1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/acpi.h>
5 #include <linux/device.h>
6 #include <linux/etherdevice.h>
7 #include <linux/init.h>
8 #include <linux/interrupt.h>
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/pci.h>
13 #include <linux/platform_device.h>
14 #include <linux/if_vlan.h>
15 #include <linux/crash_dump.h>
16 #include <net/ipv6.h>
17 #include <net/rtnetlink.h>
18 #include "hclge_cmd.h"
19 #include "hclge_dcb.h"
20 #include "hclge_main.h"
21 #include "hclge_mbx.h"
22 #include "hclge_mdio.h"
23 #include "hclge_regs.h"
24 #include "hclge_tm.h"
25 #include "hclge_err.h"
26 #include "hnae3.h"
27 #include "hclge_devlink.h"
28 #include "hclge_comm_cmd.h"
29 
30 #define HCLGE_NAME			"hclge"
31 
32 #define HCLGE_BUF_SIZE_UNIT	256U
33 #define HCLGE_BUF_MUL_BY	2
34 #define HCLGE_BUF_DIV_BY	2
35 #define NEED_RESERVE_TC_NUM	2
36 #define BUF_MAX_PERCENT		100
37 #define BUF_RESERVE_PERCENT	90
38 
39 #define HCLGE_RESET_MAX_FAIL_CNT	5
40 #define HCLGE_RESET_SYNC_TIME		100
41 #define HCLGE_PF_RESET_SYNC_TIME	20
42 #define HCLGE_PF_RESET_SYNC_CNT		1500
43 
44 #define HCLGE_LINK_STATUS_MS	10
45 
46 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps);
47 static int hclge_init_vlan_config(struct hclge_dev *hdev);
48 static void hclge_sync_vlan_filter(struct hclge_dev *hdev);
49 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev);
50 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle);
51 static void hclge_rfs_filter_expire(struct hclge_dev *hdev);
52 static int hclge_clear_arfs_rules(struct hclge_dev *hdev);
53 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
54 						   unsigned long *addr);
55 static int hclge_set_default_loopback(struct hclge_dev *hdev);
56 
57 static void hclge_sync_mac_table(struct hclge_dev *hdev);
58 static void hclge_restore_hw_table(struct hclge_dev *hdev);
59 static void hclge_sync_promisc_mode(struct hclge_dev *hdev);
60 static void hclge_sync_fd_table(struct hclge_dev *hdev);
61 static void hclge_update_fec_stats(struct hclge_dev *hdev);
62 static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret,
63 				      int wait_cnt);
64 
65 static struct hnae3_ae_algo ae_algo;
66 
67 static struct workqueue_struct *hclge_wq;
68 
69 static const struct pci_device_id ae_algo_pci_tbl[] = {
70 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
71 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
72 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 0},
73 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 0},
74 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 0},
75 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 0},
76 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 0},
77 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 0},
78 	/* required last entry */
79 	{0, }
80 };
81 
82 MODULE_DEVICE_TABLE(pci, ae_algo_pci_tbl);
83 
84 static const char hns3_nic_test_strs[][ETH_GSTRING_LEN] = {
85 	"External Loopback test",
86 	"App      Loopback test",
87 	"Serdes   serial Loopback test",
88 	"Serdes   parallel Loopback test",
89 	"Phy      Loopback test"
90 };
91 
92 static const struct hclge_comm_stats_str g_mac_stats_string[] = {
93 	{"mac_tx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1,
94 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_mac_pause_num)},
95 	{"mac_rx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1,
96 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_mac_pause_num)},
97 	{"mac_tx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
98 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pause_xoff_time)},
99 	{"mac_rx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
100 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pause_xoff_time)},
101 	{"mac_tx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
102 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_ctrl_pkt_num)},
103 	{"mac_rx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
104 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_ctrl_pkt_num)},
105 	{"mac_tx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
106 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pause_pkt_num)},
107 	{"mac_tx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
108 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_pkt_num)},
109 	{"mac_tx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
110 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_pkt_num)},
111 	{"mac_tx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
112 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_pkt_num)},
113 	{"mac_tx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
114 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_pkt_num)},
115 	{"mac_tx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
116 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_pkt_num)},
117 	{"mac_tx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
118 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_pkt_num)},
119 	{"mac_tx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
120 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_pkt_num)},
121 	{"mac_tx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
122 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_pkt_num)},
123 	{"mac_tx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
124 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_xoff_time)},
125 	{"mac_tx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
126 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_xoff_time)},
127 	{"mac_tx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
128 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_xoff_time)},
129 	{"mac_tx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
130 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_xoff_time)},
131 	{"mac_tx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
132 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_xoff_time)},
133 	{"mac_tx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
134 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_xoff_time)},
135 	{"mac_tx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
136 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_xoff_time)},
137 	{"mac_tx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
138 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_xoff_time)},
139 	{"mac_rx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
140 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pause_pkt_num)},
141 	{"mac_rx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
142 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_pkt_num)},
143 	{"mac_rx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
144 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_pkt_num)},
145 	{"mac_rx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
146 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_pkt_num)},
147 	{"mac_rx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
148 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_pkt_num)},
149 	{"mac_rx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
150 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_pkt_num)},
151 	{"mac_rx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
152 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_pkt_num)},
153 	{"mac_rx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
154 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_pkt_num)},
155 	{"mac_rx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
156 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_pkt_num)},
157 	{"mac_rx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
158 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_xoff_time)},
159 	{"mac_rx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
160 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_xoff_time)},
161 	{"mac_rx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
162 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_xoff_time)},
163 	{"mac_rx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
164 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_xoff_time)},
165 	{"mac_rx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
166 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_xoff_time)},
167 	{"mac_rx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
168 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_xoff_time)},
169 	{"mac_rx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
170 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_xoff_time)},
171 	{"mac_rx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
172 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_xoff_time)},
173 	{"mac_tx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
174 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_pkt_num)},
175 	{"mac_tx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
176 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_oct_num)},
177 	{"mac_tx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
178 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_pkt_num)},
179 	{"mac_tx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
180 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_pkt_num)},
181 	{"mac_tx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
182 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_oct_num)},
183 	{"mac_tx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
184 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_oct_num)},
185 	{"mac_tx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
186 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_uni_pkt_num)},
187 	{"mac_tx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
188 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_multi_pkt_num)},
189 	{"mac_tx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
190 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_broad_pkt_num)},
191 	{"mac_tx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
192 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undersize_pkt_num)},
193 	{"mac_tx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
194 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_oversize_pkt_num)},
195 	{"mac_tx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
196 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_64_oct_pkt_num)},
197 	{"mac_tx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
198 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_65_127_oct_pkt_num)},
199 	{"mac_tx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
200 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_128_255_oct_pkt_num)},
201 	{"mac_tx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
202 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_256_511_oct_pkt_num)},
203 	{"mac_tx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
204 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_512_1023_oct_pkt_num)},
205 	{"mac_tx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
206 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1024_1518_oct_pkt_num)},
207 	{"mac_tx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
208 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_2047_oct_pkt_num)},
209 	{"mac_tx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
210 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_2048_4095_oct_pkt_num)},
211 	{"mac_tx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
212 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_4096_8191_oct_pkt_num)},
213 	{"mac_tx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
214 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_8192_9216_oct_pkt_num)},
215 	{"mac_tx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
216 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_9217_12287_oct_pkt_num)},
217 	{"mac_tx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
218 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_12288_16383_oct_pkt_num)},
219 	{"mac_tx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
220 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_good_oct_pkt_num)},
221 	{"mac_tx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
222 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_bad_oct_pkt_num)},
223 	{"mac_rx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
224 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_pkt_num)},
225 	{"mac_rx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
226 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_oct_num)},
227 	{"mac_rx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
228 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_pkt_num)},
229 	{"mac_rx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
230 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_pkt_num)},
231 	{"mac_rx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
232 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_oct_num)},
233 	{"mac_rx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
234 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_oct_num)},
235 	{"mac_rx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
236 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_uni_pkt_num)},
237 	{"mac_rx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
238 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_multi_pkt_num)},
239 	{"mac_rx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
240 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_broad_pkt_num)},
241 	{"mac_rx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
242 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undersize_pkt_num)},
243 	{"mac_rx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
244 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_oversize_pkt_num)},
245 	{"mac_rx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
246 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_64_oct_pkt_num)},
247 	{"mac_rx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
248 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_65_127_oct_pkt_num)},
249 	{"mac_rx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
250 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_128_255_oct_pkt_num)},
251 	{"mac_rx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
252 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_256_511_oct_pkt_num)},
253 	{"mac_rx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
254 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_512_1023_oct_pkt_num)},
255 	{"mac_rx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
256 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1024_1518_oct_pkt_num)},
257 	{"mac_rx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
258 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_2047_oct_pkt_num)},
259 	{"mac_rx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
260 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_2048_4095_oct_pkt_num)},
261 	{"mac_rx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
262 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_4096_8191_oct_pkt_num)},
263 	{"mac_rx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
264 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_8192_9216_oct_pkt_num)},
265 	{"mac_rx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
266 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_9217_12287_oct_pkt_num)},
267 	{"mac_rx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
268 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_12288_16383_oct_pkt_num)},
269 	{"mac_rx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
270 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_good_oct_pkt_num)},
271 	{"mac_rx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
272 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_bad_oct_pkt_num)},
273 
274 	{"mac_tx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
275 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_fragment_pkt_num)},
276 	{"mac_tx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
277 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undermin_pkt_num)},
278 	{"mac_tx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
279 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_jabber_pkt_num)},
280 	{"mac_tx_err_all_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
281 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_err_all_pkt_num)},
282 	{"mac_tx_from_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
283 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_good_pkt_num)},
284 	{"mac_tx_from_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
285 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_bad_pkt_num)},
286 	{"mac_rx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
287 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fragment_pkt_num)},
288 	{"mac_rx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
289 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undermin_pkt_num)},
290 	{"mac_rx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
291 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_jabber_pkt_num)},
292 	{"mac_rx_fcs_err_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
293 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fcs_err_pkt_num)},
294 	{"mac_rx_send_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
295 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_good_pkt_num)},
296 	{"mac_rx_send_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
297 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_bad_pkt_num)}
298 };
299 
300 static const struct hclge_mac_mgr_tbl_entry_cmd hclge_mgr_table[] = {
301 	{
302 		.flags = HCLGE_MAC_MGR_MASK_VLAN_B,
303 		.ethter_type = cpu_to_le16(ETH_P_LLDP),
304 		.mac_addr = {0x01, 0x80, 0xc2, 0x00, 0x00, 0x0e},
305 		.i_port_bitmap = 0x1,
306 	},
307 };
308 
309 static const struct key_info meta_data_key_info[] = {
310 	{ PACKET_TYPE_ID, 6 },
311 	{ IP_FRAGEMENT, 1 },
312 	{ ROCE_TYPE, 1 },
313 	{ NEXT_KEY, 5 },
314 	{ VLAN_NUMBER, 2 },
315 	{ SRC_VPORT, 12 },
316 	{ DST_VPORT, 12 },
317 	{ TUNNEL_PACKET, 1 },
318 };
319 
320 static const struct key_info tuple_key_info[] = {
321 	{ OUTER_DST_MAC, 48, KEY_OPT_MAC, -1, -1 },
322 	{ OUTER_SRC_MAC, 48, KEY_OPT_MAC, -1, -1 },
323 	{ OUTER_VLAN_TAG_FST, 16, KEY_OPT_LE16, -1, -1 },
324 	{ OUTER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 },
325 	{ OUTER_ETH_TYPE, 16, KEY_OPT_LE16, -1, -1 },
326 	{ OUTER_L2_RSV, 16, KEY_OPT_LE16, -1, -1 },
327 	{ OUTER_IP_TOS, 8, KEY_OPT_U8, -1, -1 },
328 	{ OUTER_IP_PROTO, 8, KEY_OPT_U8, -1, -1 },
329 	{ OUTER_SRC_IP, 32, KEY_OPT_IP, -1, -1 },
330 	{ OUTER_DST_IP, 32, KEY_OPT_IP, -1, -1 },
331 	{ OUTER_L3_RSV, 16, KEY_OPT_LE16, -1, -1 },
332 	{ OUTER_SRC_PORT, 16, KEY_OPT_LE16, -1, -1 },
333 	{ OUTER_DST_PORT, 16, KEY_OPT_LE16, -1, -1 },
334 	{ OUTER_L4_RSV, 32, KEY_OPT_LE32, -1, -1 },
335 	{ OUTER_TUN_VNI, 24, KEY_OPT_VNI, -1, -1 },
336 	{ OUTER_TUN_FLOW_ID, 8, KEY_OPT_U8, -1, -1 },
337 	{ INNER_DST_MAC, 48, KEY_OPT_MAC,
338 	  offsetof(struct hclge_fd_rule, tuples.dst_mac),
339 	  offsetof(struct hclge_fd_rule, tuples_mask.dst_mac) },
340 	{ INNER_SRC_MAC, 48, KEY_OPT_MAC,
341 	  offsetof(struct hclge_fd_rule, tuples.src_mac),
342 	  offsetof(struct hclge_fd_rule, tuples_mask.src_mac) },
343 	{ INNER_VLAN_TAG_FST, 16, KEY_OPT_LE16,
344 	  offsetof(struct hclge_fd_rule, tuples.vlan_tag1),
345 	  offsetof(struct hclge_fd_rule, tuples_mask.vlan_tag1) },
346 	{ INNER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 },
347 	{ INNER_ETH_TYPE, 16, KEY_OPT_LE16,
348 	  offsetof(struct hclge_fd_rule, tuples.ether_proto),
349 	  offsetof(struct hclge_fd_rule, tuples_mask.ether_proto) },
350 	{ INNER_L2_RSV, 16, KEY_OPT_LE16,
351 	  offsetof(struct hclge_fd_rule, tuples.l2_user_def),
352 	  offsetof(struct hclge_fd_rule, tuples_mask.l2_user_def) },
353 	{ INNER_IP_TOS, 8, KEY_OPT_U8,
354 	  offsetof(struct hclge_fd_rule, tuples.ip_tos),
355 	  offsetof(struct hclge_fd_rule, tuples_mask.ip_tos) },
356 	{ INNER_IP_PROTO, 8, KEY_OPT_U8,
357 	  offsetof(struct hclge_fd_rule, tuples.ip_proto),
358 	  offsetof(struct hclge_fd_rule, tuples_mask.ip_proto) },
359 	{ INNER_SRC_IP, 32, KEY_OPT_IP,
360 	  offsetof(struct hclge_fd_rule, tuples.src_ip),
361 	  offsetof(struct hclge_fd_rule, tuples_mask.src_ip) },
362 	{ INNER_DST_IP, 32, KEY_OPT_IP,
363 	  offsetof(struct hclge_fd_rule, tuples.dst_ip),
364 	  offsetof(struct hclge_fd_rule, tuples_mask.dst_ip) },
365 	{ INNER_L3_RSV, 16, KEY_OPT_LE16,
366 	  offsetof(struct hclge_fd_rule, tuples.l3_user_def),
367 	  offsetof(struct hclge_fd_rule, tuples_mask.l3_user_def) },
368 	{ INNER_SRC_PORT, 16, KEY_OPT_LE16,
369 	  offsetof(struct hclge_fd_rule, tuples.src_port),
370 	  offsetof(struct hclge_fd_rule, tuples_mask.src_port) },
371 	{ INNER_DST_PORT, 16, KEY_OPT_LE16,
372 	  offsetof(struct hclge_fd_rule, tuples.dst_port),
373 	  offsetof(struct hclge_fd_rule, tuples_mask.dst_port) },
374 	{ INNER_L4_RSV, 32, KEY_OPT_LE32,
375 	  offsetof(struct hclge_fd_rule, tuples.l4_user_def),
376 	  offsetof(struct hclge_fd_rule, tuples_mask.l4_user_def) },
377 };
378 
379 /**
380  * hclge_cmd_send - send command to command queue
381  * @hw: pointer to the hw struct
382  * @desc: prefilled descriptor for describing the command
383  * @num : the number of descriptors to be sent
384  *
385  * This is the main send command for command queue, it
386  * sends the queue, cleans the queue, etc
387  **/
388 int hclge_cmd_send(struct hclge_hw *hw, struct hclge_desc *desc, int num)
389 {
390 	return hclge_comm_cmd_send(&hw->hw, desc, num);
391 }
392 
393 static int hclge_mac_update_stats_defective(struct hclge_dev *hdev)
394 {
395 #define HCLGE_MAC_CMD_NUM 21
396 
397 	u64 *data = (u64 *)(&hdev->mac_stats);
398 	struct hclge_desc desc[HCLGE_MAC_CMD_NUM];
399 	__le64 *desc_data;
400 	u32 data_size;
401 	int ret;
402 	u32 i;
403 
404 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC, true);
405 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_MAC_CMD_NUM);
406 	if (ret) {
407 		dev_err(&hdev->pdev->dev,
408 			"Get MAC pkt stats fail, status = %d.\n", ret);
409 
410 		return ret;
411 	}
412 
413 	/* The first desc has a 64-bit header, so data size need to minus 1 */
414 	data_size = sizeof(desc) / (sizeof(u64)) - 1;
415 
416 	desc_data = (__le64 *)(&desc[0].data[0]);
417 	for (i = 0; i < data_size; i++) {
418 		/* data memory is continuous becase only the first desc has a
419 		 * header in this command
420 		 */
421 		*data += le64_to_cpu(*desc_data);
422 		data++;
423 		desc_data++;
424 	}
425 
426 	return 0;
427 }
428 
429 static int hclge_mac_update_stats_complete(struct hclge_dev *hdev)
430 {
431 #define HCLGE_REG_NUM_PER_DESC		4
432 
433 	u32 reg_num = hdev->ae_dev->dev_specs.mac_stats_num;
434 	u64 *data = (u64 *)(&hdev->mac_stats);
435 	struct hclge_desc *desc;
436 	__le64 *desc_data;
437 	u32 data_size;
438 	u32 desc_num;
439 	int ret;
440 	u32 i;
441 
442 	/* The first desc has a 64-bit header, so need to consider it */
443 	desc_num = reg_num / HCLGE_REG_NUM_PER_DESC + 1;
444 
445 	/* This may be called inside atomic sections,
446 	 * so GFP_ATOMIC is more suitalbe here
447 	 */
448 	desc = kcalloc(desc_num, sizeof(struct hclge_desc), GFP_ATOMIC);
449 	if (!desc)
450 		return -ENOMEM;
451 
452 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC_ALL, true);
453 	ret = hclge_cmd_send(&hdev->hw, desc, desc_num);
454 	if (ret) {
455 		kfree(desc);
456 		return ret;
457 	}
458 
459 	data_size = min_t(u32, sizeof(hdev->mac_stats) / sizeof(u64), reg_num);
460 
461 	desc_data = (__le64 *)(&desc[0].data[0]);
462 	for (i = 0; i < data_size; i++) {
463 		/* data memory is continuous becase only the first desc has a
464 		 * header in this command
465 		 */
466 		*data += le64_to_cpu(*desc_data);
467 		data++;
468 		desc_data++;
469 	}
470 
471 	kfree(desc);
472 
473 	return 0;
474 }
475 
476 static int hclge_mac_query_reg_num(struct hclge_dev *hdev, u32 *reg_num)
477 {
478 	struct hclge_desc desc;
479 	int ret;
480 
481 	/* Driver needs total register number of both valid registers and
482 	 * reserved registers, but the old firmware only returns number
483 	 * of valid registers in device V2. To be compatible with these
484 	 * devices, driver uses a fixed value.
485 	 */
486 	if (hdev->ae_dev->dev_version == HNAE3_DEVICE_VERSION_V2) {
487 		*reg_num = HCLGE_MAC_STATS_MAX_NUM_V1;
488 		return 0;
489 	}
490 
491 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_MAC_REG_NUM, true);
492 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
493 	if (ret) {
494 		dev_err(&hdev->pdev->dev,
495 			"failed to query mac statistic reg number, ret = %d\n",
496 			ret);
497 		return ret;
498 	}
499 
500 	*reg_num = le32_to_cpu(desc.data[0]);
501 	if (*reg_num == 0) {
502 		dev_err(&hdev->pdev->dev,
503 			"mac statistic reg number is invalid!\n");
504 		return -ENODATA;
505 	}
506 
507 	return 0;
508 }
509 
510 int hclge_mac_update_stats(struct hclge_dev *hdev)
511 {
512 	/* The firmware supports the new statistics acquisition method */
513 	if (hdev->ae_dev->dev_specs.mac_stats_num)
514 		return hclge_mac_update_stats_complete(hdev);
515 	else
516 		return hclge_mac_update_stats_defective(hdev);
517 }
518 
519 static int hclge_comm_get_count(struct hclge_dev *hdev,
520 				const struct hclge_comm_stats_str strs[],
521 				u32 size)
522 {
523 	int count = 0;
524 	u32 i;
525 
526 	for (i = 0; i < size; i++)
527 		if (strs[i].stats_num <= hdev->ae_dev->dev_specs.mac_stats_num)
528 			count++;
529 
530 	return count;
531 }
532 
533 static u64 *hclge_comm_get_stats(struct hclge_dev *hdev,
534 				 const struct hclge_comm_stats_str strs[],
535 				 int size, u64 *data)
536 {
537 	u64 *buf = data;
538 	u32 i;
539 
540 	for (i = 0; i < size; i++) {
541 		if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num)
542 			continue;
543 
544 		*buf = HCLGE_STATS_READ(&hdev->mac_stats, strs[i].offset);
545 		buf++;
546 	}
547 
548 	return buf;
549 }
550 
551 static u8 *hclge_comm_get_strings(struct hclge_dev *hdev, u32 stringset,
552 				  const struct hclge_comm_stats_str strs[],
553 				  int size, u8 *data)
554 {
555 	char *buff = (char *)data;
556 	u32 i;
557 
558 	if (stringset != ETH_SS_STATS)
559 		return buff;
560 
561 	for (i = 0; i < size; i++) {
562 		if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num)
563 			continue;
564 
565 		snprintf(buff, ETH_GSTRING_LEN, "%s", strs[i].desc);
566 		buff = buff + ETH_GSTRING_LEN;
567 	}
568 
569 	return (u8 *)buff;
570 }
571 
572 static void hclge_update_stats_for_all(struct hclge_dev *hdev)
573 {
574 	struct hnae3_handle *handle;
575 	int status;
576 
577 	handle = &hdev->vport[0].nic;
578 	if (handle->client) {
579 		status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
580 		if (status) {
581 			dev_err(&hdev->pdev->dev,
582 				"Update TQPS stats fail, status = %d.\n",
583 				status);
584 		}
585 	}
586 
587 	hclge_update_fec_stats(hdev);
588 
589 	status = hclge_mac_update_stats(hdev);
590 	if (status)
591 		dev_err(&hdev->pdev->dev,
592 			"Update MAC stats fail, status = %d.\n", status);
593 }
594 
595 static void hclge_update_stats(struct hnae3_handle *handle)
596 {
597 	struct hclge_vport *vport = hclge_get_vport(handle);
598 	struct hclge_dev *hdev = vport->back;
599 	int status;
600 
601 	if (test_and_set_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state))
602 		return;
603 
604 	status = hclge_mac_update_stats(hdev);
605 	if (status)
606 		dev_err(&hdev->pdev->dev,
607 			"Update MAC stats fail, status = %d.\n",
608 			status);
609 
610 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
611 	if (status)
612 		dev_err(&hdev->pdev->dev,
613 			"Update TQPS stats fail, status = %d.\n",
614 			status);
615 
616 	clear_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state);
617 }
618 
619 static int hclge_get_sset_count(struct hnae3_handle *handle, int stringset)
620 {
621 #define HCLGE_LOOPBACK_TEST_FLAGS (HNAE3_SUPPORT_APP_LOOPBACK | \
622 		HNAE3_SUPPORT_PHY_LOOPBACK | \
623 		HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK | \
624 		HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK | \
625 		HNAE3_SUPPORT_EXTERNAL_LOOPBACK)
626 
627 	struct hclge_vport *vport = hclge_get_vport(handle);
628 	struct hclge_dev *hdev = vport->back;
629 	int count = 0;
630 
631 	/* Loopback test support rules:
632 	 * mac: only GE mode support
633 	 * serdes: all mac mode will support include GE/XGE/LGE/CGE
634 	 * phy: only support when phy device exist on board
635 	 */
636 	if (stringset == ETH_SS_TEST) {
637 		/* clear loopback bit flags at first */
638 		handle->flags = (handle->flags & (~HCLGE_LOOPBACK_TEST_FLAGS));
639 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 ||
640 		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_10M ||
641 		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_100M ||
642 		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_1G) {
643 			count += 1;
644 			handle->flags |= HNAE3_SUPPORT_APP_LOOPBACK;
645 		}
646 
647 		count += 1;
648 		handle->flags |= HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK;
649 		count += 1;
650 		handle->flags |= HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK;
651 		count += 1;
652 		handle->flags |= HNAE3_SUPPORT_EXTERNAL_LOOPBACK;
653 
654 		if ((hdev->hw.mac.phydev && hdev->hw.mac.phydev->drv &&
655 		     hdev->hw.mac.phydev->drv->set_loopback) ||
656 		    hnae3_dev_phy_imp_supported(hdev)) {
657 			count += 1;
658 			handle->flags |= HNAE3_SUPPORT_PHY_LOOPBACK;
659 		}
660 	} else if (stringset == ETH_SS_STATS) {
661 		count = hclge_comm_get_count(hdev, g_mac_stats_string,
662 					     ARRAY_SIZE(g_mac_stats_string)) +
663 			hclge_comm_tqps_get_sset_count(handle);
664 	}
665 
666 	return count;
667 }
668 
669 static void hclge_get_strings(struct hnae3_handle *handle, u32 stringset,
670 			      u8 *data)
671 {
672 	struct hclge_vport *vport = hclge_get_vport(handle);
673 	struct hclge_dev *hdev = vport->back;
674 	u8 *p = (char *)data;
675 	int size;
676 
677 	if (stringset == ETH_SS_STATS) {
678 		size = ARRAY_SIZE(g_mac_stats_string);
679 		p = hclge_comm_get_strings(hdev, stringset, g_mac_stats_string,
680 					   size, p);
681 		p = hclge_comm_tqps_get_strings(handle, p);
682 	} else if (stringset == ETH_SS_TEST) {
683 		if (handle->flags & HNAE3_SUPPORT_EXTERNAL_LOOPBACK) {
684 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_EXTERNAL],
685 			       ETH_GSTRING_LEN);
686 			p += ETH_GSTRING_LEN;
687 		}
688 		if (handle->flags & HNAE3_SUPPORT_APP_LOOPBACK) {
689 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_APP],
690 			       ETH_GSTRING_LEN);
691 			p += ETH_GSTRING_LEN;
692 		}
693 		if (handle->flags & HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK) {
694 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_SERIAL_SERDES],
695 			       ETH_GSTRING_LEN);
696 			p += ETH_GSTRING_LEN;
697 		}
698 		if (handle->flags & HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK) {
699 			memcpy(p,
700 			       hns3_nic_test_strs[HNAE3_LOOP_PARALLEL_SERDES],
701 			       ETH_GSTRING_LEN);
702 			p += ETH_GSTRING_LEN;
703 		}
704 		if (handle->flags & HNAE3_SUPPORT_PHY_LOOPBACK) {
705 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_PHY],
706 			       ETH_GSTRING_LEN);
707 			p += ETH_GSTRING_LEN;
708 		}
709 	}
710 }
711 
712 static void hclge_get_stats(struct hnae3_handle *handle, u64 *data)
713 {
714 	struct hclge_vport *vport = hclge_get_vport(handle);
715 	struct hclge_dev *hdev = vport->back;
716 	u64 *p;
717 
718 	p = hclge_comm_get_stats(hdev, g_mac_stats_string,
719 				 ARRAY_SIZE(g_mac_stats_string), data);
720 	p = hclge_comm_tqps_get_stats(handle, p);
721 }
722 
723 static void hclge_get_mac_stat(struct hnae3_handle *handle,
724 			       struct hns3_mac_stats *mac_stats)
725 {
726 	struct hclge_vport *vport = hclge_get_vport(handle);
727 	struct hclge_dev *hdev = vport->back;
728 
729 	hclge_update_stats(handle);
730 
731 	mac_stats->tx_pause_cnt = hdev->mac_stats.mac_tx_mac_pause_num;
732 	mac_stats->rx_pause_cnt = hdev->mac_stats.mac_rx_mac_pause_num;
733 }
734 
735 static int hclge_parse_func_status(struct hclge_dev *hdev,
736 				   struct hclge_func_status_cmd *status)
737 {
738 #define HCLGE_MAC_ID_MASK	0xF
739 
740 	if (!(status->pf_state & HCLGE_PF_STATE_DONE))
741 		return -EINVAL;
742 
743 	/* Set the pf to main pf */
744 	if (status->pf_state & HCLGE_PF_STATE_MAIN)
745 		hdev->flag |= HCLGE_FLAG_MAIN;
746 	else
747 		hdev->flag &= ~HCLGE_FLAG_MAIN;
748 
749 	hdev->hw.mac.mac_id = status->mac_id & HCLGE_MAC_ID_MASK;
750 	return 0;
751 }
752 
753 static int hclge_query_function_status(struct hclge_dev *hdev)
754 {
755 #define HCLGE_QUERY_MAX_CNT	5
756 
757 	struct hclge_func_status_cmd *req;
758 	struct hclge_desc desc;
759 	int timeout = 0;
760 	int ret;
761 
762 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_FUNC_STATUS, true);
763 	req = (struct hclge_func_status_cmd *)desc.data;
764 
765 	do {
766 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
767 		if (ret) {
768 			dev_err(&hdev->pdev->dev,
769 				"query function status failed %d.\n", ret);
770 			return ret;
771 		}
772 
773 		/* Check pf reset is done */
774 		if (req->pf_state)
775 			break;
776 		usleep_range(1000, 2000);
777 	} while (timeout++ < HCLGE_QUERY_MAX_CNT);
778 
779 	return hclge_parse_func_status(hdev, req);
780 }
781 
782 static int hclge_query_pf_resource(struct hclge_dev *hdev)
783 {
784 	struct hclge_pf_res_cmd *req;
785 	struct hclge_desc desc;
786 	int ret;
787 
788 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_PF_RSRC, true);
789 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
790 	if (ret) {
791 		dev_err(&hdev->pdev->dev,
792 			"query pf resource failed %d.\n", ret);
793 		return ret;
794 	}
795 
796 	req = (struct hclge_pf_res_cmd *)desc.data;
797 	hdev->num_tqps = le16_to_cpu(req->tqp_num) +
798 			 le16_to_cpu(req->ext_tqp_num);
799 	hdev->pkt_buf_size = le16_to_cpu(req->buf_size) << HCLGE_BUF_UNIT_S;
800 
801 	if (req->tx_buf_size)
802 		hdev->tx_buf_size =
803 			le16_to_cpu(req->tx_buf_size) << HCLGE_BUF_UNIT_S;
804 	else
805 		hdev->tx_buf_size = HCLGE_DEFAULT_TX_BUF;
806 
807 	hdev->tx_buf_size = roundup(hdev->tx_buf_size, HCLGE_BUF_SIZE_UNIT);
808 
809 	if (req->dv_buf_size)
810 		hdev->dv_buf_size =
811 			le16_to_cpu(req->dv_buf_size) << HCLGE_BUF_UNIT_S;
812 	else
813 		hdev->dv_buf_size = HCLGE_DEFAULT_DV;
814 
815 	hdev->dv_buf_size = roundup(hdev->dv_buf_size, HCLGE_BUF_SIZE_UNIT);
816 
817 	hdev->num_nic_msi = le16_to_cpu(req->msixcap_localid_number_nic);
818 	if (hdev->num_nic_msi < HNAE3_MIN_VECTOR_NUM) {
819 		dev_err(&hdev->pdev->dev,
820 			"only %u msi resources available, not enough for pf(min:2).\n",
821 			hdev->num_nic_msi);
822 		return -EINVAL;
823 	}
824 
825 	if (hnae3_dev_roce_supported(hdev)) {
826 		hdev->num_roce_msi =
827 			le16_to_cpu(req->pf_intr_vector_number_roce);
828 
829 		/* PF should have NIC vectors and Roce vectors,
830 		 * NIC vectors are queued before Roce vectors.
831 		 */
832 		hdev->num_msi = hdev->num_nic_msi + hdev->num_roce_msi;
833 	} else {
834 		hdev->num_msi = hdev->num_nic_msi;
835 	}
836 
837 	return 0;
838 }
839 
840 static int hclge_parse_speed(u8 speed_cmd, u32 *speed)
841 {
842 	switch (speed_cmd) {
843 	case HCLGE_FW_MAC_SPEED_10M:
844 		*speed = HCLGE_MAC_SPEED_10M;
845 		break;
846 	case HCLGE_FW_MAC_SPEED_100M:
847 		*speed = HCLGE_MAC_SPEED_100M;
848 		break;
849 	case HCLGE_FW_MAC_SPEED_1G:
850 		*speed = HCLGE_MAC_SPEED_1G;
851 		break;
852 	case HCLGE_FW_MAC_SPEED_10G:
853 		*speed = HCLGE_MAC_SPEED_10G;
854 		break;
855 	case HCLGE_FW_MAC_SPEED_25G:
856 		*speed = HCLGE_MAC_SPEED_25G;
857 		break;
858 	case HCLGE_FW_MAC_SPEED_40G:
859 		*speed = HCLGE_MAC_SPEED_40G;
860 		break;
861 	case HCLGE_FW_MAC_SPEED_50G:
862 		*speed = HCLGE_MAC_SPEED_50G;
863 		break;
864 	case HCLGE_FW_MAC_SPEED_100G:
865 		*speed = HCLGE_MAC_SPEED_100G;
866 		break;
867 	case HCLGE_FW_MAC_SPEED_200G:
868 		*speed = HCLGE_MAC_SPEED_200G;
869 		break;
870 	default:
871 		return -EINVAL;
872 	}
873 
874 	return 0;
875 }
876 
877 static const struct hclge_speed_bit_map speed_bit_map[] = {
878 	{HCLGE_MAC_SPEED_10M, HCLGE_SUPPORT_10M_BIT},
879 	{HCLGE_MAC_SPEED_100M, HCLGE_SUPPORT_100M_BIT},
880 	{HCLGE_MAC_SPEED_1G, HCLGE_SUPPORT_1G_BIT},
881 	{HCLGE_MAC_SPEED_10G, HCLGE_SUPPORT_10G_BIT},
882 	{HCLGE_MAC_SPEED_25G, HCLGE_SUPPORT_25G_BIT},
883 	{HCLGE_MAC_SPEED_40G, HCLGE_SUPPORT_40G_BIT},
884 	{HCLGE_MAC_SPEED_50G, HCLGE_SUPPORT_50G_BIT},
885 	{HCLGE_MAC_SPEED_100G, HCLGE_SUPPORT_100G_BIT},
886 	{HCLGE_MAC_SPEED_200G, HCLGE_SUPPORT_200G_BIT},
887 };
888 
889 static int hclge_get_speed_bit(u32 speed, u32 *speed_bit)
890 {
891 	u16 i;
892 
893 	for (i = 0; i < ARRAY_SIZE(speed_bit_map); i++) {
894 		if (speed == speed_bit_map[i].speed) {
895 			*speed_bit = speed_bit_map[i].speed_bit;
896 			return 0;
897 		}
898 	}
899 
900 	return -EINVAL;
901 }
902 
903 static int hclge_check_port_speed(struct hnae3_handle *handle, u32 speed)
904 {
905 	struct hclge_vport *vport = hclge_get_vport(handle);
906 	struct hclge_dev *hdev = vport->back;
907 	u32 speed_ability = hdev->hw.mac.speed_ability;
908 	u32 speed_bit = 0;
909 	int ret;
910 
911 	ret = hclge_get_speed_bit(speed, &speed_bit);
912 	if (ret)
913 		return ret;
914 
915 	if (speed_bit & speed_ability)
916 		return 0;
917 
918 	return -EINVAL;
919 }
920 
921 static void hclge_update_fec_support(struct hclge_mac *mac)
922 {
923 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, mac->supported);
924 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, mac->supported);
925 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT, mac->supported);
926 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
927 
928 	if (mac->fec_ability & BIT(HNAE3_FEC_BASER))
929 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT,
930 				 mac->supported);
931 	if (mac->fec_ability & BIT(HNAE3_FEC_RS))
932 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT,
933 				 mac->supported);
934 	if (mac->fec_ability & BIT(HNAE3_FEC_LLRS))
935 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT,
936 				 mac->supported);
937 	if (mac->fec_ability & BIT(HNAE3_FEC_NONE))
938 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT,
939 				 mac->supported);
940 }
941 
942 static void hclge_convert_setting_sr(u16 speed_ability,
943 				     unsigned long *link_mode)
944 {
945 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
946 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
947 				 link_mode);
948 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
949 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
950 				 link_mode);
951 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
952 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
953 				 link_mode);
954 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
955 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
956 				 link_mode);
957 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
958 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
959 				 link_mode);
960 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
961 		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT,
962 				 link_mode);
963 }
964 
965 static void hclge_convert_setting_lr(u16 speed_ability,
966 				     unsigned long *link_mode)
967 {
968 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
969 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
970 				 link_mode);
971 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
972 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
973 				 link_mode);
974 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
975 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT,
976 				 link_mode);
977 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
978 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
979 				 link_mode);
980 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
981 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
982 				 link_mode);
983 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
984 		linkmode_set_bit(
985 			ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT,
986 			link_mode);
987 }
988 
989 static void hclge_convert_setting_cr(u16 speed_ability,
990 				     unsigned long *link_mode)
991 {
992 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
993 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseCR_Full_BIT,
994 				 link_mode);
995 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
996 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
997 				 link_mode);
998 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
999 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
1000 				 link_mode);
1001 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1002 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
1003 				 link_mode);
1004 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1005 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
1006 				 link_mode);
1007 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1008 		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT,
1009 				 link_mode);
1010 }
1011 
1012 static void hclge_convert_setting_kr(u16 speed_ability,
1013 				     unsigned long *link_mode)
1014 {
1015 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1016 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
1017 				 link_mode);
1018 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1019 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
1020 				 link_mode);
1021 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1022 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
1023 				 link_mode);
1024 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1025 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
1026 				 link_mode);
1027 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1028 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
1029 				 link_mode);
1030 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1031 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
1032 				 link_mode);
1033 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1034 		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT,
1035 				 link_mode);
1036 }
1037 
1038 static void hclge_convert_setting_fec(struct hclge_mac *mac)
1039 {
1040 	/* If firmware has reported fec_ability, don't need to convert by speed */
1041 	if (mac->fec_ability)
1042 		goto out;
1043 
1044 	switch (mac->speed) {
1045 	case HCLGE_MAC_SPEED_10G:
1046 	case HCLGE_MAC_SPEED_40G:
1047 		mac->fec_ability = BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_AUTO) |
1048 				   BIT(HNAE3_FEC_NONE);
1049 		break;
1050 	case HCLGE_MAC_SPEED_25G:
1051 	case HCLGE_MAC_SPEED_50G:
1052 		mac->fec_ability = BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_RS) |
1053 				   BIT(HNAE3_FEC_AUTO) | BIT(HNAE3_FEC_NONE);
1054 		break;
1055 	case HCLGE_MAC_SPEED_100G:
1056 		mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO) |
1057 				   BIT(HNAE3_FEC_NONE);
1058 		break;
1059 	case HCLGE_MAC_SPEED_200G:
1060 		mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO) |
1061 				   BIT(HNAE3_FEC_LLRS);
1062 		break;
1063 	default:
1064 		mac->fec_ability = 0;
1065 		break;
1066 	}
1067 
1068 out:
1069 	hclge_update_fec_support(mac);
1070 }
1071 
1072 static void hclge_parse_fiber_link_mode(struct hclge_dev *hdev,
1073 					u16 speed_ability)
1074 {
1075 	struct hclge_mac *mac = &hdev->hw.mac;
1076 
1077 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1078 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
1079 				 mac->supported);
1080 
1081 	hclge_convert_setting_sr(speed_ability, mac->supported);
1082 	hclge_convert_setting_lr(speed_ability, mac->supported);
1083 	hclge_convert_setting_cr(speed_ability, mac->supported);
1084 	if (hnae3_dev_fec_supported(hdev))
1085 		hclge_convert_setting_fec(mac);
1086 
1087 	if (hnae3_dev_pause_supported(hdev))
1088 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported);
1089 
1090 	linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, mac->supported);
1091 	linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
1092 }
1093 
1094 static void hclge_parse_backplane_link_mode(struct hclge_dev *hdev,
1095 					    u16 speed_ability)
1096 {
1097 	struct hclge_mac *mac = &hdev->hw.mac;
1098 
1099 	hclge_convert_setting_kr(speed_ability, mac->supported);
1100 	if (hnae3_dev_fec_supported(hdev))
1101 		hclge_convert_setting_fec(mac);
1102 
1103 	if (hnae3_dev_pause_supported(hdev))
1104 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported);
1105 
1106 	linkmode_set_bit(ETHTOOL_LINK_MODE_Backplane_BIT, mac->supported);
1107 	linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
1108 }
1109 
1110 static void hclge_parse_copper_link_mode(struct hclge_dev *hdev,
1111 					 u16 speed_ability)
1112 {
1113 	unsigned long *supported = hdev->hw.mac.supported;
1114 
1115 	/* default to support all speed for GE port */
1116 	if (!speed_ability)
1117 		speed_ability = HCLGE_SUPPORT_GE;
1118 
1119 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1120 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
1121 				 supported);
1122 
1123 	if (speed_ability & HCLGE_SUPPORT_100M_BIT) {
1124 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
1125 				 supported);
1126 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT,
1127 				 supported);
1128 	}
1129 
1130 	if (speed_ability & HCLGE_SUPPORT_10M_BIT) {
1131 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, supported);
1132 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, supported);
1133 	}
1134 
1135 	if (hnae3_dev_pause_supported(hdev)) {
1136 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, supported);
1137 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, supported);
1138 	}
1139 
1140 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, supported);
1141 	linkmode_set_bit(ETHTOOL_LINK_MODE_TP_BIT, supported);
1142 }
1143 
1144 static void hclge_parse_link_mode(struct hclge_dev *hdev, u16 speed_ability)
1145 {
1146 	u8 media_type = hdev->hw.mac.media_type;
1147 
1148 	if (media_type == HNAE3_MEDIA_TYPE_FIBER)
1149 		hclge_parse_fiber_link_mode(hdev, speed_ability);
1150 	else if (media_type == HNAE3_MEDIA_TYPE_COPPER)
1151 		hclge_parse_copper_link_mode(hdev, speed_ability);
1152 	else if (media_type == HNAE3_MEDIA_TYPE_BACKPLANE)
1153 		hclge_parse_backplane_link_mode(hdev, speed_ability);
1154 }
1155 
1156 static u32 hclge_get_max_speed(u16 speed_ability)
1157 {
1158 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1159 		return HCLGE_MAC_SPEED_200G;
1160 
1161 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1162 		return HCLGE_MAC_SPEED_100G;
1163 
1164 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1165 		return HCLGE_MAC_SPEED_50G;
1166 
1167 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1168 		return HCLGE_MAC_SPEED_40G;
1169 
1170 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1171 		return HCLGE_MAC_SPEED_25G;
1172 
1173 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1174 		return HCLGE_MAC_SPEED_10G;
1175 
1176 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1177 		return HCLGE_MAC_SPEED_1G;
1178 
1179 	if (speed_ability & HCLGE_SUPPORT_100M_BIT)
1180 		return HCLGE_MAC_SPEED_100M;
1181 
1182 	if (speed_ability & HCLGE_SUPPORT_10M_BIT)
1183 		return HCLGE_MAC_SPEED_10M;
1184 
1185 	return HCLGE_MAC_SPEED_1G;
1186 }
1187 
1188 static void hclge_parse_cfg(struct hclge_cfg *cfg, struct hclge_desc *desc)
1189 {
1190 #define HCLGE_TX_SPARE_SIZE_UNIT		4096
1191 #define SPEED_ABILITY_EXT_SHIFT			8
1192 
1193 	struct hclge_cfg_param_cmd *req;
1194 	u64 mac_addr_tmp_high;
1195 	u16 speed_ability_ext;
1196 	u64 mac_addr_tmp;
1197 	unsigned int i;
1198 
1199 	req = (struct hclge_cfg_param_cmd *)desc[0].data;
1200 
1201 	/* get the configuration */
1202 	cfg->tc_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
1203 				      HCLGE_CFG_TC_NUM_M, HCLGE_CFG_TC_NUM_S);
1204 	cfg->tqp_desc_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
1205 					    HCLGE_CFG_TQP_DESC_N_M,
1206 					    HCLGE_CFG_TQP_DESC_N_S);
1207 
1208 	cfg->phy_addr = hnae3_get_field(__le32_to_cpu(req->param[1]),
1209 					HCLGE_CFG_PHY_ADDR_M,
1210 					HCLGE_CFG_PHY_ADDR_S);
1211 	cfg->media_type = hnae3_get_field(__le32_to_cpu(req->param[1]),
1212 					  HCLGE_CFG_MEDIA_TP_M,
1213 					  HCLGE_CFG_MEDIA_TP_S);
1214 	cfg->rx_buf_len = hnae3_get_field(__le32_to_cpu(req->param[1]),
1215 					  HCLGE_CFG_RX_BUF_LEN_M,
1216 					  HCLGE_CFG_RX_BUF_LEN_S);
1217 	/* get mac_address */
1218 	mac_addr_tmp = __le32_to_cpu(req->param[2]);
1219 	mac_addr_tmp_high = hnae3_get_field(__le32_to_cpu(req->param[3]),
1220 					    HCLGE_CFG_MAC_ADDR_H_M,
1221 					    HCLGE_CFG_MAC_ADDR_H_S);
1222 
1223 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
1224 
1225 	cfg->default_speed = hnae3_get_field(__le32_to_cpu(req->param[3]),
1226 					     HCLGE_CFG_DEFAULT_SPEED_M,
1227 					     HCLGE_CFG_DEFAULT_SPEED_S);
1228 	cfg->vf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[3]),
1229 					       HCLGE_CFG_RSS_SIZE_M,
1230 					       HCLGE_CFG_RSS_SIZE_S);
1231 
1232 	for (i = 0; i < ETH_ALEN; i++)
1233 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
1234 
1235 	req = (struct hclge_cfg_param_cmd *)desc[1].data;
1236 	cfg->numa_node_map = __le32_to_cpu(req->param[0]);
1237 
1238 	cfg->speed_ability = hnae3_get_field(__le32_to_cpu(req->param[1]),
1239 					     HCLGE_CFG_SPEED_ABILITY_M,
1240 					     HCLGE_CFG_SPEED_ABILITY_S);
1241 	speed_ability_ext = hnae3_get_field(__le32_to_cpu(req->param[1]),
1242 					    HCLGE_CFG_SPEED_ABILITY_EXT_M,
1243 					    HCLGE_CFG_SPEED_ABILITY_EXT_S);
1244 	cfg->speed_ability |= speed_ability_ext << SPEED_ABILITY_EXT_SHIFT;
1245 
1246 	cfg->vlan_fliter_cap = hnae3_get_field(__le32_to_cpu(req->param[1]),
1247 					       HCLGE_CFG_VLAN_FLTR_CAP_M,
1248 					       HCLGE_CFG_VLAN_FLTR_CAP_S);
1249 
1250 	cfg->umv_space = hnae3_get_field(__le32_to_cpu(req->param[1]),
1251 					 HCLGE_CFG_UMV_TBL_SPACE_M,
1252 					 HCLGE_CFG_UMV_TBL_SPACE_S);
1253 
1254 	cfg->pf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[2]),
1255 					       HCLGE_CFG_PF_RSS_SIZE_M,
1256 					       HCLGE_CFG_PF_RSS_SIZE_S);
1257 
1258 	/* HCLGE_CFG_PF_RSS_SIZE_M is the PF max rss size, which is a
1259 	 * power of 2, instead of reading out directly. This would
1260 	 * be more flexible for future changes and expansions.
1261 	 * When VF max  rss size field is HCLGE_CFG_RSS_SIZE_S,
1262 	 * it does not make sense if PF's field is 0. In this case, PF and VF
1263 	 * has the same max rss size filed: HCLGE_CFG_RSS_SIZE_S.
1264 	 */
1265 	cfg->pf_rss_size_max = cfg->pf_rss_size_max ?
1266 			       1U << cfg->pf_rss_size_max :
1267 			       cfg->vf_rss_size_max;
1268 
1269 	/* The unit of the tx spare buffer size queried from configuration
1270 	 * file is HCLGE_TX_SPARE_SIZE_UNIT(4096) bytes, so a conversion is
1271 	 * needed here.
1272 	 */
1273 	cfg->tx_spare_buf_size = hnae3_get_field(__le32_to_cpu(req->param[2]),
1274 						 HCLGE_CFG_TX_SPARE_BUF_SIZE_M,
1275 						 HCLGE_CFG_TX_SPARE_BUF_SIZE_S);
1276 	cfg->tx_spare_buf_size *= HCLGE_TX_SPARE_SIZE_UNIT;
1277 }
1278 
1279 /* hclge_get_cfg: query the static parameter from flash
1280  * @hdev: pointer to struct hclge_dev
1281  * @hcfg: the config structure to be getted
1282  */
1283 static int hclge_get_cfg(struct hclge_dev *hdev, struct hclge_cfg *hcfg)
1284 {
1285 	struct hclge_desc desc[HCLGE_PF_CFG_DESC_NUM];
1286 	struct hclge_cfg_param_cmd *req;
1287 	unsigned int i;
1288 	int ret;
1289 
1290 	for (i = 0; i < HCLGE_PF_CFG_DESC_NUM; i++) {
1291 		u32 offset = 0;
1292 
1293 		req = (struct hclge_cfg_param_cmd *)desc[i].data;
1294 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_CFG_PARAM,
1295 					   true);
1296 		hnae3_set_field(offset, HCLGE_CFG_OFFSET_M,
1297 				HCLGE_CFG_OFFSET_S, i * HCLGE_CFG_RD_LEN_BYTES);
1298 		/* Len should be united by 4 bytes when send to hardware */
1299 		hnae3_set_field(offset, HCLGE_CFG_RD_LEN_M, HCLGE_CFG_RD_LEN_S,
1300 				HCLGE_CFG_RD_LEN_BYTES / HCLGE_CFG_RD_LEN_UNIT);
1301 		req->offset = cpu_to_le32(offset);
1302 	}
1303 
1304 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PF_CFG_DESC_NUM);
1305 	if (ret) {
1306 		dev_err(&hdev->pdev->dev, "get config failed %d.\n", ret);
1307 		return ret;
1308 	}
1309 
1310 	hclge_parse_cfg(hcfg, desc);
1311 
1312 	return 0;
1313 }
1314 
1315 static void hclge_set_default_dev_specs(struct hclge_dev *hdev)
1316 {
1317 #define HCLGE_MAX_NON_TSO_BD_NUM			8U
1318 
1319 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1320 
1321 	ae_dev->dev_specs.max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM;
1322 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE;
1323 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
1324 	ae_dev->dev_specs.max_tm_rate = HCLGE_ETHER_MAX_RATE;
1325 	ae_dev->dev_specs.max_int_gl = HCLGE_DEF_MAX_INT_GL;
1326 	ae_dev->dev_specs.max_frm_size = HCLGE_MAC_MAX_FRAME;
1327 	ae_dev->dev_specs.max_qset_num = HCLGE_MAX_QSET_NUM;
1328 	ae_dev->dev_specs.umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF;
1329 	ae_dev->dev_specs.tnl_num = 0;
1330 }
1331 
1332 static void hclge_parse_dev_specs(struct hclge_dev *hdev,
1333 				  struct hclge_desc *desc)
1334 {
1335 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1336 	struct hclge_dev_specs_0_cmd *req0;
1337 	struct hclge_dev_specs_1_cmd *req1;
1338 
1339 	req0 = (struct hclge_dev_specs_0_cmd *)desc[0].data;
1340 	req1 = (struct hclge_dev_specs_1_cmd *)desc[1].data;
1341 
1342 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
1343 	ae_dev->dev_specs.rss_ind_tbl_size =
1344 		le16_to_cpu(req0->rss_ind_tbl_size);
1345 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
1346 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
1347 	ae_dev->dev_specs.max_tm_rate = le32_to_cpu(req0->max_tm_rate);
1348 	ae_dev->dev_specs.max_qset_num = le16_to_cpu(req1->max_qset_num);
1349 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
1350 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
1351 	ae_dev->dev_specs.umv_size = le16_to_cpu(req1->umv_size);
1352 	ae_dev->dev_specs.mc_mac_size = le16_to_cpu(req1->mc_mac_size);
1353 	ae_dev->dev_specs.tnl_num = req1->tnl_num;
1354 }
1355 
1356 static void hclge_check_dev_specs(struct hclge_dev *hdev)
1357 {
1358 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
1359 
1360 	if (!dev_specs->max_non_tso_bd_num)
1361 		dev_specs->max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM;
1362 	if (!dev_specs->rss_ind_tbl_size)
1363 		dev_specs->rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE;
1364 	if (!dev_specs->rss_key_size)
1365 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
1366 	if (!dev_specs->max_tm_rate)
1367 		dev_specs->max_tm_rate = HCLGE_ETHER_MAX_RATE;
1368 	if (!dev_specs->max_qset_num)
1369 		dev_specs->max_qset_num = HCLGE_MAX_QSET_NUM;
1370 	if (!dev_specs->max_int_gl)
1371 		dev_specs->max_int_gl = HCLGE_DEF_MAX_INT_GL;
1372 	if (!dev_specs->max_frm_size)
1373 		dev_specs->max_frm_size = HCLGE_MAC_MAX_FRAME;
1374 	if (!dev_specs->umv_size)
1375 		dev_specs->umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF;
1376 }
1377 
1378 static int hclge_query_mac_stats_num(struct hclge_dev *hdev)
1379 {
1380 	u32 reg_num = 0;
1381 	int ret;
1382 
1383 	ret = hclge_mac_query_reg_num(hdev, &reg_num);
1384 	if (ret && ret != -EOPNOTSUPP)
1385 		return ret;
1386 
1387 	hdev->ae_dev->dev_specs.mac_stats_num = reg_num;
1388 	return 0;
1389 }
1390 
1391 static int hclge_query_dev_specs(struct hclge_dev *hdev)
1392 {
1393 	struct hclge_desc desc[HCLGE_QUERY_DEV_SPECS_BD_NUM];
1394 	int ret;
1395 	int i;
1396 
1397 	ret = hclge_query_mac_stats_num(hdev);
1398 	if (ret)
1399 		return ret;
1400 
1401 	/* set default specifications as devices lower than version V3 do not
1402 	 * support querying specifications from firmware.
1403 	 */
1404 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
1405 		hclge_set_default_dev_specs(hdev);
1406 		return 0;
1407 	}
1408 
1409 	for (i = 0; i < HCLGE_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1410 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS,
1411 					   true);
1412 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
1413 	}
1414 	hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
1415 
1416 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_QUERY_DEV_SPECS_BD_NUM);
1417 	if (ret)
1418 		return ret;
1419 
1420 	hclge_parse_dev_specs(hdev, desc);
1421 	hclge_check_dev_specs(hdev);
1422 
1423 	return 0;
1424 }
1425 
1426 static int hclge_get_cap(struct hclge_dev *hdev)
1427 {
1428 	int ret;
1429 
1430 	ret = hclge_query_function_status(hdev);
1431 	if (ret) {
1432 		dev_err(&hdev->pdev->dev,
1433 			"query function status error %d.\n", ret);
1434 		return ret;
1435 	}
1436 
1437 	/* get pf resource */
1438 	return hclge_query_pf_resource(hdev);
1439 }
1440 
1441 static void hclge_init_kdump_kernel_config(struct hclge_dev *hdev)
1442 {
1443 #define HCLGE_MIN_TX_DESC	64
1444 #define HCLGE_MIN_RX_DESC	64
1445 
1446 	if (!is_kdump_kernel())
1447 		return;
1448 
1449 	dev_info(&hdev->pdev->dev,
1450 		 "Running kdump kernel. Using minimal resources\n");
1451 
1452 	/* minimal queue pairs equals to the number of vports */
1453 	hdev->num_tqps = hdev->num_req_vfs + 1;
1454 	hdev->num_tx_desc = HCLGE_MIN_TX_DESC;
1455 	hdev->num_rx_desc = HCLGE_MIN_RX_DESC;
1456 }
1457 
1458 static void hclge_init_tc_config(struct hclge_dev *hdev)
1459 {
1460 	unsigned int i;
1461 
1462 	if (hdev->tc_max > HNAE3_MAX_TC ||
1463 	    hdev->tc_max < 1) {
1464 		dev_warn(&hdev->pdev->dev, "TC num = %u.\n",
1465 			 hdev->tc_max);
1466 		hdev->tc_max = 1;
1467 	}
1468 
1469 	/* Dev does not support DCB */
1470 	if (!hnae3_dev_dcb_supported(hdev)) {
1471 		hdev->tc_max = 1;
1472 		hdev->pfc_max = 0;
1473 	} else {
1474 		hdev->pfc_max = hdev->tc_max;
1475 	}
1476 
1477 	hdev->tm_info.num_tc = 1;
1478 
1479 	/* Currently not support uncontiuous tc */
1480 	for (i = 0; i < hdev->tm_info.num_tc; i++)
1481 		hnae3_set_bit(hdev->hw_tc_map, i, 1);
1482 
1483 	hdev->tx_sch_mode = HCLGE_FLAG_TC_BASE_SCH_MODE;
1484 }
1485 
1486 static int hclge_configure(struct hclge_dev *hdev)
1487 {
1488 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1489 	struct hclge_cfg cfg;
1490 	int ret;
1491 
1492 	ret = hclge_get_cfg(hdev, &cfg);
1493 	if (ret)
1494 		return ret;
1495 
1496 	hdev->base_tqp_pid = 0;
1497 	hdev->vf_rss_size_max = cfg.vf_rss_size_max;
1498 	hdev->pf_rss_size_max = cfg.pf_rss_size_max;
1499 	hdev->rx_buf_len = cfg.rx_buf_len;
1500 	ether_addr_copy(hdev->hw.mac.mac_addr, cfg.mac_addr);
1501 	hdev->hw.mac.media_type = cfg.media_type;
1502 	hdev->hw.mac.phy_addr = cfg.phy_addr;
1503 	hdev->num_tx_desc = cfg.tqp_desc_num;
1504 	hdev->num_rx_desc = cfg.tqp_desc_num;
1505 	hdev->tm_info.num_pg = 1;
1506 	hdev->tc_max = cfg.tc_num;
1507 	hdev->tm_info.hw_pfc_map = 0;
1508 	if (cfg.umv_space)
1509 		hdev->wanted_umv_size = cfg.umv_space;
1510 	else
1511 		hdev->wanted_umv_size = hdev->ae_dev->dev_specs.umv_size;
1512 	hdev->tx_spare_buf_size = cfg.tx_spare_buf_size;
1513 	hdev->gro_en = true;
1514 	if (cfg.vlan_fliter_cap == HCLGE_VLAN_FLTR_CAN_MDF)
1515 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
1516 
1517 	if (hnae3_ae_dev_fd_supported(hdev->ae_dev)) {
1518 		hdev->fd_en = true;
1519 		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
1520 	}
1521 
1522 	ret = hclge_parse_speed(cfg.default_speed, &hdev->hw.mac.speed);
1523 	if (ret) {
1524 		dev_err(&hdev->pdev->dev, "failed to parse speed %u, ret = %d\n",
1525 			cfg.default_speed, ret);
1526 		return ret;
1527 	}
1528 
1529 	hclge_parse_link_mode(hdev, cfg.speed_ability);
1530 
1531 	hdev->hw.mac.max_speed = hclge_get_max_speed(cfg.speed_ability);
1532 
1533 	hclge_init_tc_config(hdev);
1534 	hclge_init_kdump_kernel_config(hdev);
1535 
1536 	return ret;
1537 }
1538 
1539 static int hclge_config_tso(struct hclge_dev *hdev, u16 tso_mss_min,
1540 			    u16 tso_mss_max)
1541 {
1542 	struct hclge_cfg_tso_status_cmd *req;
1543 	struct hclge_desc desc;
1544 
1545 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TSO_GENERIC_CONFIG, false);
1546 
1547 	req = (struct hclge_cfg_tso_status_cmd *)desc.data;
1548 	req->tso_mss_min = cpu_to_le16(tso_mss_min);
1549 	req->tso_mss_max = cpu_to_le16(tso_mss_max);
1550 
1551 	return hclge_cmd_send(&hdev->hw, &desc, 1);
1552 }
1553 
1554 static int hclge_config_gro(struct hclge_dev *hdev)
1555 {
1556 	struct hclge_cfg_gro_status_cmd *req;
1557 	struct hclge_desc desc;
1558 	int ret;
1559 
1560 	if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
1561 		return 0;
1562 
1563 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, false);
1564 	req = (struct hclge_cfg_gro_status_cmd *)desc.data;
1565 
1566 	req->gro_en = hdev->gro_en ? 1 : 0;
1567 
1568 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1569 	if (ret)
1570 		dev_err(&hdev->pdev->dev,
1571 			"GRO hardware config cmd failed, ret = %d\n", ret);
1572 
1573 	return ret;
1574 }
1575 
1576 static int hclge_alloc_tqps(struct hclge_dev *hdev)
1577 {
1578 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1579 	struct hclge_comm_tqp *tqp;
1580 	int i;
1581 
1582 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
1583 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
1584 	if (!hdev->htqp)
1585 		return -ENOMEM;
1586 
1587 	tqp = hdev->htqp;
1588 
1589 	for (i = 0; i < hdev->num_tqps; i++) {
1590 		tqp->dev = &hdev->pdev->dev;
1591 		tqp->index = i;
1592 
1593 		tqp->q.ae_algo = &ae_algo;
1594 		tqp->q.buf_size = hdev->rx_buf_len;
1595 		tqp->q.tx_desc_num = hdev->num_tx_desc;
1596 		tqp->q.rx_desc_num = hdev->num_rx_desc;
1597 
1598 		/* need an extended offset to configure queues >=
1599 		 * HCLGE_TQP_MAX_SIZE_DEV_V2
1600 		 */
1601 		if (i < HCLGE_TQP_MAX_SIZE_DEV_V2)
1602 			tqp->q.io_base = hdev->hw.hw.io_base +
1603 					 HCLGE_TQP_REG_OFFSET +
1604 					 i * HCLGE_TQP_REG_SIZE;
1605 		else
1606 			tqp->q.io_base = hdev->hw.hw.io_base +
1607 					 HCLGE_TQP_REG_OFFSET +
1608 					 HCLGE_TQP_EXT_REG_OFFSET +
1609 					 (i - HCLGE_TQP_MAX_SIZE_DEV_V2) *
1610 					 HCLGE_TQP_REG_SIZE;
1611 
1612 		/* when device supports tx push and has device memory,
1613 		 * the queue can execute push mode or doorbell mode on
1614 		 * device memory.
