size = hdev->tx_buf_size;
2087 		} else {
2088 			priv->tx_buf_size = 0;
2089 		}
2090 
2091 		total_size -= priv->tx_buf_size;
2092 	}
2093 
2094 	return 0;
2095 }
2096 
2097 static bool hclge_rx_buf_calc_all(struct hclge_dev *hdev, bool max,
2098 				  struct hclge_pkt_buf_alloc *buf_alloc)
2099 {
2100 	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2101 	u32 aligned_mps = round_up(hdev->mps, HCLGE_BUF_SIZE_UNIT);
2102 	unsigned int i;
2103 
2104 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2105 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2106 
2107 		priv->enable = 0;
2108 		priv->wl.low = 0;
2109 		priv->wl.high = 0;
2110 		priv->buf_size = 0;
2111 
2112 		if (!(hdev->hw_tc_map & BIT(i)))
2113 			continue;
2114 
2115 		priv->enable = 1;
2116 
2117 		if (hdev->tm_info.hw_pfc_map & BIT(i)) {
2118 			priv->wl.low = max ? aligned_mps : HCLGE_BUF_SIZE_UNIT;
2119 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
2120 						HCLGE_BUF_SIZE_UNIT);
2121 		} else {
2122 			priv->wl.low = 0;
2123 			priv->wl.high = max ? (aligned_mps * HCLGE_BUF_MUL_BY) :
2124 					aligned_mps;
2125 		}
2126 
2127 		priv->buf_size = priv->wl.high + hdev->dv_buf_size;
2128 	}
2129 
2130 	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
2131 }
2132 
2133 static bool hclge_drop_nopfc_buf_till_fit(struct hclge_dev *hdev,
2134 					  struct hclge_pkt_buf_alloc *buf_alloc)
2135 {
2136 	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2137 	int no_pfc_priv_num = hclge_get_no_pfc_priv_num(hdev, buf_alloc);
2138 	int i;
2139 
2140 	/* let the last to be cleared first */
2141 	for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) {
2142 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2143 		unsigned int mask = BIT((unsigned int)i);
2144 
2145 		if (hdev->hw_tc_map & mask &&
2146 		    !(hdev->tm_info.hw_pfc_map & mask)) {
2147 			/* Clear the no pfc TC private buffer */
2148 			priv->wl.low = 0;
2149 			priv->wl.high = 0;
2150 			priv->buf_size = 0;
2151 			priv->enable = 0;
2152 			no_pfc_priv_num--;
2153 		}
2154 
2155 		if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) ||
2156 		    no_pfc_priv_num == 0)
2157 			break;
2158 	}
2159 
2160 	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
2161 }
2162 
2163 static bool hclge_drop_pfc_buf_till_fit(struct hclge_dev *hdev,
2164 					struct hclge_pkt_buf_alloc *buf_alloc)
2165 {
2166 	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2167 	int pfc_priv_num = hclge_get_pfc_priv_num(hdev, buf_alloc);
2168 	int i;
2169 
2170 	/* let the last to be cleared first */
2171 	for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) {
2172 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2173 		unsigned int mask = BIT((unsigned int)i);
2174 
2175 		if (hdev->hw_tc_map & mask &&
2176 		    hdev->tm_info.hw_pfc_map & mask) {
2177 			/* Reduce the number of pfc TC with private buffer */
2178 			priv->wl.low = 0;
2179 			priv->enable = 0;
2180 			priv->wl.high = 0;
2181 			priv->buf_size = 0;
2182 			pfc_priv_num--;
2183 		}
2184 
2185 		if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) ||
2186 		    pfc_priv_num == 0)
2187 			break;
2188 	}
2189 
2190 	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
2191 }
2192 
2193 static int hclge_only_alloc_priv_buff(struct hclge_dev *hdev,
2194 				      struct hclge_pkt_buf_alloc *buf_alloc)
2195 {
2196 #define COMPENSATE_BUFFER	0x3C00
2197 #define COMPENSATE_HALF_MPS_NUM	5
2198 #define PRIV_WL_GAP		0x1800
2199 
2200 	u32 rx_priv = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2201 	u32 tc_num = hclge_get_tc_num(hdev);
2202 	u32 half_mps = hdev->mps >> 1;
2203 	u32 min_rx_priv;
2204 	unsigned int i;
2205 
2206 	if (tc_num)
2207 		rx_priv = rx_priv / tc_num;
2208 
2209 	if (tc_num <= NEED_RESERVE_TC_NUM)
2210 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
2211 
2212 	min_rx_priv = hdev->dv_buf_size + COMPENSATE_BUFFER +
2213 			COMPENSATE_HALF_MPS_NUM * half_mps;
2214 	min_rx_priv = round_up(min_rx_priv, HCLGE_BUF_SIZE_UNIT);
2215 	rx_priv = round_down(rx_priv, HCLGE_BUF_SIZE_UNIT);
2216 	if (rx_priv < min_rx_priv)
2217 		return false;
2218 
2219 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2220 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2221 
2222 		priv->enable = 0;
2223 		priv->wl.low = 0;
2224 		priv->wl.high = 0;
2225 		priv->buf_size = 0;
2226 
2227 		if (!(hdev->hw_tc_map & BIT(i)))
2228 			continue;
2229 
2230 		priv->enable = 1;
2231 		priv->buf_size = rx_priv;
2232 		priv->wl.high = rx_priv - hdev->dv_buf_size;
2233 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
2234 	}
2235 
2236 	buf_alloc->s_buf.buf_size = 0;
2237 
2238 	return true;
2239 }
2240 
2241 /* hclge_rx_buffer_calc: calculate the rx private buffer size for all TCs
2242  * @hdev: pointer to struct hclge_dev
2243  * @buf_alloc: pointer to buffer calculation data
2244  * @return: 0: calculate successful, negative: fail
2245  */
2246 static int hclge_rx_buffer_calc(struct hclge_dev *hdev,
2247 				struct hclge_pkt_buf_alloc *buf_alloc)
2248 {
2249 	/* When DCB is not supported, rx private buffer is not allocated. */
2250 	if (!hnae3_dev_dcb_supported(hdev)) {
2251 		u32 rx_all = hdev->pkt_buf_size;
2252 
2253 		rx_all -= hclge_get_tx_buff_alloced(buf_alloc);
2254 		if (!hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all))
2255 			return -ENOMEM;
2256 
2257 		return 0;
2258 	}
2259 
2260 	if (hclge_only_alloc_priv_buff(hdev, buf_alloc))
2261 		return 0;
2262 
2263 	if (hclge_rx_buf_calc_all(hdev, true, buf_alloc))
2264 		return 0;
2265 
2266 	/* try to decrease the buffer size */
2267 	if (hclge_rx_buf_calc_all(hdev, false, buf_alloc))
2268 		return 0;
2269 
2270 	if (hclge_drop_nopfc_buf_till_fit(hdev, buf_alloc))
2271 		return 0;
2272 
2273 	if (hclge_drop_pfc_buf_till_fit(hdev, buf_alloc))
2274 		return 0;
2275 
2276 	return -ENOMEM;
2277 }
2278 
2279 static int hclge_rx_priv_buf_alloc(struct hclge_dev *hdev,
2280 				   struct hclge_pkt_buf_alloc *buf_alloc)
2281 {
2282 	struct hclge_rx_priv_buff_cmd *req;
2283 	struct hclge_desc desc;
2284 	int ret;
2285 	int i;
2286 
2287 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_PRIV_BUFF_ALLOC, false);
2288 	req = (struct hclge_rx_priv_buff_cmd *)desc.data;
2289 
2290 	/* Alloc private buffer TCs */
2291 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2292 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2293 
2294 		req->buf_num[i] =
2295 			cpu_to_le16(priv->buf_size >> HCLGE_BUF_UNIT_S);
2296 		req->buf_num[i] |=
2297 			cpu_to_le16(1 << HCLGE_TC0_PRI_BUF_EN_B);
2298 	}
2299 
2300 	req->shared_buf =
2301 		cpu_to_le16((buf_alloc->s_buf.buf_size >> HCLGE_BUF_UNIT_S) |
2302 			    (1 << HCLGE_TC0_PRI_BUF_EN_B));
2303 
2304 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2305 	if (ret)
2306 		dev_err(&hdev->pdev->dev,
2307 			"rx private buffer alloc cmd failed %d\n", ret);
2308 
2309 	return ret;
2310 }
2311 
2312 static int hclge_rx_priv_wl_config(struct hclge_dev *hdev,
2313 				   struct hclge_pkt_buf_alloc *buf_alloc)
2314 {
2315 	struct hclge_rx_priv_wl_buf *req;
2316 	struct hclge_priv_buf *priv;
2317 	struct hclge_desc desc[2];
2318 	int i, j;
2319 	int ret;
2320 
2321 	for (i = 0; i < 2; i++) {
2322 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_RX_PRIV_WL_ALLOC,
2323 					   false);
2324 		req = (struct hclge_rx_priv_wl_buf *)desc[i].data;
2325 
2326 		/* The first descriptor set the NEXT bit to 1 */
2327 		if (i == 0)
2328 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2329 		else
2330 			desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2331 
2332 		for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) {
2333 			u32 idx = i * HCLGE_TC_NUM_ONE_DESC + j;
2334 
2335 			priv = &buf_alloc->priv_buf[idx];
2336 			req->tc_wl[j].high =
2337 				cpu_to_le16(priv->wl.high >> HCLGE_BUF_UNIT_S);
2338 			req->tc_wl[j].high |=
2339 				cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2340 			req->tc_wl[j].low =
2341 				cpu_to_le16(priv->wl.low >> HCLGE_BUF_UNIT_S);
2342 			req->tc_wl[j].low |=
2343 				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2344 		}
2345 	}
2346 
2347 	/* Send 2 descriptor at one time */
2348 	ret = hclge_cmd_send(&hdev->hw, desc, 2);
2349 	if (ret)
2350 		dev_err(&hdev->pdev->dev,
2351 			"rx private waterline config cmd failed %d\n",
2352 			ret);
2353 	return ret;
2354 }
2355 
2356 static int hclge_common_thrd_config(struct hclge_dev *hdev,
2357 				    struct hclge_pkt_buf_alloc *buf_alloc)
2358 {
2359 	struct hclge_shared_buf *s_buf = &buf_alloc->s_buf;
2360 	struct hclge_rx_com_thrd *req;
2361 	struct hclge_desc desc[2];
2362 	struct hclge_tc_thrd *tc;
2363 	int i, j;
2364 	int ret;
2365 
2366 	for (i = 0; i < 2; i++) {
2367 		hclge_cmd_setup_basic_desc(&desc[i],
2368 					   HCLGE_OPC_RX_COM_THRD_ALLOC, false);
2369 		req = (struct hclge_rx_com_thrd *)&desc[i].data;
2370 
2371 		/* The first descriptor set the NEXT bit to 1 */
2372 		if (i == 0)
2373 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2374 		else
2375 			desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2376 
2377 		for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) {
2378 			tc = &s_buf->tc_thrd[i * HCLGE_TC_NUM_ONE_DESC + j];
2379 
2380 			req->com_thrd[j].high =
2381 				cpu_to_le16(tc->high >> HCLGE_BUF_UNIT_S);
2382 			req->com_thrd[j].high |=
2383 				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2384 			req->com_thrd[j].low =
2385 				cpu_to_le16(tc->low >> HCLGE_BUF_UNIT_S);
2386 			req->com_thrd[j].low |=
2387 				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2388 		}
2389 	}
2390 
2391 	/* Send 2 descriptors at one time */
2392 	ret = hclge_cmd_send(&hdev->hw, desc, 2);
2393 	if (ret)
2394 		dev_err(&hdev->pdev->dev,
2395 			"common threshold config cmd failed %d\n", ret);
2396 	return ret;
2397 }
2398 
2399 static int hclge_common_wl_config(struct hclge_dev *hdev,
2400 				  struct hclge_pkt_buf_alloc *buf_alloc)
2401 {
2402 	struct hclge_shared_buf *buf = &buf_alloc->s_buf;
2403 	struct hclge_rx_com_wl *req;
2404 	struct hclge_desc desc;
2405 	int ret;
2406 
2407 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_COM_WL_ALLOC, false);
2408 
2409 	req = (struct hclge_rx_com_wl *)desc.data;
2410 	req->com_wl.high = cpu_to_le16(buf->self.high >> HCLGE_BUF_UNIT_S);
2411 	req->com_wl.high |=  cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2412 
2413 	req->com_wl.low = cpu_to_le16(buf->self.low >> HCLGE_BUF_UNIT_S);
2414 	req->com_wl.low |=  cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2415 
2416 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2417 	if (ret)
2418 		dev_err(&hdev->pdev->dev,
2419 			"common waterline config cmd failed %d\n", ret);
2420 
2421 	return ret;
2422 }
2423 
2424 int hclge_buffer_alloc(struct hclge_dev *hdev)
2425 {
2426 	struct hclge_pkt_buf_alloc *pkt_buf;
2427 	int ret;
2428 
2429 	pkt_buf = kzalloc(sizeof(*pkt_buf), GFP_KERNEL);
2430 	if (!pkt_buf)
2431 		return -ENOMEM;
2432 
2433 	ret = hclge_tx_buffer_calc(hdev, pkt_buf);
2434 	if (ret) {
2435 		dev_err(&hdev->pdev->dev,
2436 			"could not calc tx buffer size for all TCs %d\n", ret);
2437 		goto out;
2438 	}
2439 
2440 	ret = hclge_tx_buffer_alloc(hdev, pkt_buf);
2441 	if (ret) {
2442 		dev_err(&hdev->pdev->dev,
2443 			"could not alloc tx buffers %d\n", ret);
2444 		goto out;
2445 	}
2446 
2447 	ret = hclge_rx_buffer_calc(hdev, pkt_buf);
2448 	if (ret) {
2449 		dev_err(&hdev->pdev->dev,
2450 			"could not calc rx priv buffer size for all TCs %d\n",
2451 			ret);
2452 		goto out;
2453 	}
2454 
2455 	ret = hclge_rx_priv_buf_alloc(hdev, pkt_buf);
2456 	if (ret) {
2457 		dev_err(&hdev->pdev->dev, "could not alloc rx priv buffer %d\n",
2458 			ret);
2459 		goto out;
2460 	}
2461 
2462 	if (hnae3_dev_dcb_supported(hdev)) {
2463 		ret = hclge_rx_priv_wl_config(hdev, pkt_buf);
2464 		if (ret) {
2465 			dev_err(&hdev->pdev->dev,
2466 				"could not configure rx private waterline %d\n",
2467 				ret);
2468 			goto out;
2469 		}
2470 
2471 		ret = hclge_common_thrd_config(hdev, pkt_buf);
2472 		if (ret) {
2473 			dev_err(&hdev->pdev->dev,
2474 				"could not configure common threshold %d\n",
2475 				ret);
2476 			goto out;
2477 		}
2478 	}
2479 
2480 	ret = hclge_common_wl_config(hdev, pkt_buf);
2481 	if (ret)
2482 		dev_err(&hdev->pdev->dev,
2483 			"could not configure common waterline %d\n", ret);
2484 
2485 out:
2486 	kfree(pkt_buf);
2487 	return ret;
2488 }
2489 
2490 static int hclge_init_roce_base_info(struct hclge_vport *vport)
2491 {
2492 	struct hnae3_handle *roce = &vport->roce;
2493 	struct hnae3_handle *nic = &vport->nic;
2494 	struct hclge_dev *hdev = vport->back;
2495 
2496 	roce->rinfo.num_vectors = vport->back->num_roce_msi;
2497 
2498 	if (hdev->num_msi < hdev->num_nic_msi + hdev->num_roce_msi)
2499 		return -EINVAL;
2500 
2501 	roce->rinfo.base_vector = hdev->num_nic_msi;
2502 
2503 	roce->rinfo.netdev = nic->kinfo.netdev;
2504 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2505 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2506 
2507 	roce->pdev = nic->pdev;
2508 	roce->ae_algo = nic->ae_algo;
2509 	roce->numa_node_mask = nic->numa_node_mask;
2510 
2511 	return 0;
2512 }
2513 
2514 static int hclge_init_msi(struct hclge_dev *hdev)
2515 {
2516 	struct pci_dev *pdev = hdev->pdev;
2517 	int vectors;
2518 	int i;
2519 
2520 	vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2521 					hdev->num_msi,
2522 					PCI_IRQ_MSI | PCI_IRQ_MSIX);
2523 	if (vectors < 0) {
2524 		dev_err(&pdev->dev,
2525 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2526 			vectors);
2527 		return vectors;
2528 	}
2529 	if (vectors < hdev->num_msi)
2530 		dev_warn(&hdev->pdev->dev,
2531 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2532 			 hdev->num_msi, vectors);
2533 
2534 	hdev->num_msi = vectors;
2535 	hdev->num_msi_left = vectors;
2536 
2537 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2538 					   sizeof(u16), GFP_KERNEL);
2539 	if (!hdev->vector_status) {
2540 		pci_free_irq_vectors(pdev);
2541 		return -ENOMEM;
2542 	}
2543 
2544 	for (i = 0; i < hdev->num_msi; i++)
2545 		hdev->vector_status[i] = HCLGE_INVALID_VPORT;
2546 
2547 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2548 					sizeof(int), GFP_KERNEL);
2549 	if (!hdev->vector_irq) {
2550 		pci_free_irq_vectors(pdev);
2551 		return -ENOMEM;
2552 	}
2553 
2554 	return 0;
2555 }
2556 
2557 static u8 hclge_check_speed_dup(u8 duplex, int speed)
2558 {
2559 	if (!(speed == HCLGE_MAC_SPEED_10M || speed == HCLGE_MAC_SPEED_100M))
2560 		duplex = HCLGE_MAC_FULL;
2561 
2562 	return duplex;
2563 }
2564 
2565 static struct hclge_mac_speed_map hclge_mac_speed_map_to_fw[] = {
2566 	{HCLGE_MAC_SPEED_10M, HCLGE_FW_MAC_SPEED_10M},
2567 	{HCLGE_MAC_SPEED_100M, HCLGE_FW_MAC_SPEED_100M},
2568 	{HCLGE_MAC_SPEED_1G, HCLGE_FW_MAC_SPEED_1G},
2569 	{HCLGE_MAC_SPEED_10G, HCLGE_FW_MAC_SPEED_10G},
2570 	{HCLGE_MAC_SPEED_25G, HCLGE_FW_MAC_SPEED_25G},
2571 	{HCLGE_MAC_SPEED_40G, HCLGE_FW_MAC_SPEED_40G},
2572 	{HCLGE_MAC_SPEED_50G, HCLGE_FW_MAC_SPEED_50G},
2573 	{HCLGE_MAC_SPEED_100G, HCLGE_FW_MAC_SPEED_100G},
2574 	{HCLGE_MAC_SPEED_200G, HCLGE_FW_MAC_SPEED_200G},
2575 };
2576 
2577 static int hclge_convert_to_fw_speed(u32 speed_drv, u32 *speed_fw)
2578 {
2579 	u16 i;
2580 
2581 	for (i = 0; i < ARRAY_SIZE(hclge_mac_speed_map_to_fw); i++) {
2582 		if (hclge_mac_speed_map_to_fw[i].speed_drv == speed_drv) {
2583 			*speed_fw = hclge_mac_speed_map_to_fw[i].speed_fw;
2584 			return 0;
2585 		}
2586 	}
2587 
2588 	return -EINVAL;
2589 }
2590 
2591 static int hclge_cfg_mac_speed_dup_hw(struct hclge_dev *hdev, int speed,
2592 				      u8 duplex)
2593 {
2594 	struct hclge_config_mac_speed_dup_cmd *req;
2595 	struct hclge_desc desc;
2596 	u32 speed_fw;
2597 	int ret;
2598 
2599 	req = (struct hclge_config_mac_speed_dup_cmd *)desc.data;
2600 
2601 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_SPEED_DUP, false);
2602 
2603 	if (duplex)
2604 		hnae3_set_bit(req->speed_dup, HCLGE_CFG_DUPLEX_B, 1);
2605 
2606 	ret = hclge_convert_to_fw_speed(speed, &speed_fw);
2607 	if (ret) {
2608 		dev_err(&hdev->pdev->dev, "invalid speed (%d)\n", speed);
2609 		return ret;
2610 	}
2611 
2612 	hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S,
2613 			speed_fw);
2614 	hnae3_set_bit(req->mac_change_fec_en, HCLGE_CFG_MAC_SPEED_CHANGE_EN_B,
2615 		      1);
2616 
2617 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2618 	if (ret) {
2619 		dev_err(&hdev->pdev->dev,
2620 			"mac speed/duplex config cmd failed %d.\n", ret);
2621 		return ret;
2622 	}
2623 
2624 	return 0;
2625 }
2626 
2627 int hclge_cfg_mac_speed_dup(struct hclge_dev *hdev, int speed, u8 duplex)
2628 {
2629 	struct hclge_mac *mac = &hdev->hw.mac;
2630 	int ret;
2631 
2632 	duplex = hclge_check_speed_dup(duplex, speed);
2633 	if (!mac->support_autoneg && mac->speed == speed &&
2634 	    mac->duplex == duplex)
2635 		return 0;
2636 
2637 	ret = hclge_cfg_mac_speed_dup_hw(hdev, speed, duplex);
2638 	if (ret)
2639 		return ret;
2640 
2641 	hdev->hw.mac.speed = speed;
2642 	hdev->hw.mac.duplex = duplex;
2643 
2644 	return 0;
2645 }
2646 
2647 static int hclge_cfg_mac_speed_dup_h(struct hnae3_handle *handle, int speed,
2648 				     u8 duplex)
2649 {
2650 	struct hclge_vport *vport = hclge_get_vport(handle);
2651 	struct hclge_dev *hdev = vport->back;
2652 
2653 	return hclge_cfg_mac_speed_dup(hdev, speed, duplex);
2654 }
2655 
2656 static int hclge_set_autoneg_en(struct hclge_dev *hdev, bool enable)
2657 {
2658 	struct hclge_config_auto_neg_cmd *req;
2659 	struct hclge_desc desc;
2660 	u32 flag = 0;
2661 	int ret;
2662 
2663 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_AN_MODE, false);
2664 
2665 	req = (struct hclge_config_auto_neg_cmd *)desc.data;
2666 	if (enable)
2667 		hnae3_set_bit(flag, HCLGE_MAC_CFG_AN_EN_B, 1U);
2668 	req->cfg_an_cmd_flag = cpu_to_le32(flag);
2669 
2670 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2671 	if (ret)
2672 		dev_err(&hdev->pdev->dev, "auto neg set cmd failed %d.\n",
2673 			ret);
2674 
2675 	return ret;
2676 }
2677 
2678 static int hclge_set_autoneg(struct hnae3_handle *handle, bool enable)
2679 {
2680 	struct hclge_vport *vport = hclge_get_vport(handle);
2681 	struct hclge_dev *hdev = vport->back;
2682 
2683 	if (!hdev->hw.mac.support_autoneg) {
2684 		if (enable) {
2685 			dev_err(&hdev->pdev->dev,
2686 				"autoneg is not supported by current port\n");
2687 			return -EOPNOTSUPP;
2688 		} else {
2689 			return 0;
2690 		}
2691 	}
2692 
2693 	return hclge_set_autoneg_en(hdev, enable);
2694 }
2695 
2696 static int hclge_get_autoneg(struct hnae3_handle *handle)
2697 {
2698 	struct hclge_vport *vport = hclge_get_vport(handle);
2699 	struct hclge_dev *hdev = vport->back;
2700 	struct phy_device *phydev = hdev->hw.mac.phydev;
2701 
2702 	if (phydev)
2703 		return phydev->autoneg;
2704 
2705 	return hdev->hw.mac.autoneg;
2706 }
2707 
2708 static int hclge_restart_autoneg(struct hnae3_handle *handle)
2709 {
2710 	struct hclge_vport *vport = hclge_get_vport(handle);
2711 	struct hclge_dev *hdev = vport->back;
2712 	int ret;
2713 
2714 	dev_dbg(&hdev->pdev->dev, "restart autoneg\n");
2715 
2716 	ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
2717 	if (ret)
2718 		return ret;
2719 	return hclge_notify_client(hdev, HNAE3_UP_CLIENT);
2720 }
2721 
2722 static int hclge_halt_autoneg(struct hnae3_handle *handle, bool halt)
2723 {
2724 	struct hclge_vport *vport = hclge_get_vport(handle);
2725 	struct hclge_dev *hdev = vport->back;
2726 
2727 	if (hdev->hw.mac.support_autoneg && hdev->hw.mac.autoneg)
2728 		return hclge_set_autoneg_en(hdev, !halt);
2729 
2730 	return 0;
2731 }
2732 
2733 static int hclge_set_fec_hw(struct hclge_dev *hdev, u32 fec_mode)
2734 {
2735 	struct hclge_config_fec_cmd *req;
2736 	struct hclge_desc desc;
2737 	int ret;
2738 
2739 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_FEC_MODE, false);
2740 
2741 	req = (struct hclge_config_fec_cmd *)desc.data;
2742 	if (fec_mode & BIT(HNAE3_FEC_AUTO))
2743 		hnae3_set_bit(req->fec_mode, HCLGE_MAC_CFG_FEC_AUTO_EN_B, 1);
2744 	if (fec_mode & BIT(HNAE3_FEC_RS))
2745 		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
2746 				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_RS);
2747 	if (fec_mode & BIT(HNAE3_FEC_BASER))
2748 		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
2749 				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_BASER);
2750 
2751 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2752 	if (ret)
2753 		dev_err(&hdev->pdev->dev, "set fec mode failed %d.\n", ret);
2754 
2755 	return ret;
2756 }
2757 
2758 static int hclge_set_fec(struct hnae3_handle *handle, u32 fec_mode)
2759 {
2760 	struct hclge_vport *vport = hclge_get_vport(handle);
2761 	struct hclge_dev *hdev = vport->back;
2762 	struct hclge_mac *mac = &hdev->hw.mac;
2763 	int ret;
2764 
2765 	if (fec_mode && !(mac->fec_ability & fec_mode)) {
2766 		dev_err(&hdev->pdev->dev, "unsupported fec mode\n");
2767 		return -EINVAL;
2768 	}
2769 
2770 	ret = hclge_set_fec_hw(hdev, fec_mode);
2771 	if (ret)
2772 		return ret;
2773 
2774 	mac->user_fec_mode = fec_mode | BIT(HNAE3_FEC_USER_DEF);
2775 	return 0;
2776 }
2777 
2778 static void hclge_get_fec(struct hnae3_handle *handle, u8 *fec_ability,
2779 			  u8 *fec_mode)
2780 {
2781 	struct hclge_vport *vport = hclge_get_vport(handle);
2782 	struct hclge_dev *hdev = vport->back;
2783 	struct hclge_mac *mac = &hdev->hw.mac;
2784 
2785 	if (fec_ability)
2786 		*fec_ability = mac->fec_ability;
2787 	if (fec_mode)
2788 		*fec_mode = mac->fec_mode;
2789 }
2790 
2791 static int hclge_mac_init(struct hclge_dev *hdev)
2792 {
2793 	struct hclge_mac *mac = &hdev->hw.mac;
2794 	int ret;
2795 
2796 	hdev->support_sfp_query = true;
2797 	hdev->hw.mac.duplex = HCLGE_MAC_FULL;
2798 	ret = hclge_cfg_mac_speed_dup_hw(hdev, hdev->hw.mac.speed,
2799 					 hdev->hw.mac.duplex);
2800 	if (ret)
2801 		return ret;
2802 
2803 	if (hdev->hw.mac.support_autoneg) {
2804 		ret = hclge_set_autoneg_en(hdev, hdev->hw.mac.autoneg);
2805 		if (ret)
2806 			return ret;
2807 	}
2808 
2809 	mac->link = 0;
2810 
2811 	if (mac->user_fec_mode & BIT(HNAE3_FEC_USER_DEF)) {
2812 		ret = hclge_set_fec_hw(hdev, mac->user_fec_mode);
2813 		if (ret)
2814 			return ret;
2815 	}
2816 
2817 	ret = hclge_set_mac_mtu(hdev, hdev->mps);
2818 	if (ret) {
2819 		dev_err(&hdev->pdev->dev, "set mtu failed ret=%d\n", ret);
2820 		return ret;
2821 	}
2822 
2823 	ret = hclge_set_default_loopback(hdev);
2824 	if (ret)
2825 		return ret;
2826 
2827 	ret = hclge_buffer_alloc(hdev);
2828 	if (ret)
2829 		dev_err(&hdev->pdev->dev,
2830 			"allocate buffer fail, ret=%d\n", ret);
2831 
2832 	return ret;
2833 }
2834 
2835 static void hclge_mbx_task_schedule(struct hclge_dev *hdev)
2836 {
2837 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
2838 	    !test_and_set_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state)) {
2839 		hdev->last_mbx_scheduled = jiffies;
2840 		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
2841 	}
2842 }
2843 
2844 static void hclge_reset_task_schedule(struct hclge_dev *hdev)
2845 {
2846 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
2847 	    test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state) &&
2848 	    !test_and_set_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state)) {
2849 		hdev->last_rst_scheduled = jiffies;
2850 		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
2851 	}
2852 }
2853 
2854 static void hclge_errhand_task_schedule(struct hclge_dev *hdev)
2855 {
2856 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
2857 	    !test_and_set_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state))
2858 		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
2859 }
2860 
2861 void hclge_task_schedule(struct hclge_dev *hdev, unsigned long delay_time)
2862 {
2863 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
2864 	    !test_bit(HCLGE_STATE_RST_FAIL, &hdev->state))
2865 		mod_delayed_work(hclge_wq, &hdev->service_task, delay_time);
2866 }
2867 
2868 static int hclge_get_mac_link_status(struct hclge_dev *hdev, int *link_status)
2869 {
2870 	struct hclge_link_status_cmd *req;
2871 	struct hclge_desc desc;
2872 	int ret;
2873 
2874 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_STATUS, true);
2875 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2876 	if (ret) {
2877 		dev_err(&hdev->pdev->dev, "get link status cmd failed %d\n",
2878 			ret);
2879 		return ret;
2880 	}
2881 
2882 	req = (struct hclge_link_status_cmd *)desc.data;
2883 	*link_status = (req->status & HCLGE_LINK_STATUS_UP_M) > 0 ?
2884 		HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN;
2885 
2886 	return 0;
2887 }
2888 
2889 static int hclge_get_mac_phy_link(struct hclge_dev *hdev, int *link_status)
2890 {
2891 	struct phy_device *phydev = hdev->hw.mac.phydev;
2892 
2893 	*link_status = HCLGE_LINK_STATUS_DOWN;
2894 
2895 	if (test_bit(HCLGE_STATE_DOWN, &hdev->state))
2896 		return 0;
2897 
2898 	if (phydev && (phydev->state != PHY_RUNNING || !phydev->link))
2899 		return 0;
2900 
2901 	return hclge_get_mac_link_status(hdev, link_status);
2902 }
2903 
2904 static void hclge_push_link_status(struct hclge_dev *hdev)
2905 {
2906 	struct hclge_vport *vport;
2907 	int ret;
2908 	u16 i;
2909 
2910 	for (i = 0; i < pci_num_vf(hdev->pdev); i++) {
2911 		vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM];
2912 
2913 		if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) ||
2914 		    vport->vf_info.link_state != IFLA_VF_LINK_STATE_AUTO)
2915 			continue;
2916 
2917 		ret = hclge_push_vf_link_status(vport);
2918 		if (ret) {
2919 			dev_err(&hdev->pdev->dev,
2920 				"failed to push link status to vf%u, ret = %d\n",
2921 				i, ret);
2922 		}
2923 	}
2924 }
2925 
2926 static void hclge_update_link_status(struct hclge_dev *hdev)
2927 {
2928 	struct hnae3_handle *rhandle = &hdev->vport[0].roce;
2929 	struct hnae3_handle *handle = &hdev->vport[0].nic;
2930 	struct hnae3_client *rclient = hdev->roce_client;
2931 	struct hnae3_client *client = hdev->nic_client;
2932 	int state;
2933 	int ret;
2934 
2935 	if (!client)
2936 		return;
2937 
2938 	if (test_and_set_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state))
2939 		return;
2940 
2941 	ret = hclge_get_mac_phy_link(hdev, &state);
2942 	if (ret) {
2943 		clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state);
2944 		return;
2945 	}
2946 
2947 	if (state != hdev->hw.mac.link) {
2948 		hdev->hw.mac.link = state;
2949 		client->ops->link_status_change(handle, state);
2950 		hclge_config_mac_tnl_int(hdev, state);
2951 		if (rclient && rclient->ops->link_status_change)
2952 			rclient->ops->link_status_change(rhandle, state);
2953 
2954 		hclge_push_link_status(hdev);
2955 	}
2956 
2957 	clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state);
2958 }
2959 
2960 static void hclge_update_speed_advertising(struct hclge_mac *mac)
2961 {
2962 	u32 speed_ability;
2963 
2964 	if (hclge_get_speed_bit(mac->speed, &speed_ability))
2965 		return;
2966 
2967 	switch (mac->module_type) {
2968 	case HNAE3_MODULE_TYPE_FIBRE_LR:
2969 		hclge_convert_setting_lr(speed_ability, mac->advertising);
2970 		break;
2971 	case HNAE3_MODULE_TYPE_FIBRE_SR:
2972 	case HNAE3_MODULE_TYPE_AOC:
2973 		hclge_convert_setting_sr(speed_ability, mac->advertising);
2974 		break;
2975 	case HNAE3_MODULE_TYPE_CR:
2976 		hclge_convert_setting_cr(speed_ability, mac->advertising);
2977 		break;
2978 	case HNAE3_MODULE_TYPE_KR:
2979 		hclge_convert_setting_kr(speed_ability, mac->advertising);
2980 		break;
2981 	default:
2982 		break;
2983 	}
2984 }
2985 
2986 static void hclge_update_fec_advertising(struct hclge_mac *mac)
2987 {
2988 	if (mac->fec_mode & BIT(HNAE3_FEC_RS))
2989 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT,
2990 				 mac->advertising);
2991 	else if (mac->fec_mode & BIT(HNAE3_FEC_BASER))
2992 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT,
2993 				 mac->advertising);
2994 	else
2995 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT,
2996 				 mac->advertising);
2997 }
2998 
2999 static void hclge_update_pause_advertising(struct hclge_dev *hdev)
3000 {
3001 	struct hclge_mac *mac = &hdev->hw.mac;
3002 	bool rx_en, tx_en;
3003 
3004 	switch (hdev->fc_mode_last_time) {
3005 	case HCLGE_FC_RX_PAUSE:
3006 		rx_en = true;
3007 		tx_en = false;
3008 		break;
3009 	case HCLGE_FC_TX_PAUSE:
3010 		rx_en = false;
3011 		tx_en = true;
3012 		break;
3013 	case HCLGE_FC_FULL:
3014 		rx_en = true;
3015 		tx_en = true;
3016 		break;
3017 	default:
3018 		rx_en = false;
3019 		tx_en = false;
3020 		break;
3021 	}
3022 
3023 	linkmode_set_pause(mac->advertising, tx_en, rx_en);
3024 }
3025 
3026 static void hclge_update_advertising(struct hclge_dev *hdev)
3027 {
3028 	struct hclge_mac *mac = &hdev->hw.mac;
3029 
3030 	linkmode_zero(mac->advertising);
3031 	hclge_update_speed_advertising(mac);
3032 	hclge_update_fec_advertising(mac);
3033 	hclge_update_pause_advertising(hdev);
3034 }
3035 
3036 static void hclge_update_port_capability(struct hclge_dev *hdev,
3037 					 struct hclge_mac *mac)
3038 {
3039 	if (hnae3_dev_fec_supported(hdev))
3040 		/* update fec ability by speed */
3041 		hclge_convert_setting_fec(mac);
3042 
3043 	/* firmware can not identify back plane type, the media type
3044 	 * read from configuration can help deal it
3045 	 */
3046 	if (mac->media_type == HNAE3_MEDIA_TYPE_BACKPLANE &&
3047 	    mac->module_type == HNAE3_MODULE_TYPE_UNKNOWN)
3048 		mac->module_type = HNAE3_MODULE_TYPE_KR;
3049 	else if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER)
3050 		mac->module_type = HNAE3_MODULE_TYPE_TP;
3051 
3052 	if (mac->support_autoneg) {
3053 		linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mac->supported);
3054 		linkmode_copy(mac->advertising, mac->supported);
3055 	} else {
3056 		linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3057 				   mac->supported);
3058 		hclge_update_advertising(hdev);
3059 	}
3060 }
3061 
3062 static int hclge_get_sfp_speed(struct hclge_dev *hdev, u32 *speed)
3063 {
3064 	struct hclge_sfp_info_cmd *resp;
3065 	struct hclge_desc desc;
3066 	int ret;
3067 
3068 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true);
3069 	resp = (struct hclge_sfp_info_cmd *)desc.data;
3070 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3071 	if (ret == -EOPNOTSUPP) {
3072 		dev_warn(&hdev->pdev->dev,
3073 			 "IMP do not support get SFP speed %d\n", ret);
3074 		return ret;
3075 	} else if (ret) {
3076 		dev_err(&hdev->pdev->dev, "get sfp speed failed %d\n", ret);
3077 		return ret;
3078 	}
3079 
3080 	*speed = le32_to_cpu(resp->speed);
3081 
3082 	return 0;
3083 }
3084 
3085 static int hclge_get_sfp_info(struct hclge_dev *hdev, struct hclge_mac *mac)
3086 {
3087 	struct hclge_sfp_info_cmd *resp;
3088 	struct hclge_desc desc;
3089 	int ret;
3090 
3091 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true);
3092 	resp = (struct hclge_sfp_info_cmd *)desc.data;
3093 
3094 	resp->query_type = QUERY_ACTIVE_SPEED;
3095 
3096 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3097 	if (ret == -EOPNOTSUPP) {
3098 		dev_warn(&hdev->pdev->dev,
3099 			 "IMP does not support get SFP info %d\n", ret);
3100 		return ret;
3101 	} else if (ret) {
3102 		dev_err(&hdev->pdev->dev, "get sfp info failed %d\n", ret);
3103 		return ret;
3104 	}
3105 
3106 	/* In some case, mac speed get from IMP may be 0, it shouldn't be
3107 	 * set to mac->speed.
3108 	 */
3109 	if (!le32_to_cpu(resp->speed))
3110 		return 0;
3111 
3112 	mac->speed = le32_to_cpu(resp->speed);
3113 	/* if resp->speed_ability is 0, it means it's an old version
3114 	 * firmware, do not update these params
3115 	 */
3116 	if (resp->speed_ability) {
3117 		mac->module_type = le32_to_cpu(resp->module_type);
3118 		mac->speed_ability = le32_to_cpu(resp->speed_ability);
3119 		mac->autoneg = resp->autoneg;
3120 		mac->support_autoneg = resp->autoneg_ability;
3121 		mac->speed_type = QUERY_ACTIVE_SPEED;
3122 		if (!resp->active_fec)
3123 			mac->fec_mode = 0;
3124 		else
3125 			mac->fec_mode = BIT(resp->active_fec);
3126 	} else {
3127 		mac->speed_type = QUERY_SFP_SPEED;
3128 	}
3129 
3130 	return 0;
3131 }
3132 
3133 static int hclge_get_phy_link_ksettings(struct hnae3_handle *handle,
3134 					struct ethtool_link_ksettings *cmd)
3135 {
3136 	struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM];
3137 	struct hclge_vport *vport = hclge_get_vport(handle);
3138 	struct hclge_phy_link_ksetting_0_cmd *req0;
3139 	struct hclge_phy_link_ksetting_1_cmd *req1;
3140 	u32 supported, advertising, lp_advertising;
3141 	struct hclge_dev *hdev = vport->back;
3142 	int ret;
3143 
3144 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING,
3145 				   true);
3146 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
3147 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING,
3148 				   true);
3149 
3150 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM);
3151 	if (ret) {
3152 		dev_err(&hdev->pdev->dev,
3153 			"failed to get phy link ksetting, ret = %d.\n", ret);
3154 		return ret;
3155 	}
3156 
3157 	req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data;
3158 	cmd->base.autoneg = req0->autoneg;
3159 	cmd->base.speed = le32_to_cpu(req0->speed);
3160 	cmd->base.duplex = req0->duplex;
3161 	cmd->base.port = req0->port;
3162 	cmd->base.transceiver = req0->transceiver;
3163 	cmd->base.phy_address = req0->phy_address;
3164 	cmd->base.eth_tp_mdix = req0->eth_tp_mdix;
3165 	cmd->base.eth_tp_mdix_ctrl = req0->eth_tp_mdix_ctrl;
3166 	supported = le32_to_cpu(req0->supported);
3167 	advertising = le32_to_cpu(req0->advertising);
3168 	lp_advertising = le32_to_cpu(req0->lp_advertising);
3169 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3170 						supported);
3171 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3172 						advertising);
3173 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
3174 						lp_advertising);
3175 
3176 	req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data;
3177 	cmd->base.master_slave_cfg = req1->master_slave_cfg;
3178 	cmd->base.master_slave_state = req1->master_slave_state;
3179 
3180 	return 0;
3181 }
3182 
3183 static int
3184 hclge_set_phy_link_ksettings(struct hnae3_handle *handle,
3185 			     const struct ethtool_link_ksettings *cmd)
3186 {
3187 	struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM];
3188 	struct hclge_vport *vport = hclge_get_vport(handle);
3189 	struct hclge_phy_link_ksetting_0_cmd *req0;
3190 	struct hclge_phy_link_ksetting_1_cmd *req1;
3191 	struct hclge_dev *hdev = vport->back;
3192 	u32 advertising;
3193 	int ret;
3194 
3195 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
3196 	    ((cmd->base.speed != SPEED_100 && cmd->base.speed != SPEED_10) ||
3197 	     (cmd->base.duplex != DUPLEX_HALF &&
3198 	      cmd->base.duplex != DUPLEX_FULL)))
3199 		return -EINVAL;
3200 
3201 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING,
3202 				   false);
3203 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
3204 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING,
3205 				   false);
3206 
3207 	req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data;
3208 	req0->autoneg = cmd->base.autoneg;
3209 	req0->speed = cpu_to_le32(cmd->base.speed);
3210 	req0->duplex = cmd->base.duplex;
3211 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
3212 						cmd->link_modes.advertising);
3213 	req0->advertising = cpu_to_le32(advertising);
3214 	req0->eth_tp_mdix_ctrl = cmd->base.eth_tp_mdix_ctrl;
3215 
3216 	req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data;
3217 	req1->master_slave_cfg = cmd->base.master_slave_cfg;
3218 
3219 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM);
3220 	if (ret) {
3221 		dev_err(&hdev->pdev->dev,
3222 			"failed to set phy link ksettings, ret = %d.\n", ret);
3223 		return ret;
3224 	}
3225 
3226 	hdev->hw.mac.autoneg = cmd->base.autoneg;
3227 	hdev->hw.mac.speed = cmd->base.speed;
3228 	hdev->hw.mac.duplex = cmd->base.duplex;
3229 	linkmode_copy(hdev->hw.mac.advertising, cmd->link_modes.advertising);
3230 
3231 	return 0;
3232 }
3233 
3234 static int hclge_update_tp_port_info(struct hclge_dev *hdev)
3235 {
3236 	struct ethtool_link_ksettings cmd;
3237 	int ret;
3238 
3239 	if (!hnae3_dev_phy_imp_supported(hdev))
3240 		return 0;
3241 
3242 	ret = hclge_get_phy_link_ksettings(&hdev->vport->nic, &cmd);
3243 	if (ret)
3244 		return ret;
3245 
3246 	hdev->hw.mac.autoneg = cmd.base.autoneg;
3247 	hdev->hw.mac.speed = cmd.base.speed;
3248 	hdev->hw.mac.duplex = cmd.base.duplex;
3249 
3250 	return 0;
3251 }
3252 
3253 static int hclge_tp_port_init(struct hclge_dev *hdev)
3254 {
3255 	struct ethtool_link_ksettings cmd;
3256 
3257 	if (!hnae3_dev_phy_imp_supported(hdev))
3258 		return 0;
3259 
3260 	cmd.base.autoneg = hdev->hw.mac.autoneg;
3261 	cmd.base.speed = hdev->hw.mac.speed;
3262 	cmd.base.duplex = hdev->hw.mac.duplex;
3263 	linkmode_copy(cmd.link_modes.advertising, hdev->hw.mac.advertising);
3264 
3265 	return hclge_set_phy_link_ksettings(&hdev->vport->nic, &cmd);
3266 }
3267 
3268 static int hclge_update_port_info(struct hclge_dev *hdev)
3269 {
3270 	struct hclge_mac *mac = &hdev->hw.mac;
3271 	int speed;
3272 	int ret;
3273 
3274 	/* get the port info from SFP cmd if not copper port */
3275 	if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER)
3276 		return hclge_update_tp_port_info(hdev);
3277 
3278 	/* if IMP does not support get SFP/qSFP info, return directly */
3279 	if (!hdev->support_sfp_query)
3280 		return 0;
3281 
3282 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3283 		speed = mac->speed;
3284 		ret = hclge_get_sfp_info(hdev, mac);
3285 	} else {
3286 		speed = HCLGE_MAC_SPEED_UNKNOWN;
3287 		ret = hclge_get_sfp_speed(hdev, &speed);
3288 	}
3289 
3290 	if (ret == -EOPNOTSUPP) {
3291 		hdev->support_sfp_query = false;
3292 		return ret;
3293 	} else if (ret) {
3294 		return ret;
3295 	}
3296 
3297 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3298 		if (mac->speed_type == QUERY_ACTIVE_SPEED) {
3299 			hclge_update_port_capability(hdev, mac);
3300 			if (mac->speed != speed)
3301 				(void)hclge_tm_port_shaper_cfg(hdev);
3302 			return 0;
3303 		}
3304 		return hclge_cfg_mac_speed_dup(hdev, mac->speed,
3305 					       HCLGE_MAC_FULL);
3306 	} else {
3307 		if (speed == HCLGE_MAC_SPEED_UNKNOWN)
3308 			return 0; /* do nothing if no SFP */
3309 
3310 		/* must config full duplex for SFP */
3311 		return hclge_cfg_mac_speed_dup(hdev, speed, HCLGE_MAC_FULL);
3312 	}
3313 }
3314 
3315 static int hclge_get_status(struct hnae3_handle *handle)
3316 {
3317 	struct hclge_vport *vport = hclge_get_vport(handle);
3318 	struct hclge_dev *hdev = vport->back;
3319 
3320 	hclge_update_link_status(hdev);
3321 
3322 	return hdev->hw.mac.link;
3323 }
3324 
3325 static struct hclge_vport *hclge_get_vf_vport(struct hclge_dev *hdev, int vf)
3326 {
3327 	if (!pci_num_vf(hdev->pdev)) {
3328 		dev_err(&hdev->pdev->dev,
3329 			"SRIOV is disabled, can not get vport(%d) info.\n", vf);
3330 		return NULL;
3331 	}
3332 
3333 	if (vf < 0 || vf >= pci_num_vf(hdev->pdev)) {
3334 		dev_err(&hdev->pdev->dev,
3335 			"vf id(%d) is out of range(0 <= vfid < %d)\n",
3336 			vf, pci_num_vf(hdev->pdev));
3337 		return NULL;
3338 	}
3339 
3340 	/* VF start from 1 in vport */
3341 	vf += HCLGE_VF_VPORT_START_NUM;
3342 	return &hdev->vport[vf];
3343 }
3344 
3345 static int hclge_get_vf_config(struct hnae3_handle *handle, int vf,
3346 			       struct ifla_vf_info *ivf)
3347 {
3348 	struct hclge_vport *vport = hclge_get_vport(handle);
3349 	struct hclge_dev *hdev = vport->back;
3350 
3351 	vport = hclge_get_vf_vport(hdev, vf);
3352 	if (!vport)
3353 		return -EINVAL;
3354 
3355 	ivf->vf = vf;
3356 	ivf->linkstate = vport->vf_info.link_state;
3357 	ivf->spoofchk = vport->vf_info.spoofchk;
3358 	ivf->trusted = vport->vf_info.trusted;
3359 	ivf->min_tx_rate = 0;
3360 	ivf->max_tx_rate = vport->vf_info.max_tx_rate;
3361 	ivf->vlan = vport->port_base_vlan_cfg.vlan_info.vlan_tag;
3362 	ivf->vlan_proto = htons(vport->port_base_vlan_cfg.vlan_info.vlan_proto);
3363 	ivf->qos = vport->port_base_vlan_cfg.vlan_info.qos;
3364 	ether_addr_copy(ivf->mac, vport->vf_info.mac);
3365 
3366 	return 0;
3367 }
3368 
3369 static int hclge_set_vf_link_state(struct hnae3_handle *handle, int vf,
3370 				   int link_state)
3371 {
3372 	struct hclge_vport *vport = hclge_get_vport(handle);
3373 	struct hclge_dev *hdev = vport->back;
3374 	int link_state_old;
3375 	int ret;
3376 
3377 	vport = hclge_get_vf_vport(hdev, vf);
3378 	if (!vport)
3379 		return -EINVAL;
3380 
3381 	link_state_old = vport->vf_info.link_state;
3382 	vport->vf_info.link_state = link_state;
3383 
3384 	/* return success directly if the VF is unalive, VF will
3385 	 * query link state itself when it starts work.
3386 	 */
3387 	if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
3388 		return 0;
3389 
3390 	ret = hclge_push_vf_link_status(vport);
3391 	if (ret) {
3392 		vport->vf_info.link_state = link_state_old;
3393 		dev_err(&hdev->pdev->dev,
3394 			"failed to push vf%d link status, ret = %d\n", vf, ret);
3395 	}
3396 
3397 	return ret;
3398 }
3399 
3400 static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval)
3401 {
3402 	u32 cmdq_src_reg, msix_src_reg, hw_err_src_reg;
3403 
3404 	/* fetch the events from their corresponding regs */
3405 	cmdq_src_reg = hclge_read_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG);
3406 	msix_src_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS);
3407 	hw_err_src_reg = hclge_read_dev(&hdev->hw,
3408 					HCLGE_RAS_PF_OTHER_INT_STS_REG);
3409 
3410 	/* Assumption: If by any chance reset and mailbox events are reported
3411 	 * together then we will only process reset event in this go and will
3412 	 * defer the processing of the mailbox events. Since, we would have not
3413 	 * cleared RX CMDQ event this time we would receive again another
3414 	 * interrupt from H/W just for the mailbox.
3415 	 *
3416 	 * check for vector0 reset event sources
3417 	 */
3418 	if (BIT(HCLGE_VECTOR0_IMPRESET_INT_B) & msix_src_reg) {
3419 		dev_info(&hdev->pdev->dev, "IMP reset interrupt\n");
3420 		set_bit(HNAE3_IMP_RESET, &hdev->reset_pending);
3421 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3422 		*clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
3423 		hdev->rst_stats.imp_rst_cnt++;
3424 		return HCLGE_VECTOR0_EVENT_RST;
3425 	}
3426 
3427 	if (BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) & msix_src_reg) {
3428 		dev_info(&hdev->pdev->dev, "global reset interrupt\n");
3429 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3430 		set_bit(HNAE3_GLOBAL_RESET, &hdev->reset_pending);
3431 		*clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
3432 		hdev->rst_stats.global_rst_cnt++;
3433 		return HCLGE_VECTOR0_EVENT_RST;
3434 	}
3435 
3436 	/* check for vector0 msix event and hardware error event source */
3437 	if (msix_src_reg & HCLGE_VECTOR0_REG_MSIX_MASK ||
3438 	    hw_err_src_reg & HCLGE_RAS_REG_ERR_MASK)
3439 		return HCLGE_VECTOR0_EVENT_ERR;
3440 
3441 	/* check for vector0 ptp event source */
3442 	if (BIT(HCLGE_VECTOR0_REG_PTP_INT_B) & msix_src_reg) {
3443 		*clearval = msix_src_reg;
3444 		return HCLGE_VECTOR0_EVENT_PTP;
3445 	}
3446 
3447 	/* check for vector0 mailbox(=CMDQ RX) event source */
3448 	if (BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
3449 		cmdq_src_reg &= ~BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B);
3450 		*clearval = cmdq_src_reg;
3451 		return HCLGE_VECTOR0_EVENT_MBX;
3452 	}
3453 
3454 	/* print other vector0 event source */
3455 	dev_info(&hdev->pdev->dev,
3456 		 "INT status: CMDQ(%#x) HW errors(%#x) other(%#x)\n",
3457 		 cmdq_src_reg, hw_err_src_reg, msix_src_reg);
3458 
3459 	return HCLGE_VECTOR0_EVENT_OTHER;
3460 }
3461 
3462 static void hclge_clear_event_cause(struct hclge_dev *hdev, u32 event_type,
3463 				    u32 regclr)
3464 {
3465 	switch (event_type) {
3466 	case HCLGE_VECTOR0_EVENT_PTP:
3467 	case HCLGE_VECTOR0_EVENT_RST:
3468 		hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, regclr);
3469 		break;
3470 	case HCLGE_VECTOR0_EVENT_MBX:
3471 		hclge_write_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG, regclr);
3472 		break;
3473 	default:
3474 		break;
3475 	}
3476 }
3477 
3478 static void hclge_clear_all_event_cause(struct hclge_dev *hdev)
3479 {
3480 	hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_RST,
3481 				BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) |
3482 				BIT(HCLGE_VECTOR0_CORERESET_INT_B) |
3483 				BIT(HCLGE_VECTOR0_IMPRESET_INT_B));
3484 	hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_MBX, 0);
3485 }
3486 
3487 static void hclge_enable_vector(struct hclge_misc_vector *vector, bool enable)
3488 {
3489 	writel(enable ? 1 : 0, vector->addr);
3490 }
3491 
3492 static irqreturn_t hclge_misc_irq_handle(int irq, void *data)
3493 {
3494 	struct hclge_dev *hdev = data;
3495 	unsigned long flags;
3496 	u32 clearval = 0;
3497 	u32 event_cause;
3498 
3499 	hclge_enable_vector(&hdev->misc_vector, false);
3500 	event_cause = hclge_check_event_cause(hdev, &clearval);
3501 
3502 	/* vector 0 interrupt is shared with reset and mailbox source events. */
3503 	switch (event_cause) {
3504 	case HCLGE_VECTOR0_EVENT_ERR:
3505 		hclge_errhand_task_schedule(hdev);
3506 		break;
3507 	case HCLGE_VECTOR0_EVENT_RST:
3508 		hclge_reset_task_schedule(hdev);
3509 		break;
3510 	case HCLGE_VECTOR0_EVENT_PTP:
3511 		spin_lock_irqsave(&hdev->ptp->lock, flags);
3512 		hclge_ptp_clean_tx_hwts(hdev);
3513 		spin_unlock_irqrestore(&hdev->ptp->lock, flags);
3514 		break;
3515 	case HCLGE_VECTOR0_EVENT_MBX:
3516 		/* If we are here then,
3517 		 * 1. Either we are not handling any mbx task and we are not
3518 		 *    scheduled as well
3519 		 *                        OR
3520 		 * 2. We could be handling a mbx task but nothing more is
3521 		 *    scheduled.
