1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/acpi.h> 5 #include <linux/device.h> 6 #include <linux/etherdevice.h> 7 #include <linux/init.h> 8 #include <linux/interrupt.h> 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/pci.h> 13 #include <linux/platform_device.h> 14 #include <linux/if_vlan.h> 15 #include <linux/crash_dump.h> 16 #include <net/ipv6.h> 17 #include <net/rtnetlink.h> 18 #include "hclge_cmd.h" 19 #include "hclge_dcb.h" 20 #include "hclge_main.h" 21 #include "hclge_mbx.h" 22 #include "hclge_mdio.h" 23 #include "hclge_tm.h" 24 #include "hclge_err.h" 25 #include "hnae3.h" 26 #include "hclge_devlink.h" 27 #include "hclge_comm_cmd.h" 28 29 #define HCLGE_NAME "hclge" 30 31 #define HCLGE_BUF_SIZE_UNIT 256U 32 #define HCLGE_BUF_MUL_BY 2 33 #define HCLGE_BUF_DIV_BY 2 34 #define NEED_RESERVE_TC_NUM 2 35 #define BUF_MAX_PERCENT 100 36 #define BUF_RESERVE_PERCENT 90 37 38 #define HCLGE_RESET_MAX_FAIL_CNT 5 39 #define HCLGE_RESET_SYNC_TIME 100 40 #define HCLGE_PF_RESET_SYNC_TIME 20 41 #define HCLGE_PF_RESET_SYNC_CNT 1500 42 43 /* Get DFX BD number offset */ 44 #define HCLGE_DFX_BIOS_BD_OFFSET 1 45 #define HCLGE_DFX_SSU_0_BD_OFFSET 2 46 #define HCLGE_DFX_SSU_1_BD_OFFSET 3 47 #define HCLGE_DFX_IGU_BD_OFFSET 4 48 #define HCLGE_DFX_RPU_0_BD_OFFSET 5 49 #define HCLGE_DFX_RPU_1_BD_OFFSET 6 50 #define HCLGE_DFX_NCSI_BD_OFFSET 7 51 #define HCLGE_DFX_RTC_BD_OFFSET 8 52 #define HCLGE_DFX_PPP_BD_OFFSET 9 53 #define HCLGE_DFX_RCB_BD_OFFSET 10 54 #define HCLGE_DFX_TQP_BD_OFFSET 11 55 #define HCLGE_DFX_SSU_2_BD_OFFSET 12 56 57 #define HCLGE_LINK_STATUS_MS 10 58 59 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps); 60 static int hclge_init_vlan_config(struct hclge_dev *hdev); 61 static void hclge_sync_vlan_filter(struct hclge_dev *hdev); 62 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev); 63 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle); 64 static void hclge_rfs_filter_expire(struct hclge_dev *hdev); 65 static int hclge_clear_arfs_rules(struct hclge_dev *hdev); 66 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev, 67 unsigned long *addr); 68 static int hclge_set_default_loopback(struct hclge_dev *hdev); 69 70 static void hclge_sync_mac_table(struct hclge_dev *hdev); 71 static void hclge_restore_hw_table(struct hclge_dev *hdev); 72 static void hclge_sync_promisc_mode(struct hclge_dev *hdev); 73 static void hclge_sync_fd_table(struct hclge_dev *hdev); 74 75 static struct hnae3_ae_algo ae_algo; 76 77 static struct workqueue_struct *hclge_wq; 78 79 static const struct pci_device_id ae_algo_pci_tbl[] = { 80 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0}, 81 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0}, 82 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 0}, 83 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 0}, 84 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 0}, 85 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 0}, 86 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 0}, 87 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 0}, 88 /* required last entry */ 89 {0, } 90 }; 91 92 MODULE_DEVICE_TABLE(pci, ae_algo_pci_tbl); 93 94 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG, 95 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG, 96 HCLGE_COMM_NIC_CSQ_DEPTH_REG, 97 HCLGE_COMM_NIC_CSQ_TAIL_REG, 98 HCLGE_COMM_NIC_CSQ_HEAD_REG, 99 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG, 100 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG, 101 HCLGE_COMM_NIC_CRQ_DEPTH_REG, 102 HCLGE_COMM_NIC_CRQ_TAIL_REG, 103 HCLGE_COMM_NIC_CRQ_HEAD_REG, 104 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, 105 HCLGE_COMM_CMDQ_INTR_STS_REG, 106 HCLGE_COMM_CMDQ_INTR_EN_REG, 107 HCLGE_COMM_CMDQ_INTR_GEN_REG}; 108 109 static const u32 common_reg_addr_list[] = {HCLGE_MISC_VECTOR_REG_BASE, 110 HCLGE_PF_OTHER_INT_REG, 111 HCLGE_MISC_RESET_STS_REG, 112 HCLGE_MISC_VECTOR_INT_STS, 113 HCLGE_GLOBAL_RESET_REG, 114 HCLGE_FUN_RST_ING, 115 HCLGE_GRO_EN_REG}; 116 117 static const u32 ring_reg_addr_list[] = {HCLGE_RING_RX_ADDR_L_REG, 118 HCLGE_RING_RX_ADDR_H_REG, 119 HCLGE_RING_RX_BD_NUM_REG, 120 HCLGE_RING_RX_BD_LENGTH_REG, 121 HCLGE_RING_RX_MERGE_EN_REG, 122 HCLGE_RING_RX_TAIL_REG, 123 HCLGE_RING_RX_HEAD_REG, 124 HCLGE_RING_RX_FBD_NUM_REG, 125 HCLGE_RING_RX_OFFSET_REG, 126 HCLGE_RING_RX_FBD_OFFSET_REG, 127 HCLGE_RING_RX_STASH_REG, 128 HCLGE_RING_RX_BD_ERR_REG, 129 HCLGE_RING_TX_ADDR_L_REG, 130 HCLGE_RING_TX_ADDR_H_REG, 131 HCLGE_RING_TX_BD_NUM_REG, 132 HCLGE_RING_TX_PRIORITY_REG, 133 HCLGE_RING_TX_TC_REG, 134 HCLGE_RING_TX_MERGE_EN_REG, 135 HCLGE_RING_TX_TAIL_REG, 136 HCLGE_RING_TX_HEAD_REG, 137 HCLGE_RING_TX_FBD_NUM_REG, 138 HCLGE_RING_TX_OFFSET_REG, 139 HCLGE_RING_TX_EBD_NUM_REG, 140 HCLGE_RING_TX_EBD_OFFSET_REG, 141 HCLGE_RING_TX_BD_ERR_REG, 142 HCLGE_RING_EN_REG}; 143 144 static const u32 tqp_intr_reg_addr_list[] = {HCLGE_TQP_INTR_CTRL_REG, 145 HCLGE_TQP_INTR_GL0_REG, 146 HCLGE_TQP_INTR_GL1_REG, 147 HCLGE_TQP_INTR_GL2_REG, 148 HCLGE_TQP_INTR_RL_REG}; 149 150 static const char hns3_nic_test_strs[][ETH_GSTRING_LEN] = { 151 "App Loopback test", 152 "Serdes serial Loopback test", 153 "Serdes parallel Loopback test", 154 "Phy Loopback test" 155 }; 156 157 static const struct hclge_comm_stats_str g_mac_stats_string[] = { 158 {"mac_tx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1, 159 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_mac_pause_num)}, 160 {"mac_rx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1, 161 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_mac_pause_num)}, 162 {"mac_tx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 163 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pause_xoff_time)}, 164 {"mac_rx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 165 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pause_xoff_time)}, 166 {"mac_tx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 167 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_ctrl_pkt_num)}, 168 {"mac_rx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 169 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_ctrl_pkt_num)}, 170 {"mac_tx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 171 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pause_pkt_num)}, 172 {"mac_tx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 173 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_pkt_num)}, 174 {"mac_tx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 175 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_pkt_num)}, 176 {"mac_tx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 177 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_pkt_num)}, 178 {"mac_tx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 179 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_pkt_num)}, 180 {"mac_tx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 181 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_pkt_num)}, 182 {"mac_tx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 183 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_pkt_num)}, 184 {"mac_tx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 185 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_pkt_num)}, 186 {"mac_tx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 187 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_pkt_num)}, 188 {"mac_tx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 189 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_xoff_time)}, 190 {"mac_tx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 191 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_xoff_time)}, 192 {"mac_tx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 193 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_xoff_time)}, 194 {"mac_tx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 195 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_xoff_time)}, 196 {"mac_tx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 197 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_xoff_time)}, 198 {"mac_tx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 199 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_xoff_time)}, 200 {"mac_tx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 201 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_xoff_time)}, 202 {"mac_tx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 203 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_xoff_time)}, 204 {"mac_rx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 205 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pause_pkt_num)}, 206 {"mac_rx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 207 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_pkt_num)}, 208 {"mac_rx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 209 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_pkt_num)}, 210 {"mac_rx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 211 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_pkt_num)}, 212 {"mac_rx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 213 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_pkt_num)}, 214 {"mac_rx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 215 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_pkt_num)}, 216 {"mac_rx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 217 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_pkt_num)}, 218 {"mac_rx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 219 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_pkt_num)}, 220 {"mac_rx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 221 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_pkt_num)}, 222 {"mac_rx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 223 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_xoff_time)}, 224 {"mac_rx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 225 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_xoff_time)}, 226 {"mac_rx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 227 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_xoff_time)}, 228 {"mac_rx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 229 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_xoff_time)}, 230 {"mac_rx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 231 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_xoff_time)}, 232 {"mac_rx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 233 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_xoff_time)}, 234 {"mac_rx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 235 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_xoff_time)}, 236 {"mac_rx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 237 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_xoff_time)}, 238 {"mac_tx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 239 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_pkt_num)}, 240 {"mac_tx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 241 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_oct_num)}, 242 {"mac_tx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 243 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_pkt_num)}, 244 {"mac_tx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 245 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_pkt_num)}, 246 {"mac_tx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 247 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_oct_num)}, 248 {"mac_tx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 249 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_oct_num)}, 250 {"mac_tx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 251 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_uni_pkt_num)}, 252 {"mac_tx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 253 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_multi_pkt_num)}, 254 {"mac_tx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 255 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_broad_pkt_num)}, 256 {"mac_tx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 257 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undersize_pkt_num)}, 258 {"mac_tx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 259 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_oversize_pkt_num)}, 260 {"mac_tx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 261 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_64_oct_pkt_num)}, 262 {"mac_tx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 263 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_65_127_oct_pkt_num)}, 264 {"mac_tx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 265 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_128_255_oct_pkt_num)}, 266 {"mac_tx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 267 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_256_511_oct_pkt_num)}, 268 {"mac_tx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 269 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_512_1023_oct_pkt_num)}, 270 {"mac_tx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 271 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1024_1518_oct_pkt_num)}, 272 {"mac_tx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 273 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_2047_oct_pkt_num)}, 274 {"mac_tx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 275 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_2048_4095_oct_pkt_num)}, 276 {"mac_tx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 277 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_4096_8191_oct_pkt_num)}, 278 {"mac_tx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 279 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_8192_9216_oct_pkt_num)}, 280 {"mac_tx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 281 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_9217_12287_oct_pkt_num)}, 282 {"mac_tx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 283 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_12288_16383_oct_pkt_num)}, 284 {"mac_tx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 285 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_good_oct_pkt_num)}, 286 {"mac_tx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 287 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_bad_oct_pkt_num)}, 288 {"mac_rx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 289 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_pkt_num)}, 290 {"mac_rx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 291 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_oct_num)}, 292 {"mac_rx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 293 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_pkt_num)}, 294 {"mac_rx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 295 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_pkt_num)}, 296 {"mac_rx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 297 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_oct_num)}, 298 {"mac_rx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 299 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_oct_num)}, 300 {"mac_rx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 301 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_uni_pkt_num)}, 302 {"mac_rx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 303 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_multi_pkt_num)}, 304 {"mac_rx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 305 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_broad_pkt_num)}, 306 {"mac_rx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 307 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undersize_pkt_num)}, 308 {"mac_rx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 309 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_oversize_pkt_num)}, 310 {"mac_rx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 311 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_64_oct_pkt_num)}, 312 {"mac_rx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 313 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_65_127_oct_pkt_num)}, 314 {"mac_rx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 315 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_128_255_oct_pkt_num)}, 316 {"mac_rx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 317 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_256_511_oct_pkt_num)}, 318 {"mac_rx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 319 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_512_1023_oct_pkt_num)}, 320 {"mac_rx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 321 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1024_1518_oct_pkt_num)}, 322 {"mac_rx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 323 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_2047_oct_pkt_num)}, 324 {"mac_rx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 325 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_2048_4095_oct_pkt_num)}, 326 {"mac_rx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 327 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_4096_8191_oct_pkt_num)}, 328 {"mac_rx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 329 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_8192_9216_oct_pkt_num)}, 330 {"mac_rx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 331 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_9217_12287_oct_pkt_num)}, 332 {"mac_rx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 333 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_12288_16383_oct_pkt_num)}, 334 {"mac_rx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 335 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_good_oct_pkt_num)}, 336 {"mac_rx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 337 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_bad_oct_pkt_num)}, 338 339 {"mac_tx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 340 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_fragment_pkt_num)}, 341 {"mac_tx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 342 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undermin_pkt_num)}, 343 {"mac_tx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 344 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_jabber_pkt_num)}, 345 {"mac_tx_err_all_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 346 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_err_all_pkt_num)}, 347 {"mac_tx_from_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 348 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_good_pkt_num)}, 349 {"mac_tx_from_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 350 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_bad_pkt_num)}, 351 {"mac_rx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 352 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fragment_pkt_num)}, 353 {"mac_rx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 354 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undermin_pkt_num)}, 355 {"mac_rx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 356 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_jabber_pkt_num)}, 357 {"mac_rx_fcs_err_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 358 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fcs_err_pkt_num)}, 359 {"mac_rx_send_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 360 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_good_pkt_num)}, 361 {"mac_rx_send_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 362 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_bad_pkt_num)} 363 }; 364 365 static const struct hclge_mac_mgr_tbl_entry_cmd hclge_mgr_table[] = { 366 { 367 .flags = HCLGE_MAC_MGR_MASK_VLAN_B, 368 .ethter_type = cpu_to_le16(ETH_P_LLDP), 369 .mac_addr = {0x01, 0x80, 0xc2, 0x00, 0x00, 0x0e}, 370 .i_port_bitmap = 0x1, 371 }, 372 }; 373 374 static const u32 hclge_dfx_bd_offset_list[] = { 375 HCLGE_DFX_BIOS_BD_OFFSET, 376 HCLGE_DFX_SSU_0_BD_OFFSET, 377 HCLGE_DFX_SSU_1_BD_OFFSET, 378 HCLGE_DFX_IGU_BD_OFFSET, 379 HCLGE_DFX_RPU_0_BD_OFFSET, 380 HCLGE_DFX_RPU_1_BD_OFFSET, 381 HCLGE_DFX_NCSI_BD_OFFSET, 382 HCLGE_DFX_RTC_BD_OFFSET, 383 HCLGE_DFX_PPP_BD_OFFSET, 384 HCLGE_DFX_RCB_BD_OFFSET, 385 HCLGE_DFX_TQP_BD_OFFSET, 386 HCLGE_DFX_SSU_2_BD_OFFSET 387 }; 388 389 static const enum hclge_opcode_type hclge_dfx_reg_opcode_list[] = { 390 HCLGE_OPC_DFX_BIOS_COMMON_REG, 391 HCLGE_OPC_DFX_SSU_REG_0, 392 HCLGE_OPC_DFX_SSU_REG_1, 393 HCLGE_OPC_DFX_IGU_EGU_REG, 394 HCLGE_OPC_DFX_RPU_REG_0, 395 HCLGE_OPC_DFX_RPU_REG_1, 396 HCLGE_OPC_DFX_NCSI_REG, 397 HCLGE_OPC_DFX_RTC_REG, 398 HCLGE_OPC_DFX_PPP_REG, 399 HCLGE_OPC_DFX_RCB_REG, 400 HCLGE_OPC_DFX_TQP_REG, 401 HCLGE_OPC_DFX_SSU_REG_2 402 }; 403 404 static const struct key_info meta_data_key_info[] = { 405 { PACKET_TYPE_ID, 6 }, 406 { IP_FRAGEMENT, 1 }, 407 { ROCE_TYPE, 1 }, 408 { NEXT_KEY, 5 }, 409 { VLAN_NUMBER, 2 }, 410 { SRC_VPORT, 12 }, 411 { DST_VPORT, 12 }, 412 { TUNNEL_PACKET, 1 }, 413 }; 414 415 static const struct key_info tuple_key_info[] = { 416 { OUTER_DST_MAC, 48, KEY_OPT_MAC, -1, -1 }, 417 { OUTER_SRC_MAC, 48, KEY_OPT_MAC, -1, -1 }, 418 { OUTER_VLAN_TAG_FST, 16, KEY_OPT_LE16, -1, -1 }, 419 { OUTER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 }, 420 { OUTER_ETH_TYPE, 16, KEY_OPT_LE16, -1, -1 }, 421 { OUTER_L2_RSV, 16, KEY_OPT_LE16, -1, -1 }, 422 { OUTER_IP_TOS, 8, KEY_OPT_U8, -1, -1 }, 423 { OUTER_IP_PROTO, 8, KEY_OPT_U8, -1, -1 }, 424 { OUTER_SRC_IP, 32, KEY_OPT_IP, -1, -1 }, 425 { OUTER_DST_IP, 32, KEY_OPT_IP, -1, -1 }, 426 { OUTER_L3_RSV, 16, KEY_OPT_LE16, -1, -1 }, 427 { OUTER_SRC_PORT, 16, KEY_OPT_LE16, -1, -1 }, 428 { OUTER_DST_PORT, 16, KEY_OPT_LE16, -1, -1 }, 429 { OUTER_L4_RSV, 32, KEY_OPT_LE32, -1, -1 }, 430 { OUTER_TUN_VNI, 24, KEY_OPT_VNI, -1, -1 }, 431 { OUTER_TUN_FLOW_ID, 8, KEY_OPT_U8, -1, -1 }, 432 { INNER_DST_MAC, 48, KEY_OPT_MAC, 433 offsetof(struct hclge_fd_rule, tuples.dst_mac), 434 offsetof(struct hclge_fd_rule, tuples_mask.dst_mac) }, 435 { INNER_SRC_MAC, 48, KEY_OPT_MAC, 436 offsetof(struct hclge_fd_rule, tuples.src_mac), 437 offsetof(struct hclge_fd_rule, tuples_mask.src_mac) }, 438 { INNER_VLAN_TAG_FST, 16, KEY_OPT_LE16, 439 offsetof(struct hclge_fd_rule, tuples.vlan_tag1), 440 offsetof(struct hclge_fd_rule, tuples_mask.vlan_tag1) }, 441 { INNER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 }, 442 { INNER_ETH_TYPE, 16, KEY_OPT_LE16, 443 offsetof(struct hclge_fd_rule, tuples.ether_proto), 444 offsetof(struct hclge_fd_rule, tuples_mask.ether_proto) }, 445 { INNER_L2_RSV, 16, KEY_OPT_LE16, 446 offsetof(struct hclge_fd_rule, tuples.l2_user_def), 447 offsetof(struct hclge_fd_rule, tuples_mask.l2_user_def) }, 448 { INNER_IP_TOS, 8, KEY_OPT_U8, 449 offsetof(struct hclge_fd_rule, tuples.ip_tos), 450 offsetof(struct hclge_fd_rule, tuples_mask.ip_tos) }, 451 { INNER_IP_PROTO, 8, KEY_OPT_U8, 452 offsetof(struct hclge_fd_rule, tuples.ip_proto), 453 offsetof(struct hclge_fd_rule, tuples_mask.ip_proto) }, 454 { INNER_SRC_IP, 32, KEY_OPT_IP, 455 offsetof(struct hclge_fd_rule, tuples.src_ip), 456 offsetof(struct hclge_fd_rule, tuples_mask.src_ip) }, 457 { INNER_DST_IP, 32, KEY_OPT_IP, 458 offsetof(struct hclge_fd_rule, tuples.dst_ip), 459 offsetof(struct hclge_fd_rule, tuples_mask.dst_ip) }, 460 { INNER_L3_RSV, 16, KEY_OPT_LE16, 461 offsetof(struct hclge_fd_rule, tuples.l3_user_def), 462 offsetof(struct hclge_fd_rule, tuples_mask.l3_user_def) }, 463 { INNER_SRC_PORT, 16, KEY_OPT_LE16, 464 offsetof(struct hclge_fd_rule, tuples.src_port), 465 offsetof(struct hclge_fd_rule, tuples_mask.src_port) }, 466 { INNER_DST_PORT, 16, KEY_OPT_LE16, 467 offsetof(struct hclge_fd_rule, tuples.dst_port), 468 offsetof(struct hclge_fd_rule, tuples_mask.dst_port) }, 469 { INNER_L4_RSV, 32, KEY_OPT_LE32, 470 offsetof(struct hclge_fd_rule, tuples.l4_user_def), 471 offsetof(struct hclge_fd_rule, tuples_mask.l4_user_def) }, 472 }; 473 474 /** 475 * hclge_cmd_send - send command to command queue 476 * @hw: pointer to the hw struct 477 * @desc: prefilled descriptor for describing the command 478 * @num : the number of descriptors to be sent 479 * 480 * This is the main send command for command queue, it 481 * sends the queue, cleans the queue, etc 482 **/ 483 int hclge_cmd_send(struct hclge_hw *hw, struct hclge_desc *desc, int num) 484 { 485 return hclge_comm_cmd_send(&hw->hw, desc, num); 486 } 487 488 static int hclge_mac_update_stats_defective(struct hclge_dev *hdev) 489 { 490 #define HCLGE_MAC_CMD_NUM 21 491 492 u64 *data = (u64 *)(&hdev->mac_stats); 493 struct hclge_desc desc[HCLGE_MAC_CMD_NUM]; 494 __le64 *desc_data; 495 u32 data_size; 496 int ret; 497 u32 i; 498 499 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC, true); 500 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_MAC_CMD_NUM); 501 if (ret) { 502 dev_err(&hdev->pdev->dev, 503 "Get MAC pkt stats fail, status = %d.\n", ret); 504 505 return ret; 506 } 507 508 /* The first desc has a 64-bit header, so data size need to minus 1 */ 509 data_size = sizeof(desc) / (sizeof(u64)) - 1; 510 511 desc_data = (__le64 *)(&desc[0].data[0]); 512 for (i = 0; i < data_size; i++) { 513 /* data memory is continuous becase only the first desc has a 514 * header in this command 515 */ 516 *data += le64_to_cpu(*desc_data); 517 data++; 518 desc_data++; 519 } 520 521 return 0; 522 } 523 524 static int hclge_mac_update_stats_complete(struct hclge_dev *hdev) 525 { 526 #define HCLGE_REG_NUM_PER_DESC 4 527 528 u32 reg_num = hdev->ae_dev->dev_specs.mac_stats_num; 529 u64 *data = (u64 *)(&hdev->mac_stats); 530 struct hclge_desc *desc; 531 __le64 *desc_data; 532 u32 data_size; 533 u32 desc_num; 534 int ret; 535 u32 i; 536 537 /* The first desc has a 64-bit header, so need to consider it */ 538 desc_num = reg_num / HCLGE_REG_NUM_PER_DESC + 1; 539 540 /* This may be called inside atomic sections, 541 * so GFP_ATOMIC is more suitalbe here 542 */ 543 desc = kcalloc(desc_num, sizeof(struct hclge_desc), GFP_ATOMIC); 544 if (!desc) 545 return -ENOMEM; 546 547 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC_ALL, true); 548 ret = hclge_cmd_send(&hdev->hw, desc, desc_num); 549 if (ret) { 550 kfree(desc); 551 return ret; 552 } 553 554 data_size = min_t(u32, sizeof(hdev->mac_stats) / sizeof(u64), reg_num); 555 556 desc_data = (__le64 *)(&desc[0].data[0]); 557 for (i = 0; i < data_size; i++) { 558 /* data memory is continuous becase only the first desc has a 559 * header in this command 560 */ 561 *data += le64_to_cpu(*desc_data); 562 data++; 563 desc_data++; 564 } 565 566 kfree(desc); 567 568 return 0; 569 } 570 571 static int hclge_mac_query_reg_num(struct hclge_dev *hdev, u32 *reg_num) 572 { 573 struct hclge_desc desc; 574 int ret; 575 576 /* Driver needs total register number of both valid registers and 577 * reserved registers, but the old firmware only returns number 578 * of valid registers in device V2. To be compatible with these 579 * devices, driver uses a fixed value. 580 */ 581 if (hdev->ae_dev->dev_version == HNAE3_DEVICE_VERSION_V2) { 582 *reg_num = HCLGE_MAC_STATS_MAX_NUM_V1; 583 return 0; 584 } 585 586 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_MAC_REG_NUM, true); 587 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 588 if (ret) { 589 dev_err(&hdev->pdev->dev, 590 "failed to query mac statistic reg number, ret = %d\n", 591 ret); 592 return ret; 593 } 594 595 *reg_num = le32_to_cpu(desc.data[0]); 596 if (*reg_num == 0) { 597 dev_err(&hdev->pdev->dev, 598 "mac statistic reg number is invalid!\n"); 599 return -ENODATA; 600 } 601 602 return 0; 603 } 604 605 int hclge_mac_update_stats(struct hclge_dev *hdev) 606 { 607 /* The firmware supports the new statistics acquisition method */ 608 if (hdev->ae_dev->dev_specs.mac_stats_num) 609 return hclge_mac_update_stats_complete(hdev); 610 else 611 return hclge_mac_update_stats_defective(hdev); 612 } 613 614 static int hclge_comm_get_count(struct hclge_dev *hdev, 615 const struct hclge_comm_stats_str strs[], 616 u32 size) 617 { 618 int count = 0; 619 u32 i; 620 621 for (i = 0; i < size; i++) 622 if (strs[i].stats_num <= hdev->ae_dev->dev_specs.mac_stats_num) 623 count++; 624 625 return count; 626 } 627 628 static u64 *hclge_comm_get_stats(struct hclge_dev *hdev, 629 const struct hclge_comm_stats_str strs[], 630 int size, u64 *data) 631 { 632 u64 *buf = data; 633 u32 i; 634 635 for (i = 0; i < size; i++) { 636 if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num) 637 continue; 638 639 *buf = HCLGE_STATS_READ(&hdev->mac_stats, strs[i].offset); 640 buf++; 641 } 642 643 return buf; 644 } 645 646 static u8 *hclge_comm_get_strings(struct hclge_dev *hdev, u32 stringset, 647 const struct hclge_comm_stats_str strs[], 648 int size, u8 *data) 649 { 650 char *buff = (char *)data; 651 u32 i; 652 653 if (stringset != ETH_SS_STATS) 654 return buff; 655 656 for (i = 0; i < size; i++) { 657 if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num) 658 continue; 659 660 snprintf(buff, ETH_GSTRING_LEN, "%s", strs[i].desc); 661 buff = buff + ETH_GSTRING_LEN; 662 } 663 664 return (u8 *)buff; 665 } 666 667 static void hclge_update_stats_for_all(struct hclge_dev *hdev) 668 { 669 struct hnae3_handle *handle; 670 int status; 671 672 handle = &hdev->vport[0].nic; 673 if (handle->client) { 674 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 675 if (status) { 676 dev_err(&hdev->pdev->dev, 677 "Update TQPS stats fail, status = %d.\n", 678 status); 679 } 680 } 681 682 status = hclge_mac_update_stats(hdev); 683 if (status) 684 dev_err(&hdev->pdev->dev, 685 "Update MAC stats fail, status = %d.\n", status); 686 } 687 688 static void hclge_update_stats(struct hnae3_handle *handle, 689 struct net_device_stats *net_stats) 690 { 691 struct hclge_vport *vport = hclge_get_vport(handle); 692 struct hclge_dev *hdev = vport->back; 693 int status; 694 695 if (test_and_set_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state)) 696 return; 697 698 status = hclge_mac_update_stats(hdev); 699 if (status) 700 dev_err(&hdev->pdev->dev, 701 "Update MAC stats fail, status = %d.\n", 702 status); 703 704 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 705 if (status) 706 dev_err(&hdev->pdev->dev, 707 "Update TQPS stats fail, status = %d.\n", 708 status); 709 710 clear_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state); 711 } 712 713 static int hclge_get_sset_count(struct hnae3_handle *handle, int stringset) 714 { 715 #define HCLGE_LOOPBACK_TEST_FLAGS (HNAE3_SUPPORT_APP_LOOPBACK | \ 716 HNAE3_SUPPORT_PHY_LOOPBACK | \ 717 HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK | \ 718 HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK) 719 720 struct hclge_vport *vport = hclge_get_vport(handle); 721 struct hclge_dev *hdev = vport->back; 722 int count = 0; 723 724 /* Loopback test support rules: 725 * mac: only GE mode support 726 * serdes: all mac mode will support include GE/XGE/LGE/CGE 727 * phy: only support when phy device exist on board 728 */ 729 if (stringset == ETH_SS_TEST) { 730 /* clear loopback bit flags at first */ 731 handle->flags = (handle->flags & (~HCLGE_LOOPBACK_TEST_FLAGS)); 732 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 || 733 hdev->hw.mac.speed == HCLGE_MAC_SPEED_10M || 734 hdev->hw.mac.speed == HCLGE_MAC_SPEED_100M || 735 hdev->hw.mac.speed == HCLGE_MAC_SPEED_1G) { 736 count += 1; 737 handle->flags |= HNAE3_SUPPORT_APP_LOOPBACK; 738 } 739 740 count += 2; 741 handle->flags |= HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK; 742 handle->flags |= HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK; 743 744 if ((hdev->hw.mac.phydev && hdev->hw.mac.phydev->drv && 745 hdev->hw.mac.phydev->drv->set_loopback) || 746 hnae3_dev_phy_imp_supported(hdev)) { 747 count += 1; 748 handle->flags |= HNAE3_SUPPORT_PHY_LOOPBACK; 749 } 750 } else if (stringset == ETH_SS_STATS) { 751 count = hclge_comm_get_count(hdev, g_mac_stats_string, 752 ARRAY_SIZE(g_mac_stats_string)) + 753 hclge_comm_tqps_get_sset_count(handle); 754 } 755 756 return count; 757 } 758 759 static void hclge_get_strings(struct hnae3_handle *handle, u32 stringset, 760 u8 *data) 761 { 762 struct hclge_vport *vport = hclge_get_vport(handle); 763 struct hclge_dev *hdev = vport->back; 764 u8 *p = (char *)data; 765 int size; 766 767 if (stringset == ETH_SS_STATS) { 768 size = ARRAY_SIZE(g_mac_stats_string); 769 p = hclge_comm_get_strings(hdev, stringset, g_mac_stats_string, 770 size, p); 771 p = hclge_comm_tqps_get_strings(handle, p); 772 } else if (stringset == ETH_SS_TEST) { 773 if (handle->flags & HNAE3_SUPPORT_APP_LOOPBACK) { 774 memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_APP], 775 ETH_GSTRING_LEN); 776 p += ETH_GSTRING_LEN; 777 } 778 if (handle->flags & HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK) { 779 memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_SERIAL_SERDES], 780 ETH_GSTRING_LEN); 781 p += ETH_GSTRING_LEN; 782 } 783 if (handle->flags & HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK) { 784 memcpy(p, 785 hns3_nic_test_strs[HNAE3_LOOP_PARALLEL_SERDES], 786 ETH_GSTRING_LEN); 787 p += ETH_GSTRING_LEN; 788 } 789 if (handle->flags & HNAE3_SUPPORT_PHY_LOOPBACK) { 790 memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_PHY], 791 ETH_GSTRING_LEN); 792 p += ETH_GSTRING_LEN; 793 } 794 } 795 } 796 797 static void hclge_get_stats(struct hnae3_handle *handle, u64 *data) 798 { 799 struct hclge_vport *vport = hclge_get_vport(handle); 800 struct hclge_dev *hdev = vport->back; 801 u64 *p; 802 803 p = hclge_comm_get_stats(hdev, g_mac_stats_string, 804 ARRAY_SIZE(g_mac_stats_string), data); 805 p = hclge_comm_tqps_get_stats(handle, p); 806 } 807 808 static void hclge_get_mac_stat(struct hnae3_handle *handle, 809 struct hns3_mac_stats *mac_stats) 810 { 811 struct hclge_vport *vport = hclge_get_vport(handle); 812 struct hclge_dev *hdev = vport->back; 813 814 hclge_update_stats(handle, NULL); 815 816 mac_stats->tx_pause_cnt = hdev->mac_stats.mac_tx_mac_pause_num; 817 mac_stats->rx_pause_cnt = hdev->mac_stats.mac_rx_mac_pause_num; 818 } 819 820 static int hclge_parse_func_status(struct hclge_dev *hdev, 821 struct hclge_func_status_cmd *status) 822 { 823 #define HCLGE_MAC_ID_MASK 0xF 824 825 if (!(status->pf_state & HCLGE_PF_STATE_DONE)) 826 return -EINVAL; 827 828 /* Set the pf to main pf */ 829 if (status->pf_state & HCLGE_PF_STATE_MAIN) 830 hdev->flag |= HCLGE_FLAG_MAIN; 831 else 832 hdev->flag &= ~HCLGE_FLAG_MAIN; 833 834 hdev->hw.mac.mac_id = status->mac_id & HCLGE_MAC_ID_MASK; 835 return 0; 836 } 837 838 static int hclge_query_function_status(struct hclge_dev *hdev) 839 { 840 #define HCLGE_QUERY_MAX_CNT 5 841 842 struct hclge_func_status_cmd *req; 843 struct hclge_desc desc; 844 int timeout = 0; 845 int ret; 846 847 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_FUNC_STATUS, true); 848 req = (struct hclge_func_status_cmd *)desc.data; 849 850 do { 851 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 852 if (ret) { 853 dev_err(&hdev->pdev->dev, 854 "query function status failed %d.\n", ret); 855 return ret; 856 } 857 858 /* Check pf reset is done */ 859 if (req->pf_state) 860 break; 861 usleep_range(1000, 2000); 862 } while (timeout++ < HCLGE_QUERY_MAX_CNT); 863 864 return hclge_parse_func_status(hdev, req); 865 } 866 867 static int hclge_query_pf_resource(struct hclge_dev *hdev) 868 { 869 struct hclge_pf_res_cmd *req; 870 struct hclge_desc desc; 871 int ret; 872 873 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_PF_RSRC, true); 874 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 875 if (ret) { 876 dev_err(&hdev->pdev->dev, 877 "query pf resource failed %d.