1615 		 */
1616 		if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
1617 			tqp->q.mem_base = hdev->hw.hw.mem_base +
1618 					  HCLGE_TQP_MEM_OFFSET(hdev, i);
1619 
1620 		tqp++;
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 static int hclge_map_tqps_to_func(struct hclge_dev *hdev, u16 func_id,
1627 				  u16 tqp_pid, u16 tqp_vid, bool is_pf)
1628 {
1629 	struct hclge_tqp_map_cmd *req;
1630 	struct hclge_desc desc;
1631 	int ret;
1632 
1633 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SET_TQP_MAP, false);
1634 
1635 	req = (struct hclge_tqp_map_cmd *)desc.data;
1636 	req->tqp_id = cpu_to_le16(tqp_pid);
1637 	req->tqp_vf = func_id;
1638 	req->tqp_flag = 1U << HCLGE_TQP_MAP_EN_B;
1639 	if (!is_pf)
1640 		req->tqp_flag |= 1U << HCLGE_TQP_MAP_TYPE_B;
1641 	req->tqp_vid = cpu_to_le16(tqp_vid);
1642 
1643 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1644 	if (ret)
1645 		dev_err(&hdev->pdev->dev, "TQP map failed %d.\n", ret);
1646 
1647 	return ret;
1648 }
1649 
1650 static int  hclge_assign_tqp(struct hclge_vport *vport, u16 num_tqps)
1651 {
1652 	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
1653 	struct hclge_dev *hdev = vport->back;
1654 	int i, alloced;
1655 
1656 	for (i = 0, alloced = 0; i < hdev->num_tqps &&
1657 	     alloced < num_tqps; i++) {
1658 		if (!hdev->htqp[i].alloced) {
1659 			hdev->htqp[i].q.handle = &vport->nic;
1660 			hdev->htqp[i].q.tqp_index = alloced;
1661 			hdev->htqp[i].q.tx_desc_num = kinfo->num_tx_desc;
1662 			hdev->htqp[i].q.rx_desc_num = kinfo->num_rx_desc;
1663 			kinfo->tqp[alloced] = &hdev->htqp[i].q;
1664 			hdev->htqp[i].alloced = true;
1665 			alloced++;
1666 		}
1667 	}
1668 	vport->alloc_tqps = alloced;
1669 	kinfo->rss_size = min_t(u16, hdev->pf_rss_size_max,
1670 				vport->alloc_tqps / hdev->tm_info.num_tc);
1671 
1672 	/* ensure one to one mapping between irq and queue at default */
1673 	kinfo->rss_size = min_t(u16, kinfo->rss_size,
1674 				(hdev->num_nic_msi - 1) / hdev->tm_info.num_tc);
1675 
1676 	return 0;
1677 }
1678 
1679 static int hclge_knic_setup(struct hclge_vport *vport, u16 num_tqps,
1680 			    u16 num_tx_desc, u16 num_rx_desc)
1681 
1682 {
1683 	struct hnae3_handle *nic = &vport->nic;
1684 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1685 	struct hclge_dev *hdev = vport->back;
1686 	int ret;
1687 
1688 	kinfo->num_tx_desc = num_tx_desc;
1689 	kinfo->num_rx_desc = num_rx_desc;
1690 
1691 	kinfo->rx_buf_len = hdev->rx_buf_len;
1692 	kinfo->tx_spare_buf_size = hdev->tx_spare_buf_size;
1693 
1694 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, num_tqps,
1695 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
1696 	if (!kinfo->tqp)
1697 		return -ENOMEM;
1698 
1699 	ret = hclge_assign_tqp(vport, num_tqps);
1700 	if (ret)
1701 		dev_err(&hdev->pdev->dev, "fail to assign TQPs %d.\n", ret);
1702 
1703 	return ret;
1704 }
1705 
1706 static int hclge_map_tqp_to_vport(struct hclge_dev *hdev,
1707 				  struct hclge_vport *vport)
1708 {
1709 	struct hnae3_handle *nic = &vport->nic;
1710 	struct hnae3_knic_private_info *kinfo;
1711 	u16 i;
1712 
1713 	kinfo = &nic->kinfo;
1714 	for (i = 0; i < vport->alloc_tqps; i++) {
1715 		struct hclge_comm_tqp *q =
1716 			container_of(kinfo->tqp[i], struct hclge_comm_tqp, q);
1717 		bool is_pf;
1718 		int ret;
1719 
1720 		is_pf = !(vport->vport_id);
1721 		ret = hclge_map_tqps_to_func(hdev, vport->vport_id, q->index,
1722 					     i, is_pf);
1723 		if (ret)
1724 			return ret;
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 static int hclge_map_tqp(struct hclge_dev *hdev)
1731 {
1732 	struct hclge_vport *vport = hdev->vport;
1733 	u16 i, num_vport;
1734 
1735 	num_vport = hdev->num_req_vfs + 1;
1736 	for (i = 0; i < num_vport; i++) {
1737 		int ret;
1738 
1739 		ret = hclge_map_tqp_to_vport(hdev, vport);
1740 		if (ret)
1741 			return ret;
1742 
1743 		vport++;
1744 	}
1745 
1746 	return 0;
1747 }
1748 
1749 static int hclge_vport_setup(struct hclge_vport *vport, u16 num_tqps)
1750 {
1751 	struct hnae3_handle *nic = &vport->nic;
1752 	struct hclge_dev *hdev = vport->back;
1753 	int ret;
1754 
1755 	nic->pdev = hdev->pdev;
1756 	nic->ae_algo = &ae_algo;
1757 	nic->numa_node_mask = hdev->numa_node_mask;
1758 	nic->kinfo.io_base = hdev->hw.hw.io_base;
1759 
1760 	ret = hclge_knic_setup(vport, num_tqps,
1761 			       hdev->num_tx_desc, hdev->num_rx_desc);
1762 	if (ret)
1763 		dev_err(&hdev->pdev->dev, "knic setup failed %d\n", ret);
1764 
1765 	return ret;
1766 }
1767 
1768 static int hclge_alloc_vport(struct hclge_dev *hdev)
1769 {
1770 	struct pci_dev *pdev = hdev->pdev;
1771 	struct hclge_vport *vport;
1772 	u32 tqp_main_vport;
1773 	u32 tqp_per_vport;
1774 	int num_vport, i;
1775 	int ret;
1776 
1777 	/* We need to alloc a vport for main NIC of PF */
1778 	num_vport = hdev->num_req_vfs + 1;
1779 
1780 	if (hdev->num_tqps < num_vport) {
1781 		dev_err(&hdev->pdev->dev, "tqps(%u) is less than vports(%d)",
1782 			hdev->num_tqps, num_vport);
1783 		return -EINVAL;
1784 	}
1785 
1786 	/* Alloc the same number of TQPs for every vport */
1787 	tqp_per_vport = hdev->num_tqps / num_vport;
1788 	tqp_main_vport = tqp_per_vport + hdev->num_tqps % num_vport;
1789 
1790 	vport = devm_kcalloc(&pdev->dev, num_vport, sizeof(struct hclge_vport),
1791 			     GFP_KERNEL);
1792 	if (!vport)
1793 		return -ENOMEM;
1794 
1795 	hdev->vport = vport;
1796 	hdev->num_alloc_vport = num_vport;
1797 
1798 	if (IS_ENABLED(CONFIG_PCI_IOV))
1799 		hdev->num_alloc_vfs = hdev->num_req_vfs;
1800 
1801 	for (i = 0; i < num_vport; i++) {
1802 		vport->back = hdev;
1803 		vport->vport_id = i;
1804 		vport->vf_info.link_state = IFLA_VF_LINK_STATE_AUTO;
1805 		vport->mps = HCLGE_MAC_DEFAULT_FRAME;
1806 		vport->port_base_vlan_cfg.state = HNAE3_PORT_BASE_VLAN_DISABLE;
1807 		vport->port_base_vlan_cfg.tbl_sta = true;
1808 		vport->rxvlan_cfg.rx_vlan_offload_en = true;
1809 		vport->req_vlan_fltr_en = true;
1810 		INIT_LIST_HEAD(&vport->vlan_list);
1811 		INIT_LIST_HEAD(&vport->uc_mac_list);
1812 		INIT_LIST_HEAD(&vport->mc_mac_list);
1813 		spin_lock_init(&vport->mac_list_lock);
1814 
1815 		if (i == 0)
1816 			ret = hclge_vport_setup(vport, tqp_main_vport);
1817 		else
1818 			ret = hclge_vport_setup(vport, tqp_per_vport);
1819 		if (ret) {
1820 			dev_err(&pdev->dev,
1821 				"vport setup failed for vport %d, %d\n",
1822 				i, ret);
1823 			return ret;
1824 		}
1825 
1826 		vport++;
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 static int  hclge_cmd_alloc_tx_buff(struct hclge_dev *hdev,
1833 				    struct hclge_pkt_buf_alloc *buf_alloc)
1834 {
1835 /* TX buffer size is unit by 128 byte */
1836 #define HCLGE_BUF_SIZE_UNIT_SHIFT	7
1837 #define HCLGE_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
1838 	struct hclge_tx_buff_alloc_cmd *req;
1839 	struct hclge_desc desc;
1840 	int ret;
1841 	u8 i;
1842 
1843 	req = (struct hclge_tx_buff_alloc_cmd *)desc.data;
1844 
1845 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TX_BUFF_ALLOC, 0);
1846 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
1847 		u32 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
1848 
1849 		req->tx_pkt_buff[i] =
1850 			cpu_to_le16((buf_size >> HCLGE_BUF_SIZE_UNIT_SHIFT) |
1851 				     HCLGE_BUF_SIZE_UPDATE_EN_MSK);
1852 	}
1853 
1854 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1855 	if (ret)
1856 		dev_err(&hdev->pdev->dev, "tx buffer alloc cmd failed %d.\n",
1857 			ret);
1858 
1859 	return ret;
1860 }
1861 
1862 static int hclge_tx_buffer_alloc(struct hclge_dev *hdev,
1863 				 struct hclge_pkt_buf_alloc *buf_alloc)
1864 {
1865 	int ret = hclge_cmd_alloc_tx_buff(hdev, buf_alloc);
1866 
1867 	if (ret)
1868 		dev_err(&hdev->pdev->dev, "tx buffer alloc failed %d\n", ret);
1869 
1870 	return ret;
1871 }
1872 
1873 static u32 hclge_get_tc_num(struct hclge_dev *hdev)
1874 {
1875 	unsigned int i;
1876 	u32 cnt = 0;
1877 
1878 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++)
1879 		if (hdev->hw_tc_map & BIT(i))
1880 			cnt++;
1881 	return cnt;
1882 }
1883 
1884 /* Get the number of pfc enabled TCs, which have private buffer */
1885 static int hclge_get_pfc_priv_num(struct hclge_dev *hdev,
1886 				  struct hclge_pkt_buf_alloc *buf_alloc)
1887 {
1888 	struct hclge_priv_buf *priv;
1889 	unsigned int i;
1890 	int cnt = 0;
1891 
1892 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
1893 		priv = &buf_alloc->priv_buf[i];
1894 		if ((hdev->tm_info.hw_pfc_map & BIT(i)) &&
1895 		    priv->enable)
1896 			cnt++;
1897 	}
1898 
1899 	return cnt;
1900 }
1901 
1902 /* Get the number of pfc disabled TCs, which have private buffer */
1903 static int hclge_get_no_pfc_priv_num(struct hclge_dev *hdev,
1904 				     struct hclge_pkt_buf_alloc *buf_alloc)
1905 {
1906 	struct hclge_priv_buf *priv;
1907 	unsigned int i;
1908 	int cnt = 0;
1909 
1910 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
1911 		priv = &buf_alloc->priv_buf[i];
1912 		if (hdev->hw_tc_map & BIT(i) &&
1913 		    !(hdev->tm_info.hw_pfc_map & BIT(i)) &&
1914 		    priv->enable)
1915 			cnt++;
1916 	}
1917 
1918 	return cnt;
1919 }
1920 
1921 static u32 hclge_get_rx_priv_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc)
1922 {
1923 	struct hclge_priv_buf *priv;
1924 	u32 rx_priv = 0;
1925 	int i;
1926 
1927 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
1928 		priv = &buf_alloc->priv_buf[i];
1929 		if (priv->enable)
1930 			rx_priv += priv->buf_size;
1931 	}
1932 	return rx_priv;
1933 }
1934 
1935 static u32 hclge_get_tx_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc)
1936 {
1937 	u32 i, total_tx_size = 0;
1938 
1939 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++)
1940 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
1941 
1942 	return total_tx_size;
1943 }
1944 
1945 static bool  hclge_is_rx_buf_ok(struct hclge_dev *hdev,
1946 				struct hclge_pkt_buf_alloc *buf_alloc,
1947 				u32 rx_all)
1948 {
1949 	u32 shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
1950 	u32 tc_num = hclge_get_tc_num(hdev);
1951 	u32 shared_buf, aligned_mps;
1952 	u32 rx_priv;
1953 	int i;
1954 
1955 	aligned_mps = roundup(hdev->mps, HCLGE_BUF_SIZE_UNIT);
1956 
1957 	if (hnae3_dev_dcb_supported(hdev))
1958 		shared_buf_min = HCLGE_BUF_MUL_BY * aligned_mps +
1959 					hdev->dv_buf_size;
1960 	else
1961 		shared_buf_min = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF
1962 					+ hdev->dv_buf_size;
1963 
1964 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
1965 	shared_std = roundup(max_t(u32, shared_buf_min, shared_buf_tc),
1966 			     HCLGE_BUF_SIZE_UNIT);
1967 
1968 	rx_priv = hclge_get_rx_priv_buff_alloced(buf_alloc);
1969 	if (rx_all < rx_priv + shared_std)
1970 		return false;
1971 
1972 	shared_buf = rounddown(rx_all - rx_priv, HCLGE_BUF_SIZE_UNIT);
1973 	buf_alloc->s_buf.buf_size = shared_buf;
1974 	if (hnae3_dev_dcb_supported(hdev)) {
1975 		buf_alloc->s_buf.self.high = shared_buf - hdev->dv_buf_size;
1976 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
1977 			- roundup(aligned_mps / HCLGE_BUF_DIV_BY,
1978 				  HCLGE_BUF_SIZE_UNIT);
1979 	} else {
1980 		buf_alloc->s_buf.self.high = aligned_mps +
1981 						HCLGE_NON_DCB_ADDITIONAL_BUF;
1982 		buf_alloc->s_buf.self.low = aligned_mps;
1983 	}
1984 
1985 	if (hnae3_dev_dcb_supported(hdev)) {
1986 		hi_thrd = shared_buf - hdev->dv_buf_size;
1987 
1988 		if (tc_num <= NEED_RESERVE_TC_NUM)
1989 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
1990 					/ BUF_MAX_PERCENT;
1991 
1992 		if (tc_num)
1993 			hi_thrd = hi_thrd / tc_num;
1994 
1995 		hi_thrd = max_t(u32, hi_thrd, HCLGE_BUF_MUL_BY * aligned_mps);
1996 		hi_thrd = rounddown(hi_thrd, HCLGE_BUF_SIZE_UNIT);
1997 		lo_thrd = hi_thrd - aligned_mps / HCLGE_BUF_DIV_BY;
1998 	} else {
1999 		hi_thrd = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF;
2000 		lo_thrd = aligned_mps;
2001 	}
2002 
2003 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2004 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
2005 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
2006 	}
2007 
2008 	return true;
2009 }
2010 
2011 static int hclge_tx_buffer_calc(struct hclge_dev *hdev,
2012 				struct hclge_pkt_buf_alloc *buf_alloc)
2013 {
2014 	u32 i, total_size;
2015 
2016 	total_size = hdev->pkt_buf_size;
2017 
2018 	/* alloc tx buffer for all enabled tc */
2019 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2020 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2021 
2022 		if (hdev->hw_tc_map & BIT(i)) {
2023 			if (total_size < hdev->tx_buf_size)
2024 				return -ENOMEM;
2025 
2026 			priv->tx_buf_size = hdev->tx_buf_size;
2027 		} else {
2028 			priv->tx_buf_size = 0;
2029 		}
2030 
2031 		total_size -= priv->tx_buf_size;
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 static bool hclge_rx_buf_calc_all(struct hclge_dev *hdev, bool max,
2038 				  struct hclge_pkt_buf_alloc *buf_alloc)
2039 {
2040 	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2041 	u32 aligned_mps = round_up(hdev->mps, HCLGE_BUF_SIZE_UNIT);
2042 	unsigned int i;
2043 
2044 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2045 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2046 
2047 		priv->enable = 0;
2048 		priv->wl.low = 0;
2049 		priv->wl.high = 0;
2050 		priv->buf_size = 0;
2051 
2052 		if (!(hdev->hw_tc_map & BIT(i)))
2053 			continue;
2054 
2055 		priv->enable = 1;
2056 
2057 		if (hdev->tm_info.hw_pfc_map & BIT(i)) {
2058 			priv->wl.low = max ? aligned_mps : HCLGE_BUF_SIZE_UNIT;
2059 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
2060 						HCLGE_BUF_SIZE_UNIT);
2061 		} else {
2062 			priv->wl.low = 0;
2063 			priv->wl.high = max ? (aligned_mps * HCLGE_BUF_MUL_BY) :
2064 					aligned_mps;
2065 		}
2066 
2067 		priv->buf_size = priv->wl.high + hdev->dv_buf_size;
2068 	}
2069 
2070 	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
2071 }
2072 
2073 static bool hclge_drop_nopfc_buf_till_fit(struct hclge_dev *hdev,
2074 					  struct hclge_pkt_buf_alloc *buf_alloc)
2075 {
2076 	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2077 	int no_pfc_priv_num = hclge_get_no_pfc_priv_num(hdev, buf_alloc);
2078 	int i;
2079 
2080 	/* let the last to be cleared first */
2081 	for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) {
2082 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2083 		unsigned int mask = BIT((unsigned int)i);
2084 
2085 		if (hdev->hw_tc_map & mask &&
2086 		    !(hdev->tm_info.hw_pfc_map & mask)) {
2087 			/* Clear the no pfc TC private buffer */
2088 			priv->wl.low = 0;
2089 			priv->wl.high = 0;
2090 			priv->buf_size = 0;
2091 			priv->enable = 0;
2092 			no_pfc_priv_num--;
2093 		}
2094 
2095 		if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) ||
2096 		    no_pfc_priv_num == 0)
2097 			break;
2098 	}
2099 
2100 	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
2101 }
2102 
2103 static bool hclge_drop_pfc_buf_till_fit(struct hclge_dev *hdev,
2104 					struct hclge_pkt_buf_alloc *buf_alloc)
2105 {
2106 	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2107 	int pfc_priv_num = hclge_get_pfc_priv_num(hdev, buf_alloc);
2108 	int i;
2109 
2110 	/* let the last to be cleared first */
2111 	for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) {
2112 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2113 		unsigned int mask = BIT((unsigned int)i);
2114 
2115 		if (hdev->hw_tc_map & mask &&
2116 		    hdev->tm_info.hw_pfc_map & mask) {
2117 			/* Reduce the number of pfc TC with private buffer */
2118 			priv->wl.low = 0;
2119 			priv->enable = 0;
2120 			priv->wl.high = 0;
2121 			priv->buf_size = 0;
2122 			pfc_priv_num--;
2123 		}
2124 
2125 		if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) ||
2126 		    pfc_priv_num == 0)
2127 			break;
2128 	}
2129 
2130 	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
2131 }
2132 
2133 static int hclge_only_alloc_priv_buff(struct hclge_dev *hdev,
2134 				      struct hclge_pkt_buf_alloc *buf_alloc)
2135 {
2136 #define COMPENSATE_BUFFER	0x3C00
2137 #define COMPENSATE_HALF_MPS_NUM	5
2138 #define PRIV_WL_GAP		0x1800
2139 
2140 	u32 rx_priv = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2141 	u32 tc_num = hclge_get_tc_num(hdev);
2142 	u32 half_mps = hdev->mps >> 1;
2143 	u32 min_rx_priv;
2144 	unsigned int i;
2145 
2146 	if (tc_num)
2147 		rx_priv = rx_priv / tc_num;
2148 
2149 	if (tc_num <= NEED_RESERVE_TC_NUM)
2150 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
2151 
2152 	min_rx_priv = hdev->dv_buf_size + COMPENSATE_BUFFER +
2153 			COMPENSATE_HALF_MPS_NUM * half_mps;
2154 	min_rx_priv = round_up(min_rx_priv, HCLGE_BUF_SIZE_UNIT);
2155 	rx_priv = round_down(rx_priv, HCLGE_BUF_SIZE_UNIT);
2156 	if (rx_priv < min_rx_priv)
2157 		return false;
2158 
2159 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2160 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2161 
2162 		priv->enable = 0;
2163 		priv->wl.low = 0;
2164 		priv->wl.high = 0;
2165 		priv->buf_size = 0;
2166 
2167 		if (!(hdev->hw_tc_map & BIT(i)))
2168 			continue;
2169 
2170 		priv->enable = 1;
2171 		priv->buf_size = rx_priv;
2172 		priv->wl.high = rx_priv - hdev->dv_buf_size;
2173 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
2174 	}
2175 
2176 	buf_alloc->s_buf.buf_size = 0;
2177 
2178 	return true;
2179 }
2180 
2181 /* hclge_rx_buffer_calc: calculate the rx private buffer size for all TCs
2182  * @hdev: pointer to struct hclge_dev
2183  * @buf_alloc: pointer to buffer calculation data
2184  * @return: 0: calculate successful, negative: fail
2185  */
2186 static int hclge_rx_buffer_calc(struct hclge_dev *hdev,
2187 				struct hclge_pkt_buf_alloc *buf_alloc)
2188 {
2189 	/* When DCB is not supported, rx private buffer is not allocated. */
2190 	if (!hnae3_dev_dcb_supported(hdev)) {
2191 		u32 rx_all = hdev->pkt_buf_size;
2192 
2193 		rx_all -= hclge_get_tx_buff_alloced(buf_alloc);
2194 		if (!hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all))
2195 			return -ENOMEM;
2196 
2197 		return 0;
2198 	}
2199 
2200 	if (hclge_only_alloc_priv_buff(hdev, buf_alloc))
2201 		return 0;
2202 
2203 	if (hclge_rx_buf_calc_all(hdev, true, buf_alloc))
2204 		return 0;
2205 
2206 	/* try to decrease the buffer size */
2207 	if (hclge_rx_buf_calc_all(hdev, false, buf_alloc))
2208 		return 0;
2209 
2210 	if (hclge_drop_nopfc_buf_till_fit(hdev, buf_alloc))
2211 		return 0;
2212 
2213 	if (hclge_drop_pfc_buf_till_fit(hdev, buf_alloc))
2214 		return 0;
2215 
2216 	return -ENOMEM;
2217 }
2218 
2219 static int hclge_rx_priv_buf_alloc(struct hclge_dev *hdev,
2220 				   struct hclge_pkt_buf_alloc *buf_alloc)
2221 {
2222 	struct hclge_rx_priv_buff_cmd *req;
2223 	struct hclge_desc desc;
2224 	int ret;
2225 	int i;
2226 
2227 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_PRIV_BUFF_ALLOC, false);
2228 	req = (struct hclge_rx_priv_buff_cmd *)desc.data;
2229 
2230 	/* Alloc private buffer TCs */
2231 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2232 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2233 
2234 		req->buf_num[i] =
2235 			cpu_to_le16(priv->buf_size >> HCLGE_BUF_UNIT_S);
2236 		req->buf_num[i] |=
2237 			cpu_to_le16(1 << HCLGE_TC0_PRI_BUF_EN_B);
2238 	}
2239 
2240 	req->shared_buf =
2241 		cpu_to_le16((buf_alloc->s_buf.buf_size >> HCLGE_BUF_UNIT_S) |
2242 			    (1 << HCLGE_TC0_PRI_BUF_EN_B));
2243 
2244 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2245 	if (ret)
2246 		dev_err(&hdev->pdev->dev,
2247 			"rx private buffer alloc cmd failed %d\n", ret);
2248 
2249 	return ret;
2250 }
2251 
2252 static int hclge_rx_priv_wl_config(struct hclge_dev *hdev,
2253 				   struct hclge_pkt_buf_alloc *buf_alloc)
2254 {
2255 	struct hclge_rx_priv_wl_buf *req;
2256 	struct hclge_priv_buf *priv;
2257 	struct hclge_desc desc[2];
2258 	int i, j;
2259 	int ret;
2260 
2261 	for (i = 0; i < 2; i++) {
2262 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_RX_PRIV_WL_ALLOC,
2263 					   false);
2264 		req = (struct hclge_rx_priv_wl_buf *)desc[i].data;
2265 
2266 		/* The first descriptor set the NEXT bit to 1 */
2267 		if (i == 0)
2268 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2269 		else
2270 			desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2271 
2272 		for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) {
2273 			u32 idx = i * HCLGE_TC_NUM_ONE_DESC + j;
2274 
2275 			priv = &buf_alloc->priv_buf[idx];
2276 			req->tc_wl[j].high =
2277 				cpu_to_le16(priv->wl.high >> HCLGE_BUF_UNIT_S);
2278 			req->tc_wl[j].high |=
2279 				cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2280 			req->tc_wl[j].low =
2281 				cpu_to_le16(priv->wl.low >> HCLGE_BUF_UNIT_S);
2282 			req->tc_wl[j].low |=
2283 				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2284 		}
2285 	}
2286 
2287 	/* Send 2 descriptor at one time */
2288 	ret = hclge_cmd_send(&hdev->hw, desc, 2);
2289 	if (ret)
2290 		dev_err(&hdev->pdev->dev,
2291 			"rx private waterline config cmd failed %d\n",
2292 			ret);
2293 	return ret;
2294 }
2295 
2296 static int hclge_common_thrd_config(struct hclge_dev *hdev,
2297 				    struct hclge_pkt_buf_alloc *buf_alloc)
2298 {
2299 	struct hclge_shared_buf *s_buf = &buf_alloc->s_buf;
2300 	struct hclge_rx_com_thrd *req;
2301 	struct hclge_desc desc[2];
2302 	struct hclge_tc_thrd *tc;
2303 	int i, j;
2304 	int ret;
2305 
2306 	for (i = 0; i < 2; i++) {
2307 		hclge_cmd_setup_basic_desc(&desc[i],
2308 					   HCLGE_OPC_RX_COM_THRD_ALLOC, false);
2309 		req = (struct hclge_rx_com_thrd *)&desc[i].data;
2310 
2311 		/* The first descriptor set the NEXT bit to 1 */
2312 		if (i == 0)
2313 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2314 		else
2315 			desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2316 
2317 		for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) {
2318 			tc = &s_buf->tc_thrd[i * HCLGE_TC_NUM_ONE_DESC + j];
2319 
2320 			req->com_thrd[j].high =
2321 				cpu_to_le16(tc->high >> HCLGE_BUF_UNIT_S);
2322 			req->com_thrd[j].high |=
2323 				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2324 			req->com_thrd[j].low =
2325 				cpu_to_le16(tc->low >> HCLGE_BUF_UNIT_S);
2326 			req->com_thrd[j].low |=
2327 				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2328 		}
2329 	}
2330 
2331 	/* Send 2 descriptors at one time */
2332 	ret = hclge_cmd_send(&hdev->hw, desc, 2);
2333 	if (ret)
2334 		dev_err(&hdev->pdev->dev,
2335 			"common threshold config cmd failed %d\n", ret);
2336 	return ret;
2337 }
2338 
2339 static int hclge_common_wl_config(struct hclge_dev *hdev,
2340 				  struct hclge_pkt_buf_alloc *buf_alloc)
2341 {
2342 	struct hclge_shared_buf *buf = &buf_alloc->s_buf;
2343 	struct hclge_rx_com_wl *req;
2344 	struct hclge_desc desc;
2345 	int ret;
2346 
2347 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_COM_WL_ALLOC, false);
2348 
2349 	req = (struct hclge_rx_com_wl *)desc.data;
2350 	req->com_wl.high = cpu_to_le16(buf->self.high >> HCLGE_BUF_UNIT_S);
2351 	req->com_wl.high |=  cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2352 
2353 	req->com_wl.low = cpu_to_le16(buf->self.low >> HCLGE_BUF_UNIT_S);
2354 	req->com_wl.low |=  cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2355 
2356 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2357 	if (ret)
2358 		dev_err(&hdev->pdev->dev,
2359 			"common waterline config cmd failed %d\n", ret);
2360 
2361 	return ret;
2362 }
2363 
2364 int hclge_buffer_alloc(struct hclge_dev *hdev)
2365 {
2366 	struct hclge_pkt_buf_alloc *pkt_buf;
2367 	int ret;
2368 
2369 	pkt_buf = kzalloc(sizeof(*pkt_buf), GFP_KERNEL);
2370 	if (!pkt_buf)
2371 		return -ENOMEM;
2372 
2373 	ret = hclge_tx_buffer_calc(hdev, pkt_buf);
2374 	if (ret) {
2375 		dev_err(&hdev->pdev->dev,
2376 			"could not calc tx buffer size for all TCs %d\n", ret);
2377 		goto out;
2378 	}
2379 
2380 	ret = hclge_tx_buffer_alloc(hdev, pkt_buf);
2381 	if (ret) {
2382 		dev_err(&hdev->pdev->dev,
2383 			"could not alloc tx buffers %d\n", ret);
2384 		goto out;
2385 	}
2386 
2387 	ret = hclge_rx_buffer_calc(hdev, pkt_buf);
2388 	if (ret) {
2389 		dev_err(&hdev->pdev->dev,
2390 			"could not calc rx priv buffer size for all TCs %d\n",
2391 			ret);
2392 		goto out;
2393 	}
2394 
2395 	ret = hclge_rx_priv_buf_alloc(hdev, pkt_buf);
2396 	if (ret) {
2397 		dev_err(&hdev->pdev->dev, "could not alloc rx priv buffer %d\n",
2398 			ret);
2399 		goto out;
2400 	}
2401 
2402 	if (hnae3_dev_dcb_supported(hdev)) {
2403 		ret = hclge_rx_priv_wl_config(hdev, pkt_buf);
2404 		if (ret) {
2405 			dev_err(&hdev->pdev->dev,
2406 				"could not configure rx private waterline %d\n",
2407 				ret);
2408 			goto out;
2409 		}
2410 
2411 		ret = hclge_common_thrd_config(hdev, pkt_buf);
2412 		if (ret) {
2413 			dev_err(&hdev->pdev->dev,
2414 				"could not configure common threshold %d\n",
2415 				ret);
2416 			goto out;
2417 		}
2418 	}
2419 
2420 	ret = hclge_common_wl_config(hdev, pkt_buf);
2421 	if (ret)
2422 		dev_err(&hdev->pdev->dev,
2423 			"could not configure common waterline %d\n", ret);
2424 
2425 out:
2426 	kfree(pkt_buf);
2427 	return ret;
2428 }
2429 
2430 static int hclge_init_roce_base_info(struct hclge_vport *vport)
2431 {
2432 	struct hnae3_handle *roce = &vport->roce;
2433 	struct hnae3_handle *nic = &vport->nic;
2434 	struct hclge_dev *hdev = vport->back;
2435 
2436 	roce->rinfo.num_vectors = vport->back->num_roce_msi;
2437 
2438 	if (hdev->num_msi < hdev->num_nic_msi + hdev->num_roce_msi)
2439 		return -EINVAL;
2440 
2441 	roce->rinfo.base_vector = hdev->num_nic_msi;
2442 
2443 	roce->rinfo.netdev = nic->kinfo.netdev;
2444 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2445 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2446 
2447 	roce->pdev = nic->pdev;
2448 	roce->ae_algo = nic->ae_algo;
2449 	roce->numa_node_mask = nic->numa_node_mask;
2450 
2451 	return 0;
2452 }
2453 
2454 static int hclge_init_msi(struct hclge_dev *hdev)
2455 {
2456 	struct pci_dev *pdev = hdev->pdev;
2457 	int vectors;
2458 	int i;
2459 
2460 	vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2461 					hdev->num_msi,
2462 					PCI_IRQ_MSI | PCI_IRQ_MSIX);
2463 	if (vectors < 0) {
2464 		dev_err(&pdev->dev,
2465 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2466 			vectors);
2467 		return vectors;
2468 	}
2469 	if (vectors < hdev->num_msi)
2470 		dev_warn(&hdev->pdev->dev,
2471 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2472 			 hdev->num_msi, vectors);
2473 
2474 	hdev->num_msi = vectors;
2475 	hdev->num_msi_left = vectors;
2476 
2477 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2478 					   sizeof(u16), GFP_KERNEL);
2479 	if (!hdev->vector_status) {
2480 		pci_free_irq_vectors(pdev);
2481 		return -ENOMEM;
2482 	}
2483 
2484 	for (i = 0; i < hdev->num_msi; i++)
2485 		hdev->vector_status[i] = HCLGE_INVALID_VPORT;
2486 
2487 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2488 					sizeof(int), GFP_KERNEL);
2489 	if (!hdev->vector_irq) {
2490 		pci_free_irq_vectors(pdev);
2491 		return -ENOMEM;
2492 	}
2493 
2494 	return 0;
2495 }
2496 
2497 static u8 hclge_check_speed_dup(u8 duplex, int speed)
2498 {
2499 	if (!(speed == HCLGE_MAC_SPEED_10M || speed == HCLGE_MAC_SPEED_100M))
2500 		duplex = HCLGE_MAC_FULL;
2501 
2502 	return duplex;
2503 }
2504 
2505 static struct hclge_mac_speed_map hclge_mac_speed_map_to_fw[] = {
2506 	{HCLGE_MAC_SPEED_10M, HCLGE_FW_MAC_SPEED_10M},
2507 	{HCLGE_MAC_SPEED_100M, HCLGE_FW_MAC_SPEED_100M},
2508 	{HCLGE_MAC_SPEED_1G, HCLGE_FW_MAC_SPEED_1G},
2509 	{HCLGE_MAC_SPEED_10G, HCLGE_FW_MAC_SPEED_10G},
2510 	{HCLGE_MAC_SPEED_25G, HCLGE_FW_MAC_SPEED_25G},
2511 	{HCLGE_MAC_SPEED_40G, HCLGE_FW_MAC_SPEED_40G},
2512 	{HCLGE_MAC_SPEED_50G, HCLGE_FW_MAC_SPEED_50G},
2513 	{HCLGE_MAC_SPEED_100G, HCLGE_FW_MAC_SPEED_100G},
2514 	{HCLGE_MAC_SPEED_200G, HCLGE_FW_MAC_SPEED_200G},
2515 };
2516 
2517 static int hclge_convert_to_fw_speed(u32 speed_drv, u32 *speed_fw)
2518 {
2519 	u16 i;
2520 
2521 	for (i = 0; i < ARRAY_SIZE(hclge_mac_speed_map_to_fw); i++) {
2522 		if (hclge_mac_speed_map_to_fw[i].speed_drv == speed_drv) {
2523 			*speed_fw = hclge_mac_speed_map_to_fw[i].speed_fw;
2524 			return 0;
2525 		}
2526 	}
2527 
2528 	return -EINVAL;
2529 }
2530 
2531 static int hclge_cfg_mac_speed_dup_hw(struct hclge_dev *hdev, int speed,
2532 				      u8 duplex, u8 lane_num)
2533 {
2534 	struct hclge_config_mac_speed_dup_cmd *req;
2535 	struct hclge_desc desc;
2536 	u32 speed_fw;
2537 	int ret;
2538 
2539 	req = (struct hclge_config_mac_speed_dup_cmd *)desc.data;
2540 
2541 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_SPEED_DUP, false);
2542 
2543 	if (duplex)
2544 		hnae3_set_bit(req->speed_dup, HCLGE_CFG_DUPLEX_B, 1);
2545 
2546 	ret = hclge_convert_to_fw_speed(speed, &speed_fw);
2547 	if (ret) {
2548 		dev_err(&hdev->pdev->dev, "invalid speed (%d)\n", speed);
2549 		return ret;
2550 	}
2551 
2552 	hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S,
2553 			speed_fw);
2554 	hnae3_set_bit(req->mac_change_fec_en, HCLGE_CFG_MAC_SPEED_CHANGE_EN_B,
2555 		      1);
2556 	req->lane_num = lane_num;
2557 
2558 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2559 	if (ret) {
2560 		dev_err(&hdev->pdev->dev,
2561 			"mac speed/duplex config cmd failed %d.\n", ret);
2562 		return ret;
2563 	}
2564 
2565 	return 0;
2566 }
2567 
2568 int hclge_cfg_mac_speed_dup(struct hclge_dev *hdev, int speed, u8 duplex, u8 lane_num)
2569 {
2570 	struct hclge_mac *mac = &hdev->hw.mac;
2571 	int ret;
2572 
2573 	duplex = hclge_check_speed_dup(duplex, speed);
2574 	if (!mac->support_autoneg && mac->speed == speed &&
2575 	    mac->duplex == duplex && (mac->lane_num == lane_num || lane_num == 0))
2576 		return 0;
2577 
2578 	ret = hclge_cfg_mac_speed_dup_hw(hdev, speed, duplex, lane_num);
2579 	if (ret)
2580 		return ret;
2581 
2582 	hdev->hw.mac.speed = speed;
2583 	hdev->hw.mac.duplex = duplex;
2584 	if (!lane_num)
2585 		hdev->hw.mac.lane_num = lane_num;
2586 
2587 	return 0;
2588 }
2589 
2590 static int hclge_cfg_mac_speed_dup_h(struct hnae3_handle *handle, int speed,
2591 				     u8 duplex, u8 lane_num)
2592 {
2593 	struct hclge_vport *vport = hclge_get_vport(handle);
2594 	struct hclge_dev *hdev = vport->back;
2595 
2596 	return hclge_cfg_mac_speed_dup(hdev, speed, duplex, lane_num);
2597 }
2598 
2599 static int hclge_set_autoneg_en(struct hclge_dev *hdev, bool enable)
2600 {
2601 	struct hclge_config_auto_neg_cmd *req;
2602 	struct hclge_desc desc;
2603 	u32 flag = 0;
2604 	int ret;
2605 
2606 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_AN_MODE, false);
2607 
2608 	req = (struct hclge_config_auto_neg_cmd *)desc.data;
2609 	if (enable)
2610 		hnae3_set_bit(flag, HCLGE_MAC_CFG_AN_EN_B, 1U);
2611 	req->cfg_an_cmd_flag = cpu_to_le32(flag);
2612 
2613 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2614 	if (ret)
2615 		dev_err(&hdev->pdev->dev, "auto neg set cmd failed %d.\n",
2616 			ret);
2617 
2618 	return ret;
2619 }
2620 
2621 static int hclge_set_autoneg(struct hnae3_handle *handle, bool enable)
2622 {
2623 	struct hclge_vport *vport = hclge_get_vport(handle);
2624 	struct hclge_dev *hdev = vport->back;
2625 
2626 	if (!hdev->hw.mac.support_autoneg) {
2627 		if (enable) {
2628 			dev_err(&hdev->pdev->dev,
2629 				"autoneg is not supported by current port\n");
2630 			return -EOPNOTSUPP;
2631 		} else {
2632 			return 0;
2633 		}
2634 	}
2635 
2636 	return hclge_set_autoneg_en(hdev, enable);
2637 }
2638 
2639 static int hclge_get_autoneg(struct hnae3_handle *handle)
2640 {
2641 	struct hclge_vport *vport = hclge_get_vport(handle);
2642 	struct hclge_dev *hdev = vport->back;
2643 	struct phy_device *phydev = hdev->hw.mac.phydev;
2644 
2645 	if (phydev)
2646 		return phydev->autoneg;
2647 
2648 	return hdev->hw.mac.autoneg;
2649 }
2650 
2651 static int hclge_restart_autoneg(struct hnae3_handle *handle)
2652 {
2653 	struct hclge_vport *vport = hclge_get_vport(handle);
2654 	struct hclge_dev *hdev = vport->back;
2655 	int ret;
2656 
2657 	dev_dbg(&hdev->pdev->dev, "restart autoneg\n");
2658 
2659 	ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
2660 	if (ret)
2661 		return ret;
2662 	return hclge_notify_client(hdev, HNAE3_UP_CLIENT);
2663 }
2664 
2665 static int hclge_halt_autoneg(struct hnae3_handle *handle, bool halt)
2666 {
2667 	struct hclge_vport *vport = hclge_get_vport(handle);
2668 	struct hclge_dev *hdev = vport->back;
2669 
2670 	if (hdev->hw.mac.support_autoneg && hdev->hw.mac.autoneg)
2671 		return hclge_set_autoneg_en(hdev, !halt);
2672 
2673 	return 0;
2674 }
2675 
2676 static void hclge_parse_fec_stats_lanes(struct hclge_dev *hdev,
2677 					struct hclge_desc *desc, u32 desc_len)
2678 {
2679 	u32 lane_size = HCLGE_FEC_STATS_MAX_LANES * 2;
2680 	u32 desc_index = 0;
2681 	u32 data_index = 0;
2682 	u32 i;
2683 
2684 	for (i = 0; i < lane_size; i++) {
2685 		if (data_index >= HCLGE_DESC_DATA_LEN) {
2686 			desc_index++;
2687 			data_index = 0;
2688 		}
2689 
2690 		if (desc_index >= desc_len)
2691 			return;
2692 
2693 		hdev->fec_stats.per_lanes[i] +=
2694 			le32_to_cpu(desc[desc_index].data[data_index]);
2695 		data_index++;
2696 	}
2697 }
2698 
2699 static void hclge_parse_fec_stats(struct hclge_dev *hdev,
2700 				  struct hclge_desc *desc, u32 desc_len)
2701 {
2702 	struct hclge_query_fec_stats_cmd *req;
2703 
2704 	req = (struct hclge_query_fec_stats_cmd *)desc[0].data;
2705 
2706 	hdev->fec_stats.base_r_lane_num = req->base_r_lane_num;
2707 	hdev->fec_stats.rs_corr_blocks +=
2708 		le32_to_cpu(req->rs_fec_corr_blocks);
2709 	hdev->fec_stats.rs_uncorr_blocks +=
2710 		le32_to_cpu(req->rs_fec_uncorr_blocks);
2711 	hdev->fec_stats.rs_error_blocks +=
2712 		le32_to_cpu(req->rs_fec_error_blocks);
2713 	hdev->fec_stats.base_r_corr_blocks +=
2714 		le32_to_cpu(req->base_r_fec_corr_blocks);
2715 	hdev->fec_stats.base_r_uncorr_blocks +=
2716 		le32_to_cpu(req->base_r_fec_uncorr_blocks);
2717 
2718 	hclge_parse_fec_stats_lanes(hdev, &desc[1], desc_len - 1);
2719 }
2720 
2721 static int hclge_update_fec_stats_hw(struct hclge_dev *hdev)
2722 {
2723 	struct hclge_desc desc[HCLGE_FEC_STATS_CMD_NUM];
2724 	int ret;
2725 	u32 i;
2726 
2727 	for (i = 0; i < HCLGE_FEC_STATS_CMD_NUM; i++) {
2728 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_FEC_STATS,
2729 					   true);
2730 		if (i != (HCLGE_FEC_STATS_CMD_NUM - 1))
2731 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2732 	}
2733 
2734 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_FEC_STATS_CMD_NUM);
2735 	if (ret)
2736 		return ret;
2737 
2738 	hclge_parse_fec_stats(hdev, desc, HCLGE_FEC_STATS_CMD_NUM);
2739 
2740 	return 0;
2741 }
2742 
2743 static void hclge_update_fec_stats(struct hclge_dev *hdev)
2744 {
2745 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2746 	int ret;
2747 
2748 	if (!hnae3_ae_dev_fec_stats_supported(ae_dev) ||
2749 	    test_and_set_bit(HCLGE_STATE_FEC_STATS_UPDATING, &hdev->state))
2750 		return;
2751 
2752 	ret = hclge_update_fec_stats_hw(hdev);
2753 	if (ret)
2754 		dev_err(&hdev->pdev->dev,
2755 			"failed to update fec stats, ret = %d\n", ret);
2756 
2757 	clear_bit(HCLGE_STATE_FEC_STATS_UPDATING, &hdev->state);
2758 }
2759 
2760 static void hclge_get_fec_stats_total(struct hclge_dev *hdev,
2761 				      struct ethtool_fec_stats *fec_stats)
2762 {
2763 	fec_stats->corrected_blocks.total = hdev->fec_stats.rs_corr_blocks;
2764 	fec_stats->uncorrectable_blocks.total =
2765 		hdev->fec_stats.rs_uncorr_blocks;
2766 }
2767 
2768 static void hclge_get_fec_stats_lanes(struct hclge_dev *hdev,
2769 				      struct ethtool_fec_stats *fec_stats)
2770 {
2771 	u32 i;
2772 
2773 	if (hdev->fec_stats.base_r_lane_num == 0 ||
2774 	    hdev->fec_stats.base_r_lane_num > HCLGE_FEC_STATS_MAX_LANES) {
2775 		dev_err(&hdev->pdev->dev,
2776 			"fec stats lane number(%llu) is invalid\n",
2777 			hdev->fec_stats.base_r_lane_num);
2778 		return;
2779 	}
2780 
2781 	for (i = 0; i < hdev->fec_stats.base_r_lane_num; i++) {
2782 		fec_stats->corrected_blocks.lanes[i] =
2783 			hdev->fec_stats.base_r_corr_per_lanes[i];
2784 		fec_stats->uncorrectable_blocks.lanes[i] =
2785 			hdev->fec_stats.base_r_uncorr_per_lanes[i];
2786 	}
2787 }
2788 
2789 static void hclge_comm_get_fec_stats(struct hclge_dev *hdev,
2790 				     struct ethtool_fec_stats *fec_stats)
2791 {
2792 	u32 fec_mode = hdev->hw.mac.fec_mode;
2793 
2794 	switch (fec_mode) {
2795 	case BIT(HNAE3_FEC_RS):
2796 	case BIT(HNAE3_FEC_LLRS):
2797 		hclge_get_fec_stats_total(hdev, fec_stats);
2798 		break;
2799 	case BIT(HNAE3_FEC_BASER):
2800 		hclge_get_fec_stats_lanes(hdev, fec_stats);
2801 		break;
2802 	default:
2803 		dev_err(&hdev->pdev->dev,
2804 			"fec stats is not supported by current fec mode(0x%x)\n",
2805 			fec_mode);
2806 		break;
2807 	}
2808 }
2809 
2810 static void hclge_get_fec_stats(struct hnae3_handle *handle,
2811 				struct ethtool_fec_stats *fec_stats)
2812 {
2813 	struct hclge_vport *vport = hclge_get_vport(handle);
2814 	struct hclge_dev *hdev = vport->back;
2815 	u32 fec_mode = hdev->hw.mac.fec_mode;
2816 
2817 	if (fec_mode == BIT(HNAE3_FEC_NONE) ||
2818 	    fec_mode == BIT(HNAE3_FEC_AUTO) ||
2819 	    fec_mode == BIT(HNAE3_FEC_USER_DEF))
2820 		return;
2821 
2822 	hclge_update_fec_stats(hdev);
2823 
2824 	hclge_comm_get_fec_stats(hdev, fec_stats);
2825 }
2826 
2827 static int hclge_set_fec_hw(struct hclge_dev *hdev, u32 fec_mode)
2828 {
2829 	struct hclge_config_fec_cmd *req;
2830 	struct hclge_desc desc;
2831 	int ret;
2832 
2833 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_FEC_MODE, false);
2834 
2835 	req = (struct hclge_config_fec_cmd *)desc.data;
2836 	if (fec_mode & BIT(HNAE3_FEC_AUTO))
2837 		hnae3_set_bit(req->fec_mode, HCLGE_MAC_CFG_FEC_AUTO_EN_B, 1);
2838 	if (fec_mode & BIT(HNAE3_FEC_RS))
2839 		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
2840 				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_RS);
2841 	if (fec_mode & BIT(HNAE3_FEC_LLRS))
2842 		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
2843 				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_LLRS);
2844 	if (fec_mode & BIT(HNAE3_FEC_BASER))
2845 		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
2846 				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_BASER);
2847 
2848 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2849 	if (ret)
2850 		dev_err(&hdev->pdev->dev, "set fec mode failed %d.\n", ret);
2851 
2852 	return ret;
2853 }
2854 
2855 static int hclge_set_fec(struct hnae3_handle *handle, u32 fec_mode)
2856 {
2857 	struct hclge_vport *vport = hclge_get_vport(handle);
2858 	struct hclge_dev *hdev = vport->back;
2859 	struct hclge_mac *mac = &hdev->hw.mac;
2860 	int ret;
2861 
2862 	if (fec_mode && !(mac->fec_ability & fec_mode)) {
2863 		dev_err(&hdev->pdev->dev, "unsupported fec mode\n");
2864 		return -EINVAL;
2865 	}
2866 
2867 	ret = hclge_set_fec_hw(hdev, fec_mode);
2868 	if (ret)
2869 		return ret;
2870 
2871 	mac->user_fec_mode = fec_mode | BIT(HNAE3_FEC_USER_DEF);
2872 	return 0;
2873 }
2874 
2875 static void hclge_get_fec(struct hnae3_handle *handle, u8 *fec_ability,
2876 			  u8 *fec_mode)
2877 {
2878 	struct hclge_vport *vport = hclge_get_vport(handle);
2879 	struct hclge_dev *hdev = vport->back;
2880 	struct hclge_mac *mac = &hdev->hw.mac;
2881 
2882 	if (fec_ability)
2883 		*fec_ability = mac->fec_ability;
2884 	if (fec_mode)
2885 		*fec_mode = mac->fec_mode;
2886 }
2887 
2888 static int hclge_mac_init(struct hclge_dev *hdev)
2889 {
2890 	struct hclge_mac *mac = &hdev->hw.mac;
2891 	int ret;
2892 
2893 	hdev->support_sfp_query = true;
2894 	hdev->hw.mac.duplex = HCLGE_MAC_FULL;
2895 	ret = hclge_cfg_mac_speed_dup_hw(hdev, hdev->hw.mac.speed,
2896 					 hdev->hw.mac.duplex, hdev->hw.mac.lane_num);
2897 	if (ret)
2898 		return ret;
2899 
2900 	if (hdev->hw.mac.support_autoneg) {
2901 		ret = hclge_set_autoneg_en(hdev, hdev->hw.mac.autoneg);
2902 		if (ret)
2903 			return ret;
2904 	}
2905 
2906 	mac->link = 0;
2907 
2908 	if (mac->user_fec_mode & BIT(HNAE3_FEC_USER_DEF)) {
2909 		ret = hclge_set_fec_hw(hdev, mac->user_fec_mode);
2910 		if (ret)
2911 			return ret;
2912 	}
2913 
2914 	ret = hclge_set_mac_mtu(hdev, hdev->mps);
2915 	if (ret) {
2916 		dev_err(&hdev->pdev->dev, "set mtu failed ret=%d\n", ret);
2917 		return ret;
2918 	}
2919 
2920 	ret = hclge_set_default_loopback(hdev);
2921 	if (ret)
2922 		return ret;
2923 
2924 	ret = hclge_buffer_alloc(hdev);
2925 	if (ret)
2926 		dev_err(&hdev->pdev->dev,
2927 			"allocate buffer fail, ret=%d\n", ret);
2928 
2929 	return ret;
2930 }
2931 
2932 static void hclge_mbx_task_schedule(struct hclge_dev *hdev)
2933 {
2934 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
2935 	    !test_and_set_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state)) {
2936 		hdev->last_mbx_scheduled = jiffies;
2937 		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
2938 	}
2939 }
2940 
2941 static void hclge_reset_task_schedule(struct hclge_dev *hdev)
2942 {
2943 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
2944 	    test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state) &&
2945 	    !test_and_set_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state)) {
2946 		hdev->last_rst_scheduled = jiffies;
2947 		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
2948 	}
2949 }
2950 
2951 static void hclge_errhand_task_schedule(struct hclge_dev *hdev)
2952 {
2953 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
2954 	    !test_and_set_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state))
2955 		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
2956 }
2957 
2958 void hclge_task_schedule(struct hclge_dev *hdev, unsigned long delay_time)
2959 {
2960 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
2961 	    !test_bit(HCLGE_STATE_RST_FAIL, &hdev->state))
2962 		mod_delayed_work(hclge_wq, &hdev->service_task, delay_time);
2963 }
2964 
2965 static int hclge_get_mac_link_status(struct hclge_dev *hdev, int *link_status)
2966 {
2967 	struct hclge_link_status_cmd *req;
2968 	struct hclge_desc desc;
2969 	int ret;
2970 
2971 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_STATUS, true);
2972 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2973 	if (ret) {
2974 		dev_err(&hdev->pdev->dev, "get link status cmd failed %d\n",
2975 			ret);
2976 		return ret;
2977 	}
2978 
2979 	req = (struct hclge_link_status_cmd *)desc.data;
2980 	*link_status = (req->status & HCLGE_LINK_STATUS_UP_M) > 0 ?
2981 		HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN;
2982 
2983 	return 0;
2984 }
2985 
2986 static int hclge_get_mac_phy_link(struct hclge_dev *hdev, int *link_status)
2987 {
2988 	struct phy_device *phydev = hdev->hw.mac.phydev;
2989 
2990 	*link_status = HCLGE_LINK_STATUS_DOWN;
2991 
2992 	if (test_bit(HCLGE_STATE_DOWN, &hdev->state))
2993 		return 0;
2994 
2995 	if (phydev && (phydev->state != PHY_RUNNING || !phydev->link))
2996 		return 0;
2997 
2998 	return hclge_get_mac_link_status(hdev, link_status);
2999 }
3000 
3001 static void hclge_push_link_status(struct hclge_dev *hdev)
3002 {
3003 	struct hclge_vport *vport;
3004 	int ret;
3005 	u16 i;
3006 
3007 	for (i = 0; i < pci_num_vf(hdev->pdev); i++) {
3008 		vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM];
3009 
3010 		if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) ||
3011 		    vport->vf_info.link_state != IFLA_VF_LINK_STATE_AUTO)
3012 			continue;
3013 
3014 		ret = hclge_push_vf_link_status(vport);
3015 		if (ret) {
3016 			dev_err(&hdev->pdev->dev,
3017 				"failed to push link status to vf%u, ret = %d\n",
3018 				i, ret);
3019 		}
3020 	}
3021 }
3022 
3023 static void hclge_update_link_status(struct hclge_dev *hdev)
3024 {
3025 	struct hnae3_handle *rhandle = &hdev->vport[0].roce;
3026 	struct hnae3_handle *handle = &hdev->vport[0].nic;
3027 	struct hnae3_client *rclient = hdev->roce_client;
3028 	struct hnae3_client *client = hdev->nic_client;
3029 	int state;
3030 	int ret;
3031 
3032 	if (!client)
3033 		return;
3034 
3035 	if (test_and_set_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state))
3036 		return;
3037 
3038 	ret = hclge_get_mac_phy_link(hdev, &state);
3039 	if (ret) {
3040 		clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state);
3041 		return;
3042 	}
3043 
3044 	if (state != hdev->hw.mac.link) {
3045 		hdev->hw.mac.link = state;
3046 		client->ops->link_status_change(handle, state);
3047 		hclge_config_mac_tnl_int(hdev, state);
3048 		if (rclient && rclient->ops->link_status_change)
3049 			rclient->ops->link_status_change(rhandle, state);
3050 
3051 		hclge_push_link_status(hdev);
3052 	}
3053 
3054 	clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state);
3055 }
3056 
3057 static void hclge_update_speed_advertising(struct hclge_mac *mac)
3058 {
3059 	u32 speed_ability;
3060 
3061 	if (hclge_get_speed_bit(mac->speed, &speed_ability))
3062 		return;
3063 
3064 	switch (mac->module_type) {
3065 	case HNAE3_MODULE_TYPE_FIBRE_LR:
3066 		hclge_convert_setting_lr(speed_ability, mac->advertising);
3067 		break;
3068 	case HNAE3_MODULE_TYPE_FIBRE_SR:
3069 	case HNAE3_MODULE_TYPE_AOC:
3070 		hclge_convert_setting_sr(speed_ability, mac->advertising);
3071 		break;
3072 	case HNAE3_MODULE_TYPE_CR:
3073 		hclge_convert_setting_cr(speed_ability, mac->advertising);
3074 		break;
3075 	case HNAE3_MODULE_TYPE_KR:
3076 		hclge_convert_setting_kr(speed_ability, mac->advertising);
3077 		break;
3078 	default:
3079 		break;
3080 	}
3081 }
3082 
3083 static void hclge_update_fec_advertising(struct hclge_mac *mac)
3084 {
3085 	if (mac->fec_mode & BIT(HNAE3_FEC_RS))
3086 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT,
3087 				 mac->advertising);
3088 	else if (mac->fec_mode & BIT(HNAE3_FEC_LLRS))
3089 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT,
3090 				 mac->advertising);
3091 	else if (mac->fec_mode & BIT(HNAE3_FEC_BASER))
3092 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT,
3093 				 mac->advertising);
3094 	else
3095 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT,
3096 				 mac->advertising);
3097 }
3098 
3099 static void hclge_update_pause_advertising(struct hclge_dev *hdev)
3100 {
3101 	struct hclge_mac *mac = &hdev->hw.mac;
3102 	bool rx_en, tx_en;
3103 
3104 	switch (hdev->fc_mode_last_time) {
3105 	case HCLGE_FC_RX_PAUSE:
3106 		rx_en = true;
3107 		tx_en = false;
3108 		break;
3109 	case HCLGE_FC_TX_PAUSE:
3110 		rx_en = false;
3111 		tx_en = true;
3112 		break;
3113 	case HCLGE_FC_FULL:
3114 		rx_en = true;
3115 		tx_en = true;
3116 		break;
3117 	default:
3118 		rx_en = false;
3119 		tx_en = false;
3120 		break;
3121 	}
3122 
3123 	linkmode_set_pause(mac->advertising, tx_en, rx_en);
3124 }
3125 
3126 static void hclge_update_advertising(struct hclge_dev *hdev)
3127 {
3128 	struct hclge_mac *mac = &hdev->hw.mac;
3129 
3130 	linkmode_zero(mac->advertising);
3131 	hclge_update_speed_advertising(mac);
3132 	hclge_update_fec_advertising(mac);
3133 	hclge_update_pause_advertising(hdev);
3134 }
3135 
3136 static void hclge_update_port_capability(struct hclge_dev *hdev,
3137 					 struct hclge_mac *mac)
3138 {
3139 	if (hnae3_dev_fec_supported(hdev))
3140 		hclge_convert_setting_fec(mac);
3141 
3142 	/* firmware can not identify back plane type, the media type
3143 	 * read from configuration can help deal it
3144 	 */
3145 	if (mac->media_type == HNAE3_MEDIA_TYPE_BACKPLANE &&
3146 	    mac->module_type == HNAE3_MODULE_TYPE_UNKNOWN)
3147 		mac->module_type = HNAE3_MODULE_TYPE_KR;
3148 	else if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER)
3149 		mac->module_type = HNAE3_MODULE_TYPE_TP;
3150 
3151 	if (mac->support_autoneg) {
3152 		linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mac->supported);
3153 		linkmode_copy(mac->advertising, mac->supported);
3154 	} else {
3155 		linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3156 				   mac->supported);
3157 		hclge_update_advertising(hdev);
3158 	}
3159 }
3160 
3161 static int hclge_get_sfp_speed(struct hclge_dev *hdev, u32 *speed)
3162 {
3163 	struct hclge_sfp_info_cmd *resp;
3164 	struct hclge_desc desc;
3165 	int ret;
3166 
3167 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true);
3168 	resp = (struct hclge_sfp_info_cmd *)desc.data;
3169 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3170 	if (ret == -EOPNOTSUPP) {
3171 		dev_warn(&hdev->pdev->dev,
3172 			 "IMP do not support get SFP speed %d\n", ret);
3173 		return ret;
3174 	} else if (ret) {
3175 		dev_err(&hdev->pdev->dev, "get sfp speed failed %d\n", ret);
3176 		return ret;
3177 	}
3178 
3179 	*speed = le32_to_cpu(resp->speed);
3180 
3181 	return 0;
3182 }
3183 
3184 static int hclge_get_sfp_info(struct hclge_dev *hdev, struct hclge_mac *mac)
3185 {
3186 	struct hclge_sfp_info_cmd *resp;
3187 	struct hclge_desc desc;
3188 	int ret;
3189 
3190 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true);
3191 	resp = (struct hclge_sfp_info_cmd *)desc.data;
3192 
3193 	resp->query_type = QUERY_ACTIVE_SPEED;
3194 
3195 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3196 	if (ret == -EOPNOTSUPP) {
3197 		dev_warn(&hdev->pdev->dev,
3198 			 "IMP does not support get SFP info %d\n", ret);
3199 		return ret;
3200 	} else if (ret) {
3201 		dev_err(&hdev->pdev->dev, "get sfp info failed %d\n", ret);
3202 		return ret;
3203 	}
3204 
3205 	/* In some case, mac speed get from IMP may be 0, it shouldn't be
3206 	 * set to mac->speed.