3522 		 * In both cases, we should schedule mbx task as there are more
3523 		 * mbx messages reported by this interrupt.
3524 		 */
3525 		hclge_mbx_task_schedule(hdev);
3526 		break;
3527 	default:
3528 		dev_warn(&hdev->pdev->dev,
3529 			 "received unknown or unhandled event of vector0\n");
3530 		break;
3531 	}
3532 
3533 	hclge_clear_event_cause(hdev, event_cause, clearval);
3534 
3535 	/* Enable interrupt if it is not caused by reset event or error event */
3536 	if (event_cause == HCLGE_VECTOR0_EVENT_PTP ||
3537 	    event_cause == HCLGE_VECTOR0_EVENT_MBX ||
3538 	    event_cause == HCLGE_VECTOR0_EVENT_OTHER)
3539 		hclge_enable_vector(&hdev->misc_vector, true);
3540 
3541 	return IRQ_HANDLED;
3542 }
3543 
3544 static void hclge_free_vector(struct hclge_dev *hdev, int vector_id)
3545 {
3546 	if (hdev->vector_status[vector_id] == HCLGE_INVALID_VPORT) {
3547 		dev_warn(&hdev->pdev->dev,
3548 			 "vector(vector_id %d) has been freed.\n", vector_id);
3549 		return;
3550 	}
3551 
3552 	hdev->vector_status[vector_id] = HCLGE_INVALID_VPORT;
3553 	hdev->num_msi_left += 1;
3554 	hdev->num_msi_used -= 1;
3555 }
3556 
3557 static void hclge_get_misc_vector(struct hclge_dev *hdev)
3558 {
3559 	struct hclge_misc_vector *vector = &hdev->misc_vector;
3560 
3561 	vector->vector_irq = pci_irq_vector(hdev->pdev, 0);
3562 
3563 	vector->addr = hdev->hw.hw.io_base + HCLGE_MISC_VECTOR_REG_BASE;
3564 	hdev->vector_status[0] = 0;
3565 
3566 	hdev->num_msi_left -= 1;
3567 	hdev->num_msi_used += 1;
3568 }
3569 
3570 static int hclge_misc_irq_init(struct hclge_dev *hdev)
3571 {
3572 	int ret;
3573 
3574 	hclge_get_misc_vector(hdev);
3575 
3576 	/* this would be explicitly freed in the end */
3577 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
3578 		 HCLGE_NAME, pci_name(hdev->pdev));
3579 	ret = request_irq(hdev->misc_vector.vector_irq, hclge_misc_irq_handle,
3580 			  0, hdev->misc_vector.name, hdev);
3581 	if (ret) {
3582 		hclge_free_vector(hdev, 0);
3583 		dev_err(&hdev->pdev->dev, "request misc irq(%d) fail\n",
3584 			hdev->misc_vector.vector_irq);
3585 	}
3586 
3587 	return ret;
3588 }
3589 
3590 static void hclge_misc_irq_uninit(struct hclge_dev *hdev)
3591 {
3592 	free_irq(hdev->misc_vector.vector_irq, hdev);
3593 	hclge_free_vector(hdev, 0);
3594 }
3595 
3596 int hclge_notify_client(struct hclge_dev *hdev,
3597 			enum hnae3_reset_notify_type type)
3598 {
3599 	struct hnae3_handle *handle = &hdev->vport[0].nic;
3600 	struct hnae3_client *client = hdev->nic_client;
3601 	int ret;
3602 
3603 	if (!test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state) || !client)
3604 		return 0;
3605 
3606 	if (!client->ops->reset_notify)
3607 		return -EOPNOTSUPP;
3608 
3609 	ret = client->ops->reset_notify(handle, type);
3610 	if (ret)
3611 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
3612 			type, ret);
3613 
3614 	return ret;
3615 }
3616 
3617 static int hclge_notify_roce_client(struct hclge_dev *hdev,
3618 				    enum hnae3_reset_notify_type type)
3619 {
3620 	struct hnae3_handle *handle = &hdev->vport[0].roce;
3621 	struct hnae3_client *client = hdev->roce_client;
3622 	int ret;
3623 
3624 	if (!test_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state) || !client)
3625 		return 0;
3626 
3627 	if (!client->ops->reset_notify)
3628 		return -EOPNOTSUPP;
3629 
3630 	ret = client->ops->reset_notify(handle, type);
3631 	if (ret)
3632 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
3633 			type, ret);
3634 
3635 	return ret;
3636 }
3637 
3638 static int hclge_reset_wait(struct hclge_dev *hdev)
3639 {
3640 #define HCLGE_RESET_WATI_MS	100
3641 #define HCLGE_RESET_WAIT_CNT	350
3642 
3643 	u32 val, reg, reg_bit;
3644 	u32 cnt = 0;
3645 
3646 	switch (hdev->reset_type) {
3647 	case HNAE3_IMP_RESET:
3648 		reg = HCLGE_GLOBAL_RESET_REG;
3649 		reg_bit = HCLGE_IMP_RESET_BIT;
3650 		break;
3651 	case HNAE3_GLOBAL_RESET:
3652 		reg = HCLGE_GLOBAL_RESET_REG;
3653 		reg_bit = HCLGE_GLOBAL_RESET_BIT;
3654 		break;
3655 	case HNAE3_FUNC_RESET:
3656 		reg = HCLGE_FUN_RST_ING;
3657 		reg_bit = HCLGE_FUN_RST_ING_B;
3658 		break;
3659 	default:
3660 		dev_err(&hdev->pdev->dev,
3661 			"Wait for unsupported reset type: %d\n",
3662 			hdev->reset_type);
3663 		return -EINVAL;
3664 	}
3665 
3666 	val = hclge_read_dev(&hdev->hw, reg);
3667 	while (hnae3_get_bit(val, reg_bit) && cnt < HCLGE_RESET_WAIT_CNT) {
3668 		msleep(HCLGE_RESET_WATI_MS);
3669 		val = hclge_read_dev(&hdev->hw, reg);
3670 		cnt++;
3671 	}
3672 
3673 	if (cnt >= HCLGE_RESET_WAIT_CNT) {
3674 		dev_warn(&hdev->pdev->dev,
3675 			 "Wait for reset timeout: %d\n", hdev->reset_type);
3676 		return -EBUSY;
3677 	}
3678 
3679 	return 0;
3680 }
3681 
3682 static int hclge_set_vf_rst(struct hclge_dev *hdev, int func_id, bool reset)
3683 {
3684 	struct hclge_vf_rst_cmd *req;
3685 	struct hclge_desc desc;
3686 
3687 	req = (struct hclge_vf_rst_cmd *)desc.data;
3688 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GBL_RST_STATUS, false);
3689 	req->dest_vfid = func_id;
3690 
3691 	if (reset)
3692 		req->vf_rst = 0x1;
3693 
3694 	return hclge_cmd_send(&hdev->hw, &desc, 1);
3695 }
3696 
3697 static int hclge_set_all_vf_rst(struct hclge_dev *hdev, bool reset)
3698 {
3699 	int i;
3700 
3701 	for (i = HCLGE_VF_VPORT_START_NUM; i < hdev->num_alloc_vport; i++) {
3702 		struct hclge_vport *vport = &hdev->vport[i];
3703 		int ret;
3704 
3705 		/* Send cmd to set/clear VF's FUNC_RST_ING */
3706 		ret = hclge_set_vf_rst(hdev, vport->vport_id, reset);
3707 		if (ret) {
3708 			dev_err(&hdev->pdev->dev,
3709 				"set vf(%u) rst failed %d!\n",
3710 				vport->vport_id - HCLGE_VF_VPORT_START_NUM,
3711 				ret);
3712 			return ret;
3713 		}
3714 
3715 		if (!reset || !test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
3716 			continue;
3717 
3718 		/* Inform VF to process the reset.
3719 		 * hclge_inform_reset_assert_to_vf may fail if VF
3720 		 * driver is not loaded.
3721 		 */
3722 		ret = hclge_inform_reset_assert_to_vf(vport);
3723 		if (ret)
3724 			dev_warn(&hdev->pdev->dev,
3725 				 "inform reset to vf(%u) failed %d!\n",
3726 				 vport->vport_id - HCLGE_VF_VPORT_START_NUM,
3727 				 ret);
3728 	}
3729 
3730 	return 0;
3731 }
3732 
3733 static void hclge_mailbox_service_task(struct hclge_dev *hdev)
3734 {
3735 	if (!test_and_clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state) ||
3736 	    test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state) ||
3737 	    test_and_set_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state))
3738 		return;
3739 
3740 	if (time_is_before_jiffies(hdev->last_mbx_scheduled +
3741 				   HCLGE_MBX_SCHED_TIMEOUT))
3742 		dev_warn(&hdev->pdev->dev,
3743 			 "mbx service task is scheduled after %ums on cpu%u!\n",
3744 			 jiffies_to_msecs(jiffies - hdev->last_mbx_scheduled),
3745 			 smp_processor_id());
3746 
3747 	hclge_mbx_handler(hdev);
3748 
3749 	clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state);
3750 }
3751 
3752 static void hclge_func_reset_sync_vf(struct hclge_dev *hdev)
3753 {
3754 	struct hclge_pf_rst_sync_cmd *req;
3755 	struct hclge_desc desc;
3756 	int cnt = 0;
3757 	int ret;
3758 
3759 	req = (struct hclge_pf_rst_sync_cmd *)desc.data;
3760 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RST_RDY, true);
3761 
3762 	do {
3763 		/* vf need to down netdev by mbx during PF or FLR reset */
3764 		hclge_mailbox_service_task(hdev);
3765 
3766 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3767 		/* for compatible with old firmware, wait
3768 		 * 100 ms for VF to stop IO
3769 		 */
3770 		if (ret == -EOPNOTSUPP) {
3771 			msleep(HCLGE_RESET_SYNC_TIME);
3772 			return;
3773 		} else if (ret) {
3774 			dev_warn(&hdev->pdev->dev, "sync with VF fail %d!\n",
3775 				 ret);
3776 			return;
3777 		} else if (req->all_vf_ready) {
3778 			return;
3779 		}
3780 		msleep(HCLGE_PF_RESET_SYNC_TIME);
3781 		hclge_comm_cmd_reuse_desc(&desc, true);
3782 	} while (cnt++ < HCLGE_PF_RESET_SYNC_CNT);
3783 
3784 	dev_warn(&hdev->pdev->dev, "sync with VF timeout!\n");
3785 }
3786 
3787 void hclge_report_hw_error(struct hclge_dev *hdev,
3788 			   enum hnae3_hw_error_type type)
3789 {
3790 	struct hnae3_client *client = hdev->nic_client;
3791 
3792 	if (!client || !client->ops->process_hw_error ||
3793 	    !test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state))
3794 		return;
3795 
3796 	client->ops->process_hw_error(&hdev->vport[0].nic, type);
3797 }
3798 
3799 static void hclge_handle_imp_error(struct hclge_dev *hdev)
3800 {
3801 	u32 reg_val;
3802 
3803 	reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
3804 	if (reg_val & BIT(HCLGE_VECTOR0_IMP_RD_POISON_B)) {
3805 		hclge_report_hw_error(hdev, HNAE3_IMP_RD_POISON_ERROR);
3806 		reg_val &= ~BIT(HCLGE_VECTOR0_IMP_RD_POISON_B);
3807 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
3808 	}
3809 
3810 	if (reg_val & BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B)) {
3811 		hclge_report_hw_error(hdev, HNAE3_CMDQ_ECC_ERROR);
3812 		reg_val &= ~BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B);
3813 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
3814 	}
3815 }
3816 
3817 int hclge_func_reset_cmd(struct hclge_dev *hdev, int func_id)
3818 {
3819 	struct hclge_desc desc;
3820 	struct hclge_reset_cmd *req = (struct hclge_reset_cmd *)desc.data;
3821 	int ret;
3822 
3823 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false);
3824 	hnae3_set_bit(req->mac_func_reset, HCLGE_CFG_RESET_FUNC_B, 1);
3825 	req->fun_reset_vfid = func_id;
3826 
3827 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3828 	if (ret)
3829 		dev_err(&hdev->pdev->dev,
3830 			"send function reset cmd fail, status =%d\n", ret);
3831 
3832 	return ret;
3833 }
3834 
3835 static void hclge_do_reset(struct hclge_dev *hdev)
3836 {
3837 	struct hnae3_handle *handle = &hdev->vport[0].nic;
3838 	struct pci_dev *pdev = hdev->pdev;
3839 	u32 val;
3840 
3841 	if (hclge_get_hw_reset_stat(handle)) {
3842 		dev_info(&pdev->dev, "hardware reset not finish\n");
3843 		dev_info(&pdev->dev, "func_rst_reg:0x%x, global_rst_reg:0x%x\n",
3844 			 hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING),
3845 			 hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG));
3846 		return;
3847 	}
3848 
3849 	switch (hdev->reset_type) {
3850 	case HNAE3_IMP_RESET:
3851 		dev_info(&pdev->dev, "IMP reset requested\n");
3852 		val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
3853 		hnae3_set_bit(val, HCLGE_TRIGGER_IMP_RESET_B, 1);
3854 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, val);
3855 		break;
3856 	case HNAE3_GLOBAL_RESET:
3857 		dev_info(&pdev->dev, "global reset requested\n");
3858 		val = hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG);
3859 		hnae3_set_bit(val, HCLGE_GLOBAL_RESET_BIT, 1);
3860 		hclge_write_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG, val);
3861 		break;
3862 	case HNAE3_FUNC_RESET:
3863 		dev_info(&pdev->dev, "PF reset requested\n");
3864 		/* schedule again to check later */
3865 		set_bit(HNAE3_FUNC_RESET, &hdev->reset_pending);
3866 		hclge_reset_task_schedule(hdev);
3867 		break;
3868 	default:
3869 		dev_warn(&pdev->dev,
3870 			 "unsupported reset type: %d\n", hdev->reset_type);
3871 		break;
3872 	}
3873 }
3874 
3875 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
3876 						   unsigned long *addr)
3877 {
3878 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
3879 	struct hclge_dev *hdev = ae_dev->priv;
3880 
3881 	/* return the highest priority reset level amongst all */
3882 	if (test_bit(HNAE3_IMP_RESET, addr)) {
3883 		rst_level = HNAE3_IMP_RESET;
3884 		clear_bit(HNAE3_IMP_RESET, addr);
3885 		clear_bit(HNAE3_GLOBAL_RESET, addr);
3886 		clear_bit(HNAE3_FUNC_RESET, addr);
3887 	} else if (test_bit(HNAE3_GLOBAL_RESET, addr)) {
3888 		rst_level = HNAE3_GLOBAL_RESET;
3889 		clear_bit(HNAE3_GLOBAL_RESET, addr);
3890 		clear_bit(HNAE3_FUNC_RESET, addr);
3891 	} else if (test_bit(HNAE3_FUNC_RESET, addr)) {
3892 		rst_level = HNAE3_FUNC_RESET;
3893 		clear_bit(HNAE3_FUNC_RESET, addr);
3894 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
3895 		rst_level = HNAE3_FLR_RESET;
3896 		clear_bit(HNAE3_FLR_RESET, addr);
3897 	}
3898 
3899 	if (hdev->reset_type != HNAE3_NONE_RESET &&
3900 	    rst_level < hdev->reset_type)
3901 		return HNAE3_NONE_RESET;
3902 
3903 	return rst_level;
3904 }
3905 
3906 static void hclge_clear_reset_cause(struct hclge_dev *hdev)
3907 {
3908 	u32 clearval = 0;
3909 
3910 	switch (hdev->reset_type) {
3911 	case HNAE3_IMP_RESET:
3912 		clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
3913 		break;
3914 	case HNAE3_GLOBAL_RESET:
3915 		clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
3916 		break;
3917 	default:
3918 		break;
3919 	}
3920 
3921 	if (!clearval)
3922 		return;
3923 
3924 	/* For revision 0x20, the reset interrupt source
3925 	 * can only be cleared after hardware reset done
3926 	 */
3927 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
3928 		hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG,
3929 				clearval);
3930 
3931 	hclge_enable_vector(&hdev->misc_vector, true);
3932 }
3933 
3934 static void hclge_reset_handshake(struct hclge_dev *hdev, bool enable)
3935 {
3936 	u32 reg_val;
3937 
3938 	reg_val = hclge_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
3939 	if (enable)
3940 		reg_val |= HCLGE_COMM_NIC_SW_RST_RDY;
3941 	else
3942 		reg_val &= ~HCLGE_COMM_NIC_SW_RST_RDY;
3943 
3944 	hclge_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, reg_val);
3945 }
3946 
3947 static int hclge_func_reset_notify_vf(struct hclge_dev *hdev)
3948 {
3949 	int ret;
3950 
3951 	ret = hclge_set_all_vf_rst(hdev, true);
3952 	if (ret)
3953 		return ret;
3954 
3955 	hclge_func_reset_sync_vf(hdev);
3956 
3957 	return 0;
3958 }
3959 
3960 static int hclge_reset_prepare_wait(struct hclge_dev *hdev)
3961 {
3962 	u32 reg_val;
3963 	int ret = 0;
3964 
3965 	switch (hdev->reset_type) {
3966 	case HNAE3_FUNC_RESET:
3967 		ret = hclge_func_reset_notify_vf(hdev);
3968 		if (ret)
3969 			return ret;
3970 
3971 		ret = hclge_func_reset_cmd(hdev, 0);
3972 		if (ret) {
3973 			dev_err(&hdev->pdev->dev,
3974 				"asserting function reset fail %d!\n", ret);
3975 			return ret;
3976 		}
3977 
3978 		/* After performaning pf reset, it is not necessary to do the
3979 		 * mailbox handling or send any command to firmware, because
3980 		 * any mailbox handling or command to firmware is only valid
3981 		 * after hclge_comm_cmd_init is called.
3982 		 */
3983 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3984 		hdev->rst_stats.pf_rst_cnt++;
3985 		break;
3986 	case HNAE3_FLR_RESET:
3987 		ret = hclge_func_reset_notify_vf(hdev);
3988 		if (ret)
3989 			return ret;
3990 		break;
3991 	case HNAE3_IMP_RESET:
3992 		hclge_handle_imp_error(hdev);
3993 		reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
3994 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG,
3995 				BIT(HCLGE_VECTOR0_IMP_RESET_INT_B) | reg_val);
3996 		break;
3997 	default:
3998 		break;
3999 	}
4000 
4001 	/* inform hardware that preparatory work is done */
4002 	msleep(HCLGE_RESET_SYNC_TIME);
4003 	hclge_reset_handshake(hdev, true);
4004 	dev_info(&hdev->pdev->dev, "prepare wait ok\n");
4005 
4006 	return ret;
4007 }
4008 
4009 static void hclge_show_rst_info(struct hclge_dev *hdev)
4010 {
4011 	char *buf;
4012 
4013 	buf = kzalloc(HCLGE_DBG_RESET_INFO_LEN, GFP_KERNEL);
4014 	if (!buf)
4015 		return;
4016 
4017 	hclge_dbg_dump_rst_info(hdev, buf, HCLGE_DBG_RESET_INFO_LEN);
4018 
4019 	dev_info(&hdev->pdev->dev, "dump reset info:\n%s", buf);
4020 
4021 	kfree(buf);
4022 }
4023 
4024 static bool hclge_reset_err_handle(struct hclge_dev *hdev)
4025 {
4026 #define MAX_RESET_FAIL_CNT 5
4027 
4028 	if (hdev->reset_pending) {
4029 		dev_info(&hdev->pdev->dev, "Reset pending %lu\n",
4030 			 hdev->reset_pending);
4031 		return true;
4032 	} else if (hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS) &
4033 		   HCLGE_RESET_INT_M) {
4034 		dev_info(&hdev->pdev->dev,
4035 			 "reset failed because new reset interrupt\n");
4036 		hclge_clear_reset_cause(hdev);
4037 		return false;
4038 	} else if (hdev->rst_stats.reset_fail_cnt < MAX_RESET_FAIL_CNT) {
4039 		hdev->rst_stats.reset_fail_cnt++;
4040 		set_bit(hdev->reset_type, &hdev->reset_pending);
4041 		dev_info(&hdev->pdev->dev,
4042 			 "re-schedule reset task(%u)\n",
4043 			 hdev->rst_stats.reset_fail_cnt);
4044 		return true;
4045 	}
4046 
4047 	hclge_clear_reset_cause(hdev);
4048 
4049 	/* recover the handshake status when reset fail */
4050 	hclge_reset_handshake(hdev, true);
4051 
4052 	dev_err(&hdev->pdev->dev, "Reset fail!\n");
4053 
4054 	hclge_show_rst_info(hdev);
4055 
4056 	set_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
4057 
4058 	return false;
4059 }
4060 
4061 static void hclge_update_reset_level(struct hclge_dev *hdev)
4062 {
4063 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4064 	enum hnae3_reset_type reset_level;
4065 
4066 	/* reset request will not be set during reset, so clear
4067 	 * pending reset request to avoid unnecessary reset
4068 	 * caused by the same reason.
4069 	 */
4070 	hclge_get_reset_level(ae_dev, &hdev->reset_request);
4071 
4072 	/* if default_reset_request has a higher level reset request,
4073 	 * it should be handled as soon as possible. since some errors
4074 	 * need this kind of reset to fix.
4075 	 */
4076 	reset_level = hclge_get_reset_level(ae_dev,
4077 					    &hdev->default_reset_request);
4078 	if (reset_level != HNAE3_NONE_RESET)
4079 		set_bit(reset_level, &hdev->reset_request);
4080 }
4081 
4082 static int hclge_set_rst_done(struct hclge_dev *hdev)
4083 {
4084 	struct hclge_pf_rst_done_cmd *req;
4085 	struct hclge_desc desc;
4086 	int ret;
4087 
4088 	req = (struct hclge_pf_rst_done_cmd *)desc.data;
4089 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PF_RST_DONE, false);
4090 	req->pf_rst_done |= HCLGE_PF_RESET_DONE_BIT;
4091 
4092 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
4093 	/* To be compatible with the old firmware, which does not support
4094 	 * command HCLGE_OPC_PF_RST_DONE, just print a warning and
4095 	 * return success
4096 	 */
4097 	if (ret == -EOPNOTSUPP) {
4098 		dev_warn(&hdev->pdev->dev,
4099 			 "current firmware does not support command(0x%x)!\n",
4100 			 HCLGE_OPC_PF_RST_DONE);
4101 		return 0;
4102 	} else if (ret) {
4103 		dev_err(&hdev->pdev->dev, "assert PF reset done fail %d!\n",
4104 			ret);
4105 	}
4106 
4107 	return ret;
4108 }
4109 
4110 static int hclge_reset_prepare_up(struct hclge_dev *hdev)
4111 {
4112 	int ret = 0;
4113 
4114 	switch (hdev->reset_type) {
4115 	case HNAE3_FUNC_RESET:
4116 	case HNAE3_FLR_RESET:
4117 		ret = hclge_set_all_vf_rst(hdev, false);
4118 		break;
4119 	case HNAE3_GLOBAL_RESET:
4120 	case HNAE3_IMP_RESET:
4121 		ret = hclge_set_rst_done(hdev);
4122 		break;
4123 	default:
4124 		break;
4125 	}
4126 
4127 	/* clear up the handshake status after re-initialize done */
4128 	hclge_reset_handshake(hdev, false);
4129 
4130 	return ret;
4131 }
4132 
4133 static int hclge_reset_stack(struct hclge_dev *hdev)
4134 {
4135 	int ret;
4136 
4137 	ret = hclge_notify_client(hdev, HNAE3_UNINIT_CLIENT);
4138 	if (ret)
4139 		return ret;
4140 
4141 	ret = hclge_reset_ae_dev(hdev->ae_dev);
4142 	if (ret)
4143 		return ret;
4144 
4145 	return hclge_notify_client(hdev, HNAE3_INIT_CLIENT);
4146 }
4147 
4148 static int hclge_reset_prepare(struct hclge_dev *hdev)
4149 {
4150 	int ret;
4151 
4152 	hdev->rst_stats.reset_cnt++;
4153 	/* perform reset of the stack & ae device for a client */
4154 	ret = hclge_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
4155 	if (ret)
4156 		return ret;
4157 
4158 	rtnl_lock();
4159 	ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
4160 	rtnl_unlock();
4161 	if (ret)
4162 		return ret;
4163 
4164 	return hclge_reset_prepare_wait(hdev);
4165 }
4166 
4167 static int hclge_reset_rebuild(struct hclge_dev *hdev)
4168 {
4169 	int ret;
4170 
4171 	hdev->rst_stats.hw_reset_done_cnt++;
4172 
4173 	ret = hclge_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
4174 	if (ret)
4175 		return ret;
4176 
4177 	rtnl_lock();
4178 	ret = hclge_reset_stack(hdev);
4179 	rtnl_unlock();
4180 	if (ret)
4181 		return ret;
4182 
4183 	hclge_clear_reset_cause(hdev);
4184 
4185 	ret = hclge_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
4186 	/* ignore RoCE notify error if it fails HCLGE_RESET_MAX_FAIL_CNT - 1
4187 	 * times
4188 	 */
4189 	if (ret &&
4190 	    hdev->rst_stats.reset_fail_cnt < HCLGE_RESET_MAX_FAIL_CNT - 1)
4191 		return ret;
4192 
4193 	ret = hclge_reset_prepare_up(hdev);
4194 	if (ret)
4195 		return ret;
4196 
4197 	rtnl_lock();
4198 	ret = hclge_notify_client(hdev, HNAE3_UP_CLIENT);
4199 	rtnl_unlock();
4200 	if (ret)
4201 		return ret;
4202 
4203 	ret = hclge_notify_roce_client(hdev, HNAE3_UP_CLIENT);
4204 	if (ret)
4205 		return ret;
4206 
4207 	hdev->last_reset_time = jiffies;
4208 	hdev->rst_stats.reset_fail_cnt = 0;
4209 	hdev->rst_stats.reset_done_cnt++;
4210 	clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
4211 
4212 	hclge_update_reset_level(hdev);
4213 
4214 	return 0;
4215 }
4216 
4217 static void hclge_reset(struct hclge_dev *hdev)
4218 {
4219 	if (hclge_reset_prepare(hdev))
4220 		goto err_reset;
4221 
4222 	if (hclge_reset_wait(hdev))
4223 		goto err_reset;
4224 
4225 	if (hclge_reset_rebuild(hdev))
4226 		goto err_reset;
4227 
4228 	return;
4229 
4230 err_reset:
4231 	if (hclge_reset_err_handle(hdev))
4232 		hclge_reset_task_schedule(hdev);
4233 }
4234 
4235 static void hclge_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle)
4236 {
4237 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4238 	struct hclge_dev *hdev = ae_dev->priv;
4239 
4240 	/* We might end up getting called broadly because of 2 below cases:
4241 	 * 1. Recoverable error was conveyed through APEI and only way to bring
4242 	 *    normalcy is to reset.
4243 	 * 2. A new reset request from the stack due to timeout
4244 	 *
4245 	 * check if this is a new reset request and we are not here just because
4246 	 * last reset attempt did not succeed and watchdog hit us again. We will
4247 	 * know this if last reset request did not occur very recently (watchdog
4248 	 * timer = 5*HZ, let us check after sufficiently large time, say 4*5*Hz)
4249 	 * In case of new request we reset the "reset level" to PF reset.
4250 	 * And if it is a repeat reset request of the most recent one then we
4251 	 * want to make sure we throttle the reset request. Therefore, we will
4252 	 * not allow it again before 3*HZ times.
4253 	 */
4254 
4255 	if (time_before(jiffies, (hdev->last_reset_time +
4256 				  HCLGE_RESET_INTERVAL))) {
4257 		mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL);
4258 		return;
4259 	}
4260 
4261 	if (hdev->default_reset_request) {
4262 		hdev->reset_level =
4263 			hclge_get_reset_level(ae_dev,
4264 					      &hdev->default_reset_request);
4265 	} else if (time_after(jiffies, (hdev->last_reset_time + 4 * 5 * HZ))) {
4266 		hdev->reset_level = HNAE3_FUNC_RESET;
4267 	}
4268 
4269 	dev_info(&hdev->pdev->dev, "received reset event, reset type is %d\n",
4270 		 hdev->reset_level);
4271 
4272 	/* request reset & schedule reset task */
4273 	set_bit(hdev->reset_level, &hdev->reset_request);
4274 	hclge_reset_task_schedule(hdev);
4275 
4276 	if (hdev->reset_level < HNAE3_GLOBAL_RESET)
4277 		hdev->reset_level++;
4278 }
4279 
4280 static void hclge_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
4281 					enum hnae3_reset_type rst_type)
4282 {
4283 	struct hclge_dev *hdev = ae_dev->priv;
4284 
4285 	set_bit(rst_type, &hdev->default_reset_request);
4286 }
4287 
4288 static void hclge_reset_timer(struct timer_list *t)
4289 {
4290 	struct hclge_dev *hdev = from_timer(hdev, t, reset_timer);
4291 
4292 	/* if default_reset_request has no value, it means that this reset
4293 	 * request has already be handled, so just return here
4294 	 */
4295 	if (!hdev->default_reset_request)
4296 		return;
4297 
4298 	dev_info(&hdev->pdev->dev,
4299 		 "triggering reset in reset timer\n");
4300 	hclge_reset_event(hdev->pdev, NULL);
4301 }
4302 
4303 static void hclge_reset_subtask(struct hclge_dev *hdev)
4304 {
4305 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4306 
4307 	/* check if there is any ongoing reset in the hardware. This status can
4308 	 * be checked from reset_pending. If there is then, we need to wait for
4309 	 * hardware to complete reset.
4310 	 *    a. If we are able to figure out in reasonable time that hardware
4311 	 *       has fully resetted then, we can proceed with driver, client
4312 	 *       reset.
4313 	 *    b. else, we can come back later to check this status so re-sched
4314 	 *       now.
4315 	 */
4316 	hdev->last_reset_time = jiffies;
4317 	hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_pending);
4318 	if (hdev->reset_type != HNAE3_NONE_RESET)
4319 		hclge_reset(hdev);
4320 
4321 	/* check if we got any *new* reset requests to be honored */
4322 	hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_request);
4323 	if (hdev->reset_type != HNAE3_NONE_RESET)
4324 		hclge_do_reset(hdev);
4325 
4326 	hdev->reset_type = HNAE3_NONE_RESET;
4327 }
4328 
4329 static void hclge_handle_err_reset_request(struct hclge_dev *hdev)
4330 {
4331 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4332 	enum hnae3_reset_type reset_type;
4333 
4334 	if (ae_dev->hw_err_reset_req) {
4335 		reset_type = hclge_get_reset_level(ae_dev,
4336 						   &ae_dev->hw_err_reset_req);
4337 		hclge_set_def_reset_request(ae_dev, reset_type);
4338 	}
4339 
4340 	if (hdev->default_reset_request && ae_dev->ops->reset_event)
4341 		ae_dev->ops->reset_event(hdev->pdev, NULL);
4342 
4343 	/* enable interrupt after error handling complete */
4344 	hclge_enable_vector(&hdev->misc_vector, true);
4345 }
4346 
4347 static void hclge_handle_err_recovery(struct hclge_dev *hdev)
4348 {
4349 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4350 
4351 	ae_dev->hw_err_reset_req = 0;
4352 
4353 	if (hclge_find_error_source(hdev)) {
4354 		hclge_handle_error_info_log(ae_dev);
4355 		hclge_handle_mac_tnl(hdev);
4356 	}
4357 
4358 	hclge_handle_err_reset_request(hdev);
4359 }
4360 
4361 static void hclge_misc_err_recovery(struct hclge_dev *hdev)
4362 {
4363 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4364 	struct device *dev = &hdev->pdev->dev;
4365 	u32 msix_sts_reg;
4366 
4367 	msix_sts_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS);
4368 	if (msix_sts_reg & HCLGE_VECTOR0_REG_MSIX_MASK) {
4369 		if (hclge_handle_hw_msix_error
4370 				(hdev, &hdev->default_reset_request))
4371 			dev_info(dev, "received msix interrupt 0x%x\n",
4372 				 msix_sts_reg);
4373 	}
4374 
4375 	hclge_handle_hw_ras_error(ae_dev);
4376 
4377 	hclge_handle_err_reset_request(hdev);
4378 }
4379 
4380 static void hclge_errhand_service_task(struct hclge_dev *hdev)
4381 {
4382 	if (!test_and_clear_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state))
4383 		return;
4384 
4385 	if (hnae3_dev_ras_imp_supported(hdev))
4386 		hclge_handle_err_recovery(hdev);
4387 	else
4388 		hclge_misc_err_recovery(hdev);
4389 }
4390 
4391 static void hclge_reset_service_task(struct hclge_dev *hdev)
4392 {
4393 	if (!test_and_clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state))
4394 		return;
4395 
4396 	if (time_is_before_jiffies(hdev->last_rst_scheduled +
4397 				   HCLGE_RESET_SCHED_TIMEOUT))
4398 		dev_warn(&hdev->pdev->dev,
4399 			 "reset service task is scheduled after %ums on cpu%u!\n",
4400 			 jiffies_to_msecs(jiffies - hdev->last_rst_scheduled),
4401 			 smp_processor_id());
4402 
4403 	down(&hdev->reset_sem);
4404 	set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
4405 
4406 	hclge_reset_subtask(hdev);
4407 
4408 	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
4409 	up(&hdev->reset_sem);
4410 }
4411 
4412 static void hclge_update_vport_alive(struct hclge_dev *hdev)
4413 {
4414 	int i;
4415 
4416 	/* start from vport 1 for PF is always alive */
4417 	for (i = 1; i < hdev->num_alloc_vport; i++) {
4418 		struct hclge_vport *vport = &hdev->vport[i];
4419 
4420 		if (time_after(jiffies, vport->last_active_jiffies + 8 * HZ))
4421 			clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
4422 
4423 		/* If vf is not alive, set to default value */
4424 		if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
4425 			vport->mps = HCLGE_MAC_DEFAULT_FRAME;
4426 	}
4427 }
4428 
4429 static void hclge_periodic_service_task(struct hclge_dev *hdev)
4430 {
4431 	unsigned long delta = round_jiffies_relative(HZ);
4432 
4433 	if (test_bit(HCLGE_STATE_RST_FAIL, &hdev->state))
4434 		return;
4435 
4436 	/* Always handle the link updating to make sure link state is
4437 	 * updated when it is triggered by mbx.
4438 	 */
4439 	hclge_update_link_status(hdev);
4440 	hclge_sync_mac_table(hdev);
4441 	hclge_sync_promisc_mode(hdev);
4442 	hclge_sync_fd_table(hdev);
4443 
4444 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
4445 		delta = jiffies - hdev->last_serv_processed;
4446 
4447 		if (delta < round_jiffies_relative(HZ)) {
4448 			delta = round_jiffies_relative(HZ) - delta;
4449 			goto out;
4450 		}
4451 	}
4452 
4453 	hdev->serv_processed_cnt++;
4454 	hclge_update_vport_alive(hdev);
4455 
4456 	if (test_bit(HCLGE_STATE_DOWN, &hdev->state)) {
4457 		hdev->last_serv_processed = jiffies;
4458 		goto out;
4459 	}
4460 
4461 	if (!(hdev->serv_processed_cnt % HCLGE_STATS_TIMER_INTERVAL))
4462 		hclge_update_stats_for_all(hdev);
4463 
4464 	hclge_update_port_info(hdev);
4465 	hclge_sync_vlan_filter(hdev);
4466 
4467 	if (!(hdev->serv_processed_cnt % HCLGE_ARFS_EXPIRE_INTERVAL))
4468 		hclge_rfs_filter_expire(hdev);
4469 
4470 	hdev->last_serv_processed = jiffies;
4471 
4472 out:
4473 	hclge_task_schedule(hdev, delta);
4474 }
4475 
4476 static void hclge_ptp_service_task(struct hclge_dev *hdev)
4477 {
4478 	unsigned long flags;
4479 
4480 	if (!test_bit(HCLGE_STATE_PTP_EN, &hdev->state) ||
4481 	    !test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state) ||
4482 	    !time_is_before_jiffies(hdev->ptp->tx_start + HZ))
4483 		return;
4484 
4485 	/* to prevent concurrence with the irq handler */
4486 	spin_lock_irqsave(&hdev->ptp->lock, flags);
4487 
4488 	/* check HCLGE_STATE_PTP_TX_HANDLING here again, since the irq
4489 	 * handler may handle it just before spin_lock_irqsave().
4490 	 */
4491 	if (test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state))
4492 		hclge_ptp_clean_tx_hwts(hdev);
4493 
4494 	spin_unlock_irqrestore(&hdev->ptp->lock, flags);
4495 }
4496 
4497 static void hclge_service_task(struct work_struct *work)
4498 {
4499 	struct hclge_dev *hdev =
4500 		container_of(work, struct hclge_dev, service_task.work);
4501 
4502 	hclge_errhand_service_task(hdev);
4503 	hclge_reset_service_task(hdev);
4504 	hclge_ptp_service_task(hdev);
4505 	hclge_mailbox_service_task(hdev);
4506 	hclge_periodic_service_task(hdev);
4507 
4508 	/* Handle error recovery, reset and mbx again in case periodical task
4509 	 * delays the handling by calling hclge_task_schedule() in
4510 	 * hclge_periodic_service_task().
4511 	 */
4512 	hclge_errhand_service_task(hdev);
4513 	hclge_reset_service_task(hdev);
4514 	hclge_mailbox_service_task(hdev);
4515 }
4516 
4517 struct hclge_vport *hclge_get_vport(struct hnae3_handle *handle)
4518 {
4519 	/* VF handle has no client */
4520 	if (!handle->client)
4521 		return container_of(handle, struct hclge_vport, nic);
4522 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
4523 		return container_of(handle, struct hclge_vport, roce);
4524 	else
4525 		return container_of(handle, struct hclge_vport, nic);
4526 }
4527 
4528 static void hclge_get_vector_info(struct hclge_dev *hdev, u16 idx,
4529 				  struct hnae3_vector_info *vector_info)
4530 {
4531 #define HCLGE_PF_MAX_VECTOR_NUM_DEV_V2	64
4532 
4533 	vector_info->vector = pci_irq_vector(hdev->pdev, idx);
4534 
4535 	/* need an extend offset to config vector >= 64 */
4536 	if (idx - 1 < HCLGE_PF_MAX_VECTOR_NUM_DEV_V2)
4537 		vector_info->io_addr = hdev->hw.hw.io_base +
4538 				HCLGE_VECTOR_REG_BASE +
4539 				(idx - 1) * HCLGE_VECTOR_REG_OFFSET;
4540 	else
4541 		vector_info->io_addr = hdev->hw.hw.io_base +
4542 				HCLGE_VECTOR_EXT_REG_BASE +
4543 				(idx - 1) / HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 *
4544 				HCLGE_VECTOR_REG_OFFSET_H +
4545 				(idx - 1) % HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 *
4546 				HCLGE_VECTOR_REG_OFFSET;
4547 
4548 	hdev->vector_status[idx] = hdev->vport[0].vport_id;
4549 	hdev->vector_irq[idx] = vector_info->vector;
4550 }
4551 
4552 static int hclge_get_vector(struct hnae3_handle *handle, u16 vector_num,
4553 			    struct hnae3_vector_info *vector_info)
4554 {
4555 	struct hclge_vport *vport = hclge_get_vport(handle);
4556 	struct hnae3_vector_info *vector = vector_info;
4557 	struct hclge_dev *hdev = vport->back;
4558 	int alloc = 0;
4559 	u16 i = 0;
4560 	u16 j;
4561 
4562 	vector_num = min_t(u16, hdev->num_nic_msi - 1, vector_num);
4563 	vector_num = min(hdev->num_msi_left, vector_num);
4564 
4565 	for (j = 0; j < vector_num; j++) {
4566 		while (++i < hdev->num_nic_msi) {
4567 			if (hdev->vector_status[i] == HCLGE_INVALID_VPORT) {
4568 				hclge_get_vector_info(hdev, i, vector);
4569 				vector++;
4570 				alloc++;
4571 
4572 				break;
4573 			}
4574 		}
4575 	}
4576 	hdev->num_msi_left -= alloc;
4577 	hdev->num_msi_used += alloc;
4578 
4579 	return alloc;
4580 }
4581 
4582 static int hclge_get_vector_index(struct hclge_dev *hdev, int vector)
4583 {
4584 	int i;
4585 
4586 	for (i = 0; i < hdev->num_msi; i++)
4587 		if (vector == hdev->vector_irq[i])
4588 			return i;
4589 
4590 	return -EINVAL;
4591 }
4592 
4593 static int hclge_put_vector(struct hnae3_handle *handle, int vector)
4594 {
4595 	struct hclge_vport *vport = hclge_get_vport(handle);
4596 	struct hclge_dev *hdev = vport->back;
4597 	int vector_id;
4598 
4599 	vector_id = hclge_get_vector_index(hdev, vector);
4600 	if (vector_id < 0) {
4601 		dev_err(&hdev->pdev->dev,
4602 			"Get vector index fail. vector = %d\n", vector);
4603 		return vector_id;
4604 	}
4605 
4606 	hclge_free_vector(hdev, vector_id);
4607 
4608 	return 0;
4609 }
4610 
4611 static int hclge_get_rss(struct hnae3_handle *handle, u32 *indir,
4612 			 u8 *key, u8 *hfunc)
4613 {
4614 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4615 	struct hclge_vport *vport = hclge_get_vport(handle);
4616 	struct hclge_comm_rss_cfg *rss_cfg = &vport->back->rss_cfg;
4617 
4618 	hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
4619 
4620 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
4621 				     ae_dev->dev_specs.rss_ind_tbl_size);
4622 
4623 	return 0;
4624 }
4625 
4626 static int hclge_set_rss(struct hnae3_handle *handle, const u32 *indir,
4627 			 const  u8 *key, const  u8 hfunc)
4628 {
4629 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4630 	struct hclge_vport *vport = hclge_get_vport(handle);
4631 	struct hclge_dev *hdev = vport->back;
4632 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
4633 	int ret, i;
4634 
4635 	ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, hfunc);
4636 	if (ret) {
4637 		dev_err(&hdev->pdev->dev, "invalid hfunc type %u\n", hfunc);
4638 		return ret;
4639 	}
4640 
4641 	/* Update the shadow RSS table with user specified qids */
4642 	for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++)
4643 		rss_cfg->rss_indirection_tbl[i] = indir[i];
4644 
4645 	/* Update the hardware */
4646 	return hclge_comm_set_rss_indir_table(ae_dev, &hdev->hw.hw,
4647 					      rss_cfg->rss_indirection_tbl);
4648 }
4649 
4650 static int hclge_set_rss_tuple(struct hnae3_handle *handle,
4651 			       struct ethtool_rxnfc *nfc)
4652 {
4653 	struct hclge_vport *vport = hclge_get_vport(handle);
4654 	struct hclge_dev *hdev = vport->back;
4655 	int ret;
4656 
4657 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
4658 				       &hdev->rss_cfg, nfc);
4659 	if (ret) {
4660 		dev_err(&hdev->pdev->dev,
4661 			"failed to set rss tuple, ret = %d.\n", ret);
4662 		return ret;
4663 	}
4664 
4665 	hclge_comm_get_rss_type(&vport->nic, &hdev->rss_cfg.rss_tuple_sets);
4666 	return 0;
4667 }
4668 
4669 static int hclge_get_rss_tuple(struct hnae3_handle *handle,
4670 			       struct ethtool_rxnfc *nfc)
4671 {
4672 	struct hclge_vport *vport = hclge_get_vport(handle);
4673 	u8 tuple_sets;
4674 	int ret;
4675 
4676 	nfc->data = 0;
4677 
4678 	ret = hclge_comm_get_rss_tuple(&vport->back->rss_cfg, nfc->flow_type,
4679 				       &tuple_sets);
4680 	if (ret || !tuple_sets)
4681 		return ret;
4682 
4683 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
4684 
4685 	return 0;
4686 }
4687 
4688 static int hclge_get_tc_size(struct hnae3_handle *handle)
4689 {
4690 	struct hclge_vport *vport = hclge_get_vport(handle);
4691 	struct hclge_dev *hdev = vport->back;
4692 
4693 	return hdev->pf_rss_size_max;
4694 }
4695 
4696 static int hclge_init_rss_tc_mode(struct hclge_dev *hdev)
4697 {
4698 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
4699 	struct hclge_vport *vport = hdev->vport;
4700 	u16 tc_offset[HCLGE_MAX_TC_NUM] = {0};
4701 	u16 tc_valid[HCLGE_MAX_TC_NUM] = {0};
4702 	u16 tc_size[HCLGE_MAX_TC_NUM] = {0};
4703 	struct hnae3_tc_info *tc_info;
4704 	u16 roundup_size;
4705 	u16 rss_size;
4706 	int i;
4707 
4708 	tc_info = &vport->nic.kinfo.tc_info;
4709 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
4710 		rss_size = tc_info->tqp_count[i];
4711 		tc_valid[i] = 0;
4712 
4713 		if (!(hdev->hw_tc_map & BIT(i)))
4714 			continue;
4715 
4716 		/* tc_size set to hardware is the log2 of roundup power of two
4717 		 * of rss_size, the acutal queue size is limited by indirection
4718 		 * table.
4719 		 */
4720 		if (rss_size > ae_dev->dev_specs.rss_ind_tbl_size ||
4721 		    rss_size == 0) {
4722 			dev_err(&hdev->pdev->dev,
4723 				"Configure rss tc size failed, invalid TC_SIZE = %u\n",
4724 				rss_size);
4725 			return -EINVAL;
4726 		}
4727 
4728 		roundup_size = roundup_pow_of_two(rss_size);
4729 		roundup_size = ilog2(roundup_size);
4730 
4731 		tc_valid[i] = 1;
4732 		tc_size[i] = roundup_size;
4733 		tc_offset[i] = tc_info->tqp_offset[i];
4734 	}
4735 
4736 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid,
4737 					  tc_size);
4738 }
4739 
4740 int hclge_rss_init_hw(struct hclge_dev *hdev)
4741 {
4742 	u16 *rss_indir = hdev->rss_cfg.rss_indirection_tbl;
4743 	u8 *key = hdev->rss_cfg.rss_hash_key;
4744 	u8 hfunc = hdev->rss_cfg.rss_algo;
4745 	int ret;
4746 
4747 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
4748 					     rss_indir);
4749 	if (ret)
4750 		return ret;
4751 
4752 	ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, hfunc, key);
4753 	if (ret)
4754 		return ret;
4755 
4756 	ret = hclge_comm_set_rss_input_tuple(&hdev->vport[0].nic,
4757 					     &hdev->hw.hw, true,
4758 					     &hdev->rss_cfg);
4759 	if (ret)
4760 		return ret;
4761 
4762 	return hclge_init_rss_tc_mode(hdev);
4763 }
4764 
4765 int hclge_bind_ring_with_vector(struct hclge_vport *vport,
4766 				int vector_id, bool en,
4767 				struct hnae3_ring_chain_node *ring_chain)
4768 {
4769 	struct hclge_dev *hdev = vport->back;
4770 	struct hnae3_ring_chain_node *node;
4771 	struct hclge_desc desc;
4772 	struct hclge_ctrl_vector_chain_cmd *req =
4773 		(struct hclge_ctrl_vector_chain_cmd *)desc.data;
4774 	enum hclge_comm_cmd_status status;
4775 	enum hclge_opcode_type op;
4776 	u16 tqp_type_and_id;
4777 	int i;
4778 
4779 	op = en ? HCLGE_OPC_ADD_RING_TO_VECTOR : HCLGE_OPC_DEL_RING_TO_VECTOR;
4780 	hclge_cmd_setup_basic_desc(&desc, op, false);
4781 	req->int_vector_id_l = hnae3_get_field(vector_id,
4782 					       HCLGE_VECTOR_ID_L_M,
4783 					       HCLGE_VECTOR_ID_L_S);
4784 	req->int_vector_id_h = hnae3_get_field(vector_id,
4785 					       HCLGE_VECTOR_ID_H_M,
4786 					       HCLGE_VECTOR_ID_H_S);
4787 
4788 	i = 0;
4789 	for (node = ring_chain; node; node = node->next) {
4790 		tqp_type_and_id = le16_to_cpu(req->tqp_type_and_id[i]);
4791 		hnae3_set_field(tqp_type_and_id,  HCLGE_INT_TYPE_M,
4792 				HCLGE_INT_TYPE_S,
4793 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B));
4794 		hnae3_set_field(tqp_type_and_id, HCLGE_TQP_ID_M,
4795 				HCLGE_TQP_ID_S, node->tqp_index);
4796 		hnae3_set_field(tqp_type_and_id, HCLGE_INT_GL_IDX_M,
4797 				HCLGE_INT_GL_IDX_S,
4798 				hnae3_get_field(node->int_gl_idx,
4799 						HNAE3_RING_GL_IDX_M,
4800 						HNAE3_RING_GL_IDX_S));
4801 		req->tqp_type_and_id[i] = cpu_to_le16(tqp_type_and_id);
4802 		if (++i >= HCLGE_VECTOR_ELEMENTS_PER_CMD) {
4803 			req->int_cause_num = HCLGE_VECTOR_ELEMENTS_PER_CMD;
4804 			req->vfid = vport->vport_id;
4805 
4806 			status = hclge_cmd_send(&hdev->hw, &desc, 1);
4807 			if (status) {
4808 				dev_err(&hdev->pdev->dev,
4809 					"Map TQP fail, status is %d.\n",
4810 					status);
4811 				return -EIO;
4812 			}
4813 			i = 0;
4814 
4815 			hclge_cmd_setup_basic_desc(&desc,
4816 						   op,
4817 						   false);
4818 			req->int_vector_id_l =
4819 				hnae3_get_field(vector_id,
4820 						HCLGE_VECTOR_ID_L_M,
4821 						HCLGE_VECTOR_ID_L_S);
4822 			req->int_vector_id_h =
4823 				hnae3_get_field(vector_id,
4824 						HCLGE_VECTOR_ID_H_M,
4825 						HCLGE_VECTOR_ID_H_S);
4826 		}
4827 	}
4828 
4829 	if (i > 0) {
4830 		req->int_cause_num = i;
4831 		req->vfid = vport->vport_id;
4832 		status = hclge_cmd_send(&hdev->hw, &desc, 1);
4833 		if (status) {
4834 			dev_err(&hdev->pdev->dev,
4835 				"Map TQP fail, status is %d.\n", status);
4836 			return -EIO;
4837 		}
4838 	}
4839 
4840 	return 0;
4841 }
4842 
4843 static int hclge_map_ring_to_vector(struct hnae3_handle *handle, int vector,
4844 				    struct hnae3_ring_chain_node *ring_chain)
4845 {
4846 	struct hclge_vport *vport = hclge_get_vport(handle);
4847 	struct hclge_dev *hdev = vport->back;
4848 	int vector_id;
4849 
4850 	vector_id = hclge_get_vector_index(hdev, vector);
4851 	if (vector_id < 0) {
4852 		dev_err(&hdev->pdev->dev,
4853 			"failed to get vector index. vector=%d\n", vector);
4854 		return vector_id;
4855 	}
4856 
4857 	return hclge_bind_ring_with_vector(vport, vector_id, true, ring_chain);
4858 }
4859 
4860 static int hclge_unmap_ring_frm_vector(struct hnae3_handle *handle, int vector,
4861 				       struct hnae3_ring_chain_node *ring_chain)
4862 {
4863 	struct hclge_vport *vport = hclge_get_vport(handle);
4864 	struct hclge_dev *hdev = vport->back;
4865 	int vector_id, ret;
4866 
4867 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
4868 		return 0;
4869 
4870 	vector_id = hclge_get_vector_index(hdev, vector);
4871 	if (vector_id < 0) {
4872 		dev_err(&handle->pdev->dev,
4873 			"Get vector index fail. ret =%d\n", vector_id);
4874 		return vector_id;
4875 	}
4876 
4877 	ret = hclge_bind_ring_with_vector(vport, vector_id, false, ring_chain);
4878 	if (ret)
4879 		dev_err(&handle->pdev->dev,
4880 			"Unmap ring from vector fail. vectorid=%d, ret =%d\n",
4881 			vector_id, ret);
4882 
4883 	return ret;
4884 }
4885 
4886 static int hclge_cmd_set_promisc_mode(struct hclge_dev *hdev, u8 vf_id,
4887 				      bool en_uc, bool en_mc, bool en_bc)
4888 {
4889 	struct hclge_vport *vport = &hdev->vport[vf_id];
4890 	struct hnae3_handle *handle = &vport->nic;
4891 	struct hclge_promisc_cfg_cmd *req;
4892 	struct hclge_desc desc;
4893 	bool uc_tx_en = en_uc;
4894 	u8 promisc_cfg = 0;
4895 	int ret;
4896 
4897 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_PROMISC_MODE, false);
4898 
4899 	req = (struct hclge_promisc_cfg_cmd *)desc.data;
4900 	req->vf_id = vf_id;
4901 
4902 	if (test_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->priv_flags))
4903 		uc_tx_en = false;
4904 
4905 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_RX_EN, en_uc ? 1 : 0);
4906 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_RX_EN, en_mc ? 1 : 0);
4907 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_RX_EN, en_bc ? 1 : 0);
4908 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_TX_EN, uc_tx_en ? 1 : 0);
4909 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_TX_EN, en_mc ? 1 : 0);
4910 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_TX_EN, en_bc ? 1 : 0);
4911 	req->extend_promisc = promisc_cfg;
4912 
4913 	/* to be compatible with DEVICE_VERSION_V1/2 */
4914 	promisc_cfg = 0;
4915 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_UC, en_uc ? 1 : 0);
4916 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_MC, en_mc ? 1 : 0);
4917 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_BC, en_bc ? 1 : 0);
4918 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_TX_EN, 1);
4919 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_RX_EN, 1);
4920 	req->promisc = promisc_cfg;
4921 
4922 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
4923 	if (ret)
4924 		dev_err(&hdev->pdev->dev,
4925 			"failed to set vport %u promisc mode, ret = %d.\n",
4926 			vf_id, ret);
4927 
4928 	return ret;
4929 }
4930 
4931 int hclge_set_vport_promisc_mode(struct hclge_vport *vport, bool en_uc_pmc,
4932 				 bool en_mc_pmc, bool en_bc_pmc)
4933 {
4934 	return hclge_cmd_set_promisc_mode(vport->back, vport->vport_id,
4935 					  en_uc_pmc, en_mc_pmc, en_bc_pmc);
4936 }
4937 
4938 static int hclge_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
4939 				  bool en_mc_pmc)
4940 {
4941 	struct hclge_vport *vport = hclge_get_vport(handle);
4942 	struct hclge_dev *hdev = vport->back;
4943 	bool en_bc_pmc = true;
4944 
4945 	/* For device whose version below V2, if broadcast promisc enabled,
4946 	 * vlan filter is always bypassed. So broadcast promisc should be
4947 	 * disabled until user enable promisc mode
4948 	 */
4949 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
4950 		en_bc_pmc = handle->netdev_flags & HNAE3_BPE ? true : false;
4951 
4952 	return hclge_set_vport_promisc_mode(vport, en_uc_pmc, en_mc_pmc,
4953 					    en_bc_pmc);
4954 }
4955 
4956 static void hclge_request_update_promisc_mode(struct hnae3_handle *handle)
4957 {
4958 	struct hclge_vport *vport = hclge_get_vport(handle);
4959 
4960 	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
4961 }
4962 
4963 static void hclge_sync_fd_state(struct hclge_dev *hdev)
4964 {
4965 	if (hlist_empty(&hdev->fd_rule_list))
4966 		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
4967 }
4968 
4969 static void hclge_fd_inc_rule_cnt(struct hclge_dev *hdev, u16 location)
4970 {
4971 	if (!test_bit(location, hdev->fd_bmap)) {
4972 		set_bit(location, hdev->fd_bmap);
4973 		hdev->hclge_fd_rule_num++;
4974 	}
4975 }
4976 
4977 static void hclge_fd_dec_rule_cnt(struct hclge_dev *hdev, u16 location)
4978 {
4979 	if (test_bit(location, hdev->fd_bmap)) {
4980 		clear_bit(location, hdev->fd_bmap);
4981 		hdev->hclge_fd_rule_num--;
4982 	}
4983 }
4984 
4985 static void hclge_fd_free_node(struct hclge_dev *hdev,
4986 			       struct hclge_fd_rule *rule)
4987 {
4988 	hlist_del(&rule->rule_node);
4989 	kfree(rule);
4990 	hclge_sync_fd_state(hdev);
4991 }
4992 
4993 static void hclge_update_fd_rule_node(struct hclge_dev *hdev,
4994 				      struct hclge_fd_rule *old_rule,
4995 				      struct hclge_fd_rule *new_rule,
4996 				      enum HCLGE_FD_NODE_STATE state)
4997 {
4998 	switch (state) {
4999 	case HCLGE_FD_TO_ADD:
5000 	case HCLGE_FD_ACTIVE:
5001 		/* 1) if the new state is TO_ADD, just replace the old rule
5002 		 * with the same location, no matter its state, because the
5003 		 * new rule will be configured to the hardware.