\n", ret); 878 return ret; 879 } 880 881 req = (struct hclge_pf_res_cmd *)desc.data; 882 hdev->num_tqps = le16_to_cpu(req->tqp_num) + 883 le16_to_cpu(req->ext_tqp_num); 884 hdev->pkt_buf_size = le16_to_cpu(req->buf_size) << HCLGE_BUF_UNIT_S; 885 886 if (req->tx_buf_size) 887 hdev->tx_buf_size = 888 le16_to_cpu(req->tx_buf_size) << HCLGE_BUF_UNIT_S; 889 else 890 hdev->tx_buf_size = HCLGE_DEFAULT_TX_BUF; 891 892 hdev->tx_buf_size = roundup(hdev->tx_buf_size, HCLGE_BUF_SIZE_UNIT); 893 894 if (req->dv_buf_size) 895 hdev->dv_buf_size = 896 le16_to_cpu(req->dv_buf_size) << HCLGE_BUF_UNIT_S; 897 else 898 hdev->dv_buf_size = HCLGE_DEFAULT_DV; 899 900 hdev->dv_buf_size = roundup(hdev->dv_buf_size, HCLGE_BUF_SIZE_UNIT); 901 902 hdev->num_nic_msi = le16_to_cpu(req->msixcap_localid_number_nic); 903 if (hdev->num_nic_msi < HNAE3_MIN_VECTOR_NUM) { 904 dev_err(&hdev->pdev->dev, 905 "only %u msi resources available, not enough for pf(min:2).\n", 906 hdev->num_nic_msi); 907 return -EINVAL; 908 } 909 910 if (hnae3_dev_roce_supported(hdev)) { 911 hdev->num_roce_msi = 912 le16_to_cpu(req->pf_intr_vector_number_roce); 913 914 /* PF should have NIC vectors and Roce vectors, 915 * NIC vectors are queued before Roce vectors. 916 */ 917 hdev->num_msi = hdev->num_nic_msi + hdev->num_roce_msi; 918 } else { 919 hdev->num_msi = hdev->num_nic_msi; 920 } 921 922 return 0; 923 } 924 925 static int hclge_parse_speed(u8 speed_cmd, u32 *speed) 926 { 927 switch (speed_cmd) { 928 case HCLGE_FW_MAC_SPEED_10M: 929 *speed = HCLGE_MAC_SPEED_10M; 930 break; 931 case HCLGE_FW_MAC_SPEED_100M: 932 *speed = HCLGE_MAC_SPEED_100M; 933 break; 934 case HCLGE_FW_MAC_SPEED_1G: 935 *speed = HCLGE_MAC_SPEED_1G; 936 break; 937 case HCLGE_FW_MAC_SPEED_10G: 938 *speed = HCLGE_MAC_SPEED_10G; 939 break; 940 case HCLGE_FW_MAC_SPEED_25G: 941 *speed = HCLGE_MAC_SPEED_25G; 942 break; 943 case HCLGE_FW_MAC_SPEED_40G: 944 *speed = HCLGE_MAC_SPEED_40G; 945 break; 946 case HCLGE_FW_MAC_SPEED_50G: 947 *speed = HCLGE_MAC_SPEED_50G; 948 break; 949 case HCLGE_FW_MAC_SPEED_100G: 950 *speed = HCLGE_MAC_SPEED_100G; 951 break; 952 case HCLGE_FW_MAC_SPEED_200G: 953 *speed = HCLGE_MAC_SPEED_200G; 954 break; 955 default: 956 return -EINVAL; 957 } 958 959 return 0; 960 } 961 962 static const struct hclge_speed_bit_map speed_bit_map[] = { 963 {HCLGE_MAC_SPEED_10M, HCLGE_SUPPORT_10M_BIT}, 964 {HCLGE_MAC_SPEED_100M, HCLGE_SUPPORT_100M_BIT}, 965 {HCLGE_MAC_SPEED_1G, HCLGE_SUPPORT_1G_BIT}, 966 {HCLGE_MAC_SPEED_10G, HCLGE_SUPPORT_10G_BIT}, 967 {HCLGE_MAC_SPEED_25G, HCLGE_SUPPORT_25G_BIT}, 968 {HCLGE_MAC_SPEED_40G, HCLGE_SUPPORT_40G_BIT}, 969 {HCLGE_MAC_SPEED_50G, HCLGE_SUPPORT_50G_BIT}, 970 {HCLGE_MAC_SPEED_100G, HCLGE_SUPPORT_100G_BIT}, 971 {HCLGE_MAC_SPEED_200G, HCLGE_SUPPORT_200G_BIT}, 972 }; 973 974 static int hclge_get_speed_bit(u32 speed, u32 *speed_bit) 975 { 976 u16 i; 977 978 for (i = 0; i < ARRAY_SIZE(speed_bit_map); i++) { 979 if (speed == speed_bit_map[i].speed) { 980 *speed_bit = speed_bit_map[i].speed_bit; 981 return 0; 982 } 983 } 984 985 return -EINVAL; 986 } 987 988 static int hclge_check_port_speed(struct hnae3_handle *handle, u32 speed) 989 { 990 struct hclge_vport *vport = hclge_get_vport(handle); 991 struct hclge_dev *hdev = vport->back; 992 u32 speed_ability = hdev->hw.mac.speed_ability; 993 u32 speed_bit = 0; 994 int ret; 995 996 ret = hclge_get_speed_bit(speed, &speed_bit); 997 if (ret) 998 return ret; 999 1000 if (speed_bit & speed_ability) 1001 return 0; 1002 1003 return -EINVAL; 1004 } 1005 1006 static void hclge_convert_setting_sr(u16 speed_ability, 1007 unsigned long *link_mode) 1008 { 1009 if (speed_ability & HCLGE_SUPPORT_10G_BIT) 1010 linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseSR_Full_BIT, 1011 link_mode); 1012 if (speed_ability & HCLGE_SUPPORT_25G_BIT) 1013 linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT, 1014 link_mode); 1015 if (speed_ability & HCLGE_SUPPORT_40G_BIT) 1016 linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT, 1017 link_mode); 1018 if (speed_ability & HCLGE_SUPPORT_50G_BIT) 1019 linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT, 1020 link_mode); 1021 if (speed_ability & HCLGE_SUPPORT_100G_BIT) 1022 linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT, 1023 link_mode); 1024 if (speed_ability & HCLGE_SUPPORT_200G_BIT) 1025 linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT, 1026 link_mode); 1027 } 1028 1029 static void hclge_convert_setting_lr(u16 speed_ability, 1030 unsigned long *link_mode) 1031 { 1032 if (speed_ability & HCLGE_SUPPORT_10G_BIT) 1033 linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseLR_Full_BIT, 1034 link_mode); 1035 if (speed_ability & HCLGE_SUPPORT_25G_BIT) 1036 linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT, 1037 link_mode); 1038 if (speed_ability & HCLGE_SUPPORT_50G_BIT) 1039 linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT, 1040 link_mode); 1041 if (speed_ability & HCLGE_SUPPORT_40G_BIT) 1042 linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT, 1043 link_mode); 1044 if (speed_ability & HCLGE_SUPPORT_100G_BIT) 1045 linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT, 1046 link_mode); 1047 if (speed_ability & HCLGE_SUPPORT_200G_BIT) 1048 linkmode_set_bit( 1049 ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT, 1050 link_mode); 1051 } 1052 1053 static void hclge_convert_setting_cr(u16 speed_ability, 1054 unsigned long *link_mode) 1055 { 1056 if (speed_ability & HCLGE_SUPPORT_10G_BIT) 1057 linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseCR_Full_BIT, 1058 link_mode); 1059 if (speed_ability & HCLGE_SUPPORT_25G_BIT) 1060 linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseCR_Full_BIT, 1061 link_mode); 1062 if (speed_ability & HCLGE_SUPPORT_40G_BIT) 1063 linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT, 1064 link_mode); 1065 if (speed_ability & HCLGE_SUPPORT_50G_BIT) 1066 linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT, 1067 link_mode); 1068 if (speed_ability & HCLGE_SUPPORT_100G_BIT) 1069 linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT, 1070 link_mode); 1071 if (speed_ability & HCLGE_SUPPORT_200G_BIT) 1072 linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT, 1073 link_mode); 1074 } 1075 1076 static void hclge_convert_setting_kr(u16 speed_ability, 1077 unsigned long *link_mode) 1078 { 1079 if (speed_ability & HCLGE_SUPPORT_1G_BIT) 1080 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseKX_Full_BIT, 1081 link_mode); 1082 if (speed_ability & HCLGE_SUPPORT_10G_BIT) 1083 linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseKR_Full_BIT, 1084 link_mode); 1085 if (speed_ability & HCLGE_SUPPORT_25G_BIT) 1086 linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseKR_Full_BIT, 1087 link_mode); 1088 if (speed_ability & HCLGE_SUPPORT_40G_BIT) 1089 linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT, 1090 link_mode); 1091 if (speed_ability & HCLGE_SUPPORT_50G_BIT) 1092 linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT, 1093 link_mode); 1094 if (speed_ability & HCLGE_SUPPORT_100G_BIT) 1095 linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT, 1096 link_mode); 1097 if (speed_ability & HCLGE_SUPPORT_200G_BIT) 1098 linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT, 1099 link_mode); 1100 } 1101 1102 static void hclge_convert_setting_fec(struct hclge_mac *mac) 1103 { 1104 linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, mac->supported); 1105 linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, mac->supported); 1106 1107 switch (mac->speed) { 1108 case HCLGE_MAC_SPEED_10G: 1109 case HCLGE_MAC_SPEED_40G: 1110 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, 1111 mac->supported); 1112 mac->fec_ability = 1113 BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_AUTO); 1114 break; 1115 case HCLGE_MAC_SPEED_25G: 1116 case HCLGE_MAC_SPEED_50G: 1117 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, 1118 mac->supported); 1119 mac->fec_ability = 1120 BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_RS) | 1121 BIT(HNAE3_FEC_AUTO); 1122 break; 1123 case HCLGE_MAC_SPEED_100G: 1124 case HCLGE_MAC_SPEED_200G: 1125 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, mac->supported); 1126 mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO); 1127 break; 1128 default: 1129 mac->fec_ability = 0; 1130 break; 1131 } 1132 } 1133 1134 static void hclge_parse_fiber_link_mode(struct hclge_dev *hdev, 1135 u16 speed_ability) 1136 { 1137 struct hclge_mac *mac = &hdev->hw.mac; 1138 1139 if (speed_ability & HCLGE_SUPPORT_1G_BIT) 1140 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 1141 mac->supported); 1142 1143 hclge_convert_setting_sr(speed_ability, mac->supported); 1144 hclge_convert_setting_lr(speed_ability, mac->supported); 1145 hclge_convert_setting_cr(speed_ability, mac->supported); 1146 if (hnae3_dev_fec_supported(hdev)) 1147 hclge_convert_setting_fec(mac); 1148 1149 if (hnae3_dev_pause_supported(hdev)) 1150 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported); 1151 1152 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, mac->supported); 1153 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported); 1154 } 1155 1156 static void hclge_parse_backplane_link_mode(struct hclge_dev *hdev, 1157 u16 speed_ability) 1158 { 1159 struct hclge_mac *mac = &hdev->hw.mac; 1160 1161 hclge_convert_setting_kr(speed_ability, mac->supported); 1162 if (hnae3_dev_fec_supported(hdev)) 1163 hclge_convert_setting_fec(mac); 1164 1165 if (hnae3_dev_pause_supported(hdev)) 1166 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported); 1167 1168 linkmode_set_bit(ETHTOOL_LINK_MODE_Backplane_BIT, mac->supported); 1169 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported); 1170 } 1171 1172 static void hclge_parse_copper_link_mode(struct hclge_dev *hdev, 1173 u16 speed_ability) 1174 { 1175 unsigned long *supported = hdev->hw.mac.supported; 1176 1177 /* default to support all speed for GE port */ 1178 if (!speed_ability) 1179 speed_ability = HCLGE_SUPPORT_GE; 1180 1181 if (speed_ability & HCLGE_SUPPORT_1G_BIT) 1182 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1183 supported); 1184 1185 if (speed_ability & HCLGE_SUPPORT_100M_BIT) { 1186 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, 1187 supported); 1188 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, 1189 supported); 1190 } 1191 1192 if (speed_ability & HCLGE_SUPPORT_10M_BIT) { 1193 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, supported); 1194 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, supported); 1195 } 1196 1197 if (hnae3_dev_pause_supported(hdev)) { 1198 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, supported); 1199 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, supported); 1200 } 1201 1202 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, supported); 1203 linkmode_set_bit(ETHTOOL_LINK_MODE_TP_BIT, supported); 1204 } 1205 1206 static void hclge_parse_link_mode(struct hclge_dev *hdev, u16 speed_ability) 1207 { 1208 u8 media_type = hdev->hw.mac.media_type; 1209 1210 if (media_type == HNAE3_MEDIA_TYPE_FIBER) 1211 hclge_parse_fiber_link_mode(hdev, speed_ability); 1212 else if (media_type == HNAE3_MEDIA_TYPE_COPPER) 1213 hclge_parse_copper_link_mode(hdev, speed_ability); 1214 else if (media_type == HNAE3_MEDIA_TYPE_BACKPLANE) 1215 hclge_parse_backplane_link_mode(hdev, speed_ability); 1216 } 1217 1218 static u32 hclge_get_max_speed(u16 speed_ability) 1219 { 1220 if (speed_ability & HCLGE_SUPPORT_200G_BIT) 1221 return HCLGE_MAC_SPEED_200G; 1222 1223 if (speed_ability & HCLGE_SUPPORT_100G_BIT) 1224 return HCLGE_MAC_SPEED_100G; 1225 1226 if (speed_ability & HCLGE_SUPPORT_50G_BIT) 1227 return HCLGE_MAC_SPEED_50G; 1228 1229 if (speed_ability & HCLGE_SUPPORT_40G_BIT) 1230 return HCLGE_MAC_SPEED_40G; 1231 1232 if (speed_ability & HCLGE_SUPPORT_25G_BIT) 1233 return HCLGE_MAC_SPEED_25G; 1234 1235 if (speed_ability & HCLGE_SUPPORT_10G_BIT) 1236 return HCLGE_MAC_SPEED_10G; 1237 1238 if (speed_ability & HCLGE_SUPPORT_1G_BIT) 1239 return HCLGE_MAC_SPEED_1G; 1240 1241 if (speed_ability & HCLGE_SUPPORT_100M_BIT) 1242 return HCLGE_MAC_SPEED_100M; 1243 1244 if (speed_ability & HCLGE_SUPPORT_10M_BIT) 1245 return HCLGE_MAC_SPEED_10M; 1246 1247 return HCLGE_MAC_SPEED_1G; 1248 } 1249 1250 static void hclge_parse_cfg(struct hclge_cfg *cfg, struct hclge_desc *desc) 1251 { 1252 #define HCLGE_TX_SPARE_SIZE_UNIT 4096 1253 #define SPEED_ABILITY_EXT_SHIFT 8 1254 1255 struct hclge_cfg_param_cmd *req; 1256 u64 mac_addr_tmp_high; 1257 u16 speed_ability_ext; 1258 u64 mac_addr_tmp; 1259 unsigned int i; 1260 1261 req = (struct hclge_cfg_param_cmd *)desc[0].data; 1262 1263 /* get the configuration */ 1264 cfg->tc_num = hnae3_get_field(__le32_to_cpu(req->param[0]), 1265 HCLGE_CFG_TC_NUM_M, HCLGE_CFG_TC_NUM_S); 1266 cfg->tqp_desc_num = hnae3_get_field(__le32_to_cpu(req->param[0]), 1267 HCLGE_CFG_TQP_DESC_N_M, 1268 HCLGE_CFG_TQP_DESC_N_S); 1269 1270 cfg->phy_addr = hnae3_get_field(__le32_to_cpu(req->param[1]), 1271 HCLGE_CFG_PHY_ADDR_M, 1272 HCLGE_CFG_PHY_ADDR_S); 1273 cfg->media_type = hnae3_get_field(__le32_to_cpu(req->param[1]), 1274 HCLGE_CFG_MEDIA_TP_M, 1275 HCLGE_CFG_MEDIA_TP_S); 1276 cfg->rx_buf_len = hnae3_get_field(__le32_to_cpu(req->param[1]), 1277 HCLGE_CFG_RX_BUF_LEN_M, 1278 HCLGE_CFG_RX_BUF_LEN_S); 1279 /* get mac_address */ 1280 mac_addr_tmp = __le32_to_cpu(req->param[2]); 1281 mac_addr_tmp_high = hnae3_get_field(__le32_to_cpu(req->param[3]), 1282 HCLGE_CFG_MAC_ADDR_H_M, 1283 HCLGE_CFG_MAC_ADDR_H_S); 1284 1285 mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1; 1286 1287 cfg->default_speed = hnae3_get_field(__le32_to_cpu(req->param[3]), 1288 HCLGE_CFG_DEFAULT_SPEED_M, 1289 HCLGE_CFG_DEFAULT_SPEED_S); 1290 cfg->vf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[3]), 1291 HCLGE_CFG_RSS_SIZE_M, 1292 HCLGE_CFG_RSS_SIZE_S); 1293 1294 for (i = 0; i < ETH_ALEN; i++) 1295 cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff; 1296 1297 req = (struct hclge_cfg_param_cmd *)desc[1].data; 1298 cfg->numa_node_map = __le32_to_cpu(req->param[0]); 1299 1300 cfg->speed_ability = hnae3_get_field(__le32_to_cpu(req->param[1]), 1301 HCLGE_CFG_SPEED_ABILITY_M, 1302 HCLGE_CFG_SPEED_ABILITY_S); 1303 speed_ability_ext = hnae3_get_field(__le32_to_cpu(req->param[1]), 1304 HCLGE_CFG_SPEED_ABILITY_EXT_M, 1305 HCLGE_CFG_SPEED_ABILITY_EXT_S); 1306 cfg->speed_ability |= speed_ability_ext << SPEED_ABILITY_EXT_SHIFT; 1307 1308 cfg->vlan_fliter_cap = hnae3_get_field(__le32_to_cpu(req->param[1]), 1309 HCLGE_CFG_VLAN_FLTR_CAP_M, 1310 HCLGE_CFG_VLAN_FLTR_CAP_S); 1311 1312 cfg->umv_space = hnae3_get_field(__le32_to_cpu(req->param[1]), 1313 HCLGE_CFG_UMV_TBL_SPACE_M, 1314 HCLGE_CFG_UMV_TBL_SPACE_S); 1315 1316 cfg->pf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[2]), 1317 HCLGE_CFG_PF_RSS_SIZE_M, 1318 HCLGE_CFG_PF_RSS_SIZE_S); 1319 1320 /* HCLGE_CFG_PF_RSS_SIZE_M is the PF max rss size, which is a 1321 * power of 2, instead of reading out directly. This would 1322 * be more flexible for future changes and expansions. 1323 * When VF max rss size field is HCLGE_CFG_RSS_SIZE_S, 1324 * it does not make sense if PF's field is 0. In this case, PF and VF 1325 * has the same max rss size filed: HCLGE_CFG_RSS_SIZE_S. 1326 */ 1327 cfg->pf_rss_size_max = cfg->pf_rss_size_max ? 1328 1U << cfg->pf_rss_size_max : 1329 cfg->vf_rss_size_max; 1330 1331 /* The unit of the tx spare buffer size queried from configuration 1332 * file is HCLGE_TX_SPARE_SIZE_UNIT(4096) bytes, so a conversion is 1333 * needed here. 1334 */ 1335 cfg->tx_spare_buf_size = hnae3_get_field(__le32_to_cpu(req->param[2]), 1336 HCLGE_CFG_TX_SPARE_BUF_SIZE_M, 1337 HCLGE_CFG_TX_SPARE_BUF_SIZE_S); 1338 cfg->tx_spare_buf_size *= HCLGE_TX_SPARE_SIZE_UNIT; 1339 } 1340 1341 /* hclge_get_cfg: query the static parameter from flash 1342 * @hdev: pointer to struct hclge_dev 1343 * @hcfg: the config structure to be getted 1344 */ 1345 static int hclge_get_cfg(struct hclge_dev *hdev, struct hclge_cfg *hcfg) 1346 { 1347 struct hclge_desc desc[HCLGE_PF_CFG_DESC_NUM]; 1348 struct hclge_cfg_param_cmd *req; 1349 unsigned int i; 1350 int ret; 1351 1352 for (i = 0; i < HCLGE_PF_CFG_DESC_NUM; i++) { 1353 u32 offset = 0; 1354 1355 req = (struct hclge_cfg_param_cmd *)desc[i].data; 1356 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_CFG_PARAM, 1357 true); 1358 hnae3_set_field(offset, HCLGE_CFG_OFFSET_M, 1359 HCLGE_CFG_OFFSET_S, i * HCLGE_CFG_RD_LEN_BYTES); 1360 /* Len should be united by 4 bytes when send to hardware */ 1361 hnae3_set_field(offset, HCLGE_CFG_RD_LEN_M, HCLGE_CFG_RD_LEN_S, 1362 HCLGE_CFG_RD_LEN_BYTES / HCLGE_CFG_RD_LEN_UNIT); 1363 req->offset = cpu_to_le32(offset); 1364 } 1365 1366 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PF_CFG_DESC_NUM); 1367 if (ret) { 1368 dev_err(&hdev->pdev->dev, "get config failed %d.\n", ret); 1369 return ret; 1370 } 1371 1372 hclge_parse_cfg(hcfg, desc); 1373 1374 return 0; 1375 } 1376 1377 static void hclge_set_default_dev_specs(struct hclge_dev *hdev) 1378 { 1379 #define HCLGE_MAX_NON_TSO_BD_NUM 8U 1380 1381 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 1382 1383 ae_dev->dev_specs.max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM; 1384 ae_dev->dev_specs.rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE; 1385 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 1386 ae_dev->dev_specs.max_tm_rate = HCLGE_ETHER_MAX_RATE; 1387 ae_dev->dev_specs.max_int_gl = HCLGE_DEF_MAX_INT_GL; 1388 ae_dev->dev_specs.max_frm_size = HCLGE_MAC_MAX_FRAME; 1389 ae_dev->dev_specs.max_qset_num = HCLGE_MAX_QSET_NUM; 1390 ae_dev->dev_specs.umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF; 1391 } 1392 1393 static void hclge_parse_dev_specs(struct hclge_dev *hdev, 1394 struct hclge_desc *desc) 1395 { 1396 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 1397 struct hclge_dev_specs_0_cmd *req0; 1398 struct hclge_dev_specs_1_cmd *req1; 1399 1400 req0 = (struct hclge_dev_specs_0_cmd *)desc[0].data; 1401 req1 = (struct hclge_dev_specs_1_cmd *)desc[1].data; 1402 1403 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num; 1404 ae_dev->dev_specs.rss_ind_tbl_size = 1405 le16_to_cpu(req0->rss_ind_tbl_size); 1406 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max); 1407 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size); 1408 ae_dev->dev_specs.max_tm_rate = le32_to_cpu(req0->max_tm_rate); 1409 ae_dev->dev_specs.max_qset_num = le16_to_cpu(req1->max_qset_num); 1410 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl); 1411 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size); 1412 ae_dev->dev_specs.umv_size = le16_to_cpu(req1->umv_size); 1413 ae_dev->dev_specs.mc_mac_size = le16_to_cpu(req1->mc_mac_size); 1414 } 1415 1416 static void hclge_check_dev_specs(struct hclge_dev *hdev) 1417 { 1418 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs; 1419 1420 if (!dev_specs->max_non_tso_bd_num) 1421 dev_specs->max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM; 1422 if (!dev_specs->rss_ind_tbl_size) 1423 dev_specs->rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE; 1424 if (!dev_specs->rss_key_size) 1425 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 1426 if (!dev_specs->max_tm_rate) 1427 dev_specs->max_tm_rate = HCLGE_ETHER_MAX_RATE; 1428 if (!dev_specs->max_qset_num) 1429 dev_specs->max_qset_num = HCLGE_MAX_QSET_NUM; 1430 if (!dev_specs->max_int_gl) 1431 dev_specs->max_int_gl = HCLGE_DEF_MAX_INT_GL; 1432 if (!dev_specs->max_frm_size) 1433 dev_specs->max_frm_size = HCLGE_MAC_MAX_FRAME; 1434 if (!dev_specs->umv_size) 1435 dev_specs->umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF; 1436 } 1437 1438 static int hclge_query_mac_stats_num(struct hclge_dev *hdev) 1439 { 1440 u32 reg_num = 0; 1441 int ret; 1442 1443 ret = hclge_mac_query_reg_num(hdev, ®_num); 1444 if (ret && ret != -EOPNOTSUPP) 1445 return ret; 1446 1447 hdev->ae_dev->dev_specs.mac_stats_num = reg_num; 1448 return 0; 1449 } 1450 1451 static int hclge_query_dev_specs(struct hclge_dev *hdev) 1452 { 1453 struct hclge_desc desc[HCLGE_QUERY_DEV_SPECS_BD_NUM]; 1454 int ret; 1455 int i; 1456 1457 ret = hclge_query_mac_stats_num(hdev); 1458 if (ret) 1459 return ret; 1460 1461 /* set default specifications as devices lower than version V3 do not 1462 * support querying specifications from firmware. 1463 */ 1464 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 1465 hclge_set_default_dev_specs(hdev); 1466 return 0; 1467 } 1468 1469 for (i = 0; i < HCLGE_QUERY_DEV_SPECS_BD_NUM - 1; i++) { 1470 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, 1471 true); 1472 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 1473 } 1474 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true); 1475 1476 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_QUERY_DEV_SPECS_BD_NUM); 1477 if (ret) 1478 return ret; 1479 1480 hclge_parse_dev_specs(hdev, desc); 1481 hclge_check_dev_specs(hdev); 1482 1483 return 0; 1484 } 1485 1486 static int hclge_get_cap(struct hclge_dev *hdev) 1487 { 1488 int ret; 1489 1490 ret = hclge_query_function_status(hdev); 1491 if (ret) { 1492 dev_err(&hdev->pdev->dev, 1493 "query function status error %d.\n", ret); 1494 return ret; 1495 } 1496 1497 /* get pf resource */ 1498 return hclge_query_pf_resource(hdev); 1499 } 1500 1501 static void hclge_init_kdump_kernel_config(struct hclge_dev *hdev) 1502 { 1503 #define HCLGE_MIN_TX_DESC 64 1504 #define HCLGE_MIN_RX_DESC 64 1505 1506 if (!is_kdump_kernel()) 1507 return; 1508 1509 dev_info(&hdev->pdev->dev, 1510 "Running kdump kernel. Using minimal resources\n"); 1511 1512 /* minimal queue pairs equals to the number of vports */ 1513 hdev->num_tqps = hdev->num_req_vfs + 1; 1514 hdev->num_tx_desc = HCLGE_MIN_TX_DESC; 1515 hdev->num_rx_desc = HCLGE_MIN_RX_DESC; 1516 } 1517 1518 static void hclge_init_tc_config(struct hclge_dev *hdev) 1519 { 1520 unsigned int i; 1521 1522 if (hdev->tc_max > HNAE3_MAX_TC || 1523 hdev->tc_max < 1) { 1524 dev_warn(&hdev->pdev->dev, "TC num = %u.\n", 1525 hdev->tc_max); 1526 hdev->tc_max = 1; 1527 } 1528 1529 /* Dev does not support DCB */ 1530 if (!hnae3_dev_dcb_supported(hdev)) { 1531 hdev->tc_max = 1; 1532 hdev->pfc_max = 0; 1533 } else { 1534 hdev->pfc_max = hdev->tc_max; 1535 } 1536 1537 hdev->tm_info.num_tc = 1; 1538 1539 /* Currently not support uncontiuous tc */ 1540 for (i = 0; i < hdev->tm_info.num_tc; i++) 1541 hnae3_set_bit(hdev->hw_tc_map, i, 1); 1542 1543 hdev->tx_sch_mode = HCLGE_FLAG_TC_BASE_SCH_MODE; 1544 } 1545 1546 static int hclge_configure(struct hclge_dev *hdev) 1547 { 1548 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 1549 const struct cpumask *cpumask = cpu_online_mask; 1550 struct hclge_cfg cfg; 1551 int node, ret; 1552 1553 ret = hclge_get_cfg(hdev, &cfg); 1554 if (ret) 1555 return ret; 1556 1557 hdev->base_tqp_pid = 0; 1558 hdev->vf_rss_size_max = cfg.vf_rss_size_max; 1559 hdev->pf_rss_size_max = cfg.pf_rss_size_max; 1560 hdev->rx_buf_len = cfg.rx_buf_len; 1561 ether_addr_copy(hdev->hw.mac.mac_addr, cfg.mac_addr); 1562 hdev->hw.mac.media_type = cfg.media_type; 1563 hdev->hw.mac.phy_addr = cfg.phy_addr; 1564 hdev->num_tx_desc = cfg.tqp_desc_num; 1565 hdev->num_rx_desc = cfg.tqp_desc_num; 1566 hdev->tm_info.num_pg = 1; 1567 hdev->tc_max = cfg.tc_num; 1568 hdev->tm_info.hw_pfc_map = 0; 1569 if (cfg.umv_space) 1570 hdev->wanted_umv_size = cfg.umv_space; 1571 else 1572 hdev->wanted_umv_size = hdev->ae_dev->dev_specs.umv_size; 1573 hdev->tx_spare_buf_size = cfg.tx_spare_buf_size; 1574 hdev->gro_en = true; 1575 if (cfg.vlan_fliter_cap == HCLGE_VLAN_FLTR_CAN_MDF) 1576 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps); 1577 1578 if (hnae3_dev_fd_supported(hdev)) { 1579 hdev->fd_en = true; 1580 hdev->fd_active_type = HCLGE_FD_RULE_NONE; 1581 } 1582 1583 ret = hclge_parse_speed(cfg.default_speed, &hdev->hw.mac.speed); 1584 if (ret) { 1585 dev_err(&hdev->pdev->dev, "failed to parse speed %u, ret = %d\n", 1586 cfg.default_speed, ret); 1587 return ret; 1588 } 1589 1590 hclge_parse_link_mode(hdev, cfg.speed_ability); 1591 1592 hdev->hw.mac.max_speed = hclge_get_max_speed(cfg.speed_ability); 1593 1594 hclge_init_tc_config(hdev); 1595 hclge_init_kdump_kernel_config(hdev); 1596 1597 /* Set the affinity based on numa node */ 1598 node = dev_to_node(&hdev->pdev->dev); 1599 if (node != NUMA_NO_NODE) 1600 cpumask = cpumask_of_node(node); 1601 1602 cpumask_copy(&hdev->affinity_mask, cpumask); 1603 1604 return ret; 1605 } 1606 1607 static int hclge_config_tso(struct hclge_dev *hdev, u16 tso_mss_min, 1608 u16 tso_mss_max) 1609 { 1610 struct hclge_cfg_tso_status_cmd *req; 1611 struct hclge_desc desc; 1612 1613 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TSO_GENERIC_CONFIG, false); 1614 1615 req = (struct hclge_cfg_tso_status_cmd *)desc.data; 1616 req->tso_mss_min = cpu_to_le16(tso_mss_min); 1617 req->tso_mss_max = cpu_to_le16(tso_mss_max); 1618 1619 return hclge_cmd_send(&hdev->hw, &desc, 1); 1620 } 1621 1622 static int hclge_config_gro(struct hclge_dev *hdev) 1623 { 1624 struct hclge_cfg_gro_status_cmd *req; 1625 struct hclge_desc desc; 1626 int ret; 1627 1628 if (!hnae3_dev_gro_supported(hdev)) 1629 return 0; 1630 1631 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, false); 1632 req = (struct hclge_cfg_gro_status_cmd *)desc.data; 1633 1634 req->gro_en = hdev->gro_en ? 1 : 0; 1635 1636 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 1637 if (ret) 1638 dev_err(&hdev->pdev->dev, 1639 "GRO hardware config cmd failed, ret = %d\n", ret); 1640 1641 return ret; 1642 } 1643 1644 static int hclge_alloc_tqps(struct hclge_dev *hdev) 1645 { 1646 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 1647 struct hclge_comm_tqp *tqp; 1648 int i; 1649 1650 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 1651 sizeof(struct hclge_comm_tqp), GFP_KERNEL); 1652 if (!hdev->htqp) 1653 return -ENOMEM; 1654 1655 tqp = hdev->htqp; 1656 1657 for (i = 0; i < hdev->num_tqps; i++) { 1658 tqp->dev = &hdev->pdev->dev; 1659 tqp->index = i; 1660 1661 tqp->q.ae_algo = &ae_algo; 1662 tqp->q.buf_size = hdev->rx_buf_len; 1663 tqp->q.tx_desc_num = hdev->num_tx_desc; 1664 tqp->q.rx_desc_num = hdev->num_rx_desc; 1665 1666 /* need an extended offset to configure queues >= 1667 * HCLGE_TQP_MAX_SIZE_DEV_V2 1668 */ 1669 if (i < HCLGE_TQP_MAX_SIZE_DEV_V2) 1670 tqp->q.io_base = hdev->hw.hw.io_base + 1671 HCLGE_TQP_REG_OFFSET + 1672 i * HCLGE_TQP_REG_SIZE; 1673 else 1674 tqp->q.io_base = hdev->hw.hw.io_base + 1675 HCLGE_TQP_REG_OFFSET + 1676 HCLGE_TQP_EXT_REG_OFFSET + 1677 (i - HCLGE_TQP_MAX_SIZE_DEV_V2) * 1678 HCLGE_TQP_REG_SIZE; 1679 1680 /* when device supports tx push and has device memory, 1681 * the queue can execute push mode or doorbell mode on 1682 * device memory. 1683 */ 1684 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps)) 1685 tqp->q.mem_base = hdev->hw.hw.mem_base + 1686 HCLGE_TQP_MEM_OFFSET(hdev, i); 1687 1688 tqp++; 1689 } 1690 1691 return 0; 1692 } 1693 1694 static int hclge_map_tqps_to_func(struct hclge_dev *hdev, u16 func_id, 1695 u16 tqp_pid, u16 tqp_vid, bool is_pf) 1696 { 1697 struct hclge_tqp_map_cmd *req; 1698 struct hclge_desc desc; 1699 int ret; 1700 1701 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SET_TQP_MAP, false); 1702 1703 req = (struct hclge_tqp_map_cmd *)desc.data; 1704 req->tqp_id = cpu_to_le16(tqp_pid); 1705 req->tqp_vf = func_id; 1706 req->tqp_flag = 1U << HCLGE_TQP_MAP_EN_B; 1707 if (!is_pf) 1708 req->tqp_flag |= 1U << HCLGE_TQP_MAP_TYPE_B; 1709 req->tqp_vid = cpu_to_le16(tqp_vid); 1710 1711 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 1712 if (ret) 1713 dev_err(&hdev->pdev->dev, "TQP map failed %d.\n", ret); 1714 1715 return ret; 1716 } 1717 1718 static int hclge_assign_tqp(struct hclge_vport *vport, u16 num_tqps) 1719 { 1720 struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo; 1721 struct hclge_dev *hdev = vport->back; 1722 int i, alloced; 1723 1724 for (i = 0, alloced = 0; i < hdev->num_tqps && 1725 alloced < num_tqps; i++) { 1726 if (!hdev->htqp[i].alloced) { 1727 hdev->htqp[i].q.handle = &vport->nic; 1728 hdev->htqp[i].q.tqp_index = alloced; 1729 hdev->htqp[i].q.tx_desc_num = kinfo->num_tx_desc; 1730 hdev->htqp[i].q.rx_desc_num = kinfo->num_rx_desc; 1731 kinfo->tqp[alloced] = &hdev->htqp[i].q; 1732 hdev->htqp[i].alloced = true; 1733 alloced++; 1734 } 1735 } 1736 vport->alloc_tqps = alloced; 1737 kinfo->rss_size = min_t(u16, hdev->pf_rss_size_max, 1738 vport->alloc_tqps / hdev->tm_info.num_tc); 1739 1740 /* ensure one to one mapping between irq and queue at default */ 1741 kinfo->rss_size = min_t(u16, kinfo->rss_size, 1742 (hdev->num_nic_msi - 1) / hdev->tm_info.num_tc); 1743 1744 return 0; 1745 } 1746 1747 static int hclge_knic_setup(struct hclge_vport *vport, u16 num_tqps, 1748 u16 num_tx_desc, u16 num_rx_desc) 1749 1750 { 1751 struct hnae3_handle *nic = &vport->nic; 1752 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 1753 struct hclge_dev *hdev = vport->back; 1754 int ret; 1755 1756 kinfo->num_tx_desc = num_tx_desc; 1757 kinfo->num_rx_desc = num_rx_desc; 1758 1759 kinfo->rx_buf_len = hdev->rx_buf_len; 1760 kinfo->tx_spare_buf_size = hdev->tx_spare_buf_size; 1761 1762 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, num_tqps, 1763 sizeof(struct hnae3_queue *), GFP_KERNEL); 1764 if (!kinfo->tqp) 1765 return -ENOMEM; 1766 1767 ret = hclge_assign_tqp(vport, num_tqps); 1768 if (ret) 1769 dev_err(&hdev->pdev->dev, "fail to assign TQPs %d.\n", ret); 1770 1771 return ret; 1772 } 1773 1774 static int hclge_map_tqp_to_vport(struct hclge_dev *hdev, 1775 struct hclge_vport *vport) 1776 { 1777 struct hnae3_handle *nic = &vport->nic; 1778 struct hnae3_knic_private_info *kinfo; 1779 u16 i; 1780 1781 kinfo = &nic->kinfo; 1782 for (i = 0; i < vport->alloc_tqps; i++) { 1783 struct hclge_comm_tqp *q = 1784 container_of(kinfo->tqp[i], struct hclge_comm_tqp, q); 1785 bool is_pf; 1786 int ret; 1787 1788 is_pf = !(vport->vport_id); 1789 ret = hclge_map_tqps_to_func(hdev, vport->vport_id, q->index, 1790 i, is_pf); 1791 if (ret) 1792 return ret; 1793 } 1794 1795 return 0; 1796 } 1797 1798 static int hclge_map_tqp(struct hclge_dev *hdev) 1799 { 1800 struct hclge_vport *vport = hdev->vport; 1801 u16 i, num_vport; 1802 1803 num_vport = hdev->num_req_vfs + 1; 1804 for (i = 0; i < num_vport; i++) { 1805 int ret; 1806 1807 ret = hclge_map_tqp_to_vport(hdev, vport); 1808 if (ret) 1809 return ret; 1810 1811 vport++; 1812 } 1813 1814 return 0; 1815 } 1816 1817 static int hclge_vport_setup(struct hclge_vport *vport, u16 num_tqps) 1818 { 1819 struct hnae3_handle *nic = &vport->nic; 1820 struct hclge_dev *hdev = vport->back; 1821 int ret; 1822 1823 nic->pdev = hdev->pdev; 1824 nic->ae_algo = &ae_algo; 1825 nic->numa_node_mask = hdev->numa_node_mask; 1826 nic->kinfo.io_base = hdev->hw.hw.io_base; 1827 1828 ret = hclge_knic_setup(vport, num_tqps, 1829 hdev->num_tx_desc, hdev->num_rx_desc); 1830 if (ret) 1831 dev_err(&hdev->pdev->dev, "knic setup failed %d\n", ret); 1832 1833 return ret; 1834 } 1835 1836 static int hclge_alloc_vport(struct hclge_dev *hdev) 1837 { 1838 struct pci_dev *pdev = hdev->pdev; 1839 struct hclge_vport *vport; 1840 u32 tqp_main_vport; 1841 u32 tqp_per_vport; 1842 int num_vport, i; 1843 int ret; 1844 1845 /* We need to alloc a vport for main NIC of PF */ 1846 num_vport = hdev->num_req_vfs + 1; 1847 1848 if (hdev->num_tqps < num_vport) { 1849 dev_err(&hdev->pdev->dev, "tqps(%u) is less than vports(%d)", 1850 hdev->num_tqps, num_vport); 1851 return -EINVAL; 1852 } 1853 1854 /* Alloc the same number of TQPs for every vport */ 1855 tqp_per_vport = hdev->num_tqps / num_vport; 1856 tqp_main_vport = tqp_per_vport + hdev->num_tqps % num_vport; 1857 1858 vport = devm_kcalloc(&pdev->dev, num_vport, sizeof(struct hclge_vport), 1859 GFP_KERNEL); 1860 if (!vport) 1861 return -ENOMEM; 1862 1863 hdev->vport = vport; 1864 hdev->num_alloc_vport = num_vport; 1865 1866 if (IS_ENABLED(CONFIG_PCI_IOV)) 1867 hdev->num_alloc_vfs = hdev->num_req_vfs; 1868 1869 for (i = 0; i < num_vport; i++) { 1870 vport->back = hdev; 1871 vport->vport_id = i; 1872 vport->vf_info.link_state = IFLA_VF_LINK_STATE_AUTO; 1873 vport->mps = HCLGE_MAC_DEFAULT_FRAME; 1874 vport->port_base_vlan_cfg.state = HNAE3_PORT_BASE_VLAN_DISABLE; 1875 vport->port_base_vlan_cfg.tbl_sta = true; 1876 vport->rxvlan_cfg.rx_vlan_offload_en = true; 1877 vport->req_vlan_fltr_en = true; 1878 INIT_LIST_HEAD(&vport->vlan_list); 1879 INIT_LIST_HEAD(&vport->uc_mac_list); 1880 INIT_LIST_HEAD(&vport->mc_mac_list); 1881 spin_lock_init(&vport->mac_list_lock); 1882 1883 if (i == 0) 1884 ret = hclge_vport_setup(vport, tqp_main_vport); 1885 else 1886 ret = hclge_vport_setup(vport, tqp_per_vport); 1887 if (ret) { 1888 dev_err(&pdev->dev, 1889 "vport setup failed for vport %d, %d\n", 1890 i, ret); 1891 return ret; 1892 } 1893 1894 vport++; 1895 } 1896 1897 return 0; 1898 } 1899 1900 static int hclge_cmd_alloc_tx_buff(struct hclge_dev *hdev, 1901 struct hclge_pkt_buf_alloc *buf_alloc) 1902 { 1903 /* TX buffer size is unit by 128 byte */ 1904 #define HCLGE_BUF_SIZE_UNIT_SHIFT 7 1905 #define HCLGE_BUF_SIZE_UPDATE_EN_MSK BIT(15) 1906 struct hclge_tx_buff_alloc_cmd *req; 1907 struct hclge_desc desc; 1908 int ret; 1909 u8 i; 1910 1911 req = (struct hclge_tx_buff_alloc_cmd *)desc.data; 1912 1913 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TX_BUFF_ALLOC, 0); 1914 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 1915 u32 buf_size = buf_alloc->priv_buf[i].tx_buf_size; 1916 1917 req->tx_pkt_buff[i] = 1918 cpu_to_le16((buf_size >> HCLGE_BUF_SIZE_UNIT_SHIFT) | 1919 HCLGE_BUF_SIZE_UPDATE_EN_MSK); 1920 } 1921 1922 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 1923 if (ret) 1924 dev_err(&hdev->pdev->dev, "tx buffer alloc cmd failed %d.\n", 1925 ret); 1926 1927 return ret; 1928 } 1929 1930 static int hclge_tx_buffer_alloc(struct hclge_dev *hdev, 1931 struct hclge_pkt_buf_alloc *buf_alloc) 1932 { 1933 int ret = hclge_cmd_alloc_tx_buff(hdev, buf_alloc); 1934 1935 if (ret) 1936 dev_err(&hdev->pdev->dev, "tx buffer alloc failed %d\n", ret); 1937 1938 return ret; 1939 } 1940 1941 static u32 hclge_get_tc_num(struct hclge_dev *hdev) 1942 { 1943 unsigned int i; 1944 u32 cnt = 0; 1945 1946 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) 1947 if (hdev->hw_tc_map & BIT(i)) 1948 cnt++; 1949 return cnt; 1950 } 1951 1952 /* Get the number of pfc enabled TCs, which have private buffer */ 1953 static int hclge_get_pfc_priv_num(struct hclge_dev *hdev, 1954 struct hclge_pkt_buf_alloc *buf_alloc) 1955 { 1956 struct hclge_priv_buf *priv; 1957 unsigned int i; 1958 int cnt = 0; 1959 1960 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 1961 priv = &buf_alloc->priv_buf[i]; 1962 if ((hdev->tm_info.hw_pfc_map & BIT(i)) && 1963 priv->enable) 1964 cnt++; 1965 } 1966 1967 return cnt; 1968 } 1969 1970 /* Get the number of pfc disabled TCs, which have private buffer */ 1971 static int hclge_get_no_pfc_priv_num(struct hclge_dev *hdev, 1972 struct hclge_pkt_buf_alloc *buf_alloc) 1973 { 1974 struct hclge_priv_buf *priv; 1975 unsigned int i; 1976 int cnt = 0; 1977 1978 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 1979 priv = &buf_alloc->priv_buf[i]; 1980 if (hdev->hw_tc_map & BIT(i) && 1981 !