3207 	 */
3208 	if (!le32_to_cpu(resp->speed))
3209 		return 0;
3210 
3211 	mac->speed = le32_to_cpu(resp->speed);
3212 	/* if resp->speed_ability is 0, it means it's an old version
3213 	 * firmware, do not update these params
3214 	 */
3215 	if (resp->speed_ability) {
3216 		mac->module_type = le32_to_cpu(resp->module_type);
3217 		mac->speed_ability = le32_to_cpu(resp->speed_ability);
3218 		mac->autoneg = resp->autoneg;
3219 		mac->support_autoneg = resp->autoneg_ability;
3220 		mac->speed_type = QUERY_ACTIVE_SPEED;
3221 		mac->lane_num = resp->lane_num;
3222 		if (!resp->active_fec)
3223 			mac->fec_mode = 0;
3224 		else
3225 			mac->fec_mode = BIT(resp->active_fec);
3226 		mac->fec_ability = resp->fec_ability;
3227 	} else {
3228 		mac->speed_type = QUERY_SFP_SPEED;
3229 	}
3230 
3231 	return 0;
3232 }
3233 
3234 static int hclge_get_phy_link_ksettings(struct hnae3_handle *handle,
3235 					struct ethtool_link_ksettings *cmd)
3236 {
3237 	struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM];
3238 	struct hclge_vport *vport = hclge_get_vport(handle);
3239 	struct hclge_phy_link_ksetting_0_cmd *req0;
3240 	struct hclge_phy_link_ksetting_1_cmd *req1;
3241 	u32 supported, advertising, lp_advertising;
3242 	struct hclge_dev *hdev = vport->back;
3243 	int ret;
3244 
3245 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING,
3246 				   true);
3247 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
3248 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING,
3249 				   true);
3250 
3251 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM);
3252 	if (ret) {
3253 		dev_err(&hdev->pdev->dev,
3254 			"failed to get phy link ksetting, ret = %d.\n", ret);
3255 		return ret;
3256 	}
3257 
3258 	req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data;
3259 	cmd->base.autoneg = req0->autoneg;
3260 	cmd->base.speed = le32_to_cpu(req0->speed);
3261 	cmd->base.duplex = req0->duplex;
3262 	cmd->base.port = req0->port;
3263 	cmd->base.transceiver = req0->transceiver;
3264 	cmd->base.phy_address = req0->phy_address;
3265 	cmd->base.eth_tp_mdix = req0->eth_tp_mdix;
3266 	cmd->base.eth_tp_mdix_ctrl = req0->eth_tp_mdix_ctrl;
3267 	supported = le32_to_cpu(req0->supported);
3268 	advertising = le32_to_cpu(req0->advertising);
3269 	lp_advertising = le32_to_cpu(req0->lp_advertising);
3270 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3271 						supported);
3272 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3273 						advertising);
3274 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
3275 						lp_advertising);
3276 
3277 	req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data;
3278 	cmd->base.master_slave_cfg = req1->master_slave_cfg;
3279 	cmd->base.master_slave_state = req1->master_slave_state;
3280 
3281 	return 0;
3282 }
3283 
3284 static int
3285 hclge_set_phy_link_ksettings(struct hnae3_handle *handle,
3286 			     const struct ethtool_link_ksettings *cmd)
3287 {
3288 	struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM];
3289 	struct hclge_vport *vport = hclge_get_vport(handle);
3290 	struct hclge_phy_link_ksetting_0_cmd *req0;
3291 	struct hclge_phy_link_ksetting_1_cmd *req1;
3292 	struct hclge_dev *hdev = vport->back;
3293 	u32 advertising;
3294 	int ret;
3295 
3296 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
3297 	    ((cmd->base.speed != SPEED_100 && cmd->base.speed != SPEED_10) ||
3298 	     (cmd->base.duplex != DUPLEX_HALF &&
3299 	      cmd->base.duplex != DUPLEX_FULL)))
3300 		return -EINVAL;
3301 
3302 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING,
3303 				   false);
3304 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
3305 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING,
3306 				   false);
3307 
3308 	req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data;
3309 	req0->autoneg = cmd->base.autoneg;
3310 	req0->speed = cpu_to_le32(cmd->base.speed);
3311 	req0->duplex = cmd->base.duplex;
3312 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
3313 						cmd->link_modes.advertising);
3314 	req0->advertising = cpu_to_le32(advertising);
3315 	req0->eth_tp_mdix_ctrl = cmd->base.eth_tp_mdix_ctrl;
3316 
3317 	req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data;
3318 	req1->master_slave_cfg = cmd->base.master_slave_cfg;
3319 
3320 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM);
3321 	if (ret) {
3322 		dev_err(&hdev->pdev->dev,
3323 			"failed to set phy link ksettings, ret = %d.\n", ret);
3324 		return ret;
3325 	}
3326 
3327 	hdev->hw.mac.autoneg = cmd->base.autoneg;
3328 	hdev->hw.mac.speed = cmd->base.speed;
3329 	hdev->hw.mac.duplex = cmd->base.duplex;
3330 	linkmode_copy(hdev->hw.mac.advertising, cmd->link_modes.advertising);
3331 
3332 	return 0;
3333 }
3334 
3335 static int hclge_update_tp_port_info(struct hclge_dev *hdev)
3336 {
3337 	struct ethtool_link_ksettings cmd;
3338 	int ret;
3339 
3340 	if (!hnae3_dev_phy_imp_supported(hdev))
3341 		return 0;
3342 
3343 	ret = hclge_get_phy_link_ksettings(&hdev->vport->nic, &cmd);
3344 	if (ret)
3345 		return ret;
3346 
3347 	hdev->hw.mac.autoneg = cmd.base.autoneg;
3348 	hdev->hw.mac.speed = cmd.base.speed;
3349 	hdev->hw.mac.duplex = cmd.base.duplex;
3350 	linkmode_copy(hdev->hw.mac.advertising, cmd.link_modes.advertising);
3351 
3352 	return 0;
3353 }
3354 
3355 static int hclge_tp_port_init(struct hclge_dev *hdev)
3356 {
3357 	struct ethtool_link_ksettings cmd;
3358 
3359 	if (!hnae3_dev_phy_imp_supported(hdev))
3360 		return 0;
3361 
3362 	cmd.base.autoneg = hdev->hw.mac.autoneg;
3363 	cmd.base.speed = hdev->hw.mac.speed;
3364 	cmd.base.duplex = hdev->hw.mac.duplex;
3365 	linkmode_copy(cmd.link_modes.advertising, hdev->hw.mac.advertising);
3366 
3367 	return hclge_set_phy_link_ksettings(&hdev->vport->nic, &cmd);
3368 }
3369 
3370 static int hclge_update_port_info(struct hclge_dev *hdev)
3371 {
3372 	struct hclge_mac *mac = &hdev->hw.mac;
3373 	int speed;
3374 	int ret;
3375 
3376 	/* get the port info from SFP cmd if not copper port */
3377 	if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER)
3378 		return hclge_update_tp_port_info(hdev);
3379 
3380 	/* if IMP does not support get SFP/qSFP info, return directly */
3381 	if (!hdev->support_sfp_query)
3382 		return 0;
3383 
3384 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3385 		speed = mac->speed;
3386 		ret = hclge_get_sfp_info(hdev, mac);
3387 	} else {
3388 		speed = HCLGE_MAC_SPEED_UNKNOWN;
3389 		ret = hclge_get_sfp_speed(hdev, &speed);
3390 	}
3391 
3392 	if (ret == -EOPNOTSUPP) {
3393 		hdev->support_sfp_query = false;
3394 		return ret;
3395 	} else if (ret) {
3396 		return ret;
3397 	}
3398 
3399 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3400 		if (mac->speed_type == QUERY_ACTIVE_SPEED) {
3401 			hclge_update_port_capability(hdev, mac);
3402 			if (mac->speed != speed)
3403 				(void)hclge_tm_port_shaper_cfg(hdev);
3404 			return 0;
3405 		}
3406 		return hclge_cfg_mac_speed_dup(hdev, mac->speed,
3407 					       HCLGE_MAC_FULL, mac->lane_num);
3408 	} else {
3409 		if (speed == HCLGE_MAC_SPEED_UNKNOWN)
3410 			return 0; /* do nothing if no SFP */
3411 
3412 		/* must config full duplex for SFP */
3413 		return hclge_cfg_mac_speed_dup(hdev, speed, HCLGE_MAC_FULL, 0);
3414 	}
3415 }
3416 
3417 static int hclge_get_status(struct hnae3_handle *handle)
3418 {
3419 	struct hclge_vport *vport = hclge_get_vport(handle);
3420 	struct hclge_dev *hdev = vport->back;
3421 
3422 	hclge_update_link_status(hdev);
3423 
3424 	return hdev->hw.mac.link;
3425 }
3426 
3427 static struct hclge_vport *hclge_get_vf_vport(struct hclge_dev *hdev, int vf)
3428 {
3429 	if (!pci_num_vf(hdev->pdev)) {
3430 		dev_err(&hdev->pdev->dev,
3431 			"SRIOV is disabled, can not get vport(%d) info.\n", vf);
3432 		return NULL;
3433 	}
3434 
3435 	if (vf < 0 || vf >= pci_num_vf(hdev->pdev)) {
3436 		dev_err(&hdev->pdev->dev,
3437 			"vf id(%d) is out of range(0 <= vfid < %d)\n",
3438 			vf, pci_num_vf(hdev->pdev));
3439 		return NULL;
3440 	}
3441 
3442 	/* VF start from 1 in vport */
3443 	vf += HCLGE_VF_VPORT_START_NUM;
3444 	return &hdev->vport[vf];
3445 }
3446 
3447 static int hclge_get_vf_config(struct hnae3_handle *handle, int vf,
3448 			       struct ifla_vf_info *ivf)
3449 {
3450 	struct hclge_vport *vport = hclge_get_vport(handle);
3451 	struct hclge_dev *hdev = vport->back;
3452 
3453 	vport = hclge_get_vf_vport(hdev, vf);
3454 	if (!vport)
3455 		return -EINVAL;
3456 
3457 	ivf->vf = vf;
3458 	ivf->linkstate = vport->vf_info.link_state;
3459 	ivf->spoofchk = vport->vf_info.spoofchk;
3460 	ivf->trusted = vport->vf_info.trusted;
3461 	ivf->min_tx_rate = 0;
3462 	ivf->max_tx_rate = vport->vf_info.max_tx_rate;
3463 	ivf->vlan = vport->port_base_vlan_cfg.vlan_info.vlan_tag;
3464 	ivf->vlan_proto = htons(vport->port_base_vlan_cfg.vlan_info.vlan_proto);
3465 	ivf->qos = vport->port_base_vlan_cfg.vlan_info.qos;
3466 	ether_addr_copy(ivf->mac, vport->vf_info.mac);
3467 
3468 	return 0;
3469 }
3470 
3471 static int hclge_set_vf_link_state(struct hnae3_handle *handle, int vf,
3472 				   int link_state)
3473 {
3474 	struct hclge_vport *vport = hclge_get_vport(handle);
3475 	struct hclge_dev *hdev = vport->back;
3476 	int link_state_old;
3477 	int ret;
3478 
3479 	vport = hclge_get_vf_vport(hdev, vf);
3480 	if (!vport)
3481 		return -EINVAL;
3482 
3483 	link_state_old = vport->vf_info.link_state;
3484 	vport->vf_info.link_state = link_state;
3485 
3486 	/* return success directly if the VF is unalive, VF will
3487 	 * query link state itself when it starts work.
3488 	 */
3489 	if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
3490 		return 0;
3491 
3492 	ret = hclge_push_vf_link_status(vport);
3493 	if (ret) {
3494 		vport->vf_info.link_state = link_state_old;
3495 		dev_err(&hdev->pdev->dev,
3496 			"failed to push vf%d link status, ret = %d\n", vf, ret);
3497 	}
3498 
3499 	return ret;
3500 }
3501 
3502 static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval)
3503 {
3504 	u32 cmdq_src_reg, msix_src_reg, hw_err_src_reg;
3505 
3506 	/* fetch the events from their corresponding regs */
3507 	cmdq_src_reg = hclge_read_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG);
3508 	msix_src_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS);
3509 	hw_err_src_reg = hclge_read_dev(&hdev->hw,
3510 					HCLGE_RAS_PF_OTHER_INT_STS_REG);
3511 
3512 	/* Assumption: If by any chance reset and mailbox events are reported
3513 	 * together then we will only process reset event in this go and will
3514 	 * defer the processing of the mailbox events. Since, we would have not
3515 	 * cleared RX CMDQ event this time we would receive again another
3516 	 * interrupt from H/W just for the mailbox.
3517 	 *
3518 	 * check for vector0 reset event sources
3519 	 */
3520 	if (BIT(HCLGE_VECTOR0_IMPRESET_INT_B) & msix_src_reg) {
3521 		dev_info(&hdev->pdev->dev, "IMP reset interrupt\n");
3522 		set_bit(HNAE3_IMP_RESET, &hdev->reset_pending);
3523 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3524 		*clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
3525 		hdev->rst_stats.imp_rst_cnt++;
3526 		return HCLGE_VECTOR0_EVENT_RST;
3527 	}
3528 
3529 	if (BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) & msix_src_reg) {
3530 		dev_info(&hdev->pdev->dev, "global reset interrupt\n");
3531 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3532 		set_bit(HNAE3_GLOBAL_RESET, &hdev->reset_pending);
3533 		*clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
3534 		hdev->rst_stats.global_rst_cnt++;
3535 		return HCLGE_VECTOR0_EVENT_RST;
3536 	}
3537 
3538 	/* check for vector0 msix event and hardware error event source */
3539 	if (msix_src_reg & HCLGE_VECTOR0_REG_MSIX_MASK ||
3540 	    hw_err_src_reg & HCLGE_RAS_REG_ERR_MASK)
3541 		return HCLGE_VECTOR0_EVENT_ERR;
3542 
3543 	/* check for vector0 ptp event source */
3544 	if (BIT(HCLGE_VECTOR0_REG_PTP_INT_B) & msix_src_reg) {
3545 		*clearval = msix_src_reg;
3546 		return HCLGE_VECTOR0_EVENT_PTP;
3547 	}
3548 
3549 	/* check for vector0 mailbox(=CMDQ RX) event source */
3550 	if (BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
3551 		cmdq_src_reg &= ~BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B);
3552 		*clearval = cmdq_src_reg;
3553 		return HCLGE_VECTOR0_EVENT_MBX;
3554 	}
3555 
3556 	/* print other vector0 event source */
3557 	dev_info(&hdev->pdev->dev,
3558 		 "INT status: CMDQ(%#x) HW errors(%#x) other(%#x)\n",
3559 		 cmdq_src_reg, hw_err_src_reg, msix_src_reg);
3560 
3561 	return HCLGE_VECTOR0_EVENT_OTHER;
3562 }
3563 
3564 static void hclge_clear_event_cause(struct hclge_dev *hdev, u32 event_type,
3565 				    u32 regclr)
3566 {
3567 #define HCLGE_IMP_RESET_DELAY		5
3568 
3569 	switch (event_type) {
3570 	case HCLGE_VECTOR0_EVENT_PTP:
3571 	case HCLGE_VECTOR0_EVENT_RST:
3572 		if (regclr == BIT(HCLGE_VECTOR0_IMPRESET_INT_B))
3573 			mdelay(HCLGE_IMP_RESET_DELAY);
3574 
3575 		hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, regclr);
3576 		break;
3577 	case HCLGE_VECTOR0_EVENT_MBX:
3578 		hclge_write_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG, regclr);
3579 		break;
3580 	default:
3581 		break;
3582 	}
3583 }
3584 
3585 static void hclge_clear_all_event_cause(struct hclge_dev *hdev)
3586 {
3587 	hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_RST,
3588 				BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) |
3589 				BIT(HCLGE_VECTOR0_CORERESET_INT_B) |
3590 				BIT(HCLGE_VECTOR0_IMPRESET_INT_B));
3591 	hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_MBX, 0);
3592 }
3593 
3594 static void hclge_enable_vector(struct hclge_misc_vector *vector, bool enable)
3595 {
3596 	writel(enable ? 1 : 0, vector->addr);
3597 }
3598 
3599 static irqreturn_t hclge_misc_irq_handle(int irq, void *data)
3600 {
3601 	struct hclge_dev *hdev = data;
3602 	unsigned long flags;
3603 	u32 clearval = 0;
3604 	u32 event_cause;
3605 
3606 	hclge_enable_vector(&hdev->misc_vector, false);
3607 	event_cause = hclge_check_event_cause(hdev, &clearval);
3608 
3609 	/* vector 0 interrupt is shared with reset and mailbox source events. */
3610 	switch (event_cause) {
3611 	case HCLGE_VECTOR0_EVENT_ERR:
3612 		hclge_errhand_task_schedule(hdev);
3613 		break;
3614 	case HCLGE_VECTOR0_EVENT_RST:
3615 		hclge_reset_task_schedule(hdev);
3616 		break;
3617 	case HCLGE_VECTOR0_EVENT_PTP:
3618 		spin_lock_irqsave(&hdev->ptp->lock, flags);
3619 		hclge_ptp_clean_tx_hwts(hdev);
3620 		spin_unlock_irqrestore(&hdev->ptp->lock, flags);
3621 		break;
3622 	case HCLGE_VECTOR0_EVENT_MBX:
3623 		/* If we are here then,
3624 		 * 1. Either we are not handling any mbx task and we are not
3625 		 *    scheduled as well
3626 		 *                        OR
3627 		 * 2. We could be handling a mbx task but nothing more is
3628 		 *    scheduled.
3629 		 * In both cases, we should schedule mbx task as there are more
3630 		 * mbx messages reported by this interrupt.
3631 		 */
3632 		hclge_mbx_task_schedule(hdev);
3633 		break;
3634 	default:
3635 		dev_warn(&hdev->pdev->dev,
3636 			 "received unknown or unhandled event of vector0\n");
3637 		break;
3638 	}
3639 
3640 	hclge_clear_event_cause(hdev, event_cause, clearval);
3641 
3642 	/* Enable interrupt if it is not caused by reset event or error event */
3643 	if (event_cause == HCLGE_VECTOR0_EVENT_PTP ||
3644 	    event_cause == HCLGE_VECTOR0_EVENT_MBX ||
3645 	    event_cause == HCLGE_VECTOR0_EVENT_OTHER)
3646 		hclge_enable_vector(&hdev->misc_vector, true);
3647 
3648 	return IRQ_HANDLED;
3649 }
3650 
3651 static void hclge_free_vector(struct hclge_dev *hdev, int vector_id)
3652 {
3653 	if (hdev->vector_status[vector_id] == HCLGE_INVALID_VPORT) {
3654 		dev_warn(&hdev->pdev->dev,
3655 			 "vector(vector_id %d) has been freed.\n", vector_id);
3656 		return;
3657 	}
3658 
3659 	hdev->vector_status[vector_id] = HCLGE_INVALID_VPORT;
3660 	hdev->num_msi_left += 1;
3661 	hdev->num_msi_used -= 1;
3662 }
3663 
3664 static void hclge_get_misc_vector(struct hclge_dev *hdev)
3665 {
3666 	struct hclge_misc_vector *vector = &hdev->misc_vector;
3667 
3668 	vector->vector_irq = pci_irq_vector(hdev->pdev, 0);
3669 
3670 	vector->addr = hdev->hw.hw.io_base + HCLGE_MISC_VECTOR_REG_BASE;
3671 	hdev->vector_status[0] = 0;
3672 
3673 	hdev->num_msi_left -= 1;
3674 	hdev->num_msi_used += 1;
3675 }
3676 
3677 static int hclge_misc_irq_init(struct hclge_dev *hdev)
3678 {
3679 	int ret;
3680 
3681 	hclge_get_misc_vector(hdev);
3682 
3683 	/* this would be explicitly freed in the end */
3684 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
3685 		 HCLGE_NAME, pci_name(hdev->pdev));
3686 	ret = request_irq(hdev->misc_vector.vector_irq, hclge_misc_irq_handle,
3687 			  0, hdev->misc_vector.name, hdev);
3688 	if (ret) {
3689 		hclge_free_vector(hdev, 0);
3690 		dev_err(&hdev->pdev->dev, "request misc irq(%d) fail\n",
3691 			hdev->misc_vector.vector_irq);
3692 	}
3693 
3694 	return ret;
3695 }
3696 
3697 static void hclge_misc_irq_uninit(struct hclge_dev *hdev)
3698 {
3699 	free_irq(hdev->misc_vector.vector_irq, hdev);
3700 	hclge_free_vector(hdev, 0);
3701 }
3702 
3703 int hclge_notify_client(struct hclge_dev *hdev,
3704 			enum hnae3_reset_notify_type type)
3705 {
3706 	struct hnae3_handle *handle = &hdev->vport[0].nic;
3707 	struct hnae3_client *client = hdev->nic_client;
3708 	int ret;
3709 
3710 	if (!test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state) || !client)
3711 		return 0;
3712 
3713 	if (!client->ops->reset_notify)
3714 		return -EOPNOTSUPP;
3715 
3716 	ret = client->ops->reset_notify(handle, type);
3717 	if (ret)
3718 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
3719 			type, ret);
3720 
3721 	return ret;
3722 }
3723 
3724 static int hclge_notify_roce_client(struct hclge_dev *hdev,
3725 				    enum hnae3_reset_notify_type type)
3726 {
3727 	struct hnae3_handle *handle = &hdev->vport[0].roce;
3728 	struct hnae3_client *client = hdev->roce_client;
3729 	int ret;
3730 
3731 	if (!test_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state) || !client)
3732 		return 0;
3733 
3734 	if (!client->ops->reset_notify)
3735 		return -EOPNOTSUPP;
3736 
3737 	ret = client->ops->reset_notify(handle, type);
3738 	if (ret)
3739 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
3740 			type, ret);
3741 
3742 	return ret;
3743 }
3744 
3745 static int hclge_reset_wait(struct hclge_dev *hdev)
3746 {
3747 #define HCLGE_RESET_WATI_MS	100
3748 #define HCLGE_RESET_WAIT_CNT	350
3749 
3750 	u32 val, reg, reg_bit;
3751 	u32 cnt = 0;
3752 
3753 	switch (hdev->reset_type) {
3754 	case HNAE3_IMP_RESET:
3755 		reg = HCLGE_GLOBAL_RESET_REG;
3756 		reg_bit = HCLGE_IMP_RESET_BIT;
3757 		break;
3758 	case HNAE3_GLOBAL_RESET:
3759 		reg = HCLGE_GLOBAL_RESET_REG;
3760 		reg_bit = HCLGE_GLOBAL_RESET_BIT;
3761 		break;
3762 	case HNAE3_FUNC_RESET:
3763 		reg = HCLGE_FUN_RST_ING;
3764 		reg_bit = HCLGE_FUN_RST_ING_B;
3765 		break;
3766 	default:
3767 		dev_err(&hdev->pdev->dev,
3768 			"Wait for unsupported reset type: %d\n",
3769 			hdev->reset_type);
3770 		return -EINVAL;
3771 	}
3772 
3773 	val = hclge_read_dev(&hdev->hw, reg);
3774 	while (hnae3_get_bit(val, reg_bit) && cnt < HCLGE_RESET_WAIT_CNT) {
3775 		msleep(HCLGE_RESET_WATI_MS);
3776 		val = hclge_read_dev(&hdev->hw, reg);
3777 		cnt++;
3778 	}
3779 
3780 	if (cnt >= HCLGE_RESET_WAIT_CNT) {
3781 		dev_warn(&hdev->pdev->dev,
3782 			 "Wait for reset timeout: %d\n", hdev->reset_type);
3783 		return -EBUSY;
3784 	}
3785 
3786 	return 0;
3787 }
3788 
3789 static int hclge_set_vf_rst(struct hclge_dev *hdev, int func_id, bool reset)
3790 {
3791 	struct hclge_vf_rst_cmd *req;
3792 	struct hclge_desc desc;
3793 
3794 	req = (struct hclge_vf_rst_cmd *)desc.data;
3795 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GBL_RST_STATUS, false);
3796 	req->dest_vfid = func_id;
3797 
3798 	if (reset)
3799 		req->vf_rst = 0x1;
3800 
3801 	return hclge_cmd_send(&hdev->hw, &desc, 1);
3802 }
3803 
3804 static int hclge_set_all_vf_rst(struct hclge_dev *hdev, bool reset)
3805 {
3806 	int i;
3807 
3808 	for (i = HCLGE_VF_VPORT_START_NUM; i < hdev->num_alloc_vport; i++) {
3809 		struct hclge_vport *vport = &hdev->vport[i];
3810 		int ret;
3811 
3812 		/* Send cmd to set/clear VF's FUNC_RST_ING */
3813 		ret = hclge_set_vf_rst(hdev, vport->vport_id, reset);
3814 		if (ret) {
3815 			dev_err(&hdev->pdev->dev,
3816 				"set vf(%u) rst failed %d!\n",
3817 				vport->vport_id - HCLGE_VF_VPORT_START_NUM,
3818 				ret);
3819 			return ret;
3820 		}
3821 
3822 		if (!reset ||
3823 		    !test_bit(HCLGE_VPORT_STATE_INITED, &vport->state))
3824 			continue;
3825 
3826 		if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) &&
3827 		    hdev->reset_type == HNAE3_FUNC_RESET) {
3828 			set_bit(HCLGE_VPORT_NEED_NOTIFY_RESET,
3829 				&vport->need_notify);
3830 			continue;
3831 		}
3832 
3833 		/* Inform VF to process the reset.
3834 		 * hclge_inform_reset_assert_to_vf may fail if VF
3835 		 * driver is not loaded.
3836 		 */
3837 		ret = hclge_inform_reset_assert_to_vf(vport);
3838 		if (ret)
3839 			dev_warn(&hdev->pdev->dev,
3840 				 "inform reset to vf(%u) failed %d!\n",
3841 				 vport->vport_id - HCLGE_VF_VPORT_START_NUM,
3842 				 ret);
3843 	}
3844 
3845 	return 0;
3846 }
3847 
3848 static void hclge_mailbox_service_task(struct hclge_dev *hdev)
3849 {
3850 	if (!test_and_clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state) ||
3851 	    test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state) ||
3852 	    test_and_set_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state))
3853 		return;
3854 
3855 	if (time_is_before_jiffies(hdev->last_mbx_scheduled +
3856 				   HCLGE_MBX_SCHED_TIMEOUT))
3857 		dev_warn(&hdev->pdev->dev,
3858 			 "mbx service task is scheduled after %ums on cpu%u!\n",
3859 			 jiffies_to_msecs(jiffies - hdev->last_mbx_scheduled),
3860 			 smp_processor_id());
3861 
3862 	hclge_mbx_handler(hdev);
3863 
3864 	clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state);
3865 }
3866 
3867 static void hclge_func_reset_sync_vf(struct hclge_dev *hdev)
3868 {
3869 	struct hclge_pf_rst_sync_cmd *req;
3870 	struct hclge_desc desc;
3871 	int cnt = 0;
3872 	int ret;
3873 
3874 	req = (struct hclge_pf_rst_sync_cmd *)desc.data;
3875 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RST_RDY, true);
3876 
3877 	do {
3878 		/* vf need to down netdev by mbx during PF or FLR reset */
3879 		hclge_mailbox_service_task(hdev);
3880 
3881 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3882 		/* for compatible with old firmware, wait
3883 		 * 100 ms for VF to stop IO
3884 		 */
3885 		if (ret == -EOPNOTSUPP) {
3886 			msleep(HCLGE_RESET_SYNC_TIME);
3887 			return;
3888 		} else if (ret) {
3889 			dev_warn(&hdev->pdev->dev, "sync with VF fail %d!\n",
3890 				 ret);
3891 			return;
3892 		} else if (req->all_vf_ready) {
3893 			return;
3894 		}
3895 		msleep(HCLGE_PF_RESET_SYNC_TIME);
3896 		hclge_comm_cmd_reuse_desc(&desc, true);
3897 	} while (cnt++ < HCLGE_PF_RESET_SYNC_CNT);
3898 
3899 	dev_warn(&hdev->pdev->dev, "sync with VF timeout!\n");
3900 }
3901 
3902 void hclge_report_hw_error(struct hclge_dev *hdev,
3903 			   enum hnae3_hw_error_type type)
3904 {
3905 	struct hnae3_client *client = hdev->nic_client;
3906 
3907 	if (!client || !client->ops->process_hw_error ||
3908 	    !test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state))
3909 		return;
3910 
3911 	client->ops->process_hw_error(&hdev->vport[0].nic, type);
3912 }
3913 
3914 static void hclge_handle_imp_error(struct hclge_dev *hdev)
3915 {
3916 	u32 reg_val;
3917 
3918 	reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
3919 	if (reg_val & BIT(HCLGE_VECTOR0_IMP_RD_POISON_B)) {
3920 		hclge_report_hw_error(hdev, HNAE3_IMP_RD_POISON_ERROR);
3921 		reg_val &= ~BIT(HCLGE_VECTOR0_IMP_RD_POISON_B);
3922 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
3923 	}
3924 
3925 	if (reg_val & BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B)) {
3926 		hclge_report_hw_error(hdev, HNAE3_CMDQ_ECC_ERROR);
3927 		reg_val &= ~BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B);
3928 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
3929 	}
3930 }
3931 
3932 int hclge_func_reset_cmd(struct hclge_dev *hdev, int func_id)
3933 {
3934 	struct hclge_desc desc;
3935 	struct hclge_reset_cmd *req = (struct hclge_reset_cmd *)desc.data;
3936 	int ret;
3937 
3938 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false);
3939 	hnae3_set_bit(req->mac_func_reset, HCLGE_CFG_RESET_FUNC_B, 1);
3940 	req->fun_reset_vfid = func_id;
3941 
3942 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3943 	if (ret)
3944 		dev_err(&hdev->pdev->dev,
3945 			"send function reset cmd fail, status =%d\n", ret);
3946 
3947 	return ret;
3948 }
3949 
3950 static void hclge_do_reset(struct hclge_dev *hdev)
3951 {
3952 	struct hnae3_handle *handle = &hdev->vport[0].nic;
3953 	struct pci_dev *pdev = hdev->pdev;
3954 	u32 val;
3955 
3956 	if (hclge_get_hw_reset_stat(handle)) {
3957 		dev_info(&pdev->dev, "hardware reset not finish\n");
3958 		dev_info(&pdev->dev, "func_rst_reg:0x%x, global_rst_reg:0x%x\n",
3959 			 hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING),
3960 			 hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG));
3961 		return;
3962 	}
3963 
3964 	switch (hdev->reset_type) {
3965 	case HNAE3_IMP_RESET:
3966 		dev_info(&pdev->dev, "IMP reset requested\n");
3967 		val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
3968 		hnae3_set_bit(val, HCLGE_TRIGGER_IMP_RESET_B, 1);
3969 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, val);
3970 		break;
3971 	case HNAE3_GLOBAL_RESET:
3972 		dev_info(&pdev->dev, "global reset requested\n");
3973 		val = hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG);
3974 		hnae3_set_bit(val, HCLGE_GLOBAL_RESET_BIT, 1);
3975 		hclge_write_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG, val);
3976 		break;
3977 	case HNAE3_FUNC_RESET:
3978 		dev_info(&pdev->dev, "PF reset requested\n");
3979 		/* schedule again to check later */
3980 		set_bit(HNAE3_FUNC_RESET, &hdev->reset_pending);
3981 		hclge_reset_task_schedule(hdev);
3982 		break;
3983 	default:
3984 		dev_warn(&pdev->dev,
3985 			 "unsupported reset type: %d\n", hdev->reset_type);
3986 		break;
3987 	}
3988 }
3989 
3990 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
3991 						   unsigned long *addr)
3992 {
3993 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
3994 	struct hclge_dev *hdev = ae_dev->priv;
3995 
3996 	/* return the highest priority reset level amongst all */
3997 	if (test_bit(HNAE3_IMP_RESET, addr)) {
3998 		rst_level = HNAE3_IMP_RESET;
3999 		clear_bit(HNAE3_IMP_RESET, addr);
4000 		clear_bit(HNAE3_GLOBAL_RESET, addr);
4001 		clear_bit(HNAE3_FUNC_RESET, addr);
4002 	} else if (test_bit(HNAE3_GLOBAL_RESET, addr)) {
4003 		rst_level = HNAE3_GLOBAL_RESET;
4004 		clear_bit(HNAE3_GLOBAL_RESET, addr);
4005 		clear_bit(HNAE3_FUNC_RESET, addr);
4006 	} else if (test_bit(HNAE3_FUNC_RESET, addr)) {
4007 		rst_level = HNAE3_FUNC_RESET;
4008 		clear_bit(HNAE3_FUNC_RESET, addr);
4009 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
4010 		rst_level = HNAE3_FLR_RESET;
4011 		clear_bit(HNAE3_FLR_RESET, addr);
4012 	}
4013 
4014 	if (hdev->reset_type != HNAE3_NONE_RESET &&
4015 	    rst_level < hdev->reset_type)
4016 		return HNAE3_NONE_RESET;
4017 
4018 	return rst_level;
4019 }
4020 
4021 static void hclge_clear_reset_cause(struct hclge_dev *hdev)
4022 {
4023 	u32 clearval = 0;
4024 
4025 	switch (hdev->reset_type) {
4026 	case HNAE3_IMP_RESET:
4027 		clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
4028 		break;
4029 	case HNAE3_GLOBAL_RESET:
4030 		clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
4031 		break;
4032 	default:
4033 		break;
4034 	}
4035 
4036 	if (!clearval)
4037 		return;
4038 
4039 	/* For revision 0x20, the reset interrupt source
4040 	 * can only be cleared after hardware reset done
4041 	 */
4042 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
4043 		hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG,
4044 				clearval);
4045 
4046 	hclge_enable_vector(&hdev->misc_vector, true);
4047 }
4048 
4049 static void hclge_reset_handshake(struct hclge_dev *hdev, bool enable)
4050 {
4051 	u32 reg_val;
4052 
4053 	reg_val = hclge_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
4054 	if (enable)
4055 		reg_val |= HCLGE_COMM_NIC_SW_RST_RDY;
4056 	else
4057 		reg_val &= ~HCLGE_COMM_NIC_SW_RST_RDY;
4058 
4059 	hclge_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, reg_val);
4060 }
4061 
4062 static int hclge_func_reset_notify_vf(struct hclge_dev *hdev)
4063 {
4064 	int ret;
4065 
4066 	ret = hclge_set_all_vf_rst(hdev, true);
4067 	if (ret)
4068 		return ret;
4069 
4070 	hclge_func_reset_sync_vf(hdev);
4071 
4072 	return 0;
4073 }
4074 
4075 static int hclge_reset_prepare_wait(struct hclge_dev *hdev)
4076 {
4077 	u32 reg_val;
4078 	int ret = 0;
4079 
4080 	switch (hdev->reset_type) {
4081 	case HNAE3_FUNC_RESET:
4082 		ret = hclge_func_reset_notify_vf(hdev);
4083 		if (ret)
4084 			return ret;
4085 
4086 		ret = hclge_func_reset_cmd(hdev, 0);
4087 		if (ret) {
4088 			dev_err(&hdev->pdev->dev,
4089 				"asserting function reset fail %d!\n", ret);
4090 			return ret;
4091 		}
4092 
4093 		/* After performaning pf reset, it is not necessary to do the
4094 		 * mailbox handling or send any command to firmware, because
4095 		 * any mailbox handling or command to firmware is only valid
4096 		 * after hclge_comm_cmd_init is called.
4097 		 */
4098 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
4099 		hdev->rst_stats.pf_rst_cnt++;
4100 		break;
4101 	case HNAE3_FLR_RESET:
4102 		ret = hclge_func_reset_notify_vf(hdev);
4103 		if (ret)
4104 			return ret;
4105 		break;
4106 	case HNAE3_IMP_RESET:
4107 		hclge_handle_imp_error(hdev);
4108 		reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
4109 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG,
4110 				BIT(HCLGE_VECTOR0_IMP_RESET_INT_B) | reg_val);
4111 		break;
4112 	default:
4113 		break;
4114 	}
4115 
4116 	/* inform hardware that preparatory work is done */
4117 	msleep(HCLGE_RESET_SYNC_TIME);
4118 	hclge_reset_handshake(hdev, true);
4119 	dev_info(&hdev->pdev->dev, "prepare wait ok\n");
4120 
4121 	return ret;
4122 }
4123 
4124 static void hclge_show_rst_info(struct hclge_dev *hdev)
4125 {
4126 	char *buf;
4127 
4128 	buf = kzalloc(HCLGE_DBG_RESET_INFO_LEN, GFP_KERNEL);
4129 	if (!buf)
4130 		return;
4131 
4132 	hclge_dbg_dump_rst_info(hdev, buf, HCLGE_DBG_RESET_INFO_LEN);
4133 
4134 	dev_info(&hdev->pdev->dev, "dump reset info:\n%s", buf);
4135 
4136 	kfree(buf);
4137 }
4138 
4139 static bool hclge_reset_err_handle(struct hclge_dev *hdev)
4140 {
4141 #define MAX_RESET_FAIL_CNT 5
4142 
4143 	if (hdev->reset_pending) {
4144 		dev_info(&hdev->pdev->dev, "Reset pending %lu\n",
4145 			 hdev->reset_pending);
4146 		return true;
4147 	} else if (hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS) &
4148 		   HCLGE_RESET_INT_M) {
4149 		dev_info(&hdev->pdev->dev,
4150 			 "reset failed because new reset interrupt\n");
4151 		hclge_clear_reset_cause(hdev);
4152 		return false;
4153 	} else if (hdev->rst_stats.reset_fail_cnt < MAX_RESET_FAIL_CNT) {
4154 		hdev->rst_stats.reset_fail_cnt++;
4155 		set_bit(hdev->reset_type, &hdev->reset_pending);
4156 		dev_info(&hdev->pdev->dev,
4157 			 "re-schedule reset task(%u)\n",
4158 			 hdev->rst_stats.reset_fail_cnt);
4159 		return true;
4160 	}
4161 
4162 	hclge_clear_reset_cause(hdev);
4163 
4164 	/* recover the handshake status when reset fail */
4165 	hclge_reset_handshake(hdev, true);
4166 
4167 	dev_err(&hdev->pdev->dev, "Reset fail!\n");
4168 
4169 	hclge_show_rst_info(hdev);
4170 
4171 	set_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
4172 
4173 	return false;
4174 }
4175 
4176 static void hclge_update_reset_level(struct hclge_dev *hdev)
4177 {
4178 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4179 	enum hnae3_reset_type reset_level;
4180 
4181 	/* reset request will not be set during reset, so clear
4182 	 * pending reset request to avoid unnecessary reset
4183 	 * caused by the same reason.
4184 	 */
4185 	hclge_get_reset_level(ae_dev, &hdev->reset_request);
4186 
4187 	/* if default_reset_request has a higher level reset request,
4188 	 * it should be handled as soon as possible. since some errors
4189 	 * need this kind of reset to fix.
4190 	 */
4191 	reset_level = hclge_get_reset_level(ae_dev,
4192 					    &hdev->default_reset_request);
4193 	if (reset_level != HNAE3_NONE_RESET)
4194 		set_bit(reset_level, &hdev->reset_request);
4195 }
4196 
4197 static int hclge_set_rst_done(struct hclge_dev *hdev)
4198 {
4199 	struct hclge_pf_rst_done_cmd *req;
4200 	struct hclge_desc desc;
4201 	int ret;
4202 
4203 	req = (struct hclge_pf_rst_done_cmd *)desc.data;
4204 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PF_RST_DONE, false);
4205 	req->pf_rst_done |= HCLGE_PF_RESET_DONE_BIT;
4206 
4207 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
4208 	/* To be compatible with the old firmware, which does not support
4209 	 * command HCLGE_OPC_PF_RST_DONE, just print a warning and
4210 	 * return success
4211 	 */
4212 	if (ret == -EOPNOTSUPP) {
4213 		dev_warn(&hdev->pdev->dev,
4214 			 "current firmware does not support command(0x%x)!\n",
4215 			 HCLGE_OPC_PF_RST_DONE);
4216 		return 0;
4217 	} else if (ret) {
4218 		dev_err(&hdev->pdev->dev, "assert PF reset done fail %d!\n",
4219 			ret);
4220 	}
4221 
4222 	return ret;
4223 }
4224 
4225 static int hclge_reset_prepare_up(struct hclge_dev *hdev)
4226 {
4227 	int ret = 0;
4228 
4229 	switch (hdev->reset_type) {
4230 	case HNAE3_FUNC_RESET:
4231 	case HNAE3_FLR_RESET:
4232 		ret = hclge_set_all_vf_rst(hdev, false);
4233 		break;
4234 	case HNAE3_GLOBAL_RESET:
4235 	case HNAE3_IMP_RESET:
4236 		ret = hclge_set_rst_done(hdev);
4237 		break;
4238 	default:
4239 		break;
4240 	}
4241 
4242 	/* clear up the handshake status after re-initialize done */
4243 	hclge_reset_handshake(hdev, false);
4244 
4245 	return ret;
4246 }
4247 
4248 static int hclge_reset_stack(struct hclge_dev *hdev)
4249 {
4250 	int ret;
4251 
4252 	ret = hclge_notify_client(hdev, HNAE3_UNINIT_CLIENT);
4253 	if (ret)
4254 		return ret;
4255 
4256 	ret = hclge_reset_ae_dev(hdev->ae_dev);
4257 	if (ret)
4258 		return ret;
4259 
4260 	return hclge_notify_client(hdev, HNAE3_INIT_CLIENT);
4261 }
4262 
4263 static int hclge_reset_prepare(struct hclge_dev *hdev)
4264 {
4265 	int ret;
4266 
4267 	hdev->rst_stats.reset_cnt++;
4268 	/* perform reset of the stack & ae device for a client */
4269 	ret = hclge_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
4270 	if (ret)
4271 		return ret;
4272 
4273 	rtnl_lock();
4274 	ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
4275 	rtnl_unlock();
4276 	if (ret)
4277 		return ret;
4278 
4279 	return hclge_reset_prepare_wait(hdev);
4280 }
4281 
4282 static int hclge_reset_rebuild(struct hclge_dev *hdev)
4283 {
4284 	int ret;
4285 
4286 	hdev->rst_stats.hw_reset_done_cnt++;
4287 
4288 	ret = hclge_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
4289 	if (ret)
4290 		return ret;
4291 
4292 	rtnl_lock();
4293 	ret = hclge_reset_stack(hdev);
4294 	rtnl_unlock();
4295 	if (ret)
4296 		return ret;
4297 
4298 	hclge_clear_reset_cause(hdev);
4299 
4300 	ret = hclge_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
4301 	/* ignore RoCE notify error if it fails HCLGE_RESET_MAX_FAIL_CNT - 1
4302 	 * times
4303 	 */
4304 	if (ret &&
4305 	    hdev->rst_stats.reset_fail_cnt < HCLGE_RESET_MAX_FAIL_CNT - 1)
4306 		return ret;
4307 
4308 	ret = hclge_reset_prepare_up(hdev);
4309 	if (ret)
4310 		return ret;
4311 
4312 	rtnl_lock();
4313 	ret = hclge_notify_client(hdev, HNAE3_UP_CLIENT);
4314 	rtnl_unlock();
4315 	if (ret)
4316 		return ret;
4317 
4318 	ret = hclge_notify_roce_client(hdev, HNAE3_UP_CLIENT);
4319 	if (ret)
4320 		return ret;
4321 
4322 	hdev->last_reset_time = jiffies;
4323 	hdev->rst_stats.reset_fail_cnt = 0;
4324 	hdev->rst_stats.reset_done_cnt++;
4325 	clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
4326 
4327 	hclge_update_reset_level(hdev);
4328 
4329 	return 0;
4330 }
4331 
4332 static void hclge_reset(struct hclge_dev *hdev)
4333 {
4334 	if (hclge_reset_prepare(hdev))
4335 		goto err_reset;
4336 
4337 	if (hclge_reset_wait(hdev))
4338 		goto err_reset;
4339 
4340 	if (hclge_reset_rebuild(hdev))
4341 		goto err_reset;
4342 
4343 	return;
4344 
4345 err_reset:
4346 	if (hclge_reset_err_handle(hdev))
4347 		hclge_reset_task_schedule(hdev);
4348 }
4349 
4350 static void hclge_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle)
4351 {
4352 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4353 	struct hclge_dev *hdev = ae_dev->priv;
4354 
4355 	/* We might end up getting called broadly because of 2 below cases:
4356 	 * 1. Recoverable error was conveyed through APEI and only way to bring
4357 	 *    normalcy is to reset.
4358 	 * 2. A new reset request from the stack due to timeout
4359 	 *
4360 	 * check if this is a new reset request and we are not here just because
4361 	 * last reset attempt did not succeed and watchdog hit us again. We will
4362 	 * know this if last reset request did not occur very recently (watchdog
4363 	 * timer = 5*HZ, let us check after sufficiently large time, say 4*5*Hz)
4364 	 * In case of new request we reset the "reset level" to PF reset.
4365 	 * And if it is a repeat reset request of the most recent one then we
4366 	 * want to make sure we throttle the reset request. Therefore, we will
4367 	 * not allow it again before 3*HZ times.
4368 	 */
4369 
4370 	if (time_before(jiffies, (hdev->last_reset_time +
4371 				  HCLGE_RESET_INTERVAL))) {
4372 		mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL);
4373 		return;
4374 	}
4375 
4376 	if (hdev->default_reset_request) {
4377 		hdev->reset_level =
4378 			hclge_get_reset_level(ae_dev,
4379 					      &hdev->default_reset_request);
4380 	} else if (time_after(jiffies, (hdev->last_reset_time + 4 * 5 * HZ))) {
4381 		hdev->reset_level = HNAE3_FUNC_RESET;
4382 	}
4383 
4384 	dev_info(&hdev->pdev->dev, "received reset event, reset type is %d\n",
4385 		 hdev->reset_level);
4386 
4387 	/* request reset & schedule reset task */
4388 	set_bit(hdev->reset_level, &hdev->reset_request);
4389 	hclge_reset_task_schedule(hdev);
4390 
4391 	if (hdev->reset_level < HNAE3_GLOBAL_RESET)
4392 		hdev->reset_level++;
4393 }
4394 
4395 static void hclge_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
4396 					enum hnae3_reset_type rst_type)
4397 {
4398 	struct hclge_dev *hdev = ae_dev->priv;
4399 
4400 	set_bit(rst_type, &hdev->default_reset_request);
4401 }
4402 
4403 static void hclge_reset_timer(struct timer_list *t)
4404 {
4405 	struct hclge_dev *hdev = from_timer(hdev, t, reset_timer);
4406 
4407 	/* if default_reset_request has no value, it means that this reset
4408 	 * request has already be handled, so just return here
4409 	 */
4410 	if (!hdev->default_reset_request)
4411 		return;
4412 
4413 	dev_info(&hdev->pdev->dev,
4414 		 "triggering reset in reset timer\n");
4415 	hclge_reset_event(hdev->pdev, NULL);
4416 }
4417 
4418 static void hclge_reset_subtask(struct hclge_dev *hdev)
4419 {
4420 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4421 
4422 	/* check if there is any ongoing reset in the hardware. This status can
4423 	 * be checked from reset_pending. If there is then, we need to wait for
4424 	 * hardware to complete reset.
4425 	 *    a. If we are able to figure out in reasonable time that hardware
4426 	 *       has fully resetted then, we can proceed with driver, client
4427 	 *       reset.
4428 	 *    b. else, we can come back later to check this status so re-sched
4429 	 *       now.
4430 	 */
4431 	hdev->last_reset_time = jiffies;
4432 	hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_pending);
4433 	if (hdev->reset_type != HNAE3_NONE_RESET)
4434 		hclge_reset(hdev);
4435 
4436 	/* check if we got any *new* reset requests to be honored */
4437 	hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_request);
4438 	if (hdev->reset_type != HNAE3_NONE_RESET)
4439 		hclge_do_reset(hdev);
4440 
4441 	hdev->reset_type = HNAE3_NONE_RESET;
4442 }
4443 
4444 static void hclge_handle_err_reset_request(struct hclge_dev *hdev)
4445 {
4446 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4447 	enum hnae3_reset_type reset_type;
4448 
4449 	if (ae_dev->hw_err_reset_req) {
4450 		reset_type = hclge_get_reset_level(ae_dev,
4451 						   &ae_dev->hw_err_reset_req);
4452 		hclge_set_def_reset_request(ae_dev, reset_type);
4453 	}
4454 
4455 	if (hdev->default_reset_request && ae_dev->ops->reset_event)
4456 		ae_dev->ops->reset_event(hdev->pdev, NULL);
4457 
4458 	/* enable interrupt after error handling complete */
4459 	hclge_enable_vector(&hdev->misc_vector, true);
4460 }
4461 
4462 static void hclge_handle_err_recovery(struct hclge_dev *hdev)
4463 {
4464 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4465 
4466 	ae_dev->hw_err_reset_req = 0;
4467 
4468 	if (hclge_find_error_source(hdev)) {
4469 		hclge_handle_error_info_log(ae_dev);
4470 		hclge_handle_mac_tnl(hdev);
4471 	}
4472 
4473 	hclge_handle_err_reset_request(hdev);
4474 }
4475 
4476 static void hclge_misc_err_recovery(struct hclge_dev *hdev)
4477 {
4478 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4479 	struct device *dev = &hdev->pdev->dev;
4480 	u32 msix_sts_reg;
4481 
4482 	msix_sts_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS);
4483 	if (msix_sts_reg & HCLGE_VECTOR0_REG_MSIX_MASK) {
4484 		if (hclge_handle_hw_msix_error
4485 				(hdev, &hdev->default_reset_request))
4486 			dev_info(dev, "received msix interrupt 0x%x\n",
4487 				 msix_sts_reg);
4488 	}
4489 
4490 	hclge_handle_hw_ras_error(ae_dev);
4491 
4492 	hclge_handle_err_reset_request(hdev);
4493 }
4494 
4495 static void hclge_errhand_service_task(struct hclge_dev *hdev)
4496 {
4497 	if (!test_and_clear_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state))
4498 		return;
4499 
4500 	if (hnae3_dev_ras_imp_supported(hdev))
4501 		hclge_handle_err_recovery(hdev);
4502 	else
4503 		hclge_misc_err_recovery(hdev);
4504 }
4505 
4506 static void hclge_reset_service_task(struct hclge_dev *hdev)
4507 {
4508 	if (!test_and_clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state))
4509 		return;
4510 
4511 	if (time_is_before_jiffies(hdev->last_rst_scheduled +
4512 				   HCLGE_RESET_SCHED_TIMEOUT))
4513 		dev_warn(&hdev->pdev->dev,
4514 			 "reset service task is scheduled after %ums on cpu%u!\n",
4515 			 jiffies_to_msecs(jiffies - hdev->last_rst_scheduled),
4516 			 smp_processor_id());
4517 
4518 	down(&hdev->reset_sem);
4519 	set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
4520 
4521 	hclge_reset_subtask(hdev);
4522 
4523 	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
4524 	up(&hdev->reset_sem);
4525 }
4526 
4527 static void hclge_update_vport_alive(struct hclge_dev *hdev)
4528 {
4529 #define HCLGE_ALIVE_SECONDS_NORMAL		8
4530 
4531 	unsigned long alive_time = HCLGE_ALIVE_SECONDS_NORMAL * HZ;
4532 	int i;
4533 
4534 	/* start from vport 1 for PF is always alive */
4535 	for (i = 1; i < hdev->num_alloc_vport; i++) {
4536 		struct hclge_vport *vport = &hdev->vport[i];
4537 
4538 		if (!test_bit(HCLGE_VPORT_STATE_INITED, &vport->state) ||
4539 		    !test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
4540 			continue;
4541 		if (time_after(jiffies, vport->last_active_jiffies +
4542 			       alive_time)) {
4543 			clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
4544 			dev_warn(&hdev->pdev->dev,
4545 				 "VF %u heartbeat timeout\n",
4546 				 i - HCLGE_VF_VPORT_START_NUM);
4547 		}
4548 	}
4549 }
4550 
4551 static void hclge_periodic_service_task(struct hclge_dev *hdev)
4552 {
4553 	unsigned long delta = round_jiffies_relative(HZ);
4554 
4555 	if (test_bit(HCLGE_STATE_RST_FAIL, &hdev->state))
4556 		return;
4557 
4558 	/* Always handle the link updating to make sure link state is
4559 	 * updated when it is triggered by mbx.
4560 	 */
4561 	hclge_update_link_status(hdev);
4562 	hclge_sync_mac_table(hdev);
4563 	hclge_sync_promisc_mode(hdev);
4564 	hclge_sync_fd_table(hdev);
4565 
4566 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
4567 		delta = jiffies - hdev->last_serv_processed;
4568 
4569 		if (delta < round_jiffies_relative(HZ)) {
4570 			delta = round_jiffies_relative(HZ) - delta;
4571 			goto out;
4572 		}
4573 	}
4574 
4575 	hdev->serv_processed_cnt++;
4576 	hclge_update_vport_alive(hdev);
4577 
4578 	if (test_bit(HCLGE_STATE_DOWN, &hdev->state)) {
4579 		hdev->last_serv_processed = jiffies;
4580 		goto out;
4581 	}
4582 
4583 	if (!(hdev->serv_processed_cnt % HCLGE_STATS_TIMER_INTERVAL))
4584 		hclge_update_stats_for_all(hdev);
4585 
4586 	hclge_update_port_info(hdev);
4587 	hclge_sync_vlan_filter(hdev);
4588 
4589 	if (!(hdev->serv_processed_cnt % HCLGE_ARFS_EXPIRE_INTERVAL))
4590 		hclge_rfs_filter_expire(hdev);
4591 
4592 	hdev->last_serv_processed = jiffies;
4593 
4594 out:
4595 	hclge_task_schedule(hdev, delta);
4596 }
4597 
4598 static void hclge_ptp_service_task(struct hclge_dev *hdev)
4599 {
4600 	unsigned long flags;
4601 
4602 	if (!test_bit(HCLGE_STATE_PTP_EN, &hdev->state) ||
4603 	    !test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state) ||
4604 	    !time_is_before_jiffies(hdev->ptp->tx_start + HZ))
4605 		return;
4606 
4607 	/* to prevent concurrence with the irq handler */
4608 	spin_lock_irqsave(&hdev->ptp->lock, flags);
4609 
4610 	/* check HCLGE_STATE_PTP_TX_HANDLING here again, since the irq
4611 	 * handler may handle it just before spin_lock_irqsave().
4612 	 */
4613 	if (test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state))
4614 		hclge_ptp_clean_tx_hwts(hdev);
4615 
4616 	spin_unlock_irqrestore(&hdev->ptp->lock, flags);
4617 }
4618 
4619 static void hclge_service_task(struct work_struct *work)
4620 {
4621 	struct hclge_dev *hdev =
4622 		container_of(work, struct hclge_dev, service_task.work);
4623 
4624 	hclge_errhand_service_task(hdev);
4625 	hclge_reset_service_task(hdev);
4626 	hclge_ptp_service_task(hdev);
4627 	hclge_mailbox_service_task(hdev);
4628 	hclge_periodic_service_task(hdev);
4629 
4630 	/* Handle error recovery, reset and mbx again in case periodical task
4631 	 * delays the handling by calling hclge_task_schedule() in
4632 	 * hclge_periodic_service_task().
4633 	 */
4634 	hclge_errhand_service_task(hdev);
4635 	hclge_reset_service_task(hdev);
4636 	hclge_mailbox_service_task(hdev);
4637 }
4638 
4639 struct hclge_vport *hclge_get_vport(struct hnae3_handle *handle)
4640 {
4641 	/* VF handle has no client */
4642 	if (!handle->client)
4643 		return container_of(handle, struct hclge_vport, nic);
4644 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
4645 		return container_of(handle, struct hclge_vport, roce);
4646 	else
4647 		return container_of(handle, struct hclge_vport, nic);
4648 }
4649 
4650 static void hclge_get_vector_info(struct hclge_dev *hdev, u16 idx,
4651 				  struct hnae3_vector_info *vector_info)
4652 {
4653 #define HCLGE_PF_MAX_VECTOR_NUM_DEV_V2	64
4654 
4655 	vector_info->vector = pci_irq_vector(hdev->pdev, idx);
4656 
4657 	/* need an extend offset to config vector >= 64 */
4658 	if (idx - 1 < HCLGE_PF_MAX_VECTOR_NUM_DEV_V2)
4659 		vector_info->io_addr = hdev->hw.hw.io_base +
4660 				HCLGE_VECTOR_REG_BASE +
4661 				(idx - 1) * HCLGE_VECTOR_REG_OFFSET;
4662 	else
4663 		vector_info->io_addr = hdev->hw.hw.io_base +
4664 				HCLGE_VECTOR_EXT_REG_BASE +
4665 				(idx - 1) / HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 *
4666 				HCLGE_VECTOR_REG_OFFSET_H +
4667 				(idx - 1) % HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 *
4668 				HCLGE_VECTOR_REG_OFFSET;
4669 
4670 	hdev->vector_status[idx] = hdev->vport[0].vport_id;
4671 	hdev->vector_irq[idx] = vector_info->vector;
4672 }
4673 
4674 static int hclge_get_vector(struct hnae3_handle *handle, u16 vector_num,
4675 			    struct hnae3_vector_info *vector_info)
4676 {
4677 	struct hclge_vport *vport = hclge_get_vport(handle);
4678 	struct hnae3_vector_info *vector = vector_info;
4679 	struct hclge_dev *hdev = vport->back;
4680 	int alloc = 0;
4681 	u16 i = 0;
4682 	u16 j;
4683 
4684 	vector_num = min_t(u16, hdev->num_nic_msi - 1, vector_num);
4685 	vector_num = min(hdev->num_msi_left, vector_num);
4686 
4687 	for (j = 0; j < vector_num; j++) {
4688 		while (++i < hdev->num_nic_msi) {
4689 			if (hdev->vector_status[i] == HCLGE_INVALID_VPORT) {
4690 				hclge_get_vector_info(hdev, i, vector);
4691 				vector++;
4692 				alloc++;
4693 
4694 				break;
4695 			}
4696 		}
4697 	}
4698 	hdev->num_msi_left -= alloc;
4699 	hdev->num_msi_used += alloc;
4700 
4701 	return alloc;
4702 }
4703 
4704 static int hclge_get_vector_index(struct hclge_dev *hdev, int vector)
4705 {
4706 	int i;
4707 
4708 	for (i = 0; i < hdev->num_msi; i++)
4709 		if (vector == hdev->vector_irq[i])
4710 			return i;
4711 
4712 	return -EINVAL;
4713 }
4714 
4715 static int hclge_put_vector(struct hnae3_handle *handle, int vector)
4716 {
4717 	struct hclge_vport *vport = hclge_get_vport(handle);
4718 	struct hclge_dev *hdev = vport->back;
4719 	int vector_id;
4720 
4721 	vector_id = hclge_get_vector_index(hdev, vector);
4722 	if (vector_id < 0) {
4723 		dev_err(&hdev->pdev->dev,
4724 			"Get vector index fail. vector = %d\n", vector);
4725 		return vector_id;
4726 	}
4727 
4728 	hclge_free_vector(hdev, vector_id);
4729 
4730 	return 0;
4731 }
4732 
4733 static int hclge_get_rss(struct hnae3_handle *handle, u32 *indir,
4734 			 u8 *key, u8 *hfunc)
4735 {
4736 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4737 	struct hclge_vport *vport = hclge_get_vport(handle);
4738 	struct hclge_comm_rss_cfg *rss_cfg = &vport->back->rss_cfg;
4739 
4740 	hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
4741 
4742 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
4743 				     ae_dev->dev_specs.rss_ind_tbl_size);
4744 
4745 	return 0;
4746 }
4747 
4748 static int hclge_set_rss(struct hnae3_handle *handle, const u32 *indir,
4749 			 const  u8 *key, const  u8 hfunc)
4750 {
4751 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4752 	struct hclge_vport *vport = hclge_get_vport(handle);
4753 	struct hclge_dev *hdev = vport->back;
4754 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
4755 	int ret, i;
4756 
4757 	ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, hfunc);
4758 	if (ret) {
4759 		dev_err(&hdev->pdev->dev, "invalid hfunc type %u\n", hfunc);
4760 		return ret;
4761 	}
4762 
4763 	/* Update the shadow RSS table with user specified qids */
4764 	for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++)
4765 		rss_cfg->rss_indirection_tbl[i] = indir[i];
4766 
4767 	/* Update the hardware */
4768 	return hclge_comm_set_rss_indir_table(ae_dev, &hdev->hw.hw,
4769 					      rss_cfg->rss_indirection_tbl);
4770 }
4771 
4772 static int hclge_set_rss_tuple(struct hnae3_handle *handle,
4773 			       struct ethtool_rxnfc *nfc)
4774 {
4775 	struct hclge_vport *vport = hclge_get_vport(handle);
4776 	struct hclge_dev *hdev = vport->back;
4777 	int ret;
4778 
4779 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
4780 				       &hdev->rss_cfg, nfc);
4781 	if (ret) {
4782 		dev_err(&hdev->pdev->dev,
4783 			"failed to set rss tuple, ret = %d.\n", ret);
4784 		return ret;
4785 	}
4786 
4787 	return 0;
4788 }
4789 
4790 static int hclge_get_rss_tuple(struct hnae3_handle *handle,
4791 			       struct ethtool_rxnfc *nfc)
4792 {
4793 	struct hclge_vport *vport = hclge_get_vport(handle);
4794 	u8 tuple_sets;
4795 	int ret;
4796 
4797 	nfc->data = 0;
4798 
4799 	ret = hclge_comm_get_rss_tuple(&vport->back->rss_cfg, nfc->flow_type,
4800 				       &tuple_sets);
4801 	if (ret || !tuple_sets)
4802 		return ret;
4803 
4804 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
4805 
4806 	return 0;
4807 }
4808 
4809 static int hclge_get_tc_size(struct hnae3_handle *handle)
4810 {
4811 	struct hclge_vport *vport = hclge_get_vport(handle);
4812 	struct hclge_dev *hdev = vport->back;
4813 
4814 	return hdev->pf_rss_size_max;
4815 }
4816 
4817 static int hclge_init_rss_tc_mode(struct hclge_dev *hdev)
4818 {
4819 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
4820 	struct hclge_vport *vport = hdev->vport;
4821 	u16 tc_offset[HCLGE_MAX_TC_NUM] = {0};
4822 	u16 tc_valid[HCLGE_MAX_TC_NUM] = {0};
4823 	u16 tc_size[HCLGE_MAX_TC_NUM] = {0};
4824 	struct hnae3_tc_info *tc_info;
4825 	u16 roundup_size;
4826 	u16 rss_size;
4827 	int i;
4828 
4829 	tc_info = &vport->nic.kinfo.tc_info;
4830 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
4831 		rss_size = tc_info->tqp_count[i];
4832 		tc_valid[i] = 0;
4833 
4834 		if (!(hdev->hw_tc_map & BIT(i)))
4835 			continue;
4836 
4837 		/* tc_size set to hardware is the log2 of roundup power of two
4838 		 * of rss_size, the acutal queue size is limited by indirection
4839 		 * table.