5004 		 * 2) if the new state is ACTIVE, it means the new rule
5005 		 * has been configured to the hardware, so just replace
5006 		 * the old rule node with the same location.
5007 		 * 3) for it doesn't add a new node to the list, so it's
5008 		 * unnecessary to update the rule number and fd_bmap.
5009 		 */
5010 		new_rule->rule_node.next = old_rule->rule_node.next;
5011 		new_rule->rule_node.pprev = old_rule->rule_node.pprev;
5012 		memcpy(old_rule, new_rule, sizeof(*old_rule));
5013 		kfree(new_rule);
5014 		break;
5015 	case HCLGE_FD_DELETED:
5016 		hclge_fd_dec_rule_cnt(hdev, old_rule->location);
5017 		hclge_fd_free_node(hdev, old_rule);
5018 		break;
5019 	case HCLGE_FD_TO_DEL:
5020 		/* if new request is TO_DEL, and old rule is existent
5021 		 * 1) the state of old rule is TO_DEL, we need do nothing,
5022 		 * because we delete rule by location, other rule content
5023 		 * is unncessary.
5024 		 * 2) the state of old rule is ACTIVE, we need to change its
5025 		 * state to TO_DEL, so the rule will be deleted when periodic
5026 		 * task being scheduled.
5027 		 * 3) the state of old rule is TO_ADD, it means the rule hasn't
5028 		 * been added to hardware, so we just delete the rule node from
5029 		 * fd_rule_list directly.
5030 		 */
5031 		if (old_rule->state == HCLGE_FD_TO_ADD) {
5032 			hclge_fd_dec_rule_cnt(hdev, old_rule->location);
5033 			hclge_fd_free_node(hdev, old_rule);
5034 			return;
5035 		}
5036 		old_rule->state = HCLGE_FD_TO_DEL;
5037 		break;
5038 	}
5039 }
5040 
5041 static struct hclge_fd_rule *hclge_find_fd_rule(struct hlist_head *hlist,
5042 						u16 location,
5043 						struct hclge_fd_rule **parent)
5044 {
5045 	struct hclge_fd_rule *rule;
5046 	struct hlist_node *node;
5047 
5048 	hlist_for_each_entry_safe(rule, node, hlist, rule_node) {
5049 		if (rule->location == location)
5050 			return rule;
5051 		else if (rule->location > location)
5052 			return NULL;
5053 		/* record the parent node, use to keep the nodes in fd_rule_list
5054 		 * in ascend order.
5055 		 */
5056 		*parent = rule;
5057 	}
5058 
5059 	return NULL;
5060 }
5061 
5062 /* insert fd rule node in ascend order according to rule->location */
5063 static void hclge_fd_insert_rule_node(struct hlist_head *hlist,
5064 				      struct hclge_fd_rule *rule,
5065 				      struct hclge_fd_rule *parent)
5066 {
5067 	INIT_HLIST_NODE(&rule->rule_node);
5068 
5069 	if (parent)
5070 		hlist_add_behind(&rule->rule_node, &parent->rule_node);
5071 	else
5072 		hlist_add_head(&rule->rule_node, hlist);
5073 }
5074 
5075 static int hclge_fd_set_user_def_cmd(struct hclge_dev *hdev,
5076 				     struct hclge_fd_user_def_cfg *cfg)
5077 {
5078 	struct hclge_fd_user_def_cfg_cmd *req;
5079 	struct hclge_desc desc;
5080 	u16 data = 0;
5081 	int ret;
5082 
5083 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_USER_DEF_OP, false);
5084 
5085 	req = (struct hclge_fd_user_def_cfg_cmd *)desc.data;
5086 
5087 	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[0].ref_cnt > 0);
5088 	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
5089 			HCLGE_FD_USER_DEF_OFT_S, cfg[0].offset);
5090 	req->ol2_cfg = cpu_to_le16(data);
5091 
5092 	data = 0;
5093 	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[1].ref_cnt > 0);
5094 	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
5095 			HCLGE_FD_USER_DEF_OFT_S, cfg[1].offset);
5096 	req->ol3_cfg = cpu_to_le16(data);
5097 
5098 	data = 0;
5099 	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[2].ref_cnt > 0);
5100 	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
5101 			HCLGE_FD_USER_DEF_OFT_S, cfg[2].offset);
5102 	req->ol4_cfg = cpu_to_le16(data);
5103 
5104 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5105 	if (ret)
5106 		dev_err(&hdev->pdev->dev,
5107 			"failed to set fd user def data, ret= %d\n", ret);
5108 	return ret;
5109 }
5110 
5111 static void hclge_sync_fd_user_def_cfg(struct hclge_dev *hdev, bool locked)
5112 {
5113 	int ret;
5114 
5115 	if (!test_and_clear_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state))
5116 		return;
5117 
5118 	if (!locked)
5119 		spin_lock_bh(&hdev->fd_rule_lock);
5120 
5121 	ret = hclge_fd_set_user_def_cmd(hdev, hdev->fd_cfg.user_def_cfg);
5122 	if (ret)
5123 		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
5124 
5125 	if (!locked)
5126 		spin_unlock_bh(&hdev->fd_rule_lock);
5127 }
5128 
5129 static int hclge_fd_check_user_def_refcnt(struct hclge_dev *hdev,
5130 					  struct hclge_fd_rule *rule)
5131 {
5132 	struct hlist_head *hlist = &hdev->fd_rule_list;
5133 	struct hclge_fd_rule *fd_rule, *parent = NULL;
5134 	struct hclge_fd_user_def_info *info, *old_info;
5135 	struct hclge_fd_user_def_cfg *cfg;
5136 
5137 	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
5138 	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
5139 		return 0;
5140 
5141 	/* for valid layer is start from 1, so need minus 1 to get the cfg */
5142 	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
5143 	info = &rule->ep.user_def;
5144 
5145 	if (!cfg->ref_cnt || cfg->offset == info->offset)
5146 		return 0;
5147 
5148 	if (cfg->ref_cnt > 1)
5149 		goto error;
5150 
5151 	fd_rule = hclge_find_fd_rule(hlist, rule->location, &parent);
5152 	if (fd_rule) {
5153 		old_info = &fd_rule->ep.user_def;
5154 		if (info->layer == old_info->layer)
5155 			return 0;
5156 	}
5157 
5158 error:
5159 	dev_err(&hdev->pdev->dev,
5160 		"No available offset for layer%d fd rule, each layer only support one user def offset.\n",
5161 		info->layer + 1);
5162 	return -ENOSPC;
5163 }
5164 
5165 static void hclge_fd_inc_user_def_refcnt(struct hclge_dev *hdev,
5166 					 struct hclge_fd_rule *rule)
5167 {
5168 	struct hclge_fd_user_def_cfg *cfg;
5169 
5170 	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
5171 	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
5172 		return;
5173 
5174 	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
5175 	if (!cfg->ref_cnt) {
5176 		cfg->offset = rule->ep.user_def.offset;
5177 		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
5178 	}
5179 	cfg->ref_cnt++;
5180 }
5181 
5182 static void hclge_fd_dec_user_def_refcnt(struct hclge_dev *hdev,
5183 					 struct hclge_fd_rule *rule)
5184 {
5185 	struct hclge_fd_user_def_cfg *cfg;
5186 
5187 	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
5188 	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
5189 		return;
5190 
5191 	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
5192 	if (!cfg->ref_cnt)
5193 		return;
5194 
5195 	cfg->ref_cnt--;
5196 	if (!cfg->ref_cnt) {
5197 		cfg->offset = 0;
5198 		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
5199 	}
5200 }
5201 
5202 static void hclge_update_fd_list(struct hclge_dev *hdev,
5203 				 enum HCLGE_FD_NODE_STATE state, u16 location,
5204 				 struct hclge_fd_rule *new_rule)
5205 {
5206 	struct hlist_head *hlist = &hdev->fd_rule_list;
5207 	struct hclge_fd_rule *fd_rule, *parent = NULL;
5208 
5209 	fd_rule = hclge_find_fd_rule(hlist, location, &parent);
5210 	if (fd_rule) {
5211 		hclge_fd_dec_user_def_refcnt(hdev, fd_rule);
5212 		if (state == HCLGE_FD_ACTIVE)
5213 			hclge_fd_inc_user_def_refcnt(hdev, new_rule);
5214 		hclge_sync_fd_user_def_cfg(hdev, true);
5215 
5216 		hclge_update_fd_rule_node(hdev, fd_rule, new_rule, state);
5217 		return;
5218 	}
5219 
5220 	/* it's unlikely to fail here, because we have checked the rule
5221 	 * exist before.
5222 	 */
5223 	if (unlikely(state == HCLGE_FD_TO_DEL || state == HCLGE_FD_DELETED)) {
5224 		dev_warn(&hdev->pdev->dev,
5225 			 "failed to delete fd rule %u, it's inexistent\n",
5226 			 location);
5227 		return;
5228 	}
5229 
5230 	hclge_fd_inc_user_def_refcnt(hdev, new_rule);
5231 	hclge_sync_fd_user_def_cfg(hdev, true);
5232 
5233 	hclge_fd_insert_rule_node(hlist, new_rule, parent);
5234 	hclge_fd_inc_rule_cnt(hdev, new_rule->location);
5235 
5236 	if (state == HCLGE_FD_TO_ADD) {
5237 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
5238 		hclge_task_schedule(hdev, 0);
5239 	}
5240 }
5241 
5242 static int hclge_get_fd_mode(struct hclge_dev *hdev, u8 *fd_mode)
5243 {
5244 	struct hclge_get_fd_mode_cmd *req;
5245 	struct hclge_desc desc;
5246 	int ret;
5247 
5248 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_MODE_CTRL, true);
5249 
5250 	req = (struct hclge_get_fd_mode_cmd *)desc.data;
5251 
5252 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5253 	if (ret) {
5254 		dev_err(&hdev->pdev->dev, "get fd mode fail, ret=%d\n", ret);
5255 		return ret;
5256 	}
5257 
5258 	*fd_mode = req->mode;
5259 
5260 	return ret;
5261 }
5262 
5263 static int hclge_get_fd_allocation(struct hclge_dev *hdev,
5264 				   u32 *stage1_entry_num,
5265 				   u32 *stage2_entry_num,
5266 				   u16 *stage1_counter_num,
5267 				   u16 *stage2_counter_num)
5268 {
5269 	struct hclge_get_fd_allocation_cmd *req;
5270 	struct hclge_desc desc;
5271 	int ret;
5272 
5273 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_GET_ALLOCATION, true);
5274 
5275 	req = (struct hclge_get_fd_allocation_cmd *)desc.data;
5276 
5277 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5278 	if (ret) {
5279 		dev_err(&hdev->pdev->dev, "query fd allocation fail, ret=%d\n",
5280 			ret);
5281 		return ret;
5282 	}
5283 
5284 	*stage1_entry_num = le32_to_cpu(req->stage1_entry_num);
5285 	*stage2_entry_num = le32_to_cpu(req->stage2_entry_num);
5286 	*stage1_counter_num = le16_to_cpu(req->stage1_counter_num);
5287 	*stage2_counter_num = le16_to_cpu(req->stage2_counter_num);
5288 
5289 	return ret;
5290 }
5291 
5292 static int hclge_set_fd_key_config(struct hclge_dev *hdev,
5293 				   enum HCLGE_FD_STAGE stage_num)
5294 {
5295 	struct hclge_set_fd_key_config_cmd *req;
5296 	struct hclge_fd_key_cfg *stage;
5297 	struct hclge_desc desc;
5298 	int ret;
5299 
5300 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_KEY_CONFIG, false);
5301 
5302 	req = (struct hclge_set_fd_key_config_cmd *)desc.data;
5303 	stage = &hdev->fd_cfg.key_cfg[stage_num];
5304 	req->stage = stage_num;
5305 	req->key_select = stage->key_sel;
5306 	req->inner_sipv6_word_en = stage->inner_sipv6_word_en;
5307 	req->inner_dipv6_word_en = stage->inner_dipv6_word_en;
5308 	req->outer_sipv6_word_en = stage->outer_sipv6_word_en;
5309 	req->outer_dipv6_word_en = stage->outer_dipv6_word_en;
5310 	req->tuple_mask = cpu_to_le32(~stage->tuple_active);
5311 	req->meta_data_mask = cpu_to_le32(~stage->meta_data_active);
5312 
5313 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5314 	if (ret)
5315 		dev_err(&hdev->pdev->dev, "set fd key fail, ret=%d\n", ret);
5316 
5317 	return ret;
5318 }
5319 
5320 static void hclge_fd_disable_user_def(struct hclge_dev *hdev)
5321 {
5322 	struct hclge_fd_user_def_cfg *cfg = hdev->fd_cfg.user_def_cfg;
5323 
5324 	spin_lock_bh(&hdev->fd_rule_lock);
5325 	memset(cfg, 0, sizeof(hdev->fd_cfg.user_def_cfg));
5326 	spin_unlock_bh(&hdev->fd_rule_lock);
5327 
5328 	hclge_fd_set_user_def_cmd(hdev, cfg);
5329 }
5330 
5331 static int hclge_init_fd_config(struct hclge_dev *hdev)
5332 {
5333 #define LOW_2_WORDS		0x03
5334 	struct hclge_fd_key_cfg *key_cfg;
5335 	int ret;
5336 
5337 	if (!hnae3_dev_fd_supported(hdev))
5338 		return 0;
5339 
5340 	ret = hclge_get_fd_mode(hdev, &hdev->fd_cfg.fd_mode);
5341 	if (ret)
5342 		return ret;
5343 
5344 	switch (hdev->fd_cfg.fd_mode) {
5345 	case HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1:
5346 		hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH;
5347 		break;
5348 	case HCLGE_FD_MODE_DEPTH_4K_WIDTH_200B_STAGE_1:
5349 		hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH / 2;
5350 		break;
5351 	default:
5352 		dev_err(&hdev->pdev->dev,
5353 			"Unsupported flow director mode %u\n",
5354 			hdev->fd_cfg.fd_mode);
5355 		return -EOPNOTSUPP;
5356 	}
5357 
5358 	key_cfg = &hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1];
5359 	key_cfg->key_sel = HCLGE_FD_KEY_BASE_ON_TUPLE;
5360 	key_cfg->inner_sipv6_word_en = LOW_2_WORDS;
5361 	key_cfg->inner_dipv6_word_en = LOW_2_WORDS;
5362 	key_cfg->outer_sipv6_word_en = 0;
5363 	key_cfg->outer_dipv6_word_en = 0;
5364 
5365 	key_cfg->tuple_active = BIT(INNER_VLAN_TAG_FST) | BIT(INNER_ETH_TYPE) |
5366 				BIT(INNER_IP_PROTO) | BIT(INNER_IP_TOS) |
5367 				BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
5368 				BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
5369 
5370 	/* If use max 400bit key, we can support tuples for ether type */
5371 	if (hdev->fd_cfg.fd_mode == HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
5372 		key_cfg->tuple_active |=
5373 				BIT(INNER_DST_MAC) | BIT(INNER_SRC_MAC);
5374 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5375 			key_cfg->tuple_active |= HCLGE_FD_TUPLE_USER_DEF_TUPLES;
5376 	}
5377 
5378 	/* roce_type is used to filter roce frames
5379 	 * dst_vport is used to specify the rule
5380 	 */
5381 	key_cfg->meta_data_active = BIT(ROCE_TYPE) | BIT(DST_VPORT);
5382 
5383 	ret = hclge_get_fd_allocation(hdev,
5384 				      &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1],
5385 				      &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_2],
5386 				      &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1],
5387 				      &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_2]);
5388 	if (ret)
5389 		return ret;
5390 
5391 	return hclge_set_fd_key_config(hdev, HCLGE_FD_STAGE_1);
5392 }
5393 
5394 static int hclge_fd_tcam_config(struct hclge_dev *hdev, u8 stage, bool sel_x,
5395 				int loc, u8 *key, bool is_add)
5396 {
5397 	struct hclge_fd_tcam_config_1_cmd *req1;
5398 	struct hclge_fd_tcam_config_2_cmd *req2;
5399 	struct hclge_fd_tcam_config_3_cmd *req3;
5400 	struct hclge_desc desc[3];
5401 	int ret;
5402 
5403 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_FD_TCAM_OP, false);
5404 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
5405 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_FD_TCAM_OP, false);
5406 	desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
5407 	hclge_cmd_setup_basic_desc(&desc[2], HCLGE_OPC_FD_TCAM_OP, false);
5408 
5409 	req1 = (struct hclge_fd_tcam_config_1_cmd *)desc[0].data;
5410 	req2 = (struct hclge_fd_tcam_config_2_cmd *)desc[1].data;
5411 	req3 = (struct hclge_fd_tcam_config_3_cmd *)desc[2].data;
5412 
5413 	req1->stage = stage;
5414 	req1->xy_sel = sel_x ? 1 : 0;
5415 	hnae3_set_bit(req1->port_info, HCLGE_FD_EPORT_SW_EN_B, 0);
5416 	req1->index = cpu_to_le32(loc);
5417 	req1->entry_vld = sel_x ? is_add : 0;
5418 
5419 	if (key) {
5420 		memcpy(req1->tcam_data, &key[0], sizeof(req1->tcam_data));
5421 		memcpy(req2->tcam_data, &key[sizeof(req1->tcam_data)],
5422 		       sizeof(req2->tcam_data));
5423 		memcpy(req3->tcam_data, &key[sizeof(req1->tcam_data) +
5424 		       sizeof(req2->tcam_data)], sizeof(req3->tcam_data));
5425 	}
5426 
5427 	ret = hclge_cmd_send(&hdev->hw, desc, 3);
5428 	if (ret)
5429 		dev_err(&hdev->pdev->dev,
5430 			"config tcam key fail, ret=%d\n",
5431 			ret);
5432 
5433 	return ret;
5434 }
5435 
5436 static int hclge_fd_ad_config(struct hclge_dev *hdev, u8 stage, int loc,
5437 			      struct hclge_fd_ad_data *action)
5438 {
5439 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
5440 	struct hclge_fd_ad_config_cmd *req;
5441 	struct hclge_desc desc;
5442 	u64 ad_data = 0;
5443 	int ret;
5444 
5445 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_AD_OP, false);
5446 
5447 	req = (struct hclge_fd_ad_config_cmd *)desc.data;
5448 	req->index = cpu_to_le32(loc);
5449 	req->stage = stage;
5450 
5451 	hnae3_set_bit(ad_data, HCLGE_FD_AD_WR_RULE_ID_B,
5452 		      action->write_rule_id_to_bd);
5453 	hnae3_set_field(ad_data, HCLGE_FD_AD_RULE_ID_M, HCLGE_FD_AD_RULE_ID_S,
5454 			action->rule_id);
5455 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) {
5456 		hnae3_set_bit(ad_data, HCLGE_FD_AD_TC_OVRD_B,
5457 			      action->override_tc);
5458 		hnae3_set_field(ad_data, HCLGE_FD_AD_TC_SIZE_M,
5459 				HCLGE_FD_AD_TC_SIZE_S, (u32)action->tc_size);
5460 	}
5461 	ad_data <<= 32;
5462 	hnae3_set_bit(ad_data, HCLGE_FD_AD_DROP_B, action->drop_packet);
5463 	hnae3_set_bit(ad_data, HCLGE_FD_AD_DIRECT_QID_B,
5464 		      action->forward_to_direct_queue);
5465 	hnae3_set_field(ad_data, HCLGE_FD_AD_QID_M, HCLGE_FD_AD_QID_S,
5466 			action->queue_id);
5467 	hnae3_set_bit(ad_data, HCLGE_FD_AD_USE_COUNTER_B, action->use_counter);
5468 	hnae3_set_field(ad_data, HCLGE_FD_AD_COUNTER_NUM_M,
5469 			HCLGE_FD_AD_COUNTER_NUM_S, action->counter_id);
5470 	hnae3_set_bit(ad_data, HCLGE_FD_AD_NXT_STEP_B, action->use_next_stage);
5471 	hnae3_set_field(ad_data, HCLGE_FD_AD_NXT_KEY_M, HCLGE_FD_AD_NXT_KEY_S,
5472 			action->counter_id);
5473 
5474 	req->ad_data = cpu_to_le64(ad_data);
5475 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5476 	if (ret)
5477 		dev_err(&hdev->pdev->dev, "fd ad config fail, ret=%d\n", ret);
5478 
5479 	return ret;
5480 }
5481 
5482 static bool hclge_fd_convert_tuple(u32 tuple_bit, u8 *key_x, u8 *key_y,
5483 				   struct hclge_fd_rule *rule)
5484 {
5485 	int offset, moffset, ip_offset;
5486 	enum HCLGE_FD_KEY_OPT key_opt;
5487 	u16 tmp_x_s, tmp_y_s;
5488 	u32 tmp_x_l, tmp_y_l;
5489 	u8 *p = (u8 *)rule;
5490 	int i;
5491 
5492 	if (rule->unused_tuple & BIT(tuple_bit))
5493 		return true;
5494 
5495 	key_opt = tuple_key_info[tuple_bit].key_opt;
5496 	offset = tuple_key_info[tuple_bit].offset;
5497 	moffset = tuple_key_info[tuple_bit].moffset;
5498 
5499 	switch (key_opt) {
5500 	case KEY_OPT_U8:
5501 		calc_x(*key_x, p[offset], p[moffset]);
5502 		calc_y(*key_y, p[offset], p[moffset]);
5503 
5504 		return true;
5505 	case KEY_OPT_LE16:
5506 		calc_x(tmp_x_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset]));
5507 		calc_y(tmp_y_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset]));
5508 		*(__le16 *)key_x = cpu_to_le16(tmp_x_s);
5509 		*(__le16 *)key_y = cpu_to_le16(tmp_y_s);
5510 
5511 		return true;
5512 	case KEY_OPT_LE32:
5513 		calc_x(tmp_x_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset]));
5514 		calc_y(tmp_y_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset]));
5515 		*(__le32 *)key_x = cpu_to_le32(tmp_x_l);
5516 		*(__le32 *)key_y = cpu_to_le32(tmp_y_l);
5517 
5518 		return true;
5519 	case KEY_OPT_MAC:
5520 		for (i = 0; i < ETH_ALEN; i++) {
5521 			calc_x(key_x[ETH_ALEN - 1 - i], p[offset + i],
5522 			       p[moffset + i]);
5523 			calc_y(key_y[ETH_ALEN - 1 - i], p[offset + i],
5524 			       p[moffset + i]);
5525 		}
5526 
5527 		return true;
5528 	case KEY_OPT_IP:
5529 		ip_offset = IPV4_INDEX * sizeof(u32);
5530 		calc_x(tmp_x_l, *(u32 *)(&p[offset + ip_offset]),
5531 		       *(u32 *)(&p[moffset + ip_offset]));
5532 		calc_y(tmp_y_l, *(u32 *)(&p[offset + ip_offset]),
5533 		       *(u32 *)(&p[moffset + ip_offset]));
5534 		*(__le32 *)key_x = cpu_to_le32(tmp_x_l);
5535 		*(__le32 *)key_y = cpu_to_le32(tmp_y_l);
5536 
5537 		return true;
5538 	default:
5539 		return false;
5540 	}
5541 }
5542 
5543 static u32 hclge_get_port_number(enum HLCGE_PORT_TYPE port_type, u8 pf_id,
5544 				 u8 vf_id, u8 network_port_id)
5545 {
5546 	u32 port_number = 0;
5547 
5548 	if (port_type == HOST_PORT) {
5549 		hnae3_set_field(port_number, HCLGE_PF_ID_M, HCLGE_PF_ID_S,
5550 				pf_id);
5551 		hnae3_set_field(port_number, HCLGE_VF_ID_M, HCLGE_VF_ID_S,
5552 				vf_id);
5553 		hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, HOST_PORT);
5554 	} else {
5555 		hnae3_set_field(port_number, HCLGE_NETWORK_PORT_ID_M,
5556 				HCLGE_NETWORK_PORT_ID_S, network_port_id);
5557 		hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, NETWORK_PORT);
5558 	}
5559 
5560 	return port_number;
5561 }
5562 
5563 static void hclge_fd_convert_meta_data(struct hclge_fd_key_cfg *key_cfg,
5564 				       __le32 *key_x, __le32 *key_y,
5565 				       struct hclge_fd_rule *rule)
5566 {
5567 	u32 tuple_bit, meta_data = 0, tmp_x, tmp_y, port_number;
5568 	u8 cur_pos = 0, tuple_size, shift_bits;
5569 	unsigned int i;
5570 
5571 	for (i = 0; i < MAX_META_DATA; i++) {
5572 		tuple_size = meta_data_key_info[i].key_length;
5573 		tuple_bit = key_cfg->meta_data_active & BIT(i);
5574 
5575 		switch (tuple_bit) {
5576 		case BIT(ROCE_TYPE):
5577 			hnae3_set_bit(meta_data, cur_pos, NIC_PACKET);
5578 			cur_pos += tuple_size;
5579 			break;
5580 		case BIT(DST_VPORT):
5581 			port_number = hclge_get_port_number(HOST_PORT, 0,
5582 							    rule->vf_id, 0);
5583 			hnae3_set_field(meta_data,
5584 					GENMASK(cur_pos + tuple_size, cur_pos),
5585 					cur_pos, port_number);
5586 			cur_pos += tuple_size;
5587 			break;
5588 		default:
5589 			break;
5590 		}
5591 	}
5592 
5593 	calc_x(tmp_x, meta_data, 0xFFFFFFFF);
5594 	calc_y(tmp_y, meta_data, 0xFFFFFFFF);
5595 	shift_bits = sizeof(meta_data) * 8 - cur_pos;
5596 
5597 	*key_x = cpu_to_le32(tmp_x << shift_bits);
5598 	*key_y = cpu_to_le32(tmp_y << shift_bits);
5599 }
5600 
5601 /* A complete key is combined with meta data key and tuple key.
5602  * Meta data key is stored at the MSB region, and tuple key is stored at
5603  * the LSB region, unused bits will be filled 0.
5604  */
5605 static int hclge_config_key(struct hclge_dev *hdev, u8 stage,
5606 			    struct hclge_fd_rule *rule)
5607 {
5608 	struct hclge_fd_key_cfg *key_cfg = &hdev->fd_cfg.key_cfg[stage];
5609 	u8 key_x[MAX_KEY_BYTES], key_y[MAX_KEY_BYTES];
5610 	u8 *cur_key_x, *cur_key_y;
5611 	u8 meta_data_region;
5612 	u8 tuple_size;
5613 	int ret;
5614 	u32 i;
5615 
5616 	memset(key_x, 0, sizeof(key_x));
5617 	memset(key_y, 0, sizeof(key_y));
5618 	cur_key_x = key_x;
5619 	cur_key_y = key_y;
5620 
5621 	for (i = 0; i < MAX_TUPLE; i++) {
5622 		bool tuple_valid;
5623 
5624 		tuple_size = tuple_key_info[i].key_length / 8;
5625 		if (!(key_cfg->tuple_active & BIT(i)))
5626 			continue;
5627 
5628 		tuple_valid = hclge_fd_convert_tuple(i, cur_key_x,
5629 						     cur_key_y, rule);
5630 		if (tuple_valid) {
5631 			cur_key_x += tuple_size;
5632 			cur_key_y += tuple_size;
5633 		}
5634 	}
5635 
5636 	meta_data_region = hdev->fd_cfg.max_key_length / 8 -
5637 			MAX_META_DATA_LENGTH / 8;
5638 
5639 	hclge_fd_convert_meta_data(key_cfg,
5640 				   (__le32 *)(key_x + meta_data_region),
5641 				   (__le32 *)(key_y + meta_data_region),
5642 				   rule);
5643 
5644 	ret = hclge_fd_tcam_config(hdev, stage, false, rule->location, key_y,
5645 				   true);
5646 	if (ret) {
5647 		dev_err(&hdev->pdev->dev,
5648 			"fd key_y config fail, loc=%u, ret=%d\n",
5649 			rule->queue_id, ret);
5650 		return ret;
5651 	}
5652 
5653 	ret = hclge_fd_tcam_config(hdev, stage, true, rule->location, key_x,
5654 				   true);
5655 	if (ret)
5656 		dev_err(&hdev->pdev->dev,
5657 			"fd key_x config fail, loc=%u, ret=%d\n",
5658 			rule->queue_id, ret);
5659 	return ret;
5660 }
5661 
5662 static int hclge_config_action(struct hclge_dev *hdev, u8 stage,
5663 			       struct hclge_fd_rule *rule)
5664 {
5665 	struct hclge_vport *vport = hdev->vport;
5666 	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
5667 	struct hclge_fd_ad_data ad_data;
5668 
5669 	memset(&ad_data, 0, sizeof(struct hclge_fd_ad_data));
5670 	ad_data.ad_id = rule->location;
5671 
5672 	if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) {
5673 		ad_data.drop_packet = true;
5674 	} else if (rule->action == HCLGE_FD_ACTION_SELECT_TC) {
5675 		ad_data.override_tc = true;
5676 		ad_data.queue_id =
5677 			kinfo->tc_info.tqp_offset[rule->cls_flower.tc];
5678 		ad_data.tc_size =
5679 			ilog2(kinfo->tc_info.tqp_count[rule->cls_flower.tc]);
5680 	} else {
5681 		ad_data.forward_to_direct_queue = true;
5682 		ad_data.queue_id = rule->queue_id;
5683 	}
5684 
5685 	if (hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1]) {
5686 		ad_data.use_counter = true;
5687 		ad_data.counter_id = rule->vf_id %
5688 				     hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1];
5689 	} else {
5690 		ad_data.use_counter = false;
5691 		ad_data.counter_id = 0;
5692 	}
5693 
5694 	ad_data.use_next_stage = false;
5695 	ad_data.next_input_key = 0;
5696 
5697 	ad_data.write_rule_id_to_bd = true;
5698 	ad_data.rule_id = rule->location;
5699 
5700 	return hclge_fd_ad_config(hdev, stage, ad_data.ad_id, &ad_data);
5701 }
5702 
5703 static int hclge_fd_check_tcpip4_tuple(struct ethtool_tcpip4_spec *spec,
5704 				       u32 *unused_tuple)
5705 {
5706 	if (!spec || !unused_tuple)
5707 		return -EINVAL;
5708 
5709 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC);
5710 
5711 	if (!spec->ip4src)
5712 		*unused_tuple |= BIT(INNER_SRC_IP);
5713 
5714 	if (!spec->ip4dst)
5715 		*unused_tuple |= BIT(INNER_DST_IP);
5716 
5717 	if (!spec->psrc)
5718 		*unused_tuple |= BIT(INNER_SRC_PORT);
5719 
5720 	if (!spec->pdst)
5721 		*unused_tuple |= BIT(INNER_DST_PORT);
5722 
5723 	if (!spec->tos)
5724 		*unused_tuple |= BIT(INNER_IP_TOS);
5725 
5726 	return 0;
5727 }
5728 
5729 static int hclge_fd_check_ip4_tuple(struct ethtool_usrip4_spec *spec,
5730 				    u32 *unused_tuple)
5731 {
5732 	if (!spec || !unused_tuple)
5733 		return -EINVAL;
5734 
5735 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
5736 		BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
5737 
5738 	if (!spec->ip4src)
5739 		*unused_tuple |= BIT(INNER_SRC_IP);
5740 
5741 	if (!spec->ip4dst)
5742 		*unused_tuple |= BIT(INNER_DST_IP);
5743 
5744 	if (!spec->tos)
5745 		*unused_tuple |= BIT(INNER_IP_TOS);
5746 
5747 	if (!spec->proto)
5748 		*unused_tuple |= BIT(INNER_IP_PROTO);
5749 
5750 	if (spec->l4_4_bytes)
5751 		return -EOPNOTSUPP;
5752 
5753 	if (spec->ip_ver != ETH_RX_NFC_IP4)
5754 		return -EOPNOTSUPP;
5755 
5756 	return 0;
5757 }
5758 
5759 static int hclge_fd_check_tcpip6_tuple(struct ethtool_tcpip6_spec *spec,
5760 				       u32 *unused_tuple)
5761 {
5762 	if (!spec || !unused_tuple)
5763 		return -EINVAL;
5764 
5765 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC);
5766 
5767 	/* check whether src/dst ip address used */
5768 	if (ipv6_addr_any((struct in6_addr *)spec->ip6src))
5769 		*unused_tuple |= BIT(INNER_SRC_IP);
5770 
5771 	if (ipv6_addr_any((struct in6_addr *)spec->ip6dst))
5772 		*unused_tuple |= BIT(INNER_DST_IP);
5773 
5774 	if (!spec->psrc)
5775 		*unused_tuple |= BIT(INNER_SRC_PORT);
5776 
5777 	if (!spec->pdst)
5778 		*unused_tuple |= BIT(INNER_DST_PORT);
5779 
5780 	if (!spec->tclass)
5781 		*unused_tuple |= BIT(INNER_IP_TOS);
5782 
5783 	return 0;
5784 }
5785 
5786 static int hclge_fd_check_ip6_tuple(struct ethtool_usrip6_spec *spec,
5787 				    u32 *unused_tuple)
5788 {
5789 	if (!spec || !unused_tuple)
5790 		return -EINVAL;
5791 
5792 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
5793 			BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
5794 
5795 	/* check whether src/dst ip address used */
5796 	if (ipv6_addr_any((struct in6_addr *)spec->ip6src))
5797 		*unused_tuple |= BIT(INNER_SRC_IP);
5798 
5799 	if (ipv6_addr_any((struct in6_addr *)spec->ip6dst))
5800 		*unused_tuple |= BIT(INNER_DST_IP);
5801 
5802 	if (!spec->l4_proto)
5803 		*unused_tuple |= BIT(INNER_IP_PROTO);
5804 
5805 	if (!spec->tclass)
5806 		*unused_tuple |= BIT(INNER_IP_TOS);
5807 
5808 	if (spec->l4_4_bytes)
5809 		return -EOPNOTSUPP;
5810 
5811 	return 0;
5812 }
5813 
5814 static int hclge_fd_check_ether_tuple(struct ethhdr *spec, u32 *unused_tuple)
5815 {
5816 	if (!spec || !unused_tuple)
5817 		return -EINVAL;
5818 
5819 	*unused_tuple |= BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
5820 		BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT) |
5821 		BIT(INNER_IP_TOS) | BIT(INNER_IP_PROTO);
5822 
5823 	if (is_zero_ether_addr(spec->h_source))
5824 		*unused_tuple |= BIT(INNER_SRC_MAC);
5825 
5826 	if (is_zero_ether_addr(spec->h_dest))
5827 		*unused_tuple |= BIT(INNER_DST_MAC);
5828 
5829 	if (!spec->h_proto)
5830 		*unused_tuple |= BIT(INNER_ETH_TYPE);
5831 
5832 	return 0;
5833 }
5834 
5835 static int hclge_fd_check_ext_tuple(struct hclge_dev *hdev,
5836 				    struct ethtool_rx_flow_spec *fs,
5837 				    u32 *unused_tuple)
5838 {
5839 	if (fs->flow_type & FLOW_EXT) {
5840 		if (fs->h_ext.vlan_etype) {
5841 			dev_err(&hdev->pdev->dev, "vlan-etype is not supported!\n");
5842 			return -EOPNOTSUPP;
5843 		}
5844 
5845 		if (!fs->h_ext.vlan_tci)
5846 			*unused_tuple |= BIT(INNER_VLAN_TAG_FST);
5847 
5848 		if (fs->m_ext.vlan_tci &&
5849 		    be16_to_cpu(fs->h_ext.vlan_tci) >= VLAN_N_VID) {
5850 			dev_err(&hdev->pdev->dev,
5851 				"failed to config vlan_tci, invalid vlan_tci: %u, max is %d.\n",
5852 				ntohs(fs->h_ext.vlan_tci), VLAN_N_VID - 1);
5853 			return -EINVAL;
5854 		}
5855 	} else {
5856 		*unused_tuple |= BIT(INNER_VLAN_TAG_FST);
5857 	}
5858 
5859 	if (fs->flow_type & FLOW_MAC_EXT) {
5860 		if (hdev->fd_cfg.fd_mode !=
5861 		    HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
5862 			dev_err(&hdev->pdev->dev,
5863 				"FLOW_MAC_EXT is not supported in current fd mode!\n");
5864 			return -EOPNOTSUPP;
5865 		}
5866 
5867 		if (is_zero_ether_addr(fs->h_ext.h_dest))
5868 			*unused_tuple |= BIT(INNER_DST_MAC);
5869 		else
5870 			*unused_tuple &= ~BIT(INNER_DST_MAC);
5871 	}
5872 
5873 	return 0;
5874 }
5875 
5876 static int hclge_fd_get_user_def_layer(u32 flow_type, u32 *unused_tuple,
5877 				       struct hclge_fd_user_def_info *info)
5878 {
5879 	switch (flow_type) {
5880 	case ETHER_FLOW:
5881 		info->layer = HCLGE_FD_USER_DEF_L2;
5882 		*unused_tuple &= ~BIT(INNER_L2_RSV);
5883 		break;
5884 	case IP_USER_FLOW:
5885 	case IPV6_USER_FLOW:
5886 		info->layer = HCLGE_FD_USER_DEF_L3;
5887 		*unused_tuple &= ~BIT(INNER_L3_RSV);
5888 		break;
5889 	case TCP_V4_FLOW:
5890 	case UDP_V4_FLOW:
5891 	case TCP_V6_FLOW:
5892 	case UDP_V6_FLOW:
5893 		info->layer = HCLGE_FD_USER_DEF_L4;
5894 		*unused_tuple &= ~BIT(INNER_L4_RSV);
5895 		break;
5896 	default:
5897 		return -EOPNOTSUPP;
5898 	}
5899 
5900 	return 0;
5901 }
5902 
5903 static bool hclge_fd_is_user_def_all_masked(struct ethtool_rx_flow_spec *fs)
5904 {
5905 	return be32_to_cpu(fs->m_ext.data[1] | fs->m_ext.data[0]) == 0;
5906 }
5907 
5908 static int hclge_fd_parse_user_def_field(struct hclge_dev *hdev,
5909 					 struct ethtool_rx_flow_spec *fs,
5910 					 u32 *unused_tuple,
5911 					 struct hclge_fd_user_def_info *info)
5912 {
5913 	u32 tuple_active = hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1].tuple_active;
5914 	u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
5915 	u16 data, offset, data_mask, offset_mask;
5916 	int ret;
5917 
5918 	info->layer = HCLGE_FD_USER_DEF_NONE;
5919 	*unused_tuple |= HCLGE_FD_TUPLE_USER_DEF_TUPLES;
5920 
5921 	if (!(fs->flow_type & FLOW_EXT) || hclge_fd_is_user_def_all_masked(fs))
5922 		return 0;
5923 
5924 	/* user-def data from ethtool is 64 bit value, the bit0~15 is used
5925 	 * for data, and bit32~47 is used for offset.
5926 	 */
5927 	data = be32_to_cpu(fs->h_ext.data[1]) & HCLGE_FD_USER_DEF_DATA;
5928 	data_mask = be32_to_cpu(fs->m_ext.data[1]) & HCLGE_FD_USER_DEF_DATA;
5929 	offset = be32_to_cpu(fs->h_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET;
5930 	offset_mask = be32_to_cpu(fs->m_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET;
5931 
5932 	if (!(tuple_active & HCLGE_FD_TUPLE_USER_DEF_TUPLES)) {
5933 		dev_err(&hdev->pdev->dev, "user-def bytes are not supported\n");
5934 		return -EOPNOTSUPP;
5935 	}
5936 
5937 	if (offset > HCLGE_FD_MAX_USER_DEF_OFFSET) {
5938 		dev_err(&hdev->pdev->dev,
5939 			"user-def offset[%u] should be no more than %u\n",
5940 			offset, HCLGE_FD_MAX_USER_DEF_OFFSET);
5941 		return -EINVAL;
5942 	}
5943 
5944 	if (offset_mask != HCLGE_FD_USER_DEF_OFFSET_UNMASK) {
5945 		dev_err(&hdev->pdev->dev, "user-def offset can't be masked\n");
5946 		return -EINVAL;
5947 	}
5948 
5949 	ret = hclge_fd_get_user_def_layer(flow_type, unused_tuple, info);
5950 	if (ret) {
5951 		dev_err(&hdev->pdev->dev,
5952 			"unsupported flow type for user-def bytes, ret = %d\n",
5953 			ret);
5954 		return ret;
5955 	}
5956 
5957 	info->data = data;
5958 	info->data_mask = data_mask;
5959 	info->offset = offset;
5960 
5961 	return 0;
5962 }
5963 
5964 static int hclge_fd_check_spec(struct hclge_dev *hdev,
5965 			       struct ethtool_rx_flow_spec *fs,
5966 			       u32 *unused_tuple,
5967 			       struct hclge_fd_user_def_info *info)
5968 {
5969 	u32 flow_type;
5970 	int ret;
5971 
5972 	if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
5973 		dev_err(&hdev->pdev->dev,
5974 			"failed to config fd rules, invalid rule location: %u, max is %u\n.",
5975 			fs->location,
5976 			hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1] - 1);
5977 		return -EINVAL;
5978 	}
5979 
5980 	ret = hclge_fd_parse_user_def_field(hdev, fs, unused_tuple, info);
5981 	if (ret)
5982 		return ret;
5983 
5984 	flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
5985 	switch (flow_type) {
5986 	case SCTP_V4_FLOW:
5987 	case TCP_V4_FLOW:
5988 	case UDP_V4_FLOW:
5989 		ret = hclge_fd_check_tcpip4_tuple(&fs->h_u.tcp_ip4_spec,
5990 						  unused_tuple);
5991 		break;
5992 	case IP_USER_FLOW:
5993 		ret = hclge_fd_check_ip4_tuple(&fs->h_u.usr_ip4_spec,
5994 					       unused_tuple);
5995 		break;
5996 	case SCTP_V6_FLOW:
5997 	case TCP_V6_FLOW:
5998 	case UDP_V6_FLOW:
5999 		ret = hclge_fd_check_tcpip6_tuple(&fs->h_u.tcp_ip6_spec,
6000 						  unused_tuple);
6001 		break;
6002 	case IPV6_USER_FLOW:
6003 		ret = hclge_fd_check_ip6_tuple(&fs->h_u.usr_ip6_spec,
6004 					       unused_tuple);
6005 		break;
6006 	case ETHER_FLOW:
6007 		if (hdev->fd_cfg.fd_mode !=
6008 			HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
6009 			dev_err(&hdev->pdev->dev,
6010 				"ETHER_FLOW is not supported in current fd mode!\n");
6011 			return -EOPNOTSUPP;
6012 		}
6013 
6014 		ret = hclge_fd_check_ether_tuple(&fs->h_u.ether_spec,
6015 						 unused_tuple);
6016 		break;
6017 	default:
6018 		dev_err(&hdev->pdev->dev,
6019 			"unsupported protocol type, protocol type = %#x\n",
6020 			flow_type);
6021 		return -EOPNOTSUPP;
6022 	}
6023 
6024 	if (ret) {
6025 		dev_err(&hdev->pdev->dev,
6026 			"failed to check flow union tuple, ret = %d\n",
6027 			ret);
6028 		return ret;
6029 	}
6030 
6031 	return hclge_fd_check_ext_tuple(hdev, fs, unused_tuple);
6032 }
6033 
6034 static void hclge_fd_get_tcpip4_tuple(struct hclge_dev *hdev,
6035 				      struct ethtool_rx_flow_spec *fs,
6036 				      struct hclge_fd_rule *rule, u8 ip_proto)
6037 {
6038 	rule->tuples.src_ip[IPV4_INDEX] =
6039 			be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4src);
6040 	rule->tuples_mask.src_ip[IPV4_INDEX] =
6041 			be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4src);
6042 
6043 	rule->tuples.dst_ip[IPV4_INDEX] =
6044 			be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4dst);
6045 	rule->tuples_mask.dst_ip[IPV4_INDEX] =
6046 			be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4dst);
6047 
6048 	rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc);
6049 	rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.psrc);
6050 
6051 	rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst);
6052 	rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.pdst);
6053 
6054 	rule->tuples.ip_tos = fs->h_u.tcp_ip4_spec.tos;
6055 	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip4_spec.tos;
6056 
6057 	rule->tuples.ether_proto = ETH_P_IP;
6058 	rule->tuples_mask.ether_proto = 0xFFFF;
6059 
6060 	rule->tuples.ip_proto = ip_proto;
6061 	rule->tuples_mask.ip_proto = 0xFF;
6062 }
6063 
6064 static void hclge_fd_get_ip4_tuple(struct hclge_dev *hdev,
6065 				   struct ethtool_rx_flow_spec *fs,
6066 				   struct hclge_fd_rule *rule)
6067 {
6068 	rule->tuples.src_ip[IPV4_INDEX] =
6069 			be32_to_cpu(fs->h_u.usr_ip4_spec.ip4src);
6070 	rule->tuples_mask.src_ip[IPV4_INDEX] =
6071 			be32_to_cpu(fs->m_u.usr_ip4_spec.ip4src);
6072 
6073 	rule->tuples.dst_ip[IPV4_INDEX] =
6074 			be32_to_cpu(fs->h_u.usr_ip4_spec.ip4dst);
6075 	rule->tuples_mask.dst_ip[IPV4_INDEX] =
6076 			be32_to_cpu(fs->m_u.usr_ip4_spec.ip4dst);
6077 
6078 	rule->tuples.ip_tos = fs->h_u.usr_ip4_spec.tos;
6079 	rule->tuples_mask.ip_tos = fs->m_u.usr_ip4_spec.tos;
6080 
6081 	rule->tuples.ip_proto = fs->h_u.usr_ip4_spec.proto;
6082 	rule->tuples_mask.ip_proto = fs->m_u.usr_ip4_spec.proto;
6083 
6084 	rule->tuples.ether_proto = ETH_P_IP;
6085 	rule->tuples_mask.ether_proto = 0xFFFF;
6086 }
6087 
6088 static void hclge_fd_get_tcpip6_tuple(struct hclge_dev *hdev,
6089 				      struct ethtool_rx_flow_spec *fs,
6090 				      struct hclge_fd_rule *rule, u8 ip_proto)
6091 {
6092 	be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.tcp_ip6_spec.ip6src,
6093 			  IPV6_SIZE);
6094 	be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.tcp_ip6_spec.ip6src,
6095 			  IPV6_SIZE);
6096 
6097 	be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.tcp_ip6_spec.ip6dst,
6098 			  IPV6_SIZE);
6099 	be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.tcp_ip6_spec.ip6dst,
6100 			  IPV6_SIZE);
6101 
6102 	rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.psrc);
6103 	rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.psrc);
6104 
6105 	rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.pdst);
6106 	rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.pdst);
6107 
6108 	rule->tuples.ether_proto = ETH_P_IPV6;
6109 	rule->tuples_mask.ether_proto = 0xFFFF;
6110 
6111 	rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass;
6112 	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass;
6113 
6114 	rule->tuples.ip_proto = ip_proto;
6115 	rule->tuples_mask.ip_proto = 0xFF;
6116 }
6117 
6118 static void hclge_fd_get_ip6_tuple(struct hclge_dev *hdev,
6119 				   struct ethtool_rx_flow_spec *fs,
6120 				   struct hclge_fd_rule *rule)
6121 {
6122 	be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.usr_ip6_spec.ip6src,
6123 			  IPV6_SIZE);
6124 	be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.usr_ip6_spec.ip6src,
6125 			  IPV6_SIZE);
6126 
6127 	be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.usr_ip6_spec.ip6dst,
6128 			  IPV6_SIZE);
6129 	be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.usr_ip6_spec.ip6dst,
6130 			  IPV6_SIZE);
6131 
6132 	rule->tuples.ip_proto = fs->h_u.usr_ip6_spec.l4_proto;
6133 	rule->tuples_mask.ip_proto = fs->m_u.usr_ip6_spec.l4_proto;
6134 
6135 	rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass;
6136 	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass;
6137 
6138 	rule->tuples.ether_proto = ETH_P_IPV6;
6139 	rule->tuples_mask.ether_proto = 0xFFFF;
6140 }
6141 
6142 static void hclge_fd_get_ether_tuple(struct hclge_dev *hdev,
6143 				     struct ethtool_rx_flow_spec *fs,
6144 				     struct hclge_fd_rule *rule)
6145 {
6146 	ether_addr_copy(rule->tuples.src_mac, fs->h_u.ether_spec.h_source);
6147 	ether_addr_copy(rule->tuples_mask.src_mac, fs->m_u.ether_spec.h_source);
6148 
6149 	ether_addr_copy(rule->tuples.dst_mac, fs->h_u.ether_spec.h_dest);
6150 	ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_u.ether_spec.h_dest);
6151 
6152 	rule->tuples.ether_proto = be16_to_cpu(fs->h_u.ether_spec.h_proto);
6153 	rule->tuples_mask.ether_proto = be16_to_cpu(fs->m_u.ether_spec.h_proto);
6154 }
6155 
6156 static void hclge_fd_get_user_def_tuple(struct hclge_fd_user_def_info *info,
6157 					struct hclge_fd_rule *rule)
6158 {
6159 	switch (info->layer) {
6160 	case HCLGE_FD_USER_DEF_L2:
6161 		rule->tuples.l2_user_def = info->data;
6162 		rule->tuples_mask.l2_user_def = info->data_mask;
6163 		break;
6164 	case HCLGE_FD_USER_DEF_L3:
6165 		rule->tuples.l3_user_def = info->data;
6166 		rule->tuples_mask.l3_user_def = info->data_mask;
6167 		break;
6168 	case HCLGE_FD_USER_DEF_L4:
6169 		rule->tuples.l4_user_def = (u32)info->data << 16;
6170 		rule->tuples_mask.l4_user_def = (u32)info->data_mask << 16;
6171 		break;
6172 	default:
6173 		break;
6174 	}
6175 
6176 	rule->ep.user_def = *info;
6177 }
6178 
6179 static int hclge_fd_get_tuple(struct hclge_dev *hdev,
6180 			      struct ethtool_rx_flow_spec *fs,
6181 			      struct hclge_fd_rule *rule,
6182 			      struct hclge_fd_user_def_info *info)
6183 {
6184 	u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
6185 
6186 	switch (flow_type) {
6187 	case SCTP_V4_FLOW:
6188 		hclge_fd_get_tcpip4_tuple(hdev, fs, rule, IPPROTO_SCTP);
6189 		break;
6190 	case TCP_V4_FLOW:
6191 		hclge_fd_get_tcpip4_tuple(hdev, fs, rule, IPPROTO_TCP);
6192 		break;
6193 	case UDP_V4_FLOW:
6194 		hclge_fd_get_tcpip4_tuple(hdev, fs, rule, IPPROTO_UDP);
6195 		break;
6196 	case IP_USER_FLOW:
6197 		hclge_fd_get_ip4_tuple(hdev, fs, rule);
6198 		break;
6199 	case SCTP_V6_FLOW:
6200 		hclge_fd_get_tcpip6_tuple(hdev, fs, rule, IPPROTO_SCTP);
6201 		break;
6202 	case TCP_V6_FLOW:
6203 		hclge_fd_get_tcpip6_tuple(hdev, fs, rule, IPPROTO_TCP);
6204 		break;
6205 	case UDP_V6_FLOW:
6206 		hclge_fd_get_tcpip6_tuple(hdev, fs, rule, IPPROTO_UDP);
6207 		break;
6208 	case IPV6_USER_FLOW:
6209 		hclge_fd_get_ip6_tuple(hdev, fs, rule);
6210 		break;
6211 	case ETHER_FLOW:
6212 		hclge_fd_get_ether_tuple(hdev, fs, rule);
6213 		break;
6214 	default:
6215 		return -EOPNOTSUPP;
6216 	}
6217 
6218 	if (fs->flow_type & FLOW_EXT) {
6219 		rule->tuples.vlan_tag1 = be16_to_cpu(fs->h_ext.vlan_tci);
6220 		rule->tuples_mask.vlan_tag1 = be16_to_cpu(fs->m_ext.vlan_tci);
6221 		hclge_fd_get_user_def_tuple(info, rule);
6222 	}
6223 
6224 	if (fs->flow_type & FLOW_MAC_EXT) {
6225 		ether_addr_copy(rule->tuples.dst_mac, fs->h_ext.h_dest);
6226 		ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_ext.h_dest);
6227 	}
6228 
6229 	return 0;
6230 }
6231 
6232 static int hclge_fd_config_rule(struct hclge_dev *hdev,
6233 				struct hclge_fd_rule *rule)
6234 {
6235 	int ret;
6236 
6237 	ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule);
6238 	if (ret)
6239 		return ret;
6240 
6241 	return hclge_config_key(hdev, HCLGE_FD_STAGE_1, rule);
6242 }
6243 
6244 static int hclge_add_fd_entry_common(struct hclge_dev *hdev,
6245 				     struct hclge_fd_rule *rule)
6246 {
6247 	int ret;
6248 
6249 	spin_lock_bh(&hdev->fd_rule_lock);
6250 
6251 	if (hdev->fd_active_type != rule->rule_type &&
6252 	    (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE ||
6253 	     hdev->fd_active_type == HCLGE_FD_EP_ACTIVE)) {
6254 		dev_err(&hdev->pdev->dev,
6255 			"mode conflict(new type %d, active type %d), please delete existent rules first\n",
6256 			rule->rule_type, hdev->fd_active_type);
6257 		spin_unlock_bh(&hdev->fd_rule_lock);
6258 		return -EINVAL;
6259 	}
6260 
6261 	ret = hclge_fd_check_user_def_refcnt(hdev, rule);
6262 	if (ret)
6263 		goto out;
6264 
6265 	ret = hclge_clear_arfs_rules(hdev);
6266 	if (ret)
6267 		goto out;
6268 
6269 	ret = hclge_fd_config_rule(hdev, rule);
6270 	if (ret)
6271 		goto out;
6272 
6273 	rule->state = HCLGE_FD_ACTIVE;
6274 	hdev->fd_active_type = rule->rule_type;
6275 	hclge_update_fd_list(hdev, rule->state, rule->location, rule);
6276 
6277 out:
6278 	spin_unlock_bh(&hdev->fd_rule_lock);
6279 	return ret;
6280 }
6281 
6282 static bool hclge_is_cls_flower_active(struct hnae3_handle *handle)
6283 {
6284 	struct hclge_vport *vport = hclge_get_vport(handle);
6285 	struct hclge_dev *hdev = vport->back;
6286 
6287 	return hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE;
6288 }
6289 
6290 static int hclge_fd_parse_ring_cookie(struct hclge_dev *hdev, u64 ring_cookie,
6291 				      u16 *vport_id, u8 *action, u16 *queue_id)
6292 {
6293 	struct hclge_vport *vport = hdev->vport;
6294 
6295 	if (ring_cookie == RX_CLS_FLOW_DISC) {
6296 		*action = HCLGE_FD_ACTION_DROP_PACKET;
6297 	} else {
6298 		u32 ring = ethtool_get_flow_spec_ring(ring_cookie);
6299 		u8 vf = ethtool_get_flow_spec_ring_vf(ring_cookie);
6300 		u16 tqps;
6301 
6302 		/* To keep consistent with user's configuration, minus 1 when
6303 		 * printing 'vf', because vf id from ethtool is added 1 for vf.