(hdev->tm_info.hw_pfc_map & BIT(i)) && 1982 priv->enable) 1983 cnt++; 1984 } 1985 1986 return cnt; 1987 } 1988 1989 static u32 hclge_get_rx_priv_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc) 1990 { 1991 struct hclge_priv_buf *priv; 1992 u32 rx_priv = 0; 1993 int i; 1994 1995 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 1996 priv = &buf_alloc->priv_buf[i]; 1997 if (priv->enable) 1998 rx_priv += priv->buf_size; 1999 } 2000 return rx_priv; 2001 } 2002 2003 static u32 hclge_get_tx_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc) 2004 { 2005 u32 i, total_tx_size = 0; 2006 2007 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) 2008 total_tx_size += buf_alloc->priv_buf[i].tx_buf_size; 2009 2010 return total_tx_size; 2011 } 2012 2013 static bool hclge_is_rx_buf_ok(struct hclge_dev *hdev, 2014 struct hclge_pkt_buf_alloc *buf_alloc, 2015 u32 rx_all) 2016 { 2017 u32 shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd; 2018 u32 tc_num = hclge_get_tc_num(hdev); 2019 u32 shared_buf, aligned_mps; 2020 u32 rx_priv; 2021 int i; 2022 2023 aligned_mps = roundup(hdev->mps, HCLGE_BUF_SIZE_UNIT); 2024 2025 if (hnae3_dev_dcb_supported(hdev)) 2026 shared_buf_min = HCLGE_BUF_MUL_BY * aligned_mps + 2027 hdev->dv_buf_size; 2028 else 2029 shared_buf_min = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF 2030 + hdev->dv_buf_size; 2031 2032 shared_buf_tc = tc_num * aligned_mps + aligned_mps; 2033 shared_std = roundup(max_t(u32, shared_buf_min, shared_buf_tc), 2034 HCLGE_BUF_SIZE_UNIT); 2035 2036 rx_priv = hclge_get_rx_priv_buff_alloced(buf_alloc); 2037 if (rx_all < rx_priv + shared_std) 2038 return false; 2039 2040 shared_buf = rounddown(rx_all - rx_priv, HCLGE_BUF_SIZE_UNIT); 2041 buf_alloc->s_buf.buf_size = shared_buf; 2042 if (hnae3_dev_dcb_supported(hdev)) { 2043 buf_alloc->s_buf.self.high = shared_buf - hdev->dv_buf_size; 2044 buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high 2045 - roundup(aligned_mps / HCLGE_BUF_DIV_BY, 2046 HCLGE_BUF_SIZE_UNIT); 2047 } else { 2048 buf_alloc->s_buf.self.high = aligned_mps + 2049 HCLGE_NON_DCB_ADDITIONAL_BUF; 2050 buf_alloc->s_buf.self.low = aligned_mps; 2051 } 2052 2053 if (hnae3_dev_dcb_supported(hdev)) { 2054 hi_thrd = shared_buf - hdev->dv_buf_size; 2055 2056 if (tc_num <= NEED_RESERVE_TC_NUM) 2057 hi_thrd = hi_thrd * BUF_RESERVE_PERCENT 2058 / BUF_MAX_PERCENT; 2059 2060 if (tc_num) 2061 hi_thrd = hi_thrd / tc_num; 2062 2063 hi_thrd = max_t(u32, hi_thrd, HCLGE_BUF_MUL_BY * aligned_mps); 2064 hi_thrd = rounddown(hi_thrd, HCLGE_BUF_SIZE_UNIT); 2065 lo_thrd = hi_thrd - aligned_mps / HCLGE_BUF_DIV_BY; 2066 } else { 2067 hi_thrd = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF; 2068 lo_thrd = aligned_mps; 2069 } 2070 2071 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2072 buf_alloc->s_buf.tc_thrd[i].low = lo_thrd; 2073 buf_alloc->s_buf.tc_thrd[i].high = hi_thrd; 2074 } 2075 2076 return true; 2077 } 2078 2079 static int hclge_tx_buffer_calc(struct hclge_dev *hdev, 2080 struct hclge_pkt_buf_alloc *buf_alloc) 2081 { 2082 u32 i, total_size; 2083 2084 total_size = hdev->pkt_buf_size; 2085 2086 /* alloc tx buffer for all enabled tc */ 2087 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2088 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2089 2090 if (hdev->hw_tc_map & BIT(i)) { 2091 if (total_size < hdev->tx_buf_size) 2092 return -ENOMEM; 2093 2094 priv->tx_buf_size = hdev->tx_buf_size; 2095 } else { 2096 priv->tx_buf_size = 0; 2097 } 2098 2099 total_size -= priv->tx_buf_size; 2100 } 2101 2102 return 0; 2103 } 2104 2105 static bool hclge_rx_buf_calc_all(struct hclge_dev *hdev, bool max, 2106 struct hclge_pkt_buf_alloc *buf_alloc) 2107 { 2108 u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc); 2109 u32 aligned_mps = round_up(hdev->mps, HCLGE_BUF_SIZE_UNIT); 2110 unsigned int i; 2111 2112 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2113 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2114 2115 priv->enable = 0; 2116 priv->wl.low = 0; 2117 priv->wl.high = 0; 2118 priv->buf_size = 0; 2119 2120 if (!(hdev->hw_tc_map & BIT(i))) 2121 continue; 2122 2123 priv->enable = 1; 2124 2125 if (hdev->tm_info.hw_pfc_map & BIT(i)) { 2126 priv->wl.low = max ? aligned_mps : HCLGE_BUF_SIZE_UNIT; 2127 priv->wl.high = roundup(priv->wl.low + aligned_mps, 2128 HCLGE_BUF_SIZE_UNIT); 2129 } else { 2130 priv->wl.low = 0; 2131 priv->wl.high = max ? (aligned_mps * HCLGE_BUF_MUL_BY) : 2132 aligned_mps; 2133 } 2134 2135 priv->buf_size = priv->wl.high + hdev->dv_buf_size; 2136 } 2137 2138 return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all); 2139 } 2140 2141 static bool hclge_drop_nopfc_buf_till_fit(struct hclge_dev *hdev, 2142 struct hclge_pkt_buf_alloc *buf_alloc) 2143 { 2144 u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc); 2145 int no_pfc_priv_num = hclge_get_no_pfc_priv_num(hdev, buf_alloc); 2146 int i; 2147 2148 /* let the last to be cleared first */ 2149 for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) { 2150 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2151 unsigned int mask = BIT((unsigned int)i); 2152 2153 if (hdev->hw_tc_map & mask && 2154 !(hdev->tm_info.hw_pfc_map & mask)) { 2155 /* Clear the no pfc TC private buffer */ 2156 priv->wl.low = 0; 2157 priv->wl.high = 0; 2158 priv->buf_size = 0; 2159 priv->enable = 0; 2160 no_pfc_priv_num--; 2161 } 2162 2163 if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) || 2164 no_pfc_priv_num == 0) 2165 break; 2166 } 2167 2168 return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all); 2169 } 2170 2171 static bool hclge_drop_pfc_buf_till_fit(struct hclge_dev *hdev, 2172 struct hclge_pkt_buf_alloc *buf_alloc) 2173 { 2174 u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc); 2175 int pfc_priv_num = hclge_get_pfc_priv_num(hdev, buf_alloc); 2176 int i; 2177 2178 /* let the last to be cleared first */ 2179 for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) { 2180 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2181 unsigned int mask = BIT((unsigned int)i); 2182 2183 if (hdev->hw_tc_map & mask && 2184 hdev->tm_info.hw_pfc_map & mask) { 2185 /* Reduce the number of pfc TC with private buffer */ 2186 priv->wl.low = 0; 2187 priv->enable = 0; 2188 priv->wl.high = 0; 2189 priv->buf_size = 0; 2190 pfc_priv_num--; 2191 } 2192 2193 if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) || 2194 pfc_priv_num == 0) 2195 break; 2196 } 2197 2198 return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all); 2199 } 2200 2201 static int hclge_only_alloc_priv_buff(struct hclge_dev *hdev, 2202 struct hclge_pkt_buf_alloc *buf_alloc) 2203 { 2204 #define COMPENSATE_BUFFER 0x3C00 2205 #define COMPENSATE_HALF_MPS_NUM 5 2206 #define PRIV_WL_GAP 0x1800 2207 2208 u32 rx_priv = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc); 2209 u32 tc_num = hclge_get_tc_num(hdev); 2210 u32 half_mps = hdev->mps >> 1; 2211 u32 min_rx_priv; 2212 unsigned int i; 2213 2214 if (tc_num) 2215 rx_priv = rx_priv / tc_num; 2216 2217 if (tc_num <= NEED_RESERVE_TC_NUM) 2218 rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT; 2219 2220 min_rx_priv = hdev->dv_buf_size + COMPENSATE_BUFFER + 2221 COMPENSATE_HALF_MPS_NUM * half_mps; 2222 min_rx_priv = round_up(min_rx_priv, HCLGE_BUF_SIZE_UNIT); 2223 rx_priv = round_down(rx_priv, HCLGE_BUF_SIZE_UNIT); 2224 if (rx_priv < min_rx_priv) 2225 return false; 2226 2227 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2228 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2229 2230 priv->enable = 0; 2231 priv->wl.low = 0; 2232 priv->wl.high = 0; 2233 priv->buf_size = 0; 2234 2235 if (!(hdev->hw_tc_map & BIT(i))) 2236 continue; 2237 2238 priv->enable = 1; 2239 priv->buf_size = rx_priv; 2240 priv->wl.high = rx_priv - hdev->dv_buf_size; 2241 priv->wl.low = priv->wl.high - PRIV_WL_GAP; 2242 } 2243 2244 buf_alloc->s_buf.buf_size = 0; 2245 2246 return true; 2247 } 2248 2249 /* hclge_rx_buffer_calc: calculate the rx private buffer size for all TCs 2250 * @hdev: pointer to struct hclge_dev 2251 * @buf_alloc: pointer to buffer calculation data 2252 * @return: 0: calculate successful, negative: fail 2253 */ 2254 static int hclge_rx_buffer_calc(struct hclge_dev *hdev, 2255 struct hclge_pkt_buf_alloc *buf_alloc) 2256 { 2257 /* When DCB is not supported, rx private buffer is not allocated. */ 2258 if (!hnae3_dev_dcb_supported(hdev)) { 2259 u32 rx_all = hdev->pkt_buf_size; 2260 2261 rx_all -= hclge_get_tx_buff_alloced(buf_alloc); 2262 if (!hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all)) 2263 return -ENOMEM; 2264 2265 return 0; 2266 } 2267 2268 if (hclge_only_alloc_priv_buff(hdev, buf_alloc)) 2269 return 0; 2270 2271 if (hclge_rx_buf_calc_all(hdev, true, buf_alloc)) 2272 return 0; 2273 2274 /* try to decrease the buffer size */ 2275 if (hclge_rx_buf_calc_all(hdev, false, buf_alloc)) 2276 return 0; 2277 2278 if (hclge_drop_nopfc_buf_till_fit(hdev, buf_alloc)) 2279 return 0; 2280 2281 if (hclge_drop_pfc_buf_till_fit(hdev, buf_alloc)) 2282 return 0; 2283 2284 return -ENOMEM; 2285 } 2286 2287 static int hclge_rx_priv_buf_alloc(struct hclge_dev *hdev, 2288 struct hclge_pkt_buf_alloc *buf_alloc) 2289 { 2290 struct hclge_rx_priv_buff_cmd *req; 2291 struct hclge_desc desc; 2292 int ret; 2293 int i; 2294 2295 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_PRIV_BUFF_ALLOC, false); 2296 req = (struct hclge_rx_priv_buff_cmd *)desc.data; 2297 2298 /* Alloc private buffer TCs */ 2299 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2300 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2301 2302 req->buf_num[i] = 2303 cpu_to_le16(priv->buf_size >> HCLGE_BUF_UNIT_S); 2304 req->buf_num[i] |= 2305 cpu_to_le16(1 << HCLGE_TC0_PRI_BUF_EN_B); 2306 } 2307 2308 req->shared_buf = 2309 cpu_to_le16((buf_alloc->s_buf.buf_size >> HCLGE_BUF_UNIT_S) | 2310 (1 << HCLGE_TC0_PRI_BUF_EN_B)); 2311 2312 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2313 if (ret) 2314 dev_err(&hdev->pdev->dev, 2315 "rx private buffer alloc cmd failed %d\n", ret); 2316 2317 return ret; 2318 } 2319 2320 static int hclge_rx_priv_wl_config(struct hclge_dev *hdev, 2321 struct hclge_pkt_buf_alloc *buf_alloc) 2322 { 2323 struct hclge_rx_priv_wl_buf *req; 2324 struct hclge_priv_buf *priv; 2325 struct hclge_desc desc[2]; 2326 int i, j; 2327 int ret; 2328 2329 for (i = 0; i < 2; i++) { 2330 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_RX_PRIV_WL_ALLOC, 2331 false); 2332 req = (struct hclge_rx_priv_wl_buf *)desc[i].data; 2333 2334 /* The first descriptor set the NEXT bit to 1 */ 2335 if (i == 0) 2336 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2337 else 2338 desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2339 2340 for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) { 2341 u32 idx = i * HCLGE_TC_NUM_ONE_DESC + j; 2342 2343 priv = &buf_alloc->priv_buf[idx]; 2344 req->tc_wl[j].high = 2345 cpu_to_le16(priv->wl.high >> HCLGE_BUF_UNIT_S); 2346 req->tc_wl[j].high |= 2347 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2348 req->tc_wl[j].low = 2349 cpu_to_le16(priv->wl.low >> HCLGE_BUF_UNIT_S); 2350 req->tc_wl[j].low |= 2351 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2352 } 2353 } 2354 2355 /* Send 2 descriptor at one time */ 2356 ret = hclge_cmd_send(&hdev->hw, desc, 2); 2357 if (ret) 2358 dev_err(&hdev->pdev->dev, 2359 "rx private waterline config cmd failed %d\n", 2360 ret); 2361 return ret; 2362 } 2363 2364 static int hclge_common_thrd_config(struct hclge_dev *hdev, 2365 struct hclge_pkt_buf_alloc *buf_alloc) 2366 { 2367 struct hclge_shared_buf *s_buf = &buf_alloc->s_buf; 2368 struct hclge_rx_com_thrd *req; 2369 struct hclge_desc desc[2]; 2370 struct hclge_tc_thrd *tc; 2371 int i, j; 2372 int ret; 2373 2374 for (i = 0; i < 2; i++) { 2375 hclge_cmd_setup_basic_desc(&desc[i], 2376 HCLGE_OPC_RX_COM_THRD_ALLOC, false); 2377 req = (struct hclge_rx_com_thrd *)&desc[i].data; 2378 2379 /* The first descriptor set the NEXT bit to 1 */ 2380 if (i == 0) 2381 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2382 else 2383 desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2384 2385 for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) { 2386 tc = &s_buf->tc_thrd[i * HCLGE_TC_NUM_ONE_DESC + j]; 2387 2388 req->com_thrd[j].high = 2389 cpu_to_le16(tc->high >> HCLGE_BUF_UNIT_S); 2390 req->com_thrd[j].high |= 2391 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2392 req->com_thrd[j].low = 2393 cpu_to_le16(tc->low >> HCLGE_BUF_UNIT_S); 2394 req->com_thrd[j].low |= 2395 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2396 } 2397 } 2398 2399 /* Send 2 descriptors at one time */ 2400 ret = hclge_cmd_send(&hdev->hw, desc, 2); 2401 if (ret) 2402 dev_err(&hdev->pdev->dev, 2403 "common threshold config cmd failed %d\n", ret); 2404 return ret; 2405 } 2406 2407 static int hclge_common_wl_config(struct hclge_dev *hdev, 2408 struct hclge_pkt_buf_alloc *buf_alloc) 2409 { 2410 struct hclge_shared_buf *buf = &buf_alloc->s_buf; 2411 struct hclge_rx_com_wl *req; 2412 struct hclge_desc desc; 2413 int ret; 2414 2415 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_COM_WL_ALLOC, false); 2416 2417 req = (struct hclge_rx_com_wl *)desc.data; 2418 req->com_wl.high = cpu_to_le16(buf->self.high >> HCLGE_BUF_UNIT_S); 2419 req->com_wl.high |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2420 2421 req->com_wl.low = cpu_to_le16(buf->self.low >> HCLGE_BUF_UNIT_S); 2422 req->com_wl.low |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2423 2424 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2425 if (ret) 2426 dev_err(&hdev->pdev->dev, 2427 "common waterline config cmd failed %d\n", ret); 2428 2429 return ret; 2430 } 2431 2432 int hclge_buffer_alloc(struct hclge_dev *hdev) 2433 { 2434 struct hclge_pkt_buf_alloc *pkt_buf; 2435 int ret; 2436 2437 pkt_buf = kzalloc(sizeof(*pkt_buf), GFP_KERNEL); 2438 if (!pkt_buf) 2439 return -ENOMEM; 2440 2441 ret = hclge_tx_buffer_calc(hdev, pkt_buf); 2442 if (ret) { 2443 dev_err(&hdev->pdev->dev, 2444 "could not calc tx buffer size for all TCs %d\n", ret); 2445 goto out; 2446 } 2447 2448 ret = hclge_tx_buffer_alloc(hdev, pkt_buf); 2449 if (ret) { 2450 dev_err(&hdev->pdev->dev, 2451 "could not alloc tx buffers %d\n", ret); 2452 goto out; 2453 } 2454 2455 ret = hclge_rx_buffer_calc(hdev, pkt_buf); 2456 if (ret) { 2457 dev_err(&hdev->pdev->dev, 2458 "could not calc rx priv buffer size for all TCs %d\n", 2459 ret); 2460 goto out; 2461 } 2462 2463 ret = hclge_rx_priv_buf_alloc(hdev, pkt_buf); 2464 if (ret) { 2465 dev_err(&hdev->pdev->dev, "could not alloc rx priv buffer %d\n", 2466 ret); 2467 goto out; 2468 } 2469 2470 if (hnae3_dev_dcb_supported(hdev)) { 2471 ret = hclge_rx_priv_wl_config(hdev, pkt_buf); 2472 if (ret) { 2473 dev_err(&hdev->pdev->dev, 2474 "could not configure rx private waterline %d\n", 2475 ret); 2476 goto out; 2477 } 2478 2479 ret = hclge_common_thrd_config(hdev, pkt_buf); 2480 if (ret) { 2481 dev_err(&hdev->pdev->dev, 2482 "could not configure common threshold %d\n", 2483 ret); 2484 goto out; 2485 } 2486 } 2487 2488 ret = hclge_common_wl_config(hdev, pkt_buf); 2489 if (ret) 2490 dev_err(&hdev->pdev->dev, 2491 "could not configure common waterline %d\n", ret); 2492 2493 out: 2494 kfree(pkt_buf); 2495 return ret; 2496 } 2497 2498 static int hclge_init_roce_base_info(struct hclge_vport *vport) 2499 { 2500 struct hnae3_handle *roce = &vport->roce; 2501 struct hnae3_handle *nic = &vport->nic; 2502 struct hclge_dev *hdev = vport->back; 2503 2504 roce->rinfo.num_vectors = vport->back->num_roce_msi; 2505 2506 if (hdev->num_msi < hdev->num_nic_msi + hdev->num_roce_msi) 2507 return -EINVAL; 2508 2509 roce->rinfo.base_vector = hdev->num_nic_msi; 2510 2511 roce->rinfo.netdev = nic->kinfo.netdev; 2512 roce->rinfo.roce_io_base = hdev->hw.hw.io_base; 2513 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base; 2514 2515 roce->pdev = nic->pdev; 2516 roce->ae_algo = nic->ae_algo; 2517 roce->numa_node_mask = nic->numa_node_mask; 2518 2519 return 0; 2520 } 2521 2522 static int hclge_init_msi(struct hclge_dev *hdev) 2523 { 2524 struct pci_dev *pdev = hdev->pdev; 2525 int vectors; 2526 int i; 2527 2528 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, 2529 hdev->num_msi, 2530 PCI_IRQ_MSI | PCI_IRQ_MSIX); 2531 if (vectors < 0) { 2532 dev_err(&pdev->dev, 2533 "failed(%d) to allocate MSI/MSI-X vectors\n", 2534 vectors); 2535 return vectors; 2536 } 2537 if (vectors < hdev->num_msi) 2538 dev_warn(&hdev->pdev->dev, 2539 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", 2540 hdev->num_msi, vectors); 2541 2542 hdev->num_msi = vectors; 2543 hdev->num_msi_left = vectors; 2544 2545 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 2546 sizeof(u16), GFP_KERNEL); 2547 if (!hdev->vector_status) { 2548 pci_free_irq_vectors(pdev); 2549 return -ENOMEM; 2550 } 2551 2552 for (i = 0; i < hdev->num_msi; i++) 2553 hdev->vector_status[i] = HCLGE_INVALID_VPORT; 2554 2555 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 2556 sizeof(int), GFP_KERNEL); 2557 if (!hdev->vector_irq) { 2558 pci_free_irq_vectors(pdev); 2559 return -ENOMEM; 2560 } 2561 2562 return 0; 2563 } 2564 2565 static u8 hclge_check_speed_dup(u8 duplex, int speed) 2566 { 2567 if (!(speed == HCLGE_MAC_SPEED_10M || speed == HCLGE_MAC_SPEED_100M)) 2568 duplex = HCLGE_MAC_FULL; 2569 2570 return duplex; 2571 } 2572 2573 static struct hclge_mac_speed_map hclge_mac_speed_map_to_fw[] = { 2574 {HCLGE_MAC_SPEED_10M, HCLGE_FW_MAC_SPEED_10M}, 2575 {HCLGE_MAC_SPEED_100M, HCLGE_FW_MAC_SPEED_100M}, 2576 {HCLGE_MAC_SPEED_1G, HCLGE_FW_MAC_SPEED_1G}, 2577 {HCLGE_MAC_SPEED_10G, HCLGE_FW_MAC_SPEED_10G}, 2578 {HCLGE_MAC_SPEED_25G, HCLGE_FW_MAC_SPEED_25G}, 2579 {HCLGE_MAC_SPEED_40G, HCLGE_FW_MAC_SPEED_40G}, 2580 {HCLGE_MAC_SPEED_50G, HCLGE_FW_MAC_SPEED_50G}, 2581 {HCLGE_MAC_SPEED_100G, HCLGE_FW_MAC_SPEED_100G}, 2582 {HCLGE_MAC_SPEED_200G, HCLGE_FW_MAC_SPEED_200G}, 2583 }; 2584 2585 static int hclge_convert_to_fw_speed(u32 speed_drv, u32 *speed_fw) 2586 { 2587 u16 i; 2588 2589 for (i = 0; i < ARRAY_SIZE(hclge_mac_speed_map_to_fw); i++) { 2590 if (hclge_mac_speed_map_to_fw[i].speed_drv == speed_drv) { 2591 *speed_fw = hclge_mac_speed_map_to_fw[i].speed_fw; 2592 return 0; 2593 } 2594 } 2595 2596 return -EINVAL; 2597 } 2598 2599 static int hclge_cfg_mac_speed_dup_hw(struct hclge_dev *hdev, int speed, 2600 u8 duplex) 2601 { 2602 struct hclge_config_mac_speed_dup_cmd *req; 2603 struct hclge_desc desc; 2604 u32 speed_fw; 2605 int ret; 2606 2607 req = (struct hclge_config_mac_speed_dup_cmd *)desc.data; 2608 2609 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_SPEED_DUP, false); 2610 2611 if (duplex) 2612 hnae3_set_bit(req->speed_dup, HCLGE_CFG_DUPLEX_B, 1); 2613 2614 ret = hclge_convert_to_fw_speed(speed, &speed_fw); 2615 if (ret) { 2616 dev_err(&hdev->pdev->dev, "invalid speed (%d)\n", speed); 2617 return ret; 2618 } 2619 2620 hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S, 2621 speed_fw); 2622 hnae3_set_bit(req->mac_change_fec_en, HCLGE_CFG_MAC_SPEED_CHANGE_EN_B, 2623 1); 2624 2625 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2626 if (ret) { 2627 dev_err(&hdev->pdev->dev, 2628 "mac speed/duplex config cmd failed %d.\n", ret); 2629 return ret; 2630 } 2631 2632 return 0; 2633 } 2634 2635 int hclge_cfg_mac_speed_dup(struct hclge_dev *hdev, int speed, u8 duplex) 2636 { 2637 struct hclge_mac *mac = &hdev->hw.mac; 2638 int ret; 2639 2640 duplex = hclge_check_speed_dup(duplex, speed); 2641 if (!mac->support_autoneg && mac->speed == speed && 2642 mac->duplex == duplex) 2643 return 0; 2644 2645 ret = hclge_cfg_mac_speed_dup_hw(hdev, speed, duplex); 2646 if (ret) 2647 return ret; 2648 2649 hdev->hw.mac.speed = speed; 2650 hdev->hw.mac.duplex = duplex; 2651 2652 return 0; 2653 } 2654 2655 static int hclge_cfg_mac_speed_dup_h(struct hnae3_handle *handle, int speed, 2656 u8 duplex) 2657 { 2658 struct hclge_vport *vport = hclge_get_vport(handle); 2659 struct hclge_dev *hdev = vport->back; 2660 2661 return hclge_cfg_mac_speed_dup(hdev, speed, duplex); 2662 } 2663 2664 static int hclge_set_autoneg_en(struct hclge_dev *hdev, bool enable) 2665 { 2666 struct hclge_config_auto_neg_cmd *req; 2667 struct hclge_desc desc; 2668 u32 flag = 0; 2669 int ret; 2670 2671 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_AN_MODE, false); 2672 2673 req = (struct hclge_config_auto_neg_cmd *)desc.data; 2674 if (enable) 2675 hnae3_set_bit(flag, HCLGE_MAC_CFG_AN_EN_B, 1U); 2676 req->cfg_an_cmd_flag = cpu_to_le32(flag); 2677 2678 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2679 if (ret) 2680 dev_err(&hdev->pdev->dev, "auto neg set cmd failed %d.\n", 2681 ret); 2682 2683 return ret; 2684 } 2685 2686 static int hclge_set_autoneg(struct hnae3_handle *handle, bool enable) 2687 { 2688 struct hclge_vport *vport = hclge_get_vport(handle); 2689 struct hclge_dev *hdev = vport->back; 2690 2691 if (!hdev->hw.mac.support_autoneg) { 2692 if (enable) { 2693 dev_err(&hdev->pdev->dev, 2694 "autoneg is not supported by current port\n"); 2695 return -EOPNOTSUPP; 2696 } else { 2697 return 0; 2698 } 2699 } 2700 2701 return hclge_set_autoneg_en(hdev, enable); 2702 } 2703 2704 static int hclge_get_autoneg(struct hnae3_handle *handle) 2705 { 2706 struct hclge_vport *vport = hclge_get_vport(handle); 2707 struct hclge_dev *hdev = vport->back; 2708 struct phy_device *phydev = hdev->hw.mac.phydev; 2709 2710 if (phydev) 2711 return phydev->autoneg; 2712 2713 return hdev->hw.mac.autoneg; 2714 } 2715 2716 static int hclge_restart_autoneg(struct hnae3_handle *handle) 2717 { 2718 struct hclge_vport *vport = hclge_get_vport(handle); 2719 struct hclge_dev *hdev = vport->back; 2720 int ret; 2721 2722 dev_dbg(&hdev->pdev->dev, "restart autoneg\n"); 2723 2724 ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT); 2725 if (ret) 2726 return ret; 2727 return hclge_notify_client(hdev, HNAE3_UP_CLIENT); 2728 } 2729 2730 static int hclge_halt_autoneg(struct hnae3_handle *handle, bool halt) 2731 { 2732 struct hclge_vport *vport = hclge_get_vport(handle); 2733 struct hclge_dev *hdev = vport->back; 2734 2735 if (hdev->hw.mac.support_autoneg && hdev->hw.mac.autoneg) 2736 return hclge_set_autoneg_en(hdev, !halt); 2737 2738 return 0; 2739 } 2740 2741 static int hclge_set_fec_hw(struct hclge_dev *hdev, u32 fec_mode) 2742 { 2743 struct hclge_config_fec_cmd *req; 2744 struct hclge_desc desc; 2745 int ret; 2746 2747 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_FEC_MODE, false); 2748 2749 req = (struct hclge_config_fec_cmd *)desc.data; 2750 if (fec_mode & BIT(HNAE3_FEC_AUTO)) 2751 hnae3_set_bit(req->fec_mode, HCLGE_MAC_CFG_FEC_AUTO_EN_B, 1); 2752 if (fec_mode & BIT(HNAE3_FEC_RS)) 2753 hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M, 2754 HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_RS); 2755 if (fec_mode & BIT(HNAE3_FEC_BASER)) 2756 hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M, 2757 HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_BASER); 2758 2759 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2760 if (ret) 2761 dev_err(&hdev->pdev->dev, "set fec mode failed %d.\n", ret); 2762 2763 return ret; 2764 } 2765 2766 static int hclge_set_fec(struct hnae3_handle *handle, u32 fec_mode) 2767 { 2768 struct hclge_vport *vport = hclge_get_vport(handle); 2769 struct hclge_dev *hdev = vport->back; 2770 struct hclge_mac *mac = &hdev->hw.mac; 2771 int ret; 2772 2773 if (fec_mode && !(mac->fec_ability & fec_mode)) { 2774 dev_err(&hdev->pdev->dev, "unsupported fec mode\n"); 2775 return -EINVAL; 2776 } 2777 2778 ret = hclge_set_fec_hw(hdev, fec_mode); 2779 if (ret) 2780 return ret; 2781 2782 mac->user_fec_mode = fec_mode | BIT(HNAE3_FEC_USER_DEF); 2783 return 0; 2784 } 2785 2786 static void hclge_get_fec(struct hnae3_handle *handle, u8 *fec_ability, 2787 u8 *fec_mode) 2788 { 2789 struct hclge_vport *vport = hclge_get_vport(handle); 2790 struct hclge_dev *hdev = vport->back; 2791 struct hclge_mac *mac = &hdev->hw.mac; 2792 2793 if (fec_ability) 2794 *fec_ability = mac->fec_ability; 2795 if (fec_mode) 2796 *fec_mode = mac->fec_mode; 2797 } 2798 2799 static int hclge_mac_init(struct hclge_dev *hdev) 2800 { 2801 struct hclge_mac *mac = &hdev->hw.mac; 2802 int ret; 2803 2804 hdev->support_sfp_query = true; 2805 hdev->hw.mac.duplex = HCLGE_MAC_FULL; 2806 ret = hclge_cfg_mac_speed_dup_hw(hdev, hdev->hw.mac.speed, 2807 hdev->hw.mac.duplex); 2808 if (ret) 2809 return ret; 2810 2811 if (hdev->hw.mac.support_autoneg) { 2812 ret = hclge_set_autoneg_en(hdev, hdev->hw.mac.autoneg); 2813 if (ret) 2814 return ret; 2815 } 2816 2817 mac->link = 0; 2818 2819 if (mac->user_fec_mode & BIT(HNAE3_FEC_USER_DEF)) { 2820 ret = hclge_set_fec_hw(hdev, mac->user_fec_mode); 2821 if (ret) 2822 return ret; 2823 } 2824 2825 ret = hclge_set_mac_mtu(hdev, hdev->mps); 2826 if (ret) { 2827 dev_err(&hdev->pdev->dev, "set mtu failed ret=%d\n", ret); 2828 return ret; 2829 } 2830 2831 ret = hclge_set_default_loopback(hdev); 2832 if (ret) 2833 return ret; 2834 2835 ret = hclge_buffer_alloc(hdev); 2836 if (ret) 2837 dev_err(&hdev->pdev->dev, 2838 "allocate buffer fail, ret=%d\n", ret); 2839 2840 return ret; 2841 } 2842 2843 static void hclge_mbx_task_schedule(struct hclge_dev *hdev) 2844 { 2845 if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) && 2846 !test_and_set_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state)) { 2847 hdev->last_mbx_scheduled = jiffies; 2848 mod_delayed_work(hclge_wq, &hdev->service_task, 0); 2849 } 2850 } 2851 2852 static void hclge_reset_task_schedule(struct hclge_dev *hdev) 2853 { 2854 if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) && 2855 test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state) && 2856 !test_and_set_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state)) { 2857 hdev->last_rst_scheduled = jiffies; 2858 mod_delayed_work(hclge_wq, &hdev->service_task, 0); 2859 } 2860 } 2861 2862 static void hclge_errhand_task_schedule(struct hclge_dev *hdev) 2863 { 2864 if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) && 2865 !test_and_set_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state)) 2866 mod_delayed_work(hclge_wq, &hdev->service_task, 0); 2867 } 2868 2869 void hclge_task_schedule(struct hclge_dev *hdev, unsigned long delay_time) 2870 { 2871 if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) && 2872 !test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) 2873 mod_delayed_work(hclge_wq, &hdev->service_task, delay_time); 2874 } 2875 2876 static int hclge_get_mac_link_status(struct hclge_dev *hdev, int *link_status) 2877 { 2878 struct hclge_link_status_cmd *req; 2879 struct hclge_desc desc; 2880 int ret; 2881 2882 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_STATUS, true); 2883 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2884 if (ret) { 2885 dev_err(&hdev->pdev->dev, "get link status cmd failed %d\n", 2886 ret); 2887 return ret; 2888 } 2889 2890 req = (struct hclge_link_status_cmd *)desc.data; 2891 *link_status = (req->status & HCLGE_LINK_STATUS_UP_M) > 0 ? 2892 HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN; 2893 2894 return 0; 2895 } 2896 2897 static int hclge_get_mac_phy_link(struct hclge_dev *hdev, int *link_status) 2898 { 2899 struct phy_device *phydev = hdev->hw.mac.phydev; 2900 2901 *link_status = HCLGE_LINK_STATUS_DOWN; 2902 2903 if (test_bit(HCLGE_STATE_DOWN, &hdev->state)) 2904 return 0; 2905 2906 if (phydev && (phydev->state != PHY_RUNNING || !phydev->link)) 2907 return 0; 2908 2909 return hclge_get_mac_link_status(hdev, link_status); 2910 } 2911 2912 static void hclge_push_link_status(struct hclge_dev *hdev) 2913 { 2914 struct hclge_vport *vport; 2915 int ret; 2916 u16 i; 2917 2918 for (i = 0; i < pci_num_vf(hdev->pdev); i++) { 2919 vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM]; 2920 2921 if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) || 2922 vport->vf_info.link_state != IFLA_VF_LINK_STATE_AUTO) 2923 continue; 2924 2925 ret = hclge_push_vf_link_status(vport); 2926 if (ret) { 2927 dev_err(&hdev->pdev->dev, 2928 "failed to push link status to vf%u, ret = %d\n", 2929 i, ret); 2930 } 2931 } 2932 } 2933 2934 static void hclge_update_link_status(struct hclge_dev *hdev) 2935 { 2936 struct hnae3_handle *rhandle = &hdev->vport[0].roce; 2937 struct hnae3_handle *handle = &hdev->vport[0].nic; 2938 struct hnae3_client *rclient = hdev->roce_client; 2939 struct hnae3_client *client = hdev->nic_client; 2940 int state; 2941 int ret; 2942 2943 if (!client) 2944 return; 2945 2946 if (test_and_set_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state)) 2947 return; 2948 2949 ret = hclge_get_mac_phy_link(hdev, &state); 2950 if (ret) { 2951 clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state); 2952 return; 2953 } 2954 2955 if (state != hdev->hw.mac.link) { 2956 hdev->hw.mac.link = state; 2957 client->ops->link_status_change(handle, state); 2958 hclge_config_mac_tnl_int(hdev, state); 2959 if (rclient && rclient->ops->link_status_change) 2960 rclient->ops->link_status_change(rhandle, state); 2961 2962 hclge_push_link_status(hdev); 2963 } 2964 2965 clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state); 2966 } 2967 2968 static void hclge_update_speed_advertising(struct hclge_mac *mac) 2969 { 2970 u32 speed_ability; 2971 2972 if (hclge_get_speed_bit(mac->speed, &speed_ability)) 2973 return; 2974 2975 switch (mac->module_type) { 2976 case HNAE3_MODULE_TYPE_FIBRE_LR: 2977 hclge_convert_setting_lr(speed_ability, mac->advertising); 2978 break; 2979 case HNAE3_MODULE_TYPE_FIBRE_SR: 2980 case HNAE3_MODULE_TYPE_AOC: 2981 hclge_convert_setting_sr(speed_ability, mac->advertising); 2982 break; 2983 case HNAE3_MODULE_TYPE_CR: 2984 hclge_convert_setting_cr(speed_ability, mac->advertising); 2985 break; 2986 case HNAE3_MODULE_TYPE_KR: 2987 hclge_convert_setting_kr(speed_ability, mac->advertising); 2988 break; 2989 default: 2990 break; 2991 } 2992 } 2993 2994 static void hclge_update_fec_advertising(struct hclge_mac *mac) 2995 { 2996 if (mac->fec_mode & BIT(HNAE3_FEC_RS)) 2997 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, 2998 mac->advertising); 2999 else if (mac->fec_mode & BIT(HNAE3_FEC_BASER)) 3000 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, 3001 mac->advertising); 3002 else 3003 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, 3004 mac->advertising); 3005 } 3006 3007 static void hclge_update_pause_advertising(struct hclge_dev *hdev) 3008 { 3009 struct hclge_mac *mac = &hdev->hw.mac; 3010 bool rx_en, tx_en; 3011 3012 switch (hdev->fc_mode_last_time) { 3013 case HCLGE_FC_RX_PAUSE: 3014 rx_en = true; 3015 tx_en = false; 3016 break; 3017 case HCLGE_FC_TX_PAUSE: 3018 rx_en = false; 3019 tx_en = true; 3020 break; 3021 case HCLGE_FC_FULL: 3022 rx_en = true; 3023 tx_en = true; 3024 break; 3025 default: 3026 rx_en = false; 3027 tx_en = false; 3028 break; 3029 } 3030 3031 linkmode_set_pause(mac->advertising, tx_en, rx_en); 3032 } 3033 3034 static void hclge_update_advertising(struct hclge_dev *hdev) 3035 { 3036 struct hclge_mac *mac = &hdev->hw.mac; 3037 3038 linkmode_zero(mac->advertising); 3039 hclge_update_speed_advertising(mac); 3040 hclge_update_fec_advertising(mac); 3041 hclge_update_pause_advertising(hdev); 3042 } 3043 3044 static void hclge_update_port_capability(struct hclge_dev *hdev, 3045 struct hclge_mac *mac) 3046 { 3047 if (hnae3_dev_fec_supported(hdev)) 3048 /* update fec ability by speed */ 3049 hclge_convert_setting_fec(mac); 3050 3051 /* firmware can not identify back plane type, the media type 3052 * read from configuration can help deal it 3053 */ 3054 if (mac->media_type == HNAE3_MEDIA_TYPE_BACKPLANE && 3055 mac->module_type == HNAE3_MODULE_TYPE_UNKNOWN) 3056 mac->module_type = HNAE3_MODULE_TYPE_KR; 3057 else if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER) 3058 mac->module_type = HNAE3_MODULE_TYPE_TP; 3059 3060 if (mac->support_autoneg) { 3061 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mac->supported); 3062 linkmode_copy(mac->advertising, mac->supported); 3063 } else { 3064 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3065 mac->supported); 3066 hclge_update_advertising(hdev); 3067 } 3068 } 3069 3070 static int hclge_get_sfp_speed(struct hclge_dev *hdev, u32 *speed) 3071 { 3072 struct hclge_sfp_info_cmd *resp; 3073 struct hclge_desc desc; 3074 int ret; 3075 3076 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true); 3077 resp = (struct hclge_sfp_info_cmd *)desc.data; 3078 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 3079 if (ret == -EOPNOTSUPP) { 3080 dev_warn(&hdev->pdev->dev, 3081 "IMP do not support get SFP speed %d\n", ret); 3082 return ret; 3083 } else if (ret) { 3084 dev_err(&hdev->pdev->dev, "get sfp speed failed %d\n", ret); 3085 return ret; 3086 } 3087 3088 *speed = le32_to_cpu(resp->speed); 3089 3090 return 0; 3091 } 3092 3093 static int hclge_get_sfp_info(struct hclge_dev *hdev, struct hclge_mac *mac) 3094 { 3095 struct hclge_sfp_info_cmd *resp; 3096 struct hclge_desc desc; 3097 int ret; 3098 3099 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true); 3100 resp = (struct hclge_sfp_info_cmd *)desc.data; 3101 3102 resp->query_type = QUERY_ACTIVE_SPEED; 3103 3104 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 3105 if (ret == -EOPNOTSUPP) { 3106 dev_warn(&hdev->pdev->dev, 3107 "IMP does not support get SFP info %d\n", ret); 3108 return ret; 3109 } else if (ret) { 3110 dev_err(&hdev->pdev->dev, "get sfp info failed %d\n", ret); 3111 return ret; 3112 } 3113 3114 /* In some case, mac speed get from IMP may be 0, it shouldn't be 3115 * set to mac->speed. 3116 */ 3117 if (!le32_to_cpu(resp->speed)) 3118 return 0; 3119 3120 mac->speed = le32_to_cpu(resp->speed); 3121 /* if resp->speed_ability is 0, it means it's an old version 3122 * firmware, do not update these params 3123 */ 3124 if (resp->speed_ability) { 3125 mac->module_type = le32_to_cpu(resp->module_type); 3126 mac->speed_ability = le32_to_cpu(resp->speed_ability); 3127 mac->autoneg = resp->autoneg; 3128 mac->support_autoneg = resp->autoneg_ability; 3129 mac->speed_type = QUERY_ACTIVE_SPEED; 3130 if (!resp->active_fec) 3131 mac->fec_mode = 0; 3132 else 3133 mac->fec_mode = BIT(resp->active_fec); 3134 } else { 3135 mac->speed_type = QUERY_SFP_SPEED; 3136 } 3137 3138 return 0; 3139 } 3140 3141 static int hclge_get_phy_link_ksettings(struct hnae3_handle *handle, 3142 struct ethtool_link_ksettings *cmd) 3143 { 3144 struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM]; 3145 struct hclge_vport *vport = hclge_get_vport(handle); 3146 struct hclge_phy_link_ksetting_0_cmd *req0; 3147 struct hclge_phy_link_ksetting_1_cmd *req1; 3148 u32 supported, advertising, lp_advertising; 3149 struct hclge_dev *hdev = vport->back; 3150 int ret; 3151 3152 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING, 3153 true); 3154 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 3155 hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING, 3156 true); 3157 3158 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM); 3159 if (ret) { 3160 dev_err(&hdev->pdev->dev, 3161 "failed to get phy link ksetting, ret = %d.