4840 		 */
4841 		if (rss_size > ae_dev->dev_specs.rss_ind_tbl_size ||
4842 		    rss_size == 0) {
4843 			dev_err(&hdev->pdev->dev,
4844 				"Configure rss tc size failed, invalid TC_SIZE = %u\n",
4845 				rss_size);
4846 			return -EINVAL;
4847 		}
4848 
4849 		roundup_size = roundup_pow_of_two(rss_size);
4850 		roundup_size = ilog2(roundup_size);
4851 
4852 		tc_valid[i] = 1;
4853 		tc_size[i] = roundup_size;
4854 		tc_offset[i] = tc_info->tqp_offset[i];
4855 	}
4856 
4857 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid,
4858 					  tc_size);
4859 }
4860 
4861 int hclge_rss_init_hw(struct hclge_dev *hdev)
4862 {
4863 	u16 *rss_indir = hdev->rss_cfg.rss_indirection_tbl;
4864 	u8 *key = hdev->rss_cfg.rss_hash_key;
4865 	u8 hfunc = hdev->rss_cfg.rss_algo;
4866 	int ret;
4867 
4868 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
4869 					     rss_indir);
4870 	if (ret)
4871 		return ret;
4872 
4873 	ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, hfunc, key);
4874 	if (ret)
4875 		return ret;
4876 
4877 	ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, &hdev->rss_cfg);
4878 	if (ret)
4879 		return ret;
4880 
4881 	return hclge_init_rss_tc_mode(hdev);
4882 }
4883 
4884 int hclge_bind_ring_with_vector(struct hclge_vport *vport,
4885 				int vector_id, bool en,
4886 				struct hnae3_ring_chain_node *ring_chain)
4887 {
4888 	struct hclge_dev *hdev = vport->back;
4889 	struct hnae3_ring_chain_node *node;
4890 	struct hclge_desc desc;
4891 	struct hclge_ctrl_vector_chain_cmd *req =
4892 		(struct hclge_ctrl_vector_chain_cmd *)desc.data;
4893 	enum hclge_comm_cmd_status status;
4894 	enum hclge_opcode_type op;
4895 	u16 tqp_type_and_id;
4896 	int i;
4897 
4898 	op = en ? HCLGE_OPC_ADD_RING_TO_VECTOR : HCLGE_OPC_DEL_RING_TO_VECTOR;
4899 	hclge_cmd_setup_basic_desc(&desc, op, false);
4900 	req->int_vector_id_l = hnae3_get_field(vector_id,
4901 					       HCLGE_VECTOR_ID_L_M,
4902 					       HCLGE_VECTOR_ID_L_S);
4903 	req->int_vector_id_h = hnae3_get_field(vector_id,
4904 					       HCLGE_VECTOR_ID_H_M,
4905 					       HCLGE_VECTOR_ID_H_S);
4906 
4907 	i = 0;
4908 	for (node = ring_chain; node; node = node->next) {
4909 		tqp_type_and_id = le16_to_cpu(req->tqp_type_and_id[i]);
4910 		hnae3_set_field(tqp_type_and_id,  HCLGE_INT_TYPE_M,
4911 				HCLGE_INT_TYPE_S,
4912 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B));
4913 		hnae3_set_field(tqp_type_and_id, HCLGE_TQP_ID_M,
4914 				HCLGE_TQP_ID_S, node->tqp_index);
4915 		hnae3_set_field(tqp_type_and_id, HCLGE_INT_GL_IDX_M,
4916 				HCLGE_INT_GL_IDX_S,
4917 				hnae3_get_field(node->int_gl_idx,
4918 						HNAE3_RING_GL_IDX_M,
4919 						HNAE3_RING_GL_IDX_S));
4920 		req->tqp_type_and_id[i] = cpu_to_le16(tqp_type_and_id);
4921 		if (++i >= HCLGE_VECTOR_ELEMENTS_PER_CMD) {
4922 			req->int_cause_num = HCLGE_VECTOR_ELEMENTS_PER_CMD;
4923 			req->vfid = vport->vport_id;
4924 
4925 			status = hclge_cmd_send(&hdev->hw, &desc, 1);
4926 			if (status) {
4927 				dev_err(&hdev->pdev->dev,
4928 					"Map TQP fail, status is %d.\n",
4929 					status);
4930 				return -EIO;
4931 			}
4932 			i = 0;
4933 
4934 			hclge_cmd_setup_basic_desc(&desc,
4935 						   op,
4936 						   false);
4937 			req->int_vector_id_l =
4938 				hnae3_get_field(vector_id,
4939 						HCLGE_VECTOR_ID_L_M,
4940 						HCLGE_VECTOR_ID_L_S);
4941 			req->int_vector_id_h =
4942 				hnae3_get_field(vector_id,
4943 						HCLGE_VECTOR_ID_H_M,
4944 						HCLGE_VECTOR_ID_H_S);
4945 		}
4946 	}
4947 
4948 	if (i > 0) {
4949 		req->int_cause_num = i;
4950 		req->vfid = vport->vport_id;
4951 		status = hclge_cmd_send(&hdev->hw, &desc, 1);
4952 		if (status) {
4953 			dev_err(&hdev->pdev->dev,
4954 				"Map TQP fail, status is %d.\n", status);
4955 			return -EIO;
4956 		}
4957 	}
4958 
4959 	return 0;
4960 }
4961 
4962 static int hclge_map_ring_to_vector(struct hnae3_handle *handle, int vector,
4963 				    struct hnae3_ring_chain_node *ring_chain)
4964 {
4965 	struct hclge_vport *vport = hclge_get_vport(handle);
4966 	struct hclge_dev *hdev = vport->back;
4967 	int vector_id;
4968 
4969 	vector_id = hclge_get_vector_index(hdev, vector);
4970 	if (vector_id < 0) {
4971 		dev_err(&hdev->pdev->dev,
4972 			"failed to get vector index. vector=%d\n", vector);
4973 		return vector_id;
4974 	}
4975 
4976 	return hclge_bind_ring_with_vector(vport, vector_id, true, ring_chain);
4977 }
4978 
4979 static int hclge_unmap_ring_frm_vector(struct hnae3_handle *handle, int vector,
4980 				       struct hnae3_ring_chain_node *ring_chain)
4981 {
4982 	struct hclge_vport *vport = hclge_get_vport(handle);
4983 	struct hclge_dev *hdev = vport->back;
4984 	int vector_id, ret;
4985 
4986 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
4987 		return 0;
4988 
4989 	vector_id = hclge_get_vector_index(hdev, vector);
4990 	if (vector_id < 0) {
4991 		dev_err(&handle->pdev->dev,
4992 			"Get vector index fail. ret =%d\n", vector_id);
4993 		return vector_id;
4994 	}
4995 
4996 	ret = hclge_bind_ring_with_vector(vport, vector_id, false, ring_chain);
4997 	if (ret)
4998 		dev_err(&handle->pdev->dev,
4999 			"Unmap ring from vector fail. vectorid=%d, ret =%d\n",
5000 			vector_id, ret);
5001 
5002 	return ret;
5003 }
5004 
5005 static int hclge_cmd_set_promisc_mode(struct hclge_dev *hdev, u8 vf_id,
5006 				      bool en_uc, bool en_mc, bool en_bc)
5007 {
5008 	struct hclge_vport *vport = &hdev->vport[vf_id];
5009 	struct hnae3_handle *handle = &vport->nic;
5010 	struct hclge_promisc_cfg_cmd *req;
5011 	struct hclge_desc desc;
5012 	bool uc_tx_en = en_uc;
5013 	u8 promisc_cfg = 0;
5014 	int ret;
5015 
5016 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_PROMISC_MODE, false);
5017 
5018 	req = (struct hclge_promisc_cfg_cmd *)desc.data;
5019 	req->vf_id = vf_id;
5020 
5021 	if (test_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->priv_flags))
5022 		uc_tx_en = false;
5023 
5024 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_RX_EN, en_uc ? 1 : 0);
5025 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_RX_EN, en_mc ? 1 : 0);
5026 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_RX_EN, en_bc ? 1 : 0);
5027 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_TX_EN, uc_tx_en ? 1 : 0);
5028 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_TX_EN, en_mc ? 1 : 0);
5029 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_TX_EN, en_bc ? 1 : 0);
5030 	req->extend_promisc = promisc_cfg;
5031 
5032 	/* to be compatible with DEVICE_VERSION_V1/2 */
5033 	promisc_cfg = 0;
5034 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_UC, en_uc ? 1 : 0);
5035 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_MC, en_mc ? 1 : 0);
5036 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_BC, en_bc ? 1 : 0);
5037 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_TX_EN, 1);
5038 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_RX_EN, 1);
5039 	req->promisc = promisc_cfg;
5040 
5041 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5042 	if (ret)
5043 		dev_err(&hdev->pdev->dev,
5044 			"failed to set vport %u promisc mode, ret = %d.\n",
5045 			vf_id, ret);
5046 
5047 	return ret;
5048 }
5049 
5050 int hclge_set_vport_promisc_mode(struct hclge_vport *vport, bool en_uc_pmc,
5051 				 bool en_mc_pmc, bool en_bc_pmc)
5052 {
5053 	return hclge_cmd_set_promisc_mode(vport->back, vport->vport_id,
5054 					  en_uc_pmc, en_mc_pmc, en_bc_pmc);
5055 }
5056 
5057 static int hclge_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
5058 				  bool en_mc_pmc)
5059 {
5060 	struct hclge_vport *vport = hclge_get_vport(handle);
5061 	struct hclge_dev *hdev = vport->back;
5062 	bool en_bc_pmc = true;
5063 
5064 	/* For device whose version below V2, if broadcast promisc enabled,
5065 	 * vlan filter is always bypassed. So broadcast promisc should be
5066 	 * disabled until user enable promisc mode
5067 	 */
5068 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
5069 		en_bc_pmc = handle->netdev_flags & HNAE3_BPE ? true : false;
5070 
5071 	return hclge_set_vport_promisc_mode(vport, en_uc_pmc, en_mc_pmc,
5072 					    en_bc_pmc);
5073 }
5074 
5075 static void hclge_request_update_promisc_mode(struct hnae3_handle *handle)
5076 {
5077 	struct hclge_vport *vport = hclge_get_vport(handle);
5078 
5079 	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
5080 }
5081 
5082 static void hclge_sync_fd_state(struct hclge_dev *hdev)
5083 {
5084 	if (hlist_empty(&hdev->fd_rule_list))
5085 		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
5086 }
5087 
5088 static void hclge_fd_inc_rule_cnt(struct hclge_dev *hdev, u16 location)
5089 {
5090 	if (!test_bit(location, hdev->fd_bmap)) {
5091 		set_bit(location, hdev->fd_bmap);
5092 		hdev->hclge_fd_rule_num++;
5093 	}
5094 }
5095 
5096 static void hclge_fd_dec_rule_cnt(struct hclge_dev *hdev, u16 location)
5097 {
5098 	if (test_bit(location, hdev->fd_bmap)) {
5099 		clear_bit(location, hdev->fd_bmap);
5100 		hdev->hclge_fd_rule_num--;
5101 	}
5102 }
5103 
5104 static void hclge_fd_free_node(struct hclge_dev *hdev,
5105 			       struct hclge_fd_rule *rule)
5106 {
5107 	hlist_del(&rule->rule_node);
5108 	kfree(rule);
5109 	hclge_sync_fd_state(hdev);
5110 }
5111 
5112 static void hclge_update_fd_rule_node(struct hclge_dev *hdev,
5113 				      struct hclge_fd_rule *old_rule,
5114 				      struct hclge_fd_rule *new_rule,
5115 				      enum HCLGE_FD_NODE_STATE state)
5116 {
5117 	switch (state) {
5118 	case HCLGE_FD_TO_ADD:
5119 	case HCLGE_FD_ACTIVE:
5120 		/* 1) if the new state is TO_ADD, just replace the old rule
5121 		 * with the same location, no matter its state, because the
5122 		 * new rule will be configured to the hardware.
5123 		 * 2) if the new state is ACTIVE, it means the new rule
5124 		 * has been configured to the hardware, so just replace
5125 		 * the old rule node with the same location.
5126 		 * 3) for it doesn't add a new node to the list, so it's
5127 		 * unnecessary to update the rule number and fd_bmap.
5128 		 */
5129 		new_rule->rule_node.next = old_rule->rule_node.next;
5130 		new_rule->rule_node.pprev = old_rule->rule_node.pprev;
5131 		memcpy(old_rule, new_rule, sizeof(*old_rule));
5132 		kfree(new_rule);
5133 		break;
5134 	case HCLGE_FD_DELETED:
5135 		hclge_fd_dec_rule_cnt(hdev, old_rule->location);
5136 		hclge_fd_free_node(hdev, old_rule);
5137 		break;
5138 	case HCLGE_FD_TO_DEL:
5139 		/* if new request is TO_DEL, and old rule is existent
5140 		 * 1) the state of old rule is TO_DEL, we need do nothing,
5141 		 * because we delete rule by location, other rule content
5142 		 * is unncessary.
5143 		 * 2) the state of old rule is ACTIVE, we need to change its
5144 		 * state to TO_DEL, so the rule will be deleted when periodic
5145 		 * task being scheduled.
5146 		 * 3) the state of old rule is TO_ADD, it means the rule hasn't
5147 		 * been added to hardware, so we just delete the rule node from
5148 		 * fd_rule_list directly.
5149 		 */
5150 		if (old_rule->state == HCLGE_FD_TO_ADD) {
5151 			hclge_fd_dec_rule_cnt(hdev, old_rule->location);
5152 			hclge_fd_free_node(hdev, old_rule);
5153 			return;
5154 		}
5155 		old_rule->state = HCLGE_FD_TO_DEL;
5156 		break;
5157 	}
5158 }
5159 
5160 static struct hclge_fd_rule *hclge_find_fd_rule(struct hlist_head *hlist,
5161 						u16 location,
5162 						struct hclge_fd_rule **parent)
5163 {
5164 	struct hclge_fd_rule *rule;
5165 	struct hlist_node *node;
5166 
5167 	hlist_for_each_entry_safe(rule, node, hlist, rule_node) {
5168 		if (rule->location == location)
5169 			return rule;
5170 		else if (rule->location > location)
5171 			return NULL;
5172 		/* record the parent node, use to keep the nodes in fd_rule_list
5173 		 * in ascend order.
5174 		 */
5175 		*parent = rule;
5176 	}
5177 
5178 	return NULL;
5179 }
5180 
5181 /* insert fd rule node in ascend order according to rule->location */
5182 static void hclge_fd_insert_rule_node(struct hlist_head *hlist,
5183 				      struct hclge_fd_rule *rule,
5184 				      struct hclge_fd_rule *parent)
5185 {
5186 	INIT_HLIST_NODE(&rule->rule_node);
5187 
5188 	if (parent)
5189 		hlist_add_behind(&rule->rule_node, &parent->rule_node);
5190 	else
5191 		hlist_add_head(&rule->rule_node, hlist);
5192 }
5193 
5194 static int hclge_fd_set_user_def_cmd(struct hclge_dev *hdev,
5195 				     struct hclge_fd_user_def_cfg *cfg)
5196 {
5197 	struct hclge_fd_user_def_cfg_cmd *req;
5198 	struct hclge_desc desc;
5199 	u16 data = 0;
5200 	int ret;
5201 
5202 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_USER_DEF_OP, false);
5203 
5204 	req = (struct hclge_fd_user_def_cfg_cmd *)desc.data;
5205 
5206 	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[0].ref_cnt > 0);
5207 	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
5208 			HCLGE_FD_USER_DEF_OFT_S, cfg[0].offset);
5209 	req->ol2_cfg = cpu_to_le16(data);
5210 
5211 	data = 0;
5212 	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[1].ref_cnt > 0);
5213 	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
5214 			HCLGE_FD_USER_DEF_OFT_S, cfg[1].offset);
5215 	req->ol3_cfg = cpu_to_le16(data);
5216 
5217 	data = 0;
5218 	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[2].ref_cnt > 0);
5219 	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
5220 			HCLGE_FD_USER_DEF_OFT_S, cfg[2].offset);
5221 	req->ol4_cfg = cpu_to_le16(data);
5222 
5223 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5224 	if (ret)
5225 		dev_err(&hdev->pdev->dev,
5226 			"failed to set fd user def data, ret= %d\n", ret);
5227 	return ret;
5228 }
5229 
5230 static void hclge_sync_fd_user_def_cfg(struct hclge_dev *hdev, bool locked)
5231 {
5232 	int ret;
5233 
5234 	if (!test_and_clear_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state))
5235 		return;
5236 
5237 	if (!locked)
5238 		spin_lock_bh(&hdev->fd_rule_lock);
5239 
5240 	ret = hclge_fd_set_user_def_cmd(hdev, hdev->fd_cfg.user_def_cfg);
5241 	if (ret)
5242 		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
5243 
5244 	if (!locked)
5245 		spin_unlock_bh(&hdev->fd_rule_lock);
5246 }
5247 
5248 static int hclge_fd_check_user_def_refcnt(struct hclge_dev *hdev,
5249 					  struct hclge_fd_rule *rule)
5250 {
5251 	struct hlist_head *hlist = &hdev->fd_rule_list;
5252 	struct hclge_fd_rule *fd_rule, *parent = NULL;
5253 	struct hclge_fd_user_def_info *info, *old_info;
5254 	struct hclge_fd_user_def_cfg *cfg;
5255 
5256 	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
5257 	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
5258 		return 0;
5259 
5260 	/* for valid layer is start from 1, so need minus 1 to get the cfg */
5261 	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
5262 	info = &rule->ep.user_def;
5263 
5264 	if (!cfg->ref_cnt || cfg->offset == info->offset)
5265 		return 0;
5266 
5267 	if (cfg->ref_cnt > 1)
5268 		goto error;
5269 
5270 	fd_rule = hclge_find_fd_rule(hlist, rule->location, &parent);
5271 	if (fd_rule) {
5272 		old_info = &fd_rule->ep.user_def;
5273 		if (info->layer == old_info->layer)
5274 			return 0;
5275 	}
5276 
5277 error:
5278 	dev_err(&hdev->pdev->dev,
5279 		"No available offset for layer%d fd rule, each layer only support one user def offset.\n",
5280 		info->layer + 1);
5281 	return -ENOSPC;
5282 }
5283 
5284 static void hclge_fd_inc_user_def_refcnt(struct hclge_dev *hdev,
5285 					 struct hclge_fd_rule *rule)
5286 {
5287 	struct hclge_fd_user_def_cfg *cfg;
5288 
5289 	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
5290 	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
5291 		return;
5292 
5293 	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
5294 	if (!cfg->ref_cnt) {
5295 		cfg->offset = rule->ep.user_def.offset;
5296 		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
5297 	}
5298 	cfg->ref_cnt++;
5299 }
5300 
5301 static void hclge_fd_dec_user_def_refcnt(struct hclge_dev *hdev,
5302 					 struct hclge_fd_rule *rule)
5303 {
5304 	struct hclge_fd_user_def_cfg *cfg;
5305 
5306 	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
5307 	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
5308 		return;
5309 
5310 	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
5311 	if (!cfg->ref_cnt)
5312 		return;
5313 
5314 	cfg->ref_cnt--;
5315 	if (!cfg->ref_cnt) {
5316 		cfg->offset = 0;
5317 		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
5318 	}
5319 }
5320 
5321 static void hclge_update_fd_list(struct hclge_dev *hdev,
5322 				 enum HCLGE_FD_NODE_STATE state, u16 location,
5323 				 struct hclge_fd_rule *new_rule)
5324 {
5325 	struct hlist_head *hlist = &hdev->fd_rule_list;
5326 	struct hclge_fd_rule *fd_rule, *parent = NULL;
5327 
5328 	fd_rule = hclge_find_fd_rule(hlist, location, &parent);
5329 	if (fd_rule) {
5330 		hclge_fd_dec_user_def_refcnt(hdev, fd_rule);
5331 		if (state == HCLGE_FD_ACTIVE)
5332 			hclge_fd_inc_user_def_refcnt(hdev, new_rule);
5333 		hclge_sync_fd_user_def_cfg(hdev, true);
5334 
5335 		hclge_update_fd_rule_node(hdev, fd_rule, new_rule, state);
5336 		return;
5337 	}
5338 
5339 	/* it's unlikely to fail here, because we have checked the rule
5340 	 * exist before.
5341 	 */
5342 	if (unlikely(state == HCLGE_FD_TO_DEL || state == HCLGE_FD_DELETED)) {
5343 		dev_warn(&hdev->pdev->dev,
5344 			 "failed to delete fd rule %u, it's inexistent\n",
5345 			 location);
5346 		return;
5347 	}
5348 
5349 	hclge_fd_inc_user_def_refcnt(hdev, new_rule);
5350 	hclge_sync_fd_user_def_cfg(hdev, true);
5351 
5352 	hclge_fd_insert_rule_node(hlist, new_rule, parent);
5353 	hclge_fd_inc_rule_cnt(hdev, new_rule->location);
5354 
5355 	if (state == HCLGE_FD_TO_ADD) {
5356 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
5357 		hclge_task_schedule(hdev, 0);
5358 	}
5359 }
5360 
5361 static int hclge_get_fd_mode(struct hclge_dev *hdev, u8 *fd_mode)
5362 {
5363 	struct hclge_get_fd_mode_cmd *req;
5364 	struct hclge_desc desc;
5365 	int ret;
5366 
5367 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_MODE_CTRL, true);
5368 
5369 	req = (struct hclge_get_fd_mode_cmd *)desc.data;
5370 
5371 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5372 	if (ret) {
5373 		dev_err(&hdev->pdev->dev, "get fd mode fail, ret=%d\n", ret);
5374 		return ret;
5375 	}
5376 
5377 	*fd_mode = req->mode;
5378 
5379 	return ret;
5380 }
5381 
5382 static int hclge_get_fd_allocation(struct hclge_dev *hdev,
5383 				   u32 *stage1_entry_num,
5384 				   u32 *stage2_entry_num,
5385 				   u16 *stage1_counter_num,
5386 				   u16 *stage2_counter_num)
5387 {
5388 	struct hclge_get_fd_allocation_cmd *req;
5389 	struct hclge_desc desc;
5390 	int ret;
5391 
5392 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_GET_ALLOCATION, true);
5393 
5394 	req = (struct hclge_get_fd_allocation_cmd *)desc.data;
5395 
5396 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5397 	if (ret) {
5398 		dev_err(&hdev->pdev->dev, "query fd allocation fail, ret=%d\n",
5399 			ret);
5400 		return ret;
5401 	}
5402 
5403 	*stage1_entry_num = le32_to_cpu(req->stage1_entry_num);
5404 	*stage2_entry_num = le32_to_cpu(req->stage2_entry_num);
5405 	*stage1_counter_num = le16_to_cpu(req->stage1_counter_num);
5406 	*stage2_counter_num = le16_to_cpu(req->stage2_counter_num);
5407 
5408 	return ret;
5409 }
5410 
5411 static int hclge_set_fd_key_config(struct hclge_dev *hdev,
5412 				   enum HCLGE_FD_STAGE stage_num)
5413 {
5414 	struct hclge_set_fd_key_config_cmd *req;
5415 	struct hclge_fd_key_cfg *stage;
5416 	struct hclge_desc desc;
5417 	int ret;
5418 
5419 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_KEY_CONFIG, false);
5420 
5421 	req = (struct hclge_set_fd_key_config_cmd *)desc.data;
5422 	stage = &hdev->fd_cfg.key_cfg[stage_num];
5423 	req->stage = stage_num;
5424 	req->key_select = stage->key_sel;
5425 	req->inner_sipv6_word_en = stage->inner_sipv6_word_en;
5426 	req->inner_dipv6_word_en = stage->inner_dipv6_word_en;
5427 	req->outer_sipv6_word_en = stage->outer_sipv6_word_en;
5428 	req->outer_dipv6_word_en = stage->outer_dipv6_word_en;
5429 	req->tuple_mask = cpu_to_le32(~stage->tuple_active);
5430 	req->meta_data_mask = cpu_to_le32(~stage->meta_data_active);
5431 
5432 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5433 	if (ret)
5434 		dev_err(&hdev->pdev->dev, "set fd key fail, ret=%d\n", ret);
5435 
5436 	return ret;
5437 }
5438 
5439 static void hclge_fd_disable_user_def(struct hclge_dev *hdev)
5440 {
5441 	struct hclge_fd_user_def_cfg *cfg = hdev->fd_cfg.user_def_cfg;
5442 
5443 	spin_lock_bh(&hdev->fd_rule_lock);
5444 	memset(cfg, 0, sizeof(hdev->fd_cfg.user_def_cfg));
5445 	spin_unlock_bh(&hdev->fd_rule_lock);
5446 
5447 	hclge_fd_set_user_def_cmd(hdev, cfg);
5448 }
5449 
5450 static int hclge_init_fd_config(struct hclge_dev *hdev)
5451 {
5452 #define LOW_2_WORDS		0x03
5453 	struct hclge_fd_key_cfg *key_cfg;
5454 	int ret;
5455 
5456 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
5457 		return 0;
5458 
5459 	ret = hclge_get_fd_mode(hdev, &hdev->fd_cfg.fd_mode);
5460 	if (ret)
5461 		return ret;
5462 
5463 	switch (hdev->fd_cfg.fd_mode) {
5464 	case HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1:
5465 		hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH;
5466 		break;
5467 	case HCLGE_FD_MODE_DEPTH_4K_WIDTH_200B_STAGE_1:
5468 		hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH / 2;
5469 		break;
5470 	default:
5471 		dev_err(&hdev->pdev->dev,
5472 			"Unsupported flow director mode %u\n",
5473 			hdev->fd_cfg.fd_mode);
5474 		return -EOPNOTSUPP;
5475 	}
5476 
5477 	key_cfg = &hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1];
5478 	key_cfg->key_sel = HCLGE_FD_KEY_BASE_ON_TUPLE;
5479 	key_cfg->inner_sipv6_word_en = LOW_2_WORDS;
5480 	key_cfg->inner_dipv6_word_en = LOW_2_WORDS;
5481 	key_cfg->outer_sipv6_word_en = 0;
5482 	key_cfg->outer_dipv6_word_en = 0;
5483 
5484 	key_cfg->tuple_active = BIT(INNER_VLAN_TAG_FST) | BIT(INNER_ETH_TYPE) |
5485 				BIT(INNER_IP_PROTO) | BIT(INNER_IP_TOS) |
5486 				BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
5487 				BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
5488 
5489 	/* If use max 400bit key, we can support tuples for ether type */
5490 	if (hdev->fd_cfg.fd_mode == HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
5491 		key_cfg->tuple_active |=
5492 				BIT(INNER_DST_MAC) | BIT(INNER_SRC_MAC);
5493 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5494 			key_cfg->tuple_active |= HCLGE_FD_TUPLE_USER_DEF_TUPLES;
5495 	}
5496 
5497 	/* roce_type is used to filter roce frames
5498 	 * dst_vport is used to specify the rule
5499 	 */
5500 	key_cfg->meta_data_active = BIT(ROCE_TYPE) | BIT(DST_VPORT);
5501 
5502 	ret = hclge_get_fd_allocation(hdev,
5503 				      &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1],
5504 				      &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_2],
5505 				      &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1],
5506 				      &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_2]);
5507 	if (ret)
5508 		return ret;
5509 
5510 	return hclge_set_fd_key_config(hdev, HCLGE_FD_STAGE_1);
5511 }
5512 
5513 static int hclge_fd_tcam_config(struct hclge_dev *hdev, u8 stage, bool sel_x,
5514 				int loc, u8 *key, bool is_add)
5515 {
5516 	struct hclge_fd_tcam_config_1_cmd *req1;
5517 	struct hclge_fd_tcam_config_2_cmd *req2;
5518 	struct hclge_fd_tcam_config_3_cmd *req3;
5519 	struct hclge_desc desc[3];
5520 	int ret;
5521 
5522 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_FD_TCAM_OP, false);
5523 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
5524 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_FD_TCAM_OP, false);
5525 	desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
5526 	hclge_cmd_setup_basic_desc(&desc[2], HCLGE_OPC_FD_TCAM_OP, false);
5527 
5528 	req1 = (struct hclge_fd_tcam_config_1_cmd *)desc[0].data;
5529 	req2 = (struct hclge_fd_tcam_config_2_cmd *)desc[1].data;
5530 	req3 = (struct hclge_fd_tcam_config_3_cmd *)desc[2].data;
5531 
5532 	req1->stage = stage;
5533 	req1->xy_sel = sel_x ? 1 : 0;
5534 	hnae3_set_bit(req1->port_info, HCLGE_FD_EPORT_SW_EN_B, 0);
5535 	req1->index = cpu_to_le32(loc);
5536 	req1->entry_vld = sel_x ? is_add : 0;
5537 
5538 	if (key) {
5539 		memcpy(req1->tcam_data, &key[0], sizeof(req1->tcam_data));
5540 		memcpy(req2->tcam_data, &key[sizeof(req1->tcam_data)],
5541 		       sizeof(req2->tcam_data));
5542 		memcpy(req3->tcam_data, &key[sizeof(req1->tcam_data) +
5543 		       sizeof(req2->tcam_data)], sizeof(req3->tcam_data));
5544 	}
5545 
5546 	ret = hclge_cmd_send(&hdev->hw, desc, 3);
5547 	if (ret)
5548 		dev_err(&hdev->pdev->dev,
5549 			"config tcam key fail, ret=%d\n",
5550 			ret);
5551 
5552 	return ret;
5553 }
5554 
5555 static int hclge_fd_ad_config(struct hclge_dev *hdev, u8 stage, int loc,
5556 			      struct hclge_fd_ad_data *action)
5557 {
5558 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
5559 	struct hclge_fd_ad_config_cmd *req;
5560 	struct hclge_desc desc;
5561 	u64 ad_data = 0;
5562 	int ret;
5563 
5564 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_AD_OP, false);
5565 
5566 	req = (struct hclge_fd_ad_config_cmd *)desc.data;
5567 	req->index = cpu_to_le32(loc);
5568 	req->stage = stage;
5569 
5570 	hnae3_set_bit(ad_data, HCLGE_FD_AD_WR_RULE_ID_B,
5571 		      action->write_rule_id_to_bd);
5572 	hnae3_set_field(ad_data, HCLGE_FD_AD_RULE_ID_M, HCLGE_FD_AD_RULE_ID_S,
5573 			action->rule_id);
5574 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) {
5575 		hnae3_set_bit(ad_data, HCLGE_FD_AD_TC_OVRD_B,
5576 			      action->override_tc);
5577 		hnae3_set_field(ad_data, HCLGE_FD_AD_TC_SIZE_M,
5578 				HCLGE_FD_AD_TC_SIZE_S, (u32)action->tc_size);
5579 	}
5580 	ad_data <<= 32;
5581 	hnae3_set_bit(ad_data, HCLGE_FD_AD_DROP_B, action->drop_packet);
5582 	hnae3_set_bit(ad_data, HCLGE_FD_AD_DIRECT_QID_B,
5583 		      action->forward_to_direct_queue);
5584 	hnae3_set_field(ad_data, HCLGE_FD_AD_QID_M, HCLGE_FD_AD_QID_S,
5585 			action->queue_id);
5586 	hnae3_set_bit(ad_data, HCLGE_FD_AD_USE_COUNTER_B, action->use_counter);
5587 	hnae3_set_field(ad_data, HCLGE_FD_AD_COUNTER_NUM_M,
5588 			HCLGE_FD_AD_COUNTER_NUM_S, action->counter_id);
5589 	hnae3_set_bit(ad_data, HCLGE_FD_AD_NXT_STEP_B, action->use_next_stage);
5590 	hnae3_set_field(ad_data, HCLGE_FD_AD_NXT_KEY_M, HCLGE_FD_AD_NXT_KEY_S,
5591 			action->counter_id);
5592 
5593 	req->ad_data = cpu_to_le64(ad_data);
5594 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5595 	if (ret)
5596 		dev_err(&hdev->pdev->dev, "fd ad config fail, ret=%d\n", ret);
5597 
5598 	return ret;
5599 }
5600 
5601 static bool hclge_fd_convert_tuple(u32 tuple_bit, u8 *key_x, u8 *key_y,
5602 				   struct hclge_fd_rule *rule)
5603 {
5604 	int offset, moffset, ip_offset;
5605 	enum HCLGE_FD_KEY_OPT key_opt;
5606 	u16 tmp_x_s, tmp_y_s;
5607 	u32 tmp_x_l, tmp_y_l;
5608 	u8 *p = (u8 *)rule;
5609 	int i;
5610 
5611 	if (rule->unused_tuple & BIT(tuple_bit))
5612 		return true;
5613 
5614 	key_opt = tuple_key_info[tuple_bit].key_opt;
5615 	offset = tuple_key_info[tuple_bit].offset;
5616 	moffset = tuple_key_info[tuple_bit].moffset;
5617 
5618 	switch (key_opt) {
5619 	case KEY_OPT_U8:
5620 		calc_x(*key_x, p[offset], p[moffset]);
5621 		calc_y(*key_y, p[offset], p[moffset]);
5622 
5623 		return true;
5624 	case KEY_OPT_LE16:
5625 		calc_x(tmp_x_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset]));
5626 		calc_y(tmp_y_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset]));
5627 		*(__le16 *)key_x = cpu_to_le16(tmp_x_s);
5628 		*(__le16 *)key_y = cpu_to_le16(tmp_y_s);
5629 
5630 		return true;
5631 	case KEY_OPT_LE32:
5632 		calc_x(tmp_x_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset]));
5633 		calc_y(tmp_y_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset]));
5634 		*(__le32 *)key_x = cpu_to_le32(tmp_x_l);
5635 		*(__le32 *)key_y = cpu_to_le32(tmp_y_l);
5636 
5637 		return true;
5638 	case KEY_OPT_MAC:
5639 		for (i = 0; i < ETH_ALEN; i++) {
5640 			calc_x(key_x[ETH_ALEN - 1 - i], p[offset + i],
5641 			       p[moffset + i]);
5642 			calc_y(key_y[ETH_ALEN - 1 - i], p[offset + i],
5643 			       p[moffset + i]);
5644 		}
5645 
5646 		return true;
5647 	case KEY_OPT_IP:
5648 		ip_offset = IPV4_INDEX * sizeof(u32);
5649 		calc_x(tmp_x_l, *(u32 *)(&p[offset + ip_offset]),
5650 		       *(u32 *)(&p[moffset + ip_offset]));
5651 		calc_y(tmp_y_l, *(u32 *)(&p[offset + ip_offset]),
5652 		       *(u32 *)(&p[moffset + ip_offset]));
5653 		*(__le32 *)key_x = cpu_to_le32(tmp_x_l);
5654 		*(__le32 *)key_y = cpu_to_le32(tmp_y_l);
5655 
5656 		return true;
5657 	default:
5658 		return false;
5659 	}
5660 }
5661 
5662 static u32 hclge_get_port_number(enum HLCGE_PORT_TYPE port_type, u8 pf_id,
5663 				 u8 vf_id, u8 network_port_id)
5664 {
5665 	u32 port_number = 0;
5666 
5667 	if (port_type == HOST_PORT) {
5668 		hnae3_set_field(port_number, HCLGE_PF_ID_M, HCLGE_PF_ID_S,
5669 				pf_id);
5670 		hnae3_set_field(port_number, HCLGE_VF_ID_M, HCLGE_VF_ID_S,
5671 				vf_id);
5672 		hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, HOST_PORT);
5673 	} else {
5674 		hnae3_set_field(port_number, HCLGE_NETWORK_PORT_ID_M,
5675 				HCLGE_NETWORK_PORT_ID_S, network_port_id);
5676 		hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, NETWORK_PORT);
5677 	}
5678 
5679 	return port_number;
5680 }
5681 
5682 static void hclge_fd_convert_meta_data(struct hclge_fd_key_cfg *key_cfg,
5683 				       __le32 *key_x, __le32 *key_y,
5684 				       struct hclge_fd_rule *rule)
5685 {
5686 	u32 tuple_bit, meta_data = 0, tmp_x, tmp_y, port_number;
5687 	u8 cur_pos = 0, tuple_size, shift_bits;
5688 	unsigned int i;
5689 
5690 	for (i = 0; i < MAX_META_DATA; i++) {
5691 		tuple_size = meta_data_key_info[i].key_length;
5692 		tuple_bit = key_cfg->meta_data_active & BIT(i);
5693 
5694 		switch (tuple_bit) {
5695 		case BIT(ROCE_TYPE):
5696 			hnae3_set_bit(meta_data, cur_pos, NIC_PACKET);
5697 			cur_pos += tuple_size;
5698 			break;
5699 		case BIT(DST_VPORT):
5700 			port_number = hclge_get_port_number(HOST_PORT, 0,
5701 							    rule->vf_id, 0);
5702 			hnae3_set_field(meta_data,
5703 					GENMASK(cur_pos + tuple_size, cur_pos),
5704 					cur_pos, port_number);
5705 			cur_pos += tuple_size;
5706 			break;
5707 		default:
5708 			break;
5709 		}
5710 	}
5711 
5712 	calc_x(tmp_x, meta_data, 0xFFFFFFFF);
5713 	calc_y(tmp_y, meta_data, 0xFFFFFFFF);
5714 	shift_bits = sizeof(meta_data) * 8 - cur_pos;
5715 
5716 	*key_x = cpu_to_le32(tmp_x << shift_bits);
5717 	*key_y = cpu_to_le32(tmp_y << shift_bits);
5718 }
5719 
5720 /* A complete key is combined with meta data key and tuple key.
5721  * Meta data key is stored at the MSB region, and tuple key is stored at
5722  * the LSB region, unused bits will be filled 0.
5723  */
5724 static int hclge_config_key(struct hclge_dev *hdev, u8 stage,
5725 			    struct hclge_fd_rule *rule)
5726 {
5727 	struct hclge_fd_key_cfg *key_cfg = &hdev->fd_cfg.key_cfg[stage];
5728 	u8 key_x[MAX_KEY_BYTES], key_y[MAX_KEY_BYTES];
5729 	u8 *cur_key_x, *cur_key_y;
5730 	u8 meta_data_region;
5731 	u8 tuple_size;
5732 	int ret;
5733 	u32 i;
5734 
5735 	memset(key_x, 0, sizeof(key_x));
5736 	memset(key_y, 0, sizeof(key_y));
5737 	cur_key_x = key_x;
5738 	cur_key_y = key_y;
5739 
5740 	for (i = 0; i < MAX_TUPLE; i++) {
5741 		bool tuple_valid;
5742 
5743 		tuple_size = tuple_key_info[i].key_length / 8;
5744 		if (!(key_cfg->tuple_active & BIT(i)))
5745 			continue;
5746 
5747 		tuple_valid = hclge_fd_convert_tuple(i, cur_key_x,
5748 						     cur_key_y, rule);
5749 		if (tuple_valid) {
5750 			cur_key_x += tuple_size;
5751 			cur_key_y += tuple_size;
5752 		}
5753 	}
5754 
5755 	meta_data_region = hdev->fd_cfg.max_key_length / 8 -
5756 			MAX_META_DATA_LENGTH / 8;
5757 
5758 	hclge_fd_convert_meta_data(key_cfg,
5759 				   (__le32 *)(key_x + meta_data_region),
5760 				   (__le32 *)(key_y + meta_data_region),
5761 				   rule);
5762 
5763 	ret = hclge_fd_tcam_config(hdev, stage, false, rule->location, key_y,
5764 				   true);
5765 	if (ret) {
5766 		dev_err(&hdev->pdev->dev,
5767 			"fd key_y config fail, loc=%u, ret=%d\n",
5768 			rule->queue_id, ret);
5769 		return ret;
5770 	}
5771 
5772 	ret = hclge_fd_tcam_config(hdev, stage, true, rule->location, key_x,
5773 				   true);
5774 	if (ret)
5775 		dev_err(&hdev->pdev->dev,
5776 			"fd key_x config fail, loc=%u, ret=%d\n",
5777 			rule->queue_id, ret);
5778 	return ret;
5779 }
5780 
5781 static int hclge_config_action(struct hclge_dev *hdev, u8 stage,
5782 			       struct hclge_fd_rule *rule)
5783 {
5784 	struct hclge_vport *vport = hdev->vport;
5785 	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
5786 	struct hclge_fd_ad_data ad_data;
5787 
5788 	memset(&ad_data, 0, sizeof(struct hclge_fd_ad_data));
5789 	ad_data.ad_id = rule->location;
5790 
5791 	if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) {
5792 		ad_data.drop_packet = true;
5793 	} else if (rule->action == HCLGE_FD_ACTION_SELECT_TC) {
5794 		ad_data.override_tc = true;
5795 		ad_data.queue_id =
5796 			kinfo->tc_info.tqp_offset[rule->cls_flower.tc];
5797 		ad_data.tc_size =
5798 			ilog2(kinfo->tc_info.tqp_count[rule->cls_flower.tc]);
5799 	} else {
5800 		ad_data.forward_to_direct_queue = true;
5801 		ad_data.queue_id = rule->queue_id;
5802 	}
5803 
5804 	if (hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1]) {
5805 		ad_data.use_counter = true;
5806 		ad_data.counter_id = rule->vf_id %
5807 				     hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1];
5808 	} else {
5809 		ad_data.use_counter = false;
5810 		ad_data.counter_id = 0;
5811 	}
5812 
5813 	ad_data.use_next_stage = false;
5814 	ad_data.next_input_key = 0;
5815 
5816 	ad_data.write_rule_id_to_bd = true;
5817 	ad_data.rule_id = rule->location;
5818 
5819 	return hclge_fd_ad_config(hdev, stage, ad_data.ad_id, &ad_data);
5820 }
5821 
5822 static int hclge_fd_check_tcpip4_tuple(struct ethtool_tcpip4_spec *spec,
5823 				       u32 *unused_tuple)
5824 {
5825 	if (!spec || !unused_tuple)
5826 		return -EINVAL;
5827 
5828 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC);
5829 
5830 	if (!spec->ip4src)
5831 		*unused_tuple |= BIT(INNER_SRC_IP);
5832 
5833 	if (!spec->ip4dst)
5834 		*unused_tuple |= BIT(INNER_DST_IP);
5835 
5836 	if (!spec->psrc)
5837 		*unused_tuple |= BIT(INNER_SRC_PORT);
5838 
5839 	if (!spec->pdst)
5840 		*unused_tuple |= BIT(INNER_DST_PORT);
5841 
5842 	if (!spec->tos)
5843 		*unused_tuple |= BIT(INNER_IP_TOS);
5844 
5845 	return 0;
5846 }
5847 
5848 static int hclge_fd_check_ip4_tuple(struct ethtool_usrip4_spec *spec,
5849 				    u32 *unused_tuple)
5850 {
5851 	if (!spec || !unused_tuple)
5852 		return -EINVAL;
5853 
5854 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
5855 		BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
5856 
5857 	if (!spec->ip4src)
5858 		*unused_tuple |= BIT(INNER_SRC_IP);
5859 
5860 	if (!spec->ip4dst)
5861 		*unused_tuple |= BIT(INNER_DST_IP);
5862 
5863 	if (!spec->tos)
5864 		*unused_tuple |= BIT(INNER_IP_TOS);
5865 
5866 	if (!spec->proto)
5867 		*unused_tuple |= BIT(INNER_IP_PROTO);
5868 
5869 	if (spec->l4_4_bytes)
5870 		return -EOPNOTSUPP;
5871 
5872 	if (spec->ip_ver != ETH_RX_NFC_IP4)
5873 		return -EOPNOTSUPP;
5874 
5875 	return 0;
5876 }
5877 
5878 static int hclge_fd_check_tcpip6_tuple(struct ethtool_tcpip6_spec *spec,
5879 				       u32 *unused_tuple)
5880 {
5881 	if (!spec || !unused_tuple)
5882 		return -EINVAL;
5883 
5884 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC);
5885 
5886 	/* check whether src/dst ip address used */
5887 	if (ipv6_addr_any((struct in6_addr *)spec->ip6src))
5888 		*unused_tuple |= BIT(INNER_SRC_IP);
5889 
5890 	if (ipv6_addr_any((struct in6_addr *)spec->ip6dst))
5891 		*unused_tuple |= BIT(INNER_DST_IP);
5892 
5893 	if (!spec->psrc)
5894 		*unused_tuple |= BIT(INNER_SRC_PORT);
5895 
5896 	if (!spec->pdst)
5897 		*unused_tuple |= BIT(INNER_DST_PORT);
5898 
5899 	if (!spec->tclass)
5900 		*unused_tuple |= BIT(INNER_IP_TOS);
5901 
5902 	return 0;
5903 }
5904 
5905 static int hclge_fd_check_ip6_tuple(struct ethtool_usrip6_spec *spec,
5906 				    u32 *unused_tuple)
5907 {
5908 	if (!spec || !unused_tuple)
5909 		return -EINVAL;
5910 
5911 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
5912 			BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
5913 
5914 	/* check whether src/dst ip address used */
5915 	if (ipv6_addr_any((struct in6_addr *)spec->ip6src))
5916 		*unused_tuple |= BIT(INNER_SRC_IP);
5917 
5918 	if (ipv6_addr_any((struct in6_addr *)spec->ip6dst))
5919 		*unused_tuple |= BIT(INNER_DST_IP);
5920 
5921 	if (!spec->l4_proto)
5922 		*unused_tuple |= BIT(INNER_IP_PROTO);
5923 
5924 	if (!spec->tclass)
5925 		*unused_tuple |= BIT(INNER_IP_TOS);
5926 
5927 	if (spec->l4_4_bytes)
5928 		return -EOPNOTSUPP;
5929 
5930 	return 0;
5931 }
5932 
5933 static int hclge_fd_check_ether_tuple(struct ethhdr *spec, u32 *unused_tuple)
5934 {
5935 	if (!spec || !unused_tuple)
5936 		return -EINVAL;
5937 
5938 	*unused_tuple |= BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
5939 		BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT) |
5940 		BIT(INNER_IP_TOS) | BIT(INNER_IP_PROTO);
5941 
5942 	if (is_zero_ether_addr(spec->h_source))
5943 		*unused_tuple |= BIT(INNER_SRC_MAC);
5944 
5945 	if (is_zero_ether_addr(spec->h_dest))
5946 		*unused_tuple |= BIT(INNER_DST_MAC);
5947 
5948 	if (!spec->h_proto)
5949 		*unused_tuple |= BIT(INNER_ETH_TYPE);
5950 
5951 	return 0;
5952 }
5953 
5954 static int hclge_fd_check_ext_tuple(struct hclge_dev *hdev,
5955 				    struct ethtool_rx_flow_spec *fs,
5956 				    u32 *unused_tuple)
5957 {
5958 	if (fs->flow_type & FLOW_EXT) {
5959 		if (fs->h_ext.vlan_etype) {
5960 			dev_err(&hdev->pdev->dev, "vlan-etype is not supported!\n");
5961 			return -EOPNOTSUPP;
5962 		}
5963 
5964 		if (!fs->h_ext.vlan_tci)
5965 			*unused_tuple |= BIT(INNER_VLAN_TAG_FST);
5966 
5967 		if (fs->m_ext.vlan_tci &&
5968 		    be16_to_cpu(fs->h_ext.vlan_tci) >= VLAN_N_VID) {
5969 			dev_err(&hdev->pdev->dev,
5970 				"failed to config vlan_tci, invalid vlan_tci: %u, max is %d.\n",
5971 				ntohs(fs->h_ext.vlan_tci), VLAN_N_VID - 1);
5972 			return -EINVAL;
5973 		}
5974 	} else {
5975 		*unused_tuple |= BIT(INNER_VLAN_TAG_FST);
5976 	}
5977 
5978 	if (fs->flow_type & FLOW_MAC_EXT) {
5979 		if (hdev->fd_cfg.fd_mode !=
5980 		    HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
5981 			dev_err(&hdev->pdev->dev,
5982 				"FLOW_MAC_EXT is not supported in current fd mode!\n");
5983 			return -EOPNOTSUPP;
5984 		}
5985 
5986 		if (is_zero_ether_addr(fs->h_ext.h_dest))
5987 			*unused_tuple |= BIT(INNER_DST_MAC);
5988 		else
5989 			*unused_tuple &= ~BIT(INNER_DST_MAC);
5990 	}
5991 
5992 	return 0;
5993 }
5994 
5995 static int hclge_fd_get_user_def_layer(u32 flow_type, u32 *unused_tuple,
5996 				       struct hclge_fd_user_def_info *info)
5997 {
5998 	switch (flow_type) {
5999 	case ETHER_FLOW:
6000 		info->layer = HCLGE_FD_USER_DEF_L2;
6001 		*unused_tuple &= ~BIT(INNER_L2_RSV);
6002 		break;
6003 	case IP_USER_FLOW:
6004 	case IPV6_USER_FLOW:
6005 		info->layer = HCLGE_FD_USER_DEF_L3;
6006 		*unused_tuple &= ~BIT(INNER_L3_RSV);
6007 		break;
6008 	case TCP_V4_FLOW:
6009 	case UDP_V4_FLOW:
6010 	case TCP_V6_FLOW:
6011 	case UDP_V6_FLOW:
6012 		info->layer = HCLGE_FD_USER_DEF_L4;
6013 		*unused_tuple &= ~BIT(INNER_L4_RSV);
6014 		break;
6015 	default:
6016 		return -EOPNOTSUPP;
6017 	}
6018 
6019 	return 0;
6020 }
6021 
6022 static bool hclge_fd_is_user_def_all_masked(struct ethtool_rx_flow_spec *fs)
6023 {
6024 	return be32_to_cpu(fs->m_ext.data[1] | fs->m_ext.data[0]) == 0;
6025 }
6026 
6027 static int hclge_fd_parse_user_def_field(struct hclge_dev *hdev,
6028 					 struct ethtool_rx_flow_spec *fs,
6029 					 u32 *unused_tuple,
6030 					 struct hclge_fd_user_def_info *info)
6031 {
6032 	u32 tuple_active = hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1].tuple_active;
6033 	u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
6034 	u16 data, offset, data_mask, offset_mask;
6035 	int ret;
6036 
6037 	info->layer = HCLGE_FD_USER_DEF_NONE;
6038 	*unused_tuple |= HCLGE_FD_TUPLE_USER_DEF_TUPLES;
6039 
6040 	if (!(fs->flow_type & FLOW_EXT) || hclge_fd_is_user_def_all_masked(fs))
6041 		return 0;
6042 
6043 	/* user-def data from ethtool is 64 bit value, the bit0~15 is used
6044 	 * for data, and bit32~47 is used for offset.
6045 	 */
6046 	data = be32_to_cpu(fs->h_ext.data[1]) & HCLGE_FD_USER_DEF_DATA;
6047 	data_mask = be32_to_cpu(fs->m_ext.data[1]) & HCLGE_FD_USER_DEF_DATA;
6048 	offset = be32_to_cpu(fs->h_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET;
6049 	offset_mask = be32_to_cpu(fs->m_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET;
6050 
6051 	if (!(tuple_active & HCLGE_FD_TUPLE_USER_DEF_TUPLES)) {
6052 		dev_err(&hdev->pdev->dev, "user-def bytes are not supported\n");
6053 		return -EOPNOTSUPP;
6054 	}
6055 
6056 	if (offset > HCLGE_FD_MAX_USER_DEF_OFFSET) {
6057 		dev_err(&hdev->pdev->dev,
6058 			"user-def offset[%u] should be no more than %u\n",
6059 			offset, HCLGE_FD_MAX_USER_DEF_OFFSET);
6060 		return -EINVAL;
6061 	}
6062 
6063 	if (offset_mask != HCLGE_FD_USER_DEF_OFFSET_UNMASK) {
6064 		dev_err(&hdev->pdev->dev, "user-def offset can't be masked\n");
6065 		return -EINVAL;
6066 	}
6067 
6068 	ret = hclge_fd_get_user_def_layer(flow_type, unused_tuple, info);
6069 	if (ret) {
6070 		dev_err(&hdev->pdev->dev,
6071 			"unsupported flow type for user-def bytes, ret = %d\n",
6072 			ret);
6073 		return ret;
6074 	}
6075 
6076 	info->data = data;
6077 	info->data_mask = data_mask;
6078 	info->offset = offset;
6079 
6080 	return 0;
6081 }
6082 
6083 static int hclge_fd_check_spec(struct hclge_dev *hdev,
6084 			       struct ethtool_rx_flow_spec *fs,
6085 			       u32 *unused_tuple,
6086 			       struct hclge_fd_user_def_info *info)
6087 {
6088 	u32 flow_type;
6089 	int ret;
6090 
6091 	if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
6092 		dev_err(&hdev->pdev->dev,
6093 			"failed to config fd rules, invalid rule location: %u, max is %u\n.",
6094 			fs->location,
6095 			hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1] - 1);
6096 		return -EINVAL;
6097 	}
6098 
6099 	ret = hclge_fd_parse_user_def_field(hdev, fs, unused_tuple, info);
6100 	if (ret)
6101 		return ret;
6102 
6103 	flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
6104 	switch (flow_type) {
6105 	case SCTP_V4_FLOW:
6106 	case TCP_V4_FLOW:
6107 	case UDP_V4_FLOW:
6108 		ret = hclge_fd_check_tcpip4_tuple(&fs->h_u.tcp_ip4_spec,
6109 						  unused_tuple);
6110 		break;
6111 	case IP_USER_FLOW:
6112 		ret = hclge_fd_check_ip4_tuple(&fs->h_u.usr_ip4_spec,
6113 					       unused_tuple);
6114 		break;
6115 	case SCTP_V6_FLOW:
6116 	case TCP_V6_FLOW:
6117 	case UDP_V6_FLOW:
6118 		ret = hclge_fd_check_tcpip6_tuple(&fs->h_u.tcp_ip6_spec,
6119 						  unused_tuple);
6120 		break;
6121 	case IPV6_USER_FLOW:
6122 		ret = hclge_fd_check_ip6_tuple(&fs->h_u.usr_ip6_spec,
6123 					       unused_tuple);
6124 		break;
6125 	case ETHER_FLOW:
6126 		if (hdev->fd_cfg.fd_mode !=
6127 			HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
6128 			dev_err(&hdev->pdev->dev,
6129 				"ETHER_FLOW is not supported in current fd mode!\n");
6130 			return -EOPNOTSUPP;
6131 		}
6132 
6133 		ret = hclge_fd_check_ether_tuple(&fs->h_u.ether_spec,
6134 						 unused_tuple);
6135 		break;
6136 	default:
6137 		dev_err(&hdev->pdev->dev,
6138 			"unsupported protocol type, protocol type = %#x\n",
6139 			flow_type);
6140 		return -EOPNOTSUPP;
6141 	}
6142 
6143 	if (ret) {
6144 		dev_err(&hdev->pdev->dev,
6145 			"failed to check flow union tuple, ret = %d\n",
6146 			ret);
6147 		return ret;
6148 	}
6149 
6150 	return hclge_fd_check_ext_tuple(hdev, fs, unused_tuple);
6151 }
6152 
6153 static void hclge_fd_get_tcpip4_tuple(struct ethtool_rx_flow_spec *fs,
6154 				      struct hclge_fd_rule *rule, u8 ip_proto)
6155 {
6156 	rule->tuples.src_ip[IPV4_INDEX] =
6157 			be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4src);
6158 	rule->tuples_mask.src_ip[IPV4_INDEX] =
6159 			be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4src);
6160 
6161 	rule->tuples.dst_ip[IPV4_INDEX] =
6162 			be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4dst);
6163 	rule->tuples_mask.dst_ip[IPV4_INDEX] =
6164 			be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4dst);
6165 
6166 	rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc);
6167 	rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.psrc);
6168 
6169 	rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst);
6170 	rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.pdst);
6171 
6172 	rule->tuples.ip_tos = fs->h_u.tcp_ip4_spec.tos;
6173 	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip4_spec.tos;
6174 
6175 	rule->tuples.ether_proto = ETH_P_IP;
6176 	rule->tuples_mask.ether_proto = 0xFFFF;
6177 
6178 	rule->tuples.ip_proto = ip_proto;
6179 	rule->tuples_mask.ip_proto = 0xFF;
6180 }
6181 
6182 static void hclge_fd_get_ip4_tuple(struct ethtool_rx_flow_spec *fs,
6183 				   struct hclge_fd_rule *rule)
6184 {
6185 	rule->tuples.src_ip[IPV4_INDEX] =
6186 			be32_to_cpu(fs->h_u.usr_ip4_spec.ip4src);
6187 	rule->tuples_mask.src_ip[IPV4_INDEX] =
6188 			be32_to_cpu(fs->m_u.usr_ip4_spec.ip4src);
6189 
6190 	rule->tuples.dst_ip[IPV4_INDEX] =
6191 			be32_to_cpu(fs->h_u.usr_ip4_spec.ip4dst);
6192 	rule->tuples_mask.dst_ip[IPV4_INDEX] =
6193 			be32_to_cpu(fs->m_u.usr_ip4_spec.ip4dst);
6194 
6195 	rule->tuples.ip_tos = fs->h_u.usr_ip4_spec.tos;
6196 	rule->tuples_mask.ip_tos = fs->m_u.usr_ip4_spec.tos;
6197 
6198 	rule->tuples.ip_proto = fs->h_u.usr_ip4_spec.proto;
6199 	rule->tuples_mask.ip_proto = fs->m_u.usr_ip4_spec.proto;
6200 
6201 	rule->tuples.ether_proto = ETH_P_IP;
6202 	rule->tuples_mask.ether_proto = 0xFFFF;
6203 }
6204 
6205 static void hclge_fd_get_tcpip6_tuple(struct ethtool_rx_flow_spec *fs,
6206 				      struct hclge_fd_rule *rule, u8 ip_proto)
6207 {
6208 	be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.tcp_ip6_spec.ip6src,
6209 			  IPV6_SIZE);
6210 	be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.tcp_ip6_spec.ip6src,
6211 			  IPV6_SIZE);
6212 
6213 	be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.tcp_ip6_spec.ip6dst,
6214 			  IPV6_SIZE);
6215 	be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.tcp_ip6_spec.ip6dst,
6216 			  IPV6_SIZE);
6217 
6218 	rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.psrc);
6219 	rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.psrc);
6220 
6221 	rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.pdst);
6222 	rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.pdst);
6223 
6224 	rule->tuples.ether_proto = ETH_P_IPV6;
6225 	rule->tuples_mask.ether_proto = 0xFFFF;
6226 
6227 	rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass;
6228 	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass;
6229 
6230 	rule->tuples.ip_proto = ip_proto;
6231 	rule->tuples_mask.ip_proto = 0xFF;
6232 }
6233 
6234 static void hclge_fd_get_ip6_tuple(struct ethtool_rx_flow_spec *fs,
6235 				   struct hclge_fd_rule *rule)
6236 {
6237 	be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.usr_ip6_spec.ip6src,
6238 			  IPV6_SIZE);
6239 	be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.usr_ip6_spec.ip6src,
6240 			  IPV6_SIZE);
6241 
6242 	be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.usr_ip6_spec.ip6dst,
6243 			  IPV6_SIZE);
6244 	be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.usr_ip6_spec.ip6dst,
6245 			  IPV6_SIZE);
6246 
6247 	rule->tuples.ip_proto = fs->h_u.usr_ip6_spec.l4_proto;
6248 	rule->tuples_mask.ip_proto = fs->m_u.usr_ip6_spec.l4_proto;
6249 
6250 	rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass;
6251 	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass;
6252 
6253 	rule->tuples.ether_proto = ETH_P_IPV6;
6254 	rule->tuples_mask.ether_proto = 0xFFFF;
6255 }
6256 
6257 static void hclge_fd_get_ether_tuple(struct ethtool_rx_flow_spec *fs,
6258 				     struct hclge_fd_rule *rule)
6259 {
6260 	ether_addr_copy(rule->tuples.src_mac, fs->h_u.ether_spec.h_source);
6261 	ether_addr_copy(rule->tuples_mask.src_mac, fs->m_u.ether_spec.h_source);
6262 
6263 	ether_addr_copy(rule->tuples.dst_mac, fs->h_u.ether_spec.h_dest);
6264 	ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_u.ether_spec.h_dest);
6265 
6266 	rule->tuples.ether_proto = be16_to_cpu(fs->h_u.ether_spec.h_proto);
6267 	rule->tuples_mask.ether_proto = be16_to_cpu(fs->m_u.ether_spec.h_proto);
6268 }
6269 
6270 static void hclge_fd_get_user_def_tuple(struct hclge_fd_user_def_info *info,
6271 					struct hclge_fd_rule *rule)
6272 {
6273 	switch (info->layer) {
6274 	case HCLGE_FD_USER_DEF_L2:
6275 		rule->tuples.l2_user_def = info->data;
6276 		rule->tuples_mask.l2_user_def = info->data_mask;
6277 		break;
6278 	case HCLGE_FD_USER_DEF_L3:
6279 		rule->tuples.l3_user_def = info->data;
6280 		rule->tuples_mask.l3_user_def = info->data_mask;
6281 		break;
6282 	case HCLGE_FD_USER_DEF_L4:
6283 		rule->tuples.l4_user_def = (u32)info->data << 16;
6284 		rule->tuples_mask.l4_user_def = (u32)info->data_mask << 16;
6285 		break;
6286 	default:
6287 		break;
6288 	}
6289 
6290 	rule->ep.user_def = *info;
6291 }
6292 
6293 static int hclge_fd_get_tuple(struct ethtool_rx_flow_spec *fs,
6294 			      struct hclge_fd_rule *rule,
6295 			      struct hclge_fd_user_def_info *info)
6296 {
6297 	u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
6298 
6299 	switch (flow_type) {
6300 	case SCTP_V4_FLOW:
6301 		hclge_fd_get_tcpip4_tuple(fs, rule, IPPROTO_SCTP);
6302 		break;
6303 	case TCP_V4_FLOW:
6304 		hclge_fd_get_tcpip4_tuple(fs, rule, IPPROTO_TCP);
6305 		break;
6306 	case UDP_V4_FLOW:
6307 		hclge_fd_get_tcpip4_tuple(fs, rule, IPPROTO_UDP);
6308 		break;
6309 	case IP_USER_FLOW:
6310 		hclge_fd_get_ip4_tuple(fs, rule);
6311 		break;
6312 	case SCTP_V6_FLOW:
6313 		hclge_fd_get_tcpip6_tuple(fs, rule, IPPROTO_SCTP);
6314 		break;
6315 	case TCP_V6_FLOW:
6316 		hclge_fd_get_tcpip6_tuple(fs, rule, IPPROTO_TCP);
6317 		break;
6318 	case UDP_V6_FLOW:
6319 		hclge_fd_get_tcpip6_tuple(fs, rule, IPPROTO_UDP);
6320 		break;
6321 	case IPV6_USER_FLOW:
6322 		hclge_fd_get_ip6_tuple(fs, rule);
6323 		break;
6324 	case ETHER_FLOW:
6325 		hclge_fd_get_ether_tuple(fs, rule);
6326 		break;
6327 	default:
6328 		return -EOPNOTSUPP;
6329 	}
6330 
6331 	if (fs->flow_type & FLOW_EXT) {
6332 		rule->tuples.vlan_tag1 = be16_to_cpu(fs->h_ext.vlan_tci);
6333 		rule->tuples_mask.vlan_tag1 = be16_to_cpu(fs->m_ext.vlan_tci);
6334 		hclge_fd_get_user_def_tuple(info, rule);
6335 	}
6336 
6337 	if (fs->flow_type & FLOW_MAC_EXT) {
6338 		ether_addr_copy(rule->tuples.dst_mac, fs->h_ext.h_dest);
6339 		ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_ext.h_dest);
6340 	}
6341 
6342 	return 0;
6343 }
6344 
6345 static int hclge_fd_config_rule(struct hclge_dev *hdev,
6346 				struct hclge_fd_rule *rule)
6347 {
6348 	int ret;
6349 
6350 	ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule);
6351 	if (ret)
6352 		return ret;
6353 
6354 	return hclge_config_key(hdev, HCLGE_FD_STAGE_1, rule);
6355 }
6356 
6357 static int hclge_add_fd_entry_common(struct hclge_dev *hdev,
6358 				     struct hclge_fd_rule *rule)
6359 {
6360 	int ret;
6361 
6362 	spin_lock_bh(&hdev->fd_rule_lock);
6363 
6364 	if (hdev->fd_active_type != rule->rule_type &&
6365 	    (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE ||
6366 	     hdev->fd_active_type == HCLGE_FD_EP_ACTIVE)) {
6367 		dev_err(&hdev->pdev->dev,
6368 			"mode conflict(new type %d, active type %d), please delete existent rules first\n",
6369 			rule->rule_type, hdev->fd_active_type);
6370 		spin_unlock_bh(&hdev->fd_rule_lock);
6371 		return -EINVAL;
6372 	}
6373 
6374 	ret = hclge_fd_check_user_def_refcnt(hdev, rule);
6375 	if (ret)
6376 		goto out;
6377 
6378 	ret = hclge_clear_arfs_rules(hdev);
6379 	if (ret)
6380 		goto out;
6381 
6382 	ret = hclge_fd_config_rule(hdev, rule);
6383 	if (ret)
6384 		goto out;
6385 
6386 	rule->state = HCLGE_FD_ACTIVE;
6387 	hdev->fd_active_type = rule->rule_type;
6388 	hclge_update_fd_list(hdev, rule->state, rule->location, rule);
6389 
6390 out:
6391 	spin_unlock_bh(&hdev->fd_rule_lock);
6392 	return ret;
6393 }
6394 
6395 static bool hclge_is_cls_flower_active(struct hnae3_handle *handle)
6396 {
6397 	struct hclge_vport *vport = hclge_get_vport(handle);
6398 	struct hclge_dev *hdev = vport->back;
6399 
6400 	return hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE;
6401 }
6402 
6403 static int hclge_fd_parse_ring_cookie(struct hclge_dev *hdev, u64 ring_cookie,
6404 				      u16 *vport_id, u8 *action, u16 *queue_id)
6405 {
6406 	struct hclge_vport *vport = hdev->vport;
6407 
6408 	if (ring_cookie == RX_CLS_FLOW_DISC) {
6409 		*action = HCLGE_FD_ACTION_DROP_PACKET;
6410 	} else {
6411 		u32 ring = ethtool_get_flow_spec_ring(ring_cookie);
6412 		u8 vf = ethtool_get_flow_spec_ring_vf(ring_cookie);
6413 		u16 tqps;
6414 
6415 		/* To keep consistent with user's configuration, minus 1 when
6416 		 * printing 'vf', because vf id from ethtool is added 1 for vf.