6304 		 */
6305 		if (vf > hdev->num_req_vfs) {
6306 			dev_err(&hdev->pdev->dev,
6307 				"Error: vf id (%u) should be less than %u\n",
6308 				vf - 1U, hdev->num_req_vfs);
6309 			return -EINVAL;
6310 		}
6311 
6312 		*vport_id = vf ? hdev->vport[vf].vport_id : vport->vport_id;
6313 		tqps = hdev->vport[vf].nic.kinfo.num_tqps;
6314 
6315 		if (ring >= tqps) {
6316 			dev_err(&hdev->pdev->dev,
6317 				"Error: queue id (%u) > max tqp num (%u)\n",
6318 				ring, tqps - 1U);
6319 			return -EINVAL;
6320 		}
6321 
6322 		*action = HCLGE_FD_ACTION_SELECT_QUEUE;
6323 		*queue_id = ring;
6324 	}
6325 
6326 	return 0;
6327 }
6328 
6329 static int hclge_add_fd_entry(struct hnae3_handle *handle,
6330 			      struct ethtool_rxnfc *cmd)
6331 {
6332 	struct hclge_vport *vport = hclge_get_vport(handle);
6333 	struct hclge_dev *hdev = vport->back;
6334 	struct hclge_fd_user_def_info info;
6335 	u16 dst_vport_id = 0, q_index = 0;
6336 	struct ethtool_rx_flow_spec *fs;
6337 	struct hclge_fd_rule *rule;
6338 	u32 unused = 0;
6339 	u8 action;
6340 	int ret;
6341 
6342 	if (!hnae3_dev_fd_supported(hdev)) {
6343 		dev_err(&hdev->pdev->dev,
6344 			"flow table director is not supported\n");
6345 		return -EOPNOTSUPP;
6346 	}
6347 
6348 	if (!hdev->fd_en) {
6349 		dev_err(&hdev->pdev->dev,
6350 			"please enable flow director first\n");
6351 		return -EOPNOTSUPP;
6352 	}
6353 
6354 	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
6355 
6356 	ret = hclge_fd_check_spec(hdev, fs, &unused, &info);
6357 	if (ret)
6358 		return ret;
6359 
6360 	ret = hclge_fd_parse_ring_cookie(hdev, fs->ring_cookie, &dst_vport_id,
6361 					 &action, &q_index);
6362 	if (ret)
6363 		return ret;
6364 
6365 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
6366 	if (!rule)
6367 		return -ENOMEM;
6368 
6369 	ret = hclge_fd_get_tuple(hdev, fs, rule, &info);
6370 	if (ret) {
6371 		kfree(rule);
6372 		return ret;
6373 	}
6374 
6375 	rule->flow_type = fs->flow_type;
6376 	rule->location = fs->location;
6377 	rule->unused_tuple = unused;
6378 	rule->vf_id = dst_vport_id;
6379 	rule->queue_id = q_index;
6380 	rule->action = action;
6381 	rule->rule_type = HCLGE_FD_EP_ACTIVE;
6382 
6383 	ret = hclge_add_fd_entry_common(hdev, rule);
6384 	if (ret)
6385 		kfree(rule);
6386 
6387 	return ret;
6388 }
6389 
6390 static int hclge_del_fd_entry(struct hnae3_handle *handle,
6391 			      struct ethtool_rxnfc *cmd)
6392 {
6393 	struct hclge_vport *vport = hclge_get_vport(handle);
6394 	struct hclge_dev *hdev = vport->back;
6395 	struct ethtool_rx_flow_spec *fs;
6396 	int ret;
6397 
6398 	if (!hnae3_dev_fd_supported(hdev))
6399 		return -EOPNOTSUPP;
6400 
6401 	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
6402 
6403 	if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
6404 		return -EINVAL;
6405 
6406 	spin_lock_bh(&hdev->fd_rule_lock);
6407 	if (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE ||
6408 	    !test_bit(fs->location, hdev->fd_bmap)) {
6409 		dev_err(&hdev->pdev->dev,
6410 			"Delete fail, rule %u is inexistent\n", fs->location);
6411 		spin_unlock_bh(&hdev->fd_rule_lock);
6412 		return -ENOENT;
6413 	}
6414 
6415 	ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, fs->location,
6416 				   NULL, false);
6417 	if (ret)
6418 		goto out;
6419 
6420 	hclge_update_fd_list(hdev, HCLGE_FD_DELETED, fs->location, NULL);
6421 
6422 out:
6423 	spin_unlock_bh(&hdev->fd_rule_lock);
6424 	return ret;
6425 }
6426 
6427 static void hclge_clear_fd_rules_in_list(struct hclge_dev *hdev,
6428 					 bool clear_list)
6429 {
6430 	struct hclge_fd_rule *rule;
6431 	struct hlist_node *node;
6432 	u16 location;
6433 
6434 	if (!hnae3_dev_fd_supported(hdev))
6435 		return;
6436 
6437 	spin_lock_bh(&hdev->fd_rule_lock);
6438 
6439 	for_each_set_bit(location, hdev->fd_bmap,
6440 			 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
6441 		hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, location,
6442 				     NULL, false);
6443 
6444 	if (clear_list) {
6445 		hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list,
6446 					  rule_node) {
6447 			hlist_del(&rule->rule_node);
6448 			kfree(rule);
6449 		}
6450 		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
6451 		hdev->hclge_fd_rule_num = 0;
6452 		bitmap_zero(hdev->fd_bmap,
6453 			    hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]);
6454 	}
6455 
6456 	spin_unlock_bh(&hdev->fd_rule_lock);
6457 }
6458 
6459 static void hclge_del_all_fd_entries(struct hclge_dev *hdev)
6460 {
6461 	hclge_clear_fd_rules_in_list(hdev, true);
6462 	hclge_fd_disable_user_def(hdev);
6463 }
6464 
6465 static int hclge_restore_fd_entries(struct hnae3_handle *handle)
6466 {
6467 	struct hclge_vport *vport = hclge_get_vport(handle);
6468 	struct hclge_dev *hdev = vport->back;
6469 	struct hclge_fd_rule *rule;
6470 	struct hlist_node *node;
6471 
6472 	/* Return ok here, because reset error handling will check this
6473 	 * return value. If error is returned here, the reset process will
6474 	 * fail.
6475 	 */
6476 	if (!hnae3_dev_fd_supported(hdev))
6477 		return 0;
6478 
6479 	/* if fd is disabled, should not restore it when reset */
6480 	if (!hdev->fd_en)
6481 		return 0;
6482 
6483 	spin_lock_bh(&hdev->fd_rule_lock);
6484 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
6485 		if (rule->state == HCLGE_FD_ACTIVE)
6486 			rule->state = HCLGE_FD_TO_ADD;
6487 	}
6488 	spin_unlock_bh(&hdev->fd_rule_lock);
6489 	set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
6490 
6491 	return 0;
6492 }
6493 
6494 static int hclge_get_fd_rule_cnt(struct hnae3_handle *handle,
6495 				 struct ethtool_rxnfc *cmd)
6496 {
6497 	struct hclge_vport *vport = hclge_get_vport(handle);
6498 	struct hclge_dev *hdev = vport->back;
6499 
6500 	if (!hnae3_dev_fd_supported(hdev) || hclge_is_cls_flower_active(handle))
6501 		return -EOPNOTSUPP;
6502 
6503 	cmd->rule_cnt = hdev->hclge_fd_rule_num;
6504 	cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1];
6505 
6506 	return 0;
6507 }
6508 
6509 static void hclge_fd_get_tcpip4_info(struct hclge_fd_rule *rule,
6510 				     struct ethtool_tcpip4_spec *spec,
6511 				     struct ethtool_tcpip4_spec *spec_mask)
6512 {
6513 	spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]);
6514 	spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ?
6515 			0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]);
6516 
6517 	spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]);
6518 	spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ?
6519 			0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]);
6520 
6521 	spec->psrc = cpu_to_be16(rule->tuples.src_port);
6522 	spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ?
6523 			0 : cpu_to_be16(rule->tuples_mask.src_port);
6524 
6525 	spec->pdst = cpu_to_be16(rule->tuples.dst_port);
6526 	spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ?
6527 			0 : cpu_to_be16(rule->tuples_mask.dst_port);
6528 
6529 	spec->tos = rule->tuples.ip_tos;
6530 	spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6531 			0 : rule->tuples_mask.ip_tos;
6532 }
6533 
6534 static void hclge_fd_get_ip4_info(struct hclge_fd_rule *rule,
6535 				  struct ethtool_usrip4_spec *spec,
6536 				  struct ethtool_usrip4_spec *spec_mask)
6537 {
6538 	spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]);
6539 	spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ?
6540 			0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]);
6541 
6542 	spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]);
6543 	spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ?
6544 			0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]);
6545 
6546 	spec->tos = rule->tuples.ip_tos;
6547 	spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6548 			0 : rule->tuples_mask.ip_tos;
6549 
6550 	spec->proto = rule->tuples.ip_proto;
6551 	spec_mask->proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ?
6552 			0 : rule->tuples_mask.ip_proto;
6553 
6554 	spec->ip_ver = ETH_RX_NFC_IP4;
6555 }
6556 
6557 static void hclge_fd_get_tcpip6_info(struct hclge_fd_rule *rule,
6558 				     struct ethtool_tcpip6_spec *spec,
6559 				     struct ethtool_tcpip6_spec *spec_mask)
6560 {
6561 	cpu_to_be32_array(spec->ip6src,
6562 			  rule->tuples.src_ip, IPV6_SIZE);
6563 	cpu_to_be32_array(spec->ip6dst,
6564 			  rule->tuples.dst_ip, IPV6_SIZE);
6565 	if (rule->unused_tuple & BIT(INNER_SRC_IP))
6566 		memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src));
6567 	else
6568 		cpu_to_be32_array(spec_mask->ip6src, rule->tuples_mask.src_ip,
6569 				  IPV6_SIZE);
6570 
6571 	if (rule->unused_tuple & BIT(INNER_DST_IP))
6572 		memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst));
6573 	else
6574 		cpu_to_be32_array(spec_mask->ip6dst, rule->tuples_mask.dst_ip,
6575 				  IPV6_SIZE);
6576 
6577 	spec->tclass = rule->tuples.ip_tos;
6578 	spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6579 			0 : rule->tuples_mask.ip_tos;
6580 
6581 	spec->psrc = cpu_to_be16(rule->tuples.src_port);
6582 	spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ?
6583 			0 : cpu_to_be16(rule->tuples_mask.src_port);
6584 
6585 	spec->pdst = cpu_to_be16(rule->tuples.dst_port);
6586 	spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ?
6587 			0 : cpu_to_be16(rule->tuples_mask.dst_port);
6588 }
6589 
6590 static void hclge_fd_get_ip6_info(struct hclge_fd_rule *rule,
6591 				  struct ethtool_usrip6_spec *spec,
6592 				  struct ethtool_usrip6_spec *spec_mask)
6593 {
6594 	cpu_to_be32_array(spec->ip6src, rule->tuples.src_ip, IPV6_SIZE);
6595 	cpu_to_be32_array(spec->ip6dst, rule->tuples.dst_ip, IPV6_SIZE);
6596 	if (rule->unused_tuple & BIT(INNER_SRC_IP))
6597 		memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src));
6598 	else
6599 		cpu_to_be32_array(spec_mask->ip6src,
6600 				  rule->tuples_mask.src_ip, IPV6_SIZE);
6601 
6602 	if (rule->unused_tuple & BIT(INNER_DST_IP))
6603 		memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst));
6604 	else
6605 		cpu_to_be32_array(spec_mask->ip6dst,
6606 				  rule->tuples_mask.dst_ip, IPV6_SIZE);
6607 
6608 	spec->tclass = rule->tuples.ip_tos;
6609 	spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6610 			0 : rule->tuples_mask.ip_tos;
6611 
6612 	spec->l4_proto = rule->tuples.ip_proto;
6613 	spec_mask->l4_proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ?
6614 			0 : rule->tuples_mask.ip_proto;
6615 }
6616 
6617 static void hclge_fd_get_ether_info(struct hclge_fd_rule *rule,
6618 				    struct ethhdr *spec,
6619 				    struct ethhdr *spec_mask)
6620 {
6621 	ether_addr_copy(spec->h_source, rule->tuples.src_mac);
6622 	ether_addr_copy(spec->h_dest, rule->tuples.dst_mac);
6623 
6624 	if (rule->unused_tuple & BIT(INNER_SRC_MAC))
6625 		eth_zero_addr(spec_mask->h_source);
6626 	else
6627 		ether_addr_copy(spec_mask->h_source, rule->tuples_mask.src_mac);
6628 
6629 	if (rule->unused_tuple & BIT(INNER_DST_MAC))
6630 		eth_zero_addr(spec_mask->h_dest);
6631 	else
6632 		ether_addr_copy(spec_mask->h_dest, rule->tuples_mask.dst_mac);
6633 
6634 	spec->h_proto = cpu_to_be16(rule->tuples.ether_proto);
6635 	spec_mask->h_proto = rule->unused_tuple & BIT(INNER_ETH_TYPE) ?
6636 			0 : cpu_to_be16(rule->tuples_mask.ether_proto);
6637 }
6638 
6639 static void hclge_fd_get_user_def_info(struct ethtool_rx_flow_spec *fs,
6640 				       struct hclge_fd_rule *rule)
6641 {
6642 	if ((rule->unused_tuple & HCLGE_FD_TUPLE_USER_DEF_TUPLES) ==
6643 	    HCLGE_FD_TUPLE_USER_DEF_TUPLES) {
6644 		fs->h_ext.data[0] = 0;
6645 		fs->h_ext.data[1] = 0;
6646 		fs->m_ext.data[0] = 0;
6647 		fs->m_ext.data[1] = 0;
6648 	} else {
6649 		fs->h_ext.data[0] = cpu_to_be32(rule->ep.user_def.offset);
6650 		fs->h_ext.data[1] = cpu_to_be32(rule->ep.user_def.data);
6651 		fs->m_ext.data[0] =
6652 				cpu_to_be32(HCLGE_FD_USER_DEF_OFFSET_UNMASK);
6653 		fs->m_ext.data[1] = cpu_to_be32(rule->ep.user_def.data_mask);
6654 	}
6655 }
6656 
6657 static void hclge_fd_get_ext_info(struct ethtool_rx_flow_spec *fs,
6658 				  struct hclge_fd_rule *rule)
6659 {
6660 	if (fs->flow_type & FLOW_EXT) {
6661 		fs->h_ext.vlan_tci = cpu_to_be16(rule->tuples.vlan_tag1);
6662 		fs->m_ext.vlan_tci =
6663 				rule->unused_tuple & BIT(INNER_VLAN_TAG_FST) ?
6664 				0 : cpu_to_be16(rule->tuples_mask.vlan_tag1);
6665 
6666 		hclge_fd_get_user_def_info(fs, rule);
6667 	}
6668 
6669 	if (fs->flow_type & FLOW_MAC_EXT) {
6670 		ether_addr_copy(fs->h_ext.h_dest, rule->tuples.dst_mac);
6671 		if (rule->unused_tuple & BIT(INNER_DST_MAC))
6672 			eth_zero_addr(fs->m_u.ether_spec.h_dest);
6673 		else
6674 			ether_addr_copy(fs->m_u.ether_spec.h_dest,
6675 					rule->tuples_mask.dst_mac);
6676 	}
6677 }
6678 
6679 static struct hclge_fd_rule *hclge_get_fd_rule(struct hclge_dev *hdev,
6680 					       u16 location)
6681 {
6682 	struct hclge_fd_rule *rule = NULL;
6683 	struct hlist_node *node2;
6684 
6685 	hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) {
6686 		if (rule->location == location)
6687 			return rule;
6688 		else if (rule->location > location)
6689 			return NULL;
6690 	}
6691 
6692 	return NULL;
6693 }
6694 
6695 static void hclge_fd_get_ring_cookie(struct ethtool_rx_flow_spec *fs,
6696 				     struct hclge_fd_rule *rule)
6697 {
6698 	if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) {
6699 		fs->ring_cookie = RX_CLS_FLOW_DISC;
6700 	} else {
6701 		u64 vf_id;
6702 
6703 		fs->ring_cookie = rule->queue_id;
6704 		vf_id = rule->vf_id;
6705 		vf_id <<= ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF;
6706 		fs->ring_cookie |= vf_id;
6707 	}
6708 }
6709 
6710 static int hclge_get_fd_rule_info(struct hnae3_handle *handle,
6711 				  struct ethtool_rxnfc *cmd)
6712 {
6713 	struct hclge_vport *vport = hclge_get_vport(handle);
6714 	struct hclge_fd_rule *rule = NULL;
6715 	struct hclge_dev *hdev = vport->back;
6716 	struct ethtool_rx_flow_spec *fs;
6717 
6718 	if (!hnae3_dev_fd_supported(hdev))
6719 		return -EOPNOTSUPP;
6720 
6721 	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
6722 
6723 	spin_lock_bh(&hdev->fd_rule_lock);
6724 
6725 	rule = hclge_get_fd_rule(hdev, fs->location);
6726 	if (!rule) {
6727 		spin_unlock_bh(&hdev->fd_rule_lock);
6728 		return -ENOENT;
6729 	}
6730 
6731 	fs->flow_type = rule->flow_type;
6732 	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
6733 	case SCTP_V4_FLOW:
6734 	case TCP_V4_FLOW:
6735 	case UDP_V4_FLOW:
6736 		hclge_fd_get_tcpip4_info(rule, &fs->h_u.tcp_ip4_spec,
6737 					 &fs->m_u.tcp_ip4_spec);
6738 		break;
6739 	case IP_USER_FLOW:
6740 		hclge_fd_get_ip4_info(rule, &fs->h_u.usr_ip4_spec,
6741 				      &fs->m_u.usr_ip4_spec);
6742 		break;
6743 	case SCTP_V6_FLOW:
6744 	case TCP_V6_FLOW:
6745 	case UDP_V6_FLOW:
6746 		hclge_fd_get_tcpip6_info(rule, &fs->h_u.tcp_ip6_spec,
6747 					 &fs->m_u.tcp_ip6_spec);
6748 		break;
6749 	case IPV6_USER_FLOW:
6750 		hclge_fd_get_ip6_info(rule, &fs->h_u.usr_ip6_spec,
6751 				      &fs->m_u.usr_ip6_spec);
6752 		break;
6753 	/* The flow type of fd rule has been checked before adding in to rule
6754 	 * list. As other flow types have been handled, it must be ETHER_FLOW
6755 	 * for the default case
6756 	 */
6757 	default:
6758 		hclge_fd_get_ether_info(rule, &fs->h_u.ether_spec,
6759 					&fs->m_u.ether_spec);
6760 		break;
6761 	}
6762 
6763 	hclge_fd_get_ext_info(fs, rule);
6764 
6765 	hclge_fd_get_ring_cookie(fs, rule);
6766 
6767 	spin_unlock_bh(&hdev->fd_rule_lock);
6768 
6769 	return 0;
6770 }
6771 
6772 static int hclge_get_all_rules(struct hnae3_handle *handle,
6773 			       struct ethtool_rxnfc *cmd, u32 *rule_locs)
6774 {
6775 	struct hclge_vport *vport = hclge_get_vport(handle);
6776 	struct hclge_dev *hdev = vport->back;
6777 	struct hclge_fd_rule *rule;
6778 	struct hlist_node *node2;
6779 	int cnt = 0;
6780 
6781 	if (!hnae3_dev_fd_supported(hdev))
6782 		return -EOPNOTSUPP;
6783 
6784 	cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1];
6785 
6786 	spin_lock_bh(&hdev->fd_rule_lock);
6787 	hlist_for_each_entry_safe(rule, node2,
6788 				  &hdev->fd_rule_list, rule_node) {
6789 		if (cnt == cmd->rule_cnt) {
6790 			spin_unlock_bh(&hdev->fd_rule_lock);
6791 			return -EMSGSIZE;
6792 		}
6793 
6794 		if (rule->state == HCLGE_FD_TO_DEL)
6795 			continue;
6796 
6797 		rule_locs[cnt] = rule->location;
6798 		cnt++;
6799 	}
6800 
6801 	spin_unlock_bh(&hdev->fd_rule_lock);
6802 
6803 	cmd->rule_cnt = cnt;
6804 
6805 	return 0;
6806 }
6807 
6808 static void hclge_fd_get_flow_tuples(const struct flow_keys *fkeys,
6809 				     struct hclge_fd_rule_tuples *tuples)
6810 {
6811 #define flow_ip6_src fkeys->addrs.v6addrs.src.in6_u.u6_addr32
6812 #define flow_ip6_dst fkeys->addrs.v6addrs.dst.in6_u.u6_addr32
6813 
6814 	tuples->ether_proto = be16_to_cpu(fkeys->basic.n_proto);
6815 	tuples->ip_proto = fkeys->basic.ip_proto;
6816 	tuples->dst_port = be16_to_cpu(fkeys->ports.dst);
6817 
6818 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
6819 		tuples->src_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.src);
6820 		tuples->dst_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.dst);
6821 	} else {
6822 		int i;
6823 
6824 		for (i = 0; i < IPV6_SIZE; i++) {
6825 			tuples->src_ip[i] = be32_to_cpu(flow_ip6_src[i]);
6826 			tuples->dst_ip[i] = be32_to_cpu(flow_ip6_dst[i]);
6827 		}
6828 	}
6829 }
6830 
6831 /* traverse all rules, check whether an existed rule has the same tuples */
6832 static struct hclge_fd_rule *
6833 hclge_fd_search_flow_keys(struct hclge_dev *hdev,
6834 			  const struct hclge_fd_rule_tuples *tuples)
6835 {
6836 	struct hclge_fd_rule *rule = NULL;
6837 	struct hlist_node *node;
6838 
6839 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
6840 		if (!memcmp(tuples, &rule->tuples, sizeof(*tuples)))
6841 			return rule;
6842 	}
6843 
6844 	return NULL;
6845 }
6846 
6847 static void hclge_fd_build_arfs_rule(const struct hclge_fd_rule_tuples *tuples,
6848 				     struct hclge_fd_rule *rule)
6849 {
6850 	rule->unused_tuple = BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
6851 			     BIT(INNER_VLAN_TAG_FST) | BIT(INNER_IP_TOS) |
6852 			     BIT(INNER_SRC_PORT);
6853 	rule->action = 0;
6854 	rule->vf_id = 0;
6855 	rule->rule_type = HCLGE_FD_ARFS_ACTIVE;
6856 	rule->state = HCLGE_FD_TO_ADD;
6857 	if (tuples->ether_proto == ETH_P_IP) {
6858 		if (tuples->ip_proto == IPPROTO_TCP)
6859 			rule->flow_type = TCP_V4_FLOW;
6860 		else
6861 			rule->flow_type = UDP_V4_FLOW;
6862 	} else {
6863 		if (tuples->ip_proto == IPPROTO_TCP)
6864 			rule->flow_type = TCP_V6_FLOW;
6865 		else
6866 			rule->flow_type = UDP_V6_FLOW;
6867 	}
6868 	memcpy(&rule->tuples, tuples, sizeof(rule->tuples));
6869 	memset(&rule->tuples_mask, 0xFF, sizeof(rule->tuples_mask));
6870 }
6871 
6872 static int hclge_add_fd_entry_by_arfs(struct hnae3_handle *handle, u16 queue_id,
6873 				      u16 flow_id, struct flow_keys *fkeys)
6874 {
6875 	struct hclge_vport *vport = hclge_get_vport(handle);
6876 	struct hclge_fd_rule_tuples new_tuples = {};
6877 	struct hclge_dev *hdev = vport->back;
6878 	struct hclge_fd_rule *rule;
6879 	u16 bit_id;
6880 
6881 	if (!hnae3_dev_fd_supported(hdev))
6882 		return -EOPNOTSUPP;
6883 
6884 	/* when there is already fd rule existed add by user,
6885 	 * arfs should not work
6886 	 */
6887 	spin_lock_bh(&hdev->fd_rule_lock);
6888 	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE &&
6889 	    hdev->fd_active_type != HCLGE_FD_RULE_NONE) {
6890 		spin_unlock_bh(&hdev->fd_rule_lock);
6891 		return -EOPNOTSUPP;
6892 	}
6893 
6894 	hclge_fd_get_flow_tuples(fkeys, &new_tuples);
6895 
6896 	/* check is there flow director filter existed for this flow,
6897 	 * if not, create a new filter for it;
6898 	 * if filter exist with different queue id, modify the filter;
6899 	 * if filter exist with same queue id, do nothing
6900 	 */
6901 	rule = hclge_fd_search_flow_keys(hdev, &new_tuples);
6902 	if (!rule) {
6903 		bit_id = find_first_zero_bit(hdev->fd_bmap, MAX_FD_FILTER_NUM);
6904 		if (bit_id >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
6905 			spin_unlock_bh(&hdev->fd_rule_lock);
6906 			return -ENOSPC;
6907 		}
6908 
6909 		rule = kzalloc(sizeof(*rule), GFP_ATOMIC);
6910 		if (!rule) {
6911 			spin_unlock_bh(&hdev->fd_rule_lock);
6912 			return -ENOMEM;
6913 		}
6914 
6915 		rule->location = bit_id;
6916 		rule->arfs.flow_id = flow_id;
6917 		rule->queue_id = queue_id;
6918 		hclge_fd_build_arfs_rule(&new_tuples, rule);
6919 		hclge_update_fd_list(hdev, rule->state, rule->location, rule);
6920 		hdev->fd_active_type = HCLGE_FD_ARFS_ACTIVE;
6921 	} else if (rule->queue_id != queue_id) {
6922 		rule->queue_id = queue_id;
6923 		rule->state = HCLGE_FD_TO_ADD;
6924 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
6925 		hclge_task_schedule(hdev, 0);
6926 	}
6927 	spin_unlock_bh(&hdev->fd_rule_lock);
6928 	return rule->location;
6929 }
6930 
6931 static void hclge_rfs_filter_expire(struct hclge_dev *hdev)
6932 {
6933 #ifdef CONFIG_RFS_ACCEL
6934 	struct hnae3_handle *handle = &hdev->vport[0].nic;
6935 	struct hclge_fd_rule *rule;
6936 	struct hlist_node *node;
6937 
6938 	spin_lock_bh(&hdev->fd_rule_lock);
6939 	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE) {
6940 		spin_unlock_bh(&hdev->fd_rule_lock);
6941 		return;
6942 	}
6943 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
6944 		if (rule->state != HCLGE_FD_ACTIVE)
6945 			continue;
6946 		if (rps_may_expire_flow(handle->netdev, rule->queue_id,
6947 					rule->arfs.flow_id, rule->location)) {
6948 			rule->state = HCLGE_FD_TO_DEL;
6949 			set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
6950 		}
6951 	}
6952 	spin_unlock_bh(&hdev->fd_rule_lock);
6953 #endif
6954 }
6955 
6956 /* make sure being called after lock up with fd_rule_lock */
6957 static int hclge_clear_arfs_rules(struct hclge_dev *hdev)
6958 {
6959 #ifdef CONFIG_RFS_ACCEL
6960 	struct hclge_fd_rule *rule;
6961 	struct hlist_node *node;
6962 	int ret;
6963 
6964 	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE)
6965 		return 0;
6966 
6967 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
6968 		switch (rule->state) {
6969 		case HCLGE_FD_TO_DEL:
6970 		case HCLGE_FD_ACTIVE:
6971 			ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true,
6972 						   rule->location, NULL, false);
6973 			if (ret)
6974 				return ret;
6975 			fallthrough;
6976 		case HCLGE_FD_TO_ADD:
6977 			hclge_fd_dec_rule_cnt(hdev, rule->location);
6978 			hlist_del(&rule->rule_node);
6979 			kfree(rule);
6980 			break;
6981 		default:
6982 			break;
6983 		}
6984 	}
6985 	hclge_sync_fd_state(hdev);
6986 
6987 #endif
6988 	return 0;
6989 }
6990 
6991 static void hclge_get_cls_key_basic(const struct flow_rule *flow,
6992 				    struct hclge_fd_rule *rule)
6993 {
6994 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_BASIC)) {
6995 		struct flow_match_basic match;
6996 		u16 ethtype_key, ethtype_mask;
6997 
6998 		flow_rule_match_basic(flow, &match);
6999 		ethtype_key = ntohs(match.key->n_proto);
7000 		ethtype_mask = ntohs(match.mask->n_proto);
7001 
7002 		if (ethtype_key == ETH_P_ALL) {
7003 			ethtype_key = 0;
7004 			ethtype_mask = 0;
7005 		}
7006 		rule->tuples.ether_proto = ethtype_key;
7007 		rule->tuples_mask.ether_proto = ethtype_mask;
7008 		rule->tuples.ip_proto = match.key->ip_proto;
7009 		rule->tuples_mask.ip_proto = match.mask->ip_proto;
7010 	} else {
7011 		rule->unused_tuple |= BIT(INNER_IP_PROTO);
7012 		rule->unused_tuple |= BIT(INNER_ETH_TYPE);
7013 	}
7014 }
7015 
7016 static void hclge_get_cls_key_mac(const struct flow_rule *flow,
7017 				  struct hclge_fd_rule *rule)
7018 {
7019 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
7020 		struct flow_match_eth_addrs match;
7021 
7022 		flow_rule_match_eth_addrs(flow, &match);
7023 		ether_addr_copy(rule->tuples.dst_mac, match.key->dst);
7024 		ether_addr_copy(rule->tuples_mask.dst_mac, match.mask->dst);
7025 		ether_addr_copy(rule->tuples.src_mac, match.key->src);
7026 		ether_addr_copy(rule->tuples_mask.src_mac, match.mask->src);
7027 	} else {
7028 		rule->unused_tuple |= BIT(INNER_DST_MAC);
7029 		rule->unused_tuple |= BIT(INNER_SRC_MAC);
7030 	}
7031 }
7032 
7033 static void hclge_get_cls_key_vlan(const struct flow_rule *flow,
7034 				   struct hclge_fd_rule *rule)
7035 {
7036 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
7037 		struct flow_match_vlan match;
7038 
7039 		flow_rule_match_vlan(flow, &match);
7040 		rule->tuples.vlan_tag1 = match.key->vlan_id |
7041 				(match.key->vlan_priority << VLAN_PRIO_SHIFT);
7042 		rule->tuples_mask.vlan_tag1 = match.mask->vlan_id |
7043 				(match.mask->vlan_priority << VLAN_PRIO_SHIFT);
7044 	} else {
7045 		rule->unused_tuple |= BIT(INNER_VLAN_TAG_FST);
7046 	}
7047 }
7048 
7049 static void hclge_get_cls_key_ip(const struct flow_rule *flow,
7050 				 struct hclge_fd_rule *rule)
7051 {
7052 	u16 addr_type = 0;
7053 
7054 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_CONTROL)) {
7055 		struct flow_match_control match;
7056 
7057 		flow_rule_match_control(flow, &match);
7058 		addr_type = match.key->addr_type;
7059 	}
7060 
7061 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
7062 		struct flow_match_ipv4_addrs match;
7063 
7064 		flow_rule_match_ipv4_addrs(flow, &match);
7065 		rule->tuples.src_ip[IPV4_INDEX] = be32_to_cpu(match.key->src);
7066 		rule->tuples_mask.src_ip[IPV4_INDEX] =
7067 						be32_to_cpu(match.mask->src);
7068 		rule->tuples.dst_ip[IPV4_INDEX] = be32_to_cpu(match.key->dst);
7069 		rule->tuples_mask.dst_ip[IPV4_INDEX] =
7070 						be32_to_cpu(match.mask->dst);
7071 	} else if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
7072 		struct flow_match_ipv6_addrs match;
7073 
7074 		flow_rule_match_ipv6_addrs(flow, &match);
7075 		be32_to_cpu_array(rule->tuples.src_ip, match.key->src.s6_addr32,
7076 				  IPV6_SIZE);
7077 		be32_to_cpu_array(rule->tuples_mask.src_ip,
7078 				  match.mask->src.s6_addr32, IPV6_SIZE);
7079 		be32_to_cpu_array(rule->tuples.dst_ip, match.key->dst.s6_addr32,
7080 				  IPV6_SIZE);
7081 		be32_to_cpu_array(rule->tuples_mask.dst_ip,
7082 				  match.mask->dst.s6_addr32, IPV6_SIZE);
7083 	} else {
7084 		rule->unused_tuple |= BIT(INNER_SRC_IP);
7085 		rule->unused_tuple |= BIT(INNER_DST_IP);
7086 	}
7087 }
7088 
7089 static void hclge_get_cls_key_port(const struct flow_rule *flow,
7090 				   struct hclge_fd_rule *rule)
7091 {
7092 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
7093 		struct flow_match_ports match;
7094 
7095 		flow_rule_match_ports(flow, &match);
7096 
7097 		rule->tuples.src_port = be16_to_cpu(match.key->src);
7098 		rule->tuples_mask.src_port = be16_to_cpu(match.mask->src);
7099 		rule->tuples.dst_port = be16_to_cpu(match.key->dst);
7100 		rule->tuples_mask.dst_port = be16_to_cpu(match.mask->dst);
7101 	} else {
7102 		rule->unused_tuple |= BIT(INNER_SRC_PORT);
7103 		rule->unused_tuple |= BIT(INNER_DST_PORT);
7104 	}
7105 }
7106 
7107 static int hclge_parse_cls_flower(struct hclge_dev *hdev,
7108 				  struct flow_cls_offload *cls_flower,
7109 				  struct hclge_fd_rule *rule)
7110 {
7111 	struct flow_rule *flow = flow_cls_offload_flow_rule(cls_flower);
7112 	struct flow_dissector *dissector = flow->match.dissector;
7113 
7114 	if (dissector->used_keys &
7115 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
7116 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
7117 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
7118 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
7119 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
7120 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
7121 	      BIT(FLOW_DISSECTOR_KEY_PORTS))) {
7122 		dev_err(&hdev->pdev->dev, "unsupported key set: %#x\n",
7123 			dissector->used_keys);
7124 		return -EOPNOTSUPP;
7125 	}
7126 
7127 	hclge_get_cls_key_basic(flow, rule);
7128 	hclge_get_cls_key_mac(flow, rule);
7129 	hclge_get_cls_key_vlan(flow, rule);
7130 	hclge_get_cls_key_ip(flow, rule);
7131 	hclge_get_cls_key_port(flow, rule);
7132 
7133 	return 0;
7134 }
7135 
7136 static int hclge_check_cls_flower(struct hclge_dev *hdev,
7137 				  struct flow_cls_offload *cls_flower, int tc)
7138 {
7139 	u32 prio = cls_flower->common.prio;
7140 
7141 	if (tc < 0 || tc > hdev->tc_max) {
7142 		dev_err(&hdev->pdev->dev, "invalid traffic class\n");
7143 		return -EINVAL;
7144 	}
7145 
7146 	if (prio == 0 ||
7147 	    prio > hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
7148 		dev_err(&hdev->pdev->dev,
7149 			"prio %u should be in range[1, %u]\n",
7150 			prio, hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]);
7151 		return -EINVAL;
7152 	}
7153 
7154 	if (test_bit(prio - 1, hdev->fd_bmap)) {
7155 		dev_err(&hdev->pdev->dev, "prio %u is already used\n", prio);
7156 		return -EINVAL;
7157 	}
7158 	return 0;
7159 }
7160 
7161 static int hclge_add_cls_flower(struct hnae3_handle *handle,
7162 				struct flow_cls_offload *cls_flower,
7163 				int tc)
7164 {
7165 	struct hclge_vport *vport = hclge_get_vport(handle);
7166 	struct hclge_dev *hdev = vport->back;
7167 	struct hclge_fd_rule *rule;
7168 	int ret;
7169 
7170 	ret = hclge_check_cls_flower(hdev, cls_flower, tc);
7171 	if (ret) {
7172 		dev_err(&hdev->pdev->dev,
7173 			"failed to check cls flower params, ret = %d\n", ret);
7174 		return ret;
7175 	}
7176 
7177 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
7178 	if (!rule)
7179 		return -ENOMEM;
7180 
7181 	ret = hclge_parse_cls_flower(hdev, cls_flower, rule);
7182 	if (ret) {
7183 		kfree(rule);
7184 		return ret;
7185 	}
7186 
7187 	rule->action = HCLGE_FD_ACTION_SELECT_TC;
7188 	rule->cls_flower.tc = tc;
7189 	rule->location = cls_flower->common.prio - 1;
7190 	rule->vf_id = 0;
7191 	rule->cls_flower.cookie = cls_flower->cookie;
7192 	rule->rule_type = HCLGE_FD_TC_FLOWER_ACTIVE;
7193 
7194 	ret = hclge_add_fd_entry_common(hdev, rule);
7195 	if (ret)
7196 		kfree(rule);
7197 
7198 	return ret;
7199 }
7200 
7201 static struct hclge_fd_rule *hclge_find_cls_flower(struct hclge_dev *hdev,
7202 						   unsigned long cookie)
7203 {
7204 	struct hclge_fd_rule *rule;
7205 	struct hlist_node *node;
7206 
7207 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
7208 		if (rule->cls_flower.cookie == cookie)
7209 			return rule;
7210 	}
7211 
7212 	return NULL;
7213 }
7214 
7215 static int hclge_del_cls_flower(struct hnae3_handle *handle,
7216 				struct flow_cls_offload *cls_flower)
7217 {
7218 	struct hclge_vport *vport = hclge_get_vport(handle);
7219 	struct hclge_dev *hdev = vport->back;
7220 	struct hclge_fd_rule *rule;
7221 	int ret;
7222 
7223 	spin_lock_bh(&hdev->fd_rule_lock);
7224 
7225 	rule = hclge_find_cls_flower(hdev, cls_flower->cookie);
7226 	if (!rule) {
7227 		spin_unlock_bh(&hdev->fd_rule_lock);
7228 		return -EINVAL;
7229 	}
7230 
7231 	ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, rule->location,
7232 				   NULL, false);
7233 	if (ret) {
7234 		spin_unlock_bh(&hdev->fd_rule_lock);
7235 		return ret;
7236 	}
7237 
7238 	hclge_update_fd_list(hdev, HCLGE_FD_DELETED, rule->location, NULL);
7239 	spin_unlock_bh(&hdev->fd_rule_lock);
7240 
7241 	return 0;
7242 }
7243 
7244 static void hclge_sync_fd_list(struct hclge_dev *hdev, struct hlist_head *hlist)
7245 {
7246 	struct hclge_fd_rule *rule;
7247 	struct hlist_node *node;
7248 	int ret = 0;
7249 
7250 	if (!test_and_clear_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state))
7251 		return;
7252 
7253 	spin_lock_bh(&hdev->fd_rule_lock);
7254 
7255 	hlist_for_each_entry_safe(rule, node, hlist, rule_node) {
7256 		switch (rule->state) {
7257 		case HCLGE_FD_TO_ADD:
7258 			ret = hclge_fd_config_rule(hdev, rule);
7259 			if (ret)
7260 				goto out;
7261 			rule->state = HCLGE_FD_ACTIVE;
7262 			break;
7263 		case HCLGE_FD_TO_DEL:
7264 			ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true,
7265 						   rule->location, NULL, false);
7266 			if (ret)
7267 				goto out;
7268 			hclge_fd_dec_rule_cnt(hdev, rule->location);
7269 			hclge_fd_free_node(hdev, rule);
7270 			break;
7271 		default:
7272 			break;
7273 		}
7274 	}
7275 
7276 out:
7277 	if (ret)
7278 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
7279 
7280 	spin_unlock_bh(&hdev->fd_rule_lock);
7281 }
7282 
7283 static void hclge_sync_fd_table(struct hclge_dev *hdev)
7284 {
7285 	if (test_and_clear_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state)) {
7286 		bool clear_list = hdev->fd_active_type == HCLGE_FD_ARFS_ACTIVE;
7287 
7288 		hclge_clear_fd_rules_in_list(hdev, clear_list);
7289 	}
7290 
7291 	hclge_sync_fd_user_def_cfg(hdev, false);
7292 
7293 	hclge_sync_fd_list(hdev, &hdev->fd_rule_list);
7294 }
7295 
7296 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle)
7297 {
7298 	struct hclge_vport *vport = hclge_get_vport(handle);
7299 	struct hclge_dev *hdev = vport->back;
7300 
7301 	return hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG) ||
7302 	       hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING);
7303 }
7304 
7305 static bool hclge_get_cmdq_stat(struct hnae3_handle *handle)
7306 {
7307 	struct hclge_vport *vport = hclge_get_vport(handle);
7308 	struct hclge_dev *hdev = vport->back;
7309 
7310 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
7311 }
7312 
7313 static bool hclge_ae_dev_resetting(struct hnae3_handle *handle)
7314 {
7315 	struct hclge_vport *vport = hclge_get_vport(handle);
7316 	struct hclge_dev *hdev = vport->back;
7317 
7318 	return test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
7319 }
7320 
7321 static unsigned long hclge_ae_dev_reset_cnt(struct hnae3_handle *handle)
7322 {
7323 	struct hclge_vport *vport = hclge_get_vport(handle);
7324 	struct hclge_dev *hdev = vport->back;
7325 
7326 	return hdev->rst_stats.hw_reset_done_cnt;
7327 }
7328 
7329 static void hclge_enable_fd(struct hnae3_handle *handle, bool enable)
7330 {
7331 	struct hclge_vport *vport = hclge_get_vport(handle);
7332 	struct hclge_dev *hdev = vport->back;
7333 
7334 	hdev->fd_en = enable;
7335 
7336 	if (!enable)
7337 		set_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state);
7338 	else
7339 		hclge_restore_fd_entries(handle);
7340 
7341 	hclge_task_schedule(hdev, 0);
7342 }
7343 
7344 static void hclge_cfg_mac_mode(struct hclge_dev *hdev, bool enable)
7345 {
7346 	struct hclge_desc desc;
7347 	struct hclge_config_mac_mode_cmd *req =
7348 		(struct hclge_config_mac_mode_cmd *)desc.data;
7349 	u32 loop_en = 0;
7350 	int ret;
7351 
7352 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, false);
7353 
7354 	if (enable) {
7355 		hnae3_set_bit(loop_en, HCLGE_MAC_TX_EN_B, 1U);
7356 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_EN_B, 1U);
7357 		hnae3_set_bit(loop_en, HCLGE_MAC_PAD_TX_B, 1U);
7358 		hnae3_set_bit(loop_en, HCLGE_MAC_PAD_RX_B, 1U);
7359 		hnae3_set_bit(loop_en, HCLGE_MAC_FCS_TX_B, 1U);
7360 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_B, 1U);
7361 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_STRIP_B, 1U);
7362 		hnae3_set_bit(loop_en, HCLGE_MAC_TX_OVERSIZE_TRUNCATE_B, 1U);
7363 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_OVERSIZE_TRUNCATE_B, 1U);
7364 		hnae3_set_bit(loop_en, HCLGE_MAC_TX_UNDER_MIN_ERR_B, 1U);
7365 	}
7366 
7367 	req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en);
7368 
7369 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7370 	if (ret)
7371 		dev_err(&hdev->pdev->dev,
7372 			"mac enable fail, ret =%d.\n", ret);
7373 }
7374 
7375 static int hclge_config_switch_param(struct hclge_dev *hdev, int vfid,
7376 				     u8 switch_param, u8 param_mask)
7377 {
7378 	struct hclge_mac_vlan_switch_cmd *req;
7379 	struct hclge_desc desc;
7380 	u32 func_id;
7381 	int ret;
7382 
7383 	func_id = hclge_get_port_number(HOST_PORT, 0, vfid, 0);
7384 	req = (struct hclge_mac_vlan_switch_cmd *)desc.data;
7385 
7386 	/* read current config parameter */
7387 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_SWITCH_PARAM,
7388 				   true);
7389 	req->roce_sel = HCLGE_MAC_VLAN_NIC_SEL;
7390 	req->func_id = cpu_to_le32(func_id);
7391 
7392 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7393 	if (ret) {
7394 		dev_err(&hdev->pdev->dev,
7395 			"read mac vlan switch parameter fail, ret = %d\n", ret);
7396 		return ret;
7397 	}
7398 
7399 	/* modify and write new config parameter */
7400 	hclge_comm_cmd_reuse_desc(&desc, false);
7401 	req->switch_param = (req->switch_param & param_mask) | switch_param;
7402 	req->param_mask = param_mask;
7403 
7404 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7405 	if (ret)
7406 		dev_err(&hdev->pdev->dev,
7407 			"set mac vlan switch parameter fail, ret = %d\n", ret);
7408 	return ret;
7409 }
7410 
7411 static void hclge_phy_link_status_wait(struct hclge_dev *hdev,
7412 				       int link_ret)
7413 {
7414 #define HCLGE_PHY_LINK_STATUS_NUM  200
7415 
7416 	struct phy_device *phydev = hdev->hw.mac.phydev;
7417 	int i = 0;
7418 	int ret;
7419 
7420 	do {
7421 		ret = phy_read_status(phydev);
7422 		if (ret) {
7423 			dev_err(&hdev->pdev->dev,
7424 				"phy update link status fail, ret = %d\n", ret);
7425 			return;
7426 		}
7427 
7428 		if (phydev->link == link_ret)
7429 			break;
7430 
7431 		msleep(HCLGE_LINK_STATUS_MS);
7432 	} while (++i < HCLGE_PHY_LINK_STATUS_NUM);
7433 }
7434 
7435 static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret)
7436 {
7437 #define HCLGE_MAC_LINK_STATUS_NUM  100
7438 
7439 	int link_status;
7440 	int i = 0;
7441 	int ret;
7442 
7443 	do {
7444 		ret = hclge_get_mac_link_status(hdev, &link_status);
7445 		if (ret)
7446 			return ret;
7447 		if (link_status == link_ret)
7448 			return 0;
7449 
7450 		msleep(HCLGE_LINK_STATUS_MS);
7451 	} while (++i < HCLGE_MAC_LINK_STATUS_NUM);
7452 	return -EBUSY;
7453 }
7454 
7455 static int hclge_mac_phy_link_status_wait(struct hclge_dev *hdev, bool en,
7456 					  bool is_phy)
7457 {
7458 	int link_ret;
7459 
7460 	link_ret = en ? HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN;
7461 
7462 	if (is_phy)
7463 		hclge_phy_link_status_wait(hdev, link_ret);
7464 
7465 	return hclge_mac_link_status_wait(hdev, link_ret);
7466 }
7467 
7468 static int hclge_set_app_loopback(struct hclge_dev *hdev, bool en)
7469 {
7470 	struct hclge_config_mac_mode_cmd *req;
7471 	struct hclge_desc desc;
7472 	u32 loop_en;
7473 	int ret;
7474 
7475 	req = (struct hclge_config_mac_mode_cmd *)&desc.data[0];
7476 	/* 1 Read out the MAC mode config at first */
7477 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, true);
7478 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7479 	if (ret) {
7480 		dev_err(&hdev->pdev->dev,
7481 			"mac loopback get fail, ret =%d.\n", ret);
7482 		return ret;
7483 	}
7484 
7485 	/* 2 Then setup the loopback flag */
7486 	loop_en = le32_to_cpu(req->txrx_pad_fcs_loop_en);
7487 	hnae3_set_bit(loop_en, HCLGE_MAC_APP_LP_B, en ? 1 : 0);
7488 
7489 	req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en);
7490 
7491 	/* 3 Config mac work mode with loopback flag
7492 	 * and its original configure parameters
7493 	 */
7494 	hclge_comm_cmd_reuse_desc(&desc, false);
7495 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7496 	if (ret)
7497 		dev_err(&hdev->pdev->dev,
7498 			"mac loopback set fail, ret =%d.\n", ret);
7499 	return ret;
7500 }
7501 
7502 static int hclge_cfg_common_loopback_cmd_send(struct hclge_dev *hdev, bool en,
7503 					      enum hnae3_loop loop_mode)
7504 {
7505 	struct hclge_common_lb_cmd *req;
7506 	struct hclge_desc desc;
7507 	u8 loop_mode_b;
7508 	int ret;
7509 
7510 	req = (struct hclge_common_lb_cmd *)desc.data;
7511 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK, false);
7512 
7513 	switch (loop_mode) {
7514 	case HNAE3_LOOP_SERIAL_SERDES:
7515 		loop_mode_b = HCLGE_CMD_SERDES_SERIAL_INNER_LOOP_B;
7516 		break;
7517 	case HNAE3_LOOP_PARALLEL_SERDES:
7518 		loop_mode_b = HCLGE_CMD_SERDES_PARALLEL_INNER_LOOP_B;
7519 		break;
7520 	case HNAE3_LOOP_PHY:
7521 		loop_mode_b = HCLGE_CMD_GE_PHY_INNER_LOOP_B;
7522 		break;
7523 	default:
7524 		dev_err(&hdev->pdev->dev,
7525 			"unsupported loopback mode %d\n", loop_mode);
7526 		return -ENOTSUPP;
7527 	}
7528 
7529 	req->mask = loop_mode_b;
7530 	if (en)
7531 		req->enable = loop_mode_b;
7532 
7533 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7534 	if (ret)
7535 		dev_err(&hdev->pdev->dev,
7536 			"failed to send loopback cmd, loop_mode = %d, ret = %d\n",
7537 			loop_mode, ret);
7538 
7539 	return ret;
7540 }
7541 
7542 static int hclge_cfg_common_loopback_wait(struct hclge_dev *hdev)
7543 {
7544 #define HCLGE_COMMON_LB_RETRY_MS	10
7545 #define HCLGE_COMMON_LB_RETRY_NUM	100
7546 
7547 	struct hclge_common_lb_cmd *req;
7548 	struct hclge_desc desc;
7549 	u32 i = 0;
7550 	int ret;
7551 
7552 	req = (struct hclge_common_lb_cmd *)desc.data;
7553 
7554 	do {
7555 		msleep(HCLGE_COMMON_LB_RETRY_MS);
7556 		hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK,
7557 					   true);
7558 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7559 		if (ret) {
7560 			dev_err(&hdev->pdev->dev,
7561 				"failed to get loopback done status, ret = %d\n",
7562 				ret);
7563 			return ret;
7564 		}
7565 	} while (++i < HCLGE_COMMON_LB_RETRY_NUM &&
7566 		 !(req->result & HCLGE_CMD_COMMON_LB_DONE_B));
7567 
7568 	if (!(req->result & HCLGE_CMD_COMMON_LB_DONE_B)) {
7569 		dev_err(&hdev->pdev->dev, "wait loopback timeout\n");
7570 		return -EBUSY;
7571 	} else if (!(req->result & HCLGE_CMD_COMMON_LB_SUCCESS_B)) {
7572 		dev_err(&hdev->pdev->dev, "failed to do loopback test\n");
7573 		return -EIO;
7574 	}
7575 
7576 	return 0;
7577 }
7578 
7579 static int hclge_cfg_common_loopback(struct hclge_dev *hdev, bool en,
7580 				     enum hnae3_loop loop_mode)
7581 {
7582 	int ret;
7583 
7584 	ret = hclge_cfg_common_loopback_cmd_send(hdev, en, loop_mode);
7585 	if (ret)
7586 		return ret;
7587 
7588 	return hclge_cfg_common_loopback_wait(hdev);
7589 }
7590 
7591 static int hclge_set_common_loopback(struct hclge_dev *hdev, bool en,
7592 				     enum hnae3_loop loop_mode)
7593 {
7594 	int ret;
7595 
7596 	ret = hclge_cfg_common_loopback(hdev, en, loop_mode);
7597 	if (ret)
7598 		return ret;
7599 
7600 	hclge_cfg_mac_mode(hdev, en);
7601 
7602 	ret = hclge_mac_phy_link_status_wait(hdev, en, false);
7603 	if (ret)
7604 		dev_err(&hdev->pdev->dev,
7605 			"serdes loopback config mac mode timeout\n");
7606 
7607 	return ret;
7608 }
7609 
7610 static int hclge_enable_phy_loopback(struct hclge_dev *hdev,
7611 				     struct phy_device *phydev)
7612 {
7613 	int ret;
7614 
7615 	if (!phydev->suspended) {
7616 		ret = phy_suspend(phydev);
7617 		if (ret)
7618 			return ret;
7619 	}
7620 
7621 	ret = phy_resume(phydev);
7622 	if (ret)
7623 		return ret;
7624 
7625 	return phy_loopback(phydev, true);
7626 }
7627 
7628 static int hclge_disable_phy_loopback(struct hclge_dev *hdev,
7629 				      struct phy_device *phydev)
7630 {
7631 	int ret;
7632 
7633 	ret = phy_loopback(phydev, false);
7634 	if (ret)
7635 		return ret;
7636 
7637 	return phy_suspend(phydev);
7638 }
7639 
7640 static int hclge_set_phy_loopback(struct hclge_dev *hdev, bool en)
7641 {
7642 	struct phy_device *phydev = hdev->hw.mac.phydev;
7643 	int ret;
7644 
7645 	if (!phydev) {
7646 		if (hnae3_dev_phy_imp_supported(hdev))
7647 			return hclge_set_common_loopback(hdev, en,
7648 							 HNAE3_LOOP_PHY);
7649 		return -ENOTSUPP;
7650 	}
7651 
7652 	if (en)
7653 		ret = hclge_enable_phy_loopback(hdev, phydev);
7654 	else
7655 		ret = hclge_disable_phy_loopback(hdev, phydev);
7656 	if (ret) {
7657 		dev_err(&hdev->pdev->dev,
7658 			"set phy loopback fail, ret = %d\n", ret);
7659 		return ret;
7660 	}
7661 
7662 	hclge_cfg_mac_mode(hdev, en);
7663 
7664 	ret = hclge_mac_phy_link_status_wait(hdev, en, true);
7665 	if (ret)
7666 		dev_err(&hdev->pdev->dev,
7667 			"phy loopback config mac mode timeout\n");
7668 
7669 	return ret;
7670 }
7671 
7672 static int hclge_tqp_enable_cmd_send(struct hclge_dev *hdev, u16 tqp_id,
7673 				     u16 stream_id, bool enable)
7674 {
7675 	struct hclge_desc desc;
7676 	struct hclge_cfg_com_tqp_queue_cmd *req =
7677 		(struct hclge_cfg_com_tqp_queue_cmd *)desc.data;
7678 
7679 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
7680 	req->tqp_id = cpu_to_le16(tqp_id);
7681 	req->stream_id = cpu_to_le16(stream_id);
7682 	if (enable)
7683 		req->enable |= 1U << HCLGE_TQP_ENABLE_B;
7684 
7685 	return hclge_cmd_send(&hdev->hw, &desc, 1);
7686 }
7687 
7688 static int hclge_tqp_enable(struct hnae3_handle *handle, bool enable)
7689 {
7690 	struct hclge_vport *vport = hclge_get_vport(handle);
7691 	struct hclge_dev *hdev = vport->back;
7692 	int ret;
7693 	u16 i;
7694 
7695 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
7696 		ret = hclge_tqp_enable_cmd_send(hdev, i, 0, enable);
7697 		if (ret)
7698 			return ret;
7699 	}
7700 	return 0;
7701 }
7702 
7703 static int hclge_set_loopback(struct hnae3_handle *handle,
7704 			      enum hnae3_loop loop_mode, bool en)
7705 {
7706 	struct hclge_vport *vport = hclge_get_vport(handle);
7707 	struct hclge_dev *hdev = vport->back;
7708 	int ret;
7709 
7710 	/* Loopback can be enabled in three places: SSU, MAC, and serdes. By
7711 	 * default, SSU loopback is enabled, so if the SMAC and the DMAC are
7712 	 * the same, the packets are looped back in the SSU. If SSU loopback
7713 	 * is disabled, packets can reach MAC even if SMAC is the same as DMAC.