\n", ret); 3162 return ret; 3163 } 3164 3165 req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data; 3166 cmd->base.autoneg = req0->autoneg; 3167 cmd->base.speed = le32_to_cpu(req0->speed); 3168 cmd->base.duplex = req0->duplex; 3169 cmd->base.port = req0->port; 3170 cmd->base.transceiver = req0->transceiver; 3171 cmd->base.phy_address = req0->phy_address; 3172 cmd->base.eth_tp_mdix = req0->eth_tp_mdix; 3173 cmd->base.eth_tp_mdix_ctrl = req0->eth_tp_mdix_ctrl; 3174 supported = le32_to_cpu(req0->supported); 3175 advertising = le32_to_cpu(req0->advertising); 3176 lp_advertising = le32_to_cpu(req0->lp_advertising); 3177 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 3178 supported); 3179 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 3180 advertising); 3181 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, 3182 lp_advertising); 3183 3184 req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data; 3185 cmd->base.master_slave_cfg = req1->master_slave_cfg; 3186 cmd->base.master_slave_state = req1->master_slave_state; 3187 3188 return 0; 3189 } 3190 3191 static int 3192 hclge_set_phy_link_ksettings(struct hnae3_handle *handle, 3193 const struct ethtool_link_ksettings *cmd) 3194 { 3195 struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM]; 3196 struct hclge_vport *vport = hclge_get_vport(handle); 3197 struct hclge_phy_link_ksetting_0_cmd *req0; 3198 struct hclge_phy_link_ksetting_1_cmd *req1; 3199 struct hclge_dev *hdev = vport->back; 3200 u32 advertising; 3201 int ret; 3202 3203 if (cmd->base.autoneg == AUTONEG_DISABLE && 3204 ((cmd->base.speed != SPEED_100 && cmd->base.speed != SPEED_10) || 3205 (cmd->base.duplex != DUPLEX_HALF && 3206 cmd->base.duplex != DUPLEX_FULL))) 3207 return -EINVAL; 3208 3209 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING, 3210 false); 3211 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 3212 hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING, 3213 false); 3214 3215 req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data; 3216 req0->autoneg = cmd->base.autoneg; 3217 req0->speed = cpu_to_le32(cmd->base.speed); 3218 req0->duplex = cmd->base.duplex; 3219 ethtool_convert_link_mode_to_legacy_u32(&advertising, 3220 cmd->link_modes.advertising); 3221 req0->advertising = cpu_to_le32(advertising); 3222 req0->eth_tp_mdix_ctrl = cmd->base.eth_tp_mdix_ctrl; 3223 3224 req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data; 3225 req1->master_slave_cfg = cmd->base.master_slave_cfg; 3226 3227 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM); 3228 if (ret) { 3229 dev_err(&hdev->pdev->dev, 3230 "failed to set phy link ksettings, ret = %d.\n", ret); 3231 return ret; 3232 } 3233 3234 hdev->hw.mac.autoneg = cmd->base.autoneg; 3235 hdev->hw.mac.speed = cmd->base.speed; 3236 hdev->hw.mac.duplex = cmd->base.duplex; 3237 linkmode_copy(hdev->hw.mac.advertising, cmd->link_modes.advertising); 3238 3239 return 0; 3240 } 3241 3242 static int hclge_update_tp_port_info(struct hclge_dev *hdev) 3243 { 3244 struct ethtool_link_ksettings cmd; 3245 int ret; 3246 3247 if (!hnae3_dev_phy_imp_supported(hdev)) 3248 return 0; 3249 3250 ret = hclge_get_phy_link_ksettings(&hdev->vport->nic, &cmd); 3251 if (ret) 3252 return ret; 3253 3254 hdev->hw.mac.autoneg = cmd.base.autoneg; 3255 hdev->hw.mac.speed = cmd.base.speed; 3256 hdev->hw.mac.duplex = cmd.base.duplex; 3257 3258 return 0; 3259 } 3260 3261 static int hclge_tp_port_init(struct hclge_dev *hdev) 3262 { 3263 struct ethtool_link_ksettings cmd; 3264 3265 if (!hnae3_dev_phy_imp_supported(hdev)) 3266 return 0; 3267 3268 cmd.base.autoneg = hdev->hw.mac.autoneg; 3269 cmd.base.speed = hdev->hw.mac.speed; 3270 cmd.base.duplex = hdev->hw.mac.duplex; 3271 linkmode_copy(cmd.link_modes.advertising, hdev->hw.mac.advertising); 3272 3273 return hclge_set_phy_link_ksettings(&hdev->vport->nic, &cmd); 3274 } 3275 3276 static int hclge_update_port_info(struct hclge_dev *hdev) 3277 { 3278 struct hclge_mac *mac = &hdev->hw.mac; 3279 int speed = HCLGE_MAC_SPEED_UNKNOWN; 3280 int ret; 3281 3282 /* get the port info from SFP cmd if not copper port */ 3283 if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER) 3284 return hclge_update_tp_port_info(hdev); 3285 3286 /* if IMP does not support get SFP/qSFP info, return directly */ 3287 if (!hdev->support_sfp_query) 3288 return 0; 3289 3290 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) 3291 ret = hclge_get_sfp_info(hdev, mac); 3292 else 3293 ret = hclge_get_sfp_speed(hdev, &speed); 3294 3295 if (ret == -EOPNOTSUPP) { 3296 hdev->support_sfp_query = false; 3297 return ret; 3298 } else if (ret) { 3299 return ret; 3300 } 3301 3302 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 3303 if (mac->speed_type == QUERY_ACTIVE_SPEED) { 3304 hclge_update_port_capability(hdev, mac); 3305 return 0; 3306 } 3307 return hclge_cfg_mac_speed_dup(hdev, mac->speed, 3308 HCLGE_MAC_FULL); 3309 } else { 3310 if (speed == HCLGE_MAC_SPEED_UNKNOWN) 3311 return 0; /* do nothing if no SFP */ 3312 3313 /* must config full duplex for SFP */ 3314 return hclge_cfg_mac_speed_dup(hdev, speed, HCLGE_MAC_FULL); 3315 } 3316 } 3317 3318 static int hclge_get_status(struct hnae3_handle *handle) 3319 { 3320 struct hclge_vport *vport = hclge_get_vport(handle); 3321 struct hclge_dev *hdev = vport->back; 3322 3323 hclge_update_link_status(hdev); 3324 3325 return hdev->hw.mac.link; 3326 } 3327 3328 static struct hclge_vport *hclge_get_vf_vport(struct hclge_dev *hdev, int vf) 3329 { 3330 if (!pci_num_vf(hdev->pdev)) { 3331 dev_err(&hdev->pdev->dev, 3332 "SRIOV is disabled, can not get vport(%d) info.\n", vf); 3333 return NULL; 3334 } 3335 3336 if (vf < 0 || vf >= pci_num_vf(hdev->pdev)) { 3337 dev_err(&hdev->pdev->dev, 3338 "vf id(%d) is out of range(0 <= vfid < %d)\n", 3339 vf, pci_num_vf(hdev->pdev)); 3340 return NULL; 3341 } 3342 3343 /* VF start from 1 in vport */ 3344 vf += HCLGE_VF_VPORT_START_NUM; 3345 return &hdev->vport[vf]; 3346 } 3347 3348 static int hclge_get_vf_config(struct hnae3_handle *handle, int vf, 3349 struct ifla_vf_info *ivf) 3350 { 3351 struct hclge_vport *vport = hclge_get_vport(handle); 3352 struct hclge_dev *hdev = vport->back; 3353 3354 vport = hclge_get_vf_vport(hdev, vf); 3355 if (!vport) 3356 return -EINVAL; 3357 3358 ivf->vf = vf; 3359 ivf->linkstate = vport->vf_info.link_state; 3360 ivf->spoofchk = vport->vf_info.spoofchk; 3361 ivf->trusted = vport->vf_info.trusted; 3362 ivf->min_tx_rate = 0; 3363 ivf->max_tx_rate = vport->vf_info.max_tx_rate; 3364 ivf->vlan = vport->port_base_vlan_cfg.vlan_info.vlan_tag; 3365 ivf->vlan_proto = htons(vport->port_base_vlan_cfg.vlan_info.vlan_proto); 3366 ivf->qos = vport->port_base_vlan_cfg.vlan_info.qos; 3367 ether_addr_copy(ivf->mac, vport->vf_info.mac); 3368 3369 return 0; 3370 } 3371 3372 static int hclge_set_vf_link_state(struct hnae3_handle *handle, int vf, 3373 int link_state) 3374 { 3375 struct hclge_vport *vport = hclge_get_vport(handle); 3376 struct hclge_dev *hdev = vport->back; 3377 int link_state_old; 3378 int ret; 3379 3380 vport = hclge_get_vf_vport(hdev, vf); 3381 if (!vport) 3382 return -EINVAL; 3383 3384 link_state_old = vport->vf_info.link_state; 3385 vport->vf_info.link_state = link_state; 3386 3387 ret = hclge_push_vf_link_status(vport); 3388 if (ret) { 3389 vport->vf_info.link_state = link_state_old; 3390 dev_err(&hdev->pdev->dev, 3391 "failed to push vf%d link status, ret = %d\n", vf, ret); 3392 } 3393 3394 return ret; 3395 } 3396 3397 static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval) 3398 { 3399 u32 cmdq_src_reg, msix_src_reg, hw_err_src_reg; 3400 3401 /* fetch the events from their corresponding regs */ 3402 cmdq_src_reg = hclge_read_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG); 3403 msix_src_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS); 3404 hw_err_src_reg = hclge_read_dev(&hdev->hw, 3405 HCLGE_RAS_PF_OTHER_INT_STS_REG); 3406 3407 /* Assumption: If by any chance reset and mailbox events are reported 3408 * together then we will only process reset event in this go and will 3409 * defer the processing of the mailbox events. Since, we would have not 3410 * cleared RX CMDQ event this time we would receive again another 3411 * interrupt from H/W just for the mailbox. 3412 * 3413 * check for vector0 reset event sources 3414 */ 3415 if (BIT(HCLGE_VECTOR0_IMPRESET_INT_B) & msix_src_reg) { 3416 dev_info(&hdev->pdev->dev, "IMP reset interrupt\n"); 3417 set_bit(HNAE3_IMP_RESET, &hdev->reset_pending); 3418 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 3419 *clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B); 3420 hdev->rst_stats.imp_rst_cnt++; 3421 return HCLGE_VECTOR0_EVENT_RST; 3422 } 3423 3424 if (BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) & msix_src_reg) { 3425 dev_info(&hdev->pdev->dev, "global reset interrupt\n"); 3426 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 3427 set_bit(HNAE3_GLOBAL_RESET, &hdev->reset_pending); 3428 *clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B); 3429 hdev->rst_stats.global_rst_cnt++; 3430 return HCLGE_VECTOR0_EVENT_RST; 3431 } 3432 3433 /* check for vector0 msix event and hardware error event source */ 3434 if (msix_src_reg & HCLGE_VECTOR0_REG_MSIX_MASK || 3435 hw_err_src_reg & HCLGE_RAS_REG_ERR_MASK) 3436 return HCLGE_VECTOR0_EVENT_ERR; 3437 3438 /* check for vector0 ptp event source */ 3439 if (BIT(HCLGE_VECTOR0_REG_PTP_INT_B) & msix_src_reg) { 3440 *clearval = msix_src_reg; 3441 return HCLGE_VECTOR0_EVENT_PTP; 3442 } 3443 3444 /* check for vector0 mailbox(=CMDQ RX) event source */ 3445 if (BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) { 3446 cmdq_src_reg &= ~BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B); 3447 *clearval = cmdq_src_reg; 3448 return HCLGE_VECTOR0_EVENT_MBX; 3449 } 3450 3451 /* print other vector0 event source */ 3452 dev_info(&hdev->pdev->dev, 3453 "INT status: CMDQ(%#x) HW errors(%#x) other(%#x)\n", 3454 cmdq_src_reg, hw_err_src_reg, msix_src_reg); 3455 3456 return HCLGE_VECTOR0_EVENT_OTHER; 3457 } 3458 3459 static void hclge_clear_event_cause(struct hclge_dev *hdev, u32 event_type, 3460 u32 regclr) 3461 { 3462 switch (event_type) { 3463 case HCLGE_VECTOR0_EVENT_PTP: 3464 case HCLGE_VECTOR0_EVENT_RST: 3465 hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, regclr); 3466 break; 3467 case HCLGE_VECTOR0_EVENT_MBX: 3468 hclge_write_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG, regclr); 3469 break; 3470 default: 3471 break; 3472 } 3473 } 3474 3475 static void hclge_clear_all_event_cause(struct hclge_dev *hdev) 3476 { 3477 hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_RST, 3478 BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) | 3479 BIT(HCLGE_VECTOR0_CORERESET_INT_B) | 3480 BIT(HCLGE_VECTOR0_IMPRESET_INT_B)); 3481 hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_MBX, 0); 3482 } 3483 3484 static void hclge_enable_vector(struct hclge_misc_vector *vector, bool enable) 3485 { 3486 writel(enable ? 1 : 0, vector->addr); 3487 } 3488 3489 static irqreturn_t hclge_misc_irq_handle(int irq, void *data) 3490 { 3491 struct hclge_dev *hdev = data; 3492 unsigned long flags; 3493 u32 clearval = 0; 3494 u32 event_cause; 3495 3496 hclge_enable_vector(&hdev->misc_vector, false); 3497 event_cause = hclge_check_event_cause(hdev, &clearval); 3498 3499 /* vector 0 interrupt is shared with reset and mailbox source events. */ 3500 switch (event_cause) { 3501 case HCLGE_VECTOR0_EVENT_ERR: 3502 hclge_errhand_task_schedule(hdev); 3503 break; 3504 case HCLGE_VECTOR0_EVENT_RST: 3505 hclge_reset_task_schedule(hdev); 3506 break; 3507 case HCLGE_VECTOR0_EVENT_PTP: 3508 spin_lock_irqsave(&hdev->ptp->lock, flags); 3509 hclge_ptp_clean_tx_hwts(hdev); 3510 spin_unlock_irqrestore(&hdev->ptp->lock, flags); 3511 break; 3512 case HCLGE_VECTOR0_EVENT_MBX: 3513 /* If we are here then, 3514 * 1. Either we are not handling any mbx task and we are not 3515 * scheduled as well 3516 * OR 3517 * 2. We could be handling a mbx task but nothing more is 3518 * scheduled. 3519 * In both cases, we should schedule mbx task as there are more 3520 * mbx messages reported by this interrupt. 3521 */ 3522 hclge_mbx_task_schedule(hdev); 3523 break; 3524 default: 3525 dev_warn(&hdev->pdev->dev, 3526 "received unknown or unhandled event of vector0\n"); 3527 break; 3528 } 3529 3530 hclge_clear_event_cause(hdev, event_cause, clearval); 3531 3532 /* Enable interrupt if it is not caused by reset event or error event */ 3533 if (event_cause == HCLGE_VECTOR0_EVENT_PTP || 3534 event_cause == HCLGE_VECTOR0_EVENT_MBX || 3535 event_cause == HCLGE_VECTOR0_EVENT_OTHER) 3536 hclge_enable_vector(&hdev->misc_vector, true); 3537 3538 return IRQ_HANDLED; 3539 } 3540 3541 static void hclge_free_vector(struct hclge_dev *hdev, int vector_id) 3542 { 3543 if (hdev->vector_status[vector_id] == HCLGE_INVALID_VPORT) { 3544 dev_warn(&hdev->pdev->dev, 3545 "vector(vector_id %d) has been freed.\n", vector_id); 3546 return; 3547 } 3548 3549 hdev->vector_status[vector_id] = HCLGE_INVALID_VPORT; 3550 hdev->num_msi_left += 1; 3551 hdev->num_msi_used -= 1; 3552 } 3553 3554 static void hclge_get_misc_vector(struct hclge_dev *hdev) 3555 { 3556 struct hclge_misc_vector *vector = &hdev->misc_vector; 3557 3558 vector->vector_irq = pci_irq_vector(hdev->pdev, 0); 3559 3560 vector->addr = hdev->hw.hw.io_base + HCLGE_MISC_VECTOR_REG_BASE; 3561 hdev->vector_status[0] = 0; 3562 3563 hdev->num_msi_left -= 1; 3564 hdev->num_msi_used += 1; 3565 } 3566 3567 static void hclge_misc_affinity_setup(struct hclge_dev *hdev) 3568 { 3569 irq_set_affinity_hint(hdev->misc_vector.vector_irq, 3570 &hdev->affinity_mask); 3571 } 3572 3573 static void hclge_misc_affinity_teardown(struct hclge_dev *hdev) 3574 { 3575 irq_set_affinity_hint(hdev->misc_vector.vector_irq, NULL); 3576 } 3577 3578 static int hclge_misc_irq_init(struct hclge_dev *hdev) 3579 { 3580 int ret; 3581 3582 hclge_get_misc_vector(hdev); 3583 3584 /* this would be explicitly freed in the end */ 3585 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", 3586 HCLGE_NAME, pci_name(hdev->pdev)); 3587 ret = request_irq(hdev->misc_vector.vector_irq, hclge_misc_irq_handle, 3588 0, hdev->misc_vector.name, hdev); 3589 if (ret) { 3590 hclge_free_vector(hdev, 0); 3591 dev_err(&hdev->pdev->dev, "request misc irq(%d) fail\n", 3592 hdev->misc_vector.vector_irq); 3593 } 3594 3595 return ret; 3596 } 3597 3598 static void hclge_misc_irq_uninit(struct hclge_dev *hdev) 3599 { 3600 free_irq(hdev->misc_vector.vector_irq, hdev); 3601 hclge_free_vector(hdev, 0); 3602 } 3603 3604 int hclge_notify_client(struct hclge_dev *hdev, 3605 enum hnae3_reset_notify_type type) 3606 { 3607 struct hnae3_handle *handle = &hdev->vport[0].nic; 3608 struct hnae3_client *client = hdev->nic_client; 3609 int ret; 3610 3611 if (!test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state) || !client) 3612 return 0; 3613 3614 if (!client->ops->reset_notify) 3615 return -EOPNOTSUPP; 3616 3617 ret = client->ops->reset_notify(handle, type); 3618 if (ret) 3619 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", 3620 type, ret); 3621 3622 return ret; 3623 } 3624 3625 static int hclge_notify_roce_client(struct hclge_dev *hdev, 3626 enum hnae3_reset_notify_type type) 3627 { 3628 struct hnae3_handle *handle = &hdev->vport[0].roce; 3629 struct hnae3_client *client = hdev->roce_client; 3630 int ret; 3631 3632 if (!test_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state) || !client) 3633 return 0; 3634 3635 if (!client->ops->reset_notify) 3636 return -EOPNOTSUPP; 3637 3638 ret = client->ops->reset_notify(handle, type); 3639 if (ret) 3640 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", 3641 type, ret); 3642 3643 return ret; 3644 } 3645 3646 static int hclge_reset_wait(struct hclge_dev *hdev) 3647 { 3648 #define HCLGE_RESET_WATI_MS 100 3649 #define HCLGE_RESET_WAIT_CNT 350 3650 3651 u32 val, reg, reg_bit; 3652 u32 cnt = 0; 3653 3654 switch (hdev->reset_type) { 3655 case HNAE3_IMP_RESET: 3656 reg = HCLGE_GLOBAL_RESET_REG; 3657 reg_bit = HCLGE_IMP_RESET_BIT; 3658 break; 3659 case HNAE3_GLOBAL_RESET: 3660 reg = HCLGE_GLOBAL_RESET_REG; 3661 reg_bit = HCLGE_GLOBAL_RESET_BIT; 3662 break; 3663 case HNAE3_FUNC_RESET: 3664 reg = HCLGE_FUN_RST_ING; 3665 reg_bit = HCLGE_FUN_RST_ING_B; 3666 break; 3667 default: 3668 dev_err(&hdev->pdev->dev, 3669 "Wait for unsupported reset type: %d\n", 3670 hdev->reset_type); 3671 return -EINVAL; 3672 } 3673 3674 val = hclge_read_dev(&hdev->hw, reg); 3675 while (hnae3_get_bit(val, reg_bit) && cnt < HCLGE_RESET_WAIT_CNT) { 3676 msleep(HCLGE_RESET_WATI_MS); 3677 val = hclge_read_dev(&hdev->hw, reg); 3678 cnt++; 3679 } 3680 3681 if (cnt >= HCLGE_RESET_WAIT_CNT) { 3682 dev_warn(&hdev->pdev->dev, 3683 "Wait for reset timeout: %d\n", hdev->reset_type); 3684 return -EBUSY; 3685 } 3686 3687 return 0; 3688 } 3689 3690 static int hclge_set_vf_rst(struct hclge_dev *hdev, int func_id, bool reset) 3691 { 3692 struct hclge_vf_rst_cmd *req; 3693 struct hclge_desc desc; 3694 3695 req = (struct hclge_vf_rst_cmd *)desc.data; 3696 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GBL_RST_STATUS, false); 3697 req->dest_vfid = func_id; 3698 3699 if (reset) 3700 req->vf_rst = 0x1; 3701 3702 return hclge_cmd_send(&hdev->hw, &desc, 1); 3703 } 3704 3705 static int hclge_set_all_vf_rst(struct hclge_dev *hdev, bool reset) 3706 { 3707 int i; 3708 3709 for (i = HCLGE_VF_VPORT_START_NUM; i < hdev->num_alloc_vport; i++) { 3710 struct hclge_vport *vport = &hdev->vport[i]; 3711 int ret; 3712 3713 /* Send cmd to set/clear VF's FUNC_RST_ING */ 3714 ret = hclge_set_vf_rst(hdev, vport->vport_id, reset); 3715 if (ret) { 3716 dev_err(&hdev->pdev->dev, 3717 "set vf(%u) rst failed %d!\n", 3718 vport->vport_id - HCLGE_VF_VPORT_START_NUM, 3719 ret); 3720 return ret; 3721 } 3722 3723 if (!reset || !test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) 3724 continue; 3725 3726 /* Inform VF to process the reset. 3727 * hclge_inform_reset_assert_to_vf may fail if VF 3728 * driver is not loaded. 3729 */ 3730 ret = hclge_inform_reset_assert_to_vf(vport); 3731 if (ret) 3732 dev_warn(&hdev->pdev->dev, 3733 "inform reset to vf(%u) failed %d!\n", 3734 vport->vport_id - HCLGE_VF_VPORT_START_NUM, 3735 ret); 3736 } 3737 3738 return 0; 3739 } 3740 3741 static void hclge_mailbox_service_task(struct hclge_dev *hdev) 3742 { 3743 if (!test_and_clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state) || 3744 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state) || 3745 test_and_set_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state)) 3746 return; 3747 3748 if (time_is_before_jiffies(hdev->last_mbx_scheduled + 3749 HCLGE_MBX_SCHED_TIMEOUT)) 3750 dev_warn(&hdev->pdev->dev, 3751 "mbx service task is scheduled after %ums on cpu%u!\n", 3752 jiffies_to_msecs(jiffies - hdev->last_mbx_scheduled), 3753 smp_processor_id()); 3754 3755 hclge_mbx_handler(hdev); 3756 3757 clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state); 3758 } 3759 3760 static void hclge_func_reset_sync_vf(struct hclge_dev *hdev) 3761 { 3762 struct hclge_pf_rst_sync_cmd *req; 3763 struct hclge_desc desc; 3764 int cnt = 0; 3765 int ret; 3766 3767 req = (struct hclge_pf_rst_sync_cmd *)desc.data; 3768 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RST_RDY, true); 3769 3770 do { 3771 /* vf need to down netdev by mbx during PF or FLR reset */ 3772 hclge_mailbox_service_task(hdev); 3773 3774 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 3775 /* for compatible with old firmware, wait 3776 * 100 ms for VF to stop IO 3777 */ 3778 if (ret == -EOPNOTSUPP) { 3779 msleep(HCLGE_RESET_SYNC_TIME); 3780 return; 3781 } else if (ret) { 3782 dev_warn(&hdev->pdev->dev, "sync with VF fail %d!\n", 3783 ret); 3784 return; 3785 } else if (req->all_vf_ready) { 3786 return; 3787 } 3788 msleep(HCLGE_PF_RESET_SYNC_TIME); 3789 hclge_comm_cmd_reuse_desc(&desc, true); 3790 } while (cnt++ < HCLGE_PF_RESET_SYNC_CNT); 3791 3792 dev_warn(&hdev->pdev->dev, "sync with VF timeout!\n"); 3793 } 3794 3795 void hclge_report_hw_error(struct hclge_dev *hdev, 3796 enum hnae3_hw_error_type type) 3797 { 3798 struct hnae3_client *client = hdev->nic_client; 3799 3800 if (!client || !client->ops->process_hw_error || 3801 !test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state)) 3802 return; 3803 3804 client->ops->process_hw_error(&hdev->vport[0].nic, type); 3805 } 3806 3807 static void hclge_handle_imp_error(struct hclge_dev *hdev) 3808 { 3809 u32 reg_val; 3810 3811 reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG); 3812 if (reg_val & BIT(HCLGE_VECTOR0_IMP_RD_POISON_B)) { 3813 hclge_report_hw_error(hdev, HNAE3_IMP_RD_POISON_ERROR); 3814 reg_val &= ~BIT(HCLGE_VECTOR0_IMP_RD_POISON_B); 3815 hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val); 3816 } 3817 3818 if (reg_val & BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B)) { 3819 hclge_report_hw_error(hdev, HNAE3_CMDQ_ECC_ERROR); 3820 reg_val &= ~BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B); 3821 hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val); 3822 } 3823 } 3824 3825 int hclge_func_reset_cmd(struct hclge_dev *hdev, int func_id) 3826 { 3827 struct hclge_desc desc; 3828 struct hclge_reset_cmd *req = (struct hclge_reset_cmd *)desc.data; 3829 int ret; 3830 3831 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false); 3832 hnae3_set_bit(req->mac_func_reset, HCLGE_CFG_RESET_FUNC_B, 1); 3833 req->fun_reset_vfid = func_id; 3834 3835 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 3836 if (ret) 3837 dev_err(&hdev->pdev->dev, 3838 "send function reset cmd fail, status =%d\n", ret); 3839 3840 return ret; 3841 } 3842 3843 static void hclge_do_reset(struct hclge_dev *hdev) 3844 { 3845 struct hnae3_handle *handle = &hdev->vport[0].nic; 3846 struct pci_dev *pdev = hdev->pdev; 3847 u32 val; 3848 3849 if (hclge_get_hw_reset_stat(handle)) { 3850 dev_info(&pdev->dev, "hardware reset not finish\n"); 3851 dev_info(&pdev->dev, "func_rst_reg:0x%x, global_rst_reg:0x%x\n", 3852 hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING), 3853 hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG)); 3854 return; 3855 } 3856 3857 switch (hdev->reset_type) { 3858 case HNAE3_IMP_RESET: 3859 dev_info(&pdev->dev, "IMP reset requested\n"); 3860 val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG); 3861 hnae3_set_bit(val, HCLGE_TRIGGER_IMP_RESET_B, 1); 3862 hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, val); 3863 break; 3864 case HNAE3_GLOBAL_RESET: 3865 dev_info(&pdev->dev, "global reset requested\n"); 3866 val = hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG); 3867 hnae3_set_bit(val, HCLGE_GLOBAL_RESET_BIT, 1); 3868 hclge_write_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG, val); 3869 break; 3870 case HNAE3_FUNC_RESET: 3871 dev_info(&pdev->dev, "PF reset requested\n"); 3872 /* schedule again to check later */ 3873 set_bit(HNAE3_FUNC_RESET, &hdev->reset_pending); 3874 hclge_reset_task_schedule(hdev); 3875 break; 3876 default: 3877 dev_warn(&pdev->dev, 3878 "unsupported reset type: %d\n", hdev->reset_type); 3879 break; 3880 } 3881 } 3882 3883 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev, 3884 unsigned long *addr) 3885 { 3886 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; 3887 struct hclge_dev *hdev = ae_dev->priv; 3888 3889 /* return the highest priority reset level amongst all */ 3890 if (test_bit(HNAE3_IMP_RESET, addr)) { 3891 rst_level = HNAE3_IMP_RESET; 3892 clear_bit(HNAE3_IMP_RESET, addr); 3893 clear_bit(HNAE3_GLOBAL_RESET, addr); 3894 clear_bit(HNAE3_FUNC_RESET, addr); 3895 } else if (test_bit(HNAE3_GLOBAL_RESET, addr)) { 3896 rst_level = HNAE3_GLOBAL_RESET; 3897 clear_bit(HNAE3_GLOBAL_RESET, addr); 3898 clear_bit(HNAE3_FUNC_RESET, addr); 3899 } else if (test_bit(HNAE3_FUNC_RESET, addr)) { 3900 rst_level = HNAE3_FUNC_RESET; 3901 clear_bit(HNAE3_FUNC_RESET, addr); 3902 } else if (test_bit(HNAE3_FLR_RESET, addr)) { 3903 rst_level = HNAE3_FLR_RESET; 3904 clear_bit(HNAE3_FLR_RESET, addr); 3905 } 3906 3907 if (hdev->reset_type != HNAE3_NONE_RESET && 3908 rst_level < hdev->reset_type) 3909 return HNAE3_NONE_RESET; 3910 3911 return rst_level; 3912 } 3913 3914 static void hclge_clear_reset_cause(struct hclge_dev *hdev) 3915 { 3916 u32 clearval = 0; 3917 3918 switch (hdev->reset_type) { 3919 case HNAE3_IMP_RESET: 3920 clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B); 3921 break; 3922 case HNAE3_GLOBAL_RESET: 3923 clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B); 3924 break; 3925 default: 3926 break; 3927 } 3928 3929 if (!clearval) 3930 return; 3931 3932 /* For revision 0x20, the reset interrupt source 3933 * can only be cleared after hardware reset done 3934 */ 3935 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 3936 hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, 3937 clearval); 3938 3939 hclge_enable_vector(&hdev->misc_vector, true); 3940 } 3941 3942 static void hclge_reset_handshake(struct hclge_dev *hdev, bool enable) 3943 { 3944 u32 reg_val; 3945 3946 reg_val = hclge_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG); 3947 if (enable) 3948 reg_val |= HCLGE_COMM_NIC_SW_RST_RDY; 3949 else 3950 reg_val &= ~HCLGE_COMM_NIC_SW_RST_RDY; 3951 3952 hclge_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, reg_val); 3953 } 3954 3955 static int hclge_func_reset_notify_vf(struct hclge_dev *hdev) 3956 { 3957 int ret; 3958 3959 ret = hclge_set_all_vf_rst(hdev, true); 3960 if (ret) 3961 return ret; 3962 3963 hclge_func_reset_sync_vf(hdev); 3964 3965 return 0; 3966 } 3967 3968 static int hclge_reset_prepare_wait(struct hclge_dev *hdev) 3969 { 3970 u32 reg_val; 3971 int ret = 0; 3972 3973 switch (hdev->reset_type) { 3974 case HNAE3_FUNC_RESET: 3975 ret = hclge_func_reset_notify_vf(hdev); 3976 if (ret) 3977 return ret; 3978 3979 ret = hclge_func_reset_cmd(hdev, 0); 3980 if (ret) { 3981 dev_err(&hdev->pdev->dev, 3982 "asserting function reset fail %d!\n", ret); 3983 return ret; 3984 } 3985 3986 /* After performaning pf reset, it is not necessary to do the 3987 * mailbox handling or send any command to firmware, because 3988 * any mailbox handling or command to firmware is only valid 3989 * after hclge_comm_cmd_init is called. 3990 */ 3991 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 3992 hdev->rst_stats.pf_rst_cnt++; 3993 break; 3994 case HNAE3_FLR_RESET: 3995 ret = hclge_func_reset_notify_vf(hdev); 3996 if (ret) 3997 return ret; 3998 break; 3999 case HNAE3_IMP_RESET: 4000 hclge_handle_imp_error(hdev); 4001 reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG); 4002 hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, 4003 BIT(HCLGE_VECTOR0_IMP_RESET_INT_B) | reg_val); 4004 break; 4005 default: 4006 break; 4007 } 4008 4009 /* inform hardware that preparatory work is done */ 4010 msleep(HCLGE_RESET_SYNC_TIME); 4011 hclge_reset_handshake(hdev, true); 4012 dev_info(&hdev->pdev->dev, "prepare wait ok\n"); 4013 4014 return ret; 4015 } 4016 4017 static void hclge_show_rst_info(struct hclge_dev *hdev) 4018 { 4019 char *buf; 4020 4021 buf = kzalloc(HCLGE_DBG_RESET_INFO_LEN, GFP_KERNEL); 4022 if (!buf) 4023 return; 4024 4025 hclge_dbg_dump_rst_info(hdev, buf, HCLGE_DBG_RESET_INFO_LEN); 4026 4027 dev_info(&hdev->pdev->dev, "dump reset info:\n%s", buf); 4028 4029 kfree(buf); 4030 } 4031 4032 static bool hclge_reset_err_handle(struct hclge_dev *hdev) 4033 { 4034 #define MAX_RESET_FAIL_CNT 5 4035 4036 if (hdev->reset_pending) { 4037 dev_info(&hdev->pdev->dev, "Reset pending %lu\n", 4038 hdev->reset_pending); 4039 return true; 4040 } else if (hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS) & 4041 HCLGE_RESET_INT_M) { 4042 dev_info(&hdev->pdev->dev, 4043 "reset failed because new reset interrupt\n"); 4044 hclge_clear_reset_cause(hdev); 4045 return false; 4046 } else if (hdev->rst_stats.reset_fail_cnt < MAX_RESET_FAIL_CNT) { 4047 hdev->rst_stats.reset_fail_cnt++; 4048 set_bit(hdev->reset_type, &hdev->reset_pending); 4049 dev_info(&hdev->pdev->dev, 4050 "re-schedule reset task(%u)\n", 4051 hdev->rst_stats.reset_fail_cnt); 4052 return true; 4053 } 4054 4055 hclge_clear_reset_cause(hdev); 4056 4057 /* recover the handshake status when reset fail */ 4058 hclge_reset_handshake(hdev, true); 4059 4060 dev_err(&hdev->pdev->dev, "Reset fail!\n"); 4061 4062 hclge_show_rst_info(hdev); 4063 4064 set_bit(HCLGE_STATE_RST_FAIL, &hdev->state); 4065 4066 return false; 4067 } 4068 4069 static void hclge_update_reset_level(struct hclge_dev *hdev) 4070 { 4071 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4072 enum hnae3_reset_type reset_level; 4073 4074 /* reset request will not be set during reset, so clear 4075 * pending reset request to avoid unnecessary reset 4076 * caused by the same reason. 4077 */ 4078 hclge_get_reset_level(ae_dev, &hdev->reset_request); 4079 4080 /* if default_reset_request has a higher level reset request, 4081 * it should be handled as soon as possible. since some errors 4082 * need this kind of reset to fix. 4083 */ 4084 reset_level = hclge_get_reset_level(ae_dev, 4085 &hdev->default_reset_request); 4086 if (reset_level != HNAE3_NONE_RESET) 4087 set_bit(reset_level, &hdev->reset_request); 4088 } 4089 4090 static int hclge_set_rst_done(struct hclge_dev *hdev) 4091 { 4092 struct hclge_pf_rst_done_cmd *req; 4093 struct hclge_desc desc; 4094 int ret; 4095 4096 req = (struct hclge_pf_rst_done_cmd *)desc.data; 4097 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PF_RST_DONE, false); 4098 req->pf_rst_done |= HCLGE_PF_RESET_DONE_BIT; 4099 4100 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 4101 /* To be compatible with the old firmware, which does not support 4102 * command HCLGE_OPC_PF_RST_DONE, just print a warning and 4103 * return success 4104 */ 4105 if (ret == -EOPNOTSUPP) { 4106 dev_warn(&hdev->pdev->dev, 4107 "current firmware does not support command(0x%x)!\n", 4108 HCLGE_OPC_PF_RST_DONE); 4109 return 0; 4110 } else if (ret) { 4111 dev_err(&hdev->pdev->dev, "assert PF reset done fail %d!\n", 4112 ret); 4113 } 4114 4115 return ret; 4116 } 4117 4118 static int hclge_reset_prepare_up(struct hclge_dev *hdev) 4119 { 4120 int ret = 0; 4121 4122 switch (hdev->reset_type) { 4123 case HNAE3_FUNC_RESET: 4124 case HNAE3_FLR_RESET: 4125 ret = hclge_set_all_vf_rst(hdev, false); 4126 break; 4127 case HNAE3_GLOBAL_RESET: 4128 case HNAE3_IMP_RESET: 4129 ret = hclge_set_rst_done(hdev); 4130 break; 4131 default: 4132 break; 4133 } 4134 4135 /* clear up the handshake status after re-initialize done */ 4136 hclge_reset_handshake(hdev, false); 4137 4138 return ret; 4139 } 4140 4141 static int hclge_reset_stack(struct hclge_dev *hdev) 4142 { 4143 int ret; 4144 4145 ret = hclge_notify_client(hdev, HNAE3_UNINIT_CLIENT); 4146 if (ret) 4147 return ret; 4148 4149 ret = hclge_reset_ae_dev(hdev->ae_dev); 4150 if (ret) 4151 return ret; 4152 4153 return hclge_notify_client(hdev, HNAE3_INIT_CLIENT); 4154 } 4155 4156 static int hclge_reset_prepare(struct hclge_dev *hdev) 4157 { 4158 int ret; 4159 4160 hdev->rst_stats.reset_cnt++; 4161 /* perform reset of the stack & ae device for a client */ 4162 ret = hclge_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); 4163 if (ret) 4164 return ret; 4165 4166 rtnl_lock(); 4167 ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT); 4168 rtnl_unlock(); 4169 if (ret) 4170 return ret; 4171 4172 return hclge_reset_prepare_wait(hdev); 4173 } 4174 4175 static int hclge_reset_rebuild(struct hclge_dev *hdev) 4176 { 4177 int ret; 4178 4179 hdev->rst_stats.hw_reset_done_cnt++; 4180 4181 ret = hclge_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); 4182 if (ret) 4183 return ret; 4184 4185 rtnl_lock(); 4186 ret = hclge_reset_stack(hdev); 4187 rtnl_unlock(); 4188 if (ret) 4189 return ret; 4190 4191 hclge_clear_reset_cause(hdev); 4192 4193 ret = hclge_notify_roce_client(hdev, HNAE3_INIT_CLIENT); 4194 /* ignore RoCE notify error if it fails HCLGE_RESET_MAX_FAIL_CNT - 1 4195 * times 4196 */ 4197 if (ret && 4198 hdev->rst_stats.reset_fail_cnt < HCLGE_RESET_MAX_FAIL_CNT - 1) 4199 return ret; 4200 4201 ret = hclge_reset_prepare_up(hdev); 4202 if (ret) 4203 return ret; 4204 4205 rtnl_lock(); 4206 ret = hclge_notify_client(hdev, HNAE3_UP_CLIENT); 4207 rtnl_unlock(); 4208 if (ret) 4209 return ret; 4210 4211 ret = hclge_notify_roce_client(hdev, HNAE3_UP_CLIENT); 4212 if (ret) 4213 return ret; 4214 4215 hdev->last_reset_time = jiffies; 4216 hdev->rst_stats.reset_fail_cnt = 0; 4217 hdev->rst_stats.reset_done_cnt++; 4218 clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state); 4219 4220 hclge_update_reset_level(hdev); 4221 4222 return 0; 4223 } 4224 4225 static void hclge_reset(struct hclge_dev *hdev) 4226 { 4227 if (hclge_reset_prepare(hdev)) 4228 goto err_reset; 4229 4230 if (hclge_reset_wait(hdev)) 4231 goto err_reset; 4232 4233 if (hclge_reset_rebuild(hdev)) 4234 goto err_reset; 4235 4236 return; 4237 4238 err_reset: 4239 if (hclge_reset_err_handle(hdev)) 4240 hclge_reset_task_schedule(hdev); 4241 } 4242 4243 static void hclge_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle) 4244 { 4245 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 4246 struct hclge_dev *hdev = ae_dev->priv; 4247 4248 /* We might end up getting called broadly because of 2 below cases: 4249 * 1. Recoverable error was conveyed through APEI and only way to bring 4250 * normalcy is to reset. 4251 * 2. A new reset request from the stack due to timeout 4252 * 4253 * check if this is a new reset request and we are not here just because 4254 * last reset attempt did not succeed and watchdog hit us again. We will 4255 * know this if last reset request did not occur very recently (watchdog 4256 * timer = 5*HZ, let us check after sufficiently large time, say 4*5*Hz) 4257 * In case of new request we reset the "reset level" to PF reset. 4258 * And if it is a repeat reset request of the most recent one then we 4259 * want to make sure we throttle the reset request. Therefore, we will 4260 * not allow it again before 3*HZ times. 4261 */ 4262 4263 if (time_before(jiffies, (hdev->last_reset_time + 4264 HCLGE_RESET_INTERVAL))) { 4265 mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL); 4266 return; 4267 } 4268 4269 if (hdev->default_reset_request) { 4270 hdev->reset_level = 4271 hclge_get_reset_level(ae_dev, 4272 &hdev->default_reset_request); 4273 } else if (time_after(jiffies, (hdev->last_reset_time + 4 * 5 * HZ))) { 4274 hdev->reset_level = HNAE3_FUNC_RESET; 4275 } 4276 4277 dev_info(&hdev->pdev->dev, "received reset event, reset type is %d\n", 4278 hdev->reset_level); 4279 4280 /* request reset & schedule reset task */ 4281 set_bit(hdev->reset_level, &hdev->reset_request); 4282 hclge_reset_task_schedule(hdev); 4283 4284 if (hdev->reset_level < HNAE3_GLOBAL_RESET) 4285 hdev->reset_level++; 4286 } 4287 4288 static void hclge_set_def_reset_request(struct hnae3_ae_dev *ae_dev, 4289 enum hnae3_reset_type rst_type) 4290 { 4291 struct hclge_dev *hdev = ae_dev->priv; 4292 4293 set_bit(rst_type, &hdev->default_reset_request); 4294 } 4295 4296 static void hclge_reset_timer(struct timer_list *t) 4297 { 4298 struct hclge_dev *hdev = from_timer(hdev, t, reset_timer); 4299 4300 /* if default_reset_request has no value, it means that this reset 4301 * request has already be handled, so just return here 4302 */ 4303 if (!hdev->default_reset_request) 4304 return; 4305 4306 dev_info(&hdev->pdev->dev, 4307 "triggering reset in reset timer\n"); 4308 hclge_reset_event(hdev->pdev, NULL); 4309 } 4310 4311 static void hclge_reset_subtask(struct hclge_dev *hdev) 4312 { 4313 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4314 4315 /* check if there is any ongoing reset in the hardware. This status can 4316 * be checked from reset_pending. If there is then, we need to wait for 4317 * hardware to complete reset. 4318 * a. If we are able to figure out in reasonable time that hardware 4319 * has fully resetted then, we can proceed with driver, client 4320 * reset. 