6417 		 */
6418 		if (vf > hdev->num_req_vfs) {
6419 			dev_err(&hdev->pdev->dev,
6420 				"Error: vf id (%u) should be less than %u\n",
6421 				vf - 1U, hdev->num_req_vfs);
6422 			return -EINVAL;
6423 		}
6424 
6425 		*vport_id = vf ? hdev->vport[vf].vport_id : vport->vport_id;
6426 		tqps = hdev->vport[vf].nic.kinfo.num_tqps;
6427 
6428 		if (ring >= tqps) {
6429 			dev_err(&hdev->pdev->dev,
6430 				"Error: queue id (%u) > max tqp num (%u)\n",
6431 				ring, tqps - 1U);
6432 			return -EINVAL;
6433 		}
6434 
6435 		*action = HCLGE_FD_ACTION_SELECT_QUEUE;
6436 		*queue_id = ring;
6437 	}
6438 
6439 	return 0;
6440 }
6441 
6442 static int hclge_add_fd_entry(struct hnae3_handle *handle,
6443 			      struct ethtool_rxnfc *cmd)
6444 {
6445 	struct hclge_vport *vport = hclge_get_vport(handle);
6446 	struct hclge_dev *hdev = vport->back;
6447 	struct hclge_fd_user_def_info info;
6448 	u16 dst_vport_id = 0, q_index = 0;
6449 	struct ethtool_rx_flow_spec *fs;
6450 	struct hclge_fd_rule *rule;
6451 	u32 unused = 0;
6452 	u8 action;
6453 	int ret;
6454 
6455 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) {
6456 		dev_err(&hdev->pdev->dev,
6457 			"flow table director is not supported\n");
6458 		return -EOPNOTSUPP;
6459 	}
6460 
6461 	if (!hdev->fd_en) {
6462 		dev_err(&hdev->pdev->dev,
6463 			"please enable flow director first\n");
6464 		return -EOPNOTSUPP;
6465 	}
6466 
6467 	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
6468 
6469 	ret = hclge_fd_check_spec(hdev, fs, &unused, &info);
6470 	if (ret)
6471 		return ret;
6472 
6473 	ret = hclge_fd_parse_ring_cookie(hdev, fs->ring_cookie, &dst_vport_id,
6474 					 &action, &q_index);
6475 	if (ret)
6476 		return ret;
6477 
6478 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
6479 	if (!rule)
6480 		return -ENOMEM;
6481 
6482 	ret = hclge_fd_get_tuple(fs, rule, &info);
6483 	if (ret) {
6484 		kfree(rule);
6485 		return ret;
6486 	}
6487 
6488 	rule->flow_type = fs->flow_type;
6489 	rule->location = fs->location;
6490 	rule->unused_tuple = unused;
6491 	rule->vf_id = dst_vport_id;
6492 	rule->queue_id = q_index;
6493 	rule->action = action;
6494 	rule->rule_type = HCLGE_FD_EP_ACTIVE;
6495 
6496 	ret = hclge_add_fd_entry_common(hdev, rule);
6497 	if (ret)
6498 		kfree(rule);
6499 
6500 	return ret;
6501 }
6502 
6503 static int hclge_del_fd_entry(struct hnae3_handle *handle,
6504 			      struct ethtool_rxnfc *cmd)
6505 {
6506 	struct hclge_vport *vport = hclge_get_vport(handle);
6507 	struct hclge_dev *hdev = vport->back;
6508 	struct ethtool_rx_flow_spec *fs;
6509 	int ret;
6510 
6511 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6512 		return -EOPNOTSUPP;
6513 
6514 	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
6515 
6516 	if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
6517 		return -EINVAL;
6518 
6519 	spin_lock_bh(&hdev->fd_rule_lock);
6520 	if (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE ||
6521 	    !test_bit(fs->location, hdev->fd_bmap)) {
6522 		dev_err(&hdev->pdev->dev,
6523 			"Delete fail, rule %u is inexistent\n", fs->location);
6524 		spin_unlock_bh(&hdev->fd_rule_lock);
6525 		return -ENOENT;
6526 	}
6527 
6528 	ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, fs->location,
6529 				   NULL, false);
6530 	if (ret)
6531 		goto out;
6532 
6533 	hclge_update_fd_list(hdev, HCLGE_FD_DELETED, fs->location, NULL);
6534 
6535 out:
6536 	spin_unlock_bh(&hdev->fd_rule_lock);
6537 	return ret;
6538 }
6539 
6540 static void hclge_clear_fd_rules_in_list(struct hclge_dev *hdev,
6541 					 bool clear_list)
6542 {
6543 	struct hclge_fd_rule *rule;
6544 	struct hlist_node *node;
6545 	u16 location;
6546 
6547 	spin_lock_bh(&hdev->fd_rule_lock);
6548 
6549 	for_each_set_bit(location, hdev->fd_bmap,
6550 			 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
6551 		hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, location,
6552 				     NULL, false);
6553 
6554 	if (clear_list) {
6555 		hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list,
6556 					  rule_node) {
6557 			hlist_del(&rule->rule_node);
6558 			kfree(rule);
6559 		}
6560 		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
6561 		hdev->hclge_fd_rule_num = 0;
6562 		bitmap_zero(hdev->fd_bmap,
6563 			    hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]);
6564 	}
6565 
6566 	spin_unlock_bh(&hdev->fd_rule_lock);
6567 }
6568 
6569 static void hclge_del_all_fd_entries(struct hclge_dev *hdev)
6570 {
6571 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6572 		return;
6573 
6574 	hclge_clear_fd_rules_in_list(hdev, true);
6575 	hclge_fd_disable_user_def(hdev);
6576 }
6577 
6578 static int hclge_restore_fd_entries(struct hnae3_handle *handle)
6579 {
6580 	struct hclge_vport *vport = hclge_get_vport(handle);
6581 	struct hclge_dev *hdev = vport->back;
6582 	struct hclge_fd_rule *rule;
6583 	struct hlist_node *node;
6584 
6585 	/* Return ok here, because reset error handling will check this
6586 	 * return value. If error is returned here, the reset process will
6587 	 * fail.
6588 	 */
6589 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6590 		return 0;
6591 
6592 	/* if fd is disabled, should not restore it when reset */
6593 	if (!hdev->fd_en)
6594 		return 0;
6595 
6596 	spin_lock_bh(&hdev->fd_rule_lock);
6597 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
6598 		if (rule->state == HCLGE_FD_ACTIVE)
6599 			rule->state = HCLGE_FD_TO_ADD;
6600 	}
6601 	spin_unlock_bh(&hdev->fd_rule_lock);
6602 	set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
6603 
6604 	return 0;
6605 }
6606 
6607 static int hclge_get_fd_rule_cnt(struct hnae3_handle *handle,
6608 				 struct ethtool_rxnfc *cmd)
6609 {
6610 	struct hclge_vport *vport = hclge_get_vport(handle);
6611 	struct hclge_dev *hdev = vport->back;
6612 
6613 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev) || hclge_is_cls_flower_active(handle))
6614 		return -EOPNOTSUPP;
6615 
6616 	cmd->rule_cnt = hdev->hclge_fd_rule_num;
6617 	cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1];
6618 
6619 	return 0;
6620 }
6621 
6622 static void hclge_fd_get_tcpip4_info(struct hclge_fd_rule *rule,
6623 				     struct ethtool_tcpip4_spec *spec,
6624 				     struct ethtool_tcpip4_spec *spec_mask)
6625 {
6626 	spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]);
6627 	spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ?
6628 			0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]);
6629 
6630 	spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]);
6631 	spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ?
6632 			0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]);
6633 
6634 	spec->psrc = cpu_to_be16(rule->tuples.src_port);
6635 	spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ?
6636 			0 : cpu_to_be16(rule->tuples_mask.src_port);
6637 
6638 	spec->pdst = cpu_to_be16(rule->tuples.dst_port);
6639 	spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ?
6640 			0 : cpu_to_be16(rule->tuples_mask.dst_port);
6641 
6642 	spec->tos = rule->tuples.ip_tos;
6643 	spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6644 			0 : rule->tuples_mask.ip_tos;
6645 }
6646 
6647 static void hclge_fd_get_ip4_info(struct hclge_fd_rule *rule,
6648 				  struct ethtool_usrip4_spec *spec,
6649 				  struct ethtool_usrip4_spec *spec_mask)
6650 {
6651 	spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]);
6652 	spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ?
6653 			0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]);
6654 
6655 	spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]);
6656 	spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ?
6657 			0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]);
6658 
6659 	spec->tos = rule->tuples.ip_tos;
6660 	spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6661 			0 : rule->tuples_mask.ip_tos;
6662 
6663 	spec->proto = rule->tuples.ip_proto;
6664 	spec_mask->proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ?
6665 			0 : rule->tuples_mask.ip_proto;
6666 
6667 	spec->ip_ver = ETH_RX_NFC_IP4;
6668 }
6669 
6670 static void hclge_fd_get_tcpip6_info(struct hclge_fd_rule *rule,
6671 				     struct ethtool_tcpip6_spec *spec,
6672 				     struct ethtool_tcpip6_spec *spec_mask)
6673 {
6674 	cpu_to_be32_array(spec->ip6src,
6675 			  rule->tuples.src_ip, IPV6_SIZE);
6676 	cpu_to_be32_array(spec->ip6dst,
6677 			  rule->tuples.dst_ip, IPV6_SIZE);
6678 	if (rule->unused_tuple & BIT(INNER_SRC_IP))
6679 		memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src));
6680 	else
6681 		cpu_to_be32_array(spec_mask->ip6src, rule->tuples_mask.src_ip,
6682 				  IPV6_SIZE);
6683 
6684 	if (rule->unused_tuple & BIT(INNER_DST_IP))
6685 		memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst));
6686 	else
6687 		cpu_to_be32_array(spec_mask->ip6dst, rule->tuples_mask.dst_ip,
6688 				  IPV6_SIZE);
6689 
6690 	spec->tclass = rule->tuples.ip_tos;
6691 	spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6692 			0 : rule->tuples_mask.ip_tos;
6693 
6694 	spec->psrc = cpu_to_be16(rule->tuples.src_port);
6695 	spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ?
6696 			0 : cpu_to_be16(rule->tuples_mask.src_port);
6697 
6698 	spec->pdst = cpu_to_be16(rule->tuples.dst_port);
6699 	spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ?
6700 			0 : cpu_to_be16(rule->tuples_mask.dst_port);
6701 }
6702 
6703 static void hclge_fd_get_ip6_info(struct hclge_fd_rule *rule,
6704 				  struct ethtool_usrip6_spec *spec,
6705 				  struct ethtool_usrip6_spec *spec_mask)
6706 {
6707 	cpu_to_be32_array(spec->ip6src, rule->tuples.src_ip, IPV6_SIZE);
6708 	cpu_to_be32_array(spec->ip6dst, rule->tuples.dst_ip, IPV6_SIZE);
6709 	if (rule->unused_tuple & BIT(INNER_SRC_IP))
6710 		memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src));
6711 	else
6712 		cpu_to_be32_array(spec_mask->ip6src,
6713 				  rule->tuples_mask.src_ip, IPV6_SIZE);
6714 
6715 	if (rule->unused_tuple & BIT(INNER_DST_IP))
6716 		memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst));
6717 	else
6718 		cpu_to_be32_array(spec_mask->ip6dst,
6719 				  rule->tuples_mask.dst_ip, IPV6_SIZE);
6720 
6721 	spec->tclass = rule->tuples.ip_tos;
6722 	spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6723 			0 : rule->tuples_mask.ip_tos;
6724 
6725 	spec->l4_proto = rule->tuples.ip_proto;
6726 	spec_mask->l4_proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ?
6727 			0 : rule->tuples_mask.ip_proto;
6728 }
6729 
6730 static void hclge_fd_get_ether_info(struct hclge_fd_rule *rule,
6731 				    struct ethhdr *spec,
6732 				    struct ethhdr *spec_mask)
6733 {
6734 	ether_addr_copy(spec->h_source, rule->tuples.src_mac);
6735 	ether_addr_copy(spec->h_dest, rule->tuples.dst_mac);
6736 
6737 	if (rule->unused_tuple & BIT(INNER_SRC_MAC))
6738 		eth_zero_addr(spec_mask->h_source);
6739 	else
6740 		ether_addr_copy(spec_mask->h_source, rule->tuples_mask.src_mac);
6741 
6742 	if (rule->unused_tuple & BIT(INNER_DST_MAC))
6743 		eth_zero_addr(spec_mask->h_dest);
6744 	else
6745 		ether_addr_copy(spec_mask->h_dest, rule->tuples_mask.dst_mac);
6746 
6747 	spec->h_proto = cpu_to_be16(rule->tuples.ether_proto);
6748 	spec_mask->h_proto = rule->unused_tuple & BIT(INNER_ETH_TYPE) ?
6749 			0 : cpu_to_be16(rule->tuples_mask.ether_proto);
6750 }
6751 
6752 static void hclge_fd_get_user_def_info(struct ethtool_rx_flow_spec *fs,
6753 				       struct hclge_fd_rule *rule)
6754 {
6755 	if ((rule->unused_tuple & HCLGE_FD_TUPLE_USER_DEF_TUPLES) ==
6756 	    HCLGE_FD_TUPLE_USER_DEF_TUPLES) {
6757 		fs->h_ext.data[0] = 0;
6758 		fs->h_ext.data[1] = 0;
6759 		fs->m_ext.data[0] = 0;
6760 		fs->m_ext.data[1] = 0;
6761 	} else {
6762 		fs->h_ext.data[0] = cpu_to_be32(rule->ep.user_def.offset);
6763 		fs->h_ext.data[1] = cpu_to_be32(rule->ep.user_def.data);
6764 		fs->m_ext.data[0] =
6765 				cpu_to_be32(HCLGE_FD_USER_DEF_OFFSET_UNMASK);
6766 		fs->m_ext.data[1] = cpu_to_be32(rule->ep.user_def.data_mask);
6767 	}
6768 }
6769 
6770 static void hclge_fd_get_ext_info(struct ethtool_rx_flow_spec *fs,
6771 				  struct hclge_fd_rule *rule)
6772 {
6773 	if (fs->flow_type & FLOW_EXT) {
6774 		fs->h_ext.vlan_tci = cpu_to_be16(rule->tuples.vlan_tag1);
6775 		fs->m_ext.vlan_tci =
6776 				rule->unused_tuple & BIT(INNER_VLAN_TAG_FST) ?
6777 				0 : cpu_to_be16(rule->tuples_mask.vlan_tag1);
6778 
6779 		hclge_fd_get_user_def_info(fs, rule);
6780 	}
6781 
6782 	if (fs->flow_type & FLOW_MAC_EXT) {
6783 		ether_addr_copy(fs->h_ext.h_dest, rule->tuples.dst_mac);
6784 		if (rule->unused_tuple & BIT(INNER_DST_MAC))
6785 			eth_zero_addr(fs->m_u.ether_spec.h_dest);
6786 		else
6787 			ether_addr_copy(fs->m_u.ether_spec.h_dest,
6788 					rule->tuples_mask.dst_mac);
6789 	}
6790 }
6791 
6792 static struct hclge_fd_rule *hclge_get_fd_rule(struct hclge_dev *hdev,
6793 					       u16 location)
6794 {
6795 	struct hclge_fd_rule *rule = NULL;
6796 	struct hlist_node *node2;
6797 
6798 	hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) {
6799 		if (rule->location == location)
6800 			return rule;
6801 		else if (rule->location > location)
6802 			return NULL;
6803 	}
6804 
6805 	return NULL;
6806 }
6807 
6808 static void hclge_fd_get_ring_cookie(struct ethtool_rx_flow_spec *fs,
6809 				     struct hclge_fd_rule *rule)
6810 {
6811 	if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) {
6812 		fs->ring_cookie = RX_CLS_FLOW_DISC;
6813 	} else {
6814 		u64 vf_id;
6815 
6816 		fs->ring_cookie = rule->queue_id;
6817 		vf_id = rule->vf_id;
6818 		vf_id <<= ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF;
6819 		fs->ring_cookie |= vf_id;
6820 	}
6821 }
6822 
6823 static int hclge_get_fd_rule_info(struct hnae3_handle *handle,
6824 				  struct ethtool_rxnfc *cmd)
6825 {
6826 	struct hclge_vport *vport = hclge_get_vport(handle);
6827 	struct hclge_fd_rule *rule = NULL;
6828 	struct hclge_dev *hdev = vport->back;
6829 	struct ethtool_rx_flow_spec *fs;
6830 
6831 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6832 		return -EOPNOTSUPP;
6833 
6834 	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
6835 
6836 	spin_lock_bh(&hdev->fd_rule_lock);
6837 
6838 	rule = hclge_get_fd_rule(hdev, fs->location);
6839 	if (!rule) {
6840 		spin_unlock_bh(&hdev->fd_rule_lock);
6841 		return -ENOENT;
6842 	}
6843 
6844 	fs->flow_type = rule->flow_type;
6845 	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
6846 	case SCTP_V4_FLOW:
6847 	case TCP_V4_FLOW:
6848 	case UDP_V4_FLOW:
6849 		hclge_fd_get_tcpip4_info(rule, &fs->h_u.tcp_ip4_spec,
6850 					 &fs->m_u.tcp_ip4_spec);
6851 		break;
6852 	case IP_USER_FLOW:
6853 		hclge_fd_get_ip4_info(rule, &fs->h_u.usr_ip4_spec,
6854 				      &fs->m_u.usr_ip4_spec);
6855 		break;
6856 	case SCTP_V6_FLOW:
6857 	case TCP_V6_FLOW:
6858 	case UDP_V6_FLOW:
6859 		hclge_fd_get_tcpip6_info(rule, &fs->h_u.tcp_ip6_spec,
6860 					 &fs->m_u.tcp_ip6_spec);
6861 		break;
6862 	case IPV6_USER_FLOW:
6863 		hclge_fd_get_ip6_info(rule, &fs->h_u.usr_ip6_spec,
6864 				      &fs->m_u.usr_ip6_spec);
6865 		break;
6866 	/* The flow type of fd rule has been checked before adding in to rule
6867 	 * list. As other flow types have been handled, it must be ETHER_FLOW
6868 	 * for the default case
6869 	 */
6870 	default:
6871 		hclge_fd_get_ether_info(rule, &fs->h_u.ether_spec,
6872 					&fs->m_u.ether_spec);
6873 		break;
6874 	}
6875 
6876 	hclge_fd_get_ext_info(fs, rule);
6877 
6878 	hclge_fd_get_ring_cookie(fs, rule);
6879 
6880 	spin_unlock_bh(&hdev->fd_rule_lock);
6881 
6882 	return 0;
6883 }
6884 
6885 static int hclge_get_all_rules(struct hnae3_handle *handle,
6886 			       struct ethtool_rxnfc *cmd, u32 *rule_locs)
6887 {
6888 	struct hclge_vport *vport = hclge_get_vport(handle);
6889 	struct hclge_dev *hdev = vport->back;
6890 	struct hclge_fd_rule *rule;
6891 	struct hlist_node *node2;
6892 	int cnt = 0;
6893 
6894 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6895 		return -EOPNOTSUPP;
6896 
6897 	cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1];
6898 
6899 	spin_lock_bh(&hdev->fd_rule_lock);
6900 	hlist_for_each_entry_safe(rule, node2,
6901 				  &hdev->fd_rule_list, rule_node) {
6902 		if (cnt == cmd->rule_cnt) {
6903 			spin_unlock_bh(&hdev->fd_rule_lock);
6904 			return -EMSGSIZE;
6905 		}
6906 
6907 		if (rule->state == HCLGE_FD_TO_DEL)
6908 			continue;
6909 
6910 		rule_locs[cnt] = rule->location;
6911 		cnt++;
6912 	}
6913 
6914 	spin_unlock_bh(&hdev->fd_rule_lock);
6915 
6916 	cmd->rule_cnt = cnt;
6917 
6918 	return 0;
6919 }
6920 
6921 static void hclge_fd_get_flow_tuples(const struct flow_keys *fkeys,
6922 				     struct hclge_fd_rule_tuples *tuples)
6923 {
6924 #define flow_ip6_src fkeys->addrs.v6addrs.src.in6_u.u6_addr32
6925 #define flow_ip6_dst fkeys->addrs.v6addrs.dst.in6_u.u6_addr32
6926 
6927 	tuples->ether_proto = be16_to_cpu(fkeys->basic.n_proto);
6928 	tuples->ip_proto = fkeys->basic.ip_proto;
6929 	tuples->dst_port = be16_to_cpu(fkeys->ports.dst);
6930 
6931 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
6932 		tuples->src_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.src);
6933 		tuples->dst_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.dst);
6934 	} else {
6935 		int i;
6936 
6937 		for (i = 0; i < IPV6_SIZE; i++) {
6938 			tuples->src_ip[i] = be32_to_cpu(flow_ip6_src[i]);
6939 			tuples->dst_ip[i] = be32_to_cpu(flow_ip6_dst[i]);
6940 		}
6941 	}
6942 }
6943 
6944 /* traverse all rules, check whether an existed rule has the same tuples */
6945 static struct hclge_fd_rule *
6946 hclge_fd_search_flow_keys(struct hclge_dev *hdev,
6947 			  const struct hclge_fd_rule_tuples *tuples)
6948 {
6949 	struct hclge_fd_rule *rule = NULL;
6950 	struct hlist_node *node;
6951 
6952 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
6953 		if (!memcmp(tuples, &rule->tuples, sizeof(*tuples)))
6954 			return rule;
6955 	}
6956 
6957 	return NULL;
6958 }
6959 
6960 static void hclge_fd_build_arfs_rule(const struct hclge_fd_rule_tuples *tuples,
6961 				     struct hclge_fd_rule *rule)
6962 {
6963 	rule->unused_tuple = BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
6964 			     BIT(INNER_VLAN_TAG_FST) | BIT(INNER_IP_TOS) |
6965 			     BIT(INNER_SRC_PORT);
6966 	rule->action = 0;
6967 	rule->vf_id = 0;
6968 	rule->rule_type = HCLGE_FD_ARFS_ACTIVE;
6969 	rule->state = HCLGE_FD_TO_ADD;
6970 	if (tuples->ether_proto == ETH_P_IP) {
6971 		if (tuples->ip_proto == IPPROTO_TCP)
6972 			rule->flow_type = TCP_V4_FLOW;
6973 		else
6974 			rule->flow_type = UDP_V4_FLOW;
6975 	} else {
6976 		if (tuples->ip_proto == IPPROTO_TCP)
6977 			rule->flow_type = TCP_V6_FLOW;
6978 		else
6979 			rule->flow_type = UDP_V6_FLOW;
6980 	}
6981 	memcpy(&rule->tuples, tuples, sizeof(rule->tuples));
6982 	memset(&rule->tuples_mask, 0xFF, sizeof(rule->tuples_mask));
6983 }
6984 
6985 static int hclge_add_fd_entry_by_arfs(struct hnae3_handle *handle, u16 queue_id,
6986 				      u16 flow_id, struct flow_keys *fkeys)
6987 {
6988 	struct hclge_vport *vport = hclge_get_vport(handle);
6989 	struct hclge_fd_rule_tuples new_tuples = {};
6990 	struct hclge_dev *hdev = vport->back;
6991 	struct hclge_fd_rule *rule;
6992 	u16 bit_id;
6993 
6994 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6995 		return -EOPNOTSUPP;
6996 
6997 	/* when there is already fd rule existed add by user,
6998 	 * arfs should not work
6999 	 */
7000 	spin_lock_bh(&hdev->fd_rule_lock);
7001 	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE &&
7002 	    hdev->fd_active_type != HCLGE_FD_RULE_NONE) {
7003 		spin_unlock_bh(&hdev->fd_rule_lock);
7004 		return -EOPNOTSUPP;
7005 	}
7006 
7007 	hclge_fd_get_flow_tuples(fkeys, &new_tuples);
7008 
7009 	/* check is there flow director filter existed for this flow,
7010 	 * if not, create a new filter for it;
7011 	 * if filter exist with different queue id, modify the filter;
7012 	 * if filter exist with same queue id, do nothing
7013 	 */
7014 	rule = hclge_fd_search_flow_keys(hdev, &new_tuples);
7015 	if (!rule) {
7016 		bit_id = find_first_zero_bit(hdev->fd_bmap, MAX_FD_FILTER_NUM);
7017 		if (bit_id >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
7018 			spin_unlock_bh(&hdev->fd_rule_lock);
7019 			return -ENOSPC;
7020 		}
7021 
7022 		rule = kzalloc(sizeof(*rule), GFP_ATOMIC);
7023 		if (!rule) {
7024 			spin_unlock_bh(&hdev->fd_rule_lock);
7025 			return -ENOMEM;
7026 		}
7027 
7028 		rule->location = bit_id;
7029 		rule->arfs.flow_id = flow_id;
7030 		rule->queue_id = queue_id;
7031 		hclge_fd_build_arfs_rule(&new_tuples, rule);
7032 		hclge_update_fd_list(hdev, rule->state, rule->location, rule);
7033 		hdev->fd_active_type = HCLGE_FD_ARFS_ACTIVE;
7034 	} else if (rule->queue_id != queue_id) {
7035 		rule->queue_id = queue_id;
7036 		rule->state = HCLGE_FD_TO_ADD;
7037 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
7038 		hclge_task_schedule(hdev, 0);
7039 	}
7040 	spin_unlock_bh(&hdev->fd_rule_lock);
7041 	return rule->location;
7042 }
7043 
7044 static void hclge_rfs_filter_expire(struct hclge_dev *hdev)
7045 {
7046 #ifdef CONFIG_RFS_ACCEL
7047 	struct hnae3_handle *handle = &hdev->vport[0].nic;
7048 	struct hclge_fd_rule *rule;
7049 	struct hlist_node *node;
7050 
7051 	spin_lock_bh(&hdev->fd_rule_lock);
7052 	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE) {
7053 		spin_unlock_bh(&hdev->fd_rule_lock);
7054 		return;
7055 	}
7056 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
7057 		if (rule->state != HCLGE_FD_ACTIVE)
7058 			continue;
7059 		if (rps_may_expire_flow(handle->netdev, rule->queue_id,
7060 					rule->arfs.flow_id, rule->location)) {
7061 			rule->state = HCLGE_FD_TO_DEL;
7062 			set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
7063 		}
7064 	}
7065 	spin_unlock_bh(&hdev->fd_rule_lock);
7066 #endif
7067 }
7068 
7069 /* make sure being called after lock up with fd_rule_lock */
7070 static int hclge_clear_arfs_rules(struct hclge_dev *hdev)
7071 {
7072 #ifdef CONFIG_RFS_ACCEL
7073 	struct hclge_fd_rule *rule;
7074 	struct hlist_node *node;
7075 	int ret;
7076 
7077 	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE)
7078 		return 0;
7079 
7080 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
7081 		switch (rule->state) {
7082 		case HCLGE_FD_TO_DEL:
7083 		case HCLGE_FD_ACTIVE:
7084 			ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true,
7085 						   rule->location, NULL, false);
7086 			if (ret)
7087 				return ret;
7088 			fallthrough;
7089 		case HCLGE_FD_TO_ADD:
7090 			hclge_fd_dec_rule_cnt(hdev, rule->location);
7091 			hlist_del(&rule->rule_node);
7092 			kfree(rule);
7093 			break;
7094 		default:
7095 			break;
7096 		}
7097 	}
7098 	hclge_sync_fd_state(hdev);
7099 
7100 #endif
7101 	return 0;
7102 }
7103 
7104 static void hclge_get_cls_key_basic(const struct flow_rule *flow,
7105 				    struct hclge_fd_rule *rule)
7106 {
7107 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_BASIC)) {
7108 		struct flow_match_basic match;
7109 		u16 ethtype_key, ethtype_mask;
7110 
7111 		flow_rule_match_basic(flow, &match);
7112 		ethtype_key = ntohs(match.key->n_proto);
7113 		ethtype_mask = ntohs(match.mask->n_proto);
7114 
7115 		if (ethtype_key == ETH_P_ALL) {
7116 			ethtype_key = 0;
7117 			ethtype_mask = 0;
7118 		}
7119 		rule->tuples.ether_proto = ethtype_key;
7120 		rule->tuples_mask.ether_proto = ethtype_mask;
7121 		rule->tuples.ip_proto = match.key->ip_proto;
7122 		rule->tuples_mask.ip_proto = match.mask->ip_proto;
7123 	} else {
7124 		rule->unused_tuple |= BIT(INNER_IP_PROTO);
7125 		rule->unused_tuple |= BIT(INNER_ETH_TYPE);
7126 	}
7127 }
7128 
7129 static void hclge_get_cls_key_mac(const struct flow_rule *flow,
7130 				  struct hclge_fd_rule *rule)
7131 {
7132 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
7133 		struct flow_match_eth_addrs match;
7134 
7135 		flow_rule_match_eth_addrs(flow, &match);
7136 		ether_addr_copy(rule->tuples.dst_mac, match.key->dst);
7137 		ether_addr_copy(rule->tuples_mask.dst_mac, match.mask->dst);
7138 		ether_addr_copy(rule->tuples.src_mac, match.key->src);
7139 		ether_addr_copy(rule->tuples_mask.src_mac, match.mask->src);
7140 	} else {
7141 		rule->unused_tuple |= BIT(INNER_DST_MAC);
7142 		rule->unused_tuple |= BIT(INNER_SRC_MAC);
7143 	}
7144 }
7145 
7146 static void hclge_get_cls_key_vlan(const struct flow_rule *flow,
7147 				   struct hclge_fd_rule *rule)
7148 {
7149 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
7150 		struct flow_match_vlan match;
7151 
7152 		flow_rule_match_vlan(flow, &match);
7153 		rule->tuples.vlan_tag1 = match.key->vlan_id |
7154 				(match.key->vlan_priority << VLAN_PRIO_SHIFT);
7155 		rule->tuples_mask.vlan_tag1 = match.mask->vlan_id |
7156 				(match.mask->vlan_priority << VLAN_PRIO_SHIFT);
7157 	} else {
7158 		rule->unused_tuple |= BIT(INNER_VLAN_TAG_FST);
7159 	}
7160 }
7161 
7162 static void hclge_get_cls_key_ip(const struct flow_rule *flow,
7163 				 struct hclge_fd_rule *rule)
7164 {
7165 	u16 addr_type = 0;
7166 
7167 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_CONTROL)) {
7168 		struct flow_match_control match;
7169 
7170 		flow_rule_match_control(flow, &match);
7171 		addr_type = match.key->addr_type;
7172 	}
7173 
7174 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
7175 		struct flow_match_ipv4_addrs match;
7176 
7177 		flow_rule_match_ipv4_addrs(flow, &match);
7178 		rule->tuples.src_ip[IPV4_INDEX] = be32_to_cpu(match.key->src);
7179 		rule->tuples_mask.src_ip[IPV4_INDEX] =
7180 						be32_to_cpu(match.mask->src);
7181 		rule->tuples.dst_ip[IPV4_INDEX] = be32_to_cpu(match.key->dst);
7182 		rule->tuples_mask.dst_ip[IPV4_INDEX] =
7183 						be32_to_cpu(match.mask->dst);
7184 	} else if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
7185 		struct flow_match_ipv6_addrs match;
7186 
7187 		flow_rule_match_ipv6_addrs(flow, &match);
7188 		be32_to_cpu_array(rule->tuples.src_ip, match.key->src.s6_addr32,
7189 				  IPV6_SIZE);
7190 		be32_to_cpu_array(rule->tuples_mask.src_ip,
7191 				  match.mask->src.s6_addr32, IPV6_SIZE);
7192 		be32_to_cpu_array(rule->tuples.dst_ip, match.key->dst.s6_addr32,
7193 				  IPV6_SIZE);
7194 		be32_to_cpu_array(rule->tuples_mask.dst_ip,
7195 				  match.mask->dst.s6_addr32, IPV6_SIZE);
7196 	} else {
7197 		rule->unused_tuple |= BIT(INNER_SRC_IP);
7198 		rule->unused_tuple |= BIT(INNER_DST_IP);
7199 	}
7200 }
7201 
7202 static void hclge_get_cls_key_port(const struct flow_rule *flow,
7203 				   struct hclge_fd_rule *rule)
7204 {
7205 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
7206 		struct flow_match_ports match;
7207 
7208 		flow_rule_match_ports(flow, &match);
7209 
7210 		rule->tuples.src_port = be16_to_cpu(match.key->src);
7211 		rule->tuples_mask.src_port = be16_to_cpu(match.mask->src);
7212 		rule->tuples.dst_port = be16_to_cpu(match.key->dst);
7213 		rule->tuples_mask.dst_port = be16_to_cpu(match.mask->dst);
7214 	} else {
7215 		rule->unused_tuple |= BIT(INNER_SRC_PORT);
7216 		rule->unused_tuple |= BIT(INNER_DST_PORT);
7217 	}
7218 }
7219 
7220 static int hclge_parse_cls_flower(struct hclge_dev *hdev,
7221 				  struct flow_cls_offload *cls_flower,
7222 				  struct hclge_fd_rule *rule)
7223 {
7224 	struct flow_rule *flow = flow_cls_offload_flow_rule(cls_flower);
7225 	struct flow_dissector *dissector = flow->match.dissector;
7226 
7227 	if (dissector->used_keys &
7228 	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
7229 	      BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
7230 	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
7231 	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
7232 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
7233 	      BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
7234 	      BIT_ULL(FLOW_DISSECTOR_KEY_PORTS))) {
7235 		dev_err(&hdev->pdev->dev, "unsupported key set: %#llx\n",
7236 			dissector->used_keys);
7237 		return -EOPNOTSUPP;
7238 	}
7239 
7240 	hclge_get_cls_key_basic(flow, rule);
7241 	hclge_get_cls_key_mac(flow, rule);
7242 	hclge_get_cls_key_vlan(flow, rule);
7243 	hclge_get_cls_key_ip(flow, rule);
7244 	hclge_get_cls_key_port(flow, rule);
7245 
7246 	return 0;
7247 }
7248 
7249 static int hclge_check_cls_flower(struct hclge_dev *hdev,
7250 				  struct flow_cls_offload *cls_flower, int tc)
7251 {
7252 	u32 prio = cls_flower->common.prio;
7253 
7254 	if (tc < 0 || tc > hdev->tc_max) {
7255 		dev_err(&hdev->pdev->dev, "invalid traffic class\n");
7256 		return -EINVAL;
7257 	}
7258 
7259 	if (prio == 0 ||
7260 	    prio > hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
7261 		dev_err(&hdev->pdev->dev,
7262 			"prio %u should be in range[1, %u]\n",
7263 			prio, hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]);
7264 		return -EINVAL;
7265 	}
7266 
7267 	if (test_bit(prio - 1, hdev->fd_bmap)) {
7268 		dev_err(&hdev->pdev->dev, "prio %u is already used\n", prio);
7269 		return -EINVAL;
7270 	}
7271 	return 0;
7272 }
7273 
7274 static int hclge_add_cls_flower(struct hnae3_handle *handle,
7275 				struct flow_cls_offload *cls_flower,
7276 				int tc)
7277 {
7278 	struct hclge_vport *vport = hclge_get_vport(handle);
7279 	struct hclge_dev *hdev = vport->back;
7280 	struct hclge_fd_rule *rule;
7281 	int ret;
7282 
7283 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) {
7284 		dev_err(&hdev->pdev->dev,
7285 			"cls flower is not supported\n");
7286 		return -EOPNOTSUPP;
7287 	}
7288 
7289 	ret = hclge_check_cls_flower(hdev, cls_flower, tc);
7290 	if (ret) {
7291 		dev_err(&hdev->pdev->dev,
7292 			"failed to check cls flower params, ret = %d\n", ret);
7293 		return ret;
7294 	}
7295 
7296 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
7297 	if (!rule)
7298 		return -ENOMEM;
7299 
7300 	ret = hclge_parse_cls_flower(hdev, cls_flower, rule);
7301 	if (ret) {
7302 		kfree(rule);
7303 		return ret;
7304 	}
7305 
7306 	rule->action = HCLGE_FD_ACTION_SELECT_TC;
7307 	rule->cls_flower.tc = tc;
7308 	rule->location = cls_flower->common.prio - 1;
7309 	rule->vf_id = 0;
7310 	rule->cls_flower.cookie = cls_flower->cookie;
7311 	rule->rule_type = HCLGE_FD_TC_FLOWER_ACTIVE;
7312 
7313 	ret = hclge_add_fd_entry_common(hdev, rule);
7314 	if (ret)
7315 		kfree(rule);
7316 
7317 	return ret;
7318 }
7319 
7320 static struct hclge_fd_rule *hclge_find_cls_flower(struct hclge_dev *hdev,
7321 						   unsigned long cookie)
7322 {
7323 	struct hclge_fd_rule *rule;
7324 	struct hlist_node *node;
7325 
7326 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
7327 		if (rule->cls_flower.cookie == cookie)
7328 			return rule;
7329 	}
7330 
7331 	return NULL;
7332 }
7333 
7334 static int hclge_del_cls_flower(struct hnae3_handle *handle,
7335 				struct flow_cls_offload *cls_flower)
7336 {
7337 	struct hclge_vport *vport = hclge_get_vport(handle);
7338 	struct hclge_dev *hdev = vport->back;
7339 	struct hclge_fd_rule *rule;
7340 	int ret;
7341 
7342 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
7343 		return -EOPNOTSUPP;
7344 
7345 	spin_lock_bh(&hdev->fd_rule_lock);
7346 
7347 	rule = hclge_find_cls_flower(hdev, cls_flower->cookie);
7348 	if (!rule) {
7349 		spin_unlock_bh(&hdev->fd_rule_lock);
7350 		return -EINVAL;
7351 	}
7352 
7353 	ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, rule->location,
7354 				   NULL, false);
7355 	if (ret) {
7356 		/* if tcam config fail, set rule state to TO_DEL,
7357 		 * so the rule will be deleted when periodic
7358 		 * task being scheduled.
7359 		 */
7360 		hclge_update_fd_list(hdev, HCLGE_FD_TO_DEL, rule->location, NULL);
7361 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
7362 		spin_unlock_bh(&hdev->fd_rule_lock);
7363 		return ret;
7364 	}
7365 
7366 	hclge_update_fd_list(hdev, HCLGE_FD_DELETED, rule->location, NULL);
7367 	spin_unlock_bh(&hdev->fd_rule_lock);
7368 
7369 	return 0;
7370 }
7371 
7372 static void hclge_sync_fd_list(struct hclge_dev *hdev, struct hlist_head *hlist)
7373 {
7374 	struct hclge_fd_rule *rule;
7375 	struct hlist_node *node;
7376 	int ret = 0;
7377 
7378 	if (!test_and_clear_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state))
7379 		return;
7380 
7381 	spin_lock_bh(&hdev->fd_rule_lock);
7382 
7383 	hlist_for_each_entry_safe(rule, node, hlist, rule_node) {
7384 		switch (rule->state) {
7385 		case HCLGE_FD_TO_ADD:
7386 			ret = hclge_fd_config_rule(hdev, rule);
7387 			if (ret)
7388 				goto out;
7389 			rule->state = HCLGE_FD_ACTIVE;
7390 			break;
7391 		case HCLGE_FD_TO_DEL:
7392 			ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true,
7393 						   rule->location, NULL, false);
7394 			if (ret)
7395 				goto out;
7396 			hclge_fd_dec_rule_cnt(hdev, rule->location);
7397 			hclge_fd_free_node(hdev, rule);
7398 			break;
7399 		default:
7400 			break;
7401 		}
7402 	}
7403 
7404 out:
7405 	if (ret)
7406 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
7407 
7408 	spin_unlock_bh(&hdev->fd_rule_lock);
7409 }
7410 
7411 static void hclge_sync_fd_table(struct hclge_dev *hdev)
7412 {
7413 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
7414 		return;
7415 
7416 	if (test_and_clear_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state)) {
7417 		bool clear_list = hdev->fd_active_type == HCLGE_FD_ARFS_ACTIVE;
7418 
7419 		hclge_clear_fd_rules_in_list(hdev, clear_list);
7420 	}
7421 
7422 	hclge_sync_fd_user_def_cfg(hdev, false);
7423 
7424 	hclge_sync_fd_list(hdev, &hdev->fd_rule_list);
7425 }
7426 
7427 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle)
7428 {
7429 	struct hclge_vport *vport = hclge_get_vport(handle);
7430 	struct hclge_dev *hdev = vport->back;
7431 
7432 	return hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG) ||
7433 	       hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING);
7434 }
7435 
7436 static bool hclge_get_cmdq_stat(struct hnae3_handle *handle)
7437 {
7438 	struct hclge_vport *vport = hclge_get_vport(handle);
7439 	struct hclge_dev *hdev = vport->back;
7440 
7441 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
7442 }
7443 
7444 static bool hclge_ae_dev_resetting(struct hnae3_handle *handle)
7445 {
7446 	struct hclge_vport *vport = hclge_get_vport(handle);
7447 	struct hclge_dev *hdev = vport->back;
7448 
7449 	return test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
7450 }
7451 
7452 static unsigned long hclge_ae_dev_reset_cnt(struct hnae3_handle *handle)
7453 {
7454 	struct hclge_vport *vport = hclge_get_vport(handle);
7455 	struct hclge_dev *hdev = vport->back;
7456 
7457 	return hdev->rst_stats.hw_reset_done_cnt;
7458 }
7459 
7460 static void hclge_enable_fd(struct hnae3_handle *handle, bool enable)
7461 {
7462 	struct hclge_vport *vport = hclge_get_vport(handle);
7463 	struct hclge_dev *hdev = vport->back;
7464 
7465 	hdev->fd_en = enable;
7466 
7467 	if (!enable)
7468 		set_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state);
7469 	else
7470 		hclge_restore_fd_entries(handle);
7471 
7472 	hclge_task_schedule(hdev, 0);
7473 }
7474 
7475 static void hclge_cfg_mac_mode(struct hclge_dev *hdev, bool enable)
7476 {
7477 #define HCLGE_LINK_STATUS_WAIT_CNT  3
7478 
7479 	struct hclge_desc desc;
7480 	struct hclge_config_mac_mode_cmd *req =
7481 		(struct hclge_config_mac_mode_cmd *)desc.data;
7482 	u32 loop_en = 0;
7483 	int ret;
7484 
7485 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, false);
7486 
7487 	if (enable) {
7488 		hnae3_set_bit(loop_en, HCLGE_MAC_TX_EN_B, 1U);
7489 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_EN_B, 1U);
7490 		hnae3_set_bit(loop_en, HCLGE_MAC_PAD_TX_B, 1U);
7491 		hnae3_set_bit(loop_en, HCLGE_MAC_PAD_RX_B, 1U);
7492 		hnae3_set_bit(loop_en, HCLGE_MAC_FCS_TX_B, 1U);
7493 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_B, 1U);
7494 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_STRIP_B, 1U);
7495 		hnae3_set_bit(loop_en, HCLGE_MAC_TX_OVERSIZE_TRUNCATE_B, 1U);
7496 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_OVERSIZE_TRUNCATE_B, 1U);
7497 		hnae3_set_bit(loop_en, HCLGE_MAC_TX_UNDER_MIN_ERR_B, 1U);
7498 	}
7499 
7500 	req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en);
7501 
7502 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7503 	if (ret) {
7504 		dev_err(&hdev->pdev->dev,
7505 			"mac enable fail, ret =%d.\n", ret);
7506 		return;
7507 	}
7508 
7509 	if (!enable)
7510 		hclge_mac_link_status_wait(hdev, HCLGE_LINK_STATUS_DOWN,
7511 					   HCLGE_LINK_STATUS_WAIT_CNT);
7512 }
7513 
7514 static int hclge_config_switch_param(struct hclge_dev *hdev, int vfid,
7515 				     u8 switch_param, u8 param_mask)
7516 {
7517 	struct hclge_mac_vlan_switch_cmd *req;
7518 	struct hclge_desc desc;
7519 	u32 func_id;
7520 	int ret;
7521 
7522 	func_id = hclge_get_port_number(HOST_PORT, 0, vfid, 0);
7523 	req = (struct hclge_mac_vlan_switch_cmd *)desc.data;
7524 
7525 	/* read current config parameter */
7526 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_SWITCH_PARAM,
7527 				   true);
7528 	req->roce_sel = HCLGE_MAC_VLAN_NIC_SEL;
7529 	req->func_id = cpu_to_le32(func_id);
7530 
7531 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7532 	if (ret) {
7533 		dev_err(&hdev->pdev->dev,
7534 			"read mac vlan switch parameter fail, ret = %d\n", ret);
7535 		return ret;
7536 	}
7537 
7538 	/* modify and write new config parameter */
7539 	hclge_comm_cmd_reuse_desc(&desc, false);
7540 	req->switch_param = (req->switch_param & param_mask) | switch_param;
7541 	req->param_mask = param_mask;
7542 
7543 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7544 	if (ret)
7545 		dev_err(&hdev->pdev->dev,
7546 			"set mac vlan switch parameter fail, ret = %d\n", ret);
7547 	return ret;
7548 }
7549 
7550 static void hclge_phy_link_status_wait(struct hclge_dev *hdev,
7551 				       int link_ret)
7552 {
7553 #define HCLGE_PHY_LINK_STATUS_NUM  200
7554 
7555 	struct phy_device *phydev = hdev->hw.mac.phydev;
7556 	int i = 0;
7557 	int ret;
7558 
7559 	do {
7560 		ret = phy_read_status(phydev);
7561 		if (ret) {
7562 			dev_err(&hdev->pdev->dev,
7563 				"phy update link status fail, ret = %d\n", ret);
7564 			return;
7565 		}
7566 
7567 		if (phydev->link == link_ret)
7568 			break;
7569 
7570 		msleep(HCLGE_LINK_STATUS_MS);
7571 	} while (++i < HCLGE_PHY_LINK_STATUS_NUM);
7572 }
7573 
7574 static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret,
7575 				      int wait_cnt)
7576 {
7577 	int link_status;
7578 	int i = 0;
7579 	int ret;
7580 
7581 	do {
7582 		ret = hclge_get_mac_link_status(hdev, &link_status);
7583 		if (ret)
7584 			return ret;
7585 		if (link_status == link_ret)
7586 			return 0;
7587 
7588 		msleep(HCLGE_LINK_STATUS_MS);
7589 	} while (++i < wait_cnt);
7590 	return -EBUSY;
7591 }
7592 
7593 static int hclge_mac_phy_link_status_wait(struct hclge_dev *hdev, bool en,
7594 					  bool is_phy)
7595 {
7596 #define HCLGE_MAC_LINK_STATUS_NUM  100
7597 
7598 	int link_ret;
7599 
7600 	link_ret = en ? HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN;
7601 
7602 	if (is_phy)
7603 		hclge_phy_link_status_wait(hdev, link_ret);
7604 
7605 	return hclge_mac_link_status_wait(hdev, link_ret,
7606 					  HCLGE_MAC_LINK_STATUS_NUM);
7607 }
7608 
7609 static int hclge_set_app_loopback(struct hclge_dev *hdev, bool en)
7610 {
7611 	struct hclge_config_mac_mode_cmd *req;
7612 	struct hclge_desc desc;
7613 	u32 loop_en;
7614 	int ret;
7615 
7616 	req = (struct hclge_config_mac_mode_cmd *)&desc.data[0];
7617 	/* 1 Read out the MAC mode config at first */
7618 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, true);
7619 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7620 	if (ret) {
7621 		dev_err(&hdev->pdev->dev,
7622 			"mac loopback get fail, ret =%d.\n", ret);
7623 		return ret;
7624 	}
7625 
7626 	/* 2 Then setup the loopback flag */
7627 	loop_en = le32_to_cpu(req->txrx_pad_fcs_loop_en);
7628 	hnae3_set_bit(loop_en, HCLGE_MAC_APP_LP_B, en ? 1 : 0);
7629 
7630 	req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en);
7631 
7632 	/* 3 Config mac work mode with loopback flag
7633 	 * and its original configure parameters
7634 	 */
7635 	hclge_comm_cmd_reuse_desc(&desc, false);
7636 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7637 	if (ret)
7638 		dev_err(&hdev->pdev->dev,
7639 			"mac loopback set fail, ret =%d.\n", ret);
7640 	return ret;
7641 }
7642 
7643 static int hclge_cfg_common_loopback_cmd_send(struct hclge_dev *hdev, bool en,
7644 					      enum hnae3_loop loop_mode)
7645 {
7646 	struct hclge_common_lb_cmd *req;
7647 	struct hclge_desc desc;
7648 	u8 loop_mode_b;
7649 	int ret;
7650 
7651 	req = (struct hclge_common_lb_cmd *)desc.data;
7652 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK, false);
7653 
7654 	switch (loop_mode) {
7655 	case HNAE3_LOOP_SERIAL_SERDES:
7656 		loop_mode_b = HCLGE_CMD_SERDES_SERIAL_INNER_LOOP_B;
7657 		break;
7658 	case HNAE3_LOOP_PARALLEL_SERDES:
7659 		loop_mode_b = HCLGE_CMD_SERDES_PARALLEL_INNER_LOOP_B;
7660 		break;
7661 	case HNAE3_LOOP_PHY:
7662 		loop_mode_b = HCLGE_CMD_GE_PHY_INNER_LOOP_B;
7663 		break;
7664 	default:
7665 		dev_err(&hdev->pdev->dev,
7666 			"unsupported loopback mode %d\n", loop_mode);
7667 		return -ENOTSUPP;
7668 	}
7669 
7670 	req->mask = loop_mode_b;
7671 	if (en)
7672 		req->enable = loop_mode_b;
7673 
7674 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7675 	if (ret)
7676 		dev_err(&hdev->pdev->dev,
7677 			"failed to send loopback cmd, loop_mode = %d, ret = %d\n",
7678 			loop_mode, ret);
7679 
7680 	return ret;
7681 }
7682 
7683 static int hclge_cfg_common_loopback_wait(struct hclge_dev *hdev)
7684 {
7685 #define HCLGE_COMMON_LB_RETRY_MS	10
7686 #define HCLGE_COMMON_LB_RETRY_NUM	100
7687 
7688 	struct hclge_common_lb_cmd *req;
7689 	struct hclge_desc desc;
7690 	u32 i = 0;
7691 	int ret;
7692 
7693 	req = (struct hclge_common_lb_cmd *)desc.data;
7694 
7695 	do {
7696 		msleep(HCLGE_COMMON_LB_RETRY_MS);
7697 		hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK,
7698 					   true);
7699 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7700 		if (ret) {
7701 			dev_err(&hdev->pdev->dev,
7702 				"failed to get loopback done status, ret = %d\n",
7703 				ret);
7704 			return ret;
7705 		}
7706 	} while (++i < HCLGE_COMMON_LB_RETRY_NUM &&
7707 		 !(req->result & HCLGE_CMD_COMMON_LB_DONE_B));
7708 
7709 	if (!(req->result & HCLGE_CMD_COMMON_LB_DONE_B)) {
7710 		dev_err(&hdev->pdev->dev, "wait loopback timeout\n");
7711 		return -EBUSY;
7712 	} else if (!(req->result & HCLGE_CMD_COMMON_LB_SUCCESS_B)) {
7713 		dev_err(&hdev->pdev->dev, "failed to do loopback test\n");
7714 		return -EIO;
7715 	}
7716 
7717 	return 0;
7718 }
7719 
7720 static int hclge_cfg_common_loopback(struct hclge_dev *hdev, bool en,
7721 				     enum hnae3_loop loop_mode)
7722 {
7723 	int ret;
7724 
7725 	ret = hclge_cfg_common_loopback_cmd_send(hdev, en, loop_mode);
7726 	if (ret)
7727 		return ret;
7728 
7729 	return hclge_cfg_common_loopback_wait(hdev);
7730 }
7731 
7732 static int hclge_set_common_loopback(struct hclge_dev *hdev, bool en,
7733 				     enum hnae3_loop loop_mode)
7734 {
7735 	int ret;
7736 
7737 	ret = hclge_cfg_common_loopback(hdev, en, loop_mode);
7738 	if (ret)
7739 		return ret;
7740 
7741 	hclge_cfg_mac_mode(hdev, en);
7742 
7743 	ret = hclge_mac_phy_link_status_wait(hdev, en, false);
7744 	if (ret)
7745 		dev_err(&hdev->pdev->dev,
7746 			"serdes loopback config mac mode timeout\n");
7747 
7748 	return ret;
7749 }
7750 
7751 static int hclge_enable_phy_loopback(struct hclge_dev *hdev,
7752 				     struct phy_device *phydev)
7753 {
7754 	int ret;
7755 
7756 	if (!phydev->suspended) {
7757 		ret = phy_suspend(phydev);
7758 		if (ret)
7759 			return ret;
7760 	}
7761 
7762 	ret = phy_resume(phydev);
7763 	if (ret)
7764 		return ret;
7765 
7766 	return phy_loopback(phydev, true);
7767 }
7768 
7769 static int hclge_disable_phy_loopback(struct hclge_dev *hdev,
7770 				      struct phy_device *phydev)
7771 {
7772 	int ret;
7773 
7774 	ret = phy_loopback(phydev, false);
7775 	if (ret)
7776 		return ret;
7777 
7778 	return phy_suspend(phydev);
7779 }
7780 
7781 static int hclge_set_phy_loopback(struct hclge_dev *hdev, bool en)
7782 {
7783 	struct phy_device *phydev = hdev->hw.mac.phydev;
7784 	int ret;
7785 
7786 	if (!phydev) {
7787 		if (hnae3_dev_phy_imp_supported(hdev))
7788 			return hclge_set_common_loopback(hdev, en,
7789 							 HNAE3_LOOP_PHY);
7790 		return -ENOTSUPP;
7791 	}
7792 
7793 	if (en)
7794 		ret = hclge_enable_phy_loopback(hdev, phydev);
7795 	else
7796 		ret = hclge_disable_phy_loopback(hdev, phydev);
7797 	if (ret) {
7798 		dev_err(&hdev->pdev->dev,
7799 			"set phy loopback fail, ret = %d\n", ret);
7800 		return ret;
7801 	}
7802 
7803 	hclge_cfg_mac_mode(hdev, en);
7804 
7805 	ret = hclge_mac_phy_link_status_wait(hdev, en, true);
7806 	if (ret)
7807 		dev_err(&hdev->pdev->dev,
7808 			"phy loopback config mac mode timeout\n");
7809 
7810 	return ret;
7811 }
7812 
7813 static int hclge_tqp_enable_cmd_send(struct hclge_dev *hdev, u16 tqp_id,
7814 				     u16 stream_id, bool enable)
7815 {
7816 	struct hclge_desc desc;
7817 	struct hclge_cfg_com_tqp_queue_cmd *req =
7818 		(struct hclge_cfg_com_tqp_queue_cmd *)desc.data;
7819 
7820 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
7821 	req->tqp_id = cpu_to_le16(tqp_id);
7822 	req->stream_id = cpu_to_le16(stream_id);
7823 	if (enable)
7824 		req->enable |= 1U << HCLGE_TQP_ENABLE_B;
7825 
7826 	return hclge_cmd_send(&hdev->hw, &desc, 1);
7827 }
7828 
7829 static int hclge_tqp_enable(struct hnae3_handle *handle, bool enable)
7830 {
7831 	struct hclge_vport *vport = hclge_get_vport(handle);
7832 	struct hclge_dev *hdev = vport->back;
7833 	int ret;
7834 	u16 i;
7835 
7836 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
7837 		ret = hclge_tqp_enable_cmd_send(hdev, i, 0, enable);
7838 		if (ret)
7839 			return ret;
7840 	}
7841 	return 0;
7842 }
7843 
7844 static int hclge_set_loopback(struct hnae3_handle *handle,
7845 			      enum hnae3_loop loop_mode, bool en)
7846 {
7847 	struct hclge_vport *vport = hclge_get_vport(handle);
7848 	struct hclge_dev *hdev = vport->back;
7849 	int ret = 0;
7850 
7851 	/* Loopback can be enabled in three places: SSU, MAC, and serdes. By
7852 	 * default, SSU loopback is enabled, so if the SMAC and the DMAC are
7853 	 * the same, the packets are looped back in the SSU. If SSU loopback
7854 	 * is disabled, packets can reach MAC even if SMAC is the same as DMAC.
7855 	 */
7856 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
7857 		u8 switch_param = en ? 0 : BIT(HCLGE_SWITCH_ALW_LPBK_B);
7858 
7859 		ret = hclge_config_switch_param(hdev, PF_VPORT_ID, switch_param,
7860 						HCLGE_SWITCH_ALW_LPBK_MASK);
7861 		if (ret)
7862 			return ret;
7863 	}
7864 
7865 	switch (loop_mode) {
7866 	case HNAE3_LOOP_APP:
7867 		ret = hclge_set_app_loopback(hdev, en);
7868 		break;
7869 	case HNAE3_LOOP_SERIAL_SERDES:
7870 	case HNAE3_LOOP_PARALLEL_SERDES:
7871 		ret = hclge_set_common_loopback(hdev, en, loop_mode);
7872 		break;
7873 	case HNAE3_LOOP_PHY:
7874 		ret = hclge_set_phy_loopback(hdev, en);
7875 		break;
7876 	case HNAE3_LOOP_EXTERNAL:
7877 		break;
7878 	default:
7879 		ret = -ENOTSUPP;
7880 		dev_err(&hdev->pdev->dev,
7881 			"loop_mode %d is not supported\n", loop_mode);
7882 		break;
7883 	}
7884 
7885 	if (ret)
7886 		return ret;
7887 
7888 	ret = hclge_tqp_enable(handle, en);
7889 	if (ret)
7890 		dev_err(&hdev->pdev->dev, "failed to %s tqp in loopback, ret = %d\n",
7891 			en ? "enable" : "disable", ret);
7892 
7893 	return ret;
7894 }
7895 
7896 static int hclge_set_default_loopback(struct hclge_dev *hdev)
7897 {
7898 	int ret;
7899 
7900 	ret = hclge_set_app_loopback(hdev, false);
7901 	if (ret)
7902 		return ret;
7903 
7904 	ret = hclge_cfg_common_loopback(hdev, false, HNAE3_LOOP_SERIAL_SERDES);
7905 	if (ret)
7906 		return ret;
7907 
7908 	return hclge_cfg_common_loopback(hdev, false,
7909 					 HNAE3_LOOP_PARALLEL_SERDES);
7910 }
7911 
7912 static void hclge_flush_link_update(struct hclge_dev *hdev)
7913 {
7914 #define HCLGE_FLUSH_LINK_TIMEOUT	100000
7915 
7916 	unsigned long last = hdev->serv_processed_cnt;
7917 	int i = 0;
7918 
7919 	while (test_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state) &&
7920 	       i++ < HCLGE_FLUSH_LINK_TIMEOUT &&
7921 	       last == hdev->serv_processed_cnt)
7922 		usleep_range(1, 1);
7923 }
7924 
7925 static void hclge_set_timer_task(struct hnae3_handle *handle, bool enable)
7926 {
7927 	struct hclge_vport *vport = hclge_get_vport(handle);
7928 	struct hclge_dev *hdev = vport->back;
7929 
7930 	if (enable) {
7931 		hclge_task_schedule(hdev, 0);
7932 	} else {
7933 		/* Set the DOWN flag here to disable link updating */
7934 		set_bit(HCLGE_STATE_DOWN, &hdev->state);
7935 
7936 		/* flush memory to make sure DOWN is seen by service task */
7937 		smp_mb__before_atomic();
7938 		hclge_flush_link_update(hdev);
7939 	}
7940 }
7941 
7942 static int hclge_ae_start(struct hnae3_handle *handle)
7943 {
7944 	struct hclge_vport *vport = hclge_get_vport(handle);
7945 	struct hclge_dev *hdev = vport->back;
7946 
7947 	/* mac enable */
7948 	hclge_cfg_mac_mode(hdev, true);
7949 	clear_bit(HCLGE_STATE_DOWN, &hdev->state);
7950 	hdev->hw.mac.link = 0;
7951 
7952 	/* reset tqp stats */
7953 	hclge_comm_reset_tqp_stats(handle);
7954 
7955 	hclge_mac_start_phy(hdev);
7956 
7957 	return 0;
7958 }
7959 
7960 static void hclge_ae_stop(struct hnae3_handle *handle)
7961 {
7962 	struct hclge_vport *vport = hclge_get_vport(handle);
7963 	struct hclge_dev *hdev = vport->back;
7964 
7965 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
7966 	spin_lock_bh(&hdev->fd_rule_lock);
7967 	hclge_clear_arfs_rules(hdev);
7968 	spin_unlock_bh(&hdev->fd_rule_lock);
7969 
7970 	/* If it is not PF reset or FLR, the firmware will disable the MAC,
7971 	 * so it only need to stop phy here.