7714 	 */
7715 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
7716 		u8 switch_param = en ? 0 : BIT(HCLGE_SWITCH_ALW_LPBK_B);
7717 
7718 		ret = hclge_config_switch_param(hdev, PF_VPORT_ID, switch_param,
7719 						HCLGE_SWITCH_ALW_LPBK_MASK);
7720 		if (ret)
7721 			return ret;
7722 	}
7723 
7724 	switch (loop_mode) {
7725 	case HNAE3_LOOP_APP:
7726 		ret = hclge_set_app_loopback(hdev, en);
7727 		break;
7728 	case HNAE3_LOOP_SERIAL_SERDES:
7729 	case HNAE3_LOOP_PARALLEL_SERDES:
7730 		ret = hclge_set_common_loopback(hdev, en, loop_mode);
7731 		break;
7732 	case HNAE3_LOOP_PHY:
7733 		ret = hclge_set_phy_loopback(hdev, en);
7734 		break;
7735 	default:
7736 		ret = -ENOTSUPP;
7737 		dev_err(&hdev->pdev->dev,
7738 			"loop_mode %d is not supported\n", loop_mode);
7739 		break;
7740 	}
7741 
7742 	if (ret)
7743 		return ret;
7744 
7745 	ret = hclge_tqp_enable(handle, en);
7746 	if (ret)
7747 		dev_err(&hdev->pdev->dev, "failed to %s tqp in loopback, ret = %d\n",
7748 			en ? "enable" : "disable", ret);
7749 
7750 	return ret;
7751 }
7752 
7753 static int hclge_set_default_loopback(struct hclge_dev *hdev)
7754 {
7755 	int ret;
7756 
7757 	ret = hclge_set_app_loopback(hdev, false);
7758 	if (ret)
7759 		return ret;
7760 
7761 	ret = hclge_cfg_common_loopback(hdev, false, HNAE3_LOOP_SERIAL_SERDES);
7762 	if (ret)
7763 		return ret;
7764 
7765 	return hclge_cfg_common_loopback(hdev, false,
7766 					 HNAE3_LOOP_PARALLEL_SERDES);
7767 }
7768 
7769 static void hclge_flush_link_update(struct hclge_dev *hdev)
7770 {
7771 #define HCLGE_FLUSH_LINK_TIMEOUT	100000
7772 
7773 	unsigned long last = hdev->serv_processed_cnt;
7774 	int i = 0;
7775 
7776 	while (test_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state) &&
7777 	       i++ < HCLGE_FLUSH_LINK_TIMEOUT &&
7778 	       last == hdev->serv_processed_cnt)
7779 		usleep_range(1, 1);
7780 }
7781 
7782 static void hclge_set_timer_task(struct hnae3_handle *handle, bool enable)
7783 {
7784 	struct hclge_vport *vport = hclge_get_vport(handle);
7785 	struct hclge_dev *hdev = vport->back;
7786 
7787 	if (enable) {
7788 		hclge_task_schedule(hdev, 0);
7789 	} else {
7790 		/* Set the DOWN flag here to disable link updating */
7791 		set_bit(HCLGE_STATE_DOWN, &hdev->state);
7792 
7793 		/* flush memory to make sure DOWN is seen by service task */
7794 		smp_mb__before_atomic();
7795 		hclge_flush_link_update(hdev);
7796 	}
7797 }
7798 
7799 static int hclge_ae_start(struct hnae3_handle *handle)
7800 {
7801 	struct hclge_vport *vport = hclge_get_vport(handle);
7802 	struct hclge_dev *hdev = vport->back;
7803 
7804 	/* mac enable */
7805 	hclge_cfg_mac_mode(hdev, true);
7806 	clear_bit(HCLGE_STATE_DOWN, &hdev->state);
7807 	hdev->hw.mac.link = 0;
7808 
7809 	/* reset tqp stats */
7810 	hclge_comm_reset_tqp_stats(handle);
7811 
7812 	hclge_mac_start_phy(hdev);
7813 
7814 	return 0;
7815 }
7816 
7817 static void hclge_ae_stop(struct hnae3_handle *handle)
7818 {
7819 	struct hclge_vport *vport = hclge_get_vport(handle);
7820 	struct hclge_dev *hdev = vport->back;
7821 
7822 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
7823 	spin_lock_bh(&hdev->fd_rule_lock);
7824 	hclge_clear_arfs_rules(hdev);
7825 	spin_unlock_bh(&hdev->fd_rule_lock);
7826 
7827 	/* If it is not PF reset or FLR, the firmware will disable the MAC,
7828 	 * so it only need to stop phy here.
7829 	 */
7830 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) &&
7831 	    hdev->reset_type != HNAE3_FUNC_RESET &&
7832 	    hdev->reset_type != HNAE3_FLR_RESET) {
7833 		hclge_mac_stop_phy(hdev);
7834 		hclge_update_link_status(hdev);
7835 		return;
7836 	}
7837 
7838 	hclge_reset_tqp(handle);
7839 
7840 	hclge_config_mac_tnl_int(hdev, false);
7841 
7842 	/* Mac disable */
7843 	hclge_cfg_mac_mode(hdev, false);
7844 
7845 	hclge_mac_stop_phy(hdev);
7846 
7847 	/* reset tqp stats */
7848 	hclge_comm_reset_tqp_stats(handle);
7849 	hclge_update_link_status(hdev);
7850 }
7851 
7852 int hclge_vport_start(struct hclge_vport *vport)
7853 {
7854 	struct hclge_dev *hdev = vport->back;
7855 
7856 	set_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
7857 	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
7858 	vport->last_active_jiffies = jiffies;
7859 
7860 	if (test_bit(vport->vport_id, hdev->vport_config_block)) {
7861 		if (vport->vport_id) {
7862 			hclge_restore_mac_table_common(vport);
7863 			hclge_restore_vport_vlan_table(vport);
7864 		} else {
7865 			hclge_restore_hw_table(hdev);
7866 		}
7867 	}
7868 
7869 	clear_bit(vport->vport_id, hdev->vport_config_block);
7870 
7871 	return 0;
7872 }
7873 
7874 void hclge_vport_stop(struct hclge_vport *vport)
7875 {
7876 	clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
7877 }
7878 
7879 static int hclge_client_start(struct hnae3_handle *handle)
7880 {
7881 	struct hclge_vport *vport = hclge_get_vport(handle);
7882 
7883 	return hclge_vport_start(vport);
7884 }
7885 
7886 static void hclge_client_stop(struct hnae3_handle *handle)
7887 {
7888 	struct hclge_vport *vport = hclge_get_vport(handle);
7889 
7890 	hclge_vport_stop(vport);
7891 }
7892 
7893 static int hclge_get_mac_vlan_cmd_status(struct hclge_vport *vport,
7894 					 u16 cmdq_resp, u8  resp_code,
7895 					 enum hclge_mac_vlan_tbl_opcode op)
7896 {
7897 	struct hclge_dev *hdev = vport->back;
7898 
7899 	if (cmdq_resp) {
7900 		dev_err(&hdev->pdev->dev,
7901 			"cmdq execute failed for get_mac_vlan_cmd_status,status=%u.\n",
7902 			cmdq_resp);
7903 		return -EIO;
7904 	}
7905 
7906 	if (op == HCLGE_MAC_VLAN_ADD) {
7907 		if (!resp_code || resp_code == 1)
7908 			return 0;
7909 		else if (resp_code == HCLGE_ADD_UC_OVERFLOW ||
7910 			 resp_code == HCLGE_ADD_MC_OVERFLOW)
7911 			return -ENOSPC;
7912 
7913 		dev_err(&hdev->pdev->dev,
7914 			"add mac addr failed for undefined, code=%u.\n",
7915 			resp_code);
7916 		return -EIO;
7917 	} else if (op == HCLGE_MAC_VLAN_REMOVE) {
7918 		if (!resp_code) {
7919 			return 0;
7920 		} else if (resp_code == 1) {
7921 			dev_dbg(&hdev->pdev->dev,
7922 				"remove mac addr failed for miss.\n");
7923 			return -ENOENT;
7924 		}
7925 
7926 		dev_err(&hdev->pdev->dev,
7927 			"remove mac addr failed for undefined, code=%u.\n",
7928 			resp_code);
7929 		return -EIO;
7930 	} else if (op == HCLGE_MAC_VLAN_LKUP) {
7931 		if (!resp_code) {
7932 			return 0;
7933 		} else if (resp_code == 1) {
7934 			dev_dbg(&hdev->pdev->dev,
7935 				"lookup mac addr failed for miss.\n");
7936 			return -ENOENT;
7937 		}
7938 
7939 		dev_err(&hdev->pdev->dev,
7940 			"lookup mac addr failed for undefined, code=%u.\n",
7941 			resp_code);
7942 		return -EIO;
7943 	}
7944 
7945 	dev_err(&hdev->pdev->dev,
7946 		"unknown opcode for get_mac_vlan_cmd_status, opcode=%d.\n", op);
7947 
7948 	return -EINVAL;
7949 }
7950 
7951 static int hclge_update_desc_vfid(struct hclge_desc *desc, int vfid, bool clr)
7952 {
7953 #define HCLGE_VF_NUM_IN_FIRST_DESC 192
7954 
7955 	unsigned int word_num;
7956 	unsigned int bit_num;
7957 
7958 	if (vfid > 255 || vfid < 0)
7959 		return -EIO;
7960 
7961 	if (vfid >= 0 && vfid < HCLGE_VF_NUM_IN_FIRST_DESC) {
7962 		word_num = vfid / 32;
7963 		bit_num  = vfid % 32;
7964 		if (clr)
7965 			desc[1].data[word_num] &= cpu_to_le32(~(1 << bit_num));
7966 		else
7967 			desc[1].data[word_num] |= cpu_to_le32(1 << bit_num);
7968 	} else {
7969 		word_num = (vfid - HCLGE_VF_NUM_IN_FIRST_DESC) / 32;
7970 		bit_num  = vfid % 32;
7971 		if (clr)
7972 			desc[2].data[word_num] &= cpu_to_le32(~(1 << bit_num));
7973 		else
7974 			desc[2].data[word_num] |= cpu_to_le32(1 << bit_num);
7975 	}
7976 
7977 	return 0;
7978 }
7979 
7980 static bool hclge_is_all_function_id_zero(struct hclge_desc *desc)
7981 {
7982 #define HCLGE_DESC_NUMBER 3
7983 #define HCLGE_FUNC_NUMBER_PER_DESC 6
7984 	int i, j;
7985 
7986 	for (i = 1; i < HCLGE_DESC_NUMBER; i++)
7987 		for (j = 0; j < HCLGE_FUNC_NUMBER_PER_DESC; j++)
7988 			if (desc[i].data[j])
7989 				return false;
7990 
7991 	return true;
7992 }
7993 
7994 static void hclge_prepare_mac_addr(struct hclge_mac_vlan_tbl_entry_cmd *new_req,
7995 				   const u8 *addr, bool is_mc)
7996 {
7997 	const unsigned char *mac_addr = addr;
7998 	u32 high_val = mac_addr[2] << 16 | (mac_addr[3] << 24) |
7999 		       (mac_addr[0]) | (mac_addr[1] << 8);
8000 	u32 low_val  = mac_addr[4] | (mac_addr[5] << 8);
8001 
8002 	hnae3_set_bit(new_req->flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1);
8003 	if (is_mc) {
8004 		hnae3_set_bit(new_req->entry_type, HCLGE_MAC_VLAN_BIT1_EN_B, 1);
8005 		hnae3_set_bit(new_req->mc_mac_en, HCLGE_MAC_VLAN_BIT0_EN_B, 1);
8006 	}
8007 
8008 	new_req->mac_addr_hi32 = cpu_to_le32(high_val);
8009 	new_req->mac_addr_lo16 = cpu_to_le16(low_val & 0xffff);
8010 }
8011 
8012 static int hclge_remove_mac_vlan_tbl(struct hclge_vport *vport,
8013 				     struct hclge_mac_vlan_tbl_entry_cmd *req)
8014 {
8015 	struct hclge_dev *hdev = vport->back;
8016 	struct hclge_desc desc;
8017 	u8 resp_code;
8018 	u16 retval;
8019 	int ret;
8020 
8021 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_REMOVE, false);
8022 
8023 	memcpy(desc.data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8024 
8025 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
8026 	if (ret) {
8027 		dev_err(&hdev->pdev->dev,
8028 			"del mac addr failed for cmd_send, ret =%d.\n",
8029 			ret);
8030 		return ret;
8031 	}
8032 	resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
8033 	retval = le16_to_cpu(desc.retval);
8034 
8035 	return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code,
8036 					     HCLGE_MAC_VLAN_REMOVE);
8037 }
8038 
8039 static int hclge_lookup_mac_vlan_tbl(struct hclge_vport *vport,
8040 				     struct hclge_mac_vlan_tbl_entry_cmd *req,
8041 				     struct hclge_desc *desc,
8042 				     bool is_mc)
8043 {
8044 	struct hclge_dev *hdev = vport->back;
8045 	u8 resp_code;
8046 	u16 retval;
8047 	int ret;
8048 
8049 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_MAC_VLAN_ADD, true);
8050 	if (is_mc) {
8051 		desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8052 		memcpy(desc[0].data,
8053 		       req,
8054 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8055 		hclge_cmd_setup_basic_desc(&desc[1],
8056 					   HCLGE_OPC_MAC_VLAN_ADD,
8057 					   true);
8058 		desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8059 		hclge_cmd_setup_basic_desc(&desc[2],
8060 					   HCLGE_OPC_MAC_VLAN_ADD,
8061 					   true);
8062 		ret = hclge_cmd_send(&hdev->hw, desc, 3);
8063 	} else {
8064 		memcpy(desc[0].data,
8065 		       req,
8066 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8067 		ret = hclge_cmd_send(&hdev->hw, desc, 1);
8068 	}
8069 	if (ret) {
8070 		dev_err(&hdev->pdev->dev,
8071 			"lookup mac addr failed for cmd_send, ret =%d.\n",
8072 			ret);
8073 		return ret;
8074 	}
8075 	resp_code = (le32_to_cpu(desc[0].data[0]) >> 8) & 0xff;
8076 	retval = le16_to_cpu(desc[0].retval);
8077 
8078 	return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code,
8079 					     HCLGE_MAC_VLAN_LKUP);
8080 }
8081 
8082 static int hclge_add_mac_vlan_tbl(struct hclge_vport *vport,
8083 				  struct hclge_mac_vlan_tbl_entry_cmd *req,
8084 				  struct hclge_desc *mc_desc)
8085 {
8086 	struct hclge_dev *hdev = vport->back;
8087 	int cfg_status;
8088 	u8 resp_code;
8089 	u16 retval;
8090 	int ret;
8091 
8092 	if (!mc_desc) {
8093 		struct hclge_desc desc;
8094 
8095 		hclge_cmd_setup_basic_desc(&desc,
8096 					   HCLGE_OPC_MAC_VLAN_ADD,
8097 					   false);
8098 		memcpy(desc.data, req,
8099 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8100 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
8101 		resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
8102 		retval = le16_to_cpu(desc.retval);
8103 
8104 		cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval,
8105 							   resp_code,
8106 							   HCLGE_MAC_VLAN_ADD);
8107 	} else {
8108 		hclge_comm_cmd_reuse_desc(&mc_desc[0], false);
8109 		mc_desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8110 		hclge_comm_cmd_reuse_desc(&mc_desc[1], false);
8111 		mc_desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8112 		hclge_comm_cmd_reuse_desc(&mc_desc[2], false);
8113 		mc_desc[2].flag &= cpu_to_le16(~HCLGE_COMM_CMD_FLAG_NEXT);
8114 		memcpy(mc_desc[0].data, req,
8115 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8116 		ret = hclge_cmd_send(&hdev->hw, mc_desc, 3);
8117 		resp_code = (le32_to_cpu(mc_desc[0].data[0]) >> 8) & 0xff;
8118 		retval = le16_to_cpu(mc_desc[0].retval);
8119 
8120 		cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval,
8121 							   resp_code,
8122 							   HCLGE_MAC_VLAN_ADD);
8123 	}
8124 
8125 	if (ret) {
8126 		dev_err(&hdev->pdev->dev,
8127 			"add mac addr failed for cmd_send, ret =%d.\n",
8128 			ret);
8129 		return ret;
8130 	}
8131 
8132 	return cfg_status;
8133 }
8134 
8135 static int hclge_set_umv_space(struct hclge_dev *hdev, u16 space_size,
8136 			       u16 *allocated_size)
8137 {
8138 	struct hclge_umv_spc_alc_cmd *req;
8139 	struct hclge_desc desc;
8140 	int ret;
8141 
8142 	req = (struct hclge_umv_spc_alc_cmd *)desc.data;
8143 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_ALLOCATE, false);
8144 
8145 	req->space_size = cpu_to_le32(space_size);
8146 
8147 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
8148 	if (ret) {
8149 		dev_err(&hdev->pdev->dev, "failed to set umv space, ret = %d\n",
8150 			ret);
8151 		return ret;
8152 	}
8153 
8154 	*allocated_size = le32_to_cpu(desc.data[1]);
8155 
8156 	return 0;
8157 }
8158 
8159 static int hclge_init_umv_space(struct hclge_dev *hdev)
8160 {
8161 	u16 allocated_size = 0;
8162 	int ret;
8163 
8164 	ret = hclge_set_umv_space(hdev, hdev->wanted_umv_size, &allocated_size);
8165 	if (ret)
8166 		return ret;
8167 
8168 	if (allocated_size < hdev->wanted_umv_size)
8169 		dev_warn(&hdev->pdev->dev,
8170 			 "failed to alloc umv space, want %u, get %u\n",
8171 			 hdev->wanted_umv_size, allocated_size);
8172 
8173 	hdev->max_umv_size = allocated_size;
8174 	hdev->priv_umv_size = hdev->max_umv_size / (hdev->num_alloc_vport + 1);
8175 	hdev->share_umv_size = hdev->priv_umv_size +
8176 			hdev->max_umv_size % (hdev->num_alloc_vport + 1);
8177 
8178 	if (hdev->ae_dev->dev_specs.mc_mac_size)
8179 		set_bit(HNAE3_DEV_SUPPORT_MC_MAC_MNG_B, hdev->ae_dev->caps);
8180 
8181 	return 0;
8182 }
8183 
8184 static void hclge_reset_umv_space(struct hclge_dev *hdev)
8185 {
8186 	struct hclge_vport *vport;
8187 	int i;
8188 
8189 	for (i = 0; i < hdev->num_alloc_vport; i++) {
8190 		vport = &hdev->vport[i];
8191 		vport->used_umv_num = 0;
8192 	}
8193 
8194 	mutex_lock(&hdev->vport_lock);
8195 	hdev->share_umv_size = hdev->priv_umv_size +
8196 			hdev->max_umv_size % (hdev->num_alloc_vport + 1);
8197 	mutex_unlock(&hdev->vport_lock);
8198 
8199 	hdev->used_mc_mac_num = 0;
8200 }
8201 
8202 static bool hclge_is_umv_space_full(struct hclge_vport *vport, bool need_lock)
8203 {
8204 	struct hclge_dev *hdev = vport->back;
8205 	bool is_full;
8206 
8207 	if (need_lock)
8208 		mutex_lock(&hdev->vport_lock);
8209 
8210 	is_full = (vport->used_umv_num >= hdev->priv_umv_size &&
8211 		   hdev->share_umv_size == 0);
8212 
8213 	if (need_lock)
8214 		mutex_unlock(&hdev->vport_lock);
8215 
8216 	return is_full;
8217 }
8218 
8219 static void hclge_update_umv_space(struct hclge_vport *vport, bool is_free)
8220 {
8221 	struct hclge_dev *hdev = vport->back;
8222 
8223 	if (is_free) {
8224 		if (vport->used_umv_num > hdev->priv_umv_size)
8225 			hdev->share_umv_size++;
8226 
8227 		if (vport->used_umv_num > 0)
8228 			vport->used_umv_num--;
8229 	} else {
8230 		if (vport->used_umv_num >= hdev->priv_umv_size &&
8231 		    hdev->share_umv_size > 0)
8232 			hdev->share_umv_size--;
8233 		vport->used_umv_num++;
8234 	}
8235 }
8236 
8237 static struct hclge_mac_node *hclge_find_mac_node(struct list_head *list,
8238 						  const u8 *mac_addr)
8239 {
8240 	struct hclge_mac_node *mac_node, *tmp;
8241 
8242 	list_for_each_entry_safe(mac_node, tmp, list, node)
8243 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
8244 			return mac_node;
8245 
8246 	return NULL;
8247 }
8248 
8249 static void hclge_update_mac_node(struct hclge_mac_node *mac_node,
8250 				  enum HCLGE_MAC_NODE_STATE state)
8251 {
8252 	switch (state) {
8253 	/* from set_rx_mode or tmp_add_list */
8254 	case HCLGE_MAC_TO_ADD:
8255 		if (mac_node->state == HCLGE_MAC_TO_DEL)
8256 			mac_node->state = HCLGE_MAC_ACTIVE;
8257 		break;
8258 	/* only from set_rx_mode */
8259 	case HCLGE_MAC_TO_DEL:
8260 		if (mac_node->state == HCLGE_MAC_TO_ADD) {
8261 			list_del(&mac_node->node);
8262 			kfree(mac_node);
8263 		} else {
8264 			mac_node->state = HCLGE_MAC_TO_DEL;
8265 		}
8266 		break;
8267 	/* only from tmp_add_list, the mac_node->state won't be
8268 	 * ACTIVE.
8269 	 */
8270 	case HCLGE_MAC_ACTIVE:
8271 		if (mac_node->state == HCLGE_MAC_TO_ADD)
8272 			mac_node->state = HCLGE_MAC_ACTIVE;
8273 
8274 		break;
8275 	}
8276 }
8277 
8278 int hclge_update_mac_list(struct hclge_vport *vport,
8279 			  enum HCLGE_MAC_NODE_STATE state,
8280 			  enum HCLGE_MAC_ADDR_TYPE mac_type,
8281 			  const unsigned char *addr)
8282 {
8283 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8284 	struct hclge_dev *hdev = vport->back;
8285 	struct hclge_mac_node *mac_node;
8286 	struct list_head *list;
8287 
8288 	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
8289 		&vport->uc_mac_list : &vport->mc_mac_list;
8290 
8291 	spin_lock_bh(&vport->mac_list_lock);
8292 
8293 	/* if the mac addr is already in the mac list, no need to add a new
8294 	 * one into it, just check the mac addr state, convert it to a new
8295 	 * state, or just remove it, or do nothing.
8296 	 */
8297 	mac_node = hclge_find_mac_node(list, addr);
8298 	if (mac_node) {
8299 		hclge_update_mac_node(mac_node, state);
8300 		spin_unlock_bh(&vport->mac_list_lock);
8301 		set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
8302 		return 0;
8303 	}
8304 
8305 	/* if this address is never added, unnecessary to delete */
8306 	if (state == HCLGE_MAC_TO_DEL) {
8307 		spin_unlock_bh(&vport->mac_list_lock);
8308 		hnae3_format_mac_addr(format_mac_addr, addr);
8309 		dev_err(&hdev->pdev->dev,
8310 			"failed to delete address %s from mac list\n",
8311 			format_mac_addr);
8312 		return -ENOENT;
8313 	}
8314 
8315 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
8316 	if (!mac_node) {
8317 		spin_unlock_bh(&vport->mac_list_lock);
8318 		return -ENOMEM;
8319 	}
8320 
8321 	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
8322 
8323 	mac_node->state = state;
8324 	ether_addr_copy(mac_node->mac_addr, addr);
8325 	list_add_tail(&mac_node->node, list);
8326 
8327 	spin_unlock_bh(&vport->mac_list_lock);
8328 
8329 	return 0;
8330 }
8331 
8332 static int hclge_add_uc_addr(struct hnae3_handle *handle,
8333 			     const unsigned char *addr)
8334 {
8335 	struct hclge_vport *vport = hclge_get_vport(handle);
8336 
8337 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_UC,
8338 				     addr);
8339 }
8340 
8341 int hclge_add_uc_addr_common(struct hclge_vport *vport,
8342 			     const unsigned char *addr)
8343 {
8344 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8345 	struct hclge_dev *hdev = vport->back;
8346 	struct hclge_mac_vlan_tbl_entry_cmd req;
8347 	struct hclge_desc desc;
8348 	u16 egress_port = 0;
8349 	int ret;
8350 
8351 	/* mac addr check */
8352 	if (is_zero_ether_addr(addr) ||
8353 	    is_broadcast_ether_addr(addr) ||
8354 	    is_multicast_ether_addr(addr)) {
8355 		hnae3_format_mac_addr(format_mac_addr, addr);
8356 		dev_err(&hdev->pdev->dev,
8357 			"Set_uc mac err! invalid mac:%s. is_zero:%d,is_br=%d,is_mul=%d\n",
8358 			 format_mac_addr, is_zero_ether_addr(addr),
8359 			 is_broadcast_ether_addr(addr),
8360 			 is_multicast_ether_addr(addr));
8361 		return -EINVAL;
8362 	}
8363 
8364 	memset(&req, 0, sizeof(req));
8365 
8366 	hnae3_set_field(egress_port, HCLGE_MAC_EPORT_VFID_M,
8367 			HCLGE_MAC_EPORT_VFID_S, vport->vport_id);
8368 
8369 	req.egress_port = cpu_to_le16(egress_port);
8370 
8371 	hclge_prepare_mac_addr(&req, addr, false);
8372 
8373 	/* Lookup the mac address in the mac_vlan table, and add
8374 	 * it if the entry is inexistent. Repeated unicast entry
8375 	 * is not allowed in the mac vlan table.
8376 	 */
8377 	ret = hclge_lookup_mac_vlan_tbl(vport, &req, &desc, false);
8378 	if (ret == -ENOENT) {
8379 		mutex_lock(&hdev->vport_lock);
8380 		if (!hclge_is_umv_space_full(vport, false)) {
8381 			ret = hclge_add_mac_vlan_tbl(vport, &req, NULL);
8382 			if (!ret)
8383 				hclge_update_umv_space(vport, false);
8384 			mutex_unlock(&hdev->vport_lock);
8385 			return ret;
8386 		}
8387 		mutex_unlock(&hdev->vport_lock);
8388 
8389 		if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE))
8390 			dev_err(&hdev->pdev->dev, "UC MAC table full(%u)\n",
8391 				hdev->priv_umv_size);
8392 
8393 		return -ENOSPC;
8394 	}
8395 
8396 	/* check if we just hit the duplicate */
8397 	if (!ret)
8398 		return -EEXIST;
8399 
8400 	return ret;
8401 }
8402 
8403 static int hclge_rm_uc_addr(struct hnae3_handle *handle,
8404 			    const unsigned char *addr)
8405 {
8406 	struct hclge_vport *vport = hclge_get_vport(handle);
8407 
8408 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_UC,
8409 				     addr);
8410 }
8411 
8412 int hclge_rm_uc_addr_common(struct hclge_vport *vport,
8413 			    const unsigned char *addr)
8414 {
8415 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8416 	struct hclge_dev *hdev = vport->back;
8417 	struct hclge_mac_vlan_tbl_entry_cmd req;
8418 	int ret;
8419 
8420 	/* mac addr check */
8421 	if (is_zero_ether_addr(addr) ||
8422 	    is_broadcast_ether_addr(addr) ||
8423 	    is_multicast_ether_addr(addr)) {
8424 		hnae3_format_mac_addr(format_mac_addr, addr);
8425 		dev_dbg(&hdev->pdev->dev, "Remove mac err! invalid mac:%s.\n",
8426 			format_mac_addr);
8427 		return -EINVAL;
8428 	}
8429 
8430 	memset(&req, 0, sizeof(req));
8431 	hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0);
8432 	hclge_prepare_mac_addr(&req, addr, false);
8433 	ret = hclge_remove_mac_vlan_tbl(vport, &req);
8434 	if (!ret || ret == -ENOENT) {
8435 		mutex_lock(&hdev->vport_lock);
8436 		hclge_update_umv_space(vport, true);
8437 		mutex_unlock(&hdev->vport_lock);
8438 		return 0;
8439 	}
8440 
8441 	return ret;
8442 }
8443 
8444 static int hclge_add_mc_addr(struct hnae3_handle *handle,
8445 			     const unsigned char *addr)
8446 {
8447 	struct hclge_vport *vport = hclge_get_vport(handle);
8448 
8449 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_MC,
8450 				     addr);
8451 }
8452 
8453 int hclge_add_mc_addr_common(struct hclge_vport *vport,
8454 			     const unsigned char *addr)
8455 {
8456 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8457 	struct hclge_dev *hdev = vport->back;
8458 	struct hclge_mac_vlan_tbl_entry_cmd req;
8459 	struct hclge_desc desc[3];
8460 	bool is_new_addr = false;
8461 	int status;
8462 
8463 	/* mac addr check */
8464 	if (!is_multicast_ether_addr(addr)) {
8465 		hnae3_format_mac_addr(format_mac_addr, addr);
8466 		dev_err(&hdev->pdev->dev,
8467 			"Add mc mac err! invalid mac:%s.\n",
8468 			 format_mac_addr);
8469 		return -EINVAL;
8470 	}
8471 	memset(&req, 0, sizeof(req));
8472 	hclge_prepare_mac_addr(&req, addr, true);
8473 	status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true);
8474 	if (status) {
8475 		if (hnae3_ae_dev_mc_mac_mng_supported(hdev->ae_dev) &&
8476 		    hdev->used_mc_mac_num >=
8477 		    hdev->ae_dev->dev_specs.mc_mac_size)
8478 			goto err_no_space;
8479 
8480 		is_new_addr = true;
8481 
8482 		/* This mac addr do not exist, add new entry for it */
8483 		memset(desc[0].data, 0, sizeof(desc[0].data));
8484 		memset(desc[1].data, 0, sizeof(desc[0].data));
8485 		memset(desc[2].data, 0, sizeof(desc[0].data));
8486 	}
8487 	status = hclge_update_desc_vfid(desc, vport->vport_id, false);
8488 	if (status)
8489 		return status;
8490 	status = hclge_add_mac_vlan_tbl(vport, &req, desc);
8491 	if (status == -ENOSPC)
8492 		goto err_no_space;
8493 	else if (!status && is_new_addr)
8494 		hdev->used_mc_mac_num++;
8495 
8496 	return status;
8497 
8498 err_no_space:
8499 	/* if already overflow, not to print each time */
8500 	if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE)) {
8501 		vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE;
8502 		dev_err(&hdev->pdev->dev, "mc mac vlan table is full\n");
8503 	}
8504 
8505 	return -ENOSPC;
8506 }
8507 
8508 static int hclge_rm_mc_addr(struct hnae3_handle *handle,
8509 			    const unsigned char *addr)
8510 {
8511 	struct hclge_vport *vport = hclge_get_vport(handle);
8512 
8513 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_MC,
8514 				     addr);
8515 }
8516 
8517 int hclge_rm_mc_addr_common(struct hclge_vport *vport,
8518 			    const unsigned char *addr)
8519 {
8520 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8521 	struct hclge_dev *hdev = vport->back;
8522 	struct hclge_mac_vlan_tbl_entry_cmd req;
8523 	enum hclge_comm_cmd_status status;
8524 	struct hclge_desc desc[3];
8525 
8526 	/* mac addr check */
8527 	if (!is_multicast_ether_addr(addr)) {
8528 		hnae3_format_mac_addr(format_mac_addr, addr);
8529 		dev_dbg(&hdev->pdev->dev,
8530 			"Remove mc mac err! invalid mac:%s.\n",
8531 			 format_mac_addr);
8532 		return -EINVAL;
8533 	}
8534 
8535 	memset(&req, 0, sizeof(req));
8536 	hclge_prepare_mac_addr(&req, addr, true);
8537 	status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true);
8538 	if (!status) {
8539 		/* This mac addr exist, remove this handle's VFID for it */
8540 		status = hclge_update_desc_vfid(desc, vport->vport_id, true);
8541 		if (status)
8542 			return status;
8543 
8544 		if (hclge_is_all_function_id_zero(desc)) {
8545 			/* All the vfid is zero, so need to delete this entry */
8546 			status = hclge_remove_mac_vlan_tbl(vport, &req);
8547 			if (!status)
8548 				hdev->used_mc_mac_num--;
8549 		} else {
8550 			/* Not all the vfid is zero, update the vfid */
8551 			status = hclge_add_mac_vlan_tbl(vport, &req, desc);
8552 		}
8553 	} else if (status == -ENOENT) {
8554 		status = 0;
8555 	}
8556 
8557 	return status;
8558 }
8559 
8560 static void hclge_sync_vport_mac_list(struct hclge_vport *vport,
8561 				      struct list_head *list,
8562 				      enum HCLGE_MAC_ADDR_TYPE mac_type)
8563 {
8564 	int (*sync)(struct hclge_vport *vport, const unsigned char *addr);
8565 	struct hclge_mac_node *mac_node, *tmp;
8566 	int ret;
8567 
8568 	if (mac_type == HCLGE_MAC_ADDR_UC)
8569 		sync = hclge_add_uc_addr_common;
8570 	else
8571 		sync = hclge_add_mc_addr_common;
8572 
8573 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8574 		ret = sync(vport, mac_node->mac_addr);
8575 		if (!ret) {
8576 			mac_node->state = HCLGE_MAC_ACTIVE;
8577 		} else {
8578 			set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE,
8579 				&vport->state);
8580 
8581 			/* If one unicast mac address is existing in hardware,
8582 			 * we need to try whether other unicast mac addresses
8583 			 * are new addresses that can be added.
8584 			 * Multicast mac address can be reusable, even though
8585 			 * there is no space to add new multicast mac address,
8586 			 * we should check whether other mac addresses are
8587 			 * existing in hardware for reuse.
8588 			 */
8589 			if ((mac_type == HCLGE_MAC_ADDR_UC && ret != -EEXIST) ||
8590 			    (mac_type == HCLGE_MAC_ADDR_MC && ret != -ENOSPC))
8591 				break;
8592 		}
8593 	}
8594 }
8595 
8596 static void hclge_unsync_vport_mac_list(struct hclge_vport *vport,
8597 					struct list_head *list,
8598 					enum HCLGE_MAC_ADDR_TYPE mac_type)
8599 {
8600 	int (*unsync)(struct hclge_vport *vport, const unsigned char *addr);
8601 	struct hclge_mac_node *mac_node, *tmp;
8602 	int ret;
8603 
8604 	if (mac_type == HCLGE_MAC_ADDR_UC)
8605 		unsync = hclge_rm_uc_addr_common;
8606 	else
8607 		unsync = hclge_rm_mc_addr_common;
8608 
8609 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8610 		ret = unsync(vport, mac_node->mac_addr);
8611 		if (!ret || ret == -ENOENT) {
8612 			list_del(&mac_node->node);
8613 			kfree(mac_node);
8614 		} else {
8615 			set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE,
8616 				&vport->state);
8617 			break;
8618 		}
8619 	}
8620 }
8621 
8622 static bool hclge_sync_from_add_list(struct list_head *add_list,
8623 				     struct list_head *mac_list)
8624 {
8625 	struct hclge_mac_node *mac_node, *tmp, *new_node;
8626 	bool all_added = true;
8627 
8628 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
8629 		if (mac_node->state == HCLGE_MAC_TO_ADD)
8630 			all_added = false;
8631 
8632 		/* if the mac address from tmp_add_list is not in the
8633 		 * uc/mc_mac_list, it means have received a TO_DEL request
8634 		 * during the time window of adding the mac address into mac
8635 		 * table. if mac_node state is ACTIVE, then change it to TO_DEL,
8636 		 * then it will be removed at next time. else it must be TO_ADD,
8637 		 * this address hasn't been added into mac table,
8638 		 * so just remove the mac node.
8639 		 */
8640 		new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr);
8641 		if (new_node) {
8642 			hclge_update_mac_node(new_node, mac_node->state);
8643 			list_del(&mac_node->node);
8644 			kfree(mac_node);
8645 		} else if (mac_node->state == HCLGE_MAC_ACTIVE) {
8646 			mac_node->state = HCLGE_MAC_TO_DEL;
8647 			list_move_tail(&mac_node->node, mac_list);
8648 		} else {
8649 			list_del(&mac_node->node);
8650 			kfree(mac_node);
8651 		}
8652 	}
8653 
8654 	return all_added;
8655 }
8656 
8657 static void hclge_sync_from_del_list(struct list_head *del_list,
8658 				     struct list_head *mac_list)
8659 {
8660 	struct hclge_mac_node *mac_node, *tmp, *new_node;
8661 
8662 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
8663 		new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr);
8664 		if (new_node) {
8665 			/* If the mac addr exists in the mac list, it means
8666 			 * received a new TO_ADD request during the time window
8667 			 * of configuring the mac address. For the mac node
8668 			 * state is TO_ADD, and the address is already in the
8669 			 * in the hardware(due to delete fail), so we just need
8670 			 * to change the mac node state to ACTIVE.
8671 			 */
8672 			new_node->state = HCLGE_MAC_ACTIVE;
8673 			list_del(&mac_node->node);
8674 			kfree(mac_node);
8675 		} else {
8676 			list_move_tail(&mac_node->node, mac_list);
8677 		}
8678 	}
8679 }
8680 
8681 static void hclge_update_overflow_flags(struct hclge_vport *vport,
8682 					enum HCLGE_MAC_ADDR_TYPE mac_type,
8683 					bool is_all_added)
8684 {
8685 	if (mac_type == HCLGE_MAC_ADDR_UC) {
8686 		if (is_all_added)
8687 			vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_UPE;
8688 		else
8689 			vport->overflow_promisc_flags |= HNAE3_OVERFLOW_UPE;
8690 	} else {
8691 		if (is_all_added)
8692 			vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_MPE;
8693 		else
8694 			vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE;
8695 	}
8696 }
8697 
8698 static void hclge_sync_vport_mac_table(struct hclge_vport *vport,
8699 				       enum HCLGE_MAC_ADDR_TYPE mac_type)
8700 {
8701 	struct hclge_mac_node *mac_node, *tmp, *new_node;
8702 	struct list_head tmp_add_list, tmp_del_list;
8703 	struct list_head *list;
8704 	bool all_added;
8705 
8706 	INIT_LIST_HEAD(&tmp_add_list);
8707 	INIT_LIST_HEAD(&tmp_del_list);
8708 
8709 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
8710 	 * we can add/delete these mac addr outside the spin lock
8711 	 */
8712 	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
8713 		&vport->uc_mac_list : &vport->mc_mac_list;
8714 
8715 	spin_lock_bh(&vport->mac_list_lock);
8716 
8717 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8718 		switch (mac_node->state) {
8719 		case HCLGE_MAC_TO_DEL:
8720 			list_move_tail(&mac_node->node, &tmp_del_list);
8721 			break;
8722 		case HCLGE_MAC_TO_ADD:
8723 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
8724 			if (!new_node)
8725 				goto stop_traverse;
8726 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
8727 			new_node->state = mac_node->state;
8728 			list_add_tail(&new_node->node, &tmp_add_list);
8729 			break;
8730 		default:
8731 			break;
8732 		}
8733 	}
8734 
8735 stop_traverse:
8736 	spin_unlock_bh(&vport->mac_list_lock);
8737 
8738 	/* delete first, in order to get max mac table space for adding */
8739 	hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type);
8740 	hclge_sync_vport_mac_list(vport, &tmp_add_list, mac_type);
8741 
8742 	/* if some mac addresses were added/deleted fail, move back to the
8743 	 * mac_list, and retry at next time.
8744 	 */
8745 	spin_lock_bh(&vport->mac_list_lock);
8746 
8747 	hclge_sync_from_del_list(&tmp_del_list, list);
8748 	all_added = hclge_sync_from_add_list(&tmp_add_list, list);
8749 
8750 	spin_unlock_bh(&vport->mac_list_lock);
8751 
8752 	hclge_update_overflow_flags(vport, mac_type, all_added);
8753 }
8754 
8755 static bool hclge_need_sync_mac_table(struct hclge_vport *vport)
8756 {
8757 	struct hclge_dev *hdev = vport->back;
8758 
8759 	if (test_bit(vport->vport_id, hdev->vport_config_block))
8760 		return false;
8761 
8762 	if (test_and_clear_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state))
8763 		return true;
8764 
8765 	return false;
8766 }
8767 
8768 static void hclge_sync_mac_table(struct hclge_dev *hdev)
8769 {
8770 	int i;
8771 
8772 	for (i = 0; i < hdev->num_alloc_vport; i++) {
8773 		struct hclge_vport *vport = &hdev->vport[i];
8774 
8775 		if (!hclge_need_sync_mac_table(vport))
8776 			continue;
8777 
8778 		hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_UC);
8779 		hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_MC);
8780 	}
8781 }
8782 
8783 static void hclge_build_del_list(struct list_head *list,
8784 				 bool is_del_list,
8785 				 struct list_head *tmp_del_list)
8786 {
8787 	struct hclge_mac_node *mac_cfg, *tmp;
8788 
8789 	list_for_each_entry_safe(mac_cfg, tmp, list, node) {
8790 		switch (mac_cfg->state) {
8791 		case HCLGE_MAC_TO_DEL:
8792 		case HCLGE_MAC_ACTIVE:
8793 			list_move_tail(&mac_cfg->node, tmp_del_list);
8794 			break;
8795 		case HCLGE_MAC_TO_ADD:
8796 			if (is_del_list) {
8797 				list_del(&mac_cfg->node);
8798 				kfree(mac_cfg);
8799 			}
8800 			break;
8801 		}
8802 	}
8803 }
8804 
8805 static void hclge_unsync_del_list(struct hclge_vport *vport,
8806 				  int (*unsync)(struct hclge_vport *vport,
8807 						const unsigned char *addr),
8808 				  bool is_del_list,
8809 				  struct list_head *tmp_del_list)
8810 {
8811 	struct hclge_mac_node *mac_cfg, *tmp;
8812 	int ret;
8813 
8814 	list_for_each_entry_safe(mac_cfg, tmp, tmp_del_list, node) {
8815 		ret = unsync(vport, mac_cfg->mac_addr);
8816 		if (!ret || ret == -ENOENT) {
8817 			/* clear all mac addr from hardware, but remain these
8818 			 * mac addr in the mac list, and restore them after
8819 			 * vf reset finished.