4321 * b. else, we can come back later to check this status so re-sched 4322 * now. 4323 */ 4324 hdev->last_reset_time = jiffies; 4325 hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_pending); 4326 if (hdev->reset_type != HNAE3_NONE_RESET) 4327 hclge_reset(hdev); 4328 4329 /* check if we got any *new* reset requests to be honored */ 4330 hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_request); 4331 if (hdev->reset_type != HNAE3_NONE_RESET) 4332 hclge_do_reset(hdev); 4333 4334 hdev->reset_type = HNAE3_NONE_RESET; 4335 } 4336 4337 static void hclge_handle_err_reset_request(struct hclge_dev *hdev) 4338 { 4339 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4340 enum hnae3_reset_type reset_type; 4341 4342 if (ae_dev->hw_err_reset_req) { 4343 reset_type = hclge_get_reset_level(ae_dev, 4344 &ae_dev->hw_err_reset_req); 4345 hclge_set_def_reset_request(ae_dev, reset_type); 4346 } 4347 4348 if (hdev->default_reset_request && ae_dev->ops->reset_event) 4349 ae_dev->ops->reset_event(hdev->pdev, NULL); 4350 4351 /* enable interrupt after error handling complete */ 4352 hclge_enable_vector(&hdev->misc_vector, true); 4353 } 4354 4355 static void hclge_handle_err_recovery(struct hclge_dev *hdev) 4356 { 4357 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4358 4359 ae_dev->hw_err_reset_req = 0; 4360 4361 if (hclge_find_error_source(hdev)) { 4362 hclge_handle_error_info_log(ae_dev); 4363 hclge_handle_mac_tnl(hdev); 4364 } 4365 4366 hclge_handle_err_reset_request(hdev); 4367 } 4368 4369 static void hclge_misc_err_recovery(struct hclge_dev *hdev) 4370 { 4371 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4372 struct device *dev = &hdev->pdev->dev; 4373 u32 msix_sts_reg; 4374 4375 msix_sts_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS); 4376 if (msix_sts_reg & HCLGE_VECTOR0_REG_MSIX_MASK) { 4377 if (hclge_handle_hw_msix_error 4378 (hdev, &hdev->default_reset_request)) 4379 dev_info(dev, "received msix interrupt 0x%x\n", 4380 msix_sts_reg); 4381 } 4382 4383 hclge_handle_hw_ras_error(ae_dev); 4384 4385 hclge_handle_err_reset_request(hdev); 4386 } 4387 4388 static void hclge_errhand_service_task(struct hclge_dev *hdev) 4389 { 4390 if (!test_and_clear_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state)) 4391 return; 4392 4393 if (hnae3_dev_ras_imp_supported(hdev)) 4394 hclge_handle_err_recovery(hdev); 4395 else 4396 hclge_misc_err_recovery(hdev); 4397 } 4398 4399 static void hclge_reset_service_task(struct hclge_dev *hdev) 4400 { 4401 if (!test_and_clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state)) 4402 return; 4403 4404 if (time_is_before_jiffies(hdev->last_rst_scheduled + 4405 HCLGE_RESET_SCHED_TIMEOUT)) 4406 dev_warn(&hdev->pdev->dev, 4407 "reset service task is scheduled after %ums on cpu%u!\n", 4408 jiffies_to_msecs(jiffies - hdev->last_rst_scheduled), 4409 smp_processor_id()); 4410 4411 down(&hdev->reset_sem); 4412 set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 4413 4414 hclge_reset_subtask(hdev); 4415 4416 clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 4417 up(&hdev->reset_sem); 4418 } 4419 4420 static void hclge_update_vport_alive(struct hclge_dev *hdev) 4421 { 4422 int i; 4423 4424 /* start from vport 1 for PF is always alive */ 4425 for (i = 1; i < hdev->num_alloc_vport; i++) { 4426 struct hclge_vport *vport = &hdev->vport[i]; 4427 4428 if (time_after(jiffies, vport->last_active_jiffies + 8 * HZ)) 4429 clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 4430 4431 /* If vf is not alive, set to default value */ 4432 if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) 4433 vport->mps = HCLGE_MAC_DEFAULT_FRAME; 4434 } 4435 } 4436 4437 static void hclge_periodic_service_task(struct hclge_dev *hdev) 4438 { 4439 unsigned long delta = round_jiffies_relative(HZ); 4440 4441 if (test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) 4442 return; 4443 4444 /* Always handle the link updating to make sure link state is 4445 * updated when it is triggered by mbx. 4446 */ 4447 hclge_update_link_status(hdev); 4448 hclge_sync_mac_table(hdev); 4449 hclge_sync_promisc_mode(hdev); 4450 hclge_sync_fd_table(hdev); 4451 4452 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { 4453 delta = jiffies - hdev->last_serv_processed; 4454 4455 if (delta < round_jiffies_relative(HZ)) { 4456 delta = round_jiffies_relative(HZ) - delta; 4457 goto out; 4458 } 4459 } 4460 4461 hdev->serv_processed_cnt++; 4462 hclge_update_vport_alive(hdev); 4463 4464 if (test_bit(HCLGE_STATE_DOWN, &hdev->state)) { 4465 hdev->last_serv_processed = jiffies; 4466 goto out; 4467 } 4468 4469 if (!(hdev->serv_processed_cnt % HCLGE_STATS_TIMER_INTERVAL)) 4470 hclge_update_stats_for_all(hdev); 4471 4472 hclge_update_port_info(hdev); 4473 hclge_sync_vlan_filter(hdev); 4474 4475 if (!(hdev->serv_processed_cnt % HCLGE_ARFS_EXPIRE_INTERVAL)) 4476 hclge_rfs_filter_expire(hdev); 4477 4478 hdev->last_serv_processed = jiffies; 4479 4480 out: 4481 hclge_task_schedule(hdev, delta); 4482 } 4483 4484 static void hclge_ptp_service_task(struct hclge_dev *hdev) 4485 { 4486 unsigned long flags; 4487 4488 if (!test_bit(HCLGE_STATE_PTP_EN, &hdev->state) || 4489 !test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state) || 4490 !time_is_before_jiffies(hdev->ptp->tx_start + HZ)) 4491 return; 4492 4493 /* to prevent concurrence with the irq handler */ 4494 spin_lock_irqsave(&hdev->ptp->lock, flags); 4495 4496 /* check HCLGE_STATE_PTP_TX_HANDLING here again, since the irq 4497 * handler may handle it just before spin_lock_irqsave(). 4498 */ 4499 if (test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state)) 4500 hclge_ptp_clean_tx_hwts(hdev); 4501 4502 spin_unlock_irqrestore(&hdev->ptp->lock, flags); 4503 } 4504 4505 static void hclge_service_task(struct work_struct *work) 4506 { 4507 struct hclge_dev *hdev = 4508 container_of(work, struct hclge_dev, service_task.work); 4509 4510 hclge_errhand_service_task(hdev); 4511 hclge_reset_service_task(hdev); 4512 hclge_ptp_service_task(hdev); 4513 hclge_mailbox_service_task(hdev); 4514 hclge_periodic_service_task(hdev); 4515 4516 /* Handle error recovery, reset and mbx again in case periodical task 4517 * delays the handling by calling hclge_task_schedule() in 4518 * hclge_periodic_service_task(). 4519 */ 4520 hclge_errhand_service_task(hdev); 4521 hclge_reset_service_task(hdev); 4522 hclge_mailbox_service_task(hdev); 4523 } 4524 4525 struct hclge_vport *hclge_get_vport(struct hnae3_handle *handle) 4526 { 4527 /* VF handle has no client */ 4528 if (!handle->client) 4529 return container_of(handle, struct hclge_vport, nic); 4530 else if (handle->client->type == HNAE3_CLIENT_ROCE) 4531 return container_of(handle, struct hclge_vport, roce); 4532 else 4533 return container_of(handle, struct hclge_vport, nic); 4534 } 4535 4536 static void hclge_get_vector_info(struct hclge_dev *hdev, u16 idx, 4537 struct hnae3_vector_info *vector_info) 4538 { 4539 #define HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 64 4540 4541 vector_info->vector = pci_irq_vector(hdev->pdev, idx); 4542 4543 /* need an extend offset to config vector >= 64 */ 4544 if (idx - 1 < HCLGE_PF_MAX_VECTOR_NUM_DEV_V2) 4545 vector_info->io_addr = hdev->hw.hw.io_base + 4546 HCLGE_VECTOR_REG_BASE + 4547 (idx - 1) * HCLGE_VECTOR_REG_OFFSET; 4548 else 4549 vector_info->io_addr = hdev->hw.hw.io_base + 4550 HCLGE_VECTOR_EXT_REG_BASE + 4551 (idx - 1) / HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 * 4552 HCLGE_VECTOR_REG_OFFSET_H + 4553 (idx - 1) % HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 * 4554 HCLGE_VECTOR_REG_OFFSET; 4555 4556 hdev->vector_status[idx] = hdev->vport[0].vport_id; 4557 hdev->vector_irq[idx] = vector_info->vector; 4558 } 4559 4560 static int hclge_get_vector(struct hnae3_handle *handle, u16 vector_num, 4561 struct hnae3_vector_info *vector_info) 4562 { 4563 struct hclge_vport *vport = hclge_get_vport(handle); 4564 struct hnae3_vector_info *vector = vector_info; 4565 struct hclge_dev *hdev = vport->back; 4566 int alloc = 0; 4567 u16 i = 0; 4568 u16 j; 4569 4570 vector_num = min_t(u16, hdev->num_nic_msi - 1, vector_num); 4571 vector_num = min(hdev->num_msi_left, vector_num); 4572 4573 for (j = 0; j < vector_num; j++) { 4574 while (++i < hdev->num_nic_msi) { 4575 if (hdev->vector_status[i] == HCLGE_INVALID_VPORT) { 4576 hclge_get_vector_info(hdev, i, vector); 4577 vector++; 4578 alloc++; 4579 4580 break; 4581 } 4582 } 4583 } 4584 hdev->num_msi_left -= alloc; 4585 hdev->num_msi_used += alloc; 4586 4587 return alloc; 4588 } 4589 4590 static int hclge_get_vector_index(struct hclge_dev *hdev, int vector) 4591 { 4592 int i; 4593 4594 for (i = 0; i < hdev->num_msi; i++) 4595 if (vector == hdev->vector_irq[i]) 4596 return i; 4597 4598 return -EINVAL; 4599 } 4600 4601 static int hclge_put_vector(struct hnae3_handle *handle, int vector) 4602 { 4603 struct hclge_vport *vport = hclge_get_vport(handle); 4604 struct hclge_dev *hdev = vport->back; 4605 int vector_id; 4606 4607 vector_id = hclge_get_vector_index(hdev, vector); 4608 if (vector_id < 0) { 4609 dev_err(&hdev->pdev->dev, 4610 "Get vector index fail. vector = %d\n", vector); 4611 return vector_id; 4612 } 4613 4614 hclge_free_vector(hdev, vector_id); 4615 4616 return 0; 4617 } 4618 4619 static int hclge_get_rss(struct hnae3_handle *handle, u32 *indir, 4620 u8 *key, u8 *hfunc) 4621 { 4622 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 4623 struct hclge_vport *vport = hclge_get_vport(handle); 4624 struct hclge_comm_rss_cfg *rss_cfg = &vport->back->rss_cfg; 4625 4626 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc); 4627 4628 hclge_comm_get_rss_indir_tbl(rss_cfg, indir, 4629 ae_dev->dev_specs.rss_ind_tbl_size); 4630 4631 return 0; 4632 } 4633 4634 static int hclge_set_rss(struct hnae3_handle *handle, const u32 *indir, 4635 const u8 *key, const u8 hfunc) 4636 { 4637 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 4638 struct hclge_vport *vport = hclge_get_vport(handle); 4639 struct hclge_dev *hdev = vport->back; 4640 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 4641 int ret, i; 4642 4643 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, hfunc); 4644 if (ret) { 4645 dev_err(&hdev->pdev->dev, "invalid hfunc type %u\n", hfunc); 4646 return ret; 4647 } 4648 4649 /* Update the shadow RSS table with user specified qids */ 4650 for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++) 4651 rss_cfg->rss_indirection_tbl[i] = indir[i]; 4652 4653 /* Update the hardware */ 4654 return hclge_comm_set_rss_indir_table(ae_dev, &hdev->hw.hw, 4655 rss_cfg->rss_indirection_tbl); 4656 } 4657 4658 static int hclge_set_rss_tuple(struct hnae3_handle *handle, 4659 struct ethtool_rxnfc *nfc) 4660 { 4661 struct hclge_vport *vport = hclge_get_vport(handle); 4662 struct hclge_dev *hdev = vport->back; 4663 int ret; 4664 4665 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw, 4666 &hdev->rss_cfg, nfc); 4667 if (ret) { 4668 dev_err(&hdev->pdev->dev, 4669 "failed to set rss tuple, ret = %d.\n", ret); 4670 return ret; 4671 } 4672 4673 hclge_comm_get_rss_type(&vport->nic, &hdev->rss_cfg.rss_tuple_sets); 4674 return 0; 4675 } 4676 4677 static int hclge_get_rss_tuple(struct hnae3_handle *handle, 4678 struct ethtool_rxnfc *nfc) 4679 { 4680 struct hclge_vport *vport = hclge_get_vport(handle); 4681 u8 tuple_sets; 4682 int ret; 4683 4684 nfc->data = 0; 4685 4686 ret = hclge_comm_get_rss_tuple(&vport->back->rss_cfg, nfc->flow_type, 4687 &tuple_sets); 4688 if (ret || !tuple_sets) 4689 return ret; 4690 4691 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets); 4692 4693 return 0; 4694 } 4695 4696 static int hclge_get_tc_size(struct hnae3_handle *handle) 4697 { 4698 struct hclge_vport *vport = hclge_get_vport(handle); 4699 struct hclge_dev *hdev = vport->back; 4700 4701 return hdev->pf_rss_size_max; 4702 } 4703 4704 static int hclge_init_rss_tc_mode(struct hclge_dev *hdev) 4705 { 4706 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 4707 struct hclge_vport *vport = hdev->vport; 4708 u16 tc_offset[HCLGE_MAX_TC_NUM] = {0}; 4709 u16 tc_valid[HCLGE_MAX_TC_NUM] = {0}; 4710 u16 tc_size[HCLGE_MAX_TC_NUM] = {0}; 4711 struct hnae3_tc_info *tc_info; 4712 u16 roundup_size; 4713 u16 rss_size; 4714 int i; 4715 4716 tc_info = &vport->nic.kinfo.tc_info; 4717 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 4718 rss_size = tc_info->tqp_count[i]; 4719 tc_valid[i] = 0; 4720 4721 if (!(hdev->hw_tc_map & BIT(i))) 4722 continue; 4723 4724 /* tc_size set to hardware is the log2 of roundup power of two 4725 * of rss_size, the acutal queue size is limited by indirection 4726 * table. 4727 */ 4728 if (rss_size > ae_dev->dev_specs.rss_ind_tbl_size || 4729 rss_size == 0) { 4730 dev_err(&hdev->pdev->dev, 4731 "Configure rss tc size failed, invalid TC_SIZE = %u\n", 4732 rss_size); 4733 return -EINVAL; 4734 } 4735 4736 roundup_size = roundup_pow_of_two(rss_size); 4737 roundup_size = ilog2(roundup_size); 4738 4739 tc_valid[i] = 1; 4740 tc_size[i] = roundup_size; 4741 tc_offset[i] = tc_info->tqp_offset[i]; 4742 } 4743 4744 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid, 4745 tc_size); 4746 } 4747 4748 int hclge_rss_init_hw(struct hclge_dev *hdev) 4749 { 4750 u16 *rss_indir = hdev->rss_cfg.rss_indirection_tbl; 4751 u8 *key = hdev->rss_cfg.rss_hash_key; 4752 u8 hfunc = hdev->rss_cfg.rss_algo; 4753 int ret; 4754 4755 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 4756 rss_indir); 4757 if (ret) 4758 return ret; 4759 4760 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, hfunc, key); 4761 if (ret) 4762 return ret; 4763 4764 ret = hclge_comm_set_rss_input_tuple(&hdev->vport[0].nic, 4765 &hdev->hw.hw, true, 4766 &hdev->rss_cfg); 4767 if (ret) 4768 return ret; 4769 4770 return hclge_init_rss_tc_mode(hdev); 4771 } 4772 4773 int hclge_bind_ring_with_vector(struct hclge_vport *vport, 4774 int vector_id, bool en, 4775 struct hnae3_ring_chain_node *ring_chain) 4776 { 4777 struct hclge_dev *hdev = vport->back; 4778 struct hnae3_ring_chain_node *node; 4779 struct hclge_desc desc; 4780 struct hclge_ctrl_vector_chain_cmd *req = 4781 (struct hclge_ctrl_vector_chain_cmd *)desc.data; 4782 enum hclge_comm_cmd_status status; 4783 enum hclge_opcode_type op; 4784 u16 tqp_type_and_id; 4785 int i; 4786 4787 op = en ? HCLGE_OPC_ADD_RING_TO_VECTOR : HCLGE_OPC_DEL_RING_TO_VECTOR; 4788 hclge_cmd_setup_basic_desc(&desc, op, false); 4789 req->int_vector_id_l = hnae3_get_field(vector_id, 4790 HCLGE_VECTOR_ID_L_M, 4791 HCLGE_VECTOR_ID_L_S); 4792 req->int_vector_id_h = hnae3_get_field(vector_id, 4793 HCLGE_VECTOR_ID_H_M, 4794 HCLGE_VECTOR_ID_H_S); 4795 4796 i = 0; 4797 for (node = ring_chain; node; node = node->next) { 4798 tqp_type_and_id = le16_to_cpu(req->tqp_type_and_id[i]); 4799 hnae3_set_field(tqp_type_and_id, HCLGE_INT_TYPE_M, 4800 HCLGE_INT_TYPE_S, 4801 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B)); 4802 hnae3_set_field(tqp_type_and_id, HCLGE_TQP_ID_M, 4803 HCLGE_TQP_ID_S, node->tqp_index); 4804 hnae3_set_field(tqp_type_and_id, HCLGE_INT_GL_IDX_M, 4805 HCLGE_INT_GL_IDX_S, 4806 hnae3_get_field(node->int_gl_idx, 4807 HNAE3_RING_GL_IDX_M, 4808 HNAE3_RING_GL_IDX_S)); 4809 req->tqp_type_and_id[i] = cpu_to_le16(tqp_type_and_id); 4810 if (++i >= HCLGE_VECTOR_ELEMENTS_PER_CMD) { 4811 req->int_cause_num = HCLGE_VECTOR_ELEMENTS_PER_CMD; 4812 req->vfid = vport->vport_id; 4813 4814 status = hclge_cmd_send(&hdev->hw, &desc, 1); 4815 if (status) { 4816 dev_err(&hdev->pdev->dev, 4817 "Map TQP fail, status is %d.\n", 4818 status); 4819 return -EIO; 4820 } 4821 i = 0; 4822 4823 hclge_cmd_setup_basic_desc(&desc, 4824 op, 4825 false); 4826 req->int_vector_id_l = 4827 hnae3_get_field(vector_id, 4828 HCLGE_VECTOR_ID_L_M, 4829 HCLGE_VECTOR_ID_L_S); 4830 req->int_vector_id_h = 4831 hnae3_get_field(vector_id, 4832 HCLGE_VECTOR_ID_H_M, 4833 HCLGE_VECTOR_ID_H_S); 4834 } 4835 } 4836 4837 if (i > 0) { 4838 req->int_cause_num = i; 4839 req->vfid = vport->vport_id; 4840 status = hclge_cmd_send(&hdev->hw, &desc, 1); 4841 if (status) { 4842 dev_err(&hdev->pdev->dev, 4843 "Map TQP fail, status is %d.\n", status); 4844 return -EIO; 4845 } 4846 } 4847 4848 return 0; 4849 } 4850 4851 static int hclge_map_ring_to_vector(struct hnae3_handle *handle, int vector, 4852 struct hnae3_ring_chain_node *ring_chain) 4853 { 4854 struct hclge_vport *vport = hclge_get_vport(handle); 4855 struct hclge_dev *hdev = vport->back; 4856 int vector_id; 4857 4858 vector_id = hclge_get_vector_index(hdev, vector); 4859 if (vector_id < 0) { 4860 dev_err(&hdev->pdev->dev, 4861 "failed to get vector index. vector=%d\n", vector); 4862 return vector_id; 4863 } 4864 4865 return hclge_bind_ring_with_vector(vport, vector_id, true, ring_chain); 4866 } 4867 4868 static int hclge_unmap_ring_frm_vector(struct hnae3_handle *handle, int vector, 4869 struct hnae3_ring_chain_node *ring_chain) 4870 { 4871 struct hclge_vport *vport = hclge_get_vport(handle); 4872 struct hclge_dev *hdev = vport->back; 4873 int vector_id, ret; 4874 4875 if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 4876 return 0; 4877 4878 vector_id = hclge_get_vector_index(hdev, vector); 4879 if (vector_id < 0) { 4880 dev_err(&handle->pdev->dev, 4881 "Get vector index fail. ret =%d\n", vector_id); 4882 return vector_id; 4883 } 4884 4885 ret = hclge_bind_ring_with_vector(vport, vector_id, false, ring_chain); 4886 if (ret) 4887 dev_err(&handle->pdev->dev, 4888 "Unmap ring from vector fail. vectorid=%d, ret =%d\n", 4889 vector_id, ret); 4890 4891 return ret; 4892 } 4893 4894 static int hclge_cmd_set_promisc_mode(struct hclge_dev *hdev, u8 vf_id, 4895 bool en_uc, bool en_mc, bool en_bc) 4896 { 4897 struct hclge_vport *vport = &hdev->vport[vf_id]; 4898 struct hnae3_handle *handle = &vport->nic; 4899 struct hclge_promisc_cfg_cmd *req; 4900 struct hclge_desc desc; 4901 bool uc_tx_en = en_uc; 4902 u8 promisc_cfg = 0; 4903 int ret; 4904 4905 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_PROMISC_MODE, false); 4906 4907 req = (struct hclge_promisc_cfg_cmd *)desc.data; 4908 req->vf_id = vf_id; 4909 4910 if (test_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->priv_flags)) 4911 uc_tx_en = false; 4912 4913 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_RX_EN, en_uc ? 1 : 0); 4914 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_RX_EN, en_mc ? 1 : 0); 4915 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_RX_EN, en_bc ? 1 : 0); 4916 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_TX_EN, uc_tx_en ? 1 : 0); 4917 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_TX_EN, en_mc ? 1 : 0); 4918 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_TX_EN, en_bc ? 1 : 0); 4919 req->extend_promisc = promisc_cfg; 4920 4921 /* to be compatible with DEVICE_VERSION_V1/2 */ 4922 promisc_cfg = 0; 4923 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_UC, en_uc ? 1 : 0); 4924 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_MC, en_mc ? 1 : 0); 4925 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_BC, en_bc ? 1 : 0); 4926 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_TX_EN, 1); 4927 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_RX_EN, 1); 4928 req->promisc = promisc_cfg; 4929 4930 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 4931 if (ret) 4932 dev_err(&hdev->pdev->dev, 4933 "failed to set vport %u promisc mode, ret = %d.\n", 4934 vf_id, ret); 4935 4936 return ret; 4937 } 4938 4939 int hclge_set_vport_promisc_mode(struct hclge_vport *vport, bool en_uc_pmc, 4940 bool en_mc_pmc, bool en_bc_pmc) 4941 { 4942 return hclge_cmd_set_promisc_mode(vport->back, vport->vport_id, 4943 en_uc_pmc, en_mc_pmc, en_bc_pmc); 4944 } 4945 4946 static int hclge_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, 4947 bool en_mc_pmc) 4948 { 4949 struct hclge_vport *vport = hclge_get_vport(handle); 4950 struct hclge_dev *hdev = vport->back; 4951 bool en_bc_pmc = true; 4952 4953 /* For device whose version below V2, if broadcast promisc enabled, 4954 * vlan filter is always bypassed. So broadcast promisc should be 4955 * disabled until user enable promisc mode 4956 */ 4957 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 4958 en_bc_pmc = handle->netdev_flags & HNAE3_BPE ? true : false; 4959 4960 return hclge_set_vport_promisc_mode(vport, en_uc_pmc, en_mc_pmc, 4961 en_bc_pmc); 4962 } 4963 4964 static void hclge_request_update_promisc_mode(struct hnae3_handle *handle) 4965 { 4966 struct hclge_vport *vport = hclge_get_vport(handle); 4967 4968 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 4969 } 4970 4971 static void hclge_sync_fd_state(struct hclge_dev *hdev) 4972 { 4973 if (hlist_empty(&hdev->fd_rule_list)) 4974 hdev->fd_active_type = HCLGE_FD_RULE_NONE; 4975 } 4976 4977 static void hclge_fd_inc_rule_cnt(struct hclge_dev *hdev, u16 location) 4978 { 4979 if (!test_bit(location, hdev->fd_bmap)) { 4980 set_bit(location, hdev->fd_bmap); 4981 hdev->hclge_fd_rule_num++; 4982 } 4983 } 4984 4985 static void hclge_fd_dec_rule_cnt(struct hclge_dev *hdev, u16 location) 4986 { 4987 if (test_bit(location, hdev->fd_bmap)) { 4988 clear_bit(location, hdev->fd_bmap); 4989 hdev->hclge_fd_rule_num--; 4990 } 4991 } 4992 4993 static void hclge_fd_free_node(struct hclge_dev *hdev, 4994 struct hclge_fd_rule *rule) 4995 { 4996 hlist_del(&rule->rule_node); 4997 kfree(rule); 4998 hclge_sync_fd_state(hdev); 4999 } 5000 5001 static void hclge_update_fd_rule_node(struct hclge_dev *hdev, 5002 struct hclge_fd_rule *old_rule, 5003 struct hclge_fd_rule *new_rule, 5004 enum HCLGE_FD_NODE_STATE state) 5005 { 5006 switch (state) { 5007 case HCLGE_FD_TO_ADD: 5008 case HCLGE_FD_ACTIVE: 5009 /* 1) if the new state is TO_ADD, just replace the old rule 5010 * with the same location, no matter its state, because the 5011 * new rule will be configured to the hardware. 5012 * 2) if the new state is ACTIVE, it means the new rule 5013 * has been configured to the hardware, so just replace 5014 * the old rule node with the same location. 5015 * 3) for it doesn't add a new node to the list, so it's 5016 * unnecessary to update the rule number and fd_bmap. 5017 */ 5018 new_rule->rule_node.next = old_rule->rule_node.next; 5019 new_rule->rule_node.pprev = old_rule->rule_node.pprev; 5020 memcpy(old_rule, new_rule, sizeof(*old_rule)); 5021 kfree(new_rule); 5022 break; 5023 case HCLGE_FD_DELETED: 5024 hclge_fd_dec_rule_cnt(hdev, old_rule->location); 5025 hclge_fd_free_node(hdev, old_rule); 5026 break; 5027 case HCLGE_FD_TO_DEL: 5028 /* if new request is TO_DEL, and old rule is existent 5029 * 1) the state of old rule is TO_DEL, we need do nothing, 5030 * because we delete rule by location, other rule content 5031 * is unncessary. 5032 * 2) the state of old rule is ACTIVE, we need to change its 5033 * state to TO_DEL, so the rule will be deleted when periodic 5034 * task being scheduled. 5035 * 3) the state of old rule is TO_ADD, it means the rule hasn't 5036 * been added to hardware, so we just delete the rule node from 5037 * fd_rule_list directly. 5038 */ 5039 if (old_rule->state == HCLGE_FD_TO_ADD) { 5040 hclge_fd_dec_rule_cnt(hdev, old_rule->location); 5041 hclge_fd_free_node(hdev, old_rule); 5042 return; 5043 } 5044 old_rule->state = HCLGE_FD_TO_DEL; 5045 break; 5046 } 5047 } 5048 5049 static struct hclge_fd_rule *hclge_find_fd_rule(struct hlist_head *hlist, 5050 u16 location, 5051 struct hclge_fd_rule **parent) 5052 { 5053 struct hclge_fd_rule *rule; 5054 struct hlist_node *node; 5055 5056 hlist_for_each_entry_safe(rule, node, hlist, rule_node) { 5057 if (rule->location == location) 5058 return rule; 5059 else if (rule->location > location) 5060 return NULL; 5061 /* record the parent node, use to keep the nodes in fd_rule_list 5062 * in ascend order. 5063 */ 5064 *parent = rule; 5065 } 5066 5067 return NULL; 5068 } 5069 5070 /* insert fd rule node in ascend order according to rule->location */ 5071 static void hclge_fd_insert_rule_node(struct hlist_head *hlist, 5072 struct hclge_fd_rule *rule, 5073 struct hclge_fd_rule *parent) 5074 { 5075 INIT_HLIST_NODE(&rule->rule_node); 5076 5077 if (parent) 5078 hlist_add_behind(&rule->rule_node, &parent->rule_node); 5079 else 5080 hlist_add_head(&rule->rule_node, hlist); 5081 } 5082 5083 static int hclge_fd_set_user_def_cmd(struct hclge_dev *hdev, 5084 struct hclge_fd_user_def_cfg *cfg) 5085 { 5086 struct hclge_fd_user_def_cfg_cmd *req; 5087 struct hclge_desc desc; 5088 u16 data = 0; 5089 int ret; 5090 5091 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_USER_DEF_OP, false); 5092 5093 req = (struct hclge_fd_user_def_cfg_cmd *)desc.data; 5094 5095 hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[0].ref_cnt > 0); 5096 hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M, 5097 HCLGE_FD_USER_DEF_OFT_S, cfg[0].offset); 5098 req->ol2_cfg = cpu_to_le16(data); 5099 5100 data = 0; 5101 hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[1].ref_cnt > 0); 5102 hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M, 5103 HCLGE_FD_USER_DEF_OFT_S, cfg[1].offset); 5104 req->ol3_cfg = cpu_to_le16(data); 5105 5106 data = 0; 5107 hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[2].ref_cnt > 0); 5108 hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M, 5109 HCLGE_FD_USER_DEF_OFT_S, cfg[2].offset); 5110 req->ol4_cfg = cpu_to_le16(data); 5111 5112 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5113 if (ret) 5114 dev_err(&hdev->pdev->dev, 5115 "failed to set fd user def data, ret= %d\n", ret); 5116 return ret; 5117 } 5118 5119 static void hclge_sync_fd_user_def_cfg(struct hclge_dev *hdev, bool locked) 5120 { 5121 int ret; 5122 5123 if (!test_and_clear_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state)) 5124 return; 5125 5126 if (!locked) 5127 spin_lock_bh(&hdev->fd_rule_lock); 5128 5129 ret = hclge_fd_set_user_def_cmd(hdev, hdev->fd_cfg.user_def_cfg); 5130 if (ret) 5131 set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state); 5132 5133 if (!locked) 5134 spin_unlock_bh(&hdev->fd_rule_lock); 5135 } 5136 5137 static int hclge_fd_check_user_def_refcnt(struct hclge_dev *hdev, 5138 struct hclge_fd_rule *rule) 5139 { 5140 struct hlist_head *hlist = &hdev->fd_rule_list; 5141 struct hclge_fd_rule *fd_rule, *parent = NULL; 5142 struct hclge_fd_user_def_info *info, *old_info; 5143 struct hclge_fd_user_def_cfg *cfg; 5144 5145 if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE || 5146 rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE) 5147 return 0; 5148 5149 /* for valid layer is start from 1, so need minus 1 to get the cfg */ 5150 cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1]; 5151 info = &rule->ep.user_def; 5152 5153 if (!cfg->ref_cnt || cfg->offset == info->offset) 5154 return 0; 5155 5156 if (cfg->ref_cnt > 1) 5157 goto error; 5158 5159 fd_rule = hclge_find_fd_rule(hlist, rule->location, &parent); 5160 if (fd_rule) { 5161 old_info = &fd_rule->ep.user_def; 5162 if (info->layer == old_info->layer) 5163 return 0; 5164 } 5165 5166 error: 5167 dev_err(&hdev->pdev->dev, 5168 "No available offset for layer%d fd rule, each layer only support one user def offset.\n", 5169 info->layer + 1); 5170 return -ENOSPC; 5171 } 5172 5173 static void hclge_fd_inc_user_def_refcnt(struct hclge_dev *hdev, 5174 struct hclge_fd_rule *rule) 5175 { 5176 struct hclge_fd_user_def_cfg *cfg; 5177 5178 if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE || 5179 rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE) 5180 return; 5181 5182 cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1]; 5183 if (!cfg->ref_cnt) { 5184 cfg->offset = rule->ep.user_def.offset; 5185 set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state); 5186 } 5187 cfg->ref_cnt++; 5188 } 5189 5190 static void hclge_fd_dec_user_def_refcnt(struct hclge_dev *hdev, 5191 struct hclge_fd_rule *rule) 5192 { 5193 struct hclge_fd_user_def_cfg *cfg; 5194 5195 if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE || 5196 rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE) 5197 return; 5198 5199 cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1]; 5200 if (!cfg->ref_cnt) 5201 return; 5202 5203 cfg->ref_cnt--; 5204 if (!cfg->ref_cnt) { 5205 cfg->offset = 0; 5206 set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state); 5207 } 5208 } 5209 5210 static void hclge_update_fd_list(struct hclge_dev *hdev, 5211 enum HCLGE_FD_NODE_STATE state, u16 location, 5212 struct hclge_fd_rule *new_rule) 5213 { 5214 struct hlist_head *hlist = &hdev->fd_rule_list; 5215 struct hclge_fd_rule *fd_rule, *parent = NULL; 5216 5217 fd_rule = hclge_find_fd_rule(hlist, location, &parent); 5218 if (fd_rule) { 5219 hclge_fd_dec_user_def_refcnt(hdev, fd_rule); 5220 if (state == HCLGE_FD_ACTIVE) 5221 hclge_fd_inc_user_def_refcnt(hdev, new_rule); 5222 hclge_sync_fd_user_def_cfg(hdev, true); 5223 5224 hclge_update_fd_rule_node(hdev, fd_rule, new_rule, state); 5225 return; 5226 } 5227 5228 /* it's unlikely to fail here, because we have checked the rule 5229 * exist before. 5230 */ 5231 if (unlikely(state == HCLGE_FD_TO_DEL || state == HCLGE_FD_DELETED)) { 5232 dev_warn(&hdev->pdev->dev, 5233 "failed to delete fd rule %u, it's inexistent\n", 5234 location); 5235 return; 5236 } 5237 5238 hclge_fd_inc_user_def_refcnt(hdev, new_rule); 5239 hclge_sync_fd_user_def_cfg(hdev, true); 5240 5241 hclge_fd_insert_rule_node(hlist, new_rule, parent); 5242 hclge_fd_inc_rule_cnt(hdev, new_rule->location); 5243 5244 if (state == HCLGE_FD_TO_ADD) { 5245 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 5246 hclge_task_schedule(hdev, 0); 5247 } 5248 } 5249 5250 static int hclge_get_fd_mode(struct hclge_dev *hdev, u8 *fd_mode) 5251 { 5252 struct hclge_get_fd_mode_cmd *req; 5253 struct hclge_desc desc; 5254 int ret; 5255 5256 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_MODE_CTRL, true); 5257 5258 req = (struct hclge_get_fd_mode_cmd *)desc.data; 5259 5260 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5261 if (ret) { 5262 dev_err(&hdev->pdev->dev, "get fd mode fail, ret=%d\n", ret); 5263 return ret; 5264 } 5265 5266 *fd_mode = req->mode; 5267 5268 return ret; 5269 } 5270 5271 static int hclge_get_fd_allocation(struct hclge_dev *hdev, 5272 u32 *stage1_entry_num, 5273 u32 *stage2_entry_num, 5274 u16 *stage1_counter_num, 5275 u16 *stage2_counter_num) 5276 { 5277 struct hclge_get_fd_allocation_cmd *req; 5278 struct hclge_desc desc; 5279 int ret; 5280 5281 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_GET_ALLOCATION, true); 5282 5283 req = (struct hclge_get_fd_allocation_cmd *)desc.data; 5284 5285 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5286 if (ret) { 5287 dev_err(&hdev->pdev->dev, "query fd allocation fail, ret=%d\n", 5288 ret); 5289 return ret; 5290 } 5291 5292 *stage1_entry_num = le32_to_cpu(req->stage1_entry_num); 5293 *stage2_entry_num = le32_to_cpu(req->stage2_entry_num); 5294 *stage1_counter_num = le16_to_cpu(req->stage1_counter_num); 5295 *stage2_counter_num = le16_to_cpu(req->stage2_counter_num); 5296 5297 return ret; 5298 } 5299 5300 static int hclge_set_fd_key_config(struct hclge_dev *hdev, 5301 enum HCLGE_FD_STAGE stage_num) 5302 { 5303 struct hclge_set_fd_key_config_cmd *req; 5304 struct hclge_fd_key_cfg *stage; 5305 struct hclge_desc desc; 5306 int ret; 5307 5308 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_KEY_CONFIG, false); 5309 5310 req = (struct hclge_set_fd_key_config_cmd *)desc.data; 5311 stage = &hdev->fd_cfg.key_cfg[stage_num]; 5312 req->stage = stage_num; 5313 req->key_select = stage->key_sel; 5314 req->inner_sipv6_word_en = stage->inner_sipv6_word_en; 5315 req->inner_dipv6_word_en = stage->inner_dipv6_word_en; 5316 req->outer_sipv6_word_en = stage->outer_sipv6_word_en; 5317 req->outer_dipv6_word_en = stage->outer_dipv6_word_en; 5318 req->tuple_mask = cpu_to_le32(~stage->tuple_active); 5319 req->meta_data_mask = cpu_to_le32(~stage->meta_data_active); 5320 5321 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5322 if (ret) 5323 dev_err(&hdev->pdev->dev, "set fd key fail, ret=%d\n", ret); 5324 5325 return ret; 5326 } 5327 5328 static void hclge_fd_disable_user_def(struct hclge_dev *hdev) 5329 { 5330 struct hclge_fd_user_def_cfg *cfg = hdev->fd_cfg.user_def_cfg; 5331 5332 spin_lock_bh(&hdev->fd_rule_lock); 5333 memset(cfg, 0, sizeof(hdev->fd_cfg.user_def_cfg)); 5334 spin_unlock_bh(&hdev->fd_rule_lock); 5335 5336 hclge_fd_set_user_def_cmd(hdev, cfg); 5337 } 5338 5339 static int hclge_init_fd_config(struct hclge_dev *hdev) 5340 { 5341 #define LOW_2_WORDS 0x03 5342 struct hclge_fd_key_cfg *key_cfg; 5343 int ret; 5344 5345 if (!hnae3_dev_fd_supported(hdev)) 5346 return 0; 5347 5348 ret = hclge_get_fd_mode(hdev, &hdev->fd_cfg.fd_mode); 5349 if (ret) 5350 return ret; 5351 5352 switch (hdev->fd_cfg.fd_mode) { 5353 case HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1: 5354 hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH; 5355 break; 5356 case HCLGE_FD_MODE_DEPTH_4K_WIDTH_200B_STAGE_1: 5357 hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH / 2; 5358 break; 5359 default: 5360 dev_err(&hdev->pdev->dev, 5361 "Unsupported flow director mode %u\n", 5362 hdev->fd_cfg.fd_mode); 5363 return -EOPNOTSUPP; 5364 } 5365 5366 key_cfg = &hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1]; 5367 key_cfg->key_sel = HCLGE_FD_KEY_BASE_ON_TUPLE; 5368 key_cfg->inner_sipv6_word_en = LOW_2_WORDS; 5369 key_cfg->inner_dipv6_word_en = LOW_2_WORDS; 5370 key_cfg->outer_sipv6_word_en = 0; 5371 key_cfg->outer_dipv6_word_en = 0; 5372 5373 key_cfg->tuple_active = BIT(INNER_VLAN_TAG_FST) | BIT(INNER_ETH_TYPE) | 5374 BIT(INNER_IP_PROTO) | BIT(INNER_IP_TOS) | 5375 BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) | 5376 BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT); 5377 5378 /* If use max 400bit key, we can support tuples for ether type */ 5379 if (hdev->fd_cfg.fd_mode == HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) { 5380 key_cfg->tuple_active |= 5381 BIT(INNER_DST_MAC) | BIT(INNER_SRC_MAC); 5382 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) 5383 key_cfg->tuple_active |= HCLGE_FD_TUPLE_USER_DEF_TUPLES; 5384 } 5385 5386 /* roce_type is used to filter roce frames 5387 * dst_vport is used to specify the rule 5388 */ 5389 key_cfg->meta_data_active = BIT(ROCE_TYPE) | BIT(DST_VPORT); 5390 5391 ret = hclge_get_fd_allocation(hdev, 5392 &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1], 5393 &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_2], 5394 &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1], 5395 &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_2]); 5396 if (ret) 5397 return ret; 5398 5399 return hclge_set_fd_key_config(hdev, HCLGE_FD_STAGE_1); 5400 } 5401 5402 static int hclge_fd_tcam_config(struct hclge_dev *hdev, u8 stage, bool sel_x, 5403 int loc, u8 *key, bool is_add) 5404 { 5405 struct hclge_fd_tcam_config_1_cmd *req1; 5406 struct hclge_fd_tcam_config_2_cmd *req2; 5407 struct hclge_fd_tcam_config_3_cmd *req3; 5408 struct hclge_desc desc[3]; 5409 int ret; 5410 5411 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_FD_TCAM_OP, false); 5412 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 5413 hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_FD_TCAM_OP, false); 5414 desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 5415 hclge_cmd_setup_basic_desc(&desc[2], HCLGE_OPC_FD_TCAM_OP, false); 5416 5417 req1 = (struct hclge_fd_tcam_config_1_cmd *)desc[0].data; 5418 req2 = (struct hclge_fd_tcam_config_2_cmd *)desc[1].data; 5419 req3 = (struct hclge_fd_tcam_config_3_cmd *)desc[2].data; 5420 5421 req1->stage = stage; 5422 req1->xy_sel = sel_x ? 