7972 	 */
7973 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) {
7974 		hclge_pfc_pause_en_cfg(hdev, HCLGE_PFC_TX_RX_DISABLE,
7975 				       HCLGE_PFC_DISABLE);
7976 		if (hdev->reset_type != HNAE3_FUNC_RESET &&
7977 		    hdev->reset_type != HNAE3_FLR_RESET) {
7978 			hclge_mac_stop_phy(hdev);
7979 			hclge_update_link_status(hdev);
7980 			return;
7981 		}
7982 	}
7983 
7984 	hclge_reset_tqp(handle);
7985 
7986 	hclge_config_mac_tnl_int(hdev, false);
7987 
7988 	/* Mac disable */
7989 	hclge_cfg_mac_mode(hdev, false);
7990 
7991 	hclge_mac_stop_phy(hdev);
7992 
7993 	/* reset tqp stats */
7994 	hclge_comm_reset_tqp_stats(handle);
7995 	hclge_update_link_status(hdev);
7996 }
7997 
7998 int hclge_vport_start(struct hclge_vport *vport)
7999 {
8000 	struct hclge_dev *hdev = vport->back;
8001 
8002 	set_bit(HCLGE_VPORT_STATE_INITED, &vport->state);
8003 	set_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
8004 	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
8005 	vport->last_active_jiffies = jiffies;
8006 	vport->need_notify = 0;
8007 
8008 	if (test_bit(vport->vport_id, hdev->vport_config_block)) {
8009 		if (vport->vport_id) {
8010 			hclge_restore_mac_table_common(vport);
8011 			hclge_restore_vport_vlan_table(vport);
8012 		} else {
8013 			hclge_restore_hw_table(hdev);
8014 		}
8015 	}
8016 
8017 	clear_bit(vport->vport_id, hdev->vport_config_block);
8018 
8019 	return 0;
8020 }
8021 
8022 void hclge_vport_stop(struct hclge_vport *vport)
8023 {
8024 	clear_bit(HCLGE_VPORT_STATE_INITED, &vport->state);
8025 	clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
8026 	vport->need_notify = 0;
8027 }
8028 
8029 static int hclge_client_start(struct hnae3_handle *handle)
8030 {
8031 	struct hclge_vport *vport = hclge_get_vport(handle);
8032 
8033 	return hclge_vport_start(vport);
8034 }
8035 
8036 static void hclge_client_stop(struct hnae3_handle *handle)
8037 {
8038 	struct hclge_vport *vport = hclge_get_vport(handle);
8039 
8040 	hclge_vport_stop(vport);
8041 }
8042 
8043 static int hclge_get_mac_vlan_cmd_status(struct hclge_vport *vport,
8044 					 u16 cmdq_resp, u8  resp_code,
8045 					 enum hclge_mac_vlan_tbl_opcode op)
8046 {
8047 	struct hclge_dev *hdev = vport->back;
8048 
8049 	if (cmdq_resp) {
8050 		dev_err(&hdev->pdev->dev,
8051 			"cmdq execute failed for get_mac_vlan_cmd_status,status=%u.\n",
8052 			cmdq_resp);
8053 		return -EIO;
8054 	}
8055 
8056 	if (op == HCLGE_MAC_VLAN_ADD) {
8057 		if (!resp_code || resp_code == 1)
8058 			return 0;
8059 		else if (resp_code == HCLGE_ADD_UC_OVERFLOW ||
8060 			 resp_code == HCLGE_ADD_MC_OVERFLOW)
8061 			return -ENOSPC;
8062 
8063 		dev_err(&hdev->pdev->dev,
8064 			"add mac addr failed for undefined, code=%u.\n",
8065 			resp_code);
8066 		return -EIO;
8067 	} else if (op == HCLGE_MAC_VLAN_REMOVE) {
8068 		if (!resp_code) {
8069 			return 0;
8070 		} else if (resp_code == 1) {
8071 			dev_dbg(&hdev->pdev->dev,
8072 				"remove mac addr failed for miss.\n");
8073 			return -ENOENT;
8074 		}
8075 
8076 		dev_err(&hdev->pdev->dev,
8077 			"remove mac addr failed for undefined, code=%u.\n",
8078 			resp_code);
8079 		return -EIO;
8080 	} else if (op == HCLGE_MAC_VLAN_LKUP) {
8081 		if (!resp_code) {
8082 			return 0;
8083 		} else if (resp_code == 1) {
8084 			dev_dbg(&hdev->pdev->dev,
8085 				"lookup mac addr failed for miss.\n");
8086 			return -ENOENT;
8087 		}
8088 
8089 		dev_err(&hdev->pdev->dev,
8090 			"lookup mac addr failed for undefined, code=%u.\n",
8091 			resp_code);
8092 		return -EIO;
8093 	}
8094 
8095 	dev_err(&hdev->pdev->dev,
8096 		"unknown opcode for get_mac_vlan_cmd_status, opcode=%d.\n", op);
8097 
8098 	return -EINVAL;
8099 }
8100 
8101 static int hclge_update_desc_vfid(struct hclge_desc *desc, int vfid, bool clr)
8102 {
8103 #define HCLGE_VF_NUM_IN_FIRST_DESC 192
8104 
8105 	unsigned int word_num;
8106 	unsigned int bit_num;
8107 
8108 	if (vfid > 255 || vfid < 0)
8109 		return -EIO;
8110 
8111 	if (vfid >= 0 && vfid < HCLGE_VF_NUM_IN_FIRST_DESC) {
8112 		word_num = vfid / 32;
8113 		bit_num  = vfid % 32;
8114 		if (clr)
8115 			desc[1].data[word_num] &= cpu_to_le32(~(1 << bit_num));
8116 		else
8117 			desc[1].data[word_num] |= cpu_to_le32(1 << bit_num);
8118 	} else {
8119 		word_num = (vfid - HCLGE_VF_NUM_IN_FIRST_DESC) / 32;
8120 		bit_num  = vfid % 32;
8121 		if (clr)
8122 			desc[2].data[word_num] &= cpu_to_le32(~(1 << bit_num));
8123 		else
8124 			desc[2].data[word_num] |= cpu_to_le32(1 << bit_num);
8125 	}
8126 
8127 	return 0;
8128 }
8129 
8130 static bool hclge_is_all_function_id_zero(struct hclge_desc *desc)
8131 {
8132 #define HCLGE_DESC_NUMBER 3
8133 #define HCLGE_FUNC_NUMBER_PER_DESC 6
8134 	int i, j;
8135 
8136 	for (i = 1; i < HCLGE_DESC_NUMBER; i++)
8137 		for (j = 0; j < HCLGE_FUNC_NUMBER_PER_DESC; j++)
8138 			if (desc[i].data[j])
8139 				return false;
8140 
8141 	return true;
8142 }
8143 
8144 static void hclge_prepare_mac_addr(struct hclge_mac_vlan_tbl_entry_cmd *new_req,
8145 				   const u8 *addr, bool is_mc)
8146 {
8147 	const unsigned char *mac_addr = addr;
8148 	u32 high_val = mac_addr[2] << 16 | (mac_addr[3] << 24) |
8149 		       (mac_addr[0]) | (mac_addr[1] << 8);
8150 	u32 low_val  = mac_addr[4] | (mac_addr[5] << 8);
8151 
8152 	hnae3_set_bit(new_req->flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1);
8153 	if (is_mc) {
8154 		hnae3_set_bit(new_req->entry_type, HCLGE_MAC_VLAN_BIT1_EN_B, 1);
8155 		hnae3_set_bit(new_req->mc_mac_en, HCLGE_MAC_VLAN_BIT0_EN_B, 1);
8156 	}
8157 
8158 	new_req->mac_addr_hi32 = cpu_to_le32(high_val);
8159 	new_req->mac_addr_lo16 = cpu_to_le16(low_val & 0xffff);
8160 }
8161 
8162 static int hclge_remove_mac_vlan_tbl(struct hclge_vport *vport,
8163 				     struct hclge_mac_vlan_tbl_entry_cmd *req)
8164 {
8165 	struct hclge_dev *hdev = vport->back;
8166 	struct hclge_desc desc;
8167 	u8 resp_code;
8168 	u16 retval;
8169 	int ret;
8170 
8171 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_REMOVE, false);
8172 
8173 	memcpy(desc.data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8174 
8175 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
8176 	if (ret) {
8177 		dev_err(&hdev->pdev->dev,
8178 			"del mac addr failed for cmd_send, ret =%d.\n",
8179 			ret);
8180 		return ret;
8181 	}
8182 	resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
8183 	retval = le16_to_cpu(desc.retval);
8184 
8185 	return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code,
8186 					     HCLGE_MAC_VLAN_REMOVE);
8187 }
8188 
8189 static int hclge_lookup_mac_vlan_tbl(struct hclge_vport *vport,
8190 				     struct hclge_mac_vlan_tbl_entry_cmd *req,
8191 				     struct hclge_desc *desc,
8192 				     bool is_mc)
8193 {
8194 	struct hclge_dev *hdev = vport->back;
8195 	u8 resp_code;
8196 	u16 retval;
8197 	int ret;
8198 
8199 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_MAC_VLAN_ADD, true);
8200 	if (is_mc) {
8201 		desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8202 		memcpy(desc[0].data,
8203 		       req,
8204 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8205 		hclge_cmd_setup_basic_desc(&desc[1],
8206 					   HCLGE_OPC_MAC_VLAN_ADD,
8207 					   true);
8208 		desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8209 		hclge_cmd_setup_basic_desc(&desc[2],
8210 					   HCLGE_OPC_MAC_VLAN_ADD,
8211 					   true);
8212 		ret = hclge_cmd_send(&hdev->hw, desc, 3);
8213 	} else {
8214 		memcpy(desc[0].data,
8215 		       req,
8216 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8217 		ret = hclge_cmd_send(&hdev->hw, desc, 1);
8218 	}
8219 	if (ret) {
8220 		dev_err(&hdev->pdev->dev,
8221 			"lookup mac addr failed for cmd_send, ret =%d.\n",
8222 			ret);
8223 		return ret;
8224 	}
8225 	resp_code = (le32_to_cpu(desc[0].data[0]) >> 8) & 0xff;
8226 	retval = le16_to_cpu(desc[0].retval);
8227 
8228 	return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code,
8229 					     HCLGE_MAC_VLAN_LKUP);
8230 }
8231 
8232 static int hclge_add_mac_vlan_tbl(struct hclge_vport *vport,
8233 				  struct hclge_mac_vlan_tbl_entry_cmd *req,
8234 				  struct hclge_desc *mc_desc)
8235 {
8236 	struct hclge_dev *hdev = vport->back;
8237 	int cfg_status;
8238 	u8 resp_code;
8239 	u16 retval;
8240 	int ret;
8241 
8242 	if (!mc_desc) {
8243 		struct hclge_desc desc;
8244 
8245 		hclge_cmd_setup_basic_desc(&desc,
8246 					   HCLGE_OPC_MAC_VLAN_ADD,
8247 					   false);
8248 		memcpy(desc.data, req,
8249 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8250 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
8251 		resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
8252 		retval = le16_to_cpu(desc.retval);
8253 
8254 		cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval,
8255 							   resp_code,
8256 							   HCLGE_MAC_VLAN_ADD);
8257 	} else {
8258 		hclge_comm_cmd_reuse_desc(&mc_desc[0], false);
8259 		mc_desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8260 		hclge_comm_cmd_reuse_desc(&mc_desc[1], false);
8261 		mc_desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8262 		hclge_comm_cmd_reuse_desc(&mc_desc[2], false);
8263 		mc_desc[2].flag &= cpu_to_le16(~HCLGE_COMM_CMD_FLAG_NEXT);
8264 		memcpy(mc_desc[0].data, req,
8265 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8266 		ret = hclge_cmd_send(&hdev->hw, mc_desc, 3);
8267 		resp_code = (le32_to_cpu(mc_desc[0].data[0]) >> 8) & 0xff;
8268 		retval = le16_to_cpu(mc_desc[0].retval);
8269 
8270 		cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval,
8271 							   resp_code,
8272 							   HCLGE_MAC_VLAN_ADD);
8273 	}
8274 
8275 	if (ret) {
8276 		dev_err(&hdev->pdev->dev,
8277 			"add mac addr failed for cmd_send, ret =%d.\n",
8278 			ret);
8279 		return ret;
8280 	}
8281 
8282 	return cfg_status;
8283 }
8284 
8285 static int hclge_set_umv_space(struct hclge_dev *hdev, u16 space_size,
8286 			       u16 *allocated_size)
8287 {
8288 	struct hclge_umv_spc_alc_cmd *req;
8289 	struct hclge_desc desc;
8290 	int ret;
8291 
8292 	req = (struct hclge_umv_spc_alc_cmd *)desc.data;
8293 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_ALLOCATE, false);
8294 
8295 	req->space_size = cpu_to_le32(space_size);
8296 
8297 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
8298 	if (ret) {
8299 		dev_err(&hdev->pdev->dev, "failed to set umv space, ret = %d\n",
8300 			ret);
8301 		return ret;
8302 	}
8303 
8304 	*allocated_size = le32_to_cpu(desc.data[1]);
8305 
8306 	return 0;
8307 }
8308 
8309 static int hclge_init_umv_space(struct hclge_dev *hdev)
8310 {
8311 	u16 allocated_size = 0;
8312 	int ret;
8313 
8314 	ret = hclge_set_umv_space(hdev, hdev->wanted_umv_size, &allocated_size);
8315 	if (ret)
8316 		return ret;
8317 
8318 	if (allocated_size < hdev->wanted_umv_size)
8319 		dev_warn(&hdev->pdev->dev,
8320 			 "failed to alloc umv space, want %u, get %u\n",
8321 			 hdev->wanted_umv_size, allocated_size);
8322 
8323 	hdev->max_umv_size = allocated_size;
8324 	hdev->priv_umv_size = hdev->max_umv_size / (hdev->num_alloc_vport + 1);
8325 	hdev->share_umv_size = hdev->priv_umv_size +
8326 			hdev->max_umv_size % (hdev->num_alloc_vport + 1);
8327 
8328 	if (hdev->ae_dev->dev_specs.mc_mac_size)
8329 		set_bit(HNAE3_DEV_SUPPORT_MC_MAC_MNG_B, hdev->ae_dev->caps);
8330 
8331 	return 0;
8332 }
8333 
8334 static void hclge_reset_umv_space(struct hclge_dev *hdev)
8335 {
8336 	struct hclge_vport *vport;
8337 	int i;
8338 
8339 	for (i = 0; i < hdev->num_alloc_vport; i++) {
8340 		vport = &hdev->vport[i];
8341 		vport->used_umv_num = 0;
8342 	}
8343 
8344 	mutex_lock(&hdev->vport_lock);
8345 	hdev->share_umv_size = hdev->priv_umv_size +
8346 			hdev->max_umv_size % (hdev->num_alloc_vport + 1);
8347 	mutex_unlock(&hdev->vport_lock);
8348 
8349 	hdev->used_mc_mac_num = 0;
8350 }
8351 
8352 static bool hclge_is_umv_space_full(struct hclge_vport *vport, bool need_lock)
8353 {
8354 	struct hclge_dev *hdev = vport->back;
8355 	bool is_full;
8356 
8357 	if (need_lock)
8358 		mutex_lock(&hdev->vport_lock);
8359 
8360 	is_full = (vport->used_umv_num >= hdev->priv_umv_size &&
8361 		   hdev->share_umv_size == 0);
8362 
8363 	if (need_lock)
8364 		mutex_unlock(&hdev->vport_lock);
8365 
8366 	return is_full;
8367 }
8368 
8369 static void hclge_update_umv_space(struct hclge_vport *vport, bool is_free)
8370 {
8371 	struct hclge_dev *hdev = vport->back;
8372 
8373 	if (is_free) {
8374 		if (vport->used_umv_num > hdev->priv_umv_size)
8375 			hdev->share_umv_size++;
8376 
8377 		if (vport->used_umv_num > 0)
8378 			vport->used_umv_num--;
8379 	} else {
8380 		if (vport->used_umv_num >= hdev->priv_umv_size &&
8381 		    hdev->share_umv_size > 0)
8382 			hdev->share_umv_size--;
8383 		vport->used_umv_num++;
8384 	}
8385 }
8386 
8387 static struct hclge_mac_node *hclge_find_mac_node(struct list_head *list,
8388 						  const u8 *mac_addr)
8389 {
8390 	struct hclge_mac_node *mac_node, *tmp;
8391 
8392 	list_for_each_entry_safe(mac_node, tmp, list, node)
8393 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
8394 			return mac_node;
8395 
8396 	return NULL;
8397 }
8398 
8399 static void hclge_update_mac_node(struct hclge_mac_node *mac_node,
8400 				  enum HCLGE_MAC_NODE_STATE state)
8401 {
8402 	switch (state) {
8403 	/* from set_rx_mode or tmp_add_list */
8404 	case HCLGE_MAC_TO_ADD:
8405 		if (mac_node->state == HCLGE_MAC_TO_DEL)
8406 			mac_node->state = HCLGE_MAC_ACTIVE;
8407 		break;
8408 	/* only from set_rx_mode */
8409 	case HCLGE_MAC_TO_DEL:
8410 		if (mac_node->state == HCLGE_MAC_TO_ADD) {
8411 			list_del(&mac_node->node);
8412 			kfree(mac_node);
8413 		} else {
8414 			mac_node->state = HCLGE_MAC_TO_DEL;
8415 		}
8416 		break;
8417 	/* only from tmp_add_list, the mac_node->state won't be
8418 	 * ACTIVE.
8419 	 */
8420 	case HCLGE_MAC_ACTIVE:
8421 		if (mac_node->state == HCLGE_MAC_TO_ADD)
8422 			mac_node->state = HCLGE_MAC_ACTIVE;
8423 
8424 		break;
8425 	}
8426 }
8427 
8428 int hclge_update_mac_list(struct hclge_vport *vport,
8429 			  enum HCLGE_MAC_NODE_STATE state,
8430 			  enum HCLGE_MAC_ADDR_TYPE mac_type,
8431 			  const unsigned char *addr)
8432 {
8433 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8434 	struct hclge_dev *hdev = vport->back;
8435 	struct hclge_mac_node *mac_node;
8436 	struct list_head *list;
8437 
8438 	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
8439 		&vport->uc_mac_list : &vport->mc_mac_list;
8440 
8441 	spin_lock_bh(&vport->mac_list_lock);
8442 
8443 	/* if the mac addr is already in the mac list, no need to add a new
8444 	 * one into it, just check the mac addr state, convert it to a new
8445 	 * state, or just remove it, or do nothing.
8446 	 */
8447 	mac_node = hclge_find_mac_node(list, addr);
8448 	if (mac_node) {
8449 		hclge_update_mac_node(mac_node, state);
8450 		spin_unlock_bh(&vport->mac_list_lock);
8451 		set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
8452 		return 0;
8453 	}
8454 
8455 	/* if this address is never added, unnecessary to delete */
8456 	if (state == HCLGE_MAC_TO_DEL) {
8457 		spin_unlock_bh(&vport->mac_list_lock);
8458 		hnae3_format_mac_addr(format_mac_addr, addr);
8459 		dev_err(&hdev->pdev->dev,
8460 			"failed to delete address %s from mac list\n",
8461 			format_mac_addr);
8462 		return -ENOENT;
8463 	}
8464 
8465 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
8466 	if (!mac_node) {
8467 		spin_unlock_bh(&vport->mac_list_lock);
8468 		return -ENOMEM;
8469 	}
8470 
8471 	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
8472 
8473 	mac_node->state = state;
8474 	ether_addr_copy(mac_node->mac_addr, addr);
8475 	list_add_tail(&mac_node->node, list);
8476 
8477 	spin_unlock_bh(&vport->mac_list_lock);
8478 
8479 	return 0;
8480 }
8481 
8482 static int hclge_add_uc_addr(struct hnae3_handle *handle,
8483 			     const unsigned char *addr)
8484 {
8485 	struct hclge_vport *vport = hclge_get_vport(handle);
8486 
8487 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_UC,
8488 				     addr);
8489 }
8490 
8491 int hclge_add_uc_addr_common(struct hclge_vport *vport,
8492 			     const unsigned char *addr)
8493 {
8494 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8495 	struct hclge_dev *hdev = vport->back;
8496 	struct hclge_mac_vlan_tbl_entry_cmd req;
8497 	struct hclge_desc desc;
8498 	u16 egress_port = 0;
8499 	int ret;
8500 
8501 	/* mac addr check */
8502 	if (is_zero_ether_addr(addr) ||
8503 	    is_broadcast_ether_addr(addr) ||
8504 	    is_multicast_ether_addr(addr)) {
8505 		hnae3_format_mac_addr(format_mac_addr, addr);
8506 		dev_err(&hdev->pdev->dev,
8507 			"Set_uc mac err! invalid mac:%s. is_zero:%d,is_br=%d,is_mul=%d\n",
8508 			 format_mac_addr, is_zero_ether_addr(addr),
8509 			 is_broadcast_ether_addr(addr),
8510 			 is_multicast_ether_addr(addr));
8511 		return -EINVAL;
8512 	}
8513 
8514 	memset(&req, 0, sizeof(req));
8515 
8516 	hnae3_set_field(egress_port, HCLGE_MAC_EPORT_VFID_M,
8517 			HCLGE_MAC_EPORT_VFID_S, vport->vport_id);
8518 
8519 	req.egress_port = cpu_to_le16(egress_port);
8520 
8521 	hclge_prepare_mac_addr(&req, addr, false);
8522 
8523 	/* Lookup the mac address in the mac_vlan table, and add
8524 	 * it if the entry is inexistent. Repeated unicast entry
8525 	 * is not allowed in the mac vlan table.
8526 	 */
8527 	ret = hclge_lookup_mac_vlan_tbl(vport, &req, &desc, false);
8528 	if (ret == -ENOENT) {
8529 		mutex_lock(&hdev->vport_lock);
8530 		if (!hclge_is_umv_space_full(vport, false)) {
8531 			ret = hclge_add_mac_vlan_tbl(vport, &req, NULL);
8532 			if (!ret)
8533 				hclge_update_umv_space(vport, false);
8534 			mutex_unlock(&hdev->vport_lock);
8535 			return ret;
8536 		}
8537 		mutex_unlock(&hdev->vport_lock);
8538 
8539 		if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE))
8540 			dev_err(&hdev->pdev->dev, "UC MAC table full(%u)\n",
8541 				hdev->priv_umv_size);
8542 
8543 		return -ENOSPC;
8544 	}
8545 
8546 	/* check if we just hit the duplicate */
8547 	if (!ret)
8548 		return -EEXIST;
8549 
8550 	return ret;
8551 }
8552 
8553 static int hclge_rm_uc_addr(struct hnae3_handle *handle,
8554 			    const unsigned char *addr)
8555 {
8556 	struct hclge_vport *vport = hclge_get_vport(handle);
8557 
8558 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_UC,
8559 				     addr);
8560 }
8561 
8562 int hclge_rm_uc_addr_common(struct hclge_vport *vport,
8563 			    const unsigned char *addr)
8564 {
8565 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8566 	struct hclge_dev *hdev = vport->back;
8567 	struct hclge_mac_vlan_tbl_entry_cmd req;
8568 	int ret;
8569 
8570 	/* mac addr check */
8571 	if (is_zero_ether_addr(addr) ||
8572 	    is_broadcast_ether_addr(addr) ||
8573 	    is_multicast_ether_addr(addr)) {
8574 		hnae3_format_mac_addr(format_mac_addr, addr);
8575 		dev_dbg(&hdev->pdev->dev, "Remove mac err! invalid mac:%s.\n",
8576 			format_mac_addr);
8577 		return -EINVAL;
8578 	}
8579 
8580 	memset(&req, 0, sizeof(req));
8581 	hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0);
8582 	hclge_prepare_mac_addr(&req, addr, false);
8583 	ret = hclge_remove_mac_vlan_tbl(vport, &req);
8584 	if (!ret || ret == -ENOENT) {
8585 		mutex_lock(&hdev->vport_lock);
8586 		hclge_update_umv_space(vport, true);
8587 		mutex_unlock(&hdev->vport_lock);
8588 		return 0;
8589 	}
8590 
8591 	return ret;
8592 }
8593 
8594 static int hclge_add_mc_addr(struct hnae3_handle *handle,
8595 			     const unsigned char *addr)
8596 {
8597 	struct hclge_vport *vport = hclge_get_vport(handle);
8598 
8599 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_MC,
8600 				     addr);
8601 }
8602 
8603 int hclge_add_mc_addr_common(struct hclge_vport *vport,
8604 			     const unsigned char *addr)
8605 {
8606 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8607 	struct hclge_dev *hdev = vport->back;
8608 	struct hclge_mac_vlan_tbl_entry_cmd req;
8609 	struct hclge_desc desc[3];
8610 	bool is_new_addr = false;
8611 	int status;
8612 
8613 	/* mac addr check */
8614 	if (!is_multicast_ether_addr(addr)) {
8615 		hnae3_format_mac_addr(format_mac_addr, addr);
8616 		dev_err(&hdev->pdev->dev,
8617 			"Add mc mac err! invalid mac:%s.\n",
8618 			 format_mac_addr);
8619 		return -EINVAL;
8620 	}
8621 	memset(&req, 0, sizeof(req));
8622 	hclge_prepare_mac_addr(&req, addr, true);
8623 	status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true);
8624 	if (status) {
8625 		if (hnae3_ae_dev_mc_mac_mng_supported(hdev->ae_dev) &&
8626 		    hdev->used_mc_mac_num >=
8627 		    hdev->ae_dev->dev_specs.mc_mac_size)
8628 			goto err_no_space;
8629 
8630 		is_new_addr = true;
8631 
8632 		/* This mac addr do not exist, add new entry for it */
8633 		memset(desc[0].data, 0, sizeof(desc[0].data));
8634 		memset(desc[1].data, 0, sizeof(desc[0].data));
8635 		memset(desc[2].data, 0, sizeof(desc[0].data));
8636 	}
8637 	status = hclge_update_desc_vfid(desc, vport->vport_id, false);
8638 	if (status)
8639 		return status;
8640 	status = hclge_add_mac_vlan_tbl(vport, &req, desc);
8641 	if (status == -ENOSPC)
8642 		goto err_no_space;
8643 	else if (!status && is_new_addr)
8644 		hdev->used_mc_mac_num++;
8645 
8646 	return status;
8647 
8648 err_no_space:
8649 	/* if already overflow, not to print each time */
8650 	if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE)) {
8651 		vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE;
8652 		dev_err(&hdev->pdev->dev, "mc mac vlan table is full\n");
8653 	}
8654 
8655 	return -ENOSPC;
8656 }
8657 
8658 static int hclge_rm_mc_addr(struct hnae3_handle *handle,
8659 			    const unsigned char *addr)
8660 {
8661 	struct hclge_vport *vport = hclge_get_vport(handle);
8662 
8663 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_MC,
8664 				     addr);
8665 }
8666 
8667 int hclge_rm_mc_addr_common(struct hclge_vport *vport,
8668 			    const unsigned char *addr)
8669 {
8670 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8671 	struct hclge_dev *hdev = vport->back;
8672 	struct hclge_mac_vlan_tbl_entry_cmd req;
8673 	enum hclge_comm_cmd_status status;
8674 	struct hclge_desc desc[3];
8675 
8676 	/* mac addr check */
8677 	if (!is_multicast_ether_addr(addr)) {
8678 		hnae3_format_mac_addr(format_mac_addr, addr);
8679 		dev_dbg(&hdev->pdev->dev,
8680 			"Remove mc mac err! invalid mac:%s.\n",
8681 			 format_mac_addr);
8682 		return -EINVAL;
8683 	}
8684 
8685 	memset(&req, 0, sizeof(req));
8686 	hclge_prepare_mac_addr(&req, addr, true);
8687 	status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true);
8688 	if (!status) {
8689 		/* This mac addr exist, remove this handle's VFID for it */
8690 		status = hclge_update_desc_vfid(desc, vport->vport_id, true);
8691 		if (status)
8692 			return status;
8693 
8694 		if (hclge_is_all_function_id_zero(desc)) {
8695 			/* All the vfid is zero, so need to delete this entry */
8696 			status = hclge_remove_mac_vlan_tbl(vport, &req);
8697 			if (!status)
8698 				hdev->used_mc_mac_num--;
8699 		} else {
8700 			/* Not all the vfid is zero, update the vfid */
8701 			status = hclge_add_mac_vlan_tbl(vport, &req, desc);
8702 		}
8703 	} else if (status == -ENOENT) {
8704 		status = 0;
8705 	}
8706 
8707 	return status;
8708 }
8709 
8710 static void hclge_sync_vport_mac_list(struct hclge_vport *vport,
8711 				      struct list_head *list,
8712 				      enum HCLGE_MAC_ADDR_TYPE mac_type)
8713 {
8714 	int (*sync)(struct hclge_vport *vport, const unsigned char *addr);
8715 	struct hclge_mac_node *mac_node, *tmp;
8716 	int ret;
8717 
8718 	if (mac_type == HCLGE_MAC_ADDR_UC)
8719 		sync = hclge_add_uc_addr_common;
8720 	else
8721 		sync = hclge_add_mc_addr_common;
8722 
8723 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8724 		ret = sync(vport, mac_node->mac_addr);
8725 		if (!ret) {
8726 			mac_node->state = HCLGE_MAC_ACTIVE;
8727 		} else {
8728 			set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE,
8729 				&vport->state);
8730 
8731 			/* If one unicast mac address is existing in hardware,
8732 			 * we need to try whether other unicast mac addresses
8733 			 * are new addresses that can be added.
8734 			 * Multicast mac address can be reusable, even though
8735 			 * there is no space to add new multicast mac address,
8736 			 * we should check whether other mac addresses are
8737 			 * existing in hardware for reuse.
8738 			 */
8739 			if ((mac_type == HCLGE_MAC_ADDR_UC && ret != -EEXIST) ||
8740 			    (mac_type == HCLGE_MAC_ADDR_MC && ret != -ENOSPC))
8741 				break;
8742 		}
8743 	}
8744 }
8745 
8746 static void hclge_unsync_vport_mac_list(struct hclge_vport *vport,
8747 					struct list_head *list,
8748 					enum HCLGE_MAC_ADDR_TYPE mac_type)
8749 {
8750 	int (*unsync)(struct hclge_vport *vport, const unsigned char *addr);
8751 	struct hclge_mac_node *mac_node, *tmp;
8752 	int ret;
8753 
8754 	if (mac_type == HCLGE_MAC_ADDR_UC)
8755 		unsync = hclge_rm_uc_addr_common;
8756 	else
8757 		unsync = hclge_rm_mc_addr_common;
8758 
8759 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8760 		ret = unsync(vport, mac_node->mac_addr);
8761 		if (!ret || ret == -ENOENT) {
8762 			list_del(&mac_node->node);
8763 			kfree(mac_node);
8764 		} else {
8765 			set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE,
8766 				&vport->state);
8767 			break;
8768 		}
8769 	}
8770 }
8771 
8772 static bool hclge_sync_from_add_list(struct list_head *add_list,
8773 				     struct list_head *mac_list)
8774 {
8775 	struct hclge_mac_node *mac_node, *tmp, *new_node;
8776 	bool all_added = true;
8777 
8778 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
8779 		if (mac_node->state == HCLGE_MAC_TO_ADD)
8780 			all_added = false;
8781 
8782 		/* if the mac address from tmp_add_list is not in the
8783 		 * uc/mc_mac_list, it means have received a TO_DEL request
8784 		 * during the time window of adding the mac address into mac
8785 		 * table. if mac_node state is ACTIVE, then change it to TO_DEL,
8786 		 * then it will be removed at next time. else it must be TO_ADD,
8787 		 * this address hasn't been added into mac table,
8788 		 * so just remove the mac node.
8789 		 */
8790 		new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr);
8791 		if (new_node) {
8792 			hclge_update_mac_node(new_node, mac_node->state);
8793 			list_del(&mac_node->node);
8794 			kfree(mac_node);
8795 		} else if (mac_node->state == HCLGE_MAC_ACTIVE) {
8796 			mac_node->state = HCLGE_MAC_TO_DEL;
8797 			list_move_tail(&mac_node->node, mac_list);
8798 		} else {
8799 			list_del(&mac_node->node);
8800 			kfree(mac_node);
8801 		}
8802 	}
8803 
8804 	return all_added;
8805 }
8806 
8807 static void hclge_sync_from_del_list(struct list_head *del_list,
8808 				     struct list_head *mac_list)
8809 {
8810 	struct hclge_mac_node *mac_node, *tmp, *new_node;
8811 
8812 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
8813 		new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr);
8814 		if (new_node) {
8815 			/* If the mac addr exists in the mac list, it means
8816 			 * received a new TO_ADD request during the time window
8817 			 * of configuring the mac address. For the mac node
8818 			 * state is TO_ADD, and the address is already in the
8819 			 * in the hardware(due to delete fail), so we just need
8820 			 * to change the mac node state to ACTIVE.
8821 			 */
8822 			new_node->state = HCLGE_MAC_ACTIVE;
8823 			list_del(&mac_node->node);
8824 			kfree(mac_node);
8825 		} else {
8826 			list_move_tail(&mac_node->node, mac_list);
8827 		}
8828 	}
8829 }
8830 
8831 static void hclge_update_overflow_flags(struct hclge_vport *vport,
8832 					enum HCLGE_MAC_ADDR_TYPE mac_type,
8833 					bool is_all_added)
8834 {
8835 	if (mac_type == HCLGE_MAC_ADDR_UC) {
8836 		if (is_all_added)
8837 			vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_UPE;
8838 		else if (hclge_is_umv_space_full(vport, true))
8839 			vport->overflow_promisc_flags |= HNAE3_OVERFLOW_UPE;
8840 	} else {
8841 		if (is_all_added)
8842 			vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_MPE;
8843 		else
8844 			vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE;
8845 	}
8846 }
8847 
8848 static void hclge_sync_vport_mac_table(struct hclge_vport *vport,
8849 				       enum HCLGE_MAC_ADDR_TYPE mac_type)
8850 {
8851 	struct hclge_mac_node *mac_node, *tmp, *new_node;
8852 	struct list_head tmp_add_list, tmp_del_list;
8853 	struct list_head *list;
8854 	bool all_added;
8855 
8856 	INIT_LIST_HEAD(&tmp_add_list);
8857 	INIT_LIST_HEAD(&tmp_del_list);
8858 
8859 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
8860 	 * we can add/delete these mac addr outside the spin lock
8861 	 */
8862 	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
8863 		&vport->uc_mac_list : &vport->mc_mac_list;
8864 
8865 	spin_lock_bh(&vport->mac_list_lock);
8866 
8867 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8868 		switch (mac_node->state) {
8869 		case HCLGE_MAC_TO_DEL:
8870 			list_move_tail(&mac_node->node, &tmp_del_list);
8871 			break;
8872 		case HCLGE_MAC_TO_ADD:
8873 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
8874 			if (!new_node)
8875 				goto stop_traverse;
8876 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
8877 			new_node->state = mac_node->state;
8878 			list_add_tail(&new_node->node, &tmp_add_list);
8879 			break;
8880 		default:
8881 			break;
8882 		}
8883 	}
8884 
8885 stop_traverse:
8886 	spin_unlock_bh(&vport->mac_list_lock);
8887 
8888 	/* delete first, in order to get max mac table space for adding */
8889 	hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type);
8890 	hclge_sync_vport_mac_list(vport, &tmp_add_list, mac_type);
8891 
8892 	/* if some mac addresses were added/deleted fail, move back to the
8893 	 * mac_list, and retry at next time.
8894 	 */
8895 	spin_lock_bh(&vport->mac_list_lock);
8896 
8897 	hclge_sync_from_del_list(&tmp_del_list, list);
8898 	all_added = hclge_sync_from_add_list(&tmp_add_list, list);
8899 
8900 	spin_unlock_bh(&vport->mac_list_lock);
8901 
8902 	hclge_update_overflow_flags(vport, mac_type, all_added);
8903 }
8904 
8905 static bool hclge_need_sync_mac_table(struct hclge_vport *vport)
8906 {
8907 	struct hclge_dev *hdev = vport->back;
8908 
8909 	if (test_bit(vport->vport_id, hdev->vport_config_block))
8910 		return false;
8911 
8912 	if (test_and_clear_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state))
8913 		return true;
8914 
8915 	return false;
8916 }
8917 
8918 static void hclge_sync_mac_table(struct hclge_dev *hdev)
8919 {
8920 	int i;
8921 
8922 	for (i = 0; i < hdev->num_alloc_vport; i++) {
8923 		struct hclge_vport *vport = &hdev->vport[i];
8924 
8925 		if (!hclge_need_sync_mac_table(vport))
8926 			continue;
8927 
8928 		hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_UC);
8929 		hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_MC);
8930 	}
8931 }
8932 
8933 static void hclge_build_del_list(struct list_head *list,
8934 				 bool is_del_list,
8935 				 struct list_head *tmp_del_list)
8936 {
8937 	struct hclge_mac_node *mac_cfg, *tmp;
8938 
8939 	list_for_each_entry_safe(mac_cfg, tmp, list, node) {
8940 		switch (mac_cfg->state) {
8941 		case HCLGE_MAC_TO_DEL:
8942 		case HCLGE_MAC_ACTIVE:
8943 			list_move_tail(&mac_cfg->node, tmp_del_list);
8944 			break;
8945 		case HCLGE_MAC_TO_ADD:
8946 			if (is_del_list) {
8947 				list_del(&mac_cfg->node);
8948 				kfree(mac_cfg);
8949 			}
8950 			break;
8951 		}
8952 	}
8953 }
8954 
8955 static void hclge_unsync_del_list(struct hclge_vport *vport,
8956 				  int (*unsync)(struct hclge_vport *vport,
8957 						const unsigned char *addr),
8958 				  bool is_del_list,
8959 				  struct list_head *tmp_del_list)
8960 {
8961 	struct hclge_mac_node *mac_cfg, *tmp;
8962 	int ret;
8963 
8964 	list_for_each_entry_safe(mac_cfg, tmp, tmp_del_list, node) {
8965 		ret = unsync(vport, mac_cfg->mac_addr);
8966 		if (!ret || ret == -ENOENT) {
8967 			/* clear all mac addr from hardware, but remain these
8968 			 * mac addr in the mac list, and restore them after
8969 			 * vf reset finished.
8970 			 */
8971 			if (!is_del_list &&
8972 			    mac_cfg->state == HCLGE_MAC_ACTIVE) {
8973 				mac_cfg->state = HCLGE_MAC_TO_ADD;
8974 			} else {
8975 				list_del(&mac_cfg->node);
8976 				kfree(mac_cfg);
8977 			}
8978 		} else if (is_del_list) {
8979 			mac_cfg->state = HCLGE_MAC_TO_DEL;
8980 		}
8981 	}
8982 }
8983 
8984 void hclge_rm_vport_all_mac_table(struct hclge_vport *vport, bool is_del_list,
8985 				  enum HCLGE_MAC_ADDR_TYPE mac_type)
8986 {
8987 	int (*unsync)(struct hclge_vport *vport, const unsigned char *addr);
8988 	struct hclge_dev *hdev = vport->back;
8989 	struct list_head tmp_del_list, *list;
8990 
8991 	if (mac_type == HCLGE_MAC_ADDR_UC) {
8992 		list = &vport->uc_mac_list;
8993 		unsync = hclge_rm_uc_addr_common;
8994 	} else {
8995 		list = &vport->mc_mac_list;
8996 		unsync = hclge_rm_mc_addr_common;
8997 	}
8998 
8999 	INIT_LIST_HEAD(&tmp_del_list);
9000 
9001 	if (!is_del_list)
9002 		set_bit(vport->vport_id, hdev->vport_config_block);
9003 
9004 	spin_lock_bh(&vport->mac_list_lock);
9005 
9006 	hclge_build_del_list(list, is_del_list, &tmp_del_list);
9007 
9008 	spin_unlock_bh(&vport->mac_list_lock);
9009 
9010 	hclge_unsync_del_list(vport, unsync, is_del_list, &tmp_del_list);
9011 
9012 	spin_lock_bh(&vport->mac_list_lock);
9013 
9014 	hclge_sync_from_del_list(&tmp_del_list, list);
9015 
9016 	spin_unlock_bh(&vport->mac_list_lock);
9017 }
9018 
9019 /* remove all mac address when uninitailize */
9020 static void hclge_uninit_vport_mac_list(struct hclge_vport *vport,
9021 					enum HCLGE_MAC_ADDR_TYPE mac_type)
9022 {
9023 	struct hclge_mac_node *mac_node, *tmp;
9024 	struct hclge_dev *hdev = vport->back;
9025 	struct list_head tmp_del_list, *list;
9026 
9027 	INIT_LIST_HEAD(&tmp_del_list);
9028 
9029 	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
9030 		&vport->uc_mac_list : &vport->mc_mac_list;
9031 
9032 	spin_lock_bh(&vport->mac_list_lock);
9033 
9034 	list_for_each_entry_safe(mac_node, tmp, list, node) {
9035 		switch (mac_node->state) {
9036 		case HCLGE_MAC_TO_DEL:
9037 		case HCLGE_MAC_ACTIVE:
9038 			list_move_tail(&mac_node->node, &tmp_del_list);
9039 			break;
9040 		case HCLGE_MAC_TO_ADD:
9041 			list_del(&mac_node->node);
9042 			kfree(mac_node);
9043 			break;
9044 		}
9045 	}
9046 
9047 	spin_unlock_bh(&vport->mac_list_lock);
9048 
9049 	hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type);
9050 
9051 	if (!list_empty(&tmp_del_list))
9052 		dev_warn(&hdev->pdev->dev,
9053 			 "uninit %s mac list for vport %u not completely.\n",
9054 			 mac_type == HCLGE_MAC_ADDR_UC ? "uc" : "mc",
9055 			 vport->vport_id);
9056 
9057 	list_for_each_entry_safe(mac_node, tmp, &tmp_del_list, node) {
9058 		list_del(&mac_node->node);
9059 		kfree(mac_node);
9060 	}
9061 }
9062 
9063 static void hclge_uninit_mac_table(struct hclge_dev *hdev)
9064 {
9065 	struct hclge_vport *vport;
9066 	int i;
9067 
9068 	for (i = 0; i < hdev->num_alloc_vport; i++) {
9069 		vport = &hdev->vport[i];
9070 		hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_UC);
9071 		hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_MC);
9072 	}
9073 }
9074 
9075 static int hclge_get_mac_ethertype_cmd_status(struct hclge_dev *hdev,
9076 					      u16 cmdq_resp, u8 resp_code)
9077 {
9078 #define HCLGE_ETHERTYPE_SUCCESS_ADD		0
9079 #define HCLGE_ETHERTYPE_ALREADY_ADD		1
9080 #define HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW	2
9081 #define HCLGE_ETHERTYPE_KEY_CONFLICT		3
9082 
9083 	int return_status;
9084 
9085 	if (cmdq_resp) {
9086 		dev_err(&hdev->pdev->dev,
9087 			"cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
9088 			cmdq_resp);
9089 		return -EIO;
9090 	}
9091 
9092 	switch (resp_code) {
9093 	case HCLGE_ETHERTYPE_SUCCESS_ADD:
9094 	case HCLGE_ETHERTYPE_ALREADY_ADD:
9095 		return_status = 0;
9096 		break;
9097 	case HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW:
9098 		dev_err(&hdev->pdev->dev,
9099 			"add mac ethertype failed for manager table overflow.\n");
9100 		return_status = -EIO;
9101 		break;
9102 	case HCLGE_ETHERTYPE_KEY_CONFLICT:
9103 		dev_err(&hdev->pdev->dev,
9104 			"add mac ethertype failed for key conflict.\n");
9105 		return_status = -EIO;
9106 		break;
9107 	default:
9108 		dev_err(&hdev->pdev->dev,
9109 			"add mac ethertype failed for undefined, code=%u.\n",
9110 			resp_code);
9111 		return_status = -EIO;
9112 	}
9113 
9114 	return return_status;
9115 }
9116 
9117 static int hclge_set_vf_mac(struct hnae3_handle *handle, int vf,
9118 			    u8 *mac_addr)
9119 {
9120 	struct hclge_vport *vport = hclge_get_vport(handle);
9121 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
9122 	struct hclge_dev *hdev = vport->back;
9123 
9124 	vport = hclge_get_vf_vport(hdev, vf);
9125 	if (!vport)
9126 		return -EINVAL;
9127 
9128 	hnae3_format_mac_addr(format_mac_addr, mac_addr);
9129 	if (ether_addr_equal(mac_addr, vport->vf_info.mac)) {
9130 		dev_info(&hdev->pdev->dev,
9131 			 "Specified MAC(=%s) is same as before, no change committed!\n",
9132 			 format_mac_addr);
9133 		return 0;
9134 	}
9135 
9136 	ether_addr_copy(vport->vf_info.mac, mac_addr);
9137 
9138 	/* there is a timewindow for PF to know VF unalive, it may
9139 	 * cause send mailbox fail, but it doesn't matter, VF will
9140 	 * query it when reinit.
9141 	 */
9142 	if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) {
9143 		dev_info(&hdev->pdev->dev,
9144 			 "MAC of VF %d has been set to %s, and it will be reinitialized!\n",
9145 			 vf, format_mac_addr);
9146 		(void)hclge_inform_reset_assert_to_vf(vport);
9147 		return 0;
9148 	}
9149 
9150 	dev_info(&hdev->pdev->dev,
9151 		 "MAC of VF %d has been set to %s, will be active after VF reset\n",
9152 		 vf, format_mac_addr);
9153 	return 0;
9154 }
9155 
9156 static int hclge_add_mgr_tbl(struct hclge_dev *hdev,
9157 			     const struct hclge_mac_mgr_tbl_entry_cmd *req)
9158 {
9159 	struct hclge_desc desc;
9160 	u8 resp_code;
9161 	u16 retval;
9162 	int ret;
9163 
9164 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_ETHTYPE_ADD, false);
9165 	memcpy(desc.data, req, sizeof(struct hclge_mac_mgr_tbl_entry_cmd));
9166 
9167 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9168 	if (ret) {
9169 		dev_err(&hdev->pdev->dev,
9170 			"add mac ethertype failed for cmd_send, ret =%d.\n",
9171 			ret);
9172 		return ret;
9173 	}
9174 
9175 	resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
9176 	retval = le16_to_cpu(desc.retval);
9177 
9178 	return hclge_get_mac_ethertype_cmd_status(hdev, retval, resp_code);
9179 }
9180 
9181 static int init_mgr_tbl(struct hclge_dev *hdev)
9182 {
9183 	int ret;
9184 	int i;
9185 
9186 	for (i = 0; i < ARRAY_SIZE(hclge_mgr_table); i++) {
9187 		ret = hclge_add_mgr_tbl(hdev, &hclge_mgr_table[i]);
9188 		if (ret) {
9189 			dev_err(&hdev->pdev->dev,
9190 				"add mac ethertype failed, ret =%d.\n",
9191 				ret);
9192 			return ret;
9193 		}
9194 	}
9195 
9196 	return 0;
9197 }
9198 
9199 static void hclge_get_mac_addr(struct hnae3_handle *handle, u8 *p)
9200 {
9201 	struct hclge_vport *vport = hclge_get_vport(handle);
9202 	struct hclge_dev *hdev = vport->back;
9203 
9204 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
9205 }
9206 
9207 int hclge_update_mac_node_for_dev_addr(struct hclge_vport *vport,
9208 				       const u8 *old_addr, const u8 *new_addr)
9209 {
9210 	struct list_head *list = &vport->uc_mac_list;
9211 	struct hclge_mac_node *old_node, *new_node;
9212 
9213 	new_node = hclge_find_mac_node(list, new_addr);
9214 	if (!new_node) {
9215 		new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
9216 		if (!new_node)
9217 			return -ENOMEM;
9218 
9219 		new_node->state = HCLGE_MAC_TO_ADD;
9220 		ether_addr_copy(new_node->mac_addr, new_addr);
9221 		list_add(&new_node->node, list);
9222 	} else {
9223 		if (new_node->state == HCLGE_MAC_TO_DEL)
9224 			new_node->state = HCLGE_MAC_ACTIVE;
9225 
9226 		/* make sure the new addr is in the list head, avoid dev
9227 		 * addr may be not re-added into mac table for the umv space
9228 		 * limitation after global/imp reset which will clear mac
9229 		 * table by hardware.
9230 		 */
9231 		list_move(&new_node->node, list);
9232 	}
9233 
9234 	if (old_addr && !ether_addr_equal(old_addr, new_addr)) {
9235 		old_node = hclge_find_mac_node(list, old_addr);
9236 		if (old_node) {
9237 			if (old_node->state == HCLGE_MAC_TO_ADD) {
9238 				list_del(&old_node->node);
9239 				kfree(old_node);
9240 			} else {
9241 				old_node->state = HCLGE_MAC_TO_DEL;
9242 			}
9243 		}
9244 	}
9245 
9246 	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
9247 
9248 	return 0;
9249 }
9250 
9251 static int hclge_set_mac_addr(struct hnae3_handle *handle, const void *p,
9252 			      bool is_first)
9253 {
9254 	const unsigned char *new_addr = (const unsigned char *)p;
9255 	struct hclge_vport *vport = hclge_get_vport(handle);
9256 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
9257 	struct hclge_dev *hdev = vport->back;
9258 	unsigned char *old_addr = NULL;
9259 	int ret;
9260 
9261 	/* mac addr check */
9262 	if (is_zero_ether_addr(new_addr) ||
9263 	    is_broadcast_ether_addr(new_addr) ||
9264 	    is_multicast_ether_addr(new_addr)) {
9265 		hnae3_format_mac_addr(format_mac_addr, new_addr);
9266 		dev_err(&hdev->pdev->dev,
9267 			"change uc mac err! invalid mac: %s.\n",
9268 			 format_mac_addr);
9269 		return -EINVAL;
9270 	}
9271 
9272 	ret = hclge_pause_addr_cfg(hdev, new_addr);
9273 	if (ret) {
9274 		dev_err(&hdev->pdev->dev,
9275 			"failed to configure mac pause address, ret = %d\n",
9276 			ret);
9277 		return ret;
9278 	}
9279 
9280 	if (!is_first)
9281 		old_addr = hdev->hw.mac.mac_addr;
9282 
9283 	spin_lock_bh(&vport->mac_list_lock);
9284 	ret = hclge_update_mac_node_for_dev_addr(vport, old_addr, new_addr);
9285 	if (ret) {
9286 		hnae3_format_mac_addr(format_mac_addr, new_addr);
9287 		dev_err(&hdev->pdev->dev,
9288 			"failed to change the mac addr:%s, ret = %d\n",
9289 			format_mac_addr, ret);
9290 		spin_unlock_bh(&vport->mac_list_lock);
9291 
9292 		if (!is_first)
9293 			hclge_pause_addr_cfg(hdev, old_addr);
9294 
9295 		return ret;
9296 	}
9297 	/* we must update dev addr with spin lock protect, preventing dev addr
9298 	 * being removed by set_rx_mode path.
9299 	 */
9300 	ether_addr_copy(hdev->hw.mac.mac_addr, new_addr);
9301 	spin_unlock_bh(&vport->mac_list_lock);
9302 
9303 	hclge_task_schedule(hdev, 0);
9304 
9305 	return 0;
9306 }
9307 
9308 static int hclge_mii_ioctl(struct hclge_dev *hdev, struct ifreq *ifr, int cmd)
9309 {
9310 	struct mii_ioctl_data *data = if_mii(ifr);
9311 
9312 	if (!hnae3_dev_phy_imp_supported(hdev))
9313 		return -EOPNOTSUPP;
9314 
9315 	switch (cmd) {
9316 	case SIOCGMIIPHY:
9317 		data->phy_id = hdev->hw.mac.phy_addr;
9318 		/* this command reads phy id and register at the same time */
9319 		fallthrough;
9320 	case SIOCGMIIREG:
9321 		data->val_out = hclge_read_phy_reg(hdev, data->reg_num);
9322 		return 0;
9323 
9324 	case SIOCSMIIREG:
9325 		return hclge_write_phy_reg(hdev, data->reg_num, data->val_in);
9326 	default:
9327 		return -EOPNOTSUPP;
9328 	}
9329 }
9330 
9331 static int hclge_do_ioctl(struct hnae3_handle *handle, struct ifreq *ifr,
9332 			  int cmd)
9333 {
9334 	struct hclge_vport *vport = hclge_get_vport(handle);
9335 	struct hclge_dev *hdev = vport->back;
9336 
9337 	switch (cmd) {
9338 	case SIOCGHWTSTAMP:
9339 		return hclge_ptp_get_cfg(hdev, ifr);
9340 	case SIOCSHWTSTAMP:
9341 		return hclge_ptp_set_cfg(hdev, ifr);
9342 	default:
9343 		if (!hdev->hw.mac.phydev)
9344 			return hclge_mii_ioctl(hdev, ifr, cmd);
9345 	}
9346 
9347 	return phy_mii_ioctl(hdev->hw.mac.phydev, ifr, cmd);
9348 }
9349 
9350 static int hclge_set_port_vlan_filter_bypass(struct hclge_dev *hdev, u8 vf_id,
9351 					     bool bypass_en)
9352 {
9353 	struct hclge_port_vlan_filter_bypass_cmd *req;
9354 	struct hclge_desc desc;
9355 	int ret;
9356 
9357 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PORT_VLAN_BYPASS, false);
9358 	req = (struct hclge_port_vlan_filter_bypass_cmd *)desc.data;
9359 	req->vf_id = vf_id;
9360 	hnae3_set_bit(req->bypass_state, HCLGE_INGRESS_BYPASS_B,
9361 		      bypass_en ? 1 : 0);
9362 
9363 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9364 	if (ret)
9365 		dev_err(&hdev->pdev->dev,
9366 			"failed to set vport%u port vlan filter bypass state, ret = %d.\n",
9367 			vf_id, ret);
9368 
9369 	return ret;
9370 }
9371 
9372 static int hclge_set_vlan_filter_ctrl(struct hclge_dev *hdev, u8 vlan_type,
9373 				      u8 fe_type, bool filter_en, u8 vf_id)
9374 {
9375 	struct hclge_vlan_filter_ctrl_cmd *req;
9376 	struct hclge_desc desc;
9377 	int ret;
9378 
9379 	/* read current vlan filter parameter */
9380 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_CTRL, true);
9381 	req = (struct hclge_vlan_filter_ctrl_cmd *)desc.data;
9382 	req->vlan_type = vlan_type;
9383 	req->vf_id = vf_id;
9384 
9385 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9386 	if (ret) {
9387 		dev_err(&hdev->pdev->dev, "failed to get vport%u vlan filter config, ret = %d.\n",
9388 			vf_id, ret);
9389 		return ret;
9390 	}
9391 
9392 	/* modify and write new config parameter */
9393 	hclge_comm_cmd_reuse_desc(&desc, false);
9394 	req->vlan_fe = filter_en ?
9395 			(req->vlan_fe | fe_type) : (req->vlan_fe & ~fe_type);
9396 
9397 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9398 	if (ret)
9399 		dev_err(&hdev->pdev->dev, "failed to set vport%u vlan filter, ret = %d.\n",
9400 			vf_id, ret);
9401 
9402 	return ret;
9403 }
9404 
9405 static int hclge_set_vport_vlan_filter(struct hclge_vport *vport, bool enable)
9406 {
9407 	struct hclge_dev *hdev = vport->back;
9408 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
9409 	int ret;
9410 
9411 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
9412 		return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9413 						  HCLGE_FILTER_FE_EGRESS_V1_B,
9414 						  enable, vport->vport_id);
9415 
9416 	ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9417 					 HCLGE_FILTER_FE_EGRESS, enable,
9418 					 vport->vport_id);
9419 	if (ret)
9420 		return ret;
9421 
9422 	if (test_bit(HNAE3_DEV_SUPPORT_PORT_VLAN_BYPASS_B, ae_dev->caps)) {
9423 		ret = hclge_set_port_vlan_filter_bypass(hdev, vport->vport_id,
9424 							!enable);
9425 	} else if (!vport->vport_id) {
9426 		if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
9427 			enable = false;
9428 
9429 		ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT,
9430 						 HCLGE_FILTER_FE_INGRESS,
9431 						 enable, 0);
9432 	}
9433 
9434 	return ret;
9435 }
9436 
9437 static bool hclge_need_enable_vport_vlan_filter(struct hclge_vport *vport)
9438 {
9439 	struct hnae3_handle *handle = &vport->nic;
9440 	struct hclge_vport_vlan_cfg *vlan, *tmp;
9441 	struct hclge_dev *hdev = vport->back;
9442 
9443 	if (vport->vport_id) {
9444 		if (vport->port_base_vlan_cfg.state !=
9445 			HNAE3_PORT_BASE_VLAN_DISABLE)
9446 			return true;
9447 
9448 		if (vport->vf_info.trusted && vport->vf_info.request_uc_en)
9449 			return false;
9450 	} else if (handle->netdev_flags & HNAE3_USER_UPE) {
9451 		return false;
9452 	}
9453 
9454 	if (!vport->req_vlan_fltr_en)
9455 		return false;
9456 
9457 	/* compatible with former device, always enable vlan filter */
9458 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps))
9459 		return true;
9460 
9461 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node)
9462 		if (vlan->vlan_id != 0)
9463 			return true;
9464 
9465 	return false;
9466 }
9467 
9468 int hclge_enable_vport_vlan_filter(struct hclge_vport *vport, bool request_en)
9469 {
9470 	struct hclge_dev *hdev = vport->back;
9471 	bool need_en;
9472 	int ret;
9473 
9474 	mutex_lock(&hdev->vport_lock);
9475 
9476 	vport->req_vlan_fltr_en = request_en;
9477 
9478 	need_en = hclge_need_enable_vport_vlan_filter(vport);
9479 	if (need_en == vport->cur_vlan_fltr_en) {
9480 		mutex_unlock(&hdev->vport_lock);
9481 		return 0;
9482 	}
9483 
9484 	ret = hclge_set_vport_vlan_filter(vport, need_en);
9485 	if (ret) {
9486 		mutex_unlock(&hdev->vport_lock);
9487 		return ret;
9488 	}
9489 
9490 	vport->cur_vlan_fltr_en = need_en;
9491 
9492 	mutex_unlock(&hdev->vport_lock);
9493 
9494 	return 0;
9495 }
9496 
9497 static int hclge_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
9498 {
9499 	struct hclge_vport *vport = hclge_get_vport(handle);
9500 
9501 	return hclge_enable_vport_vlan_filter(vport, enable);
9502 }
9503 
9504 static int hclge_set_vf_vlan_filter_cmd(struct hclge_dev *hdev, u16 vfid,
9505 					bool is_kill, u16 vlan,
9506 					struct hclge_desc *desc)
9507 {
9508 	struct hclge_vlan_filter_vf_cfg_cmd *req0;
9509 	struct hclge_vlan_filter_vf_cfg_cmd *req1;
9510 	u8 vf_byte_val;
9511 	u8 vf_byte_off;
9512 	int ret;
9513 
9514 	hclge_cmd_setup_basic_desc(&desc[0],
9515 				   HCLGE_OPC_VLAN_FILTER_VF_CFG, false);
9516 	hclge_cmd_setup_basic_desc(&desc[1],
9517 				   HCLGE_OPC_VLAN_FILTER_VF_CFG, false);
9518 
9519 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
9520 
9521 	vf_byte_off = vfid / 8;
9522 	vf_byte_val = 1 << (vfid % 8);
9523 
9524 	req0 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data;
9525 	req1 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[1].data;
9526 
9527 	req0->vlan_id  = cpu_to_le16(vlan);
9528 	req0->vlan_cfg = is_kill;
9529 
9530 	if (vf_byte_off < HCLGE_MAX_VF_BYTES)
9531 		req0->vf_bitmap[vf_byte_off] = vf_byte_val;
9532 	else
9533 		req1->vf_bitmap[vf_byte_off - HCLGE_MAX_VF_BYTES] = vf_byte_val;
9534 
9535 	ret = hclge_cmd_send(&hdev->hw, desc, 2);
9536 	if (ret) {
9537 		dev_err(&hdev->pdev->dev,
9538 			"Send vf vlan command fail, ret =%d.\n",
9539 			ret);
9540 		return ret;
9541 	}
9542 
9543 	return 0;
9544 }
9545 
9546 static int hclge_check_vf_vlan_cmd_status(struct hclge_dev *hdev, u16 vfid,
9547 					  bool is_kill, struct hclge_desc *desc)
9548 {
9549 	struct hclge_vlan_filter_vf_cfg_cmd *req;
9550 
9551 	req = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data;
9552 
9553 	if (!is_kill) {
9554 #define HCLGE_VF_VLAN_NO_ENTRY	2
9555 		if (!req->resp_code || req->resp_code == 1)
9556 			return 0;
9557 
9558 		if (req->resp_code == HCLGE_VF_VLAN_NO_ENTRY) {
9559 			set_bit(vfid, hdev->vf_vlan_full);
9560 			dev_warn(&hdev->pdev->dev,
9561 				 "vf vlan table is full, vf vlan filter is disabled\n");
9562 			return 0;
9563 		}
9564 
9565 		dev_err(&hdev->pdev->dev,
9566 			"Add vf vlan filter fail, ret =%u.\n",
9567 			req->resp_code);
9568 	} else {
9569 #define HCLGE_VF_VLAN_DEL_NO_FOUND	1
9570 		if (!req->resp_code)
9571 			return 0;
9572 
9573 		/* vf vlan filter is disabled when vf vlan table is full,
9574 		 * then new vlan id will not be added into vf vlan table.