8820 			 */
8821 			if (!is_del_list &&
8822 			    mac_cfg->state == HCLGE_MAC_ACTIVE) {
8823 				mac_cfg->state = HCLGE_MAC_TO_ADD;
8824 			} else {
8825 				list_del(&mac_cfg->node);
8826 				kfree(mac_cfg);
8827 			}
8828 		} else if (is_del_list) {
8829 			mac_cfg->state = HCLGE_MAC_TO_DEL;
8830 		}
8831 	}
8832 }
8833 
8834 void hclge_rm_vport_all_mac_table(struct hclge_vport *vport, bool is_del_list,
8835 				  enum HCLGE_MAC_ADDR_TYPE mac_type)
8836 {
8837 	int (*unsync)(struct hclge_vport *vport, const unsigned char *addr);
8838 	struct hclge_dev *hdev = vport->back;
8839 	struct list_head tmp_del_list, *list;
8840 
8841 	if (mac_type == HCLGE_MAC_ADDR_UC) {
8842 		list = &vport->uc_mac_list;
8843 		unsync = hclge_rm_uc_addr_common;
8844 	} else {
8845 		list = &vport->mc_mac_list;
8846 		unsync = hclge_rm_mc_addr_common;
8847 	}
8848 
8849 	INIT_LIST_HEAD(&tmp_del_list);
8850 
8851 	if (!is_del_list)
8852 		set_bit(vport->vport_id, hdev->vport_config_block);
8853 
8854 	spin_lock_bh(&vport->mac_list_lock);
8855 
8856 	hclge_build_del_list(list, is_del_list, &tmp_del_list);
8857 
8858 	spin_unlock_bh(&vport->mac_list_lock);
8859 
8860 	hclge_unsync_del_list(vport, unsync, is_del_list, &tmp_del_list);
8861 
8862 	spin_lock_bh(&vport->mac_list_lock);
8863 
8864 	hclge_sync_from_del_list(&tmp_del_list, list);
8865 
8866 	spin_unlock_bh(&vport->mac_list_lock);
8867 }
8868 
8869 /* remove all mac address when uninitailize */
8870 static void hclge_uninit_vport_mac_list(struct hclge_vport *vport,
8871 					enum HCLGE_MAC_ADDR_TYPE mac_type)
8872 {
8873 	struct hclge_mac_node *mac_node, *tmp;
8874 	struct hclge_dev *hdev = vport->back;
8875 	struct list_head tmp_del_list, *list;
8876 
8877 	INIT_LIST_HEAD(&tmp_del_list);
8878 
8879 	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
8880 		&vport->uc_mac_list : &vport->mc_mac_list;
8881 
8882 	spin_lock_bh(&vport->mac_list_lock);
8883 
8884 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8885 		switch (mac_node->state) {
8886 		case HCLGE_MAC_TO_DEL:
8887 		case HCLGE_MAC_ACTIVE:
8888 			list_move_tail(&mac_node->node, &tmp_del_list);
8889 			break;
8890 		case HCLGE_MAC_TO_ADD:
8891 			list_del(&mac_node->node);
8892 			kfree(mac_node);
8893 			break;
8894 		}
8895 	}
8896 
8897 	spin_unlock_bh(&vport->mac_list_lock);
8898 
8899 	hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type);
8900 
8901 	if (!list_empty(&tmp_del_list))
8902 		dev_warn(&hdev->pdev->dev,
8903 			 "uninit %s mac list for vport %u not completely.\n",
8904 			 mac_type == HCLGE_MAC_ADDR_UC ? "uc" : "mc",
8905 			 vport->vport_id);
8906 
8907 	list_for_each_entry_safe(mac_node, tmp, &tmp_del_list, node) {
8908 		list_del(&mac_node->node);
8909 		kfree(mac_node);
8910 	}
8911 }
8912 
8913 static void hclge_uninit_mac_table(struct hclge_dev *hdev)
8914 {
8915 	struct hclge_vport *vport;
8916 	int i;
8917 
8918 	for (i = 0; i < hdev->num_alloc_vport; i++) {
8919 		vport = &hdev->vport[i];
8920 		hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_UC);
8921 		hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_MC);
8922 	}
8923 }
8924 
8925 static int hclge_get_mac_ethertype_cmd_status(struct hclge_dev *hdev,
8926 					      u16 cmdq_resp, u8 resp_code)
8927 {
8928 #define HCLGE_ETHERTYPE_SUCCESS_ADD		0
8929 #define HCLGE_ETHERTYPE_ALREADY_ADD		1
8930 #define HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW	2
8931 #define HCLGE_ETHERTYPE_KEY_CONFLICT		3
8932 
8933 	int return_status;
8934 
8935 	if (cmdq_resp) {
8936 		dev_err(&hdev->pdev->dev,
8937 			"cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
8938 			cmdq_resp);
8939 		return -EIO;
8940 	}
8941 
8942 	switch (resp_code) {
8943 	case HCLGE_ETHERTYPE_SUCCESS_ADD:
8944 	case HCLGE_ETHERTYPE_ALREADY_ADD:
8945 		return_status = 0;
8946 		break;
8947 	case HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW:
8948 		dev_err(&hdev->pdev->dev,
8949 			"add mac ethertype failed for manager table overflow.\n");
8950 		return_status = -EIO;
8951 		break;
8952 	case HCLGE_ETHERTYPE_KEY_CONFLICT:
8953 		dev_err(&hdev->pdev->dev,
8954 			"add mac ethertype failed for key conflict.\n");
8955 		return_status = -EIO;
8956 		break;
8957 	default:
8958 		dev_err(&hdev->pdev->dev,
8959 			"add mac ethertype failed for undefined, code=%u.\n",
8960 			resp_code);
8961 		return_status = -EIO;
8962 	}
8963 
8964 	return return_status;
8965 }
8966 
8967 static int hclge_set_vf_mac(struct hnae3_handle *handle, int vf,
8968 			    u8 *mac_addr)
8969 {
8970 	struct hclge_vport *vport = hclge_get_vport(handle);
8971 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8972 	struct hclge_dev *hdev = vport->back;
8973 
8974 	vport = hclge_get_vf_vport(hdev, vf);
8975 	if (!vport)
8976 		return -EINVAL;
8977 
8978 	hnae3_format_mac_addr(format_mac_addr, mac_addr);
8979 	if (ether_addr_equal(mac_addr, vport->vf_info.mac)) {
8980 		dev_info(&hdev->pdev->dev,
8981 			 "Specified MAC(=%s) is same as before, no change committed!\n",
8982 			 format_mac_addr);
8983 		return 0;
8984 	}
8985 
8986 	ether_addr_copy(vport->vf_info.mac, mac_addr);
8987 
8988 	/* there is a timewindow for PF to know VF unalive, it may
8989 	 * cause send mailbox fail, but it doesn't matter, VF will
8990 	 * query it when reinit.
8991 	 */
8992 	if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) {
8993 		dev_info(&hdev->pdev->dev,
8994 			 "MAC of VF %d has been set to %s, and it will be reinitialized!\n",
8995 			 vf, format_mac_addr);
8996 		(void)hclge_inform_reset_assert_to_vf(vport);
8997 		return 0;
8998 	}
8999 
9000 	dev_info(&hdev->pdev->dev, "MAC of VF %d has been set to %s\n",
9001 		 vf, format_mac_addr);
9002 	return 0;
9003 }
9004 
9005 static int hclge_add_mgr_tbl(struct hclge_dev *hdev,
9006 			     const struct hclge_mac_mgr_tbl_entry_cmd *req)
9007 {
9008 	struct hclge_desc desc;
9009 	u8 resp_code;
9010 	u16 retval;
9011 	int ret;
9012 
9013 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_ETHTYPE_ADD, false);
9014 	memcpy(desc.data, req, sizeof(struct hclge_mac_mgr_tbl_entry_cmd));
9015 
9016 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9017 	if (ret) {
9018 		dev_err(&hdev->pdev->dev,
9019 			"add mac ethertype failed for cmd_send, ret =%d.\n",
9020 			ret);
9021 		return ret;
9022 	}
9023 
9024 	resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
9025 	retval = le16_to_cpu(desc.retval);
9026 
9027 	return hclge_get_mac_ethertype_cmd_status(hdev, retval, resp_code);
9028 }
9029 
9030 static int init_mgr_tbl(struct hclge_dev *hdev)
9031 {
9032 	int ret;
9033 	int i;
9034 
9035 	for (i = 0; i < ARRAY_SIZE(hclge_mgr_table); i++) {
9036 		ret = hclge_add_mgr_tbl(hdev, &hclge_mgr_table[i]);
9037 		if (ret) {
9038 			dev_err(&hdev->pdev->dev,
9039 				"add mac ethertype failed, ret =%d.\n",
9040 				ret);
9041 			return ret;
9042 		}
9043 	}
9044 
9045 	return 0;
9046 }
9047 
9048 static void hclge_get_mac_addr(struct hnae3_handle *handle, u8 *p)
9049 {
9050 	struct hclge_vport *vport = hclge_get_vport(handle);
9051 	struct hclge_dev *hdev = vport->back;
9052 
9053 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
9054 }
9055 
9056 int hclge_update_mac_node_for_dev_addr(struct hclge_vport *vport,
9057 				       const u8 *old_addr, const u8 *new_addr)
9058 {
9059 	struct list_head *list = &vport->uc_mac_list;
9060 	struct hclge_mac_node *old_node, *new_node;
9061 
9062 	new_node = hclge_find_mac_node(list, new_addr);
9063 	if (!new_node) {
9064 		new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
9065 		if (!new_node)
9066 			return -ENOMEM;
9067 
9068 		new_node->state = HCLGE_MAC_TO_ADD;
9069 		ether_addr_copy(new_node->mac_addr, new_addr);
9070 		list_add(&new_node->node, list);
9071 	} else {
9072 		if (new_node->state == HCLGE_MAC_TO_DEL)
9073 			new_node->state = HCLGE_MAC_ACTIVE;
9074 
9075 		/* make sure the new addr is in the list head, avoid dev
9076 		 * addr may be not re-added into mac table for the umv space
9077 		 * limitation after global/imp reset which will clear mac
9078 		 * table by hardware.
9079 		 */
9080 		list_move(&new_node->node, list);
9081 	}
9082 
9083 	if (old_addr && !ether_addr_equal(old_addr, new_addr)) {
9084 		old_node = hclge_find_mac_node(list, old_addr);
9085 		if (old_node) {
9086 			if (old_node->state == HCLGE_MAC_TO_ADD) {
9087 				list_del(&old_node->node);
9088 				kfree(old_node);
9089 			} else {
9090 				old_node->state = HCLGE_MAC_TO_DEL;
9091 			}
9092 		}
9093 	}
9094 
9095 	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
9096 
9097 	return 0;
9098 }
9099 
9100 static int hclge_set_mac_addr(struct hnae3_handle *handle, const void *p,
9101 			      bool is_first)
9102 {
9103 	const unsigned char *new_addr = (const unsigned char *)p;
9104 	struct hclge_vport *vport = hclge_get_vport(handle);
9105 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
9106 	struct hclge_dev *hdev = vport->back;
9107 	unsigned char *old_addr = NULL;
9108 	int ret;
9109 
9110 	/* mac addr check */
9111 	if (is_zero_ether_addr(new_addr) ||
9112 	    is_broadcast_ether_addr(new_addr) ||
9113 	    is_multicast_ether_addr(new_addr)) {
9114 		hnae3_format_mac_addr(format_mac_addr, new_addr);
9115 		dev_err(&hdev->pdev->dev,
9116 			"change uc mac err! invalid mac: %s.\n",
9117 			 format_mac_addr);
9118 		return -EINVAL;
9119 	}
9120 
9121 	ret = hclge_pause_addr_cfg(hdev, new_addr);
9122 	if (ret) {
9123 		dev_err(&hdev->pdev->dev,
9124 			"failed to configure mac pause address, ret = %d\n",
9125 			ret);
9126 		return ret;
9127 	}
9128 
9129 	if (!is_first)
9130 		old_addr = hdev->hw.mac.mac_addr;
9131 
9132 	spin_lock_bh(&vport->mac_list_lock);
9133 	ret = hclge_update_mac_node_for_dev_addr(vport, old_addr, new_addr);
9134 	if (ret) {
9135 		hnae3_format_mac_addr(format_mac_addr, new_addr);
9136 		dev_err(&hdev->pdev->dev,
9137 			"failed to change the mac addr:%s, ret = %d\n",
9138 			format_mac_addr, ret);
9139 		spin_unlock_bh(&vport->mac_list_lock);
9140 
9141 		if (!is_first)
9142 			hclge_pause_addr_cfg(hdev, old_addr);
9143 
9144 		return ret;
9145 	}
9146 	/* we must update dev addr with spin lock protect, preventing dev addr
9147 	 * being removed by set_rx_mode path.
9148 	 */
9149 	ether_addr_copy(hdev->hw.mac.mac_addr, new_addr);
9150 	spin_unlock_bh(&vport->mac_list_lock);
9151 
9152 	hclge_task_schedule(hdev, 0);
9153 
9154 	return 0;
9155 }
9156 
9157 static int hclge_mii_ioctl(struct hclge_dev *hdev, struct ifreq *ifr, int cmd)
9158 {
9159 	struct mii_ioctl_data *data = if_mii(ifr);
9160 
9161 	if (!hnae3_dev_phy_imp_supported(hdev))
9162 		return -EOPNOTSUPP;
9163 
9164 	switch (cmd) {
9165 	case SIOCGMIIPHY:
9166 		data->phy_id = hdev->hw.mac.phy_addr;
9167 		/* this command reads phy id and register at the same time */
9168 		fallthrough;
9169 	case SIOCGMIIREG:
9170 		data->val_out = hclge_read_phy_reg(hdev, data->reg_num);
9171 		return 0;
9172 
9173 	case SIOCSMIIREG:
9174 		return hclge_write_phy_reg(hdev, data->reg_num, data->val_in);
9175 	default:
9176 		return -EOPNOTSUPP;
9177 	}
9178 }
9179 
9180 static int hclge_do_ioctl(struct hnae3_handle *handle, struct ifreq *ifr,
9181 			  int cmd)
9182 {
9183 	struct hclge_vport *vport = hclge_get_vport(handle);
9184 	struct hclge_dev *hdev = vport->back;
9185 
9186 	switch (cmd) {
9187 	case SIOCGHWTSTAMP:
9188 		return hclge_ptp_get_cfg(hdev, ifr);
9189 	case SIOCSHWTSTAMP:
9190 		return hclge_ptp_set_cfg(hdev, ifr);
9191 	default:
9192 		if (!hdev->hw.mac.phydev)
9193 			return hclge_mii_ioctl(hdev, ifr, cmd);
9194 	}
9195 
9196 	return phy_mii_ioctl(hdev->hw.mac.phydev, ifr, cmd);
9197 }
9198 
9199 static int hclge_set_port_vlan_filter_bypass(struct hclge_dev *hdev, u8 vf_id,
9200 					     bool bypass_en)
9201 {
9202 	struct hclge_port_vlan_filter_bypass_cmd *req;
9203 	struct hclge_desc desc;
9204 	int ret;
9205 
9206 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PORT_VLAN_BYPASS, false);
9207 	req = (struct hclge_port_vlan_filter_bypass_cmd *)desc.data;
9208 	req->vf_id = vf_id;
9209 	hnae3_set_bit(req->bypass_state, HCLGE_INGRESS_BYPASS_B,
9210 		      bypass_en ? 1 : 0);
9211 
9212 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9213 	if (ret)
9214 		dev_err(&hdev->pdev->dev,
9215 			"failed to set vport%u port vlan filter bypass state, ret = %d.\n",
9216 			vf_id, ret);
9217 
9218 	return ret;
9219 }
9220 
9221 static int hclge_set_vlan_filter_ctrl(struct hclge_dev *hdev, u8 vlan_type,
9222 				      u8 fe_type, bool filter_en, u8 vf_id)
9223 {
9224 	struct hclge_vlan_filter_ctrl_cmd *req;
9225 	struct hclge_desc desc;
9226 	int ret;
9227 
9228 	/* read current vlan filter parameter */
9229 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_CTRL, true);
9230 	req = (struct hclge_vlan_filter_ctrl_cmd *)desc.data;
9231 	req->vlan_type = vlan_type;
9232 	req->vf_id = vf_id;
9233 
9234 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9235 	if (ret) {
9236 		dev_err(&hdev->pdev->dev, "failed to get vport%u vlan filter config, ret = %d.\n",
9237 			vf_id, ret);
9238 		return ret;
9239 	}
9240 
9241 	/* modify and write new config parameter */
9242 	hclge_comm_cmd_reuse_desc(&desc, false);
9243 	req->vlan_fe = filter_en ?
9244 			(req->vlan_fe | fe_type) : (req->vlan_fe & ~fe_type);
9245 
9246 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9247 	if (ret)
9248 		dev_err(&hdev->pdev->dev, "failed to set vport%u vlan filter, ret = %d.\n",
9249 			vf_id, ret);
9250 
9251 	return ret;
9252 }
9253 
9254 static int hclge_set_vport_vlan_filter(struct hclge_vport *vport, bool enable)
9255 {
9256 	struct hclge_dev *hdev = vport->back;
9257 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
9258 	int ret;
9259 
9260 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
9261 		return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9262 						  HCLGE_FILTER_FE_EGRESS_V1_B,
9263 						  enable, vport->vport_id);
9264 
9265 	ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9266 					 HCLGE_FILTER_FE_EGRESS, enable,
9267 					 vport->vport_id);
9268 	if (ret)
9269 		return ret;
9270 
9271 	if (test_bit(HNAE3_DEV_SUPPORT_PORT_VLAN_BYPASS_B, ae_dev->caps)) {
9272 		ret = hclge_set_port_vlan_filter_bypass(hdev, vport->vport_id,
9273 							!enable);
9274 	} else if (!vport->vport_id) {
9275 		if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
9276 			enable = false;
9277 
9278 		ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT,
9279 						 HCLGE_FILTER_FE_INGRESS,
9280 						 enable, 0);
9281 	}
9282 
9283 	return ret;
9284 }
9285 
9286 static bool hclge_need_enable_vport_vlan_filter(struct hclge_vport *vport)
9287 {
9288 	struct hnae3_handle *handle = &vport->nic;
9289 	struct hclge_vport_vlan_cfg *vlan, *tmp;
9290 	struct hclge_dev *hdev = vport->back;
9291 
9292 	if (vport->vport_id) {
9293 		if (vport->port_base_vlan_cfg.state !=
9294 			HNAE3_PORT_BASE_VLAN_DISABLE)
9295 			return true;
9296 
9297 		if (vport->vf_info.trusted && vport->vf_info.request_uc_en)
9298 			return false;
9299 	} else if (handle->netdev_flags & HNAE3_USER_UPE) {
9300 		return false;
9301 	}
9302 
9303 	if (!vport->req_vlan_fltr_en)
9304 		return false;
9305 
9306 	/* compatible with former device, always enable vlan filter */
9307 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps))
9308 		return true;
9309 
9310 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node)
9311 		if (vlan->vlan_id != 0)
9312 			return true;
9313 
9314 	return false;
9315 }
9316 
9317 int hclge_enable_vport_vlan_filter(struct hclge_vport *vport, bool request_en)
9318 {
9319 	struct hclge_dev *hdev = vport->back;
9320 	bool need_en;
9321 	int ret;
9322 
9323 	mutex_lock(&hdev->vport_lock);
9324 
9325 	vport->req_vlan_fltr_en = request_en;
9326 
9327 	need_en = hclge_need_enable_vport_vlan_filter(vport);
9328 	if (need_en == vport->cur_vlan_fltr_en) {
9329 		mutex_unlock(&hdev->vport_lock);
9330 		return 0;
9331 	}
9332 
9333 	ret = hclge_set_vport_vlan_filter(vport, need_en);
9334 	if (ret) {
9335 		mutex_unlock(&hdev->vport_lock);
9336 		return ret;
9337 	}
9338 
9339 	vport->cur_vlan_fltr_en = need_en;
9340 
9341 	mutex_unlock(&hdev->vport_lock);
9342 
9343 	return 0;
9344 }
9345 
9346 static int hclge_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
9347 {
9348 	struct hclge_vport *vport = hclge_get_vport(handle);
9349 
9350 	return hclge_enable_vport_vlan_filter(vport, enable);
9351 }
9352 
9353 static int hclge_set_vf_vlan_filter_cmd(struct hclge_dev *hdev, u16 vfid,
9354 					bool is_kill, u16 vlan,
9355 					struct hclge_desc *desc)
9356 {
9357 	struct hclge_vlan_filter_vf_cfg_cmd *req0;
9358 	struct hclge_vlan_filter_vf_cfg_cmd *req1;
9359 	u8 vf_byte_val;
9360 	u8 vf_byte_off;
9361 	int ret;
9362 
9363 	hclge_cmd_setup_basic_desc(&desc[0],
9364 				   HCLGE_OPC_VLAN_FILTER_VF_CFG, false);
9365 	hclge_cmd_setup_basic_desc(&desc[1],
9366 				   HCLGE_OPC_VLAN_FILTER_VF_CFG, false);
9367 
9368 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
9369 
9370 	vf_byte_off = vfid / 8;
9371 	vf_byte_val = 1 << (vfid % 8);
9372 
9373 	req0 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data;
9374 	req1 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[1].data;
9375 
9376 	req0->vlan_id  = cpu_to_le16(vlan);
9377 	req0->vlan_cfg = is_kill;
9378 
9379 	if (vf_byte_off < HCLGE_MAX_VF_BYTES)
9380 		req0->vf_bitmap[vf_byte_off] = vf_byte_val;
9381 	else
9382 		req1->vf_bitmap[vf_byte_off - HCLGE_MAX_VF_BYTES] = vf_byte_val;
9383 
9384 	ret = hclge_cmd_send(&hdev->hw, desc, 2);
9385 	if (ret) {
9386 		dev_err(&hdev->pdev->dev,
9387 			"Send vf vlan command fail, ret =%d.\n",
9388 			ret);
9389 		return ret;
9390 	}
9391 
9392 	return 0;
9393 }
9394 
9395 static int hclge_check_vf_vlan_cmd_status(struct hclge_dev *hdev, u16 vfid,
9396 					  bool is_kill, struct hclge_desc *desc)
9397 {
9398 	struct hclge_vlan_filter_vf_cfg_cmd *req;
9399 
9400 	req = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data;
9401 
9402 	if (!is_kill) {
9403 #define HCLGE_VF_VLAN_NO_ENTRY	2
9404 		if (!req->resp_code || req->resp_code == 1)
9405 			return 0;
9406 
9407 		if (req->resp_code == HCLGE_VF_VLAN_NO_ENTRY) {
9408 			set_bit(vfid, hdev->vf_vlan_full);
9409 			dev_warn(&hdev->pdev->dev,
9410 				 "vf vlan table is full, vf vlan filter is disabled\n");
9411 			return 0;
9412 		}
9413 
9414 		dev_err(&hdev->pdev->dev,
9415 			"Add vf vlan filter fail, ret =%u.\n",
9416 			req->resp_code);
9417 	} else {
9418 #define HCLGE_VF_VLAN_DEL_NO_FOUND	1
9419 		if (!req->resp_code)
9420 			return 0;
9421 
9422 		/* vf vlan filter is disabled when vf vlan table is full,
9423 		 * then new vlan id will not be added into vf vlan table.
9424 		 * Just return 0 without warning, avoid massive verbose
9425 		 * print logs when unload.
9426 		 */
9427 		if (req->resp_code == HCLGE_VF_VLAN_DEL_NO_FOUND)
9428 			return 0;
9429 
9430 		dev_err(&hdev->pdev->dev,
9431 			"Kill vf vlan filter fail, ret =%u.\n",
9432 			req->resp_code);
9433 	}
9434 
9435 	return -EIO;
9436 }
9437 
9438 static int hclge_set_vf_vlan_common(struct hclge_dev *hdev, u16 vfid,
9439 				    bool is_kill, u16 vlan)
9440 {
9441 	struct hclge_vport *vport = &hdev->vport[vfid];
9442 	struct hclge_desc desc[2];
9443 	int ret;
9444 
9445 	/* if vf vlan table is full, firmware will close vf vlan filter, it
9446 	 * is unable and unnecessary to add new vlan id to vf vlan filter.
9447 	 * If spoof check is enable, and vf vlan is full, it shouldn't add
9448 	 * new vlan, because tx packets with these vlan id will be dropped.
9449 	 */
9450 	if (test_bit(vfid, hdev->vf_vlan_full) && !is_kill) {
9451 		if (vport->vf_info.spoofchk && vlan) {
9452 			dev_err(&hdev->pdev->dev,
9453 				"Can't add vlan due to spoof check is on and vf vlan table is full\n");
9454 			return -EPERM;
9455 		}
9456 		return 0;
9457 	}
9458 
9459 	ret = hclge_set_vf_vlan_filter_cmd(hdev, vfid, is_kill, vlan, desc);
9460 	if (ret)
9461 		return ret;
9462 
9463 	return hclge_check_vf_vlan_cmd_status(hdev, vfid, is_kill, desc);
9464 }
9465 
9466 static int hclge_set_port_vlan_filter(struct hclge_dev *hdev, __be16 proto,
9467 				      u16 vlan_id, bool is_kill)
9468 {
9469 	struct hclge_vlan_filter_pf_cfg_cmd *req;
9470 	struct hclge_desc desc;
9471 	u8 vlan_offset_byte_val;
9472 	u8 vlan_offset_byte;
9473 	u8 vlan_offset_160;
9474 	int ret;
9475 
9476 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_PF_CFG, false);
9477 
9478 	vlan_offset_160 = vlan_id / HCLGE_VLAN_ID_OFFSET_STEP;
9479 	vlan_offset_byte = (vlan_id % HCLGE_VLAN_ID_OFFSET_STEP) /
9480 			   HCLGE_VLAN_BYTE_SIZE;
9481 	vlan_offset_byte_val = 1 << (vlan_id % HCLGE_VLAN_BYTE_SIZE);
9482 
9483 	req = (struct hclge_vlan_filter_pf_cfg_cmd *)desc.data;
9484 	req->vlan_offset = vlan_offset_160;
9485 	req->vlan_cfg = is_kill;
9486 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
9487 
9488 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9489 	if (ret)
9490 		dev_err(&hdev->pdev->dev,
9491 			"port vlan command, send fail, ret =%d.\n", ret);
9492 	return ret;
9493 }
9494 
9495 static bool hclge_need_update_port_vlan(struct hclge_dev *hdev, u16 vport_id,
9496 					u16 vlan_id, bool is_kill)
9497 {
9498 	/* vlan 0 may be added twice when 8021q module is enabled */
9499 	if (!is_kill && !vlan_id &&
9500 	    test_bit(vport_id, hdev->vlan_table[vlan_id]))
9501 		return false;
9502 
9503 	if (!is_kill && test_and_set_bit(vport_id, hdev->vlan_table[vlan_id])) {
9504 		dev_warn(&hdev->pdev->dev,
9505 			 "Add port vlan failed, vport %u is already in vlan %u\n",
9506 			 vport_id, vlan_id);
9507 		return false;
9508 	}
9509 
9510 	if (is_kill &&
9511 	    !test_and_clear_bit(vport_id, hdev->vlan_table[vlan_id])) {
9512 		dev_warn(&hdev->pdev->dev,
9513 			 "Delete port vlan failed, vport %u is not in vlan %u\n",
9514 			 vport_id, vlan_id);
9515 		return false;
9516 	}
9517 
9518 	return true;
9519 }
9520 
9521 static int hclge_set_vlan_filter_hw(struct hclge_dev *hdev, __be16 proto,
9522 				    u16 vport_id, u16 vlan_id,
9523 				    bool is_kill)
9524 {
9525 	u16 vport_idx, vport_num = 0;
9526 	int ret;
9527 
9528 	if (is_kill && !vlan_id)
9529 		return 0;
9530 
9531 	if (vlan_id >= VLAN_N_VID)
9532 		return -EINVAL;
9533 
9534 	ret = hclge_set_vf_vlan_common(hdev, vport_id, is_kill, vlan_id);
9535 	if (ret) {
9536 		dev_err(&hdev->pdev->dev,
9537 			"Set %u vport vlan filter config fail, ret =%d.\n",
9538 			vport_id, ret);
9539 		return ret;
9540 	}
9541 
9542 	if (!hclge_need_update_port_vlan(hdev, vport_id, vlan_id, is_kill))
9543 		return 0;
9544 
9545 	for_each_set_bit(vport_idx, hdev->vlan_table[vlan_id], HCLGE_VPORT_NUM)
9546 		vport_num++;
9547 
9548 	if ((is_kill && vport_num == 0) || (!is_kill && vport_num == 1))
9549 		ret = hclge_set_port_vlan_filter(hdev, proto, vlan_id,
9550 						 is_kill);
9551 
9552 	return ret;
9553 }
9554 
9555 static int hclge_set_vlan_tx_offload_cfg(struct hclge_vport *vport)
9556 {
9557 	struct hclge_tx_vtag_cfg *vcfg = &vport->txvlan_cfg;
9558 	struct hclge_vport_vtag_tx_cfg_cmd *req;
9559 	struct hclge_dev *hdev = vport->back;
9560 	struct hclge_desc desc;
9561 	u16 bmap_index;
9562 	int status;
9563 
9564 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_TX_CFG, false);
9565 
9566 	req = (struct hclge_vport_vtag_tx_cfg_cmd *)desc.data;
9567 	req->def_vlan_tag1 = cpu_to_le16(vcfg->default_tag1);
9568 	req->def_vlan_tag2 = cpu_to_le16(vcfg->default_tag2);
9569 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG1_B,
9570 		      vcfg->accept_tag1 ? 1 : 0);
9571 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG1_B,
9572 		      vcfg->accept_untag1 ? 1 : 0);
9573 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG2_B,
9574 		      vcfg->accept_tag2 ? 1 : 0);
9575 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG2_B,
9576 		      vcfg->accept_untag2 ? 1 : 0);
9577 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG1_EN_B,
9578 		      vcfg->insert_tag1_en ? 1 : 0);
9579 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG2_EN_B,
9580 		      vcfg->insert_tag2_en ? 1 : 0);
9581 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_TAG_SHIFT_MODE_EN_B,
9582 		      vcfg->tag_shift_mode_en ? 1 : 0);
9583 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_CFG_NIC_ROCE_SEL_B, 0);
9584 
9585 	req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD;
9586 	bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD /
9587 			HCLGE_VF_NUM_PER_BYTE;
9588 	req->vf_bitmap[bmap_index] =
9589 		1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE);
9590 
9591 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9592 	if (status)
9593 		dev_err(&hdev->pdev->dev,
9594 			"Send port txvlan cfg command fail, ret =%d\n",
9595 			status);
9596 
9597 	return status;
9598 }
9599 
9600 static int hclge_set_vlan_rx_offload_cfg(struct hclge_vport *vport)
9601 {
9602 	struct hclge_rx_vtag_cfg *vcfg = &vport->rxvlan_cfg;
9603 	struct hclge_vport_vtag_rx_cfg_cmd *req;
9604 	struct hclge_dev *hdev = vport->back;
9605 	struct hclge_desc desc;
9606 	u16 bmap_index;
9607 	int status;
9608 
9609 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_RX_CFG, false);
9610 
9611 	req = (struct hclge_vport_vtag_rx_cfg_cmd *)desc.data;
9612 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG1_EN_B,
9613 		      vcfg->strip_tag1_en ? 1 : 0);
9614 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG2_EN_B,
9615 		      vcfg->strip_tag2_en ? 1 : 0);
9616 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG1_EN_B,
9617 		      vcfg->vlan1_vlan_prionly ? 1 : 0);
9618 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG2_EN_B,
9619 		      vcfg->vlan2_vlan_prionly ? 1 : 0);
9620 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG1_EN_B,
9621 		      vcfg->strip_tag1_discard_en ? 1 : 0);
9622 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG2_EN_B,
9623 		      vcfg->strip_tag2_discard_en ? 1 : 0);
9624 
9625 	req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD;
9626 	bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD /
9627 			HCLGE_VF_NUM_PER_BYTE;
9628 	req->vf_bitmap[bmap_index] =
9629 		1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE);
9630 
9631 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9632 	if (status)
9633 		dev_err(&hdev->pdev->dev,
9634 			"Send port rxvlan cfg command fail, ret =%d\n",
9635 			status);
9636 
9637 	return status;
9638 }
9639 
9640 static int hclge_vlan_offload_cfg(struct hclge_vport *vport,
9641 				  u16 port_base_vlan_state,
9642 				  u16 vlan_tag, u8 qos)
9643 {
9644 	int ret;
9645 
9646 	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
9647 		vport->txvlan_cfg.accept_tag1 = true;
9648 		vport->txvlan_cfg.insert_tag1_en = false;
9649 		vport->txvlan_cfg.default_tag1 = 0;
9650 	} else {
9651 		struct hnae3_ae_dev *ae_dev = pci_get_drvdata(vport->nic.pdev);
9652 
9653 		vport->txvlan_cfg.accept_tag1 =
9654 			ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3;
9655 		vport->txvlan_cfg.insert_tag1_en = true;
9656 		vport->txvlan_cfg.default_tag1 = (qos << VLAN_PRIO_SHIFT) |
9657 						 vlan_tag;
9658 	}
9659 
9660 	vport->txvlan_cfg.accept_untag1 = true;
9661 
9662 	/* accept_tag2 and accept_untag2 are not supported on
9663 	 * pdev revision(0x20), new revision support them,
9664 	 * this two fields can not be configured by user.
9665 	 */
9666 	vport->txvlan_cfg.accept_tag2 = true;
9667 	vport->txvlan_cfg.accept_untag2 = true;
9668 	vport->txvlan_cfg.insert_tag2_en = false;
9669 	vport->txvlan_cfg.default_tag2 = 0;
9670 	vport->txvlan_cfg.tag_shift_mode_en = true;
9671 
9672 	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
9673 		vport->rxvlan_cfg.strip_tag1_en = false;
9674 		vport->rxvlan_cfg.strip_tag2_en =
9675 				vport->rxvlan_cfg.rx_vlan_offload_en;
9676 		vport->rxvlan_cfg.strip_tag2_discard_en = false;
9677 	} else {
9678 		vport->rxvlan_cfg.strip_tag1_en =
9679 				vport->rxvlan_cfg.rx_vlan_offload_en;
9680 		vport->rxvlan_cfg.strip_tag2_en = true;
9681 		vport->rxvlan_cfg.strip_tag2_discard_en = true;
9682 	}
9683 
9684 	vport->rxvlan_cfg.strip_tag1_discard_en = false;
9685 	vport->rxvlan_cfg.vlan1_vlan_prionly = false;
9686 	vport->rxvlan_cfg.vlan2_vlan_prionly = false;
9687 
9688 	ret = hclge_set_vlan_tx_offload_cfg(vport);
9689 	if (ret)
9690 		return ret;
9691 
9692 	return hclge_set_vlan_rx_offload_cfg(vport);
9693 }
9694 
9695 static int hclge_set_vlan_protocol_type(struct hclge_dev *hdev)
9696 {
9697 	struct hclge_rx_vlan_type_cfg_cmd *rx_req;
9698 	struct hclge_tx_vlan_type_cfg_cmd *tx_req;
9699 	struct hclge_desc desc;
9700 	int status;
9701 
9702 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_TYPE_ID, false);
9703 	rx_req = (struct hclge_rx_vlan_type_cfg_cmd *)desc.data;
9704 	rx_req->ot_fst_vlan_type =
9705 		cpu_to_le16(hdev->vlan_type_cfg.rx_ot_fst_vlan_type);
9706 	rx_req->ot_sec_vlan_type =
9707 		cpu_to_le16(hdev->vlan_type_cfg.rx_ot_sec_vlan_type);
9708 	rx_req->in_fst_vlan_type =
9709 		cpu_to_le16(hdev->vlan_type_cfg.rx_in_fst_vlan_type);
9710 	rx_req->in_sec_vlan_type =
9711 		cpu_to_le16(hdev->vlan_type_cfg.rx_in_sec_vlan_type);
9712 
9713 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9714 	if (status) {
9715 		dev_err(&hdev->pdev->dev,
9716 			"Send rxvlan protocol type command fail, ret =%d\n",
9717 			status);
9718 		return status;
9719 	}
9720 
9721 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_INSERT, false);
9722 
9723 	tx_req = (struct hclge_tx_vlan_type_cfg_cmd *)desc.data;
9724 	tx_req->ot_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_ot_vlan_type);
9725 	tx_req->in_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_in_vlan_type);
9726 
9727 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9728 	if (status)
9729 		dev_err(&hdev->pdev->dev,
9730 			"Send txvlan protocol type command fail, ret =%d\n",
9731 			status);
9732 
9733 	return status;
9734 }
9735 
9736 static int hclge_init_vlan_filter(struct hclge_dev *hdev)
9737 {
9738 	struct hclge_vport *vport;
9739 	int ret;
9740 	int i;
9741 
9742 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
9743 		return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9744 						  HCLGE_FILTER_FE_EGRESS_V1_B,
9745 						  true, 0);
9746 
9747 	/* for revision 0x21, vf vlan filter is per function */
9748 	for (i = 0; i < hdev->num_alloc_vport; i++) {
9749 		vport = &hdev->vport[i];
9750 		ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9751 						 HCLGE_FILTER_FE_EGRESS, true,
9752 						 vport->vport_id);
9753 		if (ret)
9754 			return ret;
9755 		vport->cur_vlan_fltr_en = true;
9756 	}
9757 
9758 	return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT,
9759 					  HCLGE_FILTER_FE_INGRESS, true, 0);
9760 }
9761 
9762 static int hclge_init_vlan_type(struct hclge_dev *hdev)
9763 {
9764 	hdev->vlan_type_cfg.rx_in_fst_vlan_type = ETH_P_8021Q;
9765 	hdev->vlan_type_cfg.rx_in_sec_vlan_type = ETH_P_8021Q;
9766 	hdev->vlan_type_cfg.rx_ot_fst_vlan_type = ETH_P_8021Q;
9767 	hdev->vlan_type_cfg.rx_ot_sec_vlan_type = ETH_P_8021Q;
9768 	hdev->vlan_type_cfg.tx_ot_vlan_type = ETH_P_8021Q;
9769 	hdev->vlan_type_cfg.tx_in_vlan_type = ETH_P_8021Q;
9770 
9771 	return hclge_set_vlan_protocol_type(hdev);
9772 }
9773 
9774 static int hclge_init_vport_vlan_offload(struct hclge_dev *hdev)
9775 {
9776 	struct hclge_port_base_vlan_config *cfg;
9777 	struct hclge_vport *vport;
9778 	int ret;
9779 	int i;
9780 
9781 	for (i = 0; i < hdev->num_alloc_vport; i++) {
9782 		vport = &hdev->vport[i];
9783 		cfg = &vport->port_base_vlan_cfg;
9784 
9785 		ret = hclge_vlan_offload_cfg(vport, cfg->state,
9786 					     cfg->vlan_info.vlan_tag,
9787 					     cfg->vlan_info.qos);
9788 		if (ret)
9789 			return ret;
9790 	}
9791 	return 0;
9792 }
9793 
9794 static int hclge_init_vlan_config(struct hclge_dev *hdev)
9795 {
9796 	struct hnae3_handle *handle = &hdev->vport[0].nic;
9797 	int ret;
9798 
9799 	ret = hclge_init_vlan_filter(hdev);
9800 	if (ret)
9801 		return ret;
9802 
9803 	ret = hclge_init_vlan_type(hdev);
9804 	if (ret)
9805 		return ret;
9806 
9807 	ret = hclge_init_vport_vlan_offload(hdev);
9808 	if (ret)
9809 		return ret;
9810 
9811 	return hclge_set_vlan_filter(handle, htons(ETH_P_8021Q), 0, false);
9812 }
9813 
9814 static void hclge_add_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id,
9815 				       bool writen_to_tbl)
9816 {
9817 	struct hclge_vport_vlan_cfg *vlan, *tmp;
9818 	struct hclge_dev *hdev = vport->back;
9819 
9820 	mutex_lock(&hdev->vport_lock);
9821 
9822 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
9823 		if (vlan->vlan_id == vlan_id) {
9824 			mutex_unlock(&hdev->vport_lock);
9825 			return;
9826 		}
9827 	}
9828 
9829 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
9830 	if (!vlan) {
9831 		mutex_unlock(&hdev->vport_lock);
9832 		return;
9833 	}
9834 
9835 	vlan->hd_tbl_status = writen_to_tbl;
9836 	vlan->vlan_id = vlan_id;
9837 
9838 	list_add_tail(&vlan->node, &vport->vlan_list);
9839 	mutex_unlock(&hdev->vport_lock);
9840 }
9841 
9842 static int hclge_add_vport_all_vlan_table(struct hclge_vport *vport)
9843 {
9844 	struct hclge_vport_vlan_cfg *vlan, *tmp;
9845 	struct hclge_dev *hdev = vport->back;
9846 	int ret;
9847 
9848 	mutex_lock(&hdev->vport_lock);
9849 
9850 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
9851 		if (!vlan->hd_tbl_status) {
9852 			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
9853 						       vport->vport_id,
9854 						       vlan->vlan_id, false);
9855 			if (ret) {
9856 				dev_err(&hdev->pdev->dev,
9857 					"restore vport vlan list failed, ret=%d\n",
9858 					ret);
9859 
9860 				mutex_unlock(&hdev->vport_lock);
9861 				return ret;
9862 			}
9863 		}
9864 		vlan->hd_tbl_status = true;
9865 	}
9866 
9867 	mutex_unlock(&hdev->vport_lock);
9868 
9869 	return 0;
9870 }
9871 
9872 static void hclge_rm_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id,
9873 				      bool is_write_tbl)
9874 {
9875 	struct hclge_vport_vlan_cfg *vlan, *tmp;
9876 	struct hclge_dev *hdev = vport->back;
9877 
9878 	mutex_lock(&hdev->vport_lock);
9879 
9880 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
9881 		if (vlan->vlan_id == vlan_id) {
9882 			if (is_write_tbl && vlan->hd_tbl_status)
9883 				hclge_set_vlan_filter_hw(hdev,
9884 							 htons(ETH_P_8021Q),
9885 							 vport->vport_id,
9886 							 vlan_id,
9887 							 true);
9888 
9889 			list_del(&vlan->node);
9890 			kfree(vlan);
9891 			break;
9892 		}
9893 	}
9894 
9895 	mutex_unlock(&hdev->vport_lock);
9896 }
9897 
9898 void hclge_rm_vport_all_vlan_table(struct hclge_vport *vport, bool is_del_list)
9899 {
9900 	struct hclge_vport_vlan_cfg *vlan, *tmp;
9901 	struct hclge_dev *hdev = vport->back;
9902 
9903 	mutex_lock(&hdev->vport_lock);
9904 
9905 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
9906 		if (vlan->hd_tbl_status)
9907 			hclge_set_vlan_filter_hw(hdev,
9908 						 htons(ETH_P_8021Q),
9909 						 vport->vport_id,
9910 						 vlan->vlan_id,
9911 						 true);
9912 
9913 		vlan->hd_tbl_status = false;
9914 		if (is_del_list) {
9915 			list_del(&vlan->node);
9916 			kfree(vlan);
9917 		}
9918 	}
9919 	clear_bit(vport->vport_id, hdev->vf_vlan_full);
9920 	mutex_unlock(&hdev->vport_lock);
9921 }
9922 
9923 void hclge_uninit_vport_vlan_table(struct hclge_dev *hdev)
9924 {
9925 	struct hclge_vport_vlan_cfg *vlan, *tmp;
9926 	struct hclge_vport *vport;
9927 	int i;
9928 
9929 	mutex_lock(&hdev->vport_lock);
9930 
9931 	for (i = 0; i < hdev->num_alloc_vport; i++) {
9932 		vport = &hdev->vport[i];
9933 		list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
9934 			list_del(&vlan->node);
9935 			kfree(vlan);
9936 		}
9937 	}
9938 
9939 	mutex_unlock(&hdev->vport_lock);
9940 }
9941 
9942 void hclge_restore_vport_port_base_vlan_config(struct hclge_dev *hdev)
9943 {
9944 	struct hclge_vlan_info *vlan_info;
9945 	struct hclge_vport *vport;
9946 	u16 vlan_proto;
9947 	u16 vlan_id;
9948 	u16 state;
9949 	int vf_id;
9950 	int ret;
9951 
9952 	/* PF should restore all vfs port base vlan */
9953 	for (vf_id = 0; vf_id < hdev->num_alloc_vfs; vf_id++) {
9954 		vport = &hdev->vport[vf_id + HCLGE_VF_VPORT_START_NUM];
9955 		vlan_info = vport->port_base_vlan_cfg.tbl_sta ?
9956 			    &vport->port_base_vlan_cfg.vlan_info :
9957 			    &vport->port_base_vlan_cfg.old_vlan_info;
9958 
9959 		vlan_id = vlan_info->vlan_tag;
9960 		vlan_proto = vlan_info->vlan_proto;
9961 		state = vport->port_base_vlan_cfg.state;
9962 
9963 		if (state != HNAE3_PORT_BASE_VLAN_DISABLE) {
9964 			clear_bit(vport->vport_id, hdev->vlan_table[vlan_id]);
9965 			ret = hclge_set_vlan_filter_hw(hdev, htons(vlan_proto),
9966 						       vport->vport_id,
9967 						       vlan_id, false);
9968 			vport->port_base_vlan_cfg.tbl_sta = ret == 0;
9969 		}
9970 	}
9971 }
9972 
9973 void hclge_restore_vport_vlan_table(struct hclge_vport *vport)
9974 {
9975 	struct hclge_vport_vlan_cfg *vlan, *tmp;
9976 	struct hclge_dev *hdev = vport->back;
9977 	int ret;
9978 
9979 	mutex_lock(&hdev->vport_lock);
9980 
9981 	if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) {
9982 		list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
9983 			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
9984 						       vport->vport_id,
9985 						       vlan->vlan_id, false);
9986 			if (ret)
9987 				break;
9988 			vlan->hd_tbl_status = true;
9989 		}
9990 	}
9991 
9992 	mutex_unlock(&hdev->vport_lock);
9993 }
9994 
9995 /* For global reset and imp reset, hardware will clear the mac table,
9996  * so we change the mac address state from ACTIVE to TO_ADD, then they
9997  * can be restored in the service task after reset complete. Furtherly,
9998  * the mac addresses with state TO_DEL or DEL_FAIL are unnecessary to
9999  * be restored after reset, so just remove these mac nodes from mac_list.
10000  */
10001 static void hclge_mac_node_convert_for_reset(struct list_head *list)
10002 {
10003 	struct hclge_mac_node *mac_node, *tmp;
10004 
10005 	list_for_each_entry_safe(mac_node, tmp, list, node) {
10006 		if (mac_node->state == HCLGE_MAC_ACTIVE) {
10007 			mac_node->state = HCLGE_MAC_TO_ADD;
10008 		} else if (mac_node->state == HCLGE_MAC_TO_DEL) {
10009 			list_del(&mac_node->node);
10010 			kfree(mac_node);
10011 		}
10012 	}
10013 }
10014 
10015 void hclge_restore_mac_table_common(struct hclge_vport *vport)
10016 {
10017 	spin_lock_bh(&vport->mac_list_lock);
10018 
10019 	hclge_mac_node_convert_for_reset(&vport->uc_mac_list);
10020 	hclge_mac_node_convert_for_reset(&vport->mc_mac_list);
10021 	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
10022 
10023 	spin_unlock_bh(&vport->mac_list_lock);
10024 }
10025 
10026 static void hclge_restore_hw_table(struct hclge_dev *hdev)
10027 {
10028 	struct hclge_vport *vport = &hdev->vport[0];
10029 	struct hnae3_handle *handle = &vport->nic;
10030 
10031 	hclge_restore_mac_table_common(vport);
10032 	hclge_restore_vport_port_base_vlan_config(hdev);
10033 	hclge_restore_vport_vlan_table(vport);
10034 	set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
10035 	hclge_restore_fd_entries(handle);
10036 }
10037 
10038 int hclge_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
10039 {
10040 	struct hclge_vport *vport = hclge_get_vport(handle);
10041 
10042 	if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10043 		vport->rxvlan_cfg.strip_tag1_en = false;
10044 		vport->rxvlan_cfg.strip_tag2_en = enable;
10045 		vport->rxvlan_cfg.strip_tag2_discard_en = false;
10046 	} else {
10047 		vport->rxvlan_cfg.strip_tag1_en = enable;
10048 		vport->rxvlan_cfg.strip_tag2_en = true;
10049 		vport->rxvlan_cfg.strip_tag2_discard_en = true;
10050 	}
10051 
10052 	vport->rxvlan_cfg.strip_tag1_discard_en = false;
10053 	vport->rxvlan_cfg.vlan1_vlan_prionly = false;
10054 	vport->rxvlan_cfg.vlan2_vlan_prionly = false;
10055 	vport->rxvlan_cfg.rx_vlan_offload_en = enable;
10056 
10057 	return hclge_set_vlan_rx_offload_cfg(vport);
10058 }
10059 
10060 static void hclge_set_vport_vlan_fltr_change(struct hclge_vport *vport)
10061 {
10062 	struct hclge_dev *hdev = vport->back;
10063 
10064 	if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps))
10065 		set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, &vport->state);
10066 }
10067 
10068 static int hclge_update_vlan_filter_entries(struct hclge_vport *vport,
10069 					    u16 port_base_vlan_state,
10070 					    struct hclge_vlan_info *new_info,
10071 					    struct hclge_vlan_info *old_info)
10072 {
10073 	struct hclge_dev *hdev = vport->back;
10074 	int ret;
10075 
10076 	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_ENABLE) {
10077 		hclge_rm_vport_all_vlan_table(vport, false);
10078 		/* force clear VLAN 0 */
10079 		ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, true, 0);
10080 		if (ret)
10081 			return ret;
10082 		return hclge_set_vlan_filter_hw(hdev,
10083 						 htons(new_info->vlan_proto),
10084 						 vport->vport_id,
10085 						 new_info->vlan_tag,
10086 						 false);
10087 	}
10088 
10089 	vport->port_base_vlan_cfg.tbl_sta = false;
10090 
10091 	/* force add VLAN 0 */
10092 	ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, false, 0);
10093 	if (ret)
10094 		return ret;
10095 
10096 	ret = hclge_set_vlan_filter_hw(hdev, htons(old_info->vlan_proto),
10097 				       vport->vport_id, old_info->vlan_tag,
10098 				       true);
10099 	if (ret)
10100 		return ret;
10101 
10102 	return hclge_add_vport_all_vlan_table(vport);
10103 }
10104 
10105 static bool hclge_need_update_vlan_filter(const struct hclge_vlan_info *new_cfg,
10106 					  const struct hclge_vlan_info *old_cfg)
10107 {
10108 	if (new_cfg->vlan_tag != old_cfg->vlan_tag)
10109 		return true;
10110 
10111 	if (new_cfg->vlan_tag == 0 && (new_cfg->qos == 0 || old_cfg->qos == 0))
10112 		return true;
10113 
10114 	return false;
10115 }
10116 
10117 static int hclge_modify_port_base_vlan_tag(struct hclge_vport *vport,
10118 					   struct hclge_vlan_info *new_info,
10119 					   struct hclge_vlan_info *old_info)
10120 {
10121 	struct hclge_dev *hdev = vport->back;
10122 	int ret;
10123 
10124 	/* add new VLAN tag */
10125 	ret = hclge_set_vlan_filter_hw(hdev, htons(new_info->vlan_proto),
10126 				       vport->vport_id, new_info->vlan_tag,
10127 				       false);
10128 	if (ret)
10129 		return ret;
10130 
10131 	vport->port_base_vlan_cfg.tbl_sta = false;
10132 	/* remove old VLAN tag */
10133 	if (old_info->vlan_tag == 0)
10134 		ret = hclge_set_vf_vlan_common(hdev, vport->vport_id,
10135 					       true, 0);
10136 	else
10137 		ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10138 					       vport->vport_id,
10139 					       old_info->vlan_tag, true);
10140 	if (ret)
10141 		dev_err(&hdev->pdev->dev,
10142 			"failed to clear vport%u port base vlan %u, ret = %d.\n",
10143 			vport->vport_id, old_info->vlan_tag, ret);
10144 
10145 	return ret;
10146 }
10147 
10148 int hclge_update_port_base_vlan_cfg(struct hclge_vport *vport, u16 state,
10149 				    struct hclge_vlan_info *vlan_info)
10150 {
10151 	struct hnae3_handle *nic = &vport->nic;
10152 	struct hclge_vlan_info *old_vlan_info;
10153 	int ret;
10154 
10155 	old_vlan_info = &vport->port_base_vlan_cfg.vlan_info;
10156 
10157 	ret = hclge_vlan_offload_cfg(vport, state, vlan_info->vlan_tag,
10158 				     vlan_info->qos);
10159 	if (ret)
10160 		return ret;
10161 
10162 	if (!hclge_need_update_vlan_filter(vlan_info, old_vlan_info))
10163 		goto out;
10164 
10165 	if (state == HNAE3_PORT_BASE_VLAN_MODIFY)
10166 		ret = hclge_modify_port_base_vlan_tag(vport, vlan_info,
10167 						      old_vlan_info);
10168 	else
10169 		ret = hclge_update_vlan_filter_entries(vport, state, vlan_info,
10170 						       old_vlan_info);
10171 	if (ret)
10172 		return ret;
10173 
10174 out:
10175 	vport->port_base_vlan_cfg.state = state;
10176 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
10177 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
10178 	else
10179 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
10180 
10181 	vport->port_base_vlan_cfg.old_vlan_info = *old_vlan_info;
10182 	vport->port_base_vlan_cfg.vlan_info = *vlan_info;
10183 	vport->port_base_vlan_cfg.tbl_sta = true;
10184 	hclge_set_vport_vlan_fltr_change(vport);
10185 
10186 	return 0;
10187 }
10188 
10189 static u16 hclge_get_port_base_vlan_state(struct hclge_vport *vport,
10190 					  enum hnae3_port_base_vlan_state state,
10191 					  u16 vlan, u8 qos)
10192 {
10193 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10194 		if (!vlan && !qos)
10195 			return HNAE3_PORT_BASE_VLAN_NOCHANGE;
10196 
10197 		return HNAE3_PORT_BASE_VLAN_ENABLE;
10198 	}
10199 
10200 	if (!vlan && !qos)
10201 		return HNAE3_PORT_BASE_VLAN_DISABLE;
10202 
10203 	if (vport->port_base_vlan_cfg.vlan_info.vlan_tag == vlan &&
10204 	    vport->port_base_vlan_cfg.vlan_info.qos == qos)
10205 		return HNAE3_PORT_BASE_VLAN_NOCHANGE;
10206 
10207 	return HNAE3_PORT_BASE_VLAN_MODIFY;
10208 }
10209 
10210 static int hclge_set_vf_vlan_filter(struct hnae3_handle *handle, int vfid,
10211 				    u16 vlan, u8 qos, __be16 proto)
10212 {
10213 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
10214 	struct hclge_vport *vport = hclge_get_vport(handle);
10215 	struct hclge_dev *hdev = vport->back;
10216 	struct hclge_vlan_info vlan_info;
10217 	u16 state;
10218 	int ret;
10219 
10220 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
10221 		return -EOPNOTSUPP;
10222 
10223 	vport = hclge_get_vf_vport(hdev, vfid);
10224 	if (!vport)
10225 		return -EINVAL;
10226 
10227 	/* qos is a 3 bits value, so can not be bigger than 7 */
10228 	if (vlan > VLAN_N_VID - 1 || qos > 7)
10229 		return -EINVAL;
10230 	if (proto != htons(ETH_P_8021Q))
10231 		return -EPROTONOSUPPORT;
10232 
10233 	state = hclge_get_port_base_vlan_state(vport,
10234 					       vport->port_base_vlan_cfg.state,
10235 					       vlan, qos);
10236 	if (state == HNAE3_PORT_BASE_VLAN_NOCHANGE)
10237 		return 0;
10238 
10239 	vlan_info.vlan_tag = vlan;
10240 	vlan_info.qos = qos;
10241 	vlan_info.vlan_proto = ntohs(proto);
10242 
10243 	ret = hclge_update_port_base_vlan_cfg(vport, state, &vlan_info);
10244 	if (ret) {
10245 		dev_err(&hdev->pdev->dev,
10246 			"failed to update port base vlan for vf %d, ret = %d\n",
10247 			vfid, ret);
10248 		return ret;
10249 	}
10250 
10251 	/* there is a timewindow for PF to know VF unalive, it may
10252 	 * cause send mailbox fail, but it doesn't matter, VF will
10253 	 * query it when reinit.