1 : 0; 5423 hnae3_set_bit(req1->port_info, HCLGE_FD_EPORT_SW_EN_B, 0); 5424 req1->index = cpu_to_le32(loc); 5425 req1->entry_vld = sel_x ? is_add : 0; 5426 5427 if (key) { 5428 memcpy(req1->tcam_data, &key[0], sizeof(req1->tcam_data)); 5429 memcpy(req2->tcam_data, &key[sizeof(req1->tcam_data)], 5430 sizeof(req2->tcam_data)); 5431 memcpy(req3->tcam_data, &key[sizeof(req1->tcam_data) + 5432 sizeof(req2->tcam_data)], sizeof(req3->tcam_data)); 5433 } 5434 5435 ret = hclge_cmd_send(&hdev->hw, desc, 3); 5436 if (ret) 5437 dev_err(&hdev->pdev->dev, 5438 "config tcam key fail, ret=%d\n", 5439 ret); 5440 5441 return ret; 5442 } 5443 5444 static int hclge_fd_ad_config(struct hclge_dev *hdev, u8 stage, int loc, 5445 struct hclge_fd_ad_data *action) 5446 { 5447 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 5448 struct hclge_fd_ad_config_cmd *req; 5449 struct hclge_desc desc; 5450 u64 ad_data = 0; 5451 int ret; 5452 5453 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_AD_OP, false); 5454 5455 req = (struct hclge_fd_ad_config_cmd *)desc.data; 5456 req->index = cpu_to_le32(loc); 5457 req->stage = stage; 5458 5459 hnae3_set_bit(ad_data, HCLGE_FD_AD_WR_RULE_ID_B, 5460 action->write_rule_id_to_bd); 5461 hnae3_set_field(ad_data, HCLGE_FD_AD_RULE_ID_M, HCLGE_FD_AD_RULE_ID_S, 5462 action->rule_id); 5463 if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) { 5464 hnae3_set_bit(ad_data, HCLGE_FD_AD_TC_OVRD_B, 5465 action->override_tc); 5466 hnae3_set_field(ad_data, HCLGE_FD_AD_TC_SIZE_M, 5467 HCLGE_FD_AD_TC_SIZE_S, (u32)action->tc_size); 5468 } 5469 ad_data <<= 32; 5470 hnae3_set_bit(ad_data, HCLGE_FD_AD_DROP_B, action->drop_packet); 5471 hnae3_set_bit(ad_data, HCLGE_FD_AD_DIRECT_QID_B, 5472 action->forward_to_direct_queue); 5473 hnae3_set_field(ad_data, HCLGE_FD_AD_QID_M, HCLGE_FD_AD_QID_S, 5474 action->queue_id); 5475 hnae3_set_bit(ad_data, HCLGE_FD_AD_USE_COUNTER_B, action->use_counter); 5476 hnae3_set_field(ad_data, HCLGE_FD_AD_COUNTER_NUM_M, 5477 HCLGE_FD_AD_COUNTER_NUM_S, action->counter_id); 5478 hnae3_set_bit(ad_data, HCLGE_FD_AD_NXT_STEP_B, action->use_next_stage); 5479 hnae3_set_field(ad_data, HCLGE_FD_AD_NXT_KEY_M, HCLGE_FD_AD_NXT_KEY_S, 5480 action->counter_id); 5481 5482 req->ad_data = cpu_to_le64(ad_data); 5483 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5484 if (ret) 5485 dev_err(&hdev->pdev->dev, "fd ad config fail, ret=%d\n", ret); 5486 5487 return ret; 5488 } 5489 5490 static bool hclge_fd_convert_tuple(u32 tuple_bit, u8 *key_x, u8 *key_y, 5491 struct hclge_fd_rule *rule) 5492 { 5493 int offset, moffset, ip_offset; 5494 enum HCLGE_FD_KEY_OPT key_opt; 5495 u16 tmp_x_s, tmp_y_s; 5496 u32 tmp_x_l, tmp_y_l; 5497 u8 *p = (u8 *)rule; 5498 int i; 5499 5500 if (rule->unused_tuple & BIT(tuple_bit)) 5501 return true; 5502 5503 key_opt = tuple_key_info[tuple_bit].key_opt; 5504 offset = tuple_key_info[tuple_bit].offset; 5505 moffset = tuple_key_info[tuple_bit].moffset; 5506 5507 switch (key_opt) { 5508 case KEY_OPT_U8: 5509 calc_x(*key_x, p[offset], p[moffset]); 5510 calc_y(*key_y, p[offset], p[moffset]); 5511 5512 return true; 5513 case KEY_OPT_LE16: 5514 calc_x(tmp_x_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset])); 5515 calc_y(tmp_y_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset])); 5516 *(__le16 *)key_x = cpu_to_le16(tmp_x_s); 5517 *(__le16 *)key_y = cpu_to_le16(tmp_y_s); 5518 5519 return true; 5520 case KEY_OPT_LE32: 5521 calc_x(tmp_x_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset])); 5522 calc_y(tmp_y_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset])); 5523 *(__le32 *)key_x = cpu_to_le32(tmp_x_l); 5524 *(__le32 *)key_y = cpu_to_le32(tmp_y_l); 5525 5526 return true; 5527 case KEY_OPT_MAC: 5528 for (i = 0; i < ETH_ALEN; i++) { 5529 calc_x(key_x[ETH_ALEN - 1 - i], p[offset + i], 5530 p[moffset + i]); 5531 calc_y(key_y[ETH_ALEN - 1 - i], p[offset + i], 5532 p[moffset + i]); 5533 } 5534 5535 return true; 5536 case KEY_OPT_IP: 5537 ip_offset = IPV4_INDEX * sizeof(u32); 5538 calc_x(tmp_x_l, *(u32 *)(&p[offset + ip_offset]), 5539 *(u32 *)(&p[moffset + ip_offset])); 5540 calc_y(tmp_y_l, *(u32 *)(&p[offset + ip_offset]), 5541 *(u32 *)(&p[moffset + ip_offset])); 5542 *(__le32 *)key_x = cpu_to_le32(tmp_x_l); 5543 *(__le32 *)key_y = cpu_to_le32(tmp_y_l); 5544 5545 return true; 5546 default: 5547 return false; 5548 } 5549 } 5550 5551 static u32 hclge_get_port_number(enum HLCGE_PORT_TYPE port_type, u8 pf_id, 5552 u8 vf_id, u8 network_port_id) 5553 { 5554 u32 port_number = 0; 5555 5556 if (port_type == HOST_PORT) { 5557 hnae3_set_field(port_number, HCLGE_PF_ID_M, HCLGE_PF_ID_S, 5558 pf_id); 5559 hnae3_set_field(port_number, HCLGE_VF_ID_M, HCLGE_VF_ID_S, 5560 vf_id); 5561 hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, HOST_PORT); 5562 } else { 5563 hnae3_set_field(port_number, HCLGE_NETWORK_PORT_ID_M, 5564 HCLGE_NETWORK_PORT_ID_S, network_port_id); 5565 hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, NETWORK_PORT); 5566 } 5567 5568 return port_number; 5569 } 5570 5571 static void hclge_fd_convert_meta_data(struct hclge_fd_key_cfg *key_cfg, 5572 __le32 *key_x, __le32 *key_y, 5573 struct hclge_fd_rule *rule) 5574 { 5575 u32 tuple_bit, meta_data = 0, tmp_x, tmp_y, port_number; 5576 u8 cur_pos = 0, tuple_size, shift_bits; 5577 unsigned int i; 5578 5579 for (i = 0; i < MAX_META_DATA; i++) { 5580 tuple_size = meta_data_key_info[i].key_length; 5581 tuple_bit = key_cfg->meta_data_active & BIT(i); 5582 5583 switch (tuple_bit) { 5584 case BIT(ROCE_TYPE): 5585 hnae3_set_bit(meta_data, cur_pos, NIC_PACKET); 5586 cur_pos += tuple_size; 5587 break; 5588 case BIT(DST_VPORT): 5589 port_number = hclge_get_port_number(HOST_PORT, 0, 5590 rule->vf_id, 0); 5591 hnae3_set_field(meta_data, 5592 GENMASK(cur_pos + tuple_size, cur_pos), 5593 cur_pos, port_number); 5594 cur_pos += tuple_size; 5595 break; 5596 default: 5597 break; 5598 } 5599 } 5600 5601 calc_x(tmp_x, meta_data, 0xFFFFFFFF); 5602 calc_y(tmp_y, meta_data, 0xFFFFFFFF); 5603 shift_bits = sizeof(meta_data) * 8 - cur_pos; 5604 5605 *key_x = cpu_to_le32(tmp_x << shift_bits); 5606 *key_y = cpu_to_le32(tmp_y << shift_bits); 5607 } 5608 5609 /* A complete key is combined with meta data key and tuple key. 5610 * Meta data key is stored at the MSB region, and tuple key is stored at 5611 * the LSB region, unused bits will be filled 0. 5612 */ 5613 static int hclge_config_key(struct hclge_dev *hdev, u8 stage, 5614 struct hclge_fd_rule *rule) 5615 { 5616 struct hclge_fd_key_cfg *key_cfg = &hdev->fd_cfg.key_cfg[stage]; 5617 u8 key_x[MAX_KEY_BYTES], key_y[MAX_KEY_BYTES]; 5618 u8 *cur_key_x, *cur_key_y; 5619 u8 meta_data_region; 5620 u8 tuple_size; 5621 int ret; 5622 u32 i; 5623 5624 memset(key_x, 0, sizeof(key_x)); 5625 memset(key_y, 0, sizeof(key_y)); 5626 cur_key_x = key_x; 5627 cur_key_y = key_y; 5628 5629 for (i = 0; i < MAX_TUPLE; i++) { 5630 bool tuple_valid; 5631 5632 tuple_size = tuple_key_info[i].key_length / 8; 5633 if (!(key_cfg->tuple_active & BIT(i))) 5634 continue; 5635 5636 tuple_valid = hclge_fd_convert_tuple(i, cur_key_x, 5637 cur_key_y, rule); 5638 if (tuple_valid) { 5639 cur_key_x += tuple_size; 5640 cur_key_y += tuple_size; 5641 } 5642 } 5643 5644 meta_data_region = hdev->fd_cfg.max_key_length / 8 - 5645 MAX_META_DATA_LENGTH / 8; 5646 5647 hclge_fd_convert_meta_data(key_cfg, 5648 (__le32 *)(key_x + meta_data_region), 5649 (__le32 *)(key_y + meta_data_region), 5650 rule); 5651 5652 ret = hclge_fd_tcam_config(hdev, stage, false, rule->location, key_y, 5653 true); 5654 if (ret) { 5655 dev_err(&hdev->pdev->dev, 5656 "fd key_y config fail, loc=%u, ret=%d\n", 5657 rule->queue_id, ret); 5658 return ret; 5659 } 5660 5661 ret = hclge_fd_tcam_config(hdev, stage, true, rule->location, key_x, 5662 true); 5663 if (ret) 5664 dev_err(&hdev->pdev->dev, 5665 "fd key_x config fail, loc=%u, ret=%d\n", 5666 rule->queue_id, ret); 5667 return ret; 5668 } 5669 5670 static int hclge_config_action(struct hclge_dev *hdev, u8 stage, 5671 struct hclge_fd_rule *rule) 5672 { 5673 struct hclge_vport *vport = hdev->vport; 5674 struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo; 5675 struct hclge_fd_ad_data ad_data; 5676 5677 memset(&ad_data, 0, sizeof(struct hclge_fd_ad_data)); 5678 ad_data.ad_id = rule->location; 5679 5680 if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) { 5681 ad_data.drop_packet = true; 5682 } else if (rule->action == HCLGE_FD_ACTION_SELECT_TC) { 5683 ad_data.override_tc = true; 5684 ad_data.queue_id = 5685 kinfo->tc_info.tqp_offset[rule->cls_flower.tc]; 5686 ad_data.tc_size = 5687 ilog2(kinfo->tc_info.tqp_count[rule->cls_flower.tc]); 5688 } else { 5689 ad_data.forward_to_direct_queue = true; 5690 ad_data.queue_id = rule->queue_id; 5691 } 5692 5693 if (hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1]) { 5694 ad_data.use_counter = true; 5695 ad_data.counter_id = rule->vf_id % 5696 hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1]; 5697 } else { 5698 ad_data.use_counter = false; 5699 ad_data.counter_id = 0; 5700 } 5701 5702 ad_data.use_next_stage = false; 5703 ad_data.next_input_key = 0; 5704 5705 ad_data.write_rule_id_to_bd = true; 5706 ad_data.rule_id = rule->location; 5707 5708 return hclge_fd_ad_config(hdev, stage, ad_data.ad_id, &ad_data); 5709 } 5710 5711 static int hclge_fd_check_tcpip4_tuple(struct ethtool_tcpip4_spec *spec, 5712 u32 *unused_tuple) 5713 { 5714 if (!spec || !unused_tuple) 5715 return -EINVAL; 5716 5717 *unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC); 5718 5719 if (!spec->ip4src) 5720 *unused_tuple |= BIT(INNER_SRC_IP); 5721 5722 if (!spec->ip4dst) 5723 *unused_tuple |= BIT(INNER_DST_IP); 5724 5725 if (!spec->psrc) 5726 *unused_tuple |= BIT(INNER_SRC_PORT); 5727 5728 if (!spec->pdst) 5729 *unused_tuple |= BIT(INNER_DST_PORT); 5730 5731 if (!spec->tos) 5732 *unused_tuple |= BIT(INNER_IP_TOS); 5733 5734 return 0; 5735 } 5736 5737 static int hclge_fd_check_ip4_tuple(struct ethtool_usrip4_spec *spec, 5738 u32 *unused_tuple) 5739 { 5740 if (!spec || !unused_tuple) 5741 return -EINVAL; 5742 5743 *unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) | 5744 BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT); 5745 5746 if (!spec->ip4src) 5747 *unused_tuple |= BIT(INNER_SRC_IP); 5748 5749 if (!spec->ip4dst) 5750 *unused_tuple |= BIT(INNER_DST_IP); 5751 5752 if (!spec->tos) 5753 *unused_tuple |= BIT(INNER_IP_TOS); 5754 5755 if (!spec->proto) 5756 *unused_tuple |= BIT(INNER_IP_PROTO); 5757 5758 if (spec->l4_4_bytes) 5759 return -EOPNOTSUPP; 5760 5761 if (spec->ip_ver != ETH_RX_NFC_IP4) 5762 return -EOPNOTSUPP; 5763 5764 return 0; 5765 } 5766 5767 static int hclge_fd_check_tcpip6_tuple(struct ethtool_tcpip6_spec *spec, 5768 u32 *unused_tuple) 5769 { 5770 if (!spec || !unused_tuple) 5771 return -EINVAL; 5772 5773 *unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC); 5774 5775 /* check whether src/dst ip address used */ 5776 if (ipv6_addr_any((struct in6_addr *)spec->ip6src)) 5777 *unused_tuple |= BIT(INNER_SRC_IP); 5778 5779 if (ipv6_addr_any((struct in6_addr *)spec->ip6dst)) 5780 *unused_tuple |= BIT(INNER_DST_IP); 5781 5782 if (!spec->psrc) 5783 *unused_tuple |= BIT(INNER_SRC_PORT); 5784 5785 if (!spec->pdst) 5786 *unused_tuple |= BIT(INNER_DST_PORT); 5787 5788 if (!spec->tclass) 5789 *unused_tuple |= BIT(INNER_IP_TOS); 5790 5791 return 0; 5792 } 5793 5794 static int hclge_fd_check_ip6_tuple(struct ethtool_usrip6_spec *spec, 5795 u32 *unused_tuple) 5796 { 5797 if (!spec || !unused_tuple) 5798 return -EINVAL; 5799 5800 *unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) | 5801 BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT); 5802 5803 /* check whether src/dst ip address used */ 5804 if (ipv6_addr_any((struct in6_addr *)spec->ip6src)) 5805 *unused_tuple |= BIT(INNER_SRC_IP); 5806 5807 if (ipv6_addr_any((struct in6_addr *)spec->ip6dst)) 5808 *unused_tuple |= BIT(INNER_DST_IP); 5809 5810 if (!spec->l4_proto) 5811 *unused_tuple |= BIT(INNER_IP_PROTO); 5812 5813 if (!spec->tclass) 5814 *unused_tuple |= BIT(INNER_IP_TOS); 5815 5816 if (spec->l4_4_bytes) 5817 return -EOPNOTSUPP; 5818 5819 return 0; 5820 } 5821 5822 static int hclge_fd_check_ether_tuple(struct ethhdr *spec, u32 *unused_tuple) 5823 { 5824 if (!spec || !unused_tuple) 5825 return -EINVAL; 5826 5827 *unused_tuple |= BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) | 5828 BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT) | 5829 BIT(INNER_IP_TOS) | BIT(INNER_IP_PROTO); 5830 5831 if (is_zero_ether_addr(spec->h_source)) 5832 *unused_tuple |= BIT(INNER_SRC_MAC); 5833 5834 if (is_zero_ether_addr(spec->h_dest)) 5835 *unused_tuple |= BIT(INNER_DST_MAC); 5836 5837 if (!spec->h_proto) 5838 *unused_tuple |= BIT(INNER_ETH_TYPE); 5839 5840 return 0; 5841 } 5842 5843 static int hclge_fd_check_ext_tuple(struct hclge_dev *hdev, 5844 struct ethtool_rx_flow_spec *fs, 5845 u32 *unused_tuple) 5846 { 5847 if (fs->flow_type & FLOW_EXT) { 5848 if (fs->h_ext.vlan_etype) { 5849 dev_err(&hdev->pdev->dev, "vlan-etype is not supported!\n"); 5850 return -EOPNOTSUPP; 5851 } 5852 5853 if (!fs->h_ext.vlan_tci) 5854 *unused_tuple |= BIT(INNER_VLAN_TAG_FST); 5855 5856 if (fs->m_ext.vlan_tci && 5857 be16_to_cpu(fs->h_ext.vlan_tci) >= VLAN_N_VID) { 5858 dev_err(&hdev->pdev->dev, 5859 "failed to config vlan_tci, invalid vlan_tci: %u, max is %d.\n", 5860 ntohs(fs->h_ext.vlan_tci), VLAN_N_VID - 1); 5861 return -EINVAL; 5862 } 5863 } else { 5864 *unused_tuple |= BIT(INNER_VLAN_TAG_FST); 5865 } 5866 5867 if (fs->flow_type & FLOW_MAC_EXT) { 5868 if (hdev->fd_cfg.fd_mode != 5869 HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) { 5870 dev_err(&hdev->pdev->dev, 5871 "FLOW_MAC_EXT is not supported in current fd mode!\n"); 5872 return -EOPNOTSUPP; 5873 } 5874 5875 if (is_zero_ether_addr(fs->h_ext.h_dest)) 5876 *unused_tuple |= BIT(INNER_DST_MAC); 5877 else 5878 *unused_tuple &= ~BIT(INNER_DST_MAC); 5879 } 5880 5881 return 0; 5882 } 5883 5884 static int hclge_fd_get_user_def_layer(u32 flow_type, u32 *unused_tuple, 5885 struct hclge_fd_user_def_info *info) 5886 { 5887 switch (flow_type) { 5888 case ETHER_FLOW: 5889 info->layer = HCLGE_FD_USER_DEF_L2; 5890 *unused_tuple &= ~BIT(INNER_L2_RSV); 5891 break; 5892 case IP_USER_FLOW: 5893 case IPV6_USER_FLOW: 5894 info->layer = HCLGE_FD_USER_DEF_L3; 5895 *unused_tuple &= ~BIT(INNER_L3_RSV); 5896 break; 5897 case TCP_V4_FLOW: 5898 case UDP_V4_FLOW: 5899 case TCP_V6_FLOW: 5900 case UDP_V6_FLOW: 5901 info->layer = HCLGE_FD_USER_DEF_L4; 5902 *unused_tuple &= ~BIT(INNER_L4_RSV); 5903 break; 5904 default: 5905 return -EOPNOTSUPP; 5906 } 5907 5908 return 0; 5909 } 5910 5911 static bool hclge_fd_is_user_def_all_masked(struct ethtool_rx_flow_spec *fs) 5912 { 5913 return be32_to_cpu(fs->m_ext.data[1] | fs->m_ext.data[0]) == 0; 5914 } 5915 5916 static int hclge_fd_parse_user_def_field(struct hclge_dev *hdev, 5917 struct ethtool_rx_flow_spec *fs, 5918 u32 *unused_tuple, 5919 struct hclge_fd_user_def_info *info) 5920 { 5921 u32 tuple_active = hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1].tuple_active; 5922 u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT); 5923 u16 data, offset, data_mask, offset_mask; 5924 int ret; 5925 5926 info->layer = HCLGE_FD_USER_DEF_NONE; 5927 *unused_tuple |= HCLGE_FD_TUPLE_USER_DEF_TUPLES; 5928 5929 if (!(fs->flow_type & FLOW_EXT) || hclge_fd_is_user_def_all_masked(fs)) 5930 return 0; 5931 5932 /* user-def data from ethtool is 64 bit value, the bit0~15 is used 5933 * for data, and bit32~47 is used for offset. 5934 */ 5935 data = be32_to_cpu(fs->h_ext.data[1]) & HCLGE_FD_USER_DEF_DATA; 5936 data_mask = be32_to_cpu(fs->m_ext.data[1]) & HCLGE_FD_USER_DEF_DATA; 5937 offset = be32_to_cpu(fs->h_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET; 5938 offset_mask = be32_to_cpu(fs->m_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET; 5939 5940 if (!(tuple_active & HCLGE_FD_TUPLE_USER_DEF_TUPLES)) { 5941 dev_err(&hdev->pdev->dev, "user-def bytes are not supported\n"); 5942 return -EOPNOTSUPP; 5943 } 5944 5945 if (offset > HCLGE_FD_MAX_USER_DEF_OFFSET) { 5946 dev_err(&hdev->pdev->dev, 5947 "user-def offset[%u] should be no more than %u\n", 5948 offset, HCLGE_FD_MAX_USER_DEF_OFFSET); 5949 return -EINVAL; 5950 } 5951 5952 if (offset_mask != HCLGE_FD_USER_DEF_OFFSET_UNMASK) { 5953 dev_err(&hdev->pdev->dev, "user-def offset can't be masked\n"); 5954 return -EINVAL; 5955 } 5956 5957 ret = hclge_fd_get_user_def_layer(flow_type, unused_tuple, info); 5958 if (ret) { 5959 dev_err(&hdev->pdev->dev, 5960 "unsupported flow type for user-def bytes, ret = %d\n", 5961 ret); 5962 return ret; 5963 } 5964 5965 info->data = data; 5966 info->data_mask = data_mask; 5967 info->offset = offset; 5968 5969 return 0; 5970 } 5971 5972 static int hclge_fd_check_spec(struct hclge_dev *hdev, 5973 struct ethtool_rx_flow_spec *fs, 5974 u32 *unused_tuple, 5975 struct hclge_fd_user_def_info *info) 5976 { 5977 u32 flow_type; 5978 int ret; 5979 5980 if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) { 5981 dev_err(&hdev->pdev->dev, 5982 "failed to config fd rules, invalid rule location: %u, max is %u\n.", 5983 fs->location, 5984 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1] - 1); 5985 return -EINVAL; 5986 } 5987 5988 ret = hclge_fd_parse_user_def_field(hdev, fs, unused_tuple, info); 5989 if (ret) 5990 return ret; 5991 5992 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT); 5993 switch (flow_type) { 5994 case SCTP_V4_FLOW: 5995 case TCP_V4_FLOW: 5996 case UDP_V4_FLOW: 5997 ret = hclge_fd_check_tcpip4_tuple(&fs->h_u.tcp_ip4_spec, 5998 unused_tuple); 5999 break; 6000 case IP_USER_FLOW: 6001 ret = hclge_fd_check_ip4_tuple(&fs->h_u.usr_ip4_spec, 6002 unused_tuple); 6003 break; 6004 case SCTP_V6_FLOW: 6005 case TCP_V6_FLOW: 6006 case UDP_V6_FLOW: 6007 ret = hclge_fd_check_tcpip6_tuple(&fs->h_u.tcp_ip6_spec, 6008 unused_tuple); 6009 break; 6010 case IPV6_USER_FLOW: 6011 ret = hclge_fd_check_ip6_tuple(&fs->h_u.usr_ip6_spec, 6012 unused_tuple); 6013 break; 6014 case ETHER_FLOW: 6015 if (hdev->fd_cfg.fd_mode != 6016 HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) { 6017 dev_err(&hdev->pdev->dev, 6018 "ETHER_FLOW is not supported in current fd mode!\n"); 6019 return -EOPNOTSUPP; 6020 } 6021 6022 ret = hclge_fd_check_ether_tuple(&fs->h_u.ether_spec, 6023 unused_tuple); 6024 break; 6025 default: 6026 dev_err(&hdev->pdev->dev, 6027 "unsupported protocol type, protocol type = %#x\n", 6028 flow_type); 6029 return -EOPNOTSUPP; 6030 } 6031 6032 if (ret) { 6033 dev_err(&hdev->pdev->dev, 6034 "failed to check flow union tuple, ret = %d\n", 6035 ret); 6036 return ret; 6037 } 6038 6039 return hclge_fd_check_ext_tuple(hdev, fs, unused_tuple); 6040 } 6041 6042 static void hclge_fd_get_tcpip4_tuple(struct hclge_dev *hdev, 6043 struct ethtool_rx_flow_spec *fs, 6044 struct hclge_fd_rule *rule, u8 ip_proto) 6045 { 6046 rule->tuples.src_ip[IPV4_INDEX] = 6047 be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4src); 6048 rule->tuples_mask.src_ip[IPV4_INDEX] = 6049 be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4src); 6050 6051 rule->tuples.dst_ip[IPV4_INDEX] = 6052 be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4dst); 6053 rule->tuples_mask.dst_ip[IPV4_INDEX] = 6054 be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4dst); 6055 6056 rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc); 6057 rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.psrc); 6058 6059 rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst); 6060 rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.pdst); 6061 6062 rule->tuples.ip_tos = fs->h_u.tcp_ip4_spec.tos; 6063 rule->tuples_mask.ip_tos = fs->m_u.tcp_ip4_spec.tos; 6064 6065 rule->tuples.ether_proto = ETH_P_IP; 6066 rule->tuples_mask.ether_proto = 0xFFFF; 6067 6068 rule->tuples.ip_proto = ip_proto; 6069 rule->tuples_mask.ip_proto = 0xFF; 6070 } 6071 6072 static void hclge_fd_get_ip4_tuple(struct hclge_dev *hdev, 6073 struct ethtool_rx_flow_spec *fs, 6074 struct hclge_fd_rule *rule) 6075 { 6076 rule->tuples.src_ip[IPV4_INDEX] = 6077 be32_to_cpu(fs->h_u.usr_ip4_spec.ip4src); 6078 rule->tuples_mask.src_ip[IPV4_INDEX] = 6079 be32_to_cpu(fs->m_u.usr_ip4_spec.ip4src); 6080 6081 rule->tuples.dst_ip[IPV4_INDEX] = 6082 be32_to_cpu(fs->h_u.usr_ip4_spec.ip4dst); 6083 rule->tuples_mask.dst_ip[IPV4_INDEX] = 6084 be32_to_cpu(fs->m_u.usr_ip4_spec.ip4dst); 6085 6086 rule->tuples.ip_tos = fs->h_u.usr_ip4_spec.tos; 6087 rule->tuples_mask.ip_tos = fs->m_u.usr_ip4_spec.tos; 6088 6089 rule->tuples.ip_proto = fs->h_u.usr_ip4_spec.proto; 6090 rule->tuples_mask.ip_proto = fs->m_u.usr_ip4_spec.proto; 6091 6092 rule->tuples.ether_proto = ETH_P_IP; 6093 rule->tuples_mask.ether_proto = 0xFFFF; 6094 } 6095 6096 static void hclge_fd_get_tcpip6_tuple(struct hclge_dev *hdev, 6097 struct ethtool_rx_flow_spec *fs, 6098 struct hclge_fd_rule *rule, u8 ip_proto) 6099 { 6100 be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.tcp_ip6_spec.ip6src, 6101 IPV6_SIZE); 6102 be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.tcp_ip6_spec.ip6src, 6103 IPV6_SIZE); 6104 6105 be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.tcp_ip6_spec.ip6dst, 6106 IPV6_SIZE); 6107 be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.tcp_ip6_spec.ip6dst, 6108 IPV6_SIZE); 6109 6110 rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.psrc); 6111 rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.psrc); 6112 6113 rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.pdst); 6114 rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.pdst); 6115 6116 rule->tuples.ether_proto = ETH_P_IPV6; 6117 rule->tuples_mask.ether_proto = 0xFFFF; 6118 6119 rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass; 6120 rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass; 6121 6122 rule->tuples.ip_proto = ip_proto; 6123 rule->tuples_mask.ip_proto = 0xFF; 6124 } 6125 6126 static void hclge_fd_get_ip6_tuple(struct hclge_dev *hdev, 6127 struct ethtool_rx_flow_spec *fs, 6128 struct hclge_fd_rule *rule) 6129 { 6130 be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.usr_ip6_spec.ip6src, 6131 IPV6_SIZE); 6132 be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.usr_ip6_spec.ip6src, 6133 IPV6_SIZE); 6134 6135 be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.usr_ip6_spec.ip6dst, 6136 IPV6_SIZE); 6137 be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.usr_ip6_spec.ip6dst, 6138 IPV6_SIZE); 6139 6140 rule->tuples.ip_proto = fs->h_u.usr_ip6_spec.l4_proto; 6141 rule->tuples_mask.ip_proto = fs->m_u.usr_ip6_spec.l4_proto; 6142 6143 rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass; 6144 rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass; 6145 6146 rule->tuples.ether_proto = ETH_P_IPV6; 6147 rule->tuples_mask.ether_proto = 0xFFFF; 6148 } 6149 6150 static void hclge_fd_get_ether_tuple(struct hclge_dev *hdev, 6151 struct ethtool_rx_flow_spec *fs, 6152 struct hclge_fd_rule *rule) 6153 { 6154 ether_addr_copy(rule->tuples.src_mac, fs->h_u.ether_spec.h_source); 6155 ether_addr_copy(rule->tuples_mask.src_mac, fs->m_u.ether_spec.h_source); 6156 6157 ether_addr_copy(rule->tuples.dst_mac, fs->h_u.ether_spec.h_dest); 6158 ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_u.ether_spec.h_dest); 6159 6160 rule->tuples.ether_proto = be16_to_cpu(fs->h_u.ether_spec.h_proto); 6161 rule->tuples_mask.ether_proto = be16_to_cpu(fs->m_u.ether_spec.h_proto); 6162 } 6163 6164 static void hclge_fd_get_user_def_tuple(struct hclge_fd_user_def_info *info, 6165 struct hclge_fd_rule *rule) 6166 { 6167 switch (info->layer) { 6168 case HCLGE_FD_USER_DEF_L2: 6169 rule->tuples.l2_user_def = info->data; 6170 rule->tuples_mask.l2_user_def = info->data_mask; 6171 break; 6172 case HCLGE_FD_USER_DEF_L3: 6173 rule->tuples.l3_user_def = info->data; 6174 rule->tuples_mask.l3_user_def = info->data_mask; 6175 break; 6176 case HCLGE_FD_USER_DEF_L4: 6177 rule->tuples.l4_user_def = (u32)info->data << 16; 6178 rule->tuples_mask.l4_user_def = (u32)info->data_mask << 16; 6179 break; 6180 default: 6181 break; 6182 } 6183 6184 rule->ep.user_def = *info; 6185 } 6186 6187 static int hclge_fd_get_tuple(struct hclge_dev *hdev, 6188 struct ethtool_rx_flow_spec *fs, 6189 struct hclge_fd_rule *rule, 6190 struct hclge_fd_user_def_info *info) 6191 { 6192 u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT); 6193 6194 switch (flow_type) { 6195 case SCTP_V4_FLOW: 6196 hclge_fd_get_tcpip4_tuple(hdev, fs, rule, IPPROTO_SCTP); 6197 break; 6198 case TCP_V4_FLOW: 6199 hclge_fd_get_tcpip4_tuple(hdev, fs, rule, IPPROTO_TCP); 6200 break; 6201 case UDP_V4_FLOW: 6202 hclge_fd_get_tcpip4_tuple(hdev, fs, rule, IPPROTO_UDP); 6203 break; 6204 case IP_USER_FLOW: 6205 hclge_fd_get_ip4_tuple(hdev, fs, rule); 6206 break; 6207 case SCTP_V6_FLOW: 6208 hclge_fd_get_tcpip6_tuple(hdev, fs, rule, IPPROTO_SCTP); 6209 break; 6210 case TCP_V6_FLOW: 6211 hclge_fd_get_tcpip6_tuple(hdev, fs, rule, IPPROTO_TCP); 6212 break; 6213 case UDP_V6_FLOW: 6214 hclge_fd_get_tcpip6_tuple(hdev, fs, rule, IPPROTO_UDP); 6215 break; 6216 case IPV6_USER_FLOW: 6217 hclge_fd_get_ip6_tuple(hdev, fs, rule); 6218 break; 6219 case ETHER_FLOW: 6220 hclge_fd_get_ether_tuple(hdev, fs, rule); 6221 break; 6222 default: 6223 return -EOPNOTSUPP; 6224 } 6225 6226 if (fs->flow_type & FLOW_EXT) { 6227 rule->tuples.vlan_tag1 = be16_to_cpu(fs->h_ext.vlan_tci); 6228 rule->tuples_mask.vlan_tag1 = be16_to_cpu(fs->m_ext.vlan_tci); 6229 hclge_fd_get_user_def_tuple(info, rule); 6230 } 6231 6232 if (fs->flow_type & FLOW_MAC_EXT) { 6233 ether_addr_copy(rule->tuples.dst_mac, fs->h_ext.h_dest); 6234 ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_ext.h_dest); 6235 } 6236 6237 return 0; 6238 } 6239 6240 static int hclge_fd_config_rule(struct hclge_dev *hdev, 6241 struct hclge_fd_rule *rule) 6242 { 6243 int ret; 6244 6245 ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule); 6246 if (ret) 6247 return ret; 6248 6249 return hclge_config_key(hdev, HCLGE_FD_STAGE_1, rule); 6250 } 6251 6252 static int hclge_add_fd_entry_common(struct hclge_dev *hdev, 6253 struct hclge_fd_rule *rule) 6254 { 6255 int ret; 6256 6257 spin_lock_bh(&hdev->fd_rule_lock); 6258 6259 if (hdev->fd_active_type != rule->rule_type && 6260 (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE || 6261 hdev->fd_active_type == HCLGE_FD_EP_ACTIVE)) { 6262 dev_err(&hdev->pdev->dev, 6263 "mode conflict(new type %d, active type %d), please delete existent rules first\n", 6264 rule->rule_type, hdev->fd_active_type); 6265 spin_unlock_bh(&hdev->fd_rule_lock); 6266 return -EINVAL; 6267 } 6268 6269 ret = hclge_fd_check_user_def_refcnt(hdev, rule); 6270 if (ret) 6271 goto out; 6272 6273 ret = hclge_clear_arfs_rules(hdev); 6274 if (ret) 6275 goto out; 6276 6277 ret = hclge_fd_config_rule(hdev, rule); 6278 if (ret) 6279 goto out; 6280 6281 rule->state = HCLGE_FD_ACTIVE; 6282 hdev->fd_active_type = rule->rule_type; 6283 hclge_update_fd_list(hdev, rule->state, rule->location, rule); 6284 6285 out: 6286 spin_unlock_bh(&hdev->fd_rule_lock); 6287 return ret; 6288 } 6289 6290 static bool hclge_is_cls_flower_active(struct hnae3_handle *handle) 6291 { 6292 struct hclge_vport *vport = hclge_get_vport(handle); 6293 struct hclge_dev *hdev = vport->back; 6294 6295 return hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE; 6296 } 6297 6298 static int hclge_fd_parse_ring_cookie(struct hclge_dev *hdev, u64 ring_cookie, 6299 u16 *vport_id, u8 *action, u16 *queue_id) 6300 { 6301 struct hclge_vport *vport = hdev->vport; 6302 6303 if (ring_cookie == RX_CLS_FLOW_DISC) { 6304 *action = HCLGE_FD_ACTION_DROP_PACKET; 6305 } else { 6306 u32 ring = ethtool_get_flow_spec_ring(ring_cookie); 6307 u8 vf = ethtool_get_flow_spec_ring_vf(ring_cookie); 6308 u16 tqps; 6309 6310 /* To keep consistent with user's configuration, minus 1 when 6311 * printing 'vf', because vf id from ethtool is added 1 for vf. 6312 */ 6313 if (vf > hdev->num_req_vfs) { 6314 dev_err(&hdev->pdev->dev, 6315 "Error: vf id (%u) should be less than %u\n", 6316 vf - 1U, hdev->num_req_vfs); 6317 return -EINVAL; 6318 } 6319 6320 *vport_id = vf ? hdev->vport[vf].vport_id : vport->vport_id; 6321 tqps = hdev->vport[vf].nic.kinfo.num_tqps; 6322 6323 if (ring >= tqps) { 6324 dev_err(&hdev->pdev->dev, 6325 "Error: queue id (%u) > max tqp num (%u)\n", 6326 ring, tqps - 1U); 6327 return -EINVAL; 6328 } 6329 6330 *action = HCLGE_FD_ACTION_SELECT_QUEUE; 6331 *queue_id = ring; 6332 } 6333 6334 return 0; 6335 } 6336 6337 static int hclge_add_fd_entry(struct hnae3_handle *handle, 6338 struct ethtool_rxnfc *cmd) 6339 { 6340 struct hclge_vport *vport = hclge_get_vport(handle); 6341 struct hclge_dev *hdev = vport->back; 6342 struct hclge_fd_user_def_info info; 6343 u16 dst_vport_id = 0, q_index = 0; 6344 struct ethtool_rx_flow_spec *fs; 6345 struct hclge_fd_rule *rule; 6346 u32 unused = 0; 6347 u8 action; 6348 int ret; 6349 6350 if (!hnae3_dev_fd_supported(hdev)) { 6351 dev_err(&hdev->pdev->dev, 6352 "flow table director is not supported\n"); 6353 return -EOPNOTSUPP; 6354 } 6355 6356 if (!hdev->fd_en) { 6357 dev_err(&hdev->pdev->dev, 6358 "please enable flow director first\n"); 6359 return -EOPNOTSUPP; 6360 } 6361 6362 fs = (struct ethtool_rx_flow_spec *)&cmd->fs; 6363 6364 ret = hclge_fd_check_spec(hdev, fs, &unused, &info); 6365 if (ret) 6366 return ret; 6367 6368 ret = hclge_fd_parse_ring_cookie(hdev, fs->ring_cookie, &dst_vport_id, 6369 &action, &q_index); 6370 if (ret) 6371 return ret; 6372 6373 rule = kzalloc(sizeof(*rule), GFP_KERNEL); 6374 if (!rule) 6375 return -ENOMEM; 6376 6377 ret = hclge_fd_get_tuple(hdev, fs, rule, &info); 6378 if (ret) { 6379 kfree(rule); 6380 return ret; 6381 } 6382 6383 rule->flow_type = fs->flow_type; 6384 rule->location = fs->location; 6385 rule->unused_tuple = unused; 6386 rule->vf_id = dst_vport_id; 6387 rule->queue_id = q_index; 6388 rule->action = action; 6389 rule->rule_type = HCLGE_FD_EP_ACTIVE; 6390 6391 ret = hclge_add_fd_entry_common(hdev, rule); 6392 if (ret) 6393 kfree(rule); 6394 6395 return ret; 6396 } 6397 6398 static int hclge_del_fd_entry(struct hnae3_handle *handle, 6399 struct ethtool_rxnfc *cmd) 6400 { 6401 struct hclge_vport *vport = hclge_get_vport(handle); 6402 struct hclge_dev *hdev = vport->back; 6403 struct ethtool_rx_flow_spec *fs; 6404 int ret; 6405 6406 if (!hnae3_dev_fd_supported(hdev)) 6407 return -EOPNOTSUPP; 6408 6409 fs = (struct ethtool_rx_flow_spec *)&cmd->fs; 6410 6411 if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) 6412 return -EINVAL; 6413 6414 spin_lock_bh(&hdev->fd_rule_lock); 6415 if (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE || 6416 !test_bit(fs->location, hdev->fd_bmap)) { 6417 dev_err(&hdev->pdev->dev, 6418 "Delete fail, rule %u is inexistent\n", fs->location); 6419 spin_unlock_bh(&hdev->fd_rule_lock); 6420 return -ENOENT; 6421 } 6422 6423 ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, fs->location, 6424 NULL, false); 6425 if (ret) 6426 goto out; 6427 6428 hclge_update_fd_list(hdev, HCLGE_FD_DELETED, fs->location, NULL); 6429 6430 out: 6431 spin_unlock_bh(&hdev->fd_rule_lock); 6432 return ret; 6433 } 6434 6435 static void hclge_clear_fd_rules_in_list(struct hclge_dev *hdev, 6436 bool clear_list) 6437 { 6438 struct hclge_fd_rule *rule; 6439 struct hlist_node *node; 6440 u16 location; 6441 6442 if (!hnae3_dev_fd_supported(hdev)) 6443 return; 6444 6445 spin_lock_bh(&hdev->fd_rule_lock); 6446 6447 for_each_set_bit(location, hdev->fd_bmap, 6448 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) 6449 hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, location, 6450 NULL, false); 6451 6452 if (clear_list) { 6453 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, 6454 rule_node) { 6455 hlist_del(&rule->rule_node); 6456 kfree(rule); 6457 } 6458 hdev->fd_active_type = HCLGE_FD_RULE_NONE; 6459 hdev->hclge_fd_rule_num = 0; 6460 bitmap_zero(hdev->fd_bmap, 6461 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]); 6462 } 6463 6464 spin_unlock_bh(&hdev->fd_rule_lock); 6465 } 6466 6467 static void hclge_del_all_fd_entries(struct hclge_dev *hdev) 6468 { 6469 hclge_clear_fd_rules_in_list(hdev, true); 6470 hclge_fd_disable_user_def(hdev); 6471 } 6472 6473 static int hclge_restore_fd_entries(struct hnae3_handle *handle) 6474 { 6475 struct hclge_vport *vport = hclge_get_vport(handle); 6476 struct hclge_dev *hdev = vport->back; 6477 struct hclge_fd_rule *rule; 6478 struct hlist_node *node; 6479 6480 /* Return ok here, because reset error handling will check this 6481 * return value. If error is returned here, the reset process will 6482 * fail. 6483 */ 6484 if (!hnae3_dev_fd_supported(hdev)) 6485 return 0; 6486 6487 /* if fd is disabled, should not restore it when reset */ 6488 if (!hdev->fd_en) 6489 return 0; 6490 6491 spin_lock_bh(&hdev->fd_rule_lock); 6492 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 6493 if (rule->state == HCLGE_FD_ACTIVE) 6494 rule->state = HCLGE_FD_TO_ADD; 6495 } 6496 spin_unlock_bh(&hdev->fd_rule_lock); 6497 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 6498 6499 return 0; 6500 } 6501 6502 static int hclge_get_fd_rule_cnt(struct hnae3_handle *handle, 6503 struct ethtool_rxnfc *cmd) 6504 { 6505 struct hclge_vport *vport = hclge_get_vport(handle); 6506 struct hclge_dev *hdev = vport->back; 6507 6508 if (!hnae3_dev_fd_supported(hdev) || hclge_is_cls_flower_active(handle)) 6509 return -EOPNOTSUPP; 6510 6511 cmd->rule_cnt = hdev->hclge_fd_rule_num; 6512 cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]; 6513 6514 return 0; 6515 } 6516 6517 static void hclge_fd_get_tcpip4_info(struct hclge_fd_rule *rule, 6518 struct ethtool_tcpip4_spec *spec, 6519 struct ethtool_tcpip4_spec *spec_mask) 6520 { 6521 spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]); 6522 spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ? 6523 0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]); 6524 6525 spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]); 6526 spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ? 6527 0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]); 6528 6529 spec->psrc = cpu_to_be16(rule->tuples.src_port); 6530 spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ? 6531 0 : cpu_to_be16(rule->tuples_mask.src_port); 6532 6533 spec->pdst = cpu_to_be16(rule->tuples.dst_port); 6534 spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ? 6535 0 : cpu_to_be16(rule->tuples_mask.dst_port); 6536 6537 spec->tos = rule->tuples.ip_tos; 6538 spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ? 6539 0 : rule->tuples_mask.ip_tos; 6540 } 6541 6542 static void hclge_fd_get_ip4_info(struct hclge_fd_rule *rule, 6543 struct ethtool_usrip4_spec *spec, 6544 struct ethtool_usrip4_spec *spec_mask) 6545 { 6546 spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]); 6547 spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ? 6548 0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]); 6549 6550 spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]); 6551 spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ? 6552 0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]); 6553 6554 spec->tos = rule->tuples.ip_tos; 6555 spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ? 6556 0 : rule->tuples_mask.ip_tos; 6557 6558 spec->proto = rule->tuples.ip_proto; 6559 spec_mask->proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ? 6560 0 : rule->tuples_mask.ip_proto; 6561 6562 spec->ip_ver = ETH_RX_NFC_IP4; 6563 } 6564 6565 static void hclge_fd_get_tcpip6_info(struct hclge_fd_rule *rule, 6566 struct ethtool_tcpip6_spec *spec, 6567 struct ethtool_tcpip6_spec *spec_mask) 6568 { 6569 cpu_to_be32_array(spec->ip6src, 6570 rule->tuples.src_ip, IPV6_SIZE); 6571 cpu_to_be32_array(spec->ip6dst, 6572 rule->tuples.dst_ip, IPV6_SIZE); 6573 if (rule->unused_tuple & BIT(INNER_SRC_IP)) 6574 memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src)); 6575 else 6576 cpu_to_be32_array(spec_mask->ip6src, rule->tuples_mask.src_ip, 6577 IPV6_SIZE); 6578 6579 if (rule->unused_tuple & BIT(INNER_DST_IP)) 6580 memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst)); 6581 else 6582 cpu_to_be32_array(spec_mask->ip6dst, rule->tuples_mask.dst_ip, 6583 IPV6_SIZE); 6584 6585 spec->tclass = rule->tuples.ip_tos; 6586 spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ? 6587 0 : rule->tuples_mask.ip_tos; 6588 6589 spec->psrc = cpu_to_be16(rule->tuples.src_port); 6590 spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ? 6591 0 : cpu_to_be16(rule->tuples_mask.src_port); 6592 6593 spec->pdst = cpu_to_be16(rule->tuples.dst_port); 6594 spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ? 