9575 		 * Just return 0 without warning, avoid massive verbose
9576 		 * print logs when unload.
9577 		 */
9578 		if (req->resp_code == HCLGE_VF_VLAN_DEL_NO_FOUND)
9579 			return 0;
9580 
9581 		dev_err(&hdev->pdev->dev,
9582 			"Kill vf vlan filter fail, ret =%u.\n",
9583 			req->resp_code);
9584 	}
9585 
9586 	return -EIO;
9587 }
9588 
9589 static int hclge_set_vf_vlan_common(struct hclge_dev *hdev, u16 vfid,
9590 				    bool is_kill, u16 vlan)
9591 {
9592 	struct hclge_vport *vport = &hdev->vport[vfid];
9593 	struct hclge_desc desc[2];
9594 	int ret;
9595 
9596 	/* if vf vlan table is full, firmware will close vf vlan filter, it
9597 	 * is unable and unnecessary to add new vlan id to vf vlan filter.
9598 	 * If spoof check is enable, and vf vlan is full, it shouldn't add
9599 	 * new vlan, because tx packets with these vlan id will be dropped.
9600 	 */
9601 	if (test_bit(vfid, hdev->vf_vlan_full) && !is_kill) {
9602 		if (vport->vf_info.spoofchk && vlan) {
9603 			dev_err(&hdev->pdev->dev,
9604 				"Can't add vlan due to spoof check is on and vf vlan table is full\n");
9605 			return -EPERM;
9606 		}
9607 		return 0;
9608 	}
9609 
9610 	ret = hclge_set_vf_vlan_filter_cmd(hdev, vfid, is_kill, vlan, desc);
9611 	if (ret)
9612 		return ret;
9613 
9614 	return hclge_check_vf_vlan_cmd_status(hdev, vfid, is_kill, desc);
9615 }
9616 
9617 static int hclge_set_port_vlan_filter(struct hclge_dev *hdev, __be16 proto,
9618 				      u16 vlan_id, bool is_kill)
9619 {
9620 	struct hclge_vlan_filter_pf_cfg_cmd *req;
9621 	struct hclge_desc desc;
9622 	u8 vlan_offset_byte_val;
9623 	u8 vlan_offset_byte;
9624 	u8 vlan_offset_160;
9625 	int ret;
9626 
9627 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_PF_CFG, false);
9628 
9629 	vlan_offset_160 = vlan_id / HCLGE_VLAN_ID_OFFSET_STEP;
9630 	vlan_offset_byte = (vlan_id % HCLGE_VLAN_ID_OFFSET_STEP) /
9631 			   HCLGE_VLAN_BYTE_SIZE;
9632 	vlan_offset_byte_val = 1 << (vlan_id % HCLGE_VLAN_BYTE_SIZE);
9633 
9634 	req = (struct hclge_vlan_filter_pf_cfg_cmd *)desc.data;
9635 	req->vlan_offset = vlan_offset_160;
9636 	req->vlan_cfg = is_kill;
9637 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
9638 
9639 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9640 	if (ret)
9641 		dev_err(&hdev->pdev->dev,
9642 			"port vlan command, send fail, ret =%d.\n", ret);
9643 	return ret;
9644 }
9645 
9646 static bool hclge_need_update_port_vlan(struct hclge_dev *hdev, u16 vport_id,
9647 					u16 vlan_id, bool is_kill)
9648 {
9649 	/* vlan 0 may be added twice when 8021q module is enabled */
9650 	if (!is_kill && !vlan_id &&
9651 	    test_bit(vport_id, hdev->vlan_table[vlan_id]))
9652 		return false;
9653 
9654 	if (!is_kill && test_and_set_bit(vport_id, hdev->vlan_table[vlan_id])) {
9655 		dev_warn(&hdev->pdev->dev,
9656 			 "Add port vlan failed, vport %u is already in vlan %u\n",
9657 			 vport_id, vlan_id);
9658 		return false;
9659 	}
9660 
9661 	if (is_kill &&
9662 	    !test_and_clear_bit(vport_id, hdev->vlan_table[vlan_id])) {
9663 		dev_warn(&hdev->pdev->dev,
9664 			 "Delete port vlan failed, vport %u is not in vlan %u\n",
9665 			 vport_id, vlan_id);
9666 		return false;
9667 	}
9668 
9669 	return true;
9670 }
9671 
9672 static int hclge_set_vlan_filter_hw(struct hclge_dev *hdev, __be16 proto,
9673 				    u16 vport_id, u16 vlan_id,
9674 				    bool is_kill)
9675 {
9676 	u16 vport_idx, vport_num = 0;
9677 	int ret;
9678 
9679 	if (is_kill && !vlan_id)
9680 		return 0;
9681 
9682 	if (vlan_id >= VLAN_N_VID)
9683 		return -EINVAL;
9684 
9685 	ret = hclge_set_vf_vlan_common(hdev, vport_id, is_kill, vlan_id);
9686 	if (ret) {
9687 		dev_err(&hdev->pdev->dev,
9688 			"Set %u vport vlan filter config fail, ret =%d.\n",
9689 			vport_id, ret);
9690 		return ret;
9691 	}
9692 
9693 	if (!hclge_need_update_port_vlan(hdev, vport_id, vlan_id, is_kill))
9694 		return 0;
9695 
9696 	for_each_set_bit(vport_idx, hdev->vlan_table[vlan_id], HCLGE_VPORT_NUM)
9697 		vport_num++;
9698 
9699 	if ((is_kill && vport_num == 0) || (!is_kill && vport_num == 1))
9700 		ret = hclge_set_port_vlan_filter(hdev, proto, vlan_id,
9701 						 is_kill);
9702 
9703 	return ret;
9704 }
9705 
9706 static int hclge_set_vlan_tx_offload_cfg(struct hclge_vport *vport)
9707 {
9708 	struct hclge_tx_vtag_cfg *vcfg = &vport->txvlan_cfg;
9709 	struct hclge_vport_vtag_tx_cfg_cmd *req;
9710 	struct hclge_dev *hdev = vport->back;
9711 	struct hclge_desc desc;
9712 	u16 bmap_index;
9713 	int status;
9714 
9715 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_TX_CFG, false);
9716 
9717 	req = (struct hclge_vport_vtag_tx_cfg_cmd *)desc.data;
9718 	req->def_vlan_tag1 = cpu_to_le16(vcfg->default_tag1);
9719 	req->def_vlan_tag2 = cpu_to_le16(vcfg->default_tag2);
9720 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG1_B,
9721 		      vcfg->accept_tag1 ? 1 : 0);
9722 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG1_B,
9723 		      vcfg->accept_untag1 ? 1 : 0);
9724 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG2_B,
9725 		      vcfg->accept_tag2 ? 1 : 0);
9726 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG2_B,
9727 		      vcfg->accept_untag2 ? 1 : 0);
9728 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG1_EN_B,
9729 		      vcfg->insert_tag1_en ? 1 : 0);
9730 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG2_EN_B,
9731 		      vcfg->insert_tag2_en ? 1 : 0);
9732 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_TAG_SHIFT_MODE_EN_B,
9733 		      vcfg->tag_shift_mode_en ? 1 : 0);
9734 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_CFG_NIC_ROCE_SEL_B, 0);
9735 
9736 	req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD;
9737 	bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD /
9738 			HCLGE_VF_NUM_PER_BYTE;
9739 	req->vf_bitmap[bmap_index] =
9740 		1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE);
9741 
9742 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9743 	if (status)
9744 		dev_err(&hdev->pdev->dev,
9745 			"Send port txvlan cfg command fail, ret =%d\n",
9746 			status);
9747 
9748 	return status;
9749 }
9750 
9751 static int hclge_set_vlan_rx_offload_cfg(struct hclge_vport *vport)
9752 {
9753 	struct hclge_rx_vtag_cfg *vcfg = &vport->rxvlan_cfg;
9754 	struct hclge_vport_vtag_rx_cfg_cmd *req;
9755 	struct hclge_dev *hdev = vport->back;
9756 	struct hclge_desc desc;
9757 	u16 bmap_index;
9758 	int status;
9759 
9760 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_RX_CFG, false);
9761 
9762 	req = (struct hclge_vport_vtag_rx_cfg_cmd *)desc.data;
9763 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG1_EN_B,
9764 		      vcfg->strip_tag1_en ? 1 : 0);
9765 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG2_EN_B,
9766 		      vcfg->strip_tag2_en ? 1 : 0);
9767 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG1_EN_B,
9768 		      vcfg->vlan1_vlan_prionly ? 1 : 0);
9769 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG2_EN_B,
9770 		      vcfg->vlan2_vlan_prionly ? 1 : 0);
9771 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG1_EN_B,
9772 		      vcfg->strip_tag1_discard_en ? 1 : 0);
9773 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG2_EN_B,
9774 		      vcfg->strip_tag2_discard_en ? 1 : 0);
9775 
9776 	req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD;
9777 	bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD /
9778 			HCLGE_VF_NUM_PER_BYTE;
9779 	req->vf_bitmap[bmap_index] =
9780 		1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE);
9781 
9782 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9783 	if (status)
9784 		dev_err(&hdev->pdev->dev,
9785 			"Send port rxvlan cfg command fail, ret =%d\n",
9786 			status);
9787 
9788 	return status;
9789 }
9790 
9791 static int hclge_vlan_offload_cfg(struct hclge_vport *vport,
9792 				  u16 port_base_vlan_state,
9793 				  u16 vlan_tag, u8 qos)
9794 {
9795 	int ret;
9796 
9797 	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
9798 		vport->txvlan_cfg.accept_tag1 = true;
9799 		vport->txvlan_cfg.insert_tag1_en = false;
9800 		vport->txvlan_cfg.default_tag1 = 0;
9801 	} else {
9802 		struct hnae3_ae_dev *ae_dev = pci_get_drvdata(vport->nic.pdev);
9803 
9804 		vport->txvlan_cfg.accept_tag1 =
9805 			ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3;
9806 		vport->txvlan_cfg.insert_tag1_en = true;
9807 		vport->txvlan_cfg.default_tag1 = (qos << VLAN_PRIO_SHIFT) |
9808 						 vlan_tag;
9809 	}
9810 
9811 	vport->txvlan_cfg.accept_untag1 = true;
9812 
9813 	/* accept_tag2 and accept_untag2 are not supported on
9814 	 * pdev revision(0x20), new revision support them,
9815 	 * this two fields can not be configured by user.
9816 	 */
9817 	vport->txvlan_cfg.accept_tag2 = true;
9818 	vport->txvlan_cfg.accept_untag2 = true;
9819 	vport->txvlan_cfg.insert_tag2_en = false;
9820 	vport->txvlan_cfg.default_tag2 = 0;
9821 	vport->txvlan_cfg.tag_shift_mode_en = true;
9822 
9823 	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
9824 		vport->rxvlan_cfg.strip_tag1_en = false;
9825 		vport->rxvlan_cfg.strip_tag2_en =
9826 				vport->rxvlan_cfg.rx_vlan_offload_en;
9827 		vport->rxvlan_cfg.strip_tag2_discard_en = false;
9828 	} else {
9829 		vport->rxvlan_cfg.strip_tag1_en =
9830 				vport->rxvlan_cfg.rx_vlan_offload_en;
9831 		vport->rxvlan_cfg.strip_tag2_en = true;
9832 		vport->rxvlan_cfg.strip_tag2_discard_en = true;
9833 	}
9834 
9835 	vport->rxvlan_cfg.strip_tag1_discard_en = false;
9836 	vport->rxvlan_cfg.vlan1_vlan_prionly = false;
9837 	vport->rxvlan_cfg.vlan2_vlan_prionly = false;
9838 
9839 	ret = hclge_set_vlan_tx_offload_cfg(vport);
9840 	if (ret)
9841 		return ret;
9842 
9843 	return hclge_set_vlan_rx_offload_cfg(vport);
9844 }
9845 
9846 static int hclge_set_vlan_protocol_type(struct hclge_dev *hdev)
9847 {
9848 	struct hclge_rx_vlan_type_cfg_cmd *rx_req;
9849 	struct hclge_tx_vlan_type_cfg_cmd *tx_req;
9850 	struct hclge_desc desc;
9851 	int status;
9852 
9853 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_TYPE_ID, false);
9854 	rx_req = (struct hclge_rx_vlan_type_cfg_cmd *)desc.data;
9855 	rx_req->ot_fst_vlan_type =
9856 		cpu_to_le16(hdev->vlan_type_cfg.rx_ot_fst_vlan_type);
9857 	rx_req->ot_sec_vlan_type =
9858 		cpu_to_le16(hdev->vlan_type_cfg.rx_ot_sec_vlan_type);
9859 	rx_req->in_fst_vlan_type =
9860 		cpu_to_le16(hdev->vlan_type_cfg.rx_in_fst_vlan_type);
9861 	rx_req->in_sec_vlan_type =
9862 		cpu_to_le16(hdev->vlan_type_cfg.rx_in_sec_vlan_type);
9863 
9864 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9865 	if (status) {
9866 		dev_err(&hdev->pdev->dev,
9867 			"Send rxvlan protocol type command fail, ret =%d\n",
9868 			status);
9869 		return status;
9870 	}
9871 
9872 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_INSERT, false);
9873 
9874 	tx_req = (struct hclge_tx_vlan_type_cfg_cmd *)desc.data;
9875 	tx_req->ot_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_ot_vlan_type);
9876 	tx_req->in_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_in_vlan_type);
9877 
9878 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9879 	if (status)
9880 		dev_err(&hdev->pdev->dev,
9881 			"Send txvlan protocol type command fail, ret =%d\n",
9882 			status);
9883 
9884 	return status;
9885 }
9886 
9887 static int hclge_init_vlan_filter(struct hclge_dev *hdev)
9888 {
9889 	struct hclge_vport *vport;
9890 	int ret;
9891 	int i;
9892 
9893 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
9894 		return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9895 						  HCLGE_FILTER_FE_EGRESS_V1_B,
9896 						  true, 0);
9897 
9898 	/* for revision 0x21, vf vlan filter is per function */
9899 	for (i = 0; i < hdev->num_alloc_vport; i++) {
9900 		vport = &hdev->vport[i];
9901 		ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9902 						 HCLGE_FILTER_FE_EGRESS, true,
9903 						 vport->vport_id);
9904 		if (ret)
9905 			return ret;
9906 		vport->cur_vlan_fltr_en = true;
9907 	}
9908 
9909 	return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT,
9910 					  HCLGE_FILTER_FE_INGRESS, true, 0);
9911 }
9912 
9913 static int hclge_init_vlan_type(struct hclge_dev *hdev)
9914 {
9915 	hdev->vlan_type_cfg.rx_in_fst_vlan_type = ETH_P_8021Q;
9916 	hdev->vlan_type_cfg.rx_in_sec_vlan_type = ETH_P_8021Q;
9917 	hdev->vlan_type_cfg.rx_ot_fst_vlan_type = ETH_P_8021Q;
9918 	hdev->vlan_type_cfg.rx_ot_sec_vlan_type = ETH_P_8021Q;
9919 	hdev->vlan_type_cfg.tx_ot_vlan_type = ETH_P_8021Q;
9920 	hdev->vlan_type_cfg.tx_in_vlan_type = ETH_P_8021Q;
9921 
9922 	return hclge_set_vlan_protocol_type(hdev);
9923 }
9924 
9925 static int hclge_init_vport_vlan_offload(struct hclge_dev *hdev)
9926 {
9927 	struct hclge_port_base_vlan_config *cfg;
9928 	struct hclge_vport *vport;
9929 	int ret;
9930 	int i;
9931 
9932 	for (i = 0; i < hdev->num_alloc_vport; i++) {
9933 		vport = &hdev->vport[i];
9934 		cfg = &vport->port_base_vlan_cfg;
9935 
9936 		ret = hclge_vlan_offload_cfg(vport, cfg->state,
9937 					     cfg->vlan_info.vlan_tag,
9938 					     cfg->vlan_info.qos);
9939 		if (ret)
9940 			return ret;
9941 	}
9942 	return 0;
9943 }
9944 
9945 static int hclge_init_vlan_config(struct hclge_dev *hdev)
9946 {
9947 	struct hnae3_handle *handle = &hdev->vport[0].nic;
9948 	int ret;
9949 
9950 	ret = hclge_init_vlan_filter(hdev);
9951 	if (ret)
9952 		return ret;
9953 
9954 	ret = hclge_init_vlan_type(hdev);
9955 	if (ret)
9956 		return ret;
9957 
9958 	ret = hclge_init_vport_vlan_offload(hdev);
9959 	if (ret)
9960 		return ret;
9961 
9962 	return hclge_set_vlan_filter(handle, htons(ETH_P_8021Q), 0, false);
9963 }
9964 
9965 static void hclge_add_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id,
9966 				       bool writen_to_tbl)
9967 {
9968 	struct hclge_vport_vlan_cfg *vlan, *tmp;
9969 	struct hclge_dev *hdev = vport->back;
9970 
9971 	mutex_lock(&hdev->vport_lock);
9972 
9973 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
9974 		if (vlan->vlan_id == vlan_id) {
9975 			mutex_unlock(&hdev->vport_lock);
9976 			return;
9977 		}
9978 	}
9979 
9980 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
9981 	if (!vlan) {
9982 		mutex_unlock(&hdev->vport_lock);
9983 		return;
9984 	}
9985 
9986 	vlan->hd_tbl_status = writen_to_tbl;
9987 	vlan->vlan_id = vlan_id;
9988 
9989 	list_add_tail(&vlan->node, &vport->vlan_list);
9990 	mutex_unlock(&hdev->vport_lock);
9991 }
9992 
9993 static int hclge_add_vport_all_vlan_table(struct hclge_vport *vport)
9994 {
9995 	struct hclge_vport_vlan_cfg *vlan, *tmp;
9996 	struct hclge_dev *hdev = vport->back;
9997 	int ret;
9998 
9999 	mutex_lock(&hdev->vport_lock);
10000 
10001 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10002 		if (!vlan->hd_tbl_status) {
10003 			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10004 						       vport->vport_id,
10005 						       vlan->vlan_id, false);
10006 			if (ret) {
10007 				dev_err(&hdev->pdev->dev,
10008 					"restore vport vlan list failed, ret=%d\n",
10009 					ret);
10010 
10011 				mutex_unlock(&hdev->vport_lock);
10012 				return ret;
10013 			}
10014 		}
10015 		vlan->hd_tbl_status = true;
10016 	}
10017 
10018 	mutex_unlock(&hdev->vport_lock);
10019 
10020 	return 0;
10021 }
10022 
10023 static void hclge_rm_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id,
10024 				      bool is_write_tbl)
10025 {
10026 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10027 	struct hclge_dev *hdev = vport->back;
10028 
10029 	mutex_lock(&hdev->vport_lock);
10030 
10031 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10032 		if (vlan->vlan_id == vlan_id) {
10033 			if (is_write_tbl && vlan->hd_tbl_status)
10034 				hclge_set_vlan_filter_hw(hdev,
10035 							 htons(ETH_P_8021Q),
10036 							 vport->vport_id,
10037 							 vlan_id,
10038 							 true);
10039 
10040 			list_del(&vlan->node);
10041 			kfree(vlan);
10042 			break;
10043 		}
10044 	}
10045 
10046 	mutex_unlock(&hdev->vport_lock);
10047 }
10048 
10049 void hclge_rm_vport_all_vlan_table(struct hclge_vport *vport, bool is_del_list)
10050 {
10051 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10052 	struct hclge_dev *hdev = vport->back;
10053 
10054 	mutex_lock(&hdev->vport_lock);
10055 
10056 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10057 		if (vlan->hd_tbl_status)
10058 			hclge_set_vlan_filter_hw(hdev,
10059 						 htons(ETH_P_8021Q),
10060 						 vport->vport_id,
10061 						 vlan->vlan_id,
10062 						 true);
10063 
10064 		vlan->hd_tbl_status = false;
10065 		if (is_del_list) {
10066 			list_del(&vlan->node);
10067 			kfree(vlan);
10068 		}
10069 	}
10070 	clear_bit(vport->vport_id, hdev->vf_vlan_full);
10071 	mutex_unlock(&hdev->vport_lock);
10072 }
10073 
10074 void hclge_uninit_vport_vlan_table(struct hclge_dev *hdev)
10075 {
10076 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10077 	struct hclge_vport *vport;
10078 	int i;
10079 
10080 	mutex_lock(&hdev->vport_lock);
10081 
10082 	for (i = 0; i < hdev->num_alloc_vport; i++) {
10083 		vport = &hdev->vport[i];
10084 		list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10085 			list_del(&vlan->node);
10086 			kfree(vlan);
10087 		}
10088 	}
10089 
10090 	mutex_unlock(&hdev->vport_lock);
10091 }
10092 
10093 void hclge_restore_vport_port_base_vlan_config(struct hclge_dev *hdev)
10094 {
10095 	struct hclge_vlan_info *vlan_info;
10096 	struct hclge_vport *vport;
10097 	u16 vlan_proto;
10098 	u16 vlan_id;
10099 	u16 state;
10100 	int vf_id;
10101 	int ret;
10102 
10103 	/* PF should restore all vfs port base vlan */
10104 	for (vf_id = 0; vf_id < hdev->num_alloc_vfs; vf_id++) {
10105 		vport = &hdev->vport[vf_id + HCLGE_VF_VPORT_START_NUM];
10106 		vlan_info = vport->port_base_vlan_cfg.tbl_sta ?
10107 			    &vport->port_base_vlan_cfg.vlan_info :
10108 			    &vport->port_base_vlan_cfg.old_vlan_info;
10109 
10110 		vlan_id = vlan_info->vlan_tag;
10111 		vlan_proto = vlan_info->vlan_proto;
10112 		state = vport->port_base_vlan_cfg.state;
10113 
10114 		if (state != HNAE3_PORT_BASE_VLAN_DISABLE) {
10115 			clear_bit(vport->vport_id, hdev->vlan_table[vlan_id]);
10116 			ret = hclge_set_vlan_filter_hw(hdev, htons(vlan_proto),
10117 						       vport->vport_id,
10118 						       vlan_id, false);
10119 			vport->port_base_vlan_cfg.tbl_sta = ret == 0;
10120 		}
10121 	}
10122 }
10123 
10124 void hclge_restore_vport_vlan_table(struct hclge_vport *vport)
10125 {
10126 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10127 	struct hclge_dev *hdev = vport->back;
10128 	int ret;
10129 
10130 	mutex_lock(&hdev->vport_lock);
10131 
10132 	if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10133 		list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10134 			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10135 						       vport->vport_id,
10136 						       vlan->vlan_id, false);
10137 			if (ret)
10138 				break;
10139 			vlan->hd_tbl_status = true;
10140 		}
10141 	}
10142 
10143 	mutex_unlock(&hdev->vport_lock);
10144 }
10145 
10146 /* For global reset and imp reset, hardware will clear the mac table,
10147  * so we change the mac address state from ACTIVE to TO_ADD, then they
10148  * can be restored in the service task after reset complete. Furtherly,
10149  * the mac addresses with state TO_DEL or DEL_FAIL are unnecessary to
10150  * be restored after reset, so just remove these mac nodes from mac_list.
10151  */
10152 static void hclge_mac_node_convert_for_reset(struct list_head *list)
10153 {
10154 	struct hclge_mac_node *mac_node, *tmp;
10155 
10156 	list_for_each_entry_safe(mac_node, tmp, list, node) {
10157 		if (mac_node->state == HCLGE_MAC_ACTIVE) {
10158 			mac_node->state = HCLGE_MAC_TO_ADD;
10159 		} else if (mac_node->state == HCLGE_MAC_TO_DEL) {
10160 			list_del(&mac_node->node);
10161 			kfree(mac_node);
10162 		}
10163 	}
10164 }
10165 
10166 void hclge_restore_mac_table_common(struct hclge_vport *vport)
10167 {
10168 	spin_lock_bh(&vport->mac_list_lock);
10169 
10170 	hclge_mac_node_convert_for_reset(&vport->uc_mac_list);
10171 	hclge_mac_node_convert_for_reset(&vport->mc_mac_list);
10172 	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
10173 
10174 	spin_unlock_bh(&vport->mac_list_lock);
10175 }
10176 
10177 static void hclge_restore_hw_table(struct hclge_dev *hdev)
10178 {
10179 	struct hclge_vport *vport = &hdev->vport[0];
10180 	struct hnae3_handle *handle = &vport->nic;
10181 
10182 	hclge_restore_mac_table_common(vport);
10183 	hclge_restore_vport_port_base_vlan_config(hdev);
10184 	hclge_restore_vport_vlan_table(vport);
10185 	set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
10186 	hclge_restore_fd_entries(handle);
10187 }
10188 
10189 int hclge_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
10190 {
10191 	struct hclge_vport *vport = hclge_get_vport(handle);
10192 
10193 	if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10194 		vport->rxvlan_cfg.strip_tag1_en = false;
10195 		vport->rxvlan_cfg.strip_tag2_en = enable;
10196 		vport->rxvlan_cfg.strip_tag2_discard_en = false;
10197 	} else {
10198 		vport->rxvlan_cfg.strip_tag1_en = enable;
10199 		vport->rxvlan_cfg.strip_tag2_en = true;
10200 		vport->rxvlan_cfg.strip_tag2_discard_en = true;
10201 	}
10202 
10203 	vport->rxvlan_cfg.strip_tag1_discard_en = false;
10204 	vport->rxvlan_cfg.vlan1_vlan_prionly = false;
10205 	vport->rxvlan_cfg.vlan2_vlan_prionly = false;
10206 	vport->rxvlan_cfg.rx_vlan_offload_en = enable;
10207 
10208 	return hclge_set_vlan_rx_offload_cfg(vport);
10209 }
10210 
10211 static void hclge_set_vport_vlan_fltr_change(struct hclge_vport *vport)
10212 {
10213 	struct hclge_dev *hdev = vport->back;
10214 
10215 	if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps))
10216 		set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, &vport->state);
10217 }
10218 
10219 static int hclge_update_vlan_filter_entries(struct hclge_vport *vport,
10220 					    u16 port_base_vlan_state,
10221 					    struct hclge_vlan_info *new_info,
10222 					    struct hclge_vlan_info *old_info)
10223 {
10224 	struct hclge_dev *hdev = vport->back;
10225 	int ret;
10226 
10227 	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_ENABLE) {
10228 		hclge_rm_vport_all_vlan_table(vport, false);
10229 		/* force clear VLAN 0 */
10230 		ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, true, 0);
10231 		if (ret)
10232 			return ret;
10233 		return hclge_set_vlan_filter_hw(hdev,
10234 						 htons(new_info->vlan_proto),
10235 						 vport->vport_id,
10236 						 new_info->vlan_tag,
10237 						 false);
10238 	}
10239 
10240 	vport->port_base_vlan_cfg.tbl_sta = false;
10241 
10242 	/* force add VLAN 0 */
10243 	ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, false, 0);
10244 	if (ret)
10245 		return ret;
10246 
10247 	ret = hclge_set_vlan_filter_hw(hdev, htons(old_info->vlan_proto),
10248 				       vport->vport_id, old_info->vlan_tag,
10249 				       true);
10250 	if (ret)
10251 		return ret;
10252 
10253 	return hclge_add_vport_all_vlan_table(vport);
10254 }
10255 
10256 static bool hclge_need_update_vlan_filter(const struct hclge_vlan_info *new_cfg,
10257 					  const struct hclge_vlan_info *old_cfg)
10258 {
10259 	if (new_cfg->vlan_tag != old_cfg->vlan_tag)
10260 		return true;
10261 
10262 	if (new_cfg->vlan_tag == 0 && (new_cfg->qos == 0 || old_cfg->qos == 0))
10263 		return true;
10264 
10265 	return false;
10266 }
10267 
10268 static int hclge_modify_port_base_vlan_tag(struct hclge_vport *vport,
10269 					   struct hclge_vlan_info *new_info,
10270 					   struct hclge_vlan_info *old_info)
10271 {
10272 	struct hclge_dev *hdev = vport->back;
10273 	int ret;
10274 
10275 	/* add new VLAN tag */
10276 	ret = hclge_set_vlan_filter_hw(hdev, htons(new_info->vlan_proto),
10277 				       vport->vport_id, new_info->vlan_tag,
10278 				       false);
10279 	if (ret)
10280 		return ret;
10281 
10282 	vport->port_base_vlan_cfg.tbl_sta = false;
10283 	/* remove old VLAN tag */
10284 	if (old_info->vlan_tag == 0)
10285 		ret = hclge_set_vf_vlan_common(hdev, vport->vport_id,
10286 					       true, 0);
10287 	else
10288 		ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10289 					       vport->vport_id,
10290 					       old_info->vlan_tag, true);
10291 	if (ret)
10292 		dev_err(&hdev->pdev->dev,
10293 			"failed to clear vport%u port base vlan %u, ret = %d.\n",
10294 			vport->vport_id, old_info->vlan_tag, ret);
10295 
10296 	return ret;
10297 }
10298 
10299 int hclge_update_port_base_vlan_cfg(struct hclge_vport *vport, u16 state,
10300 				    struct hclge_vlan_info *vlan_info)
10301 {
10302 	struct hnae3_handle *nic = &vport->nic;
10303 	struct hclge_vlan_info *old_vlan_info;
10304 	int ret;
10305 
10306 	old_vlan_info = &vport->port_base_vlan_cfg.vlan_info;
10307 
10308 	ret = hclge_vlan_offload_cfg(vport, state, vlan_info->vlan_tag,
10309 				     vlan_info->qos);
10310 	if (ret)
10311 		return ret;
10312 
10313 	if (!hclge_need_update_vlan_filter(vlan_info, old_vlan_info))
10314 		goto out;
10315 
10316 	if (state == HNAE3_PORT_BASE_VLAN_MODIFY)
10317 		ret = hclge_modify_port_base_vlan_tag(vport, vlan_info,
10318 						      old_vlan_info);
10319 	else
10320 		ret = hclge_update_vlan_filter_entries(vport, state, vlan_info,
10321 						       old_vlan_info);
10322 	if (ret)
10323 		return ret;
10324 
10325 out:
10326 	vport->port_base_vlan_cfg.state = state;
10327 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
10328 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
10329 	else
10330 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
10331 
10332 	vport->port_base_vlan_cfg.old_vlan_info = *old_vlan_info;
10333 	vport->port_base_vlan_cfg.vlan_info = *vlan_info;
10334 	vport->port_base_vlan_cfg.tbl_sta = true;
10335 	hclge_set_vport_vlan_fltr_change(vport);
10336 
10337 	return 0;
10338 }
10339 
10340 static u16 hclge_get_port_base_vlan_state(struct hclge_vport *vport,
10341 					  enum hnae3_port_base_vlan_state state,
10342 					  u16 vlan, u8 qos)
10343 {
10344 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10345 		if (!vlan && !qos)
10346 			return HNAE3_PORT_BASE_VLAN_NOCHANGE;
10347 
10348 		return HNAE3_PORT_BASE_VLAN_ENABLE;
10349 	}
10350 
10351 	if (!vlan && !qos)
10352 		return HNAE3_PORT_BASE_VLAN_DISABLE;
10353 
10354 	if (vport->port_base_vlan_cfg.vlan_info.vlan_tag == vlan &&
10355 	    vport->port_base_vlan_cfg.vlan_info.qos == qos)
10356 		return HNAE3_PORT_BASE_VLAN_NOCHANGE;
10357 
10358 	return HNAE3_PORT_BASE_VLAN_MODIFY;
10359 }
10360 
10361 static int hclge_set_vf_vlan_filter(struct hnae3_handle *handle, int vfid,
10362 				    u16 vlan, u8 qos, __be16 proto)
10363 {
10364 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
10365 	struct hclge_vport *vport = hclge_get_vport(handle);
10366 	struct hclge_dev *hdev = vport->back;
10367 	struct hclge_vlan_info vlan_info;
10368 	u16 state;
10369 	int ret;
10370 
10371 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
10372 		return -EOPNOTSUPP;
10373 
10374 	vport = hclge_get_vf_vport(hdev, vfid);
10375 	if (!vport)
10376 		return -EINVAL;
10377 
10378 	/* qos is a 3 bits value, so can not be bigger than 7 */
10379 	if (vlan > VLAN_N_VID - 1 || qos > 7)
10380 		return -EINVAL;
10381 	if (proto != htons(ETH_P_8021Q))
10382 		return -EPROTONOSUPPORT;
10383 
10384 	state = hclge_get_port_base_vlan_state(vport,
10385 					       vport->port_base_vlan_cfg.state,
10386 					       vlan, qos);
10387 	if (state == HNAE3_PORT_BASE_VLAN_NOCHANGE)
10388 		return 0;
10389 
10390 	vlan_info.vlan_tag = vlan;
10391 	vlan_info.qos = qos;
10392 	vlan_info.vlan_proto = ntohs(proto);
10393 
10394 	ret = hclge_update_port_base_vlan_cfg(vport, state, &vlan_info);
10395 	if (ret) {
10396 		dev_err(&hdev->pdev->dev,
10397 			"failed to update port base vlan for vf %d, ret = %d\n",
10398 			vfid, ret);
10399 		return ret;
10400 	}
10401 
10402 	/* there is a timewindow for PF to know VF unalive, it may
10403 	 * cause send mailbox fail, but it doesn't matter, VF will
10404 	 * query it when reinit.
10405 	 * for DEVICE_VERSION_V3, vf doesn't need to know about the port based
10406 	 * VLAN state.
10407 	 */
10408 	if (ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
10409 		if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
10410 			(void)hclge_push_vf_port_base_vlan_info(&hdev->vport[0],
10411 								vport->vport_id,
10412 								state,
10413 								&vlan_info);
10414 		else
10415 			set_bit(HCLGE_VPORT_NEED_NOTIFY_VF_VLAN,
10416 				&vport->need_notify);
10417 	}
10418 	return 0;
10419 }
10420 
10421 static void hclge_clear_vf_vlan(struct hclge_dev *hdev)
10422 {
10423 	struct hclge_vlan_info *vlan_info;
10424 	struct hclge_vport *vport;
10425 	int ret;
10426 	int vf;
10427 
10428 	/* clear port base vlan for all vf */
10429 	for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) {
10430 		vport = &hdev->vport[vf];
10431 		vlan_info = &vport->port_base_vlan_cfg.vlan_info;
10432 
10433 		ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10434 					       vport->vport_id,
10435 					       vlan_info->vlan_tag, true);
10436 		if (ret)
10437 			dev_err(&hdev->pdev->dev,
10438 				"failed to clear vf vlan for vf%d, ret = %d\n",
10439 				vf - HCLGE_VF_VPORT_START_NUM, ret);
10440 	}
10441 }
10442 
10443 int hclge_set_vlan_filter(struct hnae3_handle *handle, __be16 proto,
10444 			  u16 vlan_id, bool is_kill)
10445 {
10446 	struct hclge_vport *vport = hclge_get_vport(handle);
10447 	struct hclge_dev *hdev = vport->back;
10448 	bool writen_to_tbl = false;
10449 	int ret = 0;
10450 
10451 	/* When device is resetting or reset failed, firmware is unable to
10452 	 * handle mailbox. Just record the vlan id, and remove it after
10453 	 * reset finished.
10454 	 */
10455 	if ((test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
10456 	     test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) && is_kill) {
10457 		set_bit(vlan_id, vport->vlan_del_fail_bmap);
10458 		return -EBUSY;
10459 	}
10460 
10461 	/* when port base vlan enabled, we use port base vlan as the vlan
10462 	 * filter entry. In this case, we don't update vlan filter table
10463 	 * when user add new vlan or remove exist vlan, just update the vport
10464 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
10465 	 * table until port base vlan disabled
10466 	 */
10467 	if (handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10468 		ret = hclge_set_vlan_filter_hw(hdev, proto, vport->vport_id,
10469 					       vlan_id, is_kill);
10470 		writen_to_tbl = true;
10471 	}
10472 
10473 	if (!ret) {
10474 		if (!is_kill)
10475 			hclge_add_vport_vlan_table(vport, vlan_id,
10476 						   writen_to_tbl);
10477 		else if (is_kill && vlan_id != 0)
10478 			hclge_rm_vport_vlan_table(vport, vlan_id, false);
10479 	} else if (is_kill) {
10480 		/* when remove hw vlan filter failed, record the vlan id,
10481 		 * and try to remove it from hw later, to be consistence
10482 		 * with stack
10483 		 */
10484 		set_bit(vlan_id, vport->vlan_del_fail_bmap);
10485 	}
10486 
10487 	hclge_set_vport_vlan_fltr_change(vport);
10488 
10489 	return ret;
10490 }
10491 
10492 static void hclge_sync_vlan_fltr_state(struct hclge_dev *hdev)
10493 {
10494 	struct hclge_vport *vport;
10495 	int ret;
10496 	u16 i;
10497 
10498 	for (i = 0; i < hdev->num_alloc_vport; i++) {
10499 		vport = &hdev->vport[i];
10500 		if (!test_and_clear_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
10501 					&vport->state))
10502 			continue;
10503 
10504 		ret = hclge_enable_vport_vlan_filter(vport,
10505 						     vport->req_vlan_fltr_en);
10506 		if (ret) {
10507 			dev_err(&hdev->pdev->dev,
10508 				"failed to sync vlan filter state for vport%u, ret = %d\n",
10509 				vport->vport_id, ret);
10510 			set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
10511 				&vport->state);
10512 			return;
10513 		}
10514 	}
10515 }
10516 
10517 static void hclge_sync_vlan_filter(struct hclge_dev *hdev)
10518 {
10519 #define HCLGE_MAX_SYNC_COUNT	60
10520 
10521 	int i, ret, sync_cnt = 0;
10522 	u16 vlan_id;
10523 
10524 	/* start from vport 1 for PF is always alive */
10525 	for (i = 0; i < hdev->num_alloc_vport; i++) {
10526 		struct hclge_vport *vport = &hdev->vport[i];
10527 
10528 		vlan_id = find_first_bit(vport->vlan_del_fail_bmap,
10529 					 VLAN_N_VID);
10530 		while (vlan_id != VLAN_N_VID) {
10531 			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10532 						       vport->vport_id, vlan_id,
10533 						       true);
10534 			if (ret && ret != -EINVAL)
10535 				return;
10536 
10537 			clear_bit(vlan_id, vport->vlan_del_fail_bmap);
10538 			hclge_rm_vport_vlan_table(vport, vlan_id, false);
10539 			hclge_set_vport_vlan_fltr_change(vport);
10540 
10541 			sync_cnt++;
10542 			if (sync_cnt >= HCLGE_MAX_SYNC_COUNT)
10543 				return;
10544 
10545 			vlan_id = find_first_bit(vport->vlan_del_fail_bmap,
10546 						 VLAN_N_VID);
10547 		}
10548 	}
10549 
10550 	hclge_sync_vlan_fltr_state(hdev);
10551 }
10552 
10553 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps)
10554 {
10555 	struct hclge_config_max_frm_size_cmd *req;
10556 	struct hclge_desc desc;
10557 
10558 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAX_FRM_SIZE, false);
10559 
10560 	req = (struct hclge_config_max_frm_size_cmd *)desc.data;
10561 	req->max_frm_size = cpu_to_le16(new_mps);
10562 	req->min_frm_size = HCLGE_MAC_MIN_FRAME;
10563 
10564 	return hclge_cmd_send(&hdev->hw, &desc, 1);
10565 }
10566 
10567 static int hclge_set_mtu(struct hnae3_handle *handle, int new_mtu)
10568 {
10569 	struct hclge_vport *vport = hclge_get_vport(handle);
10570 
10571 	return hclge_set_vport_mtu(vport, new_mtu);
10572 }
10573 
10574 int hclge_set_vport_mtu(struct hclge_vport *vport, int new_mtu)
10575 {
10576 	struct hclge_dev *hdev = vport->back;
10577 	int i, max_frm_size, ret;
10578 
10579 	/* HW supprt 2 layer vlan */
10580 	max_frm_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + 2 * VLAN_HLEN;
10581 	if (max_frm_size < HCLGE_MAC_MIN_FRAME ||
10582 	    max_frm_size > hdev->ae_dev->dev_specs.max_frm_size)
10583 		return -EINVAL;
10584 
10585 	max_frm_size = max(max_frm_size, HCLGE_MAC_DEFAULT_FRAME);
10586 	mutex_lock(&hdev->vport_lock);
10587 	/* VF's mps must fit within hdev->mps */
10588 	if (vport->vport_id && max_frm_size > hdev->mps) {
10589 		mutex_unlock(&hdev->vport_lock);
10590 		return -EINVAL;
10591 	} else if (vport->vport_id) {
10592 		vport->mps = max_frm_size;
10593 		mutex_unlock(&hdev->vport_lock);
10594 		return 0;
10595 	}
10596 
10597 	/* PF's mps must be greater then VF's mps */
10598 	for (i = 1; i < hdev->num_alloc_vport; i++)
10599 		if (max_frm_size < hdev->vport[i].mps) {
10600 			dev_err(&hdev->pdev->dev,
10601 				"failed to set pf mtu for less than vport %d, mps = %u.\n",
10602 				i, hdev->vport[i].mps);
10603 			mutex_unlock(&hdev->vport_lock);
10604 			return -EINVAL;
10605 		}
10606 
10607 	hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
10608 
10609 	ret = hclge_set_mac_mtu(hdev, max_frm_size);
10610 	if (ret) {
10611 		dev_err(&hdev->pdev->dev,
10612 			"Change mtu fail, ret =%d\n", ret);
10613 		goto out;
10614 	}
10615 
10616 	hdev->mps = max_frm_size;
10617 	vport->mps = max_frm_size;
10618 
10619 	ret = hclge_buffer_alloc(hdev);
10620 	if (ret)
10621 		dev_err(&hdev->pdev->dev,
10622 			"Allocate buffer fail, ret =%d\n", ret);
10623 
10624 out:
10625 	hclge_notify_client(hdev, HNAE3_UP_CLIENT);
10626 	mutex_unlock(&hdev->vport_lock);
10627 	return ret;
10628 }
10629 
10630 static int hclge_reset_tqp_cmd_send(struct hclge_dev *hdev, u16 queue_id,
10631 				    bool enable)
10632 {
10633 	struct hclge_reset_tqp_queue_cmd *req;
10634 	struct hclge_desc desc;
10635 	int ret;
10636 
10637 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, false);
10638 
10639 	req = (struct hclge_reset_tqp_queue_cmd *)desc.data;
10640 	req->tqp_id = cpu_to_le16(queue_id);
10641 	if (enable)
10642 		hnae3_set_bit(req->reset_req, HCLGE_TQP_RESET_B, 1U);
10643 
10644 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
10645 	if (ret) {
10646 		dev_err(&hdev->pdev->dev,
10647 			"Send tqp reset cmd error, status =%d\n", ret);
10648 		return ret;
10649 	}
10650 
10651 	return 0;
10652 }
10653 
10654 static int hclge_get_reset_status(struct hclge_dev *hdev, u16 queue_id,
10655 				  u8 *reset_status)
10656 {
10657 	struct hclge_reset_tqp_queue_cmd *req;
10658 	struct hclge_desc desc;
10659 	int ret;
10660 
10661 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, true);
10662 
10663 	req = (struct hclge_reset_tqp_queue_cmd *)desc.data;
10664 	req->tqp_id = cpu_to_le16(queue_id);
10665 
10666 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
10667 	if (ret) {
10668 		dev_err(&hdev->pdev->dev,
10669 			"Get reset status error, status =%d\n", ret);
10670 		return ret;
10671 	}
10672 
10673 	*reset_status = hnae3_get_bit(req->ready_to_reset, HCLGE_TQP_RESET_B);
10674 
10675 	return 0;
10676 }
10677 
10678 u16 hclge_covert_handle_qid_global(struct hnae3_handle *handle, u16 queue_id)
10679 {
10680 	struct hclge_comm_tqp *tqp;
10681 	struct hnae3_queue *queue;
10682 
10683 	queue = handle->kinfo.tqp[queue_id];
10684 	tqp = container_of(queue, struct hclge_comm_tqp, q);
10685 
10686 	return tqp->index;
10687 }
10688 
10689 static int hclge_reset_tqp_cmd(struct hnae3_handle *handle)
10690 {
10691 	struct hclge_vport *vport = hclge_get_vport(handle);
10692 	struct hclge_dev *hdev = vport->back;
10693 	u16 reset_try_times = 0;
10694 	u8 reset_status;
10695 	u16 queue_gid;
10696 	int ret;
10697 	u16 i;
10698 
10699 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
10700 		queue_gid = hclge_covert_handle_qid_global(handle, i);
10701 		ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, true);
10702 		if (ret) {
10703 			dev_err(&hdev->pdev->dev,
10704 				"failed to send reset tqp cmd, ret = %d\n",
10705 				ret);
10706 			return ret;
10707 		}
10708 
10709 		while (reset_try_times++ < HCLGE_TQP_RESET_TRY_TIMES) {
10710 			ret = hclge_get_reset_status(hdev, queue_gid,
10711 						     &reset_status);
10712 			if (ret)
10713 				return ret;
10714 
10715 			if (reset_status)
10716 				break;
10717 
10718 			/* Wait for tqp hw reset */
10719 			usleep_range(1000, 1200);
10720 		}
10721 
10722 		if (reset_try_times >= HCLGE_TQP_RESET_TRY_TIMES) {
10723 			dev_err(&hdev->pdev->dev,
10724 				"wait for tqp hw reset timeout\n");
10725 			return -ETIME;
10726 		}
10727 
10728 		ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, false);
10729 		if (ret) {
10730 			dev_err(&hdev->pdev->dev,
10731 				"failed to deassert soft reset, ret = %d\n",
10732 				ret);
10733 			return ret;
10734 		}
10735 		reset_try_times = 0;
10736 	}
10737 	return 0;
10738 }
10739 
10740 static int hclge_reset_rcb(struct hnae3_handle *handle)
10741 {
10742 #define HCLGE_RESET_RCB_NOT_SUPPORT	0U
10743 #define HCLGE_RESET_RCB_SUCCESS		1U
10744 
10745 	struct hclge_vport *vport = hclge_get_vport(handle);
10746 	struct hclge_dev *hdev = vport->back;
10747 	struct hclge_reset_cmd *req;
10748 	struct hclge_desc desc;
10749 	u8 return_status;
10750 	u16 queue_gid;
10751 	int ret;
10752 
10753 	queue_gid = hclge_covert_handle_qid_global(handle, 0);
10754 
10755 	req = (struct hclge_reset_cmd *)desc.data;
10756 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false);
10757 	hnae3_set_bit(req->fun_reset_rcb, HCLGE_CFG_RESET_RCB_B, 1);
10758 	req->fun_reset_rcb_vqid_start = cpu_to_le16(queue_gid);
10759 	req->fun_reset_rcb_vqid_num = cpu_to_le16(handle->kinfo.num_tqps);
10760 
10761 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
10762 	if (ret) {
10763 		dev_err(&hdev->pdev->dev,
10764 			"failed to send rcb reset cmd, ret = %d\n", ret);
10765 		return ret;
10766 	}
10767 
10768 	return_status = req->fun_reset_rcb_return_status;
10769 	if (return_status == HCLGE_RESET_RCB_SUCCESS)
10770 		return 0;
10771 
10772 	if (return_status != HCLGE_RESET_RCB_NOT_SUPPORT) {
10773 		dev_err(&hdev->pdev->dev, "failed to reset rcb, ret = %u\n",
10774 			return_status);
10775 		return -EIO;
10776 	}
10777 
10778 	/* if reset rcb cmd is unsupported, we need to send reset tqp cmd
10779 	 * again to reset all tqps
10780 	 */
10781 	return hclge_reset_tqp_cmd(handle);
10782 }
10783 
10784 int hclge_reset_tqp(struct hnae3_handle *handle)
10785 {
10786 	struct hclge_vport *vport = hclge_get_vport(handle);
10787 	struct hclge_dev *hdev = vport->back;
10788 	int ret;
10789 
10790 	/* only need to disable PF's tqp */
10791 	if (!vport->vport_id) {
10792 		ret = hclge_tqp_enable(handle, false);
10793 		if (ret) {
10794 			dev_err(&hdev->pdev->dev,
10795 				"failed to disable tqp, ret = %d\n", ret);
10796 			return ret;
10797 		}
10798 	}
10799 
10800 	return hclge_reset_rcb(handle);
10801 }
10802 
10803 static u32 hclge_get_fw_version(struct hnae3_handle *handle)
10804 {
10805 	struct hclge_vport *vport = hclge_get_vport(handle);
10806 	struct hclge_dev *hdev = vport->back;
10807 
10808 	return hdev->fw_version;
10809 }
10810 
10811 static void hclge_set_flowctrl_adv(struct hclge_dev *hdev, u32 rx_en, u32 tx_en)
10812 {
10813 	struct phy_device *phydev = hdev->hw.mac.phydev;
10814 
10815 	if (!phydev)
10816 		return;
10817 
10818 	phy_set_asym_pause(phydev, rx_en, tx_en);
10819 }
10820 
10821 static int hclge_cfg_pauseparam(struct hclge_dev *hdev, u32 rx_en, u32 tx_en)
10822 {
10823 	int ret;
10824 
10825 	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC)
10826 		return 0;
10827 
10828 	ret = hclge_mac_pause_en_cfg(hdev, tx_en, rx_en);
10829 	if (ret)
10830 		dev_err(&hdev->pdev->dev,
10831 			"configure pauseparam error, ret = %d.\n", ret);
10832 
10833 	return ret;
10834 }
10835 
10836 int hclge_cfg_flowctrl(struct hclge_dev *hdev)
10837 {
10838 	struct phy_device *phydev = hdev->hw.mac.phydev;
10839 	u16 remote_advertising = 0;
10840 	u16 local_advertising;
10841 	u32 rx_pause, tx_pause;
10842 	u8 flowctl;
10843 
10844 	if (!phydev->link)
10845 		return 0;
10846 
10847 	if (!phydev->autoneg)
10848 		return hclge_mac_pause_setup_hw(hdev);
10849 
10850 	local_advertising = linkmode_adv_to_lcl_adv_t(phydev->advertising);
10851 
10852 	if (phydev->pause)
10853 		remote_advertising = LPA_PAUSE_CAP;
10854 
10855 	if (phydev->asym_pause)
10856 		remote_advertising |= LPA_PAUSE_ASYM;
10857 
10858 	flowctl = mii_resolve_flowctrl_fdx(local_advertising,
10859 					   remote_advertising);
10860 	tx_pause = flowctl & FLOW_CTRL_TX;
10861 	rx_pause = flowctl & FLOW_CTRL_RX;
10862 
10863 	if (phydev->duplex == HCLGE_MAC_HALF) {
10864 		tx_pause = 0;
10865 		rx_pause = 0;
10866 	}
10867 
10868 	return hclge_cfg_pauseparam(hdev, rx_pause, tx_pause);
10869 }
10870 
10871 static void hclge_get_pauseparam(struct hnae3_handle *handle, u32 *auto_neg,
10872 				 u32 *rx_en, u32 *tx_en)
10873 {
10874 	struct hclge_vport *vport = hclge_get_vport(handle);
10875 	struct hclge_dev *hdev = vport->back;
10876 	u8 media_type = hdev->hw.mac.media_type;
10877 
10878 	*auto_neg = (media_type == HNAE3_MEDIA_TYPE_COPPER) ?
10879 		    hclge_get_autoneg(handle) : 0;
10880 
10881 	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) {
10882 		*rx_en = 0;
10883 		*tx_en = 0;
10884 		return;
10885 	}
10886 
10887 	if (hdev->tm_info.fc_mode == HCLGE_FC_RX_PAUSE) {
10888 		*rx_en = 1;
10889 		*tx_en = 0;
10890 	} else if (hdev->tm_info.fc_mode == HCLGE_FC_TX_PAUSE) {
10891 		*tx_en = 1;
10892 		*rx_en = 0;
10893 	} else if (hdev->tm_info.fc_mode == HCLGE_FC_FULL) {
10894 		*rx_en = 1;
10895 		*tx_en = 1;
10896 	} else {
10897 		*rx_en = 0;
10898 		*tx_en = 0;
10899 	}
10900 }
10901 
10902 static void hclge_record_user_pauseparam(struct hclge_dev *hdev,
10903 					 u32 rx_en, u32 tx_en)
10904 {
10905 	if (rx_en && tx_en)
10906 		hdev->fc_mode_last_time = HCLGE_FC_FULL;
10907 	else if (rx_en && !tx_en)
10908 		hdev->fc_mode_last_time = HCLGE_FC_RX_PAUSE;
10909 	else if (!rx_en && tx_en)
10910 		hdev->fc_mode_last_time = HCLGE_FC_TX_PAUSE;
10911 	else
10912 		hdev->fc_mode_last_time = HCLGE_FC_NONE;
10913 
10914 	hdev->tm_info.fc_mode = hdev->fc_mode_last_time;
10915 }
10916 
10917 static int hclge_set_pauseparam(struct hnae3_handle *handle, u32 auto_neg,
10918 				u32 rx_en, u32 tx_en)
10919 {
10920 	struct hclge_vport *vport = hclge_get_vport(handle);
10921 	struct hclge_dev *hdev = vport->back;
10922 	struct phy_device *phydev = hdev->hw.mac.phydev;
10923 	u32 fc_autoneg;
10924 
10925 	if (phydev || hnae3_dev_phy_imp_supported(hdev)) {
10926 		fc_autoneg = hclge_get_autoneg(handle);
10927 		if (auto_neg != fc_autoneg) {
10928 			dev_info(&hdev->pdev->dev,
10929 				 "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n");
10930 			return -EOPNOTSUPP;
10931 		}
10932 	}
10933 
10934 	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) {
10935 		dev_info(&hdev->pdev->dev,
10936 			 "Priority flow control enabled. Cannot set link flow control.\n");
10937 		return -EOPNOTSUPP;
10938 	}
10939 
10940 	hclge_set_flowctrl_adv(hdev, rx_en, tx_en);
10941 
10942 	hclge_record_user_pauseparam(hdev, rx_en, tx_en);
10943 
10944 	if (!auto_neg || hnae3_dev_phy_imp_supported(hdev))
10945 		return hclge_cfg_pauseparam(hdev, rx_en, tx_en);
10946 
10947 	if (phydev)
10948 		return phy_start_aneg(phydev);
10949 
10950 	return -EOPNOTSUPP;
10951 }
10952 
10953 static void hclge_get_ksettings_an_result(struct hnae3_handle *handle,
10954 					  u8 *auto_neg, u32 *speed, u8 *duplex, u32 *lane_num)
10955 {
10956 	struct hclge_vport *vport = hclge_get_vport(handle);
10957 	struct hclge_dev *hdev = vport->back;
10958 
10959 	if (speed)
10960 		*speed = hdev->hw.mac.speed;
10961 	if (duplex)
10962 		*duplex = hdev->hw.mac.duplex;
10963 	if (auto_neg)
10964 		*auto_neg = hdev->hw.mac.autoneg;
10965 	if (lane_num)
10966 		*lane_num = hdev->hw.mac.lane_num;
10967 }
10968 
10969 static void hclge_get_media_type(struct hnae3_handle *handle, u8 *media_type,
10970 				 u8 *module_type)
10971 {
10972 	struct hclge_vport *vport = hclge_get_vport(handle);
10973 	struct hclge_dev *hdev = vport->back;
10974 
10975 	/* When nic is down, the service task is not running, doesn't update
10976 	 * the port information per second. Query the port information before
10977 	 * return the media type, ensure getting the correct media information.