10254 	 * for DEVICE_VERSION_V3, vf doesn't need to know about the port based
10255 	 * VLAN state.
10256 	 */
10257 	if (ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3 &&
10258 	    test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
10259 		(void)hclge_push_vf_port_base_vlan_info(&hdev->vport[0],
10260 							vport->vport_id,
10261 							state, &vlan_info);
10262 
10263 	return 0;
10264 }
10265 
10266 static void hclge_clear_vf_vlan(struct hclge_dev *hdev)
10267 {
10268 	struct hclge_vlan_info *vlan_info;
10269 	struct hclge_vport *vport;
10270 	int ret;
10271 	int vf;
10272 
10273 	/* clear port base vlan for all vf */
10274 	for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) {
10275 		vport = &hdev->vport[vf];
10276 		vlan_info = &vport->port_base_vlan_cfg.vlan_info;
10277 
10278 		ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10279 					       vport->vport_id,
10280 					       vlan_info->vlan_tag, true);
10281 		if (ret)
10282 			dev_err(&hdev->pdev->dev,
10283 				"failed to clear vf vlan for vf%d, ret = %d\n",
10284 				vf - HCLGE_VF_VPORT_START_NUM, ret);
10285 	}
10286 }
10287 
10288 int hclge_set_vlan_filter(struct hnae3_handle *handle, __be16 proto,
10289 			  u16 vlan_id, bool is_kill)
10290 {
10291 	struct hclge_vport *vport = hclge_get_vport(handle);
10292 	struct hclge_dev *hdev = vport->back;
10293 	bool writen_to_tbl = false;
10294 	int ret = 0;
10295 
10296 	/* When device is resetting or reset failed, firmware is unable to
10297 	 * handle mailbox. Just record the vlan id, and remove it after
10298 	 * reset finished.
10299 	 */
10300 	if ((test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
10301 	     test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) && is_kill) {
10302 		set_bit(vlan_id, vport->vlan_del_fail_bmap);
10303 		return -EBUSY;
10304 	}
10305 
10306 	/* when port base vlan enabled, we use port base vlan as the vlan
10307 	 * filter entry. In this case, we don't update vlan filter table
10308 	 * when user add new vlan or remove exist vlan, just update the vport
10309 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
10310 	 * table until port base vlan disabled
10311 	 */
10312 	if (handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10313 		ret = hclge_set_vlan_filter_hw(hdev, proto, vport->vport_id,
10314 					       vlan_id, is_kill);
10315 		writen_to_tbl = true;
10316 	}
10317 
10318 	if (!ret) {
10319 		if (!is_kill)
10320 			hclge_add_vport_vlan_table(vport, vlan_id,
10321 						   writen_to_tbl);
10322 		else if (is_kill && vlan_id != 0)
10323 			hclge_rm_vport_vlan_table(vport, vlan_id, false);
10324 	} else if (is_kill) {
10325 		/* when remove hw vlan filter failed, record the vlan id,
10326 		 * and try to remove it from hw later, to be consistence
10327 		 * with stack
10328 		 */
10329 		set_bit(vlan_id, vport->vlan_del_fail_bmap);
10330 	}
10331 
10332 	hclge_set_vport_vlan_fltr_change(vport);
10333 
10334 	return ret;
10335 }
10336 
10337 static void hclge_sync_vlan_fltr_state(struct hclge_dev *hdev)
10338 {
10339 	struct hclge_vport *vport;
10340 	int ret;
10341 	u16 i;
10342 
10343 	for (i = 0; i < hdev->num_alloc_vport; i++) {
10344 		vport = &hdev->vport[i];
10345 		if (!test_and_clear_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
10346 					&vport->state))
10347 			continue;
10348 
10349 		ret = hclge_enable_vport_vlan_filter(vport,
10350 						     vport->req_vlan_fltr_en);
10351 		if (ret) {
10352 			dev_err(&hdev->pdev->dev,
10353 				"failed to sync vlan filter state for vport%u, ret = %d\n",
10354 				vport->vport_id, ret);
10355 			set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
10356 				&vport->state);
10357 			return;
10358 		}
10359 	}
10360 }
10361 
10362 static void hclge_sync_vlan_filter(struct hclge_dev *hdev)
10363 {
10364 #define HCLGE_MAX_SYNC_COUNT	60
10365 
10366 	int i, ret, sync_cnt = 0;
10367 	u16 vlan_id;
10368 
10369 	/* start from vport 1 for PF is always alive */
10370 	for (i = 0; i < hdev->num_alloc_vport; i++) {
10371 		struct hclge_vport *vport = &hdev->vport[i];
10372 
10373 		vlan_id = find_first_bit(vport->vlan_del_fail_bmap,
10374 					 VLAN_N_VID);
10375 		while (vlan_id != VLAN_N_VID) {
10376 			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10377 						       vport->vport_id, vlan_id,
10378 						       true);
10379 			if (ret && ret != -EINVAL)
10380 				return;
10381 
10382 			clear_bit(vlan_id, vport->vlan_del_fail_bmap);
10383 			hclge_rm_vport_vlan_table(vport, vlan_id, false);
10384 			hclge_set_vport_vlan_fltr_change(vport);
10385 
10386 			sync_cnt++;
10387 			if (sync_cnt >= HCLGE_MAX_SYNC_COUNT)
10388 				return;
10389 
10390 			vlan_id = find_first_bit(vport->vlan_del_fail_bmap,
10391 						 VLAN_N_VID);
10392 		}
10393 	}
10394 
10395 	hclge_sync_vlan_fltr_state(hdev);
10396 }
10397 
10398 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps)
10399 {
10400 	struct hclge_config_max_frm_size_cmd *req;
10401 	struct hclge_desc desc;
10402 
10403 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAX_FRM_SIZE, false);
10404 
10405 	req = (struct hclge_config_max_frm_size_cmd *)desc.data;
10406 	req->max_frm_size = cpu_to_le16(new_mps);
10407 	req->min_frm_size = HCLGE_MAC_MIN_FRAME;
10408 
10409 	return hclge_cmd_send(&hdev->hw, &desc, 1);
10410 }
10411 
10412 static int hclge_set_mtu(struct hnae3_handle *handle, int new_mtu)
10413 {
10414 	struct hclge_vport *vport = hclge_get_vport(handle);
10415 
10416 	return hclge_set_vport_mtu(vport, new_mtu);
10417 }
10418 
10419 int hclge_set_vport_mtu(struct hclge_vport *vport, int new_mtu)
10420 {
10421 	struct hclge_dev *hdev = vport->back;
10422 	int i, max_frm_size, ret;
10423 
10424 	/* HW supprt 2 layer vlan */
10425 	max_frm_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + 2 * VLAN_HLEN;
10426 	if (max_frm_size < HCLGE_MAC_MIN_FRAME ||
10427 	    max_frm_size > hdev->ae_dev->dev_specs.max_frm_size)
10428 		return -EINVAL;
10429 
10430 	max_frm_size = max(max_frm_size, HCLGE_MAC_DEFAULT_FRAME);
10431 	mutex_lock(&hdev->vport_lock);
10432 	/* VF's mps must fit within hdev->mps */
10433 	if (vport->vport_id && max_frm_size > hdev->mps) {
10434 		mutex_unlock(&hdev->vport_lock);
10435 		return -EINVAL;
10436 	} else if (vport->vport_id) {
10437 		vport->mps = max_frm_size;
10438 		mutex_unlock(&hdev->vport_lock);
10439 		return 0;
10440 	}
10441 
10442 	/* PF's mps must be greater then VF's mps */
10443 	for (i = 1; i < hdev->num_alloc_vport; i++)
10444 		if (max_frm_size < hdev->vport[i].mps) {
10445 			dev_err(&hdev->pdev->dev,
10446 				"failed to set pf mtu for less than vport %d, mps = %u.\n",
10447 				i, hdev->vport[i].mps);
10448 			mutex_unlock(&hdev->vport_lock);
10449 			return -EINVAL;
10450 		}
10451 
10452 	hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
10453 
10454 	ret = hclge_set_mac_mtu(hdev, max_frm_size);
10455 	if (ret) {
10456 		dev_err(&hdev->pdev->dev,
10457 			"Change mtu fail, ret =%d\n", ret);
10458 		goto out;
10459 	}
10460 
10461 	hdev->mps = max_frm_size;
10462 	vport->mps = max_frm_size;
10463 
10464 	ret = hclge_buffer_alloc(hdev);
10465 	if (ret)
10466 		dev_err(&hdev->pdev->dev,
10467 			"Allocate buffer fail, ret =%d\n", ret);
10468 
10469 out:
10470 	hclge_notify_client(hdev, HNAE3_UP_CLIENT);
10471 	mutex_unlock(&hdev->vport_lock);
10472 	return ret;
10473 }
10474 
10475 static int hclge_reset_tqp_cmd_send(struct hclge_dev *hdev, u16 queue_id,
10476 				    bool enable)
10477 {
10478 	struct hclge_reset_tqp_queue_cmd *req;
10479 	struct hclge_desc desc;
10480 	int ret;
10481 
10482 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, false);
10483 
10484 	req = (struct hclge_reset_tqp_queue_cmd *)desc.data;
10485 	req->tqp_id = cpu_to_le16(queue_id);
10486 	if (enable)
10487 		hnae3_set_bit(req->reset_req, HCLGE_TQP_RESET_B, 1U);
10488 
10489 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
10490 	if (ret) {
10491 		dev_err(&hdev->pdev->dev,
10492 			"Send tqp reset cmd error, status =%d\n", ret);
10493 		return ret;
10494 	}
10495 
10496 	return 0;
10497 }
10498 
10499 static int hclge_get_reset_status(struct hclge_dev *hdev, u16 queue_id,
10500 				  u8 *reset_status)
10501 {
10502 	struct hclge_reset_tqp_queue_cmd *req;
10503 	struct hclge_desc desc;
10504 	int ret;
10505 
10506 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, true);
10507 
10508 	req = (struct hclge_reset_tqp_queue_cmd *)desc.data;
10509 	req->tqp_id = cpu_to_le16(queue_id);
10510 
10511 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
10512 	if (ret) {
10513 		dev_err(&hdev->pdev->dev,
10514 			"Get reset status error, status =%d\n", ret);
10515 		return ret;
10516 	}
10517 
10518 	*reset_status = hnae3_get_bit(req->ready_to_reset, HCLGE_TQP_RESET_B);
10519 
10520 	return 0;
10521 }
10522 
10523 u16 hclge_covert_handle_qid_global(struct hnae3_handle *handle, u16 queue_id)
10524 {
10525 	struct hclge_comm_tqp *tqp;
10526 	struct hnae3_queue *queue;
10527 
10528 	queue = handle->kinfo.tqp[queue_id];
10529 	tqp = container_of(queue, struct hclge_comm_tqp, q);
10530 
10531 	return tqp->index;
10532 }
10533 
10534 static int hclge_reset_tqp_cmd(struct hnae3_handle *handle)
10535 {
10536 	struct hclge_vport *vport = hclge_get_vport(handle);
10537 	struct hclge_dev *hdev = vport->back;
10538 	u16 reset_try_times = 0;
10539 	u8 reset_status;
10540 	u16 queue_gid;
10541 	int ret;
10542 	u16 i;
10543 
10544 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
10545 		queue_gid = hclge_covert_handle_qid_global(handle, i);
10546 		ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, true);
10547 		if (ret) {
10548 			dev_err(&hdev->pdev->dev,
10549 				"failed to send reset tqp cmd, ret = %d\n",
10550 				ret);
10551 			return ret;
10552 		}
10553 
10554 		while (reset_try_times++ < HCLGE_TQP_RESET_TRY_TIMES) {
10555 			ret = hclge_get_reset_status(hdev, queue_gid,
10556 						     &reset_status);
10557 			if (ret)
10558 				return ret;
10559 
10560 			if (reset_status)
10561 				break;
10562 
10563 			/* Wait for tqp hw reset */
10564 			usleep_range(1000, 1200);
10565 		}
10566 
10567 		if (reset_try_times >= HCLGE_TQP_RESET_TRY_TIMES) {
10568 			dev_err(&hdev->pdev->dev,
10569 				"wait for tqp hw reset timeout\n");
10570 			return -ETIME;
10571 		}
10572 
10573 		ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, false);
10574 		if (ret) {
10575 			dev_err(&hdev->pdev->dev,
10576 				"failed to deassert soft reset, ret = %d\n",
10577 				ret);
10578 			return ret;
10579 		}
10580 		reset_try_times = 0;
10581 	}
10582 	return 0;
10583 }
10584 
10585 static int hclge_reset_rcb(struct hnae3_handle *handle)
10586 {
10587 #define HCLGE_RESET_RCB_NOT_SUPPORT	0U
10588 #define HCLGE_RESET_RCB_SUCCESS		1U
10589 
10590 	struct hclge_vport *vport = hclge_get_vport(handle);
10591 	struct hclge_dev *hdev = vport->back;
10592 	struct hclge_reset_cmd *req;
10593 	struct hclge_desc desc;
10594 	u8 return_status;
10595 	u16 queue_gid;
10596 	int ret;
10597 
10598 	queue_gid = hclge_covert_handle_qid_global(handle, 0);
10599 
10600 	req = (struct hclge_reset_cmd *)desc.data;
10601 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false);
10602 	hnae3_set_bit(req->fun_reset_rcb, HCLGE_CFG_RESET_RCB_B, 1);
10603 	req->fun_reset_rcb_vqid_start = cpu_to_le16(queue_gid);
10604 	req->fun_reset_rcb_vqid_num = cpu_to_le16(handle->kinfo.num_tqps);
10605 
10606 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
10607 	if (ret) {
10608 		dev_err(&hdev->pdev->dev,
10609 			"failed to send rcb reset cmd, ret = %d\n", ret);
10610 		return ret;
10611 	}
10612 
10613 	return_status = req->fun_reset_rcb_return_status;
10614 	if (return_status == HCLGE_RESET_RCB_SUCCESS)
10615 		return 0;
10616 
10617 	if (return_status != HCLGE_RESET_RCB_NOT_SUPPORT) {
10618 		dev_err(&hdev->pdev->dev, "failed to reset rcb, ret = %u\n",
10619 			return_status);
10620 		return -EIO;
10621 	}
10622 
10623 	/* if reset rcb cmd is unsupported, we need to send reset tqp cmd
10624 	 * again to reset all tqps
10625 	 */
10626 	return hclge_reset_tqp_cmd(handle);
10627 }
10628 
10629 int hclge_reset_tqp(struct hnae3_handle *handle)
10630 {
10631 	struct hclge_vport *vport = hclge_get_vport(handle);
10632 	struct hclge_dev *hdev = vport->back;
10633 	int ret;
10634 
10635 	/* only need to disable PF's tqp */
10636 	if (!vport->vport_id) {
10637 		ret = hclge_tqp_enable(handle, false);
10638 		if (ret) {
10639 			dev_err(&hdev->pdev->dev,
10640 				"failed to disable tqp, ret = %d\n", ret);
10641 			return ret;
10642 		}
10643 	}
10644 
10645 	return hclge_reset_rcb(handle);
10646 }
10647 
10648 static u32 hclge_get_fw_version(struct hnae3_handle *handle)
10649 {
10650 	struct hclge_vport *vport = hclge_get_vport(handle);
10651 	struct hclge_dev *hdev = vport->back;
10652 
10653 	return hdev->fw_version;
10654 }
10655 
10656 static void hclge_set_flowctrl_adv(struct hclge_dev *hdev, u32 rx_en, u32 tx_en)
10657 {
10658 	struct phy_device *phydev = hdev->hw.mac.phydev;
10659 
10660 	if (!phydev)
10661 		return;
10662 
10663 	phy_set_asym_pause(phydev, rx_en, tx_en);
10664 }
10665 
10666 static int hclge_cfg_pauseparam(struct hclge_dev *hdev, u32 rx_en, u32 tx_en)
10667 {
10668 	int ret;
10669 
10670 	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC)
10671 		return 0;
10672 
10673 	ret = hclge_mac_pause_en_cfg(hdev, tx_en, rx_en);
10674 	if (ret)
10675 		dev_err(&hdev->pdev->dev,
10676 			"configure pauseparam error, ret = %d.\n", ret);
10677 
10678 	return ret;
10679 }
10680 
10681 int hclge_cfg_flowctrl(struct hclge_dev *hdev)
10682 {
10683 	struct phy_device *phydev = hdev->hw.mac.phydev;
10684 	u16 remote_advertising = 0;
10685 	u16 local_advertising;
10686 	u32 rx_pause, tx_pause;
10687 	u8 flowctl;
10688 
10689 	if (!phydev->link || !phydev->autoneg)
10690 		return 0;
10691 
10692 	local_advertising = linkmode_adv_to_lcl_adv_t(phydev->advertising);
10693 
10694 	if (phydev->pause)
10695 		remote_advertising = LPA_PAUSE_CAP;
10696 
10697 	if (phydev->asym_pause)
10698 		remote_advertising |= LPA_PAUSE_ASYM;
10699 
10700 	flowctl = mii_resolve_flowctrl_fdx(local_advertising,
10701 					   remote_advertising);
10702 	tx_pause = flowctl & FLOW_CTRL_TX;
10703 	rx_pause = flowctl & FLOW_CTRL_RX;
10704 
10705 	if (phydev->duplex == HCLGE_MAC_HALF) {
10706 		tx_pause = 0;
10707 		rx_pause = 0;
10708 	}
10709 
10710 	return hclge_cfg_pauseparam(hdev, rx_pause, tx_pause);
10711 }
10712 
10713 static void hclge_get_pauseparam(struct hnae3_handle *handle, u32 *auto_neg,
10714 				 u32 *rx_en, u32 *tx_en)
10715 {
10716 	struct hclge_vport *vport = hclge_get_vport(handle);
10717 	struct hclge_dev *hdev = vport->back;
10718 	u8 media_type = hdev->hw.mac.media_type;
10719 
10720 	*auto_neg = (media_type == HNAE3_MEDIA_TYPE_COPPER) ?
10721 		    hclge_get_autoneg(handle) : 0;
10722 
10723 	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) {
10724 		*rx_en = 0;
10725 		*tx_en = 0;
10726 		return;
10727 	}
10728 
10729 	if (hdev->tm_info.fc_mode == HCLGE_FC_RX_PAUSE) {
10730 		*rx_en = 1;
10731 		*tx_en = 0;
10732 	} else if (hdev->tm_info.fc_mode == HCLGE_FC_TX_PAUSE) {
10733 		*tx_en = 1;
10734 		*rx_en = 0;
10735 	} else if (hdev->tm_info.fc_mode == HCLGE_FC_FULL) {
10736 		*rx_en = 1;
10737 		*tx_en = 1;
10738 	} else {
10739 		*rx_en = 0;
10740 		*tx_en = 0;
10741 	}
10742 }
10743 
10744 static void hclge_record_user_pauseparam(struct hclge_dev *hdev,
10745 					 u32 rx_en, u32 tx_en)
10746 {
10747 	if (rx_en && tx_en)
10748 		hdev->fc_mode_last_time = HCLGE_FC_FULL;
10749 	else if (rx_en && !tx_en)
10750 		hdev->fc_mode_last_time = HCLGE_FC_RX_PAUSE;
10751 	else if (!rx_en && tx_en)
10752 		hdev->fc_mode_last_time = HCLGE_FC_TX_PAUSE;
10753 	else
10754 		hdev->fc_mode_last_time = HCLGE_FC_NONE;
10755 
10756 	hdev->tm_info.fc_mode = hdev->fc_mode_last_time;
10757 }
10758 
10759 static int hclge_set_pauseparam(struct hnae3_handle *handle, u32 auto_neg,
10760 				u32 rx_en, u32 tx_en)
10761 {
10762 	struct hclge_vport *vport = hclge_get_vport(handle);
10763 	struct hclge_dev *hdev = vport->back;
10764 	struct phy_device *phydev = hdev->hw.mac.phydev;
10765 	u32 fc_autoneg;
10766 
10767 	if (phydev || hnae3_dev_phy_imp_supported(hdev)) {
10768 		fc_autoneg = hclge_get_autoneg(handle);
10769 		if (auto_neg != fc_autoneg) {
10770 			dev_info(&hdev->pdev->dev,
10771 				 "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n");
10772 			return -EOPNOTSUPP;
10773 		}
10774 	}
10775 
10776 	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) {
10777 		dev_info(&hdev->pdev->dev,
10778 			 "Priority flow control enabled. Cannot set link flow control.\n");
10779 		return -EOPNOTSUPP;
10780 	}
10781 
10782 	hclge_set_flowctrl_adv(hdev, rx_en, tx_en);
10783 
10784 	hclge_record_user_pauseparam(hdev, rx_en, tx_en);
10785 
10786 	if (!auto_neg || hnae3_dev_phy_imp_supported(hdev))
10787 		return hclge_cfg_pauseparam(hdev, rx_en, tx_en);
10788 
10789 	if (phydev)
10790 		return phy_start_aneg(phydev);
10791 
10792 	return -EOPNOTSUPP;
10793 }
10794 
10795 static void hclge_get_ksettings_an_result(struct hnae3_handle *handle,
10796 					  u8 *auto_neg, u32 *speed, u8 *duplex)
10797 {
10798 	struct hclge_vport *vport = hclge_get_vport(handle);
10799 	struct hclge_dev *hdev = vport->back;
10800 
10801 	if (speed)
10802 		*speed = hdev->hw.mac.speed;
10803 	if (duplex)
10804 		*duplex = hdev->hw.mac.duplex;
10805 	if (auto_neg)
10806 		*auto_neg = hdev->hw.mac.autoneg;
10807 }
10808 
10809 static void hclge_get_media_type(struct hnae3_handle *handle, u8 *media_type,
10810 				 u8 *module_type)
10811 {
10812 	struct hclge_vport *vport = hclge_get_vport(handle);
10813 	struct hclge_dev *hdev = vport->back;
10814 
10815 	/* When nic is down, the service task is not running, doesn't update
10816 	 * the port information per second. Query the port information before
10817 	 * return the media type, ensure getting the correct media information.
10818 	 */
10819 	hclge_update_port_info(hdev);
10820 
10821 	if (media_type)
10822 		*media_type = hdev->hw.mac.media_type;
10823 
10824 	if (module_type)
10825 		*module_type = hdev->hw.mac.module_type;
10826 }
10827 
10828 static void hclge_get_mdix_mode(struct hnae3_handle *handle,
10829 				u8 *tp_mdix_ctrl, u8 *tp_mdix)
10830 {
10831 	struct hclge_vport *vport = hclge_get_vport(handle);
10832 	struct hclge_dev *hdev = vport->back;
10833 	struct phy_device *phydev = hdev->hw.mac.phydev;
10834 	int mdix_ctrl, mdix, is_resolved;
10835 	unsigned int retval;
10836 
10837 	if (!phydev) {
10838 		*tp_mdix_ctrl = ETH_TP_MDI_INVALID;
10839 		*tp_mdix = ETH_TP_MDI_INVALID;
10840 		return;
10841 	}
10842 
10843 	phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_MDIX);
10844 
10845 	retval = phy_read(phydev, HCLGE_PHY_CSC_REG);
10846 	mdix_ctrl = hnae3_get_field(retval, HCLGE_PHY_MDIX_CTRL_M,
10847 				    HCLGE_PHY_MDIX_CTRL_S);
10848 
10849 	retval = phy_read(phydev, HCLGE_PHY_CSS_REG);
10850 	mdix = hnae3_get_bit(retval, HCLGE_PHY_MDIX_STATUS_B);
10851 	is_resolved = hnae3_get_bit(retval, HCLGE_PHY_SPEED_DUP_RESOLVE_B);
10852 
10853 	phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_COPPER);
10854 
10855 	switch (mdix_ctrl) {
10856 	case 0x0:
10857 		*tp_mdix_ctrl = ETH_TP_MDI;
10858 		break;
10859 	case 0x1:
10860 		*tp_mdix_ctrl = ETH_TP_MDI_X;
10861 		break;
10862 	case 0x3:
10863 		*tp_mdix_ctrl = ETH_TP_MDI_AUTO;
10864 		break;
10865 	default:
10866 		*tp_mdix_ctrl = ETH_TP_MDI_INVALID;
10867 		break;
10868 	}
10869 
10870 	if (!is_resolved)
10871 		*tp_mdix = ETH_TP_MDI_INVALID;
10872 	else if (mdix)
10873 		*tp_mdix = ETH_TP_MDI_X;
10874 	else
10875 		*tp_mdix = ETH_TP_MDI;
10876 }
10877 
10878 static void hclge_info_show(struct hclge_dev *hdev)
10879 {
10880 	struct device *dev = &hdev->pdev->dev;
10881 
10882 	dev_info(dev, "PF info begin:\n");
10883 
10884 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
10885 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
10886 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
10887 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
10888 	dev_info(dev, "Numbers of VF for this PF: %u\n", hdev->num_req_vfs);
10889 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
10890 	dev_info(dev, "Total buffer size for TX/RX: %u\n", hdev->pkt_buf_size);
10891 	dev_info(dev, "TX buffer size for each TC: %u\n", hdev->tx_buf_size);
10892 	dev_info(dev, "DV buffer size for each TC: %u\n", hdev->dv_buf_size);
10893 	dev_info(dev, "This is %s PF\n",
10894 		 hdev->flag & HCLGE_FLAG_MAIN ? "main" : "not main");
10895 	dev_info(dev, "DCB %s\n",
10896 		 hdev->flag & HCLGE_FLAG_DCB_ENABLE ? "enable" : "disable");
10897 	dev_info(dev, "MQPRIO %s\n",
10898 		 hdev->flag & HCLGE_FLAG_MQPRIO_ENABLE ? "enable" : "disable");
10899 	dev_info(dev, "Default tx spare buffer size: %u\n",
10900 		 hdev->tx_spare_buf_size);
10901 
10902 	dev_info(dev, "PF info end.\n");
10903 }
10904 
10905 static int hclge_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
10906 					  struct hclge_vport *vport)
10907 {
10908 	struct hnae3_client *client = vport->nic.client;
10909 	struct hclge_dev *hdev = ae_dev->priv;
10910 	int rst_cnt = hdev->rst_stats.reset_cnt;
10911 	int ret;
10912 
10913 	ret = client->ops->init_instance(&vport->nic);
10914 	if (ret)
10915 		return ret;
10916 
10917 	set_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
10918 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
10919 	    rst_cnt != hdev->rst_stats.reset_cnt) {
10920 		ret = -EBUSY;
10921 		goto init_nic_err;
10922 	}
10923 
10924 	/* Enable nic hw error interrupts */
10925 	ret = hclge_config_nic_hw_error(hdev, true);
10926 	if (ret) {
10927 		dev_err(&ae_dev->pdev->dev,
10928 			"fail(%d) to enable hw error interrupts\n", ret);
10929 		goto init_nic_err;
10930 	}
10931 
10932 	hnae3_set_client_init_flag(client, ae_dev, 1);
10933 
10934 	if (netif_msg_drv(&hdev->vport->nic))
10935 		hclge_info_show(hdev);
10936 
10937 	return ret;
10938 
10939 init_nic_err:
10940 	clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
10941 	while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
10942 		msleep(HCLGE_WAIT_RESET_DONE);
10943 
10944 	client->ops->uninit_instance(&vport->nic, 0);
10945 
10946 	return ret;
10947 }
10948 
10949 static int hclge_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
10950 					   struct hclge_vport *vport)
10951 {
10952 	struct hclge_dev *hdev = ae_dev->priv;
10953 	struct hnae3_client *client;
10954 	int rst_cnt;
10955 	int ret;
10956 
10957 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
10958 	    !hdev->nic_client)
10959 		return 0;
10960 
10961 	client = hdev->roce_client;
10962 	ret = hclge_init_roce_base_info(vport);
10963 	if (ret)
10964 		return ret;
10965 
10966 	rst_cnt = hdev->rst_stats.reset_cnt;
10967 	ret = client->ops->init_instance(&vport->roce);
10968 	if (ret)
10969 		return ret;
10970 
10971 	set_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
10972 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
10973 	    rst_cnt != hdev->rst_stats.reset_cnt) {
10974 		ret = -EBUSY;
10975 		goto init_roce_err;
10976 	}
10977 
10978 	/* Enable roce ras interrupts */
10979 	ret = hclge_config_rocee_ras_interrupt(hdev, true);
10980 	if (ret) {
10981 		dev_err(&ae_dev->pdev->dev,
10982 			"fail(%d) to enable roce ras interrupts\n", ret);
10983 		goto init_roce_err;
10984 	}
10985 
10986 	hnae3_set_client_init_flag(client, ae_dev, 1);
10987 
10988 	return 0;
10989 
10990 init_roce_err:
10991 	clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
10992 	while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
10993 		msleep(HCLGE_WAIT_RESET_DONE);
10994 
10995 	hdev->roce_client->ops->uninit_instance(&vport->roce, 0);
10996 
10997 	return ret;
10998 }
10999 
11000 static int hclge_init_client_instance(struct hnae3_client *client,
11001 				      struct hnae3_ae_dev *ae_dev)
11002 {
11003 	struct hclge_dev *hdev = ae_dev->priv;
11004 	struct hclge_vport *vport = &hdev->vport[0];
11005 	int ret;
11006 
11007 	switch (client->type) {
11008 	case HNAE3_CLIENT_KNIC:
11009 		hdev->nic_client = client;
11010 		vport->nic.client = client;
11011 		ret = hclge_init_nic_client_instance(ae_dev, vport);
11012 		if (ret)
11013 			goto clear_nic;
11014 
11015 		ret = hclge_init_roce_client_instance(ae_dev, vport);
11016 		if (ret)
11017 			goto clear_roce;
11018 
11019 		break;
11020 	case HNAE3_CLIENT_ROCE:
11021 		if (hnae3_dev_roce_supported(hdev)) {
11022 			hdev->roce_client = client;
11023 			vport->roce.client = client;
11024 		}
11025 
11026 		ret = hclge_init_roce_client_instance(ae_dev, vport);
11027 		if (ret)
11028 			goto clear_roce;
11029 
11030 		break;
11031 	default:
11032 		return -EINVAL;
11033 	}
11034 
11035 	return 0;
11036 
11037 clear_nic:
11038 	hdev->nic_client = NULL;
11039 	vport->nic.client = NULL;
11040 	return ret;
11041 clear_roce:
11042 	hdev->roce_client = NULL;
11043 	vport->roce.client = NULL;
11044 	return ret;
11045 }
11046 
11047 static void hclge_uninit_client_instance(struct hnae3_client *client,
11048 					 struct hnae3_ae_dev *ae_dev)
11049 {
11050 	struct hclge_dev *hdev = ae_dev->priv;
11051 	struct hclge_vport *vport = &hdev->vport[0];
11052 
11053 	if (hdev->roce_client) {
11054 		clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
11055 		while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11056 			msleep(HCLGE_WAIT_RESET_DONE);
11057 
11058 		hdev->roce_client->ops->uninit_instance(&vport->roce, 0);
11059 		hdev->roce_client = NULL;
11060 		vport->roce.client = NULL;
11061 	}
11062 	if (client->type == HNAE3_CLIENT_ROCE)
11063 		return;
11064 	if (hdev->nic_client && client->ops->uninit_instance) {
11065 		clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
11066 		while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11067 			msleep(HCLGE_WAIT_RESET_DONE);
11068 
11069 		client->ops->uninit_instance(&vport->nic, 0);
11070 		hdev->nic_client = NULL;
11071 		vport->nic.client = NULL;
11072 	}
11073 }
11074 
11075 static int hclge_dev_mem_map(struct hclge_dev *hdev)
11076 {
11077 	struct pci_dev *pdev = hdev->pdev;
11078 	struct hclge_hw *hw = &hdev->hw;
11079 
11080 	/* for device does not have device memory, return directly */
11081 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGE_MEM_BAR)))
11082 		return 0;
11083 
11084 	hw->hw.mem_base =
11085 		devm_ioremap_wc(&pdev->dev,
11086 				pci_resource_start(pdev, HCLGE_MEM_BAR),
11087 				pci_resource_len(pdev, HCLGE_MEM_BAR));
11088 	if (!hw->hw.mem_base) {
11089 		dev_err(&pdev->dev, "failed to map device memory\n");
11090 		return -EFAULT;
11091 	}
11092 
11093 	return 0;
11094 }
11095 
11096 static int hclge_pci_init(struct hclge_dev *hdev)
11097 {
11098 	struct pci_dev *pdev = hdev->pdev;
11099 	struct hclge_hw *hw;
11100 	int ret;
11101 
11102 	ret = pci_enable_device(pdev);
11103 	if (ret) {
11104 		dev_err(&pdev->dev, "failed to enable PCI device\n");
11105 		return ret;
11106 	}
11107 
11108 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11109 	if (ret) {
11110 		ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11111 		if (ret) {
11112 			dev_err(&pdev->dev,
11113 				"can't set consistent PCI DMA");
11114 			goto err_disable_device;
11115 		}
11116 		dev_warn(&pdev->dev, "set DMA mask to 32 bits\n");
11117 	}
11118 
11119 	ret = pci_request_regions(pdev, HCLGE_DRIVER_NAME);
11120 	if (ret) {
11121 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
11122 		goto err_disable_device;
11123 	}
11124 
11125 	pci_set_master(pdev);
11126 	hw = &hdev->hw;
11127 	hw->hw.io_base = pcim_iomap(pdev, 2, 0);
11128 	if (!hw->hw.io_base) {
11129 		dev_err(&pdev->dev, "Can't map configuration register space\n");
11130 		ret = -ENOMEM;
11131 		goto err_clr_master;
11132 	}
11133 
11134 	ret = hclge_dev_mem_map(hdev);
11135 	if (ret)
11136 		goto err_unmap_io_base;
11137 
11138 	hdev->num_req_vfs = pci_sriov_get_totalvfs(pdev);
11139 
11140 	return 0;
11141 
11142 err_unmap_io_base:
11143 	pcim_iounmap(pdev, hdev->hw.hw.io_base);
11144 err_clr_master:
11145 	pci_clear_master(pdev);
11146 	pci_release_regions(pdev);
11147 err_disable_device:
11148 	pci_disable_device(pdev);
11149 
11150 	return ret;
11151 }
11152 
11153 static void hclge_pci_uninit(struct hclge_dev *hdev)
11154 {
11155 	struct pci_dev *pdev = hdev->pdev;
11156 
11157 	if (hdev->hw.hw.mem_base)
11158 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
11159 
11160 	pcim_iounmap(pdev, hdev->hw.hw.io_base);
11161 	pci_free_irq_vectors(pdev);
11162 	pci_clear_master(pdev);
11163 	pci_release_mem_regions(pdev);
11164 	pci_disable_device(pdev);
11165 }
11166 
11167 static void hclge_state_init(struct hclge_dev *hdev)
11168 {
11169 	set_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state);
11170 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
11171 	clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state);
11172 	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11173 	clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
11174 	clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state);
11175 	clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state);
11176 }
11177 
11178 static void hclge_state_uninit(struct hclge_dev *hdev)
11179 {
11180 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
11181 	set_bit(HCLGE_STATE_REMOVING, &hdev->state);
11182 
11183 	if (hdev->reset_timer.function)
11184 		del_timer_sync(&hdev->reset_timer);
11185 	if (hdev->service_task.work.func)
11186 		cancel_delayed_work_sync(&hdev->service_task);
11187 }
11188 
11189 static void hclge_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
11190 					enum hnae3_reset_type rst_type)
11191 {
11192 #define HCLGE_RESET_RETRY_WAIT_MS	500
11193 #define HCLGE_RESET_RETRY_CNT	5
11194 
11195 	struct hclge_dev *hdev = ae_dev->priv;
11196 	int retry_cnt = 0;
11197 	int ret;
11198 
11199 	while (retry_cnt++ < HCLGE_RESET_RETRY_CNT) {
11200 		down(&hdev->reset_sem);
11201 		set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11202 		hdev->reset_type = rst_type;
11203 		ret = hclge_reset_prepare(hdev);
11204 		if (!ret && !hdev->reset_pending)
11205 			break;
11206 
11207 		dev_err(&hdev->pdev->dev,
11208 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
11209 			ret, hdev->reset_pending, retry_cnt);
11210 		clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11211 		up(&hdev->reset_sem);
11212 		msleep(HCLGE_RESET_RETRY_WAIT_MS);
11213 	}
11214 
11215 	/* disable misc vector before reset done */
11216 	hclge_enable_vector(&hdev->misc_vector, false);
11217 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
11218 
11219 	if (hdev->reset_type == HNAE3_FLR_RESET)
11220 		hdev->rst_stats.flr_rst_cnt++;
11221 }
11222 
11223 static void hclge_reset_done(struct hnae3_ae_dev *ae_dev)
11224 {
11225 	struct hclge_dev *hdev = ae_dev->priv;
11226 	int ret;
11227 
11228 	hclge_enable_vector(&hdev->misc_vector, true);
11229 
11230 	ret = hclge_reset_rebuild(hdev);
11231 	if (ret)
11232 		dev_err(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", ret);
11233 
11234 	hdev->reset_type = HNAE3_NONE_RESET;
11235 	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11236 	up(&hdev->reset_sem);
11237 }
11238 
11239 static void hclge_clear_resetting_state(struct hclge_dev *hdev)
11240 {
11241 	u16 i;
11242 
11243 	for (i = 0; i < hdev->num_alloc_vport; i++) {
11244 		struct hclge_vport *vport = &hdev->vport[i];
11245 		int ret;
11246 
11247 		 /* Send cmd to clear vport's FUNC_RST_ING */
11248 		ret = hclge_set_vf_rst(hdev, vport->vport_id, false);
11249 		if (ret)
11250 			dev_warn(&hdev->pdev->dev,
11251 				 "clear vport(%u) rst failed %d!\n",
11252 				 vport->vport_id, ret);
11253 	}
11254 }
11255 
11256 static int hclge_clear_hw_resource(struct hclge_dev *hdev)
11257 {
11258 	struct hclge_desc desc;
11259 	int ret;
11260 
11261 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_HW_RESOURCE, false);
11262 
11263 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
11264 	/* This new command is only supported by new firmware, it will
11265 	 * fail with older firmware. Error value -EOPNOSUPP can only be
11266 	 * returned by older firmware running this command, to keep code
11267 	 * backward compatible we will override this value and return
11268 	 * success.
11269 	 */
11270 	if (ret && ret != -EOPNOTSUPP) {
11271 		dev_err(&hdev->pdev->dev,
11272 			"failed to clear hw resource, ret = %d\n", ret);
11273 		return ret;
11274 	}
11275 	return 0;
11276 }
11277 
11278 static void hclge_init_rxd_adv_layout(struct hclge_dev *hdev)
11279 {
11280 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
11281 		hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 1);
11282 }
11283 
11284 static void hclge_uninit_rxd_adv_layout(struct hclge_dev *hdev)
11285 {
11286 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
11287 		hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 0);
11288 }
11289 
11290 static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev)
11291 {
11292 	struct pci_dev *pdev = ae_dev->pdev;
11293 	struct hclge_dev *hdev;
11294 	int ret;
11295 
11296 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
11297 	if (!hdev)
11298 		return -ENOMEM;
11299 
11300 	hdev->pdev = pdev;
11301 	hdev->ae_dev = ae_dev;
11302 	hdev->reset_type = HNAE3_NONE_RESET;
11303 	hdev->reset_level = HNAE3_FUNC_RESET;
11304 	ae_dev->priv = hdev;
11305 
11306 	/* HW supprt 2 layer vlan */
11307 	hdev->mps = ETH_FRAME_LEN + ETH_FCS_LEN + 2 * VLAN_HLEN;
11308 
11309 	mutex_init(&hdev->vport_lock);
11310 	spin_lock_init(&hdev->fd_rule_lock);
11311 	sema_init(&hdev->reset_sem, 1);
11312 
11313 	ret = hclge_pci_init(hdev);
11314 	if (ret)
11315 		goto out;
11316 
11317 	ret = hclge_devlink_init(hdev);
11318 	if (ret)
11319 		goto err_pci_uninit;
11320 
11321 	/* Firmware command queue initialize */
11322 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
11323 	if (ret)
11324 		goto err_devlink_uninit;
11325 
11326 	/* Firmware command initialize */
11327 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version,
11328 				  true, hdev->reset_pending);
11329 	if (ret)
11330 		goto err_cmd_uninit;
11331 
11332 	ret  = hclge_clear_hw_resource(hdev);
11333 	if (ret)
11334 		goto err_cmd_uninit;
11335 
11336 	ret = hclge_get_cap(hdev);
11337 	if (ret)
11338 		goto err_cmd_uninit;
11339 
11340 	ret = hclge_query_dev_specs(hdev);
11341 	if (ret) {
11342 		dev_err(&pdev->dev, "failed to query dev specifications, ret = %d.\n",
11343 			ret);
11344 		goto err_cmd_uninit;
11345 	}
11346 
11347 	ret = hclge_configure(hdev);
11348 	if (ret) {
11349 		dev_err(&pdev->dev, "Configure dev error, ret = %d.\n", ret);
11350 		goto err_cmd_uninit;
11351 	}
11352 
11353 	ret = hclge_init_msi(hdev);
11354 	if (ret) {
11355 		dev_err(&pdev->dev, "Init MSI/MSI-X error, ret = %d.\n", ret);
11356 		goto err_cmd_uninit;
11357 	}
11358 
11359 	ret = hclge_misc_irq_init(hdev);
11360 	if (ret)
11361 		goto err_msi_uninit;
11362 
11363 	ret = hclge_alloc_tqps(hdev);
11364 	if (ret) {
11365 		dev_err(&pdev->dev, "Allocate TQPs error, ret = %d.\n", ret);
11366 		goto err_msi_irq_uninit;
11367 	}
11368 
11369 	ret = hclge_alloc_vport(hdev);
11370 	if (ret)
11371 		goto err_msi_irq_uninit;
11372 
11373 	ret = hclge_map_tqp(hdev);
11374 	if (ret)
11375 		goto err_msi_irq_uninit;
11376 
11377 	if (hdev->hw.mac.media_type == HNAE3_MEDIA_TYPE_COPPER &&
11378 	    !hnae3_dev_phy_imp_supported(hdev)) {
11379 		ret = hclge_mac_mdio_config(hdev);
11380 		if (ret)
11381 			goto err_msi_irq_uninit;
11382 	}
11383 
11384 	ret = hclge_init_umv_space(hdev);
11385 	if (ret)
11386 		goto err_mdiobus_unreg;
11387 
11388 	ret = hclge_mac_init(hdev);
11389 	if (ret) {
11390 		dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret);
11391 		goto err_mdiobus_unreg;
11392 	}
11393 
11394 	ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX);
11395 	if (ret) {
11396 		dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret);
11397 		goto err_mdiobus_unreg;
11398 	}
11399 
11400 	ret = hclge_config_gro(hdev);
11401 	if (ret)
11402 		goto err_mdiobus_unreg;
11403 
11404 	ret = hclge_init_vlan_config(hdev);
11405 	if (ret) {
11406 		dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret);
11407 		goto err_mdiobus_unreg;
11408 	}
11409 
11410 	ret = hclge_tm_schd_init(hdev);
11411 	if (ret) {
11412 		dev_err(&pdev->dev, "tm schd init fail, ret =%d\n", ret);
11413 		goto err_mdiobus_unreg;
11414 	}
11415 
11416 	ret = hclge_comm_rss_init_cfg(&hdev->vport->nic, hdev->ae_dev,
11417 				      &hdev->rss_cfg);
11418 	if (ret) {
11419 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
11420 		goto err_mdiobus_unreg;
11421 	}
11422 
11423 	ret = hclge_rss_init_hw(hdev);
11424 	if (ret) {
11425 		dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret);
11426 		goto err_mdiobus_unreg;
11427 	}
11428 
11429 	ret = init_mgr_tbl(hdev);
11430 	if (ret) {
11431 		dev_err(&pdev->dev, "manager table init fail, ret =%d\n", ret);
11432 		goto err_mdiobus_unreg;
11433 	}
11434 
11435 	ret = hclge_init_fd_config(hdev);
11436 	if (ret) {
11437 		dev_err(&pdev->dev,
11438 			"fd table init fail, ret=%d\n", ret);
11439 		goto err_mdiobus_unreg;
11440 	}
11441 
11442 	ret = hclge_ptp_init(hdev);
11443 	if (ret)
11444 		goto err_mdiobus_unreg;
11445 
11446 	INIT_KFIFO(hdev->mac_tnl_log);
11447 
11448 	hclge_dcb_ops_set(hdev);
11449 
11450 	timer_setup(&hdev->reset_timer, hclge_reset_timer, 0);
11451 	INIT_DELAYED_WORK(&hdev->service_task, hclge_service_task);
11452 
11453 	hclge_clear_all_event_cause(hdev);
11454 	hclge_clear_resetting_state(hdev);
11455 
11456 	/* Log and clear the hw errors those already occurred */
11457 	if (hnae3_dev_ras_imp_supported(hdev))
11458 		hclge_handle_occurred_error(hdev);
11459 	else
11460 		hclge_handle_all_hns_hw_errors(ae_dev);
11461 
11462 	/* request delayed reset for the error recovery because an immediate
11463 	 * global reset on a PF affecting pending initialization of other PFs
11464 	 */
11465 	if (ae_dev->hw_err_reset_req) {
11466 		enum hnae3_reset_type reset_level;
11467 
11468 		reset_level = hclge_get_reset_level(ae_dev,
11469 						    &ae_dev->hw_err_reset_req);
11470 		hclge_set_def_reset_request(ae_dev, reset_level);
11471 		mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL);
11472 	}
11473 
11474 	hclge_init_rxd_adv_layout(hdev);
11475 
11476 	/* Enable MISC vector(vector0) */
11477 	hclge_enable_vector(&hdev->misc_vector, true);
11478 
11479 	hclge_state_init(hdev);
11480 	hdev->last_reset_time = jiffies;
11481 
11482 	dev_info(&hdev->pdev->dev, "%s driver initialization finished.\n",
11483 		 HCLGE_DRIVER_NAME);
11484 
11485 	hclge_task_schedule(hdev, round_jiffies_relative(HZ));
11486 
11487 	return 0;
11488 
11489 err_mdiobus_unreg:
11490 	if (hdev->hw.mac.phydev)
11491 		mdiobus_unregister(hdev->hw.mac.mdio_bus);
11492 err_msi_irq_uninit:
11493 	hclge_misc_irq_uninit(hdev);
11494 err_msi_uninit:
11495 	pci_free_irq_vectors(pdev);
11496 err_cmd_uninit:
11497 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
11498 err_devlink_uninit:
11499 	hclge_devlink_uninit(hdev);
11500 err_pci_uninit:
11501 	pcim_iounmap(pdev, hdev->hw.hw.io_base);
11502 	pci_clear_master(pdev);
11503 	pci_release_regions(pdev);
11504 	pci_disable_device(pdev);
11505 out:
11506 	mutex_destroy(&hdev->vport_lock);
11507 	return ret;
11508 }
11509 
11510 static void hclge_stats_clear(struct hclge_dev *hdev)
11511 {
11512 	memset(&hdev->mac_stats, 0, sizeof(hdev->mac_stats));
11513 }
11514 
11515 static int hclge_set_mac_spoofchk(struct hclge_dev *hdev, int vf, bool enable)
11516 {
11517 	return hclge_config_switch_param(hdev, vf, enable,
11518 					 HCLGE_SWITCH_ANTI_SPOOF_MASK);
11519 }
11520 
11521 static int hclge_set_vlan_spoofchk(struct hclge_dev *hdev, int vf, bool enable)
11522 {
11523 	return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
11524 					  HCLGE_FILTER_FE_NIC_INGRESS_B,
11525 					  enable, vf);
11526 }
11527 
11528 static int hclge_set_vf_spoofchk_hw(struct hclge_dev *hdev, int vf, bool enable)
11529 {
11530 	int ret;
11531 
11532 	ret = hclge_set_mac_spoofchk(hdev, vf, enable);
11533 	if (ret) {
11534 		dev_err(&hdev->pdev->dev,
11535 			"Set vf %d mac spoof check %s failed, ret=%d\n",
11536 			vf, enable ? "on" : "off", ret);
11537 		return ret;
11538 	}
11539 
11540 	ret = hclge_set_vlan_spoofchk(hdev, vf, enable);
11541 	if (ret)
11542 		dev_err(&hdev->pdev->dev,
11543 			"Set vf %d vlan spoof check %s failed, ret=%d\n",
11544 			vf, enable ? "on" : "off", ret);
11545 
11546 	return ret;
11547 }
11548 
11549 static int hclge_set_vf_spoofchk(struct hnae3_handle *handle, int vf,
11550 				 bool enable)
11551 {
11552 	struct hclge_vport *vport = hclge_get_vport(handle);
11553 	struct hclge_dev *hdev = vport->back;
11554 	u32 new_spoofchk = enable ? 1 : 0;
11555 	int ret;
11556 
11557 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
11558 		return -EOPNOTSUPP;
11559 
11560 	vport = hclge_get_vf_vport(hdev, vf);
11561 	if (!vport)
11562 		return -EINVAL;
11563 
11564 	if (vport->vf_info.spoofchk == new_spoofchk)
11565 		return 0;
11566 
11567 	if (enable && test_bit(vport->vport_id, hdev->vf_vlan_full))
11568 		dev_warn(&hdev->pdev->dev,
11569 			 "vf %d vlan table is full, enable spoof check may cause its packet send fail\n",
11570 			 vf);
11571 	else if (enable && hclge_is_umv_space_full(vport, true))
11572 		dev_warn(&hdev->pdev->dev,
11573 			 "vf %d mac table is full, enable spoof check may cause its packet send fail\n",
11574 			 vf);
11575 
11576 	ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, enable);
11577 	if (ret)
11578 		return ret;
11579 
11580 	vport->vf_info.spoofchk = new_spoofchk;
11581 	return 0;
11582 }
11583 
11584 static int hclge_reset_vport_spoofchk(struct hclge_dev *hdev)
11585 {
11586 	struct hclge_vport *vport = hdev->vport;
11587 	int ret;
11588 	int i;
11589 
11590 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
11591 		return 0;
11592 
11593 	/* resume the vf spoof check state after reset */
11594 	for (i = 0; i < hdev->num_alloc_vport; i++) {
11595 		ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id,
11596 					       vport->vf_info.spoofchk);
11597 		if (ret)
11598 			return ret;
11599 
11600 		vport++;
11601 	}
11602 
11603 	return 0;
11604 }
11605 
11606 static int hclge_set_vf_trust(struct hnae3_handle *handle, int vf, bool enable)
11607 {
11608 	struct hclge_vport *vport = hclge_get_vport(handle);
11609 	struct hclge_dev *hdev = vport->back;
11610 	u32 new_trusted = enable ? 1 : 0;
11611 
11612 	vport = hclge_get_vf_vport(hdev, vf);
11613 	if (!vport)
11614 		return -EINVAL;
11615 
11616 	if (vport->vf_info.trusted == new_trusted)
11617 		return 0;
11618 
11619 	vport->vf_info.trusted = new_trusted;
11620 	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
11621 	hclge_task_schedule(hdev, 0);
11622 
11623 	return 0;
11624 }
11625 
11626 static void hclge_reset_vf_rate(struct hclge_dev *hdev)
11627 {
11628 	int ret;
11629 	int vf;
11630 
11631 	/* reset vf rate to default value */
11632 	for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) {
11633 		struct hclge_vport *vport = &hdev->vport[vf];
11634 
11635 		vport->vf_info.max_tx_rate = 0;
11636 		ret = hclge_tm_qs_shaper_cfg(vport, vport->vf_info.max_tx_rate);
11637 		if (ret)
11638 			dev_err(&hdev->pdev->dev,
11639 				"vf%d failed to reset to default, ret=%d\n",
11640 				vf - HCLGE_VF_VPORT_START_NUM, ret);
11641 	}
11642 }
11643 
11644 static int hclge_vf_rate_param_check(struct hclge_dev *hdev,
11645 				     int min_tx_rate, int max_tx_rate)
11646 {
11647 	if (min_tx_rate != 0 ||
11648 	    max_tx_rate < 0 || max_tx_rate > hdev->hw.mac.max_speed) {
11649 		dev_err(&hdev->pdev->dev,
11650 			"min_tx_rate:%d [0], max_tx_rate:%d [0, %u]\n",
11651 			min_tx_rate, max_tx_rate, hdev->hw.mac.max_speed);
11652 		return -EINVAL;
11653 	}
11654 
11655 	return 0;
11656 }
11657 
11658 static int hclge_set_vf_rate(struct hnae3_handle *handle, int vf,
11659 			     int min_tx_rate, int max_tx_rate, bool force)
11660 {
11661 	struct hclge_vport *vport = hclge_get_vport(handle);
11662 	struct hclge_dev *hdev = vport->back;
11663 	int ret;
11664 
11665 	ret = hclge_vf_rate_param_check(hdev, min_tx_rate, max_tx_rate);
11666 	if (ret)
11667 		return ret;
11668 
11669 	vport = hclge_get_vf_vport(hdev, vf);
11670 	if (!vport)
11671 		return -EINVAL;
11672 
11673 	if (!force && max_tx_rate == vport->vf_info.max_tx_rate)
11674 		return 0;
11675 
11676 	ret = hclge_tm_qs_shaper_cfg(vport, max_tx_rate);
11677 	if (ret)
11678 		return ret;
11679 
11680 	vport->vf_info.max_tx_rate = max_tx_rate;
11681 
11682 	return 0;
11683 }
11684 
11685 static int hclge_resume_vf_rate(struct hclge_dev *hdev)
11686 {
11687 	struct hnae3_handle *handle = &hdev->vport->nic;
11688 	struct hclge_vport *vport;
11689 	int ret;
11690 	int vf;
11691 
11692 	/* resume the vf max_tx_rate after reset */
11693 	for (vf = 0; vf < pci_num_vf(hdev->pdev); vf++) {
11694 		vport = hclge_get_vf_vport(hdev, vf);
11695 		if (!vport)
11696 			return -EINVAL;
11697 
11698 		/* zero means max rate, after reset, firmware already set it to
11699 		 * max rate, so just continue.