6595 0 : cpu_to_be16(rule->tuples_mask.dst_port); 6596 } 6597 6598 static void hclge_fd_get_ip6_info(struct hclge_fd_rule *rule, 6599 struct ethtool_usrip6_spec *spec, 6600 struct ethtool_usrip6_spec *spec_mask) 6601 { 6602 cpu_to_be32_array(spec->ip6src, rule->tuples.src_ip, IPV6_SIZE); 6603 cpu_to_be32_array(spec->ip6dst, rule->tuples.dst_ip, IPV6_SIZE); 6604 if (rule->unused_tuple & BIT(INNER_SRC_IP)) 6605 memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src)); 6606 else 6607 cpu_to_be32_array(spec_mask->ip6src, 6608 rule->tuples_mask.src_ip, IPV6_SIZE); 6609 6610 if (rule->unused_tuple & BIT(INNER_DST_IP)) 6611 memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst)); 6612 else 6613 cpu_to_be32_array(spec_mask->ip6dst, 6614 rule->tuples_mask.dst_ip, IPV6_SIZE); 6615 6616 spec->tclass = rule->tuples.ip_tos; 6617 spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ? 6618 0 : rule->tuples_mask.ip_tos; 6619 6620 spec->l4_proto = rule->tuples.ip_proto; 6621 spec_mask->l4_proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ? 6622 0 : rule->tuples_mask.ip_proto; 6623 } 6624 6625 static void hclge_fd_get_ether_info(struct hclge_fd_rule *rule, 6626 struct ethhdr *spec, 6627 struct ethhdr *spec_mask) 6628 { 6629 ether_addr_copy(spec->h_source, rule->tuples.src_mac); 6630 ether_addr_copy(spec->h_dest, rule->tuples.dst_mac); 6631 6632 if (rule->unused_tuple & BIT(INNER_SRC_MAC)) 6633 eth_zero_addr(spec_mask->h_source); 6634 else 6635 ether_addr_copy(spec_mask->h_source, rule->tuples_mask.src_mac); 6636 6637 if (rule->unused_tuple & BIT(INNER_DST_MAC)) 6638 eth_zero_addr(spec_mask->h_dest); 6639 else 6640 ether_addr_copy(spec_mask->h_dest, rule->tuples_mask.dst_mac); 6641 6642 spec->h_proto = cpu_to_be16(rule->tuples.ether_proto); 6643 spec_mask->h_proto = rule->unused_tuple & BIT(INNER_ETH_TYPE) ? 6644 0 : cpu_to_be16(rule->tuples_mask.ether_proto); 6645 } 6646 6647 static void hclge_fd_get_user_def_info(struct ethtool_rx_flow_spec *fs, 6648 struct hclge_fd_rule *rule) 6649 { 6650 if ((rule->unused_tuple & HCLGE_FD_TUPLE_USER_DEF_TUPLES) == 6651 HCLGE_FD_TUPLE_USER_DEF_TUPLES) { 6652 fs->h_ext.data[0] = 0; 6653 fs->h_ext.data[1] = 0; 6654 fs->m_ext.data[0] = 0; 6655 fs->m_ext.data[1] = 0; 6656 } else { 6657 fs->h_ext.data[0] = cpu_to_be32(rule->ep.user_def.offset); 6658 fs->h_ext.data[1] = cpu_to_be32(rule->ep.user_def.data); 6659 fs->m_ext.data[0] = 6660 cpu_to_be32(HCLGE_FD_USER_DEF_OFFSET_UNMASK); 6661 fs->m_ext.data[1] = cpu_to_be32(rule->ep.user_def.data_mask); 6662 } 6663 } 6664 6665 static void hclge_fd_get_ext_info(struct ethtool_rx_flow_spec *fs, 6666 struct hclge_fd_rule *rule) 6667 { 6668 if (fs->flow_type & FLOW_EXT) { 6669 fs->h_ext.vlan_tci = cpu_to_be16(rule->tuples.vlan_tag1); 6670 fs->m_ext.vlan_tci = 6671 rule->unused_tuple & BIT(INNER_VLAN_TAG_FST) ? 6672 0 : cpu_to_be16(rule->tuples_mask.vlan_tag1); 6673 6674 hclge_fd_get_user_def_info(fs, rule); 6675 } 6676 6677 if (fs->flow_type & FLOW_MAC_EXT) { 6678 ether_addr_copy(fs->h_ext.h_dest, rule->tuples.dst_mac); 6679 if (rule->unused_tuple & BIT(INNER_DST_MAC)) 6680 eth_zero_addr(fs->m_u.ether_spec.h_dest); 6681 else 6682 ether_addr_copy(fs->m_u.ether_spec.h_dest, 6683 rule->tuples_mask.dst_mac); 6684 } 6685 } 6686 6687 static struct hclge_fd_rule *hclge_get_fd_rule(struct hclge_dev *hdev, 6688 u16 location) 6689 { 6690 struct hclge_fd_rule *rule = NULL; 6691 struct hlist_node *node2; 6692 6693 hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) { 6694 if (rule->location == location) 6695 return rule; 6696 else if (rule->location > location) 6697 return NULL; 6698 } 6699 6700 return NULL; 6701 } 6702 6703 static void hclge_fd_get_ring_cookie(struct ethtool_rx_flow_spec *fs, 6704 struct hclge_fd_rule *rule) 6705 { 6706 if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) { 6707 fs->ring_cookie = RX_CLS_FLOW_DISC; 6708 } else { 6709 u64 vf_id; 6710 6711 fs->ring_cookie = rule->queue_id; 6712 vf_id = rule->vf_id; 6713 vf_id <<= ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF; 6714 fs->ring_cookie |= vf_id; 6715 } 6716 } 6717 6718 static int hclge_get_fd_rule_info(struct hnae3_handle *handle, 6719 struct ethtool_rxnfc *cmd) 6720 { 6721 struct hclge_vport *vport = hclge_get_vport(handle); 6722 struct hclge_fd_rule *rule = NULL; 6723 struct hclge_dev *hdev = vport->back; 6724 struct ethtool_rx_flow_spec *fs; 6725 6726 if (!hnae3_dev_fd_supported(hdev)) 6727 return -EOPNOTSUPP; 6728 6729 fs = (struct ethtool_rx_flow_spec *)&cmd->fs; 6730 6731 spin_lock_bh(&hdev->fd_rule_lock); 6732 6733 rule = hclge_get_fd_rule(hdev, fs->location); 6734 if (!rule) { 6735 spin_unlock_bh(&hdev->fd_rule_lock); 6736 return -ENOENT; 6737 } 6738 6739 fs->flow_type = rule->flow_type; 6740 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 6741 case SCTP_V4_FLOW: 6742 case TCP_V4_FLOW: 6743 case UDP_V4_FLOW: 6744 hclge_fd_get_tcpip4_info(rule, &fs->h_u.tcp_ip4_spec, 6745 &fs->m_u.tcp_ip4_spec); 6746 break; 6747 case IP_USER_FLOW: 6748 hclge_fd_get_ip4_info(rule, &fs->h_u.usr_ip4_spec, 6749 &fs->m_u.usr_ip4_spec); 6750 break; 6751 case SCTP_V6_FLOW: 6752 case TCP_V6_FLOW: 6753 case UDP_V6_FLOW: 6754 hclge_fd_get_tcpip6_info(rule, &fs->h_u.tcp_ip6_spec, 6755 &fs->m_u.tcp_ip6_spec); 6756 break; 6757 case IPV6_USER_FLOW: 6758 hclge_fd_get_ip6_info(rule, &fs->h_u.usr_ip6_spec, 6759 &fs->m_u.usr_ip6_spec); 6760 break; 6761 /* The flow type of fd rule has been checked before adding in to rule 6762 * list. As other flow types have been handled, it must be ETHER_FLOW 6763 * for the default case 6764 */ 6765 default: 6766 hclge_fd_get_ether_info(rule, &fs->h_u.ether_spec, 6767 &fs->m_u.ether_spec); 6768 break; 6769 } 6770 6771 hclge_fd_get_ext_info(fs, rule); 6772 6773 hclge_fd_get_ring_cookie(fs, rule); 6774 6775 spin_unlock_bh(&hdev->fd_rule_lock); 6776 6777 return 0; 6778 } 6779 6780 static int hclge_get_all_rules(struct hnae3_handle *handle, 6781 struct ethtool_rxnfc *cmd, u32 *rule_locs) 6782 { 6783 struct hclge_vport *vport = hclge_get_vport(handle); 6784 struct hclge_dev *hdev = vport->back; 6785 struct hclge_fd_rule *rule; 6786 struct hlist_node *node2; 6787 int cnt = 0; 6788 6789 if (!hnae3_dev_fd_supported(hdev)) 6790 return -EOPNOTSUPP; 6791 6792 cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]; 6793 6794 spin_lock_bh(&hdev->fd_rule_lock); 6795 hlist_for_each_entry_safe(rule, node2, 6796 &hdev->fd_rule_list, rule_node) { 6797 if (cnt == cmd->rule_cnt) { 6798 spin_unlock_bh(&hdev->fd_rule_lock); 6799 return -EMSGSIZE; 6800 } 6801 6802 if (rule->state == HCLGE_FD_TO_DEL) 6803 continue; 6804 6805 rule_locs[cnt] = rule->location; 6806 cnt++; 6807 } 6808 6809 spin_unlock_bh(&hdev->fd_rule_lock); 6810 6811 cmd->rule_cnt = cnt; 6812 6813 return 0; 6814 } 6815 6816 static void hclge_fd_get_flow_tuples(const struct flow_keys *fkeys, 6817 struct hclge_fd_rule_tuples *tuples) 6818 { 6819 #define flow_ip6_src fkeys->addrs.v6addrs.src.in6_u.u6_addr32 6820 #define flow_ip6_dst fkeys->addrs.v6addrs.dst.in6_u.u6_addr32 6821 6822 tuples->ether_proto = be16_to_cpu(fkeys->basic.n_proto); 6823 tuples->ip_proto = fkeys->basic.ip_proto; 6824 tuples->dst_port = be16_to_cpu(fkeys->ports.dst); 6825 6826 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 6827 tuples->src_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.src); 6828 tuples->dst_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.dst); 6829 } else { 6830 int i; 6831 6832 for (i = 0; i < IPV6_SIZE; i++) { 6833 tuples->src_ip[i] = be32_to_cpu(flow_ip6_src[i]); 6834 tuples->dst_ip[i] = be32_to_cpu(flow_ip6_dst[i]); 6835 } 6836 } 6837 } 6838 6839 /* traverse all rules, check whether an existed rule has the same tuples */ 6840 static struct hclge_fd_rule * 6841 hclge_fd_search_flow_keys(struct hclge_dev *hdev, 6842 const struct hclge_fd_rule_tuples *tuples) 6843 { 6844 struct hclge_fd_rule *rule = NULL; 6845 struct hlist_node *node; 6846 6847 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 6848 if (!memcmp(tuples, &rule->tuples, sizeof(*tuples))) 6849 return rule; 6850 } 6851 6852 return NULL; 6853 } 6854 6855 static void hclge_fd_build_arfs_rule(const struct hclge_fd_rule_tuples *tuples, 6856 struct hclge_fd_rule *rule) 6857 { 6858 rule->unused_tuple = BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) | 6859 BIT(INNER_VLAN_TAG_FST) | BIT(INNER_IP_TOS) | 6860 BIT(INNER_SRC_PORT); 6861 rule->action = 0; 6862 rule->vf_id = 0; 6863 rule->rule_type = HCLGE_FD_ARFS_ACTIVE; 6864 rule->state = HCLGE_FD_TO_ADD; 6865 if (tuples->ether_proto == ETH_P_IP) { 6866 if (tuples->ip_proto == IPPROTO_TCP) 6867 rule->flow_type = TCP_V4_FLOW; 6868 else 6869 rule->flow_type = UDP_V4_FLOW; 6870 } else { 6871 if (tuples->ip_proto == IPPROTO_TCP) 6872 rule->flow_type = TCP_V6_FLOW; 6873 else 6874 rule->flow_type = UDP_V6_FLOW; 6875 } 6876 memcpy(&rule->tuples, tuples, sizeof(rule->tuples)); 6877 memset(&rule->tuples_mask, 0xFF, sizeof(rule->tuples_mask)); 6878 } 6879 6880 static int hclge_add_fd_entry_by_arfs(struct hnae3_handle *handle, u16 queue_id, 6881 u16 flow_id, struct flow_keys *fkeys) 6882 { 6883 struct hclge_vport *vport = hclge_get_vport(handle); 6884 struct hclge_fd_rule_tuples new_tuples = {}; 6885 struct hclge_dev *hdev = vport->back; 6886 struct hclge_fd_rule *rule; 6887 u16 bit_id; 6888 6889 if (!hnae3_dev_fd_supported(hdev)) 6890 return -EOPNOTSUPP; 6891 6892 /* when there is already fd rule existed add by user, 6893 * arfs should not work 6894 */ 6895 spin_lock_bh(&hdev->fd_rule_lock); 6896 if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE && 6897 hdev->fd_active_type != HCLGE_FD_RULE_NONE) { 6898 spin_unlock_bh(&hdev->fd_rule_lock); 6899 return -EOPNOTSUPP; 6900 } 6901 6902 hclge_fd_get_flow_tuples(fkeys, &new_tuples); 6903 6904 /* check is there flow director filter existed for this flow, 6905 * if not, create a new filter for it; 6906 * if filter exist with different queue id, modify the filter; 6907 * if filter exist with same queue id, do nothing 6908 */ 6909 rule = hclge_fd_search_flow_keys(hdev, &new_tuples); 6910 if (!rule) { 6911 bit_id = find_first_zero_bit(hdev->fd_bmap, MAX_FD_FILTER_NUM); 6912 if (bit_id >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) { 6913 spin_unlock_bh(&hdev->fd_rule_lock); 6914 return -ENOSPC; 6915 } 6916 6917 rule = kzalloc(sizeof(*rule), GFP_ATOMIC); 6918 if (!rule) { 6919 spin_unlock_bh(&hdev->fd_rule_lock); 6920 return -ENOMEM; 6921 } 6922 6923 rule->location = bit_id; 6924 rule->arfs.flow_id = flow_id; 6925 rule->queue_id = queue_id; 6926 hclge_fd_build_arfs_rule(&new_tuples, rule); 6927 hclge_update_fd_list(hdev, rule->state, rule->location, rule); 6928 hdev->fd_active_type = HCLGE_FD_ARFS_ACTIVE; 6929 } else if (rule->queue_id != queue_id) { 6930 rule->queue_id = queue_id; 6931 rule->state = HCLGE_FD_TO_ADD; 6932 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 6933 hclge_task_schedule(hdev, 0); 6934 } 6935 spin_unlock_bh(&hdev->fd_rule_lock); 6936 return rule->location; 6937 } 6938 6939 static void hclge_rfs_filter_expire(struct hclge_dev *hdev) 6940 { 6941 #ifdef CONFIG_RFS_ACCEL 6942 struct hnae3_handle *handle = &hdev->vport[0].nic; 6943 struct hclge_fd_rule *rule; 6944 struct hlist_node *node; 6945 6946 spin_lock_bh(&hdev->fd_rule_lock); 6947 if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE) { 6948 spin_unlock_bh(&hdev->fd_rule_lock); 6949 return; 6950 } 6951 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 6952 if (rule->state != HCLGE_FD_ACTIVE) 6953 continue; 6954 if (rps_may_expire_flow(handle->netdev, rule->queue_id, 6955 rule->arfs.flow_id, rule->location)) { 6956 rule->state = HCLGE_FD_TO_DEL; 6957 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 6958 } 6959 } 6960 spin_unlock_bh(&hdev->fd_rule_lock); 6961 #endif 6962 } 6963 6964 /* make sure being called after lock up with fd_rule_lock */ 6965 static int hclge_clear_arfs_rules(struct hclge_dev *hdev) 6966 { 6967 #ifdef CONFIG_RFS_ACCEL 6968 struct hclge_fd_rule *rule; 6969 struct hlist_node *node; 6970 int ret; 6971 6972 if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE) 6973 return 0; 6974 6975 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 6976 switch (rule->state) { 6977 case HCLGE_FD_TO_DEL: 6978 case HCLGE_FD_ACTIVE: 6979 ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, 6980 rule->location, NULL, false); 6981 if (ret) 6982 return ret; 6983 fallthrough; 6984 case HCLGE_FD_TO_ADD: 6985 hclge_fd_dec_rule_cnt(hdev, rule->location); 6986 hlist_del(&rule->rule_node); 6987 kfree(rule); 6988 break; 6989 default: 6990 break; 6991 } 6992 } 6993 hclge_sync_fd_state(hdev); 6994 6995 #endif 6996 return 0; 6997 } 6998 6999 static void hclge_get_cls_key_basic(const struct flow_rule *flow, 7000 struct hclge_fd_rule *rule) 7001 { 7002 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_BASIC)) { 7003 struct flow_match_basic match; 7004 u16 ethtype_key, ethtype_mask; 7005 7006 flow_rule_match_basic(flow, &match); 7007 ethtype_key = ntohs(match.key->n_proto); 7008 ethtype_mask = ntohs(match.mask->n_proto); 7009 7010 if (ethtype_key == ETH_P_ALL) { 7011 ethtype_key = 0; 7012 ethtype_mask = 0; 7013 } 7014 rule->tuples.ether_proto = ethtype_key; 7015 rule->tuples_mask.ether_proto = ethtype_mask; 7016 rule->tuples.ip_proto = match.key->ip_proto; 7017 rule->tuples_mask.ip_proto = match.mask->ip_proto; 7018 } else { 7019 rule->unused_tuple |= BIT(INNER_IP_PROTO); 7020 rule->unused_tuple |= BIT(INNER_ETH_TYPE); 7021 } 7022 } 7023 7024 static void hclge_get_cls_key_mac(const struct flow_rule *flow, 7025 struct hclge_fd_rule *rule) 7026 { 7027 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7028 struct flow_match_eth_addrs match; 7029 7030 flow_rule_match_eth_addrs(flow, &match); 7031 ether_addr_copy(rule->tuples.dst_mac, match.key->dst); 7032 ether_addr_copy(rule->tuples_mask.dst_mac, match.mask->dst); 7033 ether_addr_copy(rule->tuples.src_mac, match.key->src); 7034 ether_addr_copy(rule->tuples_mask.src_mac, match.mask->src); 7035 } else { 7036 rule->unused_tuple |= BIT(INNER_DST_MAC); 7037 rule->unused_tuple |= BIT(INNER_SRC_MAC); 7038 } 7039 } 7040 7041 static void hclge_get_cls_key_vlan(const struct flow_rule *flow, 7042 struct hclge_fd_rule *rule) 7043 { 7044 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) { 7045 struct flow_match_vlan match; 7046 7047 flow_rule_match_vlan(flow, &match); 7048 rule->tuples.vlan_tag1 = match.key->vlan_id | 7049 (match.key->vlan_priority << VLAN_PRIO_SHIFT); 7050 rule->tuples_mask.vlan_tag1 = match.mask->vlan_id | 7051 (match.mask->vlan_priority << VLAN_PRIO_SHIFT); 7052 } else { 7053 rule->unused_tuple |= BIT(INNER_VLAN_TAG_FST); 7054 } 7055 } 7056 7057 static void hclge_get_cls_key_ip(const struct flow_rule *flow, 7058 struct hclge_fd_rule *rule) 7059 { 7060 u16 addr_type = 0; 7061 7062 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_CONTROL)) { 7063 struct flow_match_control match; 7064 7065 flow_rule_match_control(flow, &match); 7066 addr_type = match.key->addr_type; 7067 } 7068 7069 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7070 struct flow_match_ipv4_addrs match; 7071 7072 flow_rule_match_ipv4_addrs(flow, &match); 7073 rule->tuples.src_ip[IPV4_INDEX] = be32_to_cpu(match.key->src); 7074 rule->tuples_mask.src_ip[IPV4_INDEX] = 7075 be32_to_cpu(match.mask->src); 7076 rule->tuples.dst_ip[IPV4_INDEX] = be32_to_cpu(match.key->dst); 7077 rule->tuples_mask.dst_ip[IPV4_INDEX] = 7078 be32_to_cpu(match.mask->dst); 7079 } else if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7080 struct flow_match_ipv6_addrs match; 7081 7082 flow_rule_match_ipv6_addrs(flow, &match); 7083 be32_to_cpu_array(rule->tuples.src_ip, match.key->src.s6_addr32, 7084 IPV6_SIZE); 7085 be32_to_cpu_array(rule->tuples_mask.src_ip, 7086 match.mask->src.s6_addr32, IPV6_SIZE); 7087 be32_to_cpu_array(rule->tuples.dst_ip, match.key->dst.s6_addr32, 7088 IPV6_SIZE); 7089 be32_to_cpu_array(rule->tuples_mask.dst_ip, 7090 match.mask->dst.s6_addr32, IPV6_SIZE); 7091 } else { 7092 rule->unused_tuple |= BIT(INNER_SRC_IP); 7093 rule->unused_tuple |= BIT(INNER_DST_IP); 7094 } 7095 } 7096 7097 static void hclge_get_cls_key_port(const struct flow_rule *flow, 7098 struct hclge_fd_rule *rule) 7099 { 7100 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) { 7101 struct flow_match_ports match; 7102 7103 flow_rule_match_ports(flow, &match); 7104 7105 rule->tuples.src_port = be16_to_cpu(match.key->src); 7106 rule->tuples_mask.src_port = be16_to_cpu(match.mask->src); 7107 rule->tuples.dst_port = be16_to_cpu(match.key->dst); 7108 rule->tuples_mask.dst_port = be16_to_cpu(match.mask->dst); 7109 } else { 7110 rule->unused_tuple |= BIT(INNER_SRC_PORT); 7111 rule->unused_tuple |= BIT(INNER_DST_PORT); 7112 } 7113 } 7114 7115 static int hclge_parse_cls_flower(struct hclge_dev *hdev, 7116 struct flow_cls_offload *cls_flower, 7117 struct hclge_fd_rule *rule) 7118 { 7119 struct flow_rule *flow = flow_cls_offload_flow_rule(cls_flower); 7120 struct flow_dissector *dissector = flow->match.dissector; 7121 7122 if (dissector->used_keys & 7123 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) | 7124 BIT(FLOW_DISSECTOR_KEY_BASIC) | 7125 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7126 BIT(FLOW_DISSECTOR_KEY_VLAN) | 7127 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7128 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7129 BIT(FLOW_DISSECTOR_KEY_PORTS))) { 7130 dev_err(&hdev->pdev->dev, "unsupported key set: %#x\n", 7131 dissector->used_keys); 7132 return -EOPNOTSUPP; 7133 } 7134 7135 hclge_get_cls_key_basic(flow, rule); 7136 hclge_get_cls_key_mac(flow, rule); 7137 hclge_get_cls_key_vlan(flow, rule); 7138 hclge_get_cls_key_ip(flow, rule); 7139 hclge_get_cls_key_port(flow, rule); 7140 7141 return 0; 7142 } 7143 7144 static int hclge_check_cls_flower(struct hclge_dev *hdev, 7145 struct flow_cls_offload *cls_flower, int tc) 7146 { 7147 u32 prio = cls_flower->common.prio; 7148 7149 if (tc < 0 || tc > hdev->tc_max) { 7150 dev_err(&hdev->pdev->dev, "invalid traffic class\n"); 7151 return -EINVAL; 7152 } 7153 7154 if (prio == 0 || 7155 prio > hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) { 7156 dev_err(&hdev->pdev->dev, 7157 "prio %u should be in range[1, %u]\n", 7158 prio, hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]); 7159 return -EINVAL; 7160 } 7161 7162 if (test_bit(prio - 1, hdev->fd_bmap)) { 7163 dev_err(&hdev->pdev->dev, "prio %u is already used\n", prio); 7164 return -EINVAL; 7165 } 7166 return 0; 7167 } 7168 7169 static int hclge_add_cls_flower(struct hnae3_handle *handle, 7170 struct flow_cls_offload *cls_flower, 7171 int tc) 7172 { 7173 struct hclge_vport *vport = hclge_get_vport(handle); 7174 struct hclge_dev *hdev = vport->back; 7175 struct hclge_fd_rule *rule; 7176 int ret; 7177 7178 ret = hclge_check_cls_flower(hdev, cls_flower, tc); 7179 if (ret) { 7180 dev_err(&hdev->pdev->dev, 7181 "failed to check cls flower params, ret = %d\n", ret); 7182 return ret; 7183 } 7184 7185 rule = kzalloc(sizeof(*rule), GFP_KERNEL); 7186 if (!rule) 7187 return -ENOMEM; 7188 7189 ret = hclge_parse_cls_flower(hdev, cls_flower, rule); 7190 if (ret) { 7191 kfree(rule); 7192 return ret; 7193 } 7194 7195 rule->action = HCLGE_FD_ACTION_SELECT_TC; 7196 rule->cls_flower.tc = tc; 7197 rule->location = cls_flower->common.prio - 1; 7198 rule->vf_id = 0; 7199 rule->cls_flower.cookie = cls_flower->cookie; 7200 rule->rule_type = HCLGE_FD_TC_FLOWER_ACTIVE; 7201 7202 ret = hclge_add_fd_entry_common(hdev, rule); 7203 if (ret) 7204 kfree(rule); 7205 7206 return ret; 7207 } 7208 7209 static struct hclge_fd_rule *hclge_find_cls_flower(struct hclge_dev *hdev, 7210 unsigned long cookie) 7211 { 7212 struct hclge_fd_rule *rule; 7213 struct hlist_node *node; 7214 7215 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 7216 if (rule->cls_flower.cookie == cookie) 7217 return rule; 7218 } 7219 7220 return NULL; 7221 } 7222 7223 static int hclge_del_cls_flower(struct hnae3_handle *handle, 7224 struct flow_cls_offload *cls_flower) 7225 { 7226 struct hclge_vport *vport = hclge_get_vport(handle); 7227 struct hclge_dev *hdev = vport->back; 7228 struct hclge_fd_rule *rule; 7229 int ret; 7230 7231 spin_lock_bh(&hdev->fd_rule_lock); 7232 7233 rule = hclge_find_cls_flower(hdev, cls_flower->cookie); 7234 if (!rule) { 7235 spin_unlock_bh(&hdev->fd_rule_lock); 7236 return -EINVAL; 7237 } 7238 7239 ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, rule->location, 7240 NULL, false); 7241 if (ret) { 7242 spin_unlock_bh(&hdev->fd_rule_lock); 7243 return ret; 7244 } 7245 7246 hclge_update_fd_list(hdev, HCLGE_FD_DELETED, rule->location, NULL); 7247 spin_unlock_bh(&hdev->fd_rule_lock); 7248 7249 return 0; 7250 } 7251 7252 static void hclge_sync_fd_list(struct hclge_dev *hdev, struct hlist_head *hlist) 7253 { 7254 struct hclge_fd_rule *rule; 7255 struct hlist_node *node; 7256 int ret = 0; 7257 7258 if (!test_and_clear_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state)) 7259 return; 7260 7261 spin_lock_bh(&hdev->fd_rule_lock); 7262 7263 hlist_for_each_entry_safe(rule, node, hlist, rule_node) { 7264 switch (rule->state) { 7265 case HCLGE_FD_TO_ADD: 7266 ret = hclge_fd_config_rule(hdev, rule); 7267 if (ret) 7268 goto out; 7269 rule->state = HCLGE_FD_ACTIVE; 7270 break; 7271 case HCLGE_FD_TO_DEL: 7272 ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, 7273 rule->location, NULL, false); 7274 if (ret) 7275 goto out; 7276 hclge_fd_dec_rule_cnt(hdev, rule->location); 7277 hclge_fd_free_node(hdev, rule); 7278 break; 7279 default: 7280 break; 7281 } 7282 } 7283 7284 out: 7285 if (ret) 7286 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 7287 7288 spin_unlock_bh(&hdev->fd_rule_lock); 7289 } 7290 7291 static void hclge_sync_fd_table(struct hclge_dev *hdev) 7292 { 7293 if (test_and_clear_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state)) { 7294 bool clear_list = hdev->fd_active_type == HCLGE_FD_ARFS_ACTIVE; 7295 7296 hclge_clear_fd_rules_in_list(hdev, clear_list); 7297 } 7298 7299 hclge_sync_fd_user_def_cfg(hdev, false); 7300 7301 hclge_sync_fd_list(hdev, &hdev->fd_rule_list); 7302 } 7303 7304 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle) 7305 { 7306 struct hclge_vport *vport = hclge_get_vport(handle); 7307 struct hclge_dev *hdev = vport->back; 7308 7309 return hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG) || 7310 hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING); 7311 } 7312 7313 static bool hclge_get_cmdq_stat(struct hnae3_handle *handle) 7314 { 7315 struct hclge_vport *vport = hclge_get_vport(handle); 7316 struct hclge_dev *hdev = vport->back; 7317 7318 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 7319 } 7320 7321 static bool hclge_ae_dev_resetting(struct hnae3_handle *handle) 7322 { 7323 struct hclge_vport *vport = hclge_get_vport(handle); 7324 struct hclge_dev *hdev = vport->back; 7325 7326 return test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 7327 } 7328 7329 static unsigned long hclge_ae_dev_reset_cnt(struct hnae3_handle *handle) 7330 { 7331 struct hclge_vport *vport = hclge_get_vport(handle); 7332 struct hclge_dev *hdev = vport->back; 7333 7334 return hdev->rst_stats.hw_reset_done_cnt; 7335 } 7336 7337 static void hclge_enable_fd(struct hnae3_handle *handle, bool enable) 7338 { 7339 struct hclge_vport *vport = hclge_get_vport(handle); 7340 struct hclge_dev *hdev = vport->back; 7341 7342 hdev->fd_en = enable; 7343 7344 if (!enable) 7345 set_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state); 7346 else 7347 hclge_restore_fd_entries(handle); 7348 7349 hclge_task_schedule(hdev, 0); 7350 } 7351 7352 static void hclge_cfg_mac_mode(struct hclge_dev *hdev, bool enable) 7353 { 7354 struct hclge_desc desc; 7355 struct hclge_config_mac_mode_cmd *req = 7356 (struct hclge_config_mac_mode_cmd *)desc.data; 7357 u32 loop_en = 0; 7358 int ret; 7359 7360 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, false); 7361 7362 if (enable) { 7363 hnae3_set_bit(loop_en, HCLGE_MAC_TX_EN_B, 1U); 7364 hnae3_set_bit(loop_en, HCLGE_MAC_RX_EN_B, 1U); 7365 hnae3_set_bit(loop_en, HCLGE_MAC_PAD_TX_B, 1U); 7366 hnae3_set_bit(loop_en, HCLGE_MAC_PAD_RX_B, 1U); 7367 hnae3_set_bit(loop_en, HCLGE_MAC_FCS_TX_B, 1U); 7368 hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_B, 1U); 7369 hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_STRIP_B, 1U); 7370 hnae3_set_bit(loop_en, HCLGE_MAC_TX_OVERSIZE_TRUNCATE_B, 1U); 7371 hnae3_set_bit(loop_en, HCLGE_MAC_RX_OVERSIZE_TRUNCATE_B, 1U); 7372 hnae3_set_bit(loop_en, HCLGE_MAC_TX_UNDER_MIN_ERR_B, 1U); 7373 } 7374 7375 req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en); 7376 7377 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7378 if (ret) 7379 dev_err(&hdev->pdev->dev, 7380 "mac enable fail, ret =%d.\n", ret); 7381 } 7382 7383 static int hclge_config_switch_param(struct hclge_dev *hdev, int vfid, 7384 u8 switch_param, u8 param_mask) 7385 { 7386 struct hclge_mac_vlan_switch_cmd *req; 7387 struct hclge_desc desc; 7388 u32 func_id; 7389 int ret; 7390 7391 func_id = hclge_get_port_number(HOST_PORT, 0, vfid, 0); 7392 req = (struct hclge_mac_vlan_switch_cmd *)desc.data; 7393 7394 /* read current config parameter */ 7395 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_SWITCH_PARAM, 7396 true); 7397 req->roce_sel = HCLGE_MAC_VLAN_NIC_SEL; 7398 req->func_id = cpu_to_le32(func_id); 7399 7400 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7401 if (ret) { 7402 dev_err(&hdev->pdev->dev, 7403 "read mac vlan switch parameter fail, ret = %d\n", ret); 7404 return ret; 7405 } 7406 7407 /* modify and write new config parameter */ 7408 hclge_comm_cmd_reuse_desc(&desc, false); 7409 req->switch_param = (req->switch_param & param_mask) | switch_param; 7410 req->param_mask = param_mask; 7411 7412 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7413 if (ret) 7414 dev_err(&hdev->pdev->dev, 7415 "set mac vlan switch parameter fail, ret = %d\n", ret); 7416 return ret; 7417 } 7418 7419 static void hclge_phy_link_status_wait(struct hclge_dev *hdev, 7420 int link_ret) 7421 { 7422 #define HCLGE_PHY_LINK_STATUS_NUM 200 7423 7424 struct phy_device *phydev = hdev->hw.mac.phydev; 7425 int i = 0; 7426 int ret; 7427 7428 do { 7429 ret = phy_read_status(phydev); 7430 if (ret) { 7431 dev_err(&hdev->pdev->dev, 7432 "phy update link status fail, ret = %d\n", ret); 7433 return; 7434 } 7435 7436 if (phydev->link == link_ret) 7437 break; 7438 7439 msleep(HCLGE_LINK_STATUS_MS); 7440 } while (++i < HCLGE_PHY_LINK_STATUS_NUM); 7441 } 7442 7443 static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret) 7444 { 7445 #define HCLGE_MAC_LINK_STATUS_NUM 100 7446 7447 int link_status; 7448 int i = 0; 7449 int ret; 7450 7451 do { 7452 ret = hclge_get_mac_link_status(hdev, &link_status); 7453 if (ret) 7454 return ret; 7455 if (link_status == link_ret) 7456 return 0; 7457 7458 msleep(HCLGE_LINK_STATUS_MS); 7459 } while (++i < HCLGE_MAC_LINK_STATUS_NUM); 7460 return -EBUSY; 7461 } 7462 7463 static int hclge_mac_phy_link_status_wait(struct hclge_dev *hdev, bool en, 7464 bool is_phy) 7465 { 7466 int link_ret; 7467 7468 link_ret = en ? HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN; 7469 7470 if (is_phy) 7471 hclge_phy_link_status_wait(hdev, link_ret); 7472 7473 return hclge_mac_link_status_wait(hdev, link_ret); 7474 } 7475 7476 static int hclge_set_app_loopback(struct hclge_dev *hdev, bool en) 7477 { 7478 struct hclge_config_mac_mode_cmd *req; 7479 struct hclge_desc desc; 7480 u32 loop_en; 7481 int ret; 7482 7483 req = (struct hclge_config_mac_mode_cmd *)&desc.data[0]; 7484 /* 1 Read out the MAC mode config at first */ 7485 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, true); 7486 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7487 if (ret) { 7488 dev_err(&hdev->pdev->dev, 7489 "mac loopback get fail, ret =%d.\n", ret); 7490 return ret; 7491 } 7492 7493 /* 2 Then setup the loopback flag */ 7494 loop_en = le32_to_cpu(req->txrx_pad_fcs_loop_en); 7495 hnae3_set_bit(loop_en, HCLGE_MAC_APP_LP_B, en ? 1 : 0); 7496 7497 req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en); 7498 7499 /* 3 Config mac work mode with loopback flag 7500 * and its original configure parameters 7501 */ 7502 hclge_comm_cmd_reuse_desc(&desc, false); 7503 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7504 if (ret) 7505 dev_err(&hdev->pdev->dev, 7506 "mac loopback set fail, ret =%d.\n", ret); 7507 return ret; 7508 } 7509 7510 static int hclge_cfg_common_loopback_cmd_send(struct hclge_dev *hdev, bool en, 7511 enum hnae3_loop loop_mode) 7512 { 7513 struct hclge_common_lb_cmd *req; 7514 struct hclge_desc desc; 7515 u8 loop_mode_b; 7516 int ret; 7517 7518 req = (struct hclge_common_lb_cmd *)desc.data; 7519 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK, false); 7520 7521 switch (loop_mode) { 7522 case HNAE3_LOOP_SERIAL_SERDES: 7523 loop_mode_b = HCLGE_CMD_SERDES_SERIAL_INNER_LOOP_B; 7524 break; 7525 case HNAE3_LOOP_PARALLEL_SERDES: 7526 loop_mode_b = HCLGE_CMD_SERDES_PARALLEL_INNER_LOOP_B; 7527 break; 7528 case HNAE3_LOOP_PHY: 7529 loop_mode_b = HCLGE_CMD_GE_PHY_INNER_LOOP_B; 7530 break; 7531 default: 7532 dev_err(&hdev->pdev->dev, 7533 "unsupported loopback mode %d\n", loop_mode); 7534 return -ENOTSUPP; 7535 } 7536 7537 req->mask = loop_mode_b; 7538 if (en) 7539 req->enable = loop_mode_b; 7540 7541 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7542 if (ret) 7543 dev_err(&hdev->pdev->dev, 7544 "failed to send loopback cmd, loop_mode = %d, ret = %d\n", 7545 loop_mode, ret); 7546 7547 return ret; 7548 } 7549 7550 static int hclge_cfg_common_loopback_wait(struct hclge_dev *hdev) 7551 { 7552 #define HCLGE_COMMON_LB_RETRY_MS 10 7553 #define HCLGE_COMMON_LB_RETRY_NUM 100 7554 7555 struct hclge_common_lb_cmd *req; 7556 struct hclge_desc desc; 7557 u32 i = 0; 7558 int ret; 7559 7560 req = (struct hclge_common_lb_cmd *)desc.data; 7561 7562 do { 7563 msleep(HCLGE_COMMON_LB_RETRY_MS); 7564 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK, 7565 true); 7566 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7567 if (ret) { 7568 dev_err(&hdev->pdev->dev, 7569 "failed to get loopback done status, ret = %d\n", 7570 ret); 7571 return ret; 7572 } 7573 } while (++i < HCLGE_COMMON_LB_RETRY_NUM && 7574 !(req->result & HCLGE_CMD_COMMON_LB_DONE_B)); 7575 7576 if (!(req->result & HCLGE_CMD_COMMON_LB_DONE_B)) { 7577 dev_err(&hdev->pdev->dev, "wait loopback timeout\n"); 7578 return -EBUSY; 7579 } else if (!(req->result & HCLGE_CMD_COMMON_LB_SUCCESS_B)) { 7580 dev_err(&hdev->pdev->dev, "failed to do loopback test\n"); 7581 return -EIO; 7582 } 7583 7584 return 0; 7585 } 7586 7587 static int hclge_cfg_common_loopback(struct hclge_dev *hdev, bool en, 7588 enum hnae3_loop loop_mode) 7589 { 7590 int ret; 7591 7592 ret = hclge_cfg_common_loopback_cmd_send(hdev, en, loop_mode); 7593 if (ret) 7594 return ret; 7595 7596 return hclge_cfg_common_loopback_wait(hdev); 7597 } 7598 7599 static int hclge_set_common_loopback(struct hclge_dev *hdev, bool en, 7600 enum hnae3_loop loop_mode) 7601 { 7602 int ret; 7603 7604 ret = hclge_cfg_common_loopback(hdev, en, loop_mode); 7605 if (ret) 7606 return ret; 7607 7608 hclge_cfg_mac_mode(hdev, en); 7609 7610 ret = hclge_mac_phy_link_status_wait(hdev, en, false); 7611 if (ret) 7612 dev_err(&hdev->pdev->dev, 7613 "serdes loopback config mac mode timeout\n"); 7614 7615 return ret; 7616 } 7617 7618 static int hclge_enable_phy_loopback(struct hclge_dev *hdev, 7619 struct phy_device *phydev) 7620 { 7621 int ret; 7622 7623 if (!phydev->suspended) { 7624 ret = phy_suspend(phydev); 7625 if (ret) 7626 return ret; 7627 } 7628 7629 ret = phy_resume(phydev); 7630 if (ret) 7631 return ret; 7632 7633 return phy_loopback(phydev, true); 7634 } 7635 7636 static int hclge_disable_phy_loopback(struct hclge_dev *hdev, 7637 struct phy_device *phydev) 7638 { 7639 int ret; 7640 7641 ret = phy_loopback(phydev, false); 7642 if (ret) 7643 return ret; 7644 7645 return phy_suspend(phydev); 7646 } 7647 7648 static int hclge_set_phy_loopback(struct hclge_dev *hdev, bool en) 7649 { 7650 struct phy_device *phydev = hdev->hw.mac.phydev; 7651 int ret; 7652 7653 if (!phydev) { 7654 if (hnae3_dev_phy_imp_supported(hdev)) 7655 return hclge_set_common_loopback(hdev, en, 7656 HNAE3_LOOP_PHY); 7657 return -ENOTSUPP; 7658 } 7659 7660 if (en) 7661 ret = hclge_enable_phy_loopback(hdev, phydev); 7662 else 7663 ret = hclge_disable_phy_loopback(hdev, phydev); 7664 if (ret) { 7665 dev_err(&hdev->pdev->dev, 7666 "set phy loopback fail, ret = %d\n", ret); 7667 return ret; 7668 } 7669 7670 hclge_cfg_mac_mode(hdev, en); 7671 7672 ret = hclge_mac_phy_link_status_wait(hdev, en, true); 7673 if (ret) 7674 dev_err(&hdev->pdev->dev, 7675 "phy loopback config mac mode timeout\n"); 7676 7677 return ret; 7678 } 7679 7680 static int hclge_tqp_enable_cmd_send(struct hclge_dev *hdev, u16 tqp_id, 7681 u16 stream_id, bool enable) 7682 { 7683 struct hclge_desc desc; 7684 struct hclge_cfg_com_tqp_queue_cmd *req = 7685 (struct hclge_cfg_com_tqp_queue_cmd *)desc.data; 7686 7687 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false); 7688 req->tqp_id = cpu_to_le16(tqp_id); 7689 req->stream_id = cpu_to_le16(stream_id); 7690 if (enable) 7691 req->enable |= 1U << HCLGE_TQP_ENABLE_B; 7692 7693 return hclge_cmd_send(&hdev->hw, &desc, 1); 7694 } 7695 7696 static int hclge_tqp_enable(struct hnae3_handle *handle, bool enable) 7697 { 7698 struct hclge_vport *vport = hclge_get_vport(handle); 7699 struct hclge_dev *hdev = vport->back; 7700 int ret; 7701 u16 i; 7702 7703 for (i = 0; i < handle->kinfo.num_tqps; i++) { 7704 ret = hclge_tqp_enable_cmd_send(hdev, i, 0, enable); 7705 if (ret) 7706 return ret; 7707 } 7708 return 0; 7709 } 7710 7711 static int hclge_set_loopback(struct hnae3_handle *handle, 7712 enum hnae3_loop loop_mode, bool en) 7713 { 7714 struct hclge_vport *vport = hclge_get_vport(handle); 7715 struct hclge_dev *hdev = vport->back; 7716 int ret; 7717 7718 /* Loopback can be enabled in three places: SSU, MAC, and serdes. By 7719 * default, SSU loopback is enabled, so if the SMAC and the DMAC are 7720 * the same, the packets are looped back in the SSU. If SSU loopback 7721 * is disabled, packets can reach MAC even if SMAC is the same as DMAC. 7722 */ 7723 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 7724 u8 switch_param = en ? 