10978 	 */
10979 	hclge_update_port_info(hdev);
10980 
10981 	if (media_type)
10982 		*media_type = hdev->hw.mac.media_type;
10983 
10984 	if (module_type)
10985 		*module_type = hdev->hw.mac.module_type;
10986 }
10987 
10988 static void hclge_get_mdix_mode(struct hnae3_handle *handle,
10989 				u8 *tp_mdix_ctrl, u8 *tp_mdix)
10990 {
10991 	struct hclge_vport *vport = hclge_get_vport(handle);
10992 	struct hclge_dev *hdev = vport->back;
10993 	struct phy_device *phydev = hdev->hw.mac.phydev;
10994 	int mdix_ctrl, mdix, is_resolved;
10995 	unsigned int retval;
10996 
10997 	if (!phydev) {
10998 		*tp_mdix_ctrl = ETH_TP_MDI_INVALID;
10999 		*tp_mdix = ETH_TP_MDI_INVALID;
11000 		return;
11001 	}
11002 
11003 	phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_MDIX);
11004 
11005 	retval = phy_read(phydev, HCLGE_PHY_CSC_REG);
11006 	mdix_ctrl = hnae3_get_field(retval, HCLGE_PHY_MDIX_CTRL_M,
11007 				    HCLGE_PHY_MDIX_CTRL_S);
11008 
11009 	retval = phy_read(phydev, HCLGE_PHY_CSS_REG);
11010 	mdix = hnae3_get_bit(retval, HCLGE_PHY_MDIX_STATUS_B);
11011 	is_resolved = hnae3_get_bit(retval, HCLGE_PHY_SPEED_DUP_RESOLVE_B);
11012 
11013 	phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_COPPER);
11014 
11015 	switch (mdix_ctrl) {
11016 	case 0x0:
11017 		*tp_mdix_ctrl = ETH_TP_MDI;
11018 		break;
11019 	case 0x1:
11020 		*tp_mdix_ctrl = ETH_TP_MDI_X;
11021 		break;
11022 	case 0x3:
11023 		*tp_mdix_ctrl = ETH_TP_MDI_AUTO;
11024 		break;
11025 	default:
11026 		*tp_mdix_ctrl = ETH_TP_MDI_INVALID;
11027 		break;
11028 	}
11029 
11030 	if (!is_resolved)
11031 		*tp_mdix = ETH_TP_MDI_INVALID;
11032 	else if (mdix)
11033 		*tp_mdix = ETH_TP_MDI_X;
11034 	else
11035 		*tp_mdix = ETH_TP_MDI;
11036 }
11037 
11038 static void hclge_info_show(struct hclge_dev *hdev)
11039 {
11040 	struct hnae3_handle *handle = &hdev->vport->nic;
11041 	struct device *dev = &hdev->pdev->dev;
11042 
11043 	dev_info(dev, "PF info begin:\n");
11044 
11045 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
11046 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
11047 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
11048 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
11049 	dev_info(dev, "Numbers of VF for this PF: %u\n", hdev->num_req_vfs);
11050 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
11051 	dev_info(dev, "Total buffer size for TX/RX: %u\n", hdev->pkt_buf_size);
11052 	dev_info(dev, "TX buffer size for each TC: %u\n", hdev->tx_buf_size);
11053 	dev_info(dev, "DV buffer size for each TC: %u\n", hdev->dv_buf_size);
11054 	dev_info(dev, "This is %s PF\n",
11055 		 hdev->flag & HCLGE_FLAG_MAIN ? "main" : "not main");
11056 	dev_info(dev, "DCB %s\n",
11057 		 handle->kinfo.tc_info.dcb_ets_active ? "enable" : "disable");
11058 	dev_info(dev, "MQPRIO %s\n",
11059 		 handle->kinfo.tc_info.mqprio_active ? "enable" : "disable");
11060 	dev_info(dev, "Default tx spare buffer size: %u\n",
11061 		 hdev->tx_spare_buf_size);
11062 
11063 	dev_info(dev, "PF info end.\n");
11064 }
11065 
11066 static int hclge_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
11067 					  struct hclge_vport *vport)
11068 {
11069 	struct hnae3_client *client = vport->nic.client;
11070 	struct hclge_dev *hdev = ae_dev->priv;
11071 	int rst_cnt = hdev->rst_stats.reset_cnt;
11072 	int ret;
11073 
11074 	ret = client->ops->init_instance(&vport->nic);
11075 	if (ret)
11076 		return ret;
11077 
11078 	set_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
11079 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
11080 	    rst_cnt != hdev->rst_stats.reset_cnt) {
11081 		ret = -EBUSY;
11082 		goto init_nic_err;
11083 	}
11084 
11085 	/* Enable nic hw error interrupts */
11086 	ret = hclge_config_nic_hw_error(hdev, true);
11087 	if (ret) {
11088 		dev_err(&ae_dev->pdev->dev,
11089 			"fail(%d) to enable hw error interrupts\n", ret);
11090 		goto init_nic_err;
11091 	}
11092 
11093 	hnae3_set_client_init_flag(client, ae_dev, 1);
11094 
11095 	if (netif_msg_drv(&hdev->vport->nic))
11096 		hclge_info_show(hdev);
11097 
11098 	return ret;
11099 
11100 init_nic_err:
11101 	clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
11102 	while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11103 		msleep(HCLGE_WAIT_RESET_DONE);
11104 
11105 	client->ops->uninit_instance(&vport->nic, 0);
11106 
11107 	return ret;
11108 }
11109 
11110 static int hclge_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
11111 					   struct hclge_vport *vport)
11112 {
11113 	struct hclge_dev *hdev = ae_dev->priv;
11114 	struct hnae3_client *client;
11115 	int rst_cnt;
11116 	int ret;
11117 
11118 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
11119 	    !hdev->nic_client)
11120 		return 0;
11121 
11122 	client = hdev->roce_client;
11123 	ret = hclge_init_roce_base_info(vport);
11124 	if (ret)
11125 		return ret;
11126 
11127 	rst_cnt = hdev->rst_stats.reset_cnt;
11128 	ret = client->ops->init_instance(&vport->roce);
11129 	if (ret)
11130 		return ret;
11131 
11132 	set_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
11133 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
11134 	    rst_cnt != hdev->rst_stats.reset_cnt) {
11135 		ret = -EBUSY;
11136 		goto init_roce_err;
11137 	}
11138 
11139 	/* Enable roce ras interrupts */
11140 	ret = hclge_config_rocee_ras_interrupt(hdev, true);
11141 	if (ret) {
11142 		dev_err(&ae_dev->pdev->dev,
11143 			"fail(%d) to enable roce ras interrupts\n", ret);
11144 		goto init_roce_err;
11145 	}
11146 
11147 	hnae3_set_client_init_flag(client, ae_dev, 1);
11148 
11149 	return 0;
11150 
11151 init_roce_err:
11152 	clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
11153 	while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11154 		msleep(HCLGE_WAIT_RESET_DONE);
11155 
11156 	hdev->roce_client->ops->uninit_instance(&vport->roce, 0);
11157 
11158 	return ret;
11159 }
11160 
11161 static int hclge_init_client_instance(struct hnae3_client *client,
11162 				      struct hnae3_ae_dev *ae_dev)
11163 {
11164 	struct hclge_dev *hdev = ae_dev->priv;
11165 	struct hclge_vport *vport = &hdev->vport[0];
11166 	int ret;
11167 
11168 	switch (client->type) {
11169 	case HNAE3_CLIENT_KNIC:
11170 		hdev->nic_client = client;
11171 		vport->nic.client = client;
11172 		ret = hclge_init_nic_client_instance(ae_dev, vport);
11173 		if (ret)
11174 			goto clear_nic;
11175 
11176 		ret = hclge_init_roce_client_instance(ae_dev, vport);
11177 		if (ret)
11178 			goto clear_roce;
11179 
11180 		break;
11181 	case HNAE3_CLIENT_ROCE:
11182 		if (hnae3_dev_roce_supported(hdev)) {
11183 			hdev->roce_client = client;
11184 			vport->roce.client = client;
11185 		}
11186 
11187 		ret = hclge_init_roce_client_instance(ae_dev, vport);
11188 		if (ret)
11189 			goto clear_roce;
11190 
11191 		break;
11192 	default:
11193 		return -EINVAL;
11194 	}
11195 
11196 	return 0;
11197 
11198 clear_nic:
11199 	hdev->nic_client = NULL;
11200 	vport->nic.client = NULL;
11201 	return ret;
11202 clear_roce:
11203 	hdev->roce_client = NULL;
11204 	vport->roce.client = NULL;
11205 	return ret;
11206 }
11207 
11208 static void hclge_uninit_client_instance(struct hnae3_client *client,
11209 					 struct hnae3_ae_dev *ae_dev)
11210 {
11211 	struct hclge_dev *hdev = ae_dev->priv;
11212 	struct hclge_vport *vport = &hdev->vport[0];
11213 
11214 	if (hdev->roce_client) {
11215 		clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
11216 		while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11217 			msleep(HCLGE_WAIT_RESET_DONE);
11218 
11219 		hdev->roce_client->ops->uninit_instance(&vport->roce, 0);
11220 		hdev->roce_client = NULL;
11221 		vport->roce.client = NULL;
11222 	}
11223 	if (client->type == HNAE3_CLIENT_ROCE)
11224 		return;
11225 	if (hdev->nic_client && client->ops->uninit_instance) {
11226 		clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
11227 		while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11228 			msleep(HCLGE_WAIT_RESET_DONE);
11229 
11230 		client->ops->uninit_instance(&vport->nic, 0);
11231 		hdev->nic_client = NULL;
11232 		vport->nic.client = NULL;
11233 	}
11234 }
11235 
11236 static int hclge_dev_mem_map(struct hclge_dev *hdev)
11237 {
11238 	struct pci_dev *pdev = hdev->pdev;
11239 	struct hclge_hw *hw = &hdev->hw;
11240 
11241 	/* for device does not have device memory, return directly */
11242 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGE_MEM_BAR)))
11243 		return 0;
11244 
11245 	hw->hw.mem_base =
11246 		devm_ioremap_wc(&pdev->dev,
11247 				pci_resource_start(pdev, HCLGE_MEM_BAR),
11248 				pci_resource_len(pdev, HCLGE_MEM_BAR));
11249 	if (!hw->hw.mem_base) {
11250 		dev_err(&pdev->dev, "failed to map device memory\n");
11251 		return -EFAULT;
11252 	}
11253 
11254 	return 0;
11255 }
11256 
11257 static int hclge_pci_init(struct hclge_dev *hdev)
11258 {
11259 	struct pci_dev *pdev = hdev->pdev;
11260 	struct hclge_hw *hw;
11261 	int ret;
11262 
11263 	ret = pci_enable_device(pdev);
11264 	if (ret) {
11265 		dev_err(&pdev->dev, "failed to enable PCI device\n");
11266 		return ret;
11267 	}
11268 
11269 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11270 	if (ret) {
11271 		ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11272 		if (ret) {
11273 			dev_err(&pdev->dev,
11274 				"can't set consistent PCI DMA");
11275 			goto err_disable_device;
11276 		}
11277 		dev_warn(&pdev->dev, "set DMA mask to 32 bits\n");
11278 	}
11279 
11280 	ret = pci_request_regions(pdev, HCLGE_DRIVER_NAME);
11281 	if (ret) {
11282 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
11283 		goto err_disable_device;
11284 	}
11285 
11286 	pci_set_master(pdev);
11287 	hw = &hdev->hw;
11288 	hw->hw.io_base = pcim_iomap(pdev, 2, 0);
11289 	if (!hw->hw.io_base) {
11290 		dev_err(&pdev->dev, "Can't map configuration register space\n");
11291 		ret = -ENOMEM;
11292 		goto err_release_regions;
11293 	}
11294 
11295 	ret = hclge_dev_mem_map(hdev);
11296 	if (ret)
11297 		goto err_unmap_io_base;
11298 
11299 	hdev->num_req_vfs = pci_sriov_get_totalvfs(pdev);
11300 
11301 	return 0;
11302 
11303 err_unmap_io_base:
11304 	pcim_iounmap(pdev, hdev->hw.hw.io_base);
11305 err_release_regions:
11306 	pci_release_regions(pdev);
11307 err_disable_device:
11308 	pci_disable_device(pdev);
11309 
11310 	return ret;
11311 }
11312 
11313 static void hclge_pci_uninit(struct hclge_dev *hdev)
11314 {
11315 	struct pci_dev *pdev = hdev->pdev;
11316 
11317 	if (hdev->hw.hw.mem_base)
11318 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
11319 
11320 	pcim_iounmap(pdev, hdev->hw.hw.io_base);
11321 	pci_free_irq_vectors(pdev);
11322 	pci_release_mem_regions(pdev);
11323 	pci_disable_device(pdev);
11324 }
11325 
11326 static void hclge_state_init(struct hclge_dev *hdev)
11327 {
11328 	set_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state);
11329 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
11330 	clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state);
11331 	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11332 	clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
11333 	clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state);
11334 	clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state);
11335 }
11336 
11337 static void hclge_state_uninit(struct hclge_dev *hdev)
11338 {
11339 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
11340 	set_bit(HCLGE_STATE_REMOVING, &hdev->state);
11341 
11342 	if (hdev->reset_timer.function)
11343 		del_timer_sync(&hdev->reset_timer);
11344 	if (hdev->service_task.work.func)
11345 		cancel_delayed_work_sync(&hdev->service_task);
11346 }
11347 
11348 static void hclge_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
11349 					enum hnae3_reset_type rst_type)
11350 {
11351 #define HCLGE_RESET_RETRY_WAIT_MS	500
11352 #define HCLGE_RESET_RETRY_CNT	5
11353 
11354 	struct hclge_dev *hdev = ae_dev->priv;
11355 	int retry_cnt = 0;
11356 	int ret;
11357 
11358 	while (retry_cnt++ < HCLGE_RESET_RETRY_CNT) {
11359 		down(&hdev->reset_sem);
11360 		set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11361 		hdev->reset_type = rst_type;
11362 		ret = hclge_reset_prepare(hdev);
11363 		if (!ret && !hdev->reset_pending)
11364 			break;
11365 
11366 		dev_err(&hdev->pdev->dev,
11367 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
11368 			ret, hdev->reset_pending, retry_cnt);
11369 		clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11370 		up(&hdev->reset_sem);
11371 		msleep(HCLGE_RESET_RETRY_WAIT_MS);
11372 	}
11373 
11374 	/* disable misc vector before reset done */
11375 	hclge_enable_vector(&hdev->misc_vector, false);
11376 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
11377 
11378 	if (hdev->reset_type == HNAE3_FLR_RESET)
11379 		hdev->rst_stats.flr_rst_cnt++;
11380 }
11381 
11382 static void hclge_reset_done(struct hnae3_ae_dev *ae_dev)
11383 {
11384 	struct hclge_dev *hdev = ae_dev->priv;
11385 	int ret;
11386 
11387 	hclge_enable_vector(&hdev->misc_vector, true);
11388 
11389 	ret = hclge_reset_rebuild(hdev);
11390 	if (ret)
11391 		dev_err(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", ret);
11392 
11393 	hdev->reset_type = HNAE3_NONE_RESET;
11394 	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11395 	up(&hdev->reset_sem);
11396 }
11397 
11398 static void hclge_clear_resetting_state(struct hclge_dev *hdev)
11399 {
11400 	u16 i;
11401 
11402 	for (i = 0; i < hdev->num_alloc_vport; i++) {
11403 		struct hclge_vport *vport = &hdev->vport[i];
11404 		int ret;
11405 
11406 		 /* Send cmd to clear vport's FUNC_RST_ING */
11407 		ret = hclge_set_vf_rst(hdev, vport->vport_id, false);
11408 		if (ret)
11409 			dev_warn(&hdev->pdev->dev,
11410 				 "clear vport(%u) rst failed %d!\n",
11411 				 vport->vport_id, ret);
11412 	}
11413 }
11414 
11415 static int hclge_clear_hw_resource(struct hclge_dev *hdev)
11416 {
11417 	struct hclge_desc desc;
11418 	int ret;
11419 
11420 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_HW_RESOURCE, false);
11421 
11422 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
11423 	/* This new command is only supported by new firmware, it will
11424 	 * fail with older firmware. Error value -EOPNOSUPP can only be
11425 	 * returned by older firmware running this command, to keep code
11426 	 * backward compatible we will override this value and return
11427 	 * success.
11428 	 */
11429 	if (ret && ret != -EOPNOTSUPP) {
11430 		dev_err(&hdev->pdev->dev,
11431 			"failed to clear hw resource, ret = %d\n", ret);
11432 		return ret;
11433 	}
11434 	return 0;
11435 }
11436 
11437 static void hclge_init_rxd_adv_layout(struct hclge_dev *hdev)
11438 {
11439 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
11440 		hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 1);
11441 }
11442 
11443 static void hclge_uninit_rxd_adv_layout(struct hclge_dev *hdev)
11444 {
11445 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
11446 		hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 0);
11447 }
11448 
11449 static struct hclge_wol_info *hclge_get_wol_info(struct hnae3_handle *handle)
11450 {
11451 	struct hclge_vport *vport = hclge_get_vport(handle);
11452 
11453 	return &vport->back->hw.mac.wol;
11454 }
11455 
11456 static int hclge_get_wol_supported_mode(struct hclge_dev *hdev,
11457 					u32 *wol_supported)
11458 {
11459 	struct hclge_query_wol_supported_cmd *wol_supported_cmd;
11460 	struct hclge_desc desc;
11461 	int ret;
11462 
11463 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_WOL_GET_SUPPORTED_MODE,
11464 				   true);
11465 	wol_supported_cmd = (struct hclge_query_wol_supported_cmd *)desc.data;
11466 
11467 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
11468 	if (ret) {
11469 		dev_err(&hdev->pdev->dev,
11470 			"failed to query wol supported, ret = %d\n", ret);
11471 		return ret;
11472 	}
11473 
11474 	*wol_supported = le32_to_cpu(wol_supported_cmd->supported_wake_mode);
11475 
11476 	return 0;
11477 }
11478 
11479 static int hclge_set_wol_cfg(struct hclge_dev *hdev,
11480 			     struct hclge_wol_info *wol_info)
11481 {
11482 	struct hclge_wol_cfg_cmd *wol_cfg_cmd;
11483 	struct hclge_desc desc;
11484 	int ret;
11485 
11486 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_WOL_CFG, false);
11487 	wol_cfg_cmd = (struct hclge_wol_cfg_cmd *)desc.data;
11488 	wol_cfg_cmd->wake_on_lan_mode = cpu_to_le32(wol_info->wol_current_mode);
11489 	wol_cfg_cmd->sopass_size = wol_info->wol_sopass_size;
11490 	memcpy(wol_cfg_cmd->sopass, wol_info->wol_sopass, SOPASS_MAX);
11491 
11492 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
11493 	if (ret)
11494 		dev_err(&hdev->pdev->dev,
11495 			"failed to set wol config, ret = %d\n", ret);
11496 
11497 	return ret;
11498 }
11499 
11500 static int hclge_update_wol(struct hclge_dev *hdev)
11501 {
11502 	struct hclge_wol_info *wol_info = &hdev->hw.mac.wol;
11503 
11504 	if (!hnae3_ae_dev_wol_supported(hdev->ae_dev))
11505 		return 0;
11506 
11507 	return hclge_set_wol_cfg(hdev, wol_info);
11508 }
11509 
11510 static int hclge_init_wol(struct hclge_dev *hdev)
11511 {
11512 	struct hclge_wol_info *wol_info = &hdev->hw.mac.wol;
11513 	int ret;
11514 
11515 	if (!hnae3_ae_dev_wol_supported(hdev->ae_dev))
11516 		return 0;
11517 
11518 	memset(wol_info, 0, sizeof(struct hclge_wol_info));
11519 	ret = hclge_get_wol_supported_mode(hdev,
11520 					   &wol_info->wol_support_mode);
11521 	if (ret) {
11522 		wol_info->wol_support_mode = 0;
11523 		return ret;
11524 	}
11525 
11526 	return hclge_update_wol(hdev);
11527 }
11528 
11529 static void hclge_get_wol(struct hnae3_handle *handle,
11530 			  struct ethtool_wolinfo *wol)
11531 {
11532 	struct hclge_wol_info *wol_info = hclge_get_wol_info(handle);
11533 
11534 	wol->supported = wol_info->wol_support_mode;
11535 	wol->wolopts = wol_info->wol_current_mode;
11536 	if (wol_info->wol_current_mode & WAKE_MAGICSECURE)
11537 		memcpy(wol->sopass, wol_info->wol_sopass, SOPASS_MAX);
11538 }
11539 
11540 static int hclge_set_wol(struct hnae3_handle *handle,
11541 			 struct ethtool_wolinfo *wol)
11542 {
11543 	struct hclge_wol_info *wol_info = hclge_get_wol_info(handle);
11544 	struct hclge_vport *vport = hclge_get_vport(handle);
11545 	u32 wol_mode;
11546 	int ret;
11547 
11548 	wol_mode = wol->wolopts;
11549 	if (wol_mode & ~wol_info->wol_support_mode)
11550 		return -EINVAL;
11551 
11552 	wol_info->wol_current_mode = wol_mode;
11553 	if (wol_mode & WAKE_MAGICSECURE) {
11554 		memcpy(wol_info->wol_sopass, wol->sopass, SOPASS_MAX);
11555 		wol_info->wol_sopass_size = SOPASS_MAX;
11556 	} else {
11557 		wol_info->wol_sopass_size = 0;
11558 	}
11559 
11560 	ret = hclge_set_wol_cfg(vport->back, wol_info);
11561 	if (ret)
11562 		wol_info->wol_current_mode = 0;
11563 
11564 	return ret;
11565 }
11566 
11567 static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev)
11568 {
11569 	struct pci_dev *pdev = ae_dev->pdev;
11570 	struct hclge_dev *hdev;
11571 	int ret;
11572 
11573 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
11574 	if (!hdev)
11575 		return -ENOMEM;
11576 
11577 	hdev->pdev = pdev;
11578 	hdev->ae_dev = ae_dev;
11579 	hdev->reset_type = HNAE3_NONE_RESET;
11580 	hdev->reset_level = HNAE3_FUNC_RESET;
11581 	ae_dev->priv = hdev;
11582 
11583 	/* HW supprt 2 layer vlan */
11584 	hdev->mps = ETH_FRAME_LEN + ETH_FCS_LEN + 2 * VLAN_HLEN;
11585 
11586 	mutex_init(&hdev->vport_lock);
11587 	spin_lock_init(&hdev->fd_rule_lock);
11588 	sema_init(&hdev->reset_sem, 1);
11589 
11590 	ret = hclge_pci_init(hdev);
11591 	if (ret)
11592 		goto out;
11593 
11594 	ret = hclge_devlink_init(hdev);
11595 	if (ret)
11596 		goto err_pci_uninit;
11597 
11598 	/* Firmware command queue initialize */
11599 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
11600 	if (ret)
11601 		goto err_devlink_uninit;
11602 
11603 	/* Firmware command initialize */
11604 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version,
11605 				  true, hdev->reset_pending);
11606 	if (ret)
11607 		goto err_cmd_uninit;
11608 
11609 	ret  = hclge_clear_hw_resource(hdev);
11610 	if (ret)
11611 		goto err_cmd_uninit;
11612 
11613 	ret = hclge_get_cap(hdev);
11614 	if (ret)
11615 		goto err_cmd_uninit;
11616 
11617 	ret = hclge_query_dev_specs(hdev);
11618 	if (ret) {
11619 		dev_err(&pdev->dev, "failed to query dev specifications, ret = %d.\n",
11620 			ret);
11621 		goto err_cmd_uninit;
11622 	}
11623 
11624 	ret = hclge_configure(hdev);
11625 	if (ret) {
11626 		dev_err(&pdev->dev, "Configure dev error, ret = %d.\n", ret);
11627 		goto err_cmd_uninit;
11628 	}
11629 
11630 	ret = hclge_init_msi(hdev);
11631 	if (ret) {
11632 		dev_err(&pdev->dev, "Init MSI/MSI-X error, ret = %d.\n", ret);
11633 		goto err_cmd_uninit;
11634 	}
11635 
11636 	ret = hclge_misc_irq_init(hdev);
11637 	if (ret)
11638 		goto err_msi_uninit;
11639 
11640 	ret = hclge_alloc_tqps(hdev);
11641 	if (ret) {
11642 		dev_err(&pdev->dev, "Allocate TQPs error, ret = %d.\n", ret);
11643 		goto err_msi_irq_uninit;
11644 	}
11645 
11646 	ret = hclge_alloc_vport(hdev);
11647 	if (ret)
11648 		goto err_msi_irq_uninit;
11649 
11650 	ret = hclge_map_tqp(hdev);
11651 	if (ret)
11652 		goto err_msi_irq_uninit;
11653 
11654 	if (hdev->hw.mac.media_type == HNAE3_MEDIA_TYPE_COPPER) {
11655 		if (hnae3_dev_phy_imp_supported(hdev))
11656 			ret = hclge_update_tp_port_info(hdev);
11657 		else
11658 			ret = hclge_mac_mdio_config(hdev);
11659 
11660 		if (ret)
11661 			goto err_msi_irq_uninit;
11662 	}
11663 
11664 	ret = hclge_init_umv_space(hdev);
11665 	if (ret)
11666 		goto err_mdiobus_unreg;
11667 
11668 	ret = hclge_mac_init(hdev);
11669 	if (ret) {
11670 		dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret);
11671 		goto err_mdiobus_unreg;
11672 	}
11673 
11674 	ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX);
11675 	if (ret) {
11676 		dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret);
11677 		goto err_mdiobus_unreg;
11678 	}
11679 
11680 	ret = hclge_config_gro(hdev);
11681 	if (ret)
11682 		goto err_mdiobus_unreg;
11683 
11684 	ret = hclge_init_vlan_config(hdev);
11685 	if (ret) {
11686 		dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret);
11687 		goto err_mdiobus_unreg;
11688 	}
11689 
11690 	ret = hclge_tm_schd_init(hdev);
11691 	if (ret) {
11692 		dev_err(&pdev->dev, "tm schd init fail, ret =%d\n", ret);
11693 		goto err_mdiobus_unreg;
11694 	}
11695 
11696 	ret = hclge_comm_rss_init_cfg(&hdev->vport->nic, hdev->ae_dev,
11697 				      &hdev->rss_cfg);
11698 	if (ret) {
11699 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
11700 		goto err_mdiobus_unreg;
11701 	}
11702 
11703 	ret = hclge_rss_init_hw(hdev);
11704 	if (ret) {
11705 		dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret);
11706 		goto err_mdiobus_unreg;
11707 	}
11708 
11709 	ret = init_mgr_tbl(hdev);
11710 	if (ret) {
11711 		dev_err(&pdev->dev, "manager table init fail, ret =%d\n", ret);
11712 		goto err_mdiobus_unreg;
11713 	}
11714 
11715 	ret = hclge_init_fd_config(hdev);
11716 	if (ret) {
11717 		dev_err(&pdev->dev,
11718 			"fd table init fail, ret=%d\n", ret);
11719 		goto err_mdiobus_unreg;
11720 	}
11721 
11722 	ret = hclge_ptp_init(hdev);
11723 	if (ret)
11724 		goto err_mdiobus_unreg;
11725 
11726 	ret = hclge_update_port_info(hdev);
11727 	if (ret)
11728 		goto err_mdiobus_unreg;
11729 
11730 	INIT_KFIFO(hdev->mac_tnl_log);
11731 
11732 	hclge_dcb_ops_set(hdev);
11733 
11734 	timer_setup(&hdev->reset_timer, hclge_reset_timer, 0);
11735 	INIT_DELAYED_WORK(&hdev->service_task, hclge_service_task);
11736 
11737 	hclge_clear_all_event_cause(hdev);
11738 	hclge_clear_resetting_state(hdev);
11739 
11740 	/* Log and clear the hw errors those already occurred */
11741 	if (hnae3_dev_ras_imp_supported(hdev))
11742 		hclge_handle_occurred_error(hdev);
11743 	else
11744 		hclge_handle_all_hns_hw_errors(ae_dev);
11745 
11746 	/* request delayed reset for the error recovery because an immediate
11747 	 * global reset on a PF affecting pending initialization of other PFs
11748 	 */
11749 	if (ae_dev->hw_err_reset_req) {
11750 		enum hnae3_reset_type reset_level;
11751 
11752 		reset_level = hclge_get_reset_level(ae_dev,
11753 						    &ae_dev->hw_err_reset_req);
11754 		hclge_set_def_reset_request(ae_dev, reset_level);
11755 		mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL);
11756 	}
11757 
11758 	hclge_init_rxd_adv_layout(hdev);
11759 
11760 	/* Enable MISC vector(vector0) */
11761 	hclge_enable_vector(&hdev->misc_vector, true);
11762 
11763 	ret = hclge_init_wol(hdev);
11764 	if (ret)
11765 		dev_warn(&pdev->dev,
11766 			 "failed to wake on lan init, ret = %d\n", ret);
11767 
11768 	hclge_state_init(hdev);
11769 	hdev->last_reset_time = jiffies;
11770 
11771 	dev_info(&hdev->pdev->dev, "%s driver initialization finished.\n",
11772 		 HCLGE_DRIVER_NAME);
11773 
11774 	hclge_task_schedule(hdev, round_jiffies_relative(HZ));
11775 
11776 	return 0;
11777 
11778 err_mdiobus_unreg:
11779 	if (hdev->hw.mac.phydev)
11780 		mdiobus_unregister(hdev->hw.mac.mdio_bus);
11781 err_msi_irq_uninit:
11782 	hclge_misc_irq_uninit(hdev);
11783 err_msi_uninit:
11784 	pci_free_irq_vectors(pdev);
11785 err_cmd_uninit:
11786 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
11787 err_devlink_uninit:
11788 	hclge_devlink_uninit(hdev);
11789 err_pci_uninit:
11790 	pcim_iounmap(pdev, hdev->hw.hw.io_base);
11791 	pci_release_regions(pdev);
11792 	pci_disable_device(pdev);
11793 out:
11794 	mutex_destroy(&hdev->vport_lock);
11795 	return ret;
11796 }
11797 
11798 static void hclge_stats_clear(struct hclge_dev *hdev)
11799 {
11800 	memset(&hdev->mac_stats, 0, sizeof(hdev->mac_stats));
11801 	memset(&hdev->fec_stats, 0, sizeof(hdev->fec_stats));
11802 }
11803 
11804 static int hclge_set_mac_spoofchk(struct hclge_dev *hdev, int vf, bool enable)
11805 {
11806 	return hclge_config_switch_param(hdev, vf, enable,
11807 					 HCLGE_SWITCH_ANTI_SPOOF_MASK);
11808 }
11809 
11810 static int hclge_set_vlan_spoofchk(struct hclge_dev *hdev, int vf, bool enable)
11811 {
11812 	return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
11813 					  HCLGE_FILTER_FE_NIC_INGRESS_B,
11814 					  enable, vf);
11815 }
11816 
11817 static int hclge_set_vf_spoofchk_hw(struct hclge_dev *hdev, int vf, bool enable)
11818 {
11819 	int ret;
11820 
11821 	ret = hclge_set_mac_spoofchk(hdev, vf, enable);
11822 	if (ret) {
11823 		dev_err(&hdev->pdev->dev,
11824 			"Set vf %d mac spoof check %s failed, ret=%d\n",
11825 			vf, enable ? "on" : "off", ret);
11826 		return ret;
11827 	}
11828 
11829 	ret = hclge_set_vlan_spoofchk(hdev, vf, enable);
11830 	if (ret)
11831 		dev_err(&hdev->pdev->dev,
11832 			"Set vf %d vlan spoof check %s failed, ret=%d\n",
11833 			vf, enable ? "on" : "off", ret);
11834 
11835 	return ret;
11836 }
11837 
11838 static int hclge_set_vf_spoofchk(struct hnae3_handle *handle, int vf,
11839 				 bool enable)
11840 {
11841 	struct hclge_vport *vport = hclge_get_vport(handle);
11842 	struct hclge_dev *hdev = vport->back;
11843 	u32 new_spoofchk = enable ? 1 : 0;
11844 	int ret;
11845 
11846 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
11847 		return -EOPNOTSUPP;
11848 
11849 	vport = hclge_get_vf_vport(hdev, vf);
11850 	if (!vport)
11851 		return -EINVAL;
11852 
11853 	if (vport->vf_info.spoofchk == new_spoofchk)
11854 		return 0;
11855 
11856 	if (enable && test_bit(vport->vport_id, hdev->vf_vlan_full))
11857 		dev_warn(&hdev->pdev->dev,
11858 			 "vf %d vlan table is full, enable spoof check may cause its packet send fail\n",
11859 			 vf);
11860 	else if (enable && hclge_is_umv_space_full(vport, true))
11861 		dev_warn(&hdev->pdev->dev,
11862 			 "vf %d mac table is full, enable spoof check may cause its packet send fail\n",
11863 			 vf);
11864 
11865 	ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, enable);
11866 	if (ret)
11867 		return ret;
11868 
11869 	vport->vf_info.spoofchk = new_spoofchk;
11870 	return 0;
11871 }
11872 
11873 static int hclge_reset_vport_spoofchk(struct hclge_dev *hdev)
11874 {
11875 	struct hclge_vport *vport = hdev->vport;
11876 	int ret;
11877 	int i;
11878 
11879 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
11880 		return 0;
11881 
11882 	/* resume the vf spoof check state after reset */
11883 	for (i = 0; i < hdev->num_alloc_vport; i++) {
11884 		ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id,
11885 					       vport->vf_info.spoofchk);
11886 		if (ret)
11887 			return ret;
11888 
11889 		vport++;
11890 	}
11891 
11892 	return 0;
11893 }
11894 
11895 static int hclge_set_vf_trust(struct hnae3_handle *handle, int vf, bool enable)
11896 {
11897 	struct hclge_vport *vport = hclge_get_vport(handle);
11898 	struct hclge_dev *hdev = vport->back;
11899 	u32 new_trusted = enable ? 1 : 0;
11900 
11901 	vport = hclge_get_vf_vport(hdev, vf);
11902 	if (!vport)
11903 		return -EINVAL;
11904 
11905 	if (vport->vf_info.trusted == new_trusted)
11906 		return 0;
11907 
11908 	vport->vf_info.trusted = new_trusted;
11909 	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
11910 	hclge_task_schedule(hdev, 0);
11911 
11912 	return 0;
11913 }
11914 
11915 static void hclge_reset_vf_rate(struct hclge_dev *hdev)
11916 {
11917 	int ret;
11918 	int vf;
11919 
11920 	/* reset vf rate to default value */
11921 	for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) {
11922 		struct hclge_vport *vport = &hdev->vport[vf];
11923 
11924 		vport->vf_info.max_tx_rate = 0;
11925 		ret = hclge_tm_qs_shaper_cfg(vport, vport->vf_info.max_tx_rate);
11926 		if (ret)
11927 			dev_err(&hdev->pdev->dev,
11928 				"vf%d failed to reset to default, ret=%d\n",
11929 				vf - HCLGE_VF_VPORT_START_NUM, ret);
11930 	}
11931 }
11932 
11933 static int hclge_vf_rate_param_check(struct hclge_dev *hdev,
11934 				     int min_tx_rate, int max_tx_rate)
11935 {
11936 	if (min_tx_rate != 0 ||
11937 	    max_tx_rate < 0 || max_tx_rate > hdev->hw.mac.max_speed) {
11938 		dev_err(&hdev->pdev->dev,
11939 			"min_tx_rate:%d [0], max_tx_rate:%d [0, %u]\n",
11940 			min_tx_rate, max_tx_rate, hdev->hw.mac.max_speed);
11941 		return -EINVAL;
11942 	}
11943 
11944 	return 0;
11945 }
11946 
11947 static int hclge_set_vf_rate(struct hnae3_handle *handle, int vf,
11948 			     int min_tx_rate, int max_tx_rate, bool force)
11949 {
11950 	struct hclge_vport *vport = hclge_get_vport(handle);
11951 	struct hclge_dev *hdev = vport->back;
11952 	int ret;
11953 
11954 	ret = hclge_vf_rate_param_check(hdev, min_tx_rate, max_tx_rate);
11955 	if (ret)
11956 		return ret;
11957 
11958 	vport = hclge_get_vf_vport(hdev, vf);
11959 	if (!vport)
11960 		return -EINVAL;
11961 
11962 	if (!force && max_tx_rate == vport->vf_info.max_tx_rate)
11963 		return 0;
11964 
11965 	ret = hclge_tm_qs_shaper_cfg(vport, max_tx_rate);
11966 	if (ret)
11967 		return ret;
11968 
11969 	vport->vf_info.max_tx_rate = max_tx_rate;
11970 
11971 	return 0;
11972 }
11973 
11974 static int hclge_resume_vf_rate(struct hclge_dev *hdev)
11975 {
11976 	struct hnae3_handle *handle = &hdev->vport->nic;
11977 	struct hclge_vport *vport;
11978 	int ret;
11979 	int vf;
11980 
11981 	/* resume the vf max_tx_rate after reset */
11982 	for (vf = 0; vf < pci_num_vf(hdev->pdev); vf++) {
11983 		vport = hclge_get_vf_vport(hdev, vf);
11984 		if (!vport)
11985 			return -EINVAL;
11986 
11987 		/* zero means max rate, after reset, firmware already set it to
11988 		 * max rate, so just continue.
11989 		 */
11990 		if (!vport->vf_info.max_tx_rate)
11991 			continue;
11992 
11993 		ret = hclge_set_vf_rate(handle, vf, 0,
11994 					vport->vf_info.max_tx_rate, true);
11995 		if (ret) {
11996 			dev_err(&hdev->pdev->dev,
11997 				"vf%d failed to resume tx_rate:%u, ret=%d\n",
11998 				vf, vport->vf_info.max_tx_rate, ret);
11999 			return ret;
12000 		}
12001 	}
12002 
12003 	return 0;
12004 }
12005 
12006 static void hclge_reset_vport_state(struct hclge_dev *hdev)
12007 {
12008 	struct hclge_vport *vport = hdev->vport;
12009 	int i;
12010 
12011 	for (i = 0; i < hdev->num_alloc_vport; i++) {
12012 		clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
12013 		vport++;
12014 	}
12015 }
12016 
12017 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev)
12018 {
12019 	struct hclge_dev *hdev = ae_dev->priv;
12020 	struct pci_dev *pdev = ae_dev->pdev;
12021 	int ret;
12022 
12023 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
12024 
12025 	hclge_stats_clear(hdev);
12026 	/* NOTE: pf reset needn't to clear or restore pf and vf table entry.
12027 	 * so here should not clean table in memory.
12028 	 */
12029 	if (hdev->reset_type == HNAE3_IMP_RESET ||
12030 	    hdev->reset_type == HNAE3_GLOBAL_RESET) {
12031 		memset(hdev->vlan_table, 0, sizeof(hdev->vlan_table));
12032 		memset(hdev->vf_vlan_full, 0, sizeof(hdev->vf_vlan_full));
12033 		bitmap_set(hdev->vport_config_block, 0, hdev->num_alloc_vport);
12034 		hclge_reset_umv_space(hdev);
12035 	}
12036 
12037 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version,
12038 				  true, hdev->reset_pending);
12039 	if (ret) {
12040 		dev_err(&pdev->dev, "Cmd queue init failed\n");
12041 		return ret;
12042 	}
12043 
12044 	ret = hclge_map_tqp(hdev);
12045 	if (ret) {
12046 		dev_err(&pdev->dev, "Map tqp error, ret = %d.\n", ret);
12047 		return ret;
12048 	}
12049 
12050 	ret = hclge_mac_init(hdev);
12051 	if (ret) {
12052 		dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret);
12053 		return ret;
12054 	}
12055 
12056 	ret = hclge_tp_port_init(hdev);
12057 	if (ret) {
12058 		dev_err(&pdev->dev, "failed to init tp port, ret = %d\n",
12059 			ret);
12060 		return ret;
12061 	}
12062 
12063 	ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX);
12064 	if (ret) {
12065 		dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret);
12066 		return ret;
12067 	}
12068 
12069 	ret = hclge_config_gro(hdev);
12070 	if (ret)
12071 		return ret;
12072 
12073 	ret = hclge_init_vlan_config(hdev);
12074 	if (ret) {
12075 		dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret);
12076 		return ret;
12077 	}
12078 
12079 	ret = hclge_tm_init_hw(hdev, true);
12080 	if (ret) {
12081 		dev_err(&pdev->dev, "tm init hw fail, ret =%d\n", ret);
12082 		return ret;
12083 	}
12084 
12085 	ret = hclge_rss_init_hw(hdev);
12086 	if (ret) {
12087 		dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret);
12088 		return ret;
12089 	}
12090 
12091 	ret = init_mgr_tbl(hdev);
12092 	if (ret) {
12093 		dev_err(&pdev->dev,
12094 			"failed to reinit manager table, ret = %d\n", ret);
12095 		return ret;
12096 	}
12097 
12098 	ret = hclge_init_fd_config(hdev);
12099 	if (ret) {
12100 		dev_err(&pdev->dev, "fd table init fail, ret=%d\n", ret);
12101 		return ret;
12102 	}
12103 
12104 	ret = hclge_ptp_init(hdev);
12105 	if (ret)
12106 		return ret;
12107 
12108 	/* Log and clear the hw errors those already occurred */
12109 	if (hnae3_dev_ras_imp_supported(hdev))
12110 		hclge_handle_occurred_error(hdev);
12111 	else
12112 		hclge_handle_all_hns_hw_errors(ae_dev);
12113 
12114 	/* Re-enable the hw error interrupts because
12115 	 * the interrupts get disabled on global reset.
12116 	 */
12117 	ret = hclge_config_nic_hw_error(hdev, true);
12118 	if (ret) {
12119 		dev_err(&pdev->dev,
12120 			"fail(%d) to re-enable NIC hw error interrupts\n",
12121 			ret);
12122 		return ret;
12123 	}
12124 
12125 	if (hdev->roce_client) {
12126 		ret = hclge_config_rocee_ras_interrupt(hdev, true);
12127 		if (ret) {
12128 			dev_err(&pdev->dev,
12129 				"fail(%d) to re-enable roce ras interrupts\n",
12130 				ret);
12131 			return ret;
12132 		}
12133 	}
12134 
12135 	hclge_reset_vport_state(hdev);
12136 	ret = hclge_reset_vport_spoofchk(hdev);
12137 	if (ret)
12138 		return ret;
12139 
12140 	ret = hclge_resume_vf_rate(hdev);
12141 	if (ret)
12142 		return ret;
12143 
12144 	hclge_init_rxd_adv_layout(hdev);
12145 
12146 	ret = hclge_update_wol(hdev);
12147 	if (ret)
12148 		dev_warn(&pdev->dev,
12149 			 "failed to update wol config, ret = %d\n", ret);
12150 
12151 	dev_info(&pdev->dev, "Reset done, %s driver initialization finished.\n",
12152 		 HCLGE_DRIVER_NAME);
12153 
12154 	return 0;
12155 }
12156 
12157 static void hclge_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
12158 {
12159 	struct hclge_dev *hdev = ae_dev->priv;
12160 	struct hclge_mac *mac = &hdev->hw.mac;
12161 
12162 	hclge_reset_vf_rate(hdev);
12163 	hclge_clear_vf_vlan(hdev);
12164 	hclge_state_uninit(hdev);
12165 	hclge_ptp_uninit(hdev);
12166 	hclge_uninit_rxd_adv_layout(hdev);
12167 	hclge_uninit_mac_table(hdev);
12168 	hclge_del_all_fd_entries(hdev);
12169 
12170 	if (mac->phydev)
12171 		mdiobus_unregister(mac->mdio_bus);
12172 
12173 	/* Disable MISC vector(vector0) */
12174 	hclge_enable_vector(&hdev->misc_vector, false);
12175 	synchronize_irq(hdev->misc_vector.vector_irq);
12176 
12177 	/* Disable all hw interrupts */
12178 	hclge_config_mac_tnl_int(hdev, false);
12179 	hclge_config_nic_hw_error(hdev, false);
12180 	hclge_config_rocee_ras_interrupt(hdev, false);
12181 
12182 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
12183 	hclge_misc_irq_uninit(hdev);
12184 	hclge_devlink_uninit(hdev);
12185 	hclge_pci_uninit(hdev);
12186 	hclge_uninit_vport_vlan_table(hdev);
12187 	mutex_destroy(&hdev->vport_lock);
12188 	ae_dev->priv = NULL;
12189 }
12190 
12191 static u32 hclge_get_max_channels(struct hnae3_handle *handle)
12192 {
12193 	struct hclge_vport *vport = hclge_get_vport(handle);
12194 	struct hclge_dev *hdev = vport->back;
12195 
12196 	return min_t(u32, hdev->pf_rss_size_max, vport->alloc_tqps);
12197 }
12198 
12199 static void hclge_get_channels(struct hnae3_handle *handle,
12200 			       struct ethtool_channels *ch)
12201 {
12202 	ch->max_combined = hclge_get_max_channels(handle);
12203 	ch->other_count = 1;
12204 	ch->max_other = 1;
12205 	ch->combined_count = handle->kinfo.rss_size;
12206 }
12207 
12208 static void hclge_get_tqps_and_rss_info(struct hnae3_handle *handle,
12209 					u16 *alloc_tqps, u16 *max_rss_size)
12210 {
12211 	struct hclge_vport *vport = hclge_get_vport(handle);
12212 	struct hclge_dev *hdev = vport->back;
12213 
12214 	*alloc_tqps = vport->alloc_tqps;
12215 	*max_rss_size = hdev->pf_rss_size_max;
12216 }
12217 
12218 static int hclge_set_rss_tc_mode_cfg(struct hnae3_handle *handle)
12219 {
12220 	struct hclge_vport *vport = hclge_get_vport(handle);
12221 	u16 tc_offset[HCLGE_MAX_TC_NUM] = {0};
12222 	struct hclge_dev *hdev = vport->back;
12223 	u16 tc_size[HCLGE_MAX_TC_NUM] = {0};
12224 	u16 tc_valid[HCLGE_MAX_TC_NUM];
12225 	u16 roundup_size;
12226 	unsigned int i;
12227 
12228 	roundup_size = roundup_pow_of_two(vport->nic.kinfo.rss_size);
12229 	roundup_size = ilog2(roundup_size);
12230 	/* Set the RSS TC mode according to the new RSS size */
12231 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
12232 		tc_valid[i] = 0;
12233 
12234 		if (!(hdev->hw_tc_map & BIT(i)))
12235 			continue;
12236 
12237 		tc_valid[i] = 1;
12238 		tc_size[i] = roundup_size;
12239 		tc_offset[i] = vport->nic.kinfo.rss_size * i;
12240 	}
12241 
12242 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid,
12243 					  tc_size);
12244 }
12245 
12246 static int hclge_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
12247 			      bool rxfh_configured)
12248 {
12249 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
12250 	struct hclge_vport *vport = hclge_get_vport(handle);
12251 	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
12252 	struct hclge_dev *hdev = vport->back;
12253 	u16 cur_rss_size = kinfo->rss_size;
12254 	u16 cur_tqps = kinfo->num_tqps;
12255 	u32 *rss_indir;
12256 	unsigned int i;
12257 	int ret;
12258 
12259 	kinfo->req_rss_size = new_tqps_num;
12260 
12261 	ret = hclge_tm_vport_map_update(hdev);
12262 	if (ret) {
12263 		dev_err(&hdev->pdev->dev, "tm vport map fail, ret =%d\n", ret);
12264 		return ret;
12265 	}
12266 
12267 	ret = hclge_set_rss_tc_mode_cfg(handle);
12268 	if (ret)
12269 		return ret;
12270 
12271 	/* RSS indirection table has been configured by user */
12272 	if (rxfh_configured)
12273 		goto out;
12274 
12275 	/* Reinitializes the rss indirect table according to the new RSS size */
12276 	rss_indir = kcalloc(ae_dev->dev_specs.rss_ind_tbl_size, sizeof(u32),
12277 			    GFP_KERNEL);
12278 	if (!rss_indir)
12279 		return -ENOMEM;
12280 
12281 	for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++)
12282 		rss_indir[i] = i % kinfo->rss_size;
12283 
12284 	ret = hclge_set_rss(handle, rss_indir, NULL, 0);
12285 	if (ret)
12286 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
12287 			ret);
12288 
12289 	kfree(rss_indir);
12290 
12291 out:
12292 	if (!ret)
12293 		dev_info(&hdev->pdev->dev,
12294 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
12295 			 cur_rss_size, kinfo->rss_size,
12296 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
12297 
12298 	return ret;
12299 }
12300 
12301 static int hclge_set_led_status(struct hclge_dev *hdev, u8 locate_led_status)
12302 {
12303 	struct hclge_set_led_state_cmd *req;
12304 	struct hclge_desc desc;
12305 	int ret;
12306 
12307 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_LED_STATUS_CFG, false);
12308 
12309 	req = (struct hclge_set_led_state_cmd *)desc.data;
12310 	hnae3_set_field(req->locate_led_config, HCLGE_LED_LOCATE_STATE_M,
12311 			HCLGE_LED_LOCATE_STATE_S, locate_led_status);
12312 
12313 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12314 	if (ret)
12315 		dev_err(&hdev->pdev->dev,
12316 			"Send set led state cmd error, ret =%d\n", ret);
12317 
12318 	return ret;
12319 }
12320 
12321 enum hclge_led_status {
12322 	HCLGE_LED_OFF,
12323 	HCLGE_LED_ON,
12324 	HCLGE_LED_NO_CHANGE = 0xFF,
12325 };
12326 
12327 static int hclge_set_led_id(struct hnae3_handle *handle,
12328 			    enum ethtool_phys_id_state status)
12329 {
12330 	struct hclge_vport *vport = hclge_get_vport(handle);
12331 	struct hclge_dev *hdev = vport->back;
12332 
12333 	switch (status) {
12334 	case ETHTOOL_ID_ACTIVE:
12335 		return hclge_set_led_status(hdev, HCLGE_LED_ON);
12336 	case ETHTOOL_ID_INACTIVE:
12337 		return hclge_set_led_status(hdev, HCLGE_LED_OFF);
12338 	default:
12339 		return -EINVAL;
12340 	}
12341 }
12342 
12343 static void hclge_get_link_mode(struct hnae3_handle *handle,
12344 				unsigned long *supported,
12345 				unsigned long *advertising)
12346 {
12347 	unsigned int size = BITS_TO_LONGS(__ETHTOOL_LINK_MODE_MASK_NBITS);
12348 	struct hclge_vport *vport = hclge_get_vport(handle);
12349 	struct hclge_dev *hdev = vport->back;
12350 	unsigned int idx = 0;
12351 
12352 	for (; idx < size; idx++) {
12353 		supported[idx] = hdev->hw.mac.supported[idx];
12354 		advertising[idx] = hdev->hw.mac.advertising[idx];
12355 	}
12356 }
12357 
12358 static int hclge_gro_en(struct hnae3_handle *handle, bool enable)
12359 {
12360 	struct hclge_vport *vport = hclge_get_vport(handle);
12361 	struct hclge_dev *hdev = vport->back;
12362 	bool gro_en_old = hdev->gro_en;
12363 	int ret;
12364 
12365 	hdev->gro_en = enable;
12366 	ret = hclge_config_gro(hdev);
12367 	if (ret)
12368 		hdev->gro_en = gro_en_old;
12369 
12370 	return ret;
12371 }
12372 
12373 static int hclge_sync_vport_promisc_mode(struct hclge_vport *vport)
12374 {
12375 	struct hnae3_handle *handle = &vport->nic;
12376 	struct hclge_dev *hdev = vport->back;
12377 	bool uc_en = false;
12378 	bool mc_en = false;
12379 	u8 tmp_flags;
12380 	bool bc_en;
12381 	int ret;
12382 
12383 	if (vport->last_promisc_flags != vport->overflow_promisc_flags) {
12384 		set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
12385 		vport->last_promisc_flags = vport->overflow_promisc_flags;
12386 	}
12387 
12388 	if (!test_and_clear_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE,
12389 				&vport->state))
12390 		return 0;
12391 
12392 	/* for PF */
12393 	if (!vport->vport_id) {
12394 		tmp_flags = handle->netdev_flags | vport->last_promisc_flags;
12395 		ret = hclge_set_promisc_mode(handle, tmp_flags & HNAE3_UPE,
12396 					     tmp_flags & HNAE3_MPE);
12397 		if (!ret)
12398 			set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
12399 				&vport->state);
12400 		else
12401 			set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE,
12402 				&vport->state);
12403 		return ret;
12404 	}
12405 
12406 	/* for VF */
12407 	if (vport->vf_info.trusted) {
12408 		uc_en = vport->vf_info.request_uc_en > 0 ||
12409 			vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE;
12410 		mc_en = vport->vf_info.request_mc_en > 0 ||
12411 			vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE;
12412 	}
12413 	bc_en = vport->vf_info.request_bc_en > 0;
12414 
12415 	ret = hclge_cmd_set_promisc_mode(hdev, vport->vport_id, uc_en,
12416 					 mc_en, bc_en);
12417 	if (ret) {
12418 		set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
12419 		return ret;
12420 	}
12421 	hclge_set_vport_vlan_fltr_change(vport);
12422 
12423 	return 0;
12424 }
12425 
12426 static void hclge_sync_promisc_mode(struct hclge_dev *hdev)
12427 {
12428 	struct hclge_vport *vport;
12429 	int ret;
12430 	u16 i;
12431 
12432 	for (i = 0; i < hdev->num_alloc_vport; i++) {
12433 		vport = &hdev->vport[i];
12434 
12435 		ret = hclge_sync_vport_promisc_mode(vport);
12436 		if (ret)
12437 			return;
12438 	}
12439 }
12440 
12441 static bool hclge_module_existed(struct hclge_dev *hdev)
12442 {
12443 	struct hclge_desc desc;
12444 	u32 existed;
12445 	int ret;
12446 
12447 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_EXIST, true);
12448 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12449 	if (ret) {
12450 		dev_err(&hdev->pdev->dev,
12451 			"failed to get SFP exist state, ret = %d\n", ret);
12452 		return false;
12453 	}
12454 
12455 	existed = le32_to_cpu(desc.data[0]);
12456 
12457 	return existed != 0;
12458 }
12459 
12460 /* need 6 bds(total 140 bytes) in one reading
12461  * return the number of bytes actually read, 0 means read failed.
12462  */
12463 static u16 hclge_get_sfp_eeprom_info(struct hclge_dev *hdev, u32 offset,
12464 				     u32 len, u8 *data)
12465 {
12466 	struct hclge_desc desc[HCLGE_SFP_INFO_CMD_NUM];
12467 	struct hclge_sfp_info_bd0_cmd *sfp_info_bd0;
12468 	u16 read_len;
12469 	u16 copy_len;
12470 	int ret;
12471 	int i;
12472 
12473 	/* setup all 6 bds to read module eeprom info. */
12474 	for (i = 0; i < HCLGE_SFP_INFO_CMD_NUM; i++) {
12475 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_SFP_EEPROM,
12476 					   true);
12477 
12478 		/* bd0~bd4 need next flag */
12479 		if (i < HCLGE_SFP_INFO_CMD_NUM - 1)
12480 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
12481 	}
12482 
12483 	/* setup bd0, this bd contains offset and read length. */
12484 	sfp_info_bd0 = (struct hclge_sfp_info_bd0_cmd *)desc[0].data;
12485 	sfp_info_bd0->offset = cpu_to_le16((u16)offset);
12486 	read_len = min_t(u16, len, HCLGE_SFP_INFO_MAX_LEN);
12487 	sfp_info_bd0->read_len = cpu_to_le16(read_len);
12488 
12489 	ret = hclge_cmd_send(&hdev->hw, desc, i);
12490 	if (ret) {
12491 		dev_err(&hdev->pdev->dev,
12492 			"failed to get SFP eeprom info, ret = %d\n", ret);
12493 		return 0;
12494 	}
12495 
12496 	/* copy sfp info from bd0 to out buffer. */
12497 	copy_len = min_t(u16, len, HCLGE_SFP_INFO_BD0_LEN);
12498 	memcpy(data, sfp_info_bd0->data, copy_len);
12499 	read_len = copy_len;
12500 
12501 	/* copy sfp info from bd1~bd5 to out buffer if needed. */
12502 	for (i = 1; i < HCLGE_SFP_INFO_CMD_NUM; i++) {
12503 		if (read_len >= len)
12504 			return read_len;
12505 
12506 		copy_len = min_t(u16, len - read_len, HCLGE_SFP_INFO_BDX_LEN);
12507 		memcpy(data + read_len, desc[i].data, copy_len);
12508 		read_len += copy_len;
12509 	}
12510 
12511 	return read_len;
12512 }
12513 
12514 static int hclge_get_module_eeprom(struct hnae3_handle *handle, u32 offset,
12515 				   u32 len, u8 *data)
12516 {
12517 	struct hclge_vport *vport = hclge_get_vport(handle);
12518 	struct hclge_dev *hdev = vport->back;
12519 	u32 read_len = 0;
12520 	u16 data_len;
12521 
12522 	if (hdev->hw.mac.media_type != HNAE3_MEDIA_TYPE_FIBER)
12523 		return -EOPNOTSUPP;
12524 
12525 	if (!hclge_module_existed(hdev))
12526 		return -ENXIO;
12527 
12528 	while (read_len < len) {
12529 		data_len = hclge_get_sfp_eeprom_info(hdev,
12530 						     offset + read_len,
12531 						     len - read_len,
12532 						     data + read_len);
12533 		if (!data_len)
12534 			return -EIO;
12535 
12536 		read_len += data_len;
12537 	}
12538 
12539 	return 0;
12540 }
12541 
12542 static int hclge_get_link_diagnosis_info(struct hnae3_handle *handle,
12543 					 u32 *status_code)
12544 {
12545 	struct hclge_vport *vport = hclge_get_vport(handle);
12546 	struct hclge_dev *hdev = vport->back;
12547 	struct hclge_desc desc;
12548 	int ret;
12549 
12550 	if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2)
12551 		return -EOPNOTSUPP;
12552 
12553 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_DIAGNOSIS, true);
12554 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12555 	if (ret) {
12556 		dev_err(&hdev->pdev->dev,
12557 			"failed to query link diagnosis info, ret = %d\n", ret);
12558 		return ret;
12559 	}
12560 
12561 	*status_code = le32_to_cpu(desc.data[0]);
12562 	return 0;
12563 }
12564 
12565 /* After disable sriov, VF still has some config and info need clean,
12566  * which configed by PF.
12567  */
12568 static void hclge_clear_vport_vf_info(struct hclge_vport *vport, int vfid)
12569 {
12570 	struct hclge_dev *hdev = vport->back;
12571 	struct hclge_vlan_info vlan_info;
12572 	int ret;
12573 
12574 	clear_bit(HCLGE_VPORT_STATE_INITED, &vport->state);
12575 	clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
12576 	vport->need_notify = 0;
12577 	vport->mps = 0;
12578 
12579 	/* after disable sriov, clean VF rate configured by PF */
12580 	ret = hclge_tm_qs_shaper_cfg(vport, 0);
12581 	if (ret)
12582 		dev_err(&hdev->pdev->dev,
12583 			"failed to clean vf%d rate config, ret = %d\n",
12584 			vfid, ret);
12585 
12586 	vlan_info.vlan_tag = 0;
12587 	vlan_info.qos = 0;
12588 	vlan_info.vlan_proto = ETH_P_8021Q;
12589 	ret = hclge_update_port_base_vlan_cfg(vport,
12590 					      HNAE3_PORT_BASE_VLAN_DISABLE,
12591 					      &vlan_info);
12592 	if (ret)
12593 		dev_err(&hdev->pdev->dev,
12594 			"failed to clean vf%d port base vlan, ret = %d\n",
12595 			vfid, ret);
12596 
12597 	ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, false);
12598 	if (ret)
12599 		dev_err(&hdev->pdev->dev,
12600 			"failed to clean vf%d spoof config, ret = %d\n",
12601 			vfid, ret);
12602 
12603 	memset(&vport->vf_info, 0, sizeof(vport->vf_info));
12604 }
12605 
12606 static void hclge_clean_vport_config(struct hnae3_ae_dev *ae_dev, int num_vfs)
12607 {
12608 	struct hclge_dev *hdev = ae_dev->priv;
12609 	struct hclge_vport *vport;
12610 	int i;
12611 
12612 	for (i = 0; i < num_vfs; i++) {
12613 		vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM];
12614 
12615 		hclge_clear_vport_vf_info(vport, i);
12616 	}
12617 }
12618 
12619 static int hclge_get_dscp_prio(struct hnae3_handle *h, u8 dscp, u8 *tc_mode,
12620 			       u8 *priority)
12621 {
12622 	struct hclge_vport *vport = hclge_get_vport(h);
12623 
12624 	if (dscp >= HNAE3_MAX_DSCP)
12625 		return -EINVAL;
12626 
12627 	if (tc_mode)
12628 		*tc_mode = vport->nic.kinfo.tc_map_mode;
12629 	if (priority)
12630 		*priority = vport->nic.kinfo.dscp_prio[dscp] == HNAE3_PRIO_ID_INVALID ? 0 :
12631 			    vport->nic.kinfo.dscp_prio[dscp];
12632 
12633 	return 0;
12634 }
12635 
12636 static const struct hnae3_ae_ops hclge_ops = {
12637 	.init_ae_dev = hclge_init_ae_dev,
12638 	.uninit_ae_dev = hclge_uninit_ae_dev,
12639 	.reset_prepare = hclge_reset_prepare_general,
12640 	.reset_done = hclge_reset_done,
12641 	.init_client_instance = hclge_init_client_instance,
12642 	.uninit_client_instance = hclge_uninit_client_instance,
12643 	.map_ring_to_vector = hclge_map_ring_to_vector,
12644 	.unmap_ring_from_vector = hclge_unmap_ring_frm_vector,
12645 	.get_vector = hclge_get_vector,
12646 	.put_vector = hclge_put_vector,
12647 	.set_promisc_mode = hclge_set_promisc_mode,
12648 	.request_update_promisc_mode = hclge_request_update_promisc_mode,
12649 	.set_loopback = hclge_set_loopback,
12650 	.start = hclge_ae_start,
12651 	.stop = hclge_ae_stop,
12652 	.client_start = hclge_client_start,
12653 	.client_stop = hclge_client_stop,
12654 	.get_status = hclge_get_status,
12655 	.get_ksettings_an_result = hclge_get_ksettings_an_result,
12656 	.cfg_mac_speed_dup_h = hclge_cfg_mac_speed_dup_h,
12657 	.get_media_type = hclge_get_media_type,
12658 	.check_port_speed = hclge_check_port_speed,
12659 	.get_fec_stats = hclge_get_fec_stats,
12660 	.get_fec = hclge_get_fec,
12661 	.set_fec = hclge_set_fec,
12662 	.get_rss_key_size = hclge_comm_get_rss_key_size,
12663 	.get_rss = hclge_get_rss,
12664 	.set_rss = hclge_set_rss,
12665 	.set_rss_tuple = hclge_set_rss_tuple,
12666 	.get_rss_tuple = hclge_get_rss_tuple,
12667 	.get_tc_size = hclge_get_tc_size,
12668 	.get_mac_addr = hclge_get_mac_addr,
12669 	.set_mac_addr = hclge_set_mac_addr,
12670 	.do_ioctl = hclge_do_ioctl,
12671 	.add_uc_addr = hclge_add_uc_addr,
12672 	.rm_uc_addr = hclge_rm_uc_addr,
12673 	.add_mc_addr = hclge_add_mc_addr,
12674 	.rm_mc_addr = hclge_rm_mc_addr,
12675 	.set_autoneg = hclge_set_autoneg,
12676 	.get_autoneg = hclge_get_autoneg,
12677 	.restart_autoneg = hclge_restart_autoneg,
12678 	.halt_autoneg = hclge_halt_autoneg,
12679 	.get_pauseparam = hclge_get_pauseparam,
12680 	.set_pauseparam = hclge_set_pauseparam,
12681 	.set_mtu = hclge_set_mtu,
12682 	.reset_queue = hclge_reset_tqp,
12683 	.get_stats = hclge_get_stats,
12684 	.get_mac_stats = hclge_get_mac_stat,
12685 	.update_stats = hclge_update_stats,
12686 	.get_strings = hclge_get_strings,
12687 	.get_sset_count = hclge_get_sset_count,
12688 	.get_fw_version = hclge_get_fw_version,
12689 	.get_mdix_mode = hclge_get_mdix_mode,
12690 	.enable_vlan_filter = hclge_enable_vlan_filter,
12691 	.set_vlan_filter = hclge_set_vlan_filter,
12692 	.set_vf_vlan_filter = hclge_set_vf_vlan_filter,
12693 	.enable_hw_strip_rxvtag = hclge_en_hw_strip_rxvtag,
12694 	.reset_event = hclge_reset_event,
12695 	.get_reset_level = hclge_get_reset_level,
12696 	.set_default_reset_request = hclge_set_def_reset_request,
12697 	.get_tqps_and_rss_info = hclge_get_tqps_and_rss_info,
12698 	.set_channels = hclge_set_channels,
12699 	.get_channels = hclge_get_channels,
12700 	.get_regs_len = hclge_get_regs_len,
12701 	.get_regs = hclge_get_regs,
12702 	.set_led_id = hclge_set_led_id,
12703 	.get_link_mode = hclge_get_link_mode,
12704 	.add_fd_entry = hclge_add_fd_entry,
12705 	.del_fd_entry = hclge_del_fd_entry,
12706 	.get_fd_rule_cnt = hclge_get_fd_rule_cnt,
12707 	.get_fd_rule_info = hclge_get_fd_rule_info,
12708 	.get_fd_all_rules = hclge_get_all_rules,
12709 	.enable_fd = hclge_enable_fd,
12710 	.add_arfs_entry = hclge_add_fd_entry_by_arfs,
12711 	.dbg_read_cmd = hclge_dbg_read_cmd,
12712 	.handle_hw_ras_error = hclge_handle_hw_ras_error,
12713 	.get_hw_reset_stat = hclge_get_hw_reset_stat,
12714 	.ae_dev_resetting = hclge_ae_dev_resetting,
12715 	.ae_dev_reset_cnt = hclge_ae_dev_reset_cnt,
12716 	.set_gro_en = hclge_gro_en,
12717 	.get_global_queue_id = hclge_covert_handle_qid_global,
12718 	.set_timer_task = hclge_set_timer_task,
12719 	.mac_connect_phy = hclge_mac_connect_phy,
12720 	.mac_disconnect_phy = hclge_mac_disconnect_phy,
12721 	.get_vf_config = hclge_get_vf_config,
12722 	.set_vf_link_state = hclge_set_vf_link_state,
12723 	.set_vf_spoofchk = hclge_set_vf_spoofchk,
12724 	.set_vf_trust = hclge_set_vf_trust,
12725 	.set_vf_rate = hclge_set_vf_rate,
12726 	.set_vf_mac = hclge_set_vf_mac,
12727 	.get_module_eeprom = hclge_get_module_eeprom,
12728 	.get_cmdq_stat = hclge_get_cmdq_stat,
12729 	.add_cls_flower = hclge_add_cls_flower,
12730 	.del_cls_flower = hclge_del_cls_flower,
12731 	.cls_flower_active = hclge_is_cls_flower_active,
12732 	.get_phy_link_ksettings = hclge_get_phy_link_ksettings,
12733 	.set_phy_link_ksettings = hclge_set_phy_link_ksettings,
12734 	.set_tx_hwts_info = hclge_ptp_set_tx_info,
12735 	.get_rx_hwts = hclge_ptp_get_rx_hwts,
12736 	.get_ts_info = hclge_ptp_get_ts_info,
12737 	.get_link_diagnosis_info = hclge_get_link_diagnosis_info,
12738 	.clean_vf_config = hclge_clean_vport_config,
12739 	.get_dscp_prio = hclge_get_dscp_prio,
12740 	.get_wol = hclge_get_wol,
12741 	.set_wol = hclge_set_wol,
12742 };
12743 
12744 static struct hnae3_ae_algo ae_algo = {
12745 	.ops = &hclge_ops,
12746 	.pdev_id_table = ae_algo_pci_tbl,
12747 };
12748 
12749 static int __init hclge_init(void)
12750 {
12751 	pr_info("%s is initializing\n", HCLGE_NAME);
12752 
12753 	hclge_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGE_NAME);
12754 	if (!hclge_wq) {
12755 		pr_err("%s: failed to create workqueue\n", HCLGE_NAME);
12756 		return -ENOMEM;
12757 	}
12758 
12759 	hnae3_register_ae_algo(&ae_algo);
12760 
12761 	return 0;
12762 }
12763 
12764 static void __exit hclge_exit(void)
12765 {
12766 	hnae3_unregister_ae_algo_prepare(&ae_algo);
12767 	hnae3_unregister_ae_algo(&ae_algo);
12768 	destroy_workqueue(hclge_wq);
12769 }
12770 module_init(hclge_init);
12771 module_exit(hclge_exit);
12772 
12773 MODULE_LICENSE("GPL");
12774 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
12775 MODULE_DESCRIPTION("HCLGE Driver");
12776 MODULE_VERSION(HCLGE_MOD_VERSION);
12777