11700 		 */
11701 		if (!vport->vf_info.max_tx_rate)
11702 			continue;
11703 
11704 		ret = hclge_set_vf_rate(handle, vf, 0,
11705 					vport->vf_info.max_tx_rate, true);
11706 		if (ret) {
11707 			dev_err(&hdev->pdev->dev,
11708 				"vf%d failed to resume tx_rate:%u, ret=%d\n",
11709 				vf, vport->vf_info.max_tx_rate, ret);
11710 			return ret;
11711 		}
11712 	}
11713 
11714 	return 0;
11715 }
11716 
11717 static void hclge_reset_vport_state(struct hclge_dev *hdev)
11718 {
11719 	struct hclge_vport *vport = hdev->vport;
11720 	int i;
11721 
11722 	for (i = 0; i < hdev->num_alloc_vport; i++) {
11723 		hclge_vport_stop(vport);
11724 		vport++;
11725 	}
11726 }
11727 
11728 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev)
11729 {
11730 	struct hclge_dev *hdev = ae_dev->priv;
11731 	struct pci_dev *pdev = ae_dev->pdev;
11732 	int ret;
11733 
11734 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
11735 
11736 	hclge_stats_clear(hdev);
11737 	/* NOTE: pf reset needn't to clear or restore pf and vf table entry.
11738 	 * so here should not clean table in memory.
11739 	 */
11740 	if (hdev->reset_type == HNAE3_IMP_RESET ||
11741 	    hdev->reset_type == HNAE3_GLOBAL_RESET) {
11742 		memset(hdev->vlan_table, 0, sizeof(hdev->vlan_table));
11743 		memset(hdev->vf_vlan_full, 0, sizeof(hdev->vf_vlan_full));
11744 		bitmap_set(hdev->vport_config_block, 0, hdev->num_alloc_vport);
11745 		hclge_reset_umv_space(hdev);
11746 	}
11747 
11748 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version,
11749 				  true, hdev->reset_pending);
11750 	if (ret) {
11751 		dev_err(&pdev->dev, "Cmd queue init failed\n");
11752 		return ret;
11753 	}
11754 
11755 	ret = hclge_map_tqp(hdev);
11756 	if (ret) {
11757 		dev_err(&pdev->dev, "Map tqp error, ret = %d.\n", ret);
11758 		return ret;
11759 	}
11760 
11761 	ret = hclge_mac_init(hdev);
11762 	if (ret) {
11763 		dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret);
11764 		return ret;
11765 	}
11766 
11767 	ret = hclge_tp_port_init(hdev);
11768 	if (ret) {
11769 		dev_err(&pdev->dev, "failed to init tp port, ret = %d\n",
11770 			ret);
11771 		return ret;
11772 	}
11773 
11774 	ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX);
11775 	if (ret) {
11776 		dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret);
11777 		return ret;
11778 	}
11779 
11780 	ret = hclge_config_gro(hdev);
11781 	if (ret)
11782 		return ret;
11783 
11784 	ret = hclge_init_vlan_config(hdev);
11785 	if (ret) {
11786 		dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret);
11787 		return ret;
11788 	}
11789 
11790 	ret = hclge_tm_init_hw(hdev, true);
11791 	if (ret) {
11792 		dev_err(&pdev->dev, "tm init hw fail, ret =%d\n", ret);
11793 		return ret;
11794 	}
11795 
11796 	ret = hclge_rss_init_hw(hdev);
11797 	if (ret) {
11798 		dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret);
11799 		return ret;
11800 	}
11801 
11802 	ret = init_mgr_tbl(hdev);
11803 	if (ret) {
11804 		dev_err(&pdev->dev,
11805 			"failed to reinit manager table, ret = %d\n", ret);
11806 		return ret;
11807 	}
11808 
11809 	ret = hclge_init_fd_config(hdev);
11810 	if (ret) {
11811 		dev_err(&pdev->dev, "fd table init fail, ret=%d\n", ret);
11812 		return ret;
11813 	}
11814 
11815 	ret = hclge_ptp_init(hdev);
11816 	if (ret)
11817 		return ret;
11818 
11819 	/* Log and clear the hw errors those already occurred */
11820 	if (hnae3_dev_ras_imp_supported(hdev))
11821 		hclge_handle_occurred_error(hdev);
11822 	else
11823 		hclge_handle_all_hns_hw_errors(ae_dev);
11824 
11825 	/* Re-enable the hw error interrupts because
11826 	 * the interrupts get disabled on global reset.
11827 	 */
11828 	ret = hclge_config_nic_hw_error(hdev, true);
11829 	if (ret) {
11830 		dev_err(&pdev->dev,
11831 			"fail(%d) to re-enable NIC hw error interrupts\n",
11832 			ret);
11833 		return ret;
11834 	}
11835 
11836 	if (hdev->roce_client) {
11837 		ret = hclge_config_rocee_ras_interrupt(hdev, true);
11838 		if (ret) {
11839 			dev_err(&pdev->dev,
11840 				"fail(%d) to re-enable roce ras interrupts\n",
11841 				ret);
11842 			return ret;
11843 		}
11844 	}
11845 
11846 	hclge_reset_vport_state(hdev);
11847 	ret = hclge_reset_vport_spoofchk(hdev);
11848 	if (ret)
11849 		return ret;
11850 
11851 	ret = hclge_resume_vf_rate(hdev);
11852 	if (ret)
11853 		return ret;
11854 
11855 	hclge_init_rxd_adv_layout(hdev);
11856 
11857 	dev_info(&pdev->dev, "Reset done, %s driver initialization finished.\n",
11858 		 HCLGE_DRIVER_NAME);
11859 
11860 	return 0;
11861 }
11862 
11863 static void hclge_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
11864 {
11865 	struct hclge_dev *hdev = ae_dev->priv;
11866 	struct hclge_mac *mac = &hdev->hw.mac;
11867 
11868 	hclge_reset_vf_rate(hdev);
11869 	hclge_clear_vf_vlan(hdev);
11870 	hclge_state_uninit(hdev);
11871 	hclge_ptp_uninit(hdev);
11872 	hclge_uninit_rxd_adv_layout(hdev);
11873 	hclge_uninit_mac_table(hdev);
11874 	hclge_del_all_fd_entries(hdev);
11875 
11876 	if (mac->phydev)
11877 		mdiobus_unregister(mac->mdio_bus);
11878 
11879 	/* Disable MISC vector(vector0) */
11880 	hclge_enable_vector(&hdev->misc_vector, false);
11881 	synchronize_irq(hdev->misc_vector.vector_irq);
11882 
11883 	/* Disable all hw interrupts */
11884 	hclge_config_mac_tnl_int(hdev, false);
11885 	hclge_config_nic_hw_error(hdev, false);
11886 	hclge_config_rocee_ras_interrupt(hdev, false);
11887 
11888 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
11889 	hclge_misc_irq_uninit(hdev);
11890 	hclge_devlink_uninit(hdev);
11891 	hclge_pci_uninit(hdev);
11892 	hclge_uninit_vport_vlan_table(hdev);
11893 	mutex_destroy(&hdev->vport_lock);
11894 	ae_dev->priv = NULL;
11895 }
11896 
11897 static u32 hclge_get_max_channels(struct hnae3_handle *handle)
11898 {
11899 	struct hclge_vport *vport = hclge_get_vport(handle);
11900 	struct hclge_dev *hdev = vport->back;
11901 
11902 	return min_t(u32, hdev->pf_rss_size_max, vport->alloc_tqps);
11903 }
11904 
11905 static void hclge_get_channels(struct hnae3_handle *handle,
11906 			       struct ethtool_channels *ch)
11907 {
11908 	ch->max_combined = hclge_get_max_channels(handle);
11909 	ch->other_count = 1;
11910 	ch->max_other = 1;
11911 	ch->combined_count = handle->kinfo.rss_size;
11912 }
11913 
11914 static void hclge_get_tqps_and_rss_info(struct hnae3_handle *handle,
11915 					u16 *alloc_tqps, u16 *max_rss_size)
11916 {
11917 	struct hclge_vport *vport = hclge_get_vport(handle);
11918 	struct hclge_dev *hdev = vport->back;
11919 
11920 	*alloc_tqps = vport->alloc_tqps;
11921 	*max_rss_size = hdev->pf_rss_size_max;
11922 }
11923 
11924 static int hclge_set_rss_tc_mode_cfg(struct hnae3_handle *handle)
11925 {
11926 	struct hclge_vport *vport = hclge_get_vport(handle);
11927 	u16 tc_offset[HCLGE_MAX_TC_NUM] = {0};
11928 	struct hclge_dev *hdev = vport->back;
11929 	u16 tc_size[HCLGE_MAX_TC_NUM] = {0};
11930 	u16 tc_valid[HCLGE_MAX_TC_NUM];
11931 	u16 roundup_size;
11932 	unsigned int i;
11933 
11934 	roundup_size = roundup_pow_of_two(vport->nic.kinfo.rss_size);
11935 	roundup_size = ilog2(roundup_size);
11936 	/* Set the RSS TC mode according to the new RSS size */
11937 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
11938 		tc_valid[i] = 0;
11939 
11940 		if (!(hdev->hw_tc_map & BIT(i)))
11941 			continue;
11942 
11943 		tc_valid[i] = 1;
11944 		tc_size[i] = roundup_size;
11945 		tc_offset[i] = vport->nic.kinfo.rss_size * i;
11946 	}
11947 
11948 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid,
11949 					  tc_size);
11950 }
11951 
11952 static int hclge_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
11953 			      bool rxfh_configured)
11954 {
11955 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
11956 	struct hclge_vport *vport = hclge_get_vport(handle);
11957 	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
11958 	struct hclge_dev *hdev = vport->back;
11959 	u16 cur_rss_size = kinfo->rss_size;
11960 	u16 cur_tqps = kinfo->num_tqps;
11961 	u32 *rss_indir;
11962 	unsigned int i;
11963 	int ret;
11964 
11965 	kinfo->req_rss_size = new_tqps_num;
11966 
11967 	ret = hclge_tm_vport_map_update(hdev);
11968 	if (ret) {
11969 		dev_err(&hdev->pdev->dev, "tm vport map fail, ret =%d\n", ret);
11970 		return ret;
11971 	}
11972 
11973 	ret = hclge_set_rss_tc_mode_cfg(handle);
11974 	if (ret)
11975 		return ret;
11976 
11977 	/* RSS indirection table has been configured by user */
11978 	if (rxfh_configured)
11979 		goto out;
11980 
11981 	/* Reinitializes the rss indirect table according to the new RSS size */
11982 	rss_indir = kcalloc(ae_dev->dev_specs.rss_ind_tbl_size, sizeof(u32),
11983 			    GFP_KERNEL);
11984 	if (!rss_indir)
11985 		return -ENOMEM;
11986 
11987 	for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++)
11988 		rss_indir[i] = i % kinfo->rss_size;
11989 
11990 	ret = hclge_set_rss(handle, rss_indir, NULL, 0);
11991 	if (ret)
11992 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
11993 			ret);
11994 
11995 	kfree(rss_indir);
11996 
11997 out:
11998 	if (!ret)
11999 		dev_info(&hdev->pdev->dev,
12000 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
12001 			 cur_rss_size, kinfo->rss_size,
12002 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
12003 
12004 	return ret;
12005 }
12006 
12007 static int hclge_get_regs_num(struct hclge_dev *hdev, u32 *regs_num_32_bit,
12008 			      u32 *regs_num_64_bit)
12009 {
12010 	struct hclge_desc desc;
12011 	u32 total_num;
12012 	int ret;
12013 
12014 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_REG_NUM, true);
12015 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12016 	if (ret) {
12017 		dev_err(&hdev->pdev->dev,
12018 			"Query register number cmd failed, ret = %d.\n", ret);
12019 		return ret;
12020 	}
12021 
12022 	*regs_num_32_bit = le32_to_cpu(desc.data[0]);
12023 	*regs_num_64_bit = le32_to_cpu(desc.data[1]);
12024 
12025 	total_num = *regs_num_32_bit + *regs_num_64_bit;
12026 	if (!total_num)
12027 		return -EINVAL;
12028 
12029 	return 0;
12030 }
12031 
12032 static int hclge_get_32_bit_regs(struct hclge_dev *hdev, u32 regs_num,
12033 				 void *data)
12034 {
12035 #define HCLGE_32_BIT_REG_RTN_DATANUM 8
12036 #define HCLGE_32_BIT_DESC_NODATA_LEN 2
12037 
12038 	struct hclge_desc *desc;
12039 	u32 *reg_val = data;
12040 	__le32 *desc_data;
12041 	int nodata_num;
12042 	int cmd_num;
12043 	int i, k, n;
12044 	int ret;
12045 
12046 	if (regs_num == 0)
12047 		return 0;
12048 
12049 	nodata_num = HCLGE_32_BIT_DESC_NODATA_LEN;
12050 	cmd_num = DIV_ROUND_UP(regs_num + nodata_num,
12051 			       HCLGE_32_BIT_REG_RTN_DATANUM);
12052 	desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL);
12053 	if (!desc)
12054 		return -ENOMEM;
12055 
12056 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_32_BIT_REG, true);
12057 	ret = hclge_cmd_send(&hdev->hw, desc, cmd_num);
12058 	if (ret) {
12059 		dev_err(&hdev->pdev->dev,
12060 			"Query 32 bit register cmd failed, ret = %d.\n", ret);
12061 		kfree(desc);
12062 		return ret;
12063 	}
12064 
12065 	for (i = 0; i < cmd_num; i++) {
12066 		if (i == 0) {
12067 			desc_data = (__le32 *)(&desc[i].data[0]);
12068 			n = HCLGE_32_BIT_REG_RTN_DATANUM - nodata_num;
12069 		} else {
12070 			desc_data = (__le32 *)(&desc[i]);
12071 			n = HCLGE_32_BIT_REG_RTN_DATANUM;
12072 		}
12073 		for (k = 0; k < n; k++) {
12074 			*reg_val++ = le32_to_cpu(*desc_data++);
12075 
12076 			regs_num--;
12077 			if (!regs_num)
12078 				break;
12079 		}
12080 	}
12081 
12082 	kfree(desc);
12083 	return 0;
12084 }
12085 
12086 static int hclge_get_64_bit_regs(struct hclge_dev *hdev, u32 regs_num,
12087 				 void *data)
12088 {
12089 #define HCLGE_64_BIT_REG_RTN_DATANUM 4
12090 #define HCLGE_64_BIT_DESC_NODATA_LEN 1
12091 
12092 	struct hclge_desc *desc;
12093 	u64 *reg_val = data;
12094 	__le64 *desc_data;
12095 	int nodata_len;
12096 	int cmd_num;
12097 	int i, k, n;
12098 	int ret;
12099 
12100 	if (regs_num == 0)
12101 		return 0;
12102 
12103 	nodata_len = HCLGE_64_BIT_DESC_NODATA_LEN;
12104 	cmd_num = DIV_ROUND_UP(regs_num + nodata_len,
12105 			       HCLGE_64_BIT_REG_RTN_DATANUM);
12106 	desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL);
12107 	if (!desc)
12108 		return -ENOMEM;
12109 
12110 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_64_BIT_REG, true);
12111 	ret = hclge_cmd_send(&hdev->hw, desc, cmd_num);
12112 	if (ret) {
12113 		dev_err(&hdev->pdev->dev,
12114 			"Query 64 bit register cmd failed, ret = %d.\n", ret);
12115 		kfree(desc);
12116 		return ret;
12117 	}
12118 
12119 	for (i = 0; i < cmd_num; i++) {
12120 		if (i == 0) {
12121 			desc_data = (__le64 *)(&desc[i].data[0]);
12122 			n = HCLGE_64_BIT_REG_RTN_DATANUM - nodata_len;
12123 		} else {
12124 			desc_data = (__le64 *)(&desc[i]);
12125 			n = HCLGE_64_BIT_REG_RTN_DATANUM;
12126 		}
12127 		for (k = 0; k < n; k++) {
12128 			*reg_val++ = le64_to_cpu(*desc_data++);
12129 
12130 			regs_num--;
12131 			if (!regs_num)
12132 				break;
12133 		}
12134 	}
12135 
12136 	kfree(desc);
12137 	return 0;
12138 }
12139 
12140 #define MAX_SEPARATE_NUM	4
12141 #define SEPARATOR_VALUE		0xFDFCFBFA
12142 #define REG_NUM_PER_LINE	4
12143 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
12144 #define REG_SEPARATOR_LINE	1
12145 #define REG_NUM_REMAIN_MASK	3
12146 
12147 int hclge_query_bd_num_cmd_send(struct hclge_dev *hdev, struct hclge_desc *desc)
12148 {
12149 	int i;
12150 
12151 	/* initialize command BD except the last one */
12152 	for (i = 0; i < HCLGE_GET_DFX_REG_TYPE_CNT - 1; i++) {
12153 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_DFX_BD_NUM,
12154 					   true);
12155 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
12156 	}
12157 
12158 	/* initialize the last command BD */
12159 	hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_DFX_BD_NUM, true);
12160 
12161 	return hclge_cmd_send(&hdev->hw, desc, HCLGE_GET_DFX_REG_TYPE_CNT);
12162 }
12163 
12164 static int hclge_get_dfx_reg_bd_num(struct hclge_dev *hdev,
12165 				    int *bd_num_list,
12166 				    u32 type_num)
12167 {
12168 	u32 entries_per_desc, desc_index, index, offset, i;
12169 	struct hclge_desc desc[HCLGE_GET_DFX_REG_TYPE_CNT];
12170 	int ret;
12171 
12172 	ret = hclge_query_bd_num_cmd_send(hdev, desc);
12173 	if (ret) {
12174 		dev_err(&hdev->pdev->dev,
12175 			"Get dfx bd num fail, status is %d.\n", ret);
12176 		return ret;
12177 	}
12178 
12179 	entries_per_desc = ARRAY_SIZE(desc[0].data);
12180 	for (i = 0; i < type_num; i++) {
12181 		offset = hclge_dfx_bd_offset_list[i];
12182 		index = offset % entries_per_desc;
12183 		desc_index = offset / entries_per_desc;
12184 		bd_num_list[i] = le32_to_cpu(desc[desc_index].data[index]);
12185 	}
12186 
12187 	return ret;
12188 }
12189 
12190 static int hclge_dfx_reg_cmd_send(struct hclge_dev *hdev,
12191 				  struct hclge_desc *desc_src, int bd_num,
12192 				  enum hclge_opcode_type cmd)
12193 {
12194 	struct hclge_desc *desc = desc_src;
12195 	int i, ret;
12196 
12197 	hclge_cmd_setup_basic_desc(desc, cmd, true);
12198 	for (i = 0; i < bd_num - 1; i++) {
12199 		desc->flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
12200 		desc++;
12201 		hclge_cmd_setup_basic_desc(desc, cmd, true);
12202 	}
12203 
12204 	desc = desc_src;
12205 	ret = hclge_cmd_send(&hdev->hw, desc, bd_num);
12206 	if (ret)
12207 		dev_err(&hdev->pdev->dev,
12208 			"Query dfx reg cmd(0x%x) send fail, status is %d.\n",
12209 			cmd, ret);
12210 
12211 	return ret;
12212 }
12213 
12214 static int hclge_dfx_reg_fetch_data(struct hclge_desc *desc_src, int bd_num,
12215 				    void *data)
12216 {
12217 	int entries_per_desc, reg_num, separator_num, desc_index, index, i;
12218 	struct hclge_desc *desc = desc_src;
12219 	u32 *reg = data;
12220 
12221 	entries_per_desc = ARRAY_SIZE(desc->data);
12222 	reg_num = entries_per_desc * bd_num;
12223 	separator_num = REG_NUM_PER_LINE - (reg_num & REG_NUM_REMAIN_MASK);
12224 	for (i = 0; i < reg_num; i++) {
12225 		index = i % entries_per_desc;
12226 		desc_index = i / entries_per_desc;
12227 		*reg++ = le32_to_cpu(desc[desc_index].data[index]);
12228 	}
12229 	for (i = 0; i < separator_num; i++)
12230 		*reg++ = SEPARATOR_VALUE;
12231 
12232 	return reg_num + separator_num;
12233 }
12234 
12235 static int hclge_get_dfx_reg_len(struct hclge_dev *hdev, int *len)
12236 {
12237 	u32 dfx_reg_type_num = ARRAY_SIZE(hclge_dfx_bd_offset_list);
12238 	int data_len_per_desc, bd_num, i;
12239 	int *bd_num_list;
12240 	u32 data_len;
12241 	int ret;
12242 
12243 	bd_num_list = kcalloc(dfx_reg_type_num, sizeof(int), GFP_KERNEL);
12244 	if (!bd_num_list)
12245 		return -ENOMEM;
12246 
12247 	ret = hclge_get_dfx_reg_bd_num(hdev, bd_num_list, dfx_reg_type_num);
12248 	if (ret) {
12249 		dev_err(&hdev->pdev->dev,
12250 			"Get dfx reg bd num fail, status is %d.\n", ret);
12251 		goto out;
12252 	}
12253 
12254 	data_len_per_desc = sizeof_field(struct hclge_desc, data);
12255 	*len = 0;
12256 	for (i = 0; i < dfx_reg_type_num; i++) {
12257 		bd_num = bd_num_list[i];
12258 		data_len = data_len_per_desc * bd_num;
12259 		*len += (data_len / REG_LEN_PER_LINE + 1) * REG_LEN_PER_LINE;
12260 	}
12261 
12262 out:
12263 	kfree(bd_num_list);
12264 	return ret;
12265 }
12266 
12267 static int hclge_get_dfx_reg(struct hclge_dev *hdev, void *data)
12268 {
12269 	u32 dfx_reg_type_num = ARRAY_SIZE(hclge_dfx_bd_offset_list);
12270 	int bd_num, bd_num_max, buf_len, i;
12271 	struct hclge_desc *desc_src;
12272 	int *bd_num_list;
12273 	u32 *reg = data;
12274 	int ret;
12275 
12276 	bd_num_list = kcalloc(dfx_reg_type_num, sizeof(int), GFP_KERNEL);
12277 	if (!bd_num_list)
12278 		return -ENOMEM;
12279 
12280 	ret = hclge_get_dfx_reg_bd_num(hdev, bd_num_list, dfx_reg_type_num);
12281 	if (ret) {
12282 		dev_err(&hdev->pdev->dev,
12283 			"Get dfx reg bd num fail, status is %d.\n", ret);
12284 		goto out;
12285 	}
12286 
12287 	bd_num_max = bd_num_list[0];
12288 	for (i = 1; i < dfx_reg_type_num; i++)
12289 		bd_num_max = max_t(int, bd_num_max, bd_num_list[i]);
12290 
12291 	buf_len = sizeof(*desc_src) * bd_num_max;
12292 	desc_src = kzalloc(buf_len, GFP_KERNEL);
12293 	if (!desc_src) {
12294 		ret = -ENOMEM;
12295 		goto out;
12296 	}
12297 
12298 	for (i = 0; i < dfx_reg_type_num; i++) {
12299 		bd_num = bd_num_list[i];
12300 		ret = hclge_dfx_reg_cmd_send(hdev, desc_src, bd_num,
12301 					     hclge_dfx_reg_opcode_list[i]);
12302 		if (ret) {
12303 			dev_err(&hdev->pdev->dev,
12304 				"Get dfx reg fail, status is %d.\n", ret);
12305 			break;
12306 		}
12307 
12308 		reg += hclge_dfx_reg_fetch_data(desc_src, bd_num, reg);
12309 	}
12310 
12311 	kfree(desc_src);
12312 out:
12313 	kfree(bd_num_list);
12314 	return ret;
12315 }
12316 
12317 static int hclge_fetch_pf_reg(struct hclge_dev *hdev, void *data,
12318 			      struct hnae3_knic_private_info *kinfo)
12319 {
12320 #define HCLGE_RING_REG_OFFSET		0x200
12321 #define HCLGE_RING_INT_REG_OFFSET	0x4
12322 
12323 	int i, j, reg_num, separator_num;
12324 	int data_num_sum;
12325 	u32 *reg = data;
12326 
12327 	/* fetching per-PF registers valus from PF PCIe register space */
12328 	reg_num = ARRAY_SIZE(cmdq_reg_addr_list);
12329 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12330 	for (i = 0; i < reg_num; i++)
12331 		*reg++ = hclge_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
12332 	for (i = 0; i < separator_num; i++)
12333 		*reg++ = SEPARATOR_VALUE;
12334 	data_num_sum = reg_num + separator_num;
12335 
12336 	reg_num = ARRAY_SIZE(common_reg_addr_list);
12337 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12338 	for (i = 0; i < reg_num; i++)
12339 		*reg++ = hclge_read_dev(&hdev->hw, common_reg_addr_list[i]);
12340 	for (i = 0; i < separator_num; i++)
12341 		*reg++ = SEPARATOR_VALUE;
12342 	data_num_sum += reg_num + separator_num;
12343 
12344 	reg_num = ARRAY_SIZE(ring_reg_addr_list);
12345 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12346 	for (j = 0; j < kinfo->num_tqps; j++) {
12347 		for (i = 0; i < reg_num; i++)
12348 			*reg++ = hclge_read_dev(&hdev->hw,
12349 						ring_reg_addr_list[i] +
12350 						HCLGE_RING_REG_OFFSET * j);
12351 		for (i = 0; i < separator_num; i++)
12352 			*reg++ = SEPARATOR_VALUE;
12353 	}
12354 	data_num_sum += (reg_num + separator_num) * kinfo->num_tqps;
12355 
12356 	reg_num = ARRAY_SIZE(tqp_intr_reg_addr_list);
12357 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12358 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
12359 		for (i = 0; i < reg_num; i++)
12360 			*reg++ = hclge_read_dev(&hdev->hw,
12361 						tqp_intr_reg_addr_list[i] +
12362 						HCLGE_RING_INT_REG_OFFSET * j);
12363 		for (i = 0; i < separator_num; i++)
12364 			*reg++ = SEPARATOR_VALUE;
12365 	}
12366 	data_num_sum += (reg_num + separator_num) * (hdev->num_msi_used - 1);
12367 
12368 	return data_num_sum;
12369 }
12370 
12371 static int hclge_get_regs_len(struct hnae3_handle *handle)
12372 {
12373 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
12374 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
12375 	struct hclge_vport *vport = hclge_get_vport(handle);
12376 	struct hclge_dev *hdev = vport->back;
12377 	int regs_num_32_bit, regs_num_64_bit, dfx_regs_len;
12378 	int regs_lines_32_bit, regs_lines_64_bit;
12379 	int ret;
12380 
12381 	ret = hclge_get_regs_num(hdev, &regs_num_32_bit, &regs_num_64_bit);
12382 	if (ret) {
12383 		dev_err(&hdev->pdev->dev,
12384 			"Get register number failed, ret = %d.\n", ret);
12385 		return ret;
12386 	}
12387 
12388 	ret = hclge_get_dfx_reg_len(hdev, &dfx_regs_len);
12389 	if (ret) {
12390 		dev_err(&hdev->pdev->dev,
12391 			"Get dfx reg len failed, ret = %d.\n", ret);
12392 		return ret;
12393 	}
12394 
12395 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE +
12396 		REG_SEPARATOR_LINE;
12397 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE +
12398 		REG_SEPARATOR_LINE;
12399 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE +
12400 		REG_SEPARATOR_LINE;
12401 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE +
12402 		REG_SEPARATOR_LINE;
12403 	regs_lines_32_bit = regs_num_32_bit * sizeof(u32) / REG_LEN_PER_LINE +
12404 		REG_SEPARATOR_LINE;
12405 	regs_lines_64_bit = regs_num_64_bit * sizeof(u64) / REG_LEN_PER_LINE +
12406 		REG_SEPARATOR_LINE;
12407 
12408 	return (cmdq_lines + common_lines + ring_lines * kinfo->num_tqps +
12409 		tqp_intr_lines * (hdev->num_msi_used - 1) + regs_lines_32_bit +
12410 		regs_lines_64_bit) * REG_LEN_PER_LINE + dfx_regs_len;
12411 }
12412 
12413 static void hclge_get_regs(struct hnae3_handle *handle, u32 *version,
12414 			   void *data)
12415 {
12416 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
12417 	struct hclge_vport *vport = hclge_get_vport(handle);
12418 	struct hclge_dev *hdev = vport->back;
12419 	u32 regs_num_32_bit, regs_num_64_bit;
12420 	int i, reg_num, separator_num, ret;
12421 	u32 *reg = data;
12422 
12423 	*version = hdev->fw_version;
12424 
12425 	ret = hclge_get_regs_num(hdev, &regs_num_32_bit, &regs_num_64_bit);
12426 	if (ret) {
12427 		dev_err(&hdev->pdev->dev,
12428 			"Get register number failed, ret = %d.\n", ret);
12429 		return;
12430 	}
12431 
12432 	reg += hclge_fetch_pf_reg(hdev, reg, kinfo);
12433 
12434 	ret = hclge_get_32_bit_regs(hdev, regs_num_32_bit, reg);
12435 	if (ret) {
12436 		dev_err(&hdev->pdev->dev,
12437 			"Get 32 bit register failed, ret = %d.\n", ret);
12438 		return;
12439 	}
12440 	reg_num = regs_num_32_bit;
12441 	reg += reg_num;
12442 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12443 	for (i = 0; i < separator_num; i++)
12444 		*reg++ = SEPARATOR_VALUE;
12445 
12446 	ret = hclge_get_64_bit_regs(hdev, regs_num_64_bit, reg);
12447 	if (ret) {
12448 		dev_err(&hdev->pdev->dev,
12449 			"Get 64 bit register failed, ret = %d.\n", ret);
12450 		return;
12451 	}
12452 	reg_num = regs_num_64_bit * 2;
12453 	reg += reg_num;
12454 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12455 	for (i = 0; i < separator_num; i++)
12456 		*reg++ = SEPARATOR_VALUE;
12457 
12458 	ret = hclge_get_dfx_reg(hdev, reg);
12459 	if (ret)
12460 		dev_err(&hdev->pdev->dev,
12461 			"Get dfx register failed, ret = %d.\n", ret);
12462 }
12463 
12464 static int hclge_set_led_status(struct hclge_dev *hdev, u8 locate_led_status)
12465 {
12466 	struct hclge_set_led_state_cmd *req;
12467 	struct hclge_desc desc;
12468 	int ret;
12469 
12470 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_LED_STATUS_CFG, false);
12471 
12472 	req = (struct hclge_set_led_state_cmd *)desc.data;
12473 	hnae3_set_field(req->locate_led_config, HCLGE_LED_LOCATE_STATE_M,
12474 			HCLGE_LED_LOCATE_STATE_S, locate_led_status);
12475 
12476 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12477 	if (ret)
12478 		dev_err(&hdev->pdev->dev,
12479 			"Send set led state cmd error, ret =%d\n", ret);
12480 
12481 	return ret;
12482 }
12483 
12484 enum hclge_led_status {
12485 	HCLGE_LED_OFF,
12486 	HCLGE_LED_ON,
12487 	HCLGE_LED_NO_CHANGE = 0xFF,
12488 };
12489 
12490 static int hclge_set_led_id(struct hnae3_handle *handle,
12491 			    enum ethtool_phys_id_state status)
12492 {
12493 	struct hclge_vport *vport = hclge_get_vport(handle);
12494 	struct hclge_dev *hdev = vport->back;
12495 
12496 	switch (status) {
12497 	case ETHTOOL_ID_ACTIVE:
12498 		return hclge_set_led_status(hdev, HCLGE_LED_ON);
12499 	case ETHTOOL_ID_INACTIVE:
12500 		return hclge_set_led_status(hdev, HCLGE_LED_OFF);
12501 	default:
12502 		return -EINVAL;
12503 	}
12504 }
12505 
12506 static void hclge_get_link_mode(struct hnae3_handle *handle,
12507 				unsigned long *supported,
12508 				unsigned long *advertising)
12509 {
12510 	unsigned int size = BITS_TO_LONGS(__ETHTOOL_LINK_MODE_MASK_NBITS);
12511 	struct hclge_vport *vport = hclge_get_vport(handle);
12512 	struct hclge_dev *hdev = vport->back;
12513 	unsigned int idx = 0;
12514 
12515 	for (; idx < size; idx++) {
12516 		supported[idx] = hdev->hw.mac.supported[idx];
12517 		advertising[idx] = hdev->hw.mac.advertising[idx];
12518 	}
12519 }
12520 
12521 static int hclge_gro_en(struct hnae3_handle *handle, bool enable)
12522 {
12523 	struct hclge_vport *vport = hclge_get_vport(handle);
12524 	struct hclge_dev *hdev = vport->back;
12525 	bool gro_en_old = hdev->gro_en;
12526 	int ret;
12527 
12528 	hdev->gro_en = enable;
12529 	ret = hclge_config_gro(hdev);
12530 	if (ret)
12531 		hdev->gro_en = gro_en_old;
12532 
12533 	return ret;
12534 }
12535 
12536 static void hclge_sync_promisc_mode(struct hclge_dev *hdev)
12537 {
12538 	struct hclge_vport *vport = &hdev->vport[0];
12539 	struct hnae3_handle *handle = &vport->nic;
12540 	u8 tmp_flags;
12541 	int ret;
12542 	u16 i;
12543 
12544 	if (vport->last_promisc_flags != vport->overflow_promisc_flags) {
12545 		set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
12546 		vport->last_promisc_flags = vport->overflow_promisc_flags;
12547 	}
12548 
12549 	if (test_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state)) {
12550 		tmp_flags = handle->netdev_flags | vport->last_promisc_flags;
12551 		ret = hclge_set_promisc_mode(handle, tmp_flags & HNAE3_UPE,
12552 					     tmp_flags & HNAE3_MPE);
12553 		if (!ret) {
12554 			clear_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE,
12555 				  &vport->state);
12556 			set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
12557 				&vport->state);
12558 		}
12559 	}
12560 
12561 	for (i = 1; i < hdev->num_alloc_vport; i++) {
12562 		bool uc_en = false;
12563 		bool mc_en = false;
12564 		bool bc_en;
12565 
12566 		vport = &hdev->vport[i];
12567 
12568 		if (!test_and_clear_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE,
12569 					&vport->state))
12570 			continue;
12571 
12572 		if (vport->vf_info.trusted) {
12573 			uc_en = vport->vf_info.request_uc_en > 0 ||
12574 				vport->overflow_promisc_flags &
12575 				HNAE3_OVERFLOW_UPE;
12576 			mc_en = vport->vf_info.request_mc_en > 0 ||
12577 				vport->overflow_promisc_flags &
12578 				HNAE3_OVERFLOW_MPE;
12579 		}
12580 		bc_en = vport->vf_info.request_bc_en > 0;
12581 
12582 		ret = hclge_cmd_set_promisc_mode(hdev, vport->vport_id, uc_en,
12583 						 mc_en, bc_en);
12584 		if (ret) {
12585 			set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE,
12586 				&vport->state);
12587 			return;
12588 		}
12589 		hclge_set_vport_vlan_fltr_change(vport);
12590 	}
12591 }
12592 
12593 static bool hclge_module_existed(struct hclge_dev *hdev)
12594 {
12595 	struct hclge_desc desc;
12596 	u32 existed;
12597 	int ret;
12598 
12599 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_EXIST, true);
12600 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12601 	if (ret) {
12602 		dev_err(&hdev->pdev->dev,
12603 			"failed to get SFP exist state, ret = %d\n", ret);
12604 		return false;
12605 	}
12606 
12607 	existed = le32_to_cpu(desc.data[0]);
12608 
12609 	return existed != 0;
12610 }
12611 
12612 /* need 6 bds(total 140 bytes) in one reading
12613  * return the number of bytes actually read, 0 means read failed.
12614  */
12615 static u16 hclge_get_sfp_eeprom_info(struct hclge_dev *hdev, u32 offset,
12616 				     u32 len, u8 *data)
12617 {
12618 	struct hclge_desc desc[HCLGE_SFP_INFO_CMD_NUM];
12619 	struct hclge_sfp_info_bd0_cmd *sfp_info_bd0;
12620 	u16 read_len;
12621 	u16 copy_len;
12622 	int ret;
12623 	int i;
12624 
12625 	/* setup all 6 bds to read module eeprom info. */
12626 	for (i = 0; i < HCLGE_SFP_INFO_CMD_NUM; i++) {
12627 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_SFP_EEPROM,
12628 					   true);
12629 
12630 		/* bd0~bd4 need next flag */
12631 		if (i < HCLGE_SFP_INFO_CMD_NUM - 1)
12632 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
12633 	}
12634 
12635 	/* setup bd0, this bd contains offset and read length. */
12636 	sfp_info_bd0 = (struct hclge_sfp_info_bd0_cmd *)desc[0].data;
12637 	sfp_info_bd0->offset = cpu_to_le16((u16)offset);
12638 	read_len = min_t(u16, len, HCLGE_SFP_INFO_MAX_LEN);
12639 	sfp_info_bd0->read_len = cpu_to_le16(read_len);
12640 
12641 	ret = hclge_cmd_send(&hdev->hw, desc, i);
12642 	if (ret) {
12643 		dev_err(&hdev->pdev->dev,
12644 			"failed to get SFP eeprom info, ret = %d\n", ret);
12645 		return 0;
12646 	}
12647 
12648 	/* copy sfp info from bd0 to out buffer. */
12649 	copy_len = min_t(u16, len, HCLGE_SFP_INFO_BD0_LEN);
12650 	memcpy(data, sfp_info_bd0->data, copy_len);
12651 	read_len = copy_len;
12652 
12653 	/* copy sfp info from bd1~bd5 to out buffer if needed. */
12654 	for (i = 1; i < HCLGE_SFP_INFO_CMD_NUM; i++) {
12655 		if (read_len >= len)
12656 			return read_len;
12657 
12658 		copy_len = min_t(u16, len - read_len, HCLGE_SFP_INFO_BDX_LEN);
12659 		memcpy(data + read_len, desc[i].data, copy_len);
12660 		read_len += copy_len;
12661 	}
12662 
12663 	return read_len;
12664 }
12665 
12666 static int hclge_get_module_eeprom(struct hnae3_handle *handle, u32 offset,
12667 				   u32 len, u8 *data)
12668 {
12669 	struct hclge_vport *vport = hclge_get_vport(handle);
12670 	struct hclge_dev *hdev = vport->back;
12671 	u32 read_len = 0;
12672 	u16 data_len;
12673 
12674 	if (hdev->hw.mac.media_type != HNAE3_MEDIA_TYPE_FIBER)
12675 		return -EOPNOTSUPP;
12676 
12677 	if (!hclge_module_existed(hdev))
12678 		return -ENXIO;
12679 
12680 	while (read_len < len) {
12681 		data_len = hclge_get_sfp_eeprom_info(hdev,
12682 						     offset + read_len,
12683 						     len - read_len,
12684 						     data + read_len);
12685 		if (!data_len)
12686 			return -EIO;
12687 
12688 		read_len += data_len;
12689 	}
12690 
12691 	return 0;
12692 }
12693 
12694 static int hclge_get_link_diagnosis_info(struct hnae3_handle *handle,
12695 					 u32 *status_code)
12696 {
12697 	struct hclge_vport *vport = hclge_get_vport(handle);
12698 	struct hclge_dev *hdev = vport->back;
12699 	struct hclge_desc desc;
12700 	int ret;
12701 
12702 	if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2)
12703 		return -EOPNOTSUPP;
12704 
12705 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_DIAGNOSIS, true);
12706 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12707 	if (ret) {
12708 		dev_err(&hdev->pdev->dev,
12709 			"failed to query link diagnosis info, ret = %d\n", ret);
12710 		return ret;
12711 	}
12712 
12713 	*status_code = le32_to_cpu(desc.data[0]);
12714 	return 0;
12715 }
12716 
12717 /* After disable sriov, VF still has some config and info need clean,
12718  * which configed by PF.
12719  */
12720 static void hclge_clear_vport_vf_info(struct hclge_vport *vport, int vfid)
12721 {
12722 	struct hclge_dev *hdev = vport->back;
12723 	struct hclge_vlan_info vlan_info;
12724 	int ret;
12725 
12726 	/* after disable sriov, clean VF rate configured by PF */
12727 	ret = hclge_tm_qs_shaper_cfg(vport, 0);
12728 	if (ret)
12729 		dev_err(&hdev->pdev->dev,
12730 			"failed to clean vf%d rate config, ret = %d\n",
12731 			vfid, ret);
12732 
12733 	vlan_info.vlan_tag = 0;
12734 	vlan_info.qos = 0;
12735 	vlan_info.vlan_proto = ETH_P_8021Q;
12736 	ret = hclge_update_port_base_vlan_cfg(vport,
12737 					      HNAE3_PORT_BASE_VLAN_DISABLE,
12738 					      &vlan_info);
12739 	if (ret)
12740 		dev_err(&hdev->pdev->dev,
12741 			"failed to clean vf%d port base vlan, ret = %d\n",
12742 			vfid, ret);
12743 
12744 	ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, false);
12745 	if (ret)
12746 		dev_err(&hdev->pdev->dev,
12747 			"failed to clean vf%d spoof config, ret = %d\n",
12748 			vfid, ret);
12749 
12750 	memset(&vport->vf_info, 0, sizeof(vport->vf_info));
12751 }
12752 
12753 static void hclge_clean_vport_config(struct hnae3_ae_dev *ae_dev, int num_vfs)
12754 {
12755 	struct hclge_dev *hdev = ae_dev->priv;
12756 	struct hclge_vport *vport;
12757 	int i;
12758 
12759 	for (i = 0; i < num_vfs; i++) {
12760 		vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM];
12761 
12762 		hclge_clear_vport_vf_info(vport, i);
12763 	}
12764 }
12765 
12766 static const struct hnae3_ae_ops hclge_ops = {
12767 	.init_ae_dev = hclge_init_ae_dev,
12768 	.uninit_ae_dev = hclge_uninit_ae_dev,
12769 	.reset_prepare = hclge_reset_prepare_general,
12770 	.reset_done = hclge_reset_done,
12771 	.init_client_instance = hclge_init_client_instance,
12772 	.uninit_client_instance = hclge_uninit_client_instance,
12773 	.map_ring_to_vector = hclge_map_ring_to_vector,
12774 	.unmap_ring_from_vector = hclge_unmap_ring_frm_vector,
12775 	.get_vector = hclge_get_vector,
12776 	.put_vector = hclge_put_vector,
12777 	.set_promisc_mode = hclge_set_promisc_mode,
12778 	.request_update_promisc_mode = hclge_request_update_promisc_mode,
12779 	.set_loopback = hclge_set_loopback,
12780 	.start = hclge_ae_start,
12781 	.stop = hclge_ae_stop,
12782 	.client_start = hclge_client_start,
12783 	.client_stop = hclge_client_stop,
12784 	.get_status = hclge_get_status,
12785 	.get_ksettings_an_result = hclge_get_ksettings_an_result,
12786 	.cfg_mac_speed_dup_h = hclge_cfg_mac_speed_dup_h,
12787 	.get_media_type = hclge_get_media_type,
12788 	.check_port_speed = hclge_check_port_speed,
12789 	.get_fec = hclge_get_fec,
12790 	.set_fec = hclge_set_fec,
12791 	.get_rss_key_size = hclge_comm_get_rss_key_size,
12792 	.get_rss = hclge_get_rss,
12793 	.set_rss = hclge_set_rss,
12794 	.set_rss_tuple = hclge_set_rss_tuple,
12795 	.get_rss_tuple = hclge_get_rss_tuple,
12796 	.get_tc_size = hclge_get_tc_size,
12797 	.get_mac_addr = hclge_get_mac_addr,
12798 	.set_mac_addr = hclge_set_mac_addr,
12799 	.do_ioctl = hclge_do_ioctl,
12800 	.add_uc_addr = hclge_add_uc_addr,
12801 	.rm_uc_addr = hclge_rm_uc_addr,
12802 	.add_mc_addr = hclge_add_mc_addr,
12803 	.rm_mc_addr = hclge_rm_mc_addr,
12804 	.set_autoneg = hclge_set_autoneg,
12805 	.get_autoneg = hclge_get_autoneg,
12806 	.restart_autoneg = hclge_restart_autoneg,
12807 	.halt_autoneg = hclge_halt_autoneg,
12808 	.get_pauseparam = hclge_get_pauseparam,
12809 	.set_pauseparam = hclge_set_pauseparam,
12810 	.set_mtu = hclge_set_mtu,
12811 	.reset_queue = hclge_reset_tqp,
12812 	.get_stats = hclge_get_stats,
12813 	.get_mac_stats = hclge_get_mac_stat,
12814 	.update_stats = hclge_update_stats,
12815 	.get_strings = hclge_get_strings,
12816 	.get_sset_count = hclge_get_sset_count,
12817 	.get_fw_version = hclge_get_fw_version,
12818 	.get_mdix_mode = hclge_get_mdix_mode,
12819 	.enable_vlan_filter = hclge_enable_vlan_filter,
12820 	.set_vlan_filter = hclge_set_vlan_filter,
12821 	.set_vf_vlan_filter = hclge_set_vf_vlan_filter,
12822 	.enable_hw_strip_rxvtag = hclge_en_hw_strip_rxvtag,
12823 	.reset_event = hclge_reset_event,
12824 	.get_reset_level = hclge_get_reset_level,
12825 	.set_default_reset_request = hclge_set_def_reset_request,
12826 	.get_tqps_and_rss_info = hclge_get_tqps_and_rss_info,
12827 	.set_channels = hclge_set_channels,
12828 	.get_channels = hclge_get_channels,
12829 	.get_regs_len = hclge_get_regs_len,
12830 	.get_regs = hclge_get_regs,
12831 	.set_led_id = hclge_set_led_id,
12832 	.get_link_mode = hclge_get_link_mode,
12833 	.add_fd_entry = hclge_add_fd_entry,
12834 	.del_fd_entry = hclge_del_fd_entry,
12835 	.get_fd_rule_cnt = hclge_get_fd_rule_cnt,
12836 	.get_fd_rule_info = hclge_get_fd_rule_info,
12837 	.get_fd_all_rules = hclge_get_all_rules,
12838 	.enable_fd = hclge_enable_fd,
12839 	.add_arfs_entry = hclge_add_fd_entry_by_arfs,
12840 	.dbg_read_cmd = hclge_dbg_read_cmd,
12841 	.handle_hw_ras_error = hclge_handle_hw_ras_error,
12842 	.get_hw_reset_stat = hclge_get_hw_reset_stat,
12843 	.ae_dev_resetting = hclge_ae_dev_resetting,
12844 	.ae_dev_reset_cnt = hclge_ae_dev_reset_cnt,
12845 	.set_gro_en = hclge_gro_en,
12846 	.get_global_queue_id = hclge_covert_handle_qid_global,
12847 	.set_timer_task = hclge_set_timer_task,
12848 	.mac_connect_phy = hclge_mac_connect_phy,
12849 	.mac_disconnect_phy = hclge_mac_disconnect_phy,
12850 	.get_vf_config = hclge_get_vf_config,
12851 	.set_vf_link_state = hclge_set_vf_link_state,
12852 	.set_vf_spoofchk = hclge_set_vf_spoofchk,
12853 	.set_vf_trust = hclge_set_vf_trust,
12854 	.set_vf_rate = hclge_set_vf_rate,
12855 	.set_vf_mac = hclge_set_vf_mac,
12856 	.get_module_eeprom = hclge_get_module_eeprom,
12857 	.get_cmdq_stat = hclge_get_cmdq_stat,
12858 	.add_cls_flower = hclge_add_cls_flower,
12859 	.del_cls_flower = hclge_del_cls_flower,
12860 	.cls_flower_active = hclge_is_cls_flower_active,
12861 	.get_phy_link_ksettings = hclge_get_phy_link_ksettings,
12862 	.set_phy_link_ksettings = hclge_set_phy_link_ksettings,
12863 	.set_tx_hwts_info = hclge_ptp_set_tx_info,
12864 	.get_rx_hwts = hclge_ptp_get_rx_hwts,
12865 	.get_ts_info = hclge_ptp_get_ts_info,
12866 	.get_link_diagnosis_info = hclge_get_link_diagnosis_info,
12867 	.clean_vf_config = hclge_clean_vport_config,
12868 };
12869 
12870 static struct hnae3_ae_algo ae_algo = {
12871 	.ops = &hclge_ops,
12872 	.pdev_id_table = ae_algo_pci_tbl,
12873 };
12874 
12875 static int hclge_init(void)
12876 {
12877 	pr_info("%s is initializing\n", HCLGE_NAME);
12878 
12879 	hclge_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGE_NAME);
12880 	if (!hclge_wq) {
12881 		pr_err("%s: failed to create workqueue\n", HCLGE_NAME);
12882 		return -ENOMEM;
12883 	}
12884 
12885 	hnae3_register_ae_algo(&ae_algo);
12886 
12887 	return 0;
12888 }
12889 
12890 static void hclge_exit(void)
12891 {
12892 	hnae3_unregister_ae_algo_prepare(&ae_algo);
12893 	hnae3_unregister_ae_algo(&ae_algo);
12894 	destroy_workqueue(hclge_wq);
12895 }
12896 module_init(hclge_init);
12897 module_exit(hclge_exit);
12898 
12899 MODULE_LICENSE("GPL");
12900 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
12901 MODULE_DESCRIPTION("HCLGE Driver");
12902 MODULE_VERSION(HCLGE_MOD_VERSION);
12903