0 : BIT(HCLGE_SWITCH_ALW_LPBK_B); 7725 7726 ret = hclge_config_switch_param(hdev, PF_VPORT_ID, switch_param, 7727 HCLGE_SWITCH_ALW_LPBK_MASK); 7728 if (ret) 7729 return ret; 7730 } 7731 7732 switch (loop_mode) { 7733 case HNAE3_LOOP_APP: 7734 ret = hclge_set_app_loopback(hdev, en); 7735 break; 7736 case HNAE3_LOOP_SERIAL_SERDES: 7737 case HNAE3_LOOP_PARALLEL_SERDES: 7738 ret = hclge_set_common_loopback(hdev, en, loop_mode); 7739 break; 7740 case HNAE3_LOOP_PHY: 7741 ret = hclge_set_phy_loopback(hdev, en); 7742 break; 7743 default: 7744 ret = -ENOTSUPP; 7745 dev_err(&hdev->pdev->dev, 7746 "loop_mode %d is not supported\n", loop_mode); 7747 break; 7748 } 7749 7750 if (ret) 7751 return ret; 7752 7753 ret = hclge_tqp_enable(handle, en); 7754 if (ret) 7755 dev_err(&hdev->pdev->dev, "failed to %s tqp in loopback, ret = %d\n", 7756 en ? "enable" : "disable", ret); 7757 7758 return ret; 7759 } 7760 7761 static int hclge_set_default_loopback(struct hclge_dev *hdev) 7762 { 7763 int ret; 7764 7765 ret = hclge_set_app_loopback(hdev, false); 7766 if (ret) 7767 return ret; 7768 7769 ret = hclge_cfg_common_loopback(hdev, false, HNAE3_LOOP_SERIAL_SERDES); 7770 if (ret) 7771 return ret; 7772 7773 return hclge_cfg_common_loopback(hdev, false, 7774 HNAE3_LOOP_PARALLEL_SERDES); 7775 } 7776 7777 static void hclge_flush_link_update(struct hclge_dev *hdev) 7778 { 7779 #define HCLGE_FLUSH_LINK_TIMEOUT 100000 7780 7781 unsigned long last = hdev->serv_processed_cnt; 7782 int i = 0; 7783 7784 while (test_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state) && 7785 i++ < HCLGE_FLUSH_LINK_TIMEOUT && 7786 last == hdev->serv_processed_cnt) 7787 usleep_range(1, 1); 7788 } 7789 7790 static void hclge_set_timer_task(struct hnae3_handle *handle, bool enable) 7791 { 7792 struct hclge_vport *vport = hclge_get_vport(handle); 7793 struct hclge_dev *hdev = vport->back; 7794 7795 if (enable) { 7796 hclge_task_schedule(hdev, 0); 7797 } else { 7798 /* Set the DOWN flag here to disable link updating */ 7799 set_bit(HCLGE_STATE_DOWN, &hdev->state); 7800 7801 /* flush memory to make sure DOWN is seen by service task */ 7802 smp_mb__before_atomic(); 7803 hclge_flush_link_update(hdev); 7804 } 7805 } 7806 7807 static int hclge_ae_start(struct hnae3_handle *handle) 7808 { 7809 struct hclge_vport *vport = hclge_get_vport(handle); 7810 struct hclge_dev *hdev = vport->back; 7811 7812 /* mac enable */ 7813 hclge_cfg_mac_mode(hdev, true); 7814 clear_bit(HCLGE_STATE_DOWN, &hdev->state); 7815 hdev->hw.mac.link = 0; 7816 7817 /* reset tqp stats */ 7818 hclge_comm_reset_tqp_stats(handle); 7819 7820 hclge_mac_start_phy(hdev); 7821 7822 return 0; 7823 } 7824 7825 static void hclge_ae_stop(struct hnae3_handle *handle) 7826 { 7827 struct hclge_vport *vport = hclge_get_vport(handle); 7828 struct hclge_dev *hdev = vport->back; 7829 7830 set_bit(HCLGE_STATE_DOWN, &hdev->state); 7831 spin_lock_bh(&hdev->fd_rule_lock); 7832 hclge_clear_arfs_rules(hdev); 7833 spin_unlock_bh(&hdev->fd_rule_lock); 7834 7835 /* If it is not PF reset or FLR, the firmware will disable the MAC, 7836 * so it only need to stop phy here. 7837 */ 7838 if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) && 7839 hdev->reset_type != HNAE3_FUNC_RESET && 7840 hdev->reset_type != HNAE3_FLR_RESET) { 7841 hclge_mac_stop_phy(hdev); 7842 hclge_update_link_status(hdev); 7843 return; 7844 } 7845 7846 hclge_reset_tqp(handle); 7847 7848 hclge_config_mac_tnl_int(hdev, false); 7849 7850 /* Mac disable */ 7851 hclge_cfg_mac_mode(hdev, false); 7852 7853 hclge_mac_stop_phy(hdev); 7854 7855 /* reset tqp stats */ 7856 hclge_comm_reset_tqp_stats(handle); 7857 hclge_update_link_status(hdev); 7858 } 7859 7860 int hclge_vport_start(struct hclge_vport *vport) 7861 { 7862 struct hclge_dev *hdev = vport->back; 7863 7864 set_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 7865 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 7866 vport->last_active_jiffies = jiffies; 7867 7868 if (test_bit(vport->vport_id, hdev->vport_config_block)) { 7869 if (vport->vport_id) { 7870 hclge_restore_mac_table_common(vport); 7871 hclge_restore_vport_vlan_table(vport); 7872 } else { 7873 hclge_restore_hw_table(hdev); 7874 } 7875 } 7876 7877 clear_bit(vport->vport_id, hdev->vport_config_block); 7878 7879 return 0; 7880 } 7881 7882 void hclge_vport_stop(struct hclge_vport *vport) 7883 { 7884 clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 7885 } 7886 7887 static int hclge_client_start(struct hnae3_handle *handle) 7888 { 7889 struct hclge_vport *vport = hclge_get_vport(handle); 7890 7891 return hclge_vport_start(vport); 7892 } 7893 7894 static void hclge_client_stop(struct hnae3_handle *handle) 7895 { 7896 struct hclge_vport *vport = hclge_get_vport(handle); 7897 7898 hclge_vport_stop(vport); 7899 } 7900 7901 static int hclge_get_mac_vlan_cmd_status(struct hclge_vport *vport, 7902 u16 cmdq_resp, u8 resp_code, 7903 enum hclge_mac_vlan_tbl_opcode op) 7904 { 7905 struct hclge_dev *hdev = vport->back; 7906 7907 if (cmdq_resp) { 7908 dev_err(&hdev->pdev->dev, 7909 "cmdq execute failed for get_mac_vlan_cmd_status,status=%u.\n", 7910 cmdq_resp); 7911 return -EIO; 7912 } 7913 7914 if (op == HCLGE_MAC_VLAN_ADD) { 7915 if (!resp_code || resp_code == 1) 7916 return 0; 7917 else if (resp_code == HCLGE_ADD_UC_OVERFLOW || 7918 resp_code == HCLGE_ADD_MC_OVERFLOW) 7919 return -ENOSPC; 7920 7921 dev_err(&hdev->pdev->dev, 7922 "add mac addr failed for undefined, code=%u.\n", 7923 resp_code); 7924 return -EIO; 7925 } else if (op == HCLGE_MAC_VLAN_REMOVE) { 7926 if (!resp_code) { 7927 return 0; 7928 } else if (resp_code == 1) { 7929 dev_dbg(&hdev->pdev->dev, 7930 "remove mac addr failed for miss.\n"); 7931 return -ENOENT; 7932 } 7933 7934 dev_err(&hdev->pdev->dev, 7935 "remove mac addr failed for undefined, code=%u.\n", 7936 resp_code); 7937 return -EIO; 7938 } else if (op == HCLGE_MAC_VLAN_LKUP) { 7939 if (!resp_code) { 7940 return 0; 7941 } else if (resp_code == 1) { 7942 dev_dbg(&hdev->pdev->dev, 7943 "lookup mac addr failed for miss.\n"); 7944 return -ENOENT; 7945 } 7946 7947 dev_err(&hdev->pdev->dev, 7948 "lookup mac addr failed for undefined, code=%u.\n", 7949 resp_code); 7950 return -EIO; 7951 } 7952 7953 dev_err(&hdev->pdev->dev, 7954 "unknown opcode for get_mac_vlan_cmd_status, opcode=%d.\n", op); 7955 7956 return -EINVAL; 7957 } 7958 7959 static int hclge_update_desc_vfid(struct hclge_desc *desc, int vfid, bool clr) 7960 { 7961 #define HCLGE_VF_NUM_IN_FIRST_DESC 192 7962 7963 unsigned int word_num; 7964 unsigned int bit_num; 7965 7966 if (vfid > 255 || vfid < 0) 7967 return -EIO; 7968 7969 if (vfid >= 0 && vfid < HCLGE_VF_NUM_IN_FIRST_DESC) { 7970 word_num = vfid / 32; 7971 bit_num = vfid % 32; 7972 if (clr) 7973 desc[1].data[word_num] &= cpu_to_le32(~(1 << bit_num)); 7974 else 7975 desc[1].data[word_num] |= cpu_to_le32(1 << bit_num); 7976 } else { 7977 word_num = (vfid - HCLGE_VF_NUM_IN_FIRST_DESC) / 32; 7978 bit_num = vfid % 32; 7979 if (clr) 7980 desc[2].data[word_num] &= cpu_to_le32(~(1 << bit_num)); 7981 else 7982 desc[2].data[word_num] |= cpu_to_le32(1 << bit_num); 7983 } 7984 7985 return 0; 7986 } 7987 7988 static bool hclge_is_all_function_id_zero(struct hclge_desc *desc) 7989 { 7990 #define HCLGE_DESC_NUMBER 3 7991 #define HCLGE_FUNC_NUMBER_PER_DESC 6 7992 int i, j; 7993 7994 for (i = 1; i < HCLGE_DESC_NUMBER; i++) 7995 for (j = 0; j < HCLGE_FUNC_NUMBER_PER_DESC; j++) 7996 if (desc[i].data[j]) 7997 return false; 7998 7999 return true; 8000 } 8001 8002 static void hclge_prepare_mac_addr(struct hclge_mac_vlan_tbl_entry_cmd *new_req, 8003 const u8 *addr, bool is_mc) 8004 { 8005 const unsigned char *mac_addr = addr; 8006 u32 high_val = mac_addr[2] << 16 | (mac_addr[3] << 24) | 8007 (mac_addr[0]) | (mac_addr[1] << 8); 8008 u32 low_val = mac_addr[4] | (mac_addr[5] << 8); 8009 8010 hnae3_set_bit(new_req->flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1); 8011 if (is_mc) { 8012 hnae3_set_bit(new_req->entry_type, HCLGE_MAC_VLAN_BIT1_EN_B, 1); 8013 hnae3_set_bit(new_req->mc_mac_en, HCLGE_MAC_VLAN_BIT0_EN_B, 1); 8014 } 8015 8016 new_req->mac_addr_hi32 = cpu_to_le32(high_val); 8017 new_req->mac_addr_lo16 = cpu_to_le16(low_val & 0xffff); 8018 } 8019 8020 static int hclge_remove_mac_vlan_tbl(struct hclge_vport *vport, 8021 struct hclge_mac_vlan_tbl_entry_cmd *req) 8022 { 8023 struct hclge_dev *hdev = vport->back; 8024 struct hclge_desc desc; 8025 u8 resp_code; 8026 u16 retval; 8027 int ret; 8028 8029 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_REMOVE, false); 8030 8031 memcpy(desc.data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8032 8033 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 8034 if (ret) { 8035 dev_err(&hdev->pdev->dev, 8036 "del mac addr failed for cmd_send, ret =%d.\n", 8037 ret); 8038 return ret; 8039 } 8040 resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff; 8041 retval = le16_to_cpu(desc.retval); 8042 8043 return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code, 8044 HCLGE_MAC_VLAN_REMOVE); 8045 } 8046 8047 static int hclge_lookup_mac_vlan_tbl(struct hclge_vport *vport, 8048 struct hclge_mac_vlan_tbl_entry_cmd *req, 8049 struct hclge_desc *desc, 8050 bool is_mc) 8051 { 8052 struct hclge_dev *hdev = vport->back; 8053 u8 resp_code; 8054 u16 retval; 8055 int ret; 8056 8057 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_MAC_VLAN_ADD, true); 8058 if (is_mc) { 8059 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 8060 memcpy(desc[0].data, 8061 req, 8062 sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8063 hclge_cmd_setup_basic_desc(&desc[1], 8064 HCLGE_OPC_MAC_VLAN_ADD, 8065 true); 8066 desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 8067 hclge_cmd_setup_basic_desc(&desc[2], 8068 HCLGE_OPC_MAC_VLAN_ADD, 8069 true); 8070 ret = hclge_cmd_send(&hdev->hw, desc, 3); 8071 } else { 8072 memcpy(desc[0].data, 8073 req, 8074 sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8075 ret = hclge_cmd_send(&hdev->hw, desc, 1); 8076 } 8077 if (ret) { 8078 dev_err(&hdev->pdev->dev, 8079 "lookup mac addr failed for cmd_send, ret =%d.\n", 8080 ret); 8081 return ret; 8082 } 8083 resp_code = (le32_to_cpu(desc[0].data[0]) >> 8) & 0xff; 8084 retval = le16_to_cpu(desc[0].retval); 8085 8086 return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code, 8087 HCLGE_MAC_VLAN_LKUP); 8088 } 8089 8090 static int hclge_add_mac_vlan_tbl(struct hclge_vport *vport, 8091 struct hclge_mac_vlan_tbl_entry_cmd *req, 8092 struct hclge_desc *mc_desc) 8093 { 8094 struct hclge_dev *hdev = vport->back; 8095 int cfg_status; 8096 u8 resp_code; 8097 u16 retval; 8098 int ret; 8099 8100 if (!mc_desc) { 8101 struct hclge_desc desc; 8102 8103 hclge_cmd_setup_basic_desc(&desc, 8104 HCLGE_OPC_MAC_VLAN_ADD, 8105 false); 8106 memcpy(desc.data, req, 8107 sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8108 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 8109 resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff; 8110 retval = le16_to_cpu(desc.retval); 8111 8112 cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval, 8113 resp_code, 8114 HCLGE_MAC_VLAN_ADD); 8115 } else { 8116 hclge_comm_cmd_reuse_desc(&mc_desc[0], false); 8117 mc_desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 8118 hclge_comm_cmd_reuse_desc(&mc_desc[1], false); 8119 mc_desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 8120 hclge_comm_cmd_reuse_desc(&mc_desc[2], false); 8121 mc_desc[2].flag &= cpu_to_le16(~HCLGE_COMM_CMD_FLAG_NEXT); 8122 memcpy(mc_desc[0].data, req, 8123 sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8124 ret = hclge_cmd_send(&hdev->hw, mc_desc, 3); 8125 resp_code = (le32_to_cpu(mc_desc[0].data[0]) >> 8) & 0xff; 8126 retval = le16_to_cpu(mc_desc[0].retval); 8127 8128 cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval, 8129 resp_code, 8130 HCLGE_MAC_VLAN_ADD); 8131 } 8132 8133 if (ret) { 8134 dev_err(&hdev->pdev->dev, 8135 "add mac addr failed for cmd_send, ret =%d.\n", 8136 ret); 8137 return ret; 8138 } 8139 8140 return cfg_status; 8141 } 8142 8143 static int hclge_set_umv_space(struct hclge_dev *hdev, u16 space_size, 8144 u16 *allocated_size) 8145 { 8146 struct hclge_umv_spc_alc_cmd *req; 8147 struct hclge_desc desc; 8148 int ret; 8149 8150 req = (struct hclge_umv_spc_alc_cmd *)desc.data; 8151 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_ALLOCATE, false); 8152 8153 req->space_size = cpu_to_le32(space_size); 8154 8155 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 8156 if (ret) { 8157 dev_err(&hdev->pdev->dev, "failed to set umv space, ret = %d\n", 8158 ret); 8159 return ret; 8160 } 8161 8162 *allocated_size = le32_to_cpu(desc.data[1]); 8163 8164 return 0; 8165 } 8166 8167 static int hclge_init_umv_space(struct hclge_dev *hdev) 8168 { 8169 u16 allocated_size = 0; 8170 int ret; 8171 8172 ret = hclge_set_umv_space(hdev, hdev->wanted_umv_size, &allocated_size); 8173 if (ret) 8174 return ret; 8175 8176 if (allocated_size < hdev->wanted_umv_size) 8177 dev_warn(&hdev->pdev->dev, 8178 "failed to alloc umv space, want %u, get %u\n", 8179 hdev->wanted_umv_size, allocated_size); 8180 8181 hdev->max_umv_size = allocated_size; 8182 hdev->priv_umv_size = hdev->max_umv_size / (hdev->num_alloc_vport + 1); 8183 hdev->share_umv_size = hdev->priv_umv_size + 8184 hdev->max_umv_size % (hdev->num_alloc_vport + 1); 8185 8186 if (hdev->ae_dev->dev_specs.mc_mac_size) 8187 set_bit(HNAE3_DEV_SUPPORT_MC_MAC_MNG_B, hdev->ae_dev->caps); 8188 8189 return 0; 8190 } 8191 8192 static void hclge_reset_umv_space(struct hclge_dev *hdev) 8193 { 8194 struct hclge_vport *vport; 8195 int i; 8196 8197 for (i = 0; i < hdev->num_alloc_vport; i++) { 8198 vport = &hdev->vport[i]; 8199 vport->used_umv_num = 0; 8200 } 8201 8202 mutex_lock(&hdev->vport_lock); 8203 hdev->share_umv_size = hdev->priv_umv_size + 8204 hdev->max_umv_size % (hdev->num_alloc_vport + 1); 8205 mutex_unlock(&hdev->vport_lock); 8206 8207 hdev->used_mc_mac_num = 0; 8208 } 8209 8210 static bool hclge_is_umv_space_full(struct hclge_vport *vport, bool need_lock) 8211 { 8212 struct hclge_dev *hdev = vport->back; 8213 bool is_full; 8214 8215 if (need_lock) 8216 mutex_lock(&hdev->vport_lock); 8217 8218 is_full = (vport->used_umv_num >= hdev->priv_umv_size && 8219 hdev->share_umv_size == 0); 8220 8221 if (need_lock) 8222 mutex_unlock(&hdev->vport_lock); 8223 8224 return is_full; 8225 } 8226 8227 static void hclge_update_umv_space(struct hclge_vport *vport, bool is_free) 8228 { 8229 struct hclge_dev *hdev = vport->back; 8230 8231 if (is_free) { 8232 if (vport->used_umv_num > hdev->priv_umv_size) 8233 hdev->share_umv_size++; 8234 8235 if (vport->used_umv_num > 0) 8236 vport->used_umv_num--; 8237 } else { 8238 if (vport->used_umv_num >= hdev->priv_umv_size && 8239 hdev->share_umv_size > 0) 8240 hdev->share_umv_size--; 8241 vport->used_umv_num++; 8242 } 8243 } 8244 8245 static struct hclge_mac_node *hclge_find_mac_node(struct list_head *list, 8246 const u8 *mac_addr) 8247 { 8248 struct hclge_mac_node *mac_node, *tmp; 8249 8250 list_for_each_entry_safe(mac_node, tmp, list, node) 8251 if (ether_addr_equal(mac_addr, mac_node->mac_addr)) 8252 return mac_node; 8253 8254 return NULL; 8255 } 8256 8257 static void hclge_update_mac_node(struct hclge_mac_node *mac_node, 8258 enum HCLGE_MAC_NODE_STATE state) 8259 { 8260 switch (state) { 8261 /* from set_rx_mode or tmp_add_list */ 8262 case HCLGE_MAC_TO_ADD: 8263 if (mac_node->state == HCLGE_MAC_TO_DEL) 8264 mac_node->state = HCLGE_MAC_ACTIVE; 8265 break; 8266 /* only from set_rx_mode */ 8267 case HCLGE_MAC_TO_DEL: 8268 if (mac_node->state == HCLGE_MAC_TO_ADD) { 8269 list_del(&mac_node->node); 8270 kfree(mac_node); 8271 } else { 8272 mac_node->state = HCLGE_MAC_TO_DEL; 8273 } 8274 break; 8275 /* only from tmp_add_list, the mac_node->state won't be 8276 * ACTIVE. 8277 */ 8278 case HCLGE_MAC_ACTIVE: 8279 if (mac_node->state == HCLGE_MAC_TO_ADD) 8280 mac_node->state = HCLGE_MAC_ACTIVE; 8281 8282 break; 8283 } 8284 } 8285 8286 int hclge_update_mac_list(struct hclge_vport *vport, 8287 enum HCLGE_MAC_NODE_STATE state, 8288 enum HCLGE_MAC_ADDR_TYPE mac_type, 8289 const unsigned char *addr) 8290 { 8291 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8292 struct hclge_dev *hdev = vport->back; 8293 struct hclge_mac_node *mac_node; 8294 struct list_head *list; 8295 8296 list = (mac_type == HCLGE_MAC_ADDR_UC) ? 8297 &vport->uc_mac_list : &vport->mc_mac_list; 8298 8299 spin_lock_bh(&vport->mac_list_lock); 8300 8301 /* if the mac addr is already in the mac list, no need to add a new 8302 * one into it, just check the mac addr state, convert it to a new 8303 * state, or just remove it, or do nothing. 8304 */ 8305 mac_node = hclge_find_mac_node(list, addr); 8306 if (mac_node) { 8307 hclge_update_mac_node(mac_node, state); 8308 spin_unlock_bh(&vport->mac_list_lock); 8309 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state); 8310 return 0; 8311 } 8312 8313 /* if this address is never added, unnecessary to delete */ 8314 if (state == HCLGE_MAC_TO_DEL) { 8315 spin_unlock_bh(&vport->mac_list_lock); 8316 hnae3_format_mac_addr(format_mac_addr, addr); 8317 dev_err(&hdev->pdev->dev, 8318 "failed to delete address %s from mac list\n", 8319 format_mac_addr); 8320 return -ENOENT; 8321 } 8322 8323 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); 8324 if (!mac_node) { 8325 spin_unlock_bh(&vport->mac_list_lock); 8326 return -ENOMEM; 8327 } 8328 8329 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state); 8330 8331 mac_node->state = state; 8332 ether_addr_copy(mac_node->mac_addr, addr); 8333 list_add_tail(&mac_node->node, list); 8334 8335 spin_unlock_bh(&vport->mac_list_lock); 8336 8337 return 0; 8338 } 8339 8340 static int hclge_add_uc_addr(struct hnae3_handle *handle, 8341 const unsigned char *addr) 8342 { 8343 struct hclge_vport *vport = hclge_get_vport(handle); 8344 8345 return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_UC, 8346 addr); 8347 } 8348 8349 int hclge_add_uc_addr_common(struct hclge_vport *vport, 8350 const unsigned char *addr) 8351 { 8352 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8353 struct hclge_dev *hdev = vport->back; 8354 struct hclge_mac_vlan_tbl_entry_cmd req; 8355 struct hclge_desc desc; 8356 u16 egress_port = 0; 8357 int ret; 8358 8359 /* mac addr check */ 8360 if (is_zero_ether_addr(addr) || 8361 is_broadcast_ether_addr(addr) || 8362 is_multicast_ether_addr(addr)) { 8363 hnae3_format_mac_addr(format_mac_addr, addr); 8364 dev_err(&hdev->pdev->dev, 8365 "Set_uc mac err! invalid mac:%s. is_zero:%d,is_br=%d,is_mul=%d\n", 8366 format_mac_addr, is_zero_ether_addr(addr), 8367 is_broadcast_ether_addr(addr), 8368 is_multicast_ether_addr(addr)); 8369 return -EINVAL; 8370 } 8371 8372 memset(&req, 0, sizeof(req)); 8373 8374 hnae3_set_field(egress_port, HCLGE_MAC_EPORT_VFID_M, 8375 HCLGE_MAC_EPORT_VFID_S, vport->vport_id); 8376 8377 req.egress_port = cpu_to_le16(egress_port); 8378 8379 hclge_prepare_mac_addr(&req, addr, false); 8380 8381 /* Lookup the mac address in the mac_vlan table, and add 8382 * it if the entry is inexistent. Repeated unicast entry 8383 * is not allowed in the mac vlan table. 8384 */ 8385 ret = hclge_lookup_mac_vlan_tbl(vport, &req, &desc, false); 8386 if (ret == -ENOENT) { 8387 mutex_lock(&hdev->vport_lock); 8388 if (!hclge_is_umv_space_full(vport, false)) { 8389 ret = hclge_add_mac_vlan_tbl(vport, &req, NULL); 8390 if (!ret) 8391 hclge_update_umv_space(vport, false); 8392 mutex_unlock(&hdev->vport_lock); 8393 return ret; 8394 } 8395 mutex_unlock(&hdev->vport_lock); 8396 8397 if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE)) 8398 dev_err(&hdev->pdev->dev, "UC MAC table full(%u)\n", 8399 hdev->priv_umv_size); 8400 8401 return -ENOSPC; 8402 } 8403 8404 /* check if we just hit the duplicate */ 8405 if (!ret) 8406 return -EEXIST; 8407 8408 return ret; 8409 } 8410 8411 static int hclge_rm_uc_addr(struct hnae3_handle *handle, 8412 const unsigned char *addr) 8413 { 8414 struct hclge_vport *vport = hclge_get_vport(handle); 8415 8416 return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_UC, 8417 addr); 8418 } 8419 8420 int hclge_rm_uc_addr_common(struct hclge_vport *vport, 8421 const unsigned char *addr) 8422 { 8423 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8424 struct hclge_dev *hdev = vport->back; 8425 struct hclge_mac_vlan_tbl_entry_cmd req; 8426 int ret; 8427 8428 /* mac addr check */ 8429 if (is_zero_ether_addr(addr) || 8430 is_broadcast_ether_addr(addr) || 8431 is_multicast_ether_addr(addr)) { 8432 hnae3_format_mac_addr(format_mac_addr, addr); 8433 dev_dbg(&hdev->pdev->dev, "Remove mac err! invalid mac:%s.\n", 8434 format_mac_addr); 8435 return -EINVAL; 8436 } 8437 8438 memset(&req, 0, sizeof(req)); 8439 hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0); 8440 hclge_prepare_mac_addr(&req, addr, false); 8441 ret = hclge_remove_mac_vlan_tbl(vport, &req); 8442 if (!ret || ret == -ENOENT) { 8443 mutex_lock(&hdev->vport_lock); 8444 hclge_update_umv_space(vport, true); 8445 mutex_unlock(&hdev->vport_lock); 8446 return 0; 8447 } 8448 8449 return ret; 8450 } 8451 8452 static int hclge_add_mc_addr(struct hnae3_handle *handle, 8453 const unsigned char *addr) 8454 { 8455 struct hclge_vport *vport = hclge_get_vport(handle); 8456 8457 return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_MC, 8458 addr); 8459 } 8460 8461 int hclge_add_mc_addr_common(struct hclge_vport *vport, 8462 const unsigned char *addr) 8463 { 8464 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8465 struct hclge_dev *hdev = vport->back; 8466 struct hclge_mac_vlan_tbl_entry_cmd req; 8467 struct hclge_desc desc[3]; 8468 bool is_new_addr = false; 8469 int status; 8470 8471 /* mac addr check */ 8472 if (!is_multicast_ether_addr(addr)) { 8473 hnae3_format_mac_addr(format_mac_addr, addr); 8474 dev_err(&hdev->pdev->dev, 8475 "Add mc mac err! invalid mac:%s.\n", 8476 format_mac_addr); 8477 return -EINVAL; 8478 } 8479 memset(&req, 0, sizeof(req)); 8480 hclge_prepare_mac_addr(&req, addr, true); 8481 status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true); 8482 if (status) { 8483 if (hnae3_ae_dev_mc_mac_mng_supported(hdev->ae_dev) && 8484 hdev->used_mc_mac_num >= 8485 hdev->ae_dev->dev_specs.mc_mac_size) 8486 goto err_no_space; 8487 8488 is_new_addr = true; 8489 8490 /* This mac addr do not exist, add new entry for it */ 8491 memset(desc[0].data, 0, sizeof(desc[0].data)); 8492 memset(desc[1].data, 0, sizeof(desc[0].data)); 8493 memset(desc[2].data, 0, sizeof(desc[0].data)); 8494 } 8495 status = hclge_update_desc_vfid(desc, vport->vport_id, false); 8496 if (status) 8497 return status; 8498 status = hclge_add_mac_vlan_tbl(vport, &req, desc); 8499 if (status == -ENOSPC) 8500 goto err_no_space; 8501 else if (!status && is_new_addr) 8502 hdev->used_mc_mac_num++; 8503 8504 return status; 8505 8506 err_no_space: 8507 /* if already overflow, not to print each time */ 8508 if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE)) { 8509 vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE; 8510 dev_err(&hdev->pdev->dev, "mc mac vlan table is full\n"); 8511 } 8512 8513 return -ENOSPC; 8514 } 8515 8516 static int hclge_rm_mc_addr(struct hnae3_handle *handle, 8517 const unsigned char *addr) 8518 { 8519 struct hclge_vport *vport = hclge_get_vport(handle); 8520 8521 return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_MC, 8522 addr); 8523 } 8524 8525 int hclge_rm_mc_addr_common(struct hclge_vport *vport, 8526 const unsigned char *addr) 8527 { 8528 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8529 struct hclge_dev *hdev = vport->back; 8530 struct hclge_mac_vlan_tbl_entry_cmd req; 8531 enum hclge_comm_cmd_status status; 8532 struct hclge_desc desc[3]; 8533 8534 /* mac addr check */ 8535 if (!is_multicast_ether_addr(addr)) { 8536 hnae3_format_mac_addr(format_mac_addr, addr); 8537 dev_dbg(&hdev->pdev->dev, 8538 "Remove mc mac err! invalid mac:%s.\n", 8539 format_mac_addr); 8540 return -EINVAL; 8541 } 8542 8543 memset(&req, 0, sizeof(req)); 8544 hclge_prepare_mac_addr(&req, addr, true); 8545 status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true); 8546 if (!status) { 8547 /* This mac addr exist, remove this handle's VFID for it */ 8548 status = hclge_update_desc_vfid(desc, vport->vport_id, true); 8549 if (status) 8550 return status; 8551 8552 if (hclge_is_all_function_id_zero(desc)) { 8553 /* All the vfid is zero, so need to delete this entry */ 8554 status = hclge_remove_mac_vlan_tbl(vport, &req); 8555 if (!status) 8556 hdev->used_mc_mac_num--; 8557 } else { 8558 /* Not all the vfid is zero, update the vfid */ 8559 status = hclge_add_mac_vlan_tbl(vport, &req, desc); 8560 } 8561 } else if (status == -ENOENT) { 8562 status = 0; 8563 } 8564 8565 return status; 8566 } 8567 8568 static void hclge_sync_vport_mac_list(struct hclge_vport *vport, 8569 struct list_head *list, 8570 enum HCLGE_MAC_ADDR_TYPE mac_type) 8571 { 8572 int (*sync)(struct hclge_vport *vport, const unsigned char *addr); 8573 struct hclge_mac_node *mac_node, *tmp; 8574 int ret; 8575 8576 if (mac_type == HCLGE_MAC_ADDR_UC) 8577 sync = hclge_add_uc_addr_common; 8578 else 8579 sync = hclge_add_mc_addr_common; 8580 8581 list_for_each_entry_safe(mac_node, tmp, list, node) { 8582 ret = sync(vport, mac_node->mac_addr); 8583 if (!ret) { 8584 mac_node->state = HCLGE_MAC_ACTIVE; 8585 } else { 8586 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, 8587 &vport->state); 8588 8589 /* If one unicast mac address is existing in hardware, 8590 * we need to try whether other unicast mac addresses 8591 * are new addresses that can be added. 8592 * Multicast mac address can be reusable, even though 8593 * there is no space to add new multicast mac address, 8594 * we should check whether other mac addresses are 8595 * existing in hardware for reuse. 8596 */ 8597 if ((mac_type == HCLGE_MAC_ADDR_UC && ret != -EEXIST) || 8598 (mac_type == HCLGE_MAC_ADDR_MC && ret != -ENOSPC)) 8599 break; 8600 } 8601 } 8602 } 8603 8604 static void hclge_unsync_vport_mac_list(struct hclge_vport *vport, 8605 struct list_head *list, 8606 enum HCLGE_MAC_ADDR_TYPE mac_type) 8607 { 8608 int (*unsync)(struct hclge_vport *vport, const unsigned char *addr); 8609 struct hclge_mac_node *mac_node, *tmp; 8610 int ret; 8611 8612 if (mac_type == HCLGE_MAC_ADDR_UC) 8613 unsync = hclge_rm_uc_addr_common; 8614 else 8615 unsync = hclge_rm_mc_addr_common; 8616 8617 list_for_each_entry_safe(mac_node, tmp, list, node) { 8618 ret = unsync(vport, mac_node->mac_addr); 8619 if (!ret || ret == -ENOENT) { 8620 list_del(&mac_node->node); 8621 kfree(mac_node); 8622 } else { 8623 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, 8624 &vport->state); 8625 break; 8626 } 8627 } 8628 } 8629 8630 static bool hclge_sync_from_add_list(struct list_head *add_list, 8631 struct list_head *mac_list) 8632 { 8633 struct hclge_mac_node *mac_node, *tmp, *new_node; 8634 bool all_added = true; 8635 8636 list_for_each_entry_safe(mac_node, tmp, add_list, node) { 8637 if (mac_node->state == HCLGE_MAC_TO_ADD) 8638 all_added = false; 8639 8640 /* if the mac address from tmp_add_list is not in the 8641 * uc/mc_mac_list, it means have received a TO_DEL request 8642 * during the time window of adding the mac address into mac 8643 * table. if mac_node state is ACTIVE, then change it to TO_DEL, 8644 * then it will be removed at next time. else it must be TO_ADD, 8645 * this address hasn't been added into mac table, 8646 * so just remove the mac node. 8647 */ 8648 new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr); 8649 if (new_node) { 8650 hclge_update_mac_node(new_node, mac_node->state); 8651 list_del(&mac_node->node); 8652 kfree(mac_node); 8653 } else if (mac_node->state == HCLGE_MAC_ACTIVE) { 8654 mac_node->state = HCLGE_MAC_TO_DEL; 8655 list_move_tail(&mac_node->node, mac_list); 8656 } else { 8657 list_del(&mac_node->node); 8658 kfree(mac_node); 8659 } 8660 } 8661 8662 return all_added; 8663 } 8664 8665 static void hclge_sync_from_del_list(struct list_head *del_list, 8666 struct list_head *mac_list) 8667 { 8668 struct hclge_mac_node *mac_node, *tmp, *new_node; 8669 8670 list_for_each_entry_safe(mac_node, tmp, del_list, node) { 8671 new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr); 8672 if (new_node) { 8673 /* If the mac addr exists in the mac list, it means 8674 * received a new TO_ADD request during the time window 8675 * of configuring the mac address. For the mac node 8676 * state is TO_ADD, and the address is already in the 8677 * in the hardware(due to delete fail), so we just need 8678 * to change the mac node state to ACTIVE. 8679 */ 8680 new_node->state = HCLGE_MAC_ACTIVE; 8681 list_del(&mac_node->node); 8682 kfree(mac_node); 8683 } else { 8684 list_move_tail(&mac_node->node, mac_list); 8685 } 8686 } 8687 } 8688 8689 static void hclge_update_overflow_flags(struct hclge_vport *vport, 8690 enum HCLGE_MAC_ADDR_TYPE mac_type, 8691 bool is_all_added) 8692 { 8693 if (mac_type == HCLGE_MAC_ADDR_UC) { 8694 if (is_all_added) 8695 vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_UPE; 8696 else 8697 vport->overflow_promisc_flags |= HNAE3_OVERFLOW_UPE; 8698 } else { 8699 if (is_all_added) 8700 vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_MPE; 8701 else 8702 vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE; 8703 } 8704 } 8705 8706 static void hclge_sync_vport_mac_table(struct hclge_vport *vport, 8707 enum HCLGE_MAC_ADDR_TYPE mac_type) 8708 { 8709 struct hclge_mac_node *mac_node, *tmp, *new_node; 8710 struct list_head tmp_add_list, tmp_del_list; 8711 struct list_head *list; 8712 bool all_added; 8713 8714 INIT_LIST_HEAD(&tmp_add_list); 8715 INIT_LIST_HEAD(&tmp_del_list); 8716 8717 /* move the mac addr to the tmp_add_list and tmp_del_list, then 8718 * we can add/delete these mac addr outside the spin lock 8719 */ 8720 list = (mac_type == HCLGE_MAC_ADDR_UC) ? 8721 &vport->uc_mac_list : &vport->mc_mac_list; 8722 8723 spin_lock_bh(&vport->mac_list_lock); 8724 8725 list_for_each_entry_safe(mac_node, tmp, list, node) { 8726 switch (mac_node->state) { 8727 case HCLGE_MAC_TO_DEL: 8728 list_move_tail(&mac_node->node, &tmp_del_list); 8729 break; 8730 case HCLGE_MAC_TO_ADD: 8731 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 8732 if (!new_node) 8733 goto stop_traverse; 8734 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); 8735 new_node->state = mac_node->state; 8736 list_add_tail(&new_node->node, &tmp_add_list); 8737 break; 8738 default: 8739 break; 8740 } 8741 } 8742 8743 stop_traverse: 8744 spin_unlock_bh(&vport->mac_list_lock); 8745 8746 /* delete first, in order to get max mac table space for adding */ 8747 hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type); 8748 hclge_sync_vport_mac_list(vport, &tmp_add_list, mac_type); 8749 8750 /* if some mac addresses were added/deleted fail, move back to the 8751 * mac_list, and retry at next time. 8752 */ 8753 spin_lock_bh(&vport->mac_list_lock); 8754 8755 hclge_sync_from_del_list(&tmp_del_list, list); 8756 all_added = hclge_sync_from_add_list(&tmp_add_list, list); 8757 8758 spin_unlock_bh(&vport->mac_list_lock); 8759 8760 hclge_update_overflow_flags(vport, mac_type, all_added); 8761 } 8762 8763 static bool hclge_need_sync_mac_table(struct hclge_vport *vport) 8764 { 8765 struct hclge_dev *hdev = vport->back; 8766 8767 if (test_bit(vport->vport_id, hdev->vport_config_block)) 8768 return false; 8769 8770 if (test_and_clear_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state)) 8771 return true; 8772 8773 return false; 8774 } 8775 8776 static void hclge_sync_mac_table(struct hclge_dev *hdev) 8777 { 8778 int i; 8779 8780 for (i = 0; i < hdev->num_alloc_vport; i++) { 8781 struct hclge_vport *vport = &hdev->vport[i]; 8782 8783 if (!hclge_need_sync_mac_table(vport)) 8784 continue; 8785 8786 hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_UC); 8787 hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_MC); 8788 } 8789 } 8790 8791 static void hclge_build_del_list(struct list_head *list, 8792 bool is_del_list, 8793 struct list_head *tmp_del_list) 8794 { 8795 struct hclge_mac_node *mac_cfg, *tmp; 8796 8797 list_for_each_entry_safe(mac_cfg, tmp, list, node) { 8798 switch (mac_cfg->state) { 8799 case HCLGE_MAC_TO_DEL: 8800 case HCLGE_MAC_ACTIVE: 8801 list_move_tail(&mac_cfg->node, tmp_del_list); 8802 break; 8803 case HCLGE_MAC_TO_ADD: 8804 if (is_del_list) { 8805 list_del(&mac_cfg->node); 8806 kfree(mac_cfg); 8807 } 8808 break; 8809 } 8810 } 8811 } 8812 8813 static void hclge_unsync_del_list(struct hclge_vport *vport, 8814 int (*unsync)(struct hclge_vport *vport, 8815 const unsigned char *addr), 8816 bool is_del_list, 8817 struct list_head *tmp_del_list) 8818 { 8819 struct hclge_mac_node *mac_cfg, *tmp; 8820 int ret; 8821 8822 list_for_each_entry_safe(mac_cfg, tmp, tmp_del_list, node) { 8823 ret = unsync(vport, mac_cfg->mac_addr); 8824 if (!ret || ret == -ENOENT) { 8825 /* clear all mac addr from hardware, but remain these 8826 * mac addr in the mac list, and restore them after 8827 * vf reset finished. 8828 */ 8829 if (!is_del_list && 8830 mac_cfg->state == HCLGE_MAC_ACTIVE) { 8831 mac_cfg->state = HCLGE_MAC_TO_ADD; 8832 } else { 8833 list_del(&mac_cfg->node); 8834 kfree(mac_cfg); 8835 } 8836 } else if (is_del_list) { 8837 mac_cfg->state = HCLGE_MAC_TO_DEL; 8838 } 8839 } 8840 } 8841 8842 void hclge_rm_vport_all_mac_table(struct hclge_vport *vport, bool is_del_list, 8843 enum HCLGE_MAC_ADDR_TYPE mac_type) 8844 { 8845 int (*unsync)(struct hclge_vport *vport, const unsigned char *addr); 8846 struct hclge_dev *hdev = vport->back; 8847 struct list_head tmp_del_list, *list; 8848 8849 if (mac_type == HCLGE_MAC_ADDR_UC) { 8850 list = &vport->uc_mac_list; 8851 unsync = hclge_rm_uc_addr_common; 8852 } else { 8853 list = &vport->mc_mac_list; 8854 unsync = hclge_rm_mc_addr_common; 8855 } 8856 8857 INIT_LIST_HEAD(&tmp_del_list); 8858 8859 if (!is_del_list) 8860 set_bit(vport->vport_id, hdev->vport_config_block); 8861 8862 spin_lock_bh(&vport->mac_list_lock); 8863 8864 hclge_build_del_list(list, is_del_list, &tmp_del_list); 8865 8866 spin_unlock_bh(&vport->mac_list_lock); 8867 8868 hclge_unsync_del_list(vport, unsync, is_del_list, &tmp_del_list); 8869 8870 spin_lock_bh(&vport->mac_list_lock); 8871 8872 hclge_sync_from_del_list(&tmp_del_list, list); 8873 8874 spin_unlock_bh(&vport->mac_list_lock); 8875 } 8876 8877 /* remove all mac address when uninitailize */ 8878 static void hclge_uninit_vport_mac_list(struct hclge_vport *vport, 8879 enum HCLGE_MAC_ADDR_TYPE mac_type) 8880 { 8881 struct hclge_mac_node *mac_node, *tmp; 8882 struct hclge_dev *hdev = vport->back; 8883 struct list_head tmp_del_list, *list; 8884 8885 INIT_LIST_HEAD(&tmp_del_list); 8886 8887 list = (mac_type == HCLGE_MAC_ADDR_UC) ? 8888 &vport->uc_mac_list : &vport->mc_mac_list; 8889 8890 spin_lock_bh(&vport->mac_list_lock); 8891 8892 list_for_each_entry_safe(mac_node, tmp, list, node) { 8893 switch (mac_node->state) { 8894 case HCLGE_MAC_TO_DEL: 8895 case HCLGE_MAC_ACTIVE: 8896 list_move_tail(&mac_node->node, &tmp_del_list); 8897 break; 8898 case HCLGE_MAC_TO_ADD: 8899 list_del(&mac_node->node); 8900 kfree(mac_node); 8901 break; 8902 } 8903 } 8904 8905 spin_unlock_bh(&vport->mac_list_lock); 8906 8907 hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type); 8908 8909 if (!list_empty(&tmp_del_list)) 8910 dev_warn(&hdev->pdev->dev, 8911 "uninit %s mac list for vport %u not completely.\n", 8912 mac_type == HCLGE_MAC_ADDR_UC ? "uc" : "mc", 8913 vport->vport_id); 8914 8915 list_for_each_entry_safe(mac_node, tmp, &tmp_del_list, node) { 8916 list_del(&mac_node->node); 8917 kfree(mac_node); 8918 } 8919 } 8920 8921 static void hclge_uninit_mac_table(struct hclge_dev *hdev) 8922 { 8923 struct hclge_vport *vport; 8924 int i; 8925 8926 for (i = 0; i < hdev->num_alloc_vport; i++) { 8927 vport = &hdev->vport[i]; 8928 hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_UC); 8929 hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_MC); 8930 } 8931 } 8932 8933 static int hclge_get_mac_ethertype_cmd_status(struct hclge_dev *hdev, 8934 u16 cmdq_resp, u8 resp_code) 8935 { 8936 #define HCLGE_ETHERTYPE_SUCCESS_ADD 0 8937 #define HCLGE_ETHERTYPE_ALREADY_ADD 1 8938 #define HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW 2 8939 #define HCLGE_ETHERTYPE_KEY_CONFLICT 3 8940 8941 int return_status; 8942 8943 if (cmdq_resp) { 8944 dev_err(&hdev->pdev->dev, 8945 "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n", 8946 cmdq_resp); 8947 return -EIO; 8948 } 8949 8950 switch (resp_code) { 8951 case HCLGE_ETHERTYPE_SUCCESS_ADD: 8952 case HCLGE_ETHERTYPE_ALREADY_ADD: 8953 return_status = 0; 8954 break; 8955 case HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW: 8956 dev_err(&hdev->pdev->dev, 8957 "add mac ethertype failed for manager table overflow.\n"); 8958 return_status = -EIO; 8959 break; 8960 case HCLGE_ETHERTYPE_KEY_CONFLICT: 8961 dev_err(&hdev->pdev->dev, 8962 "add mac ethertype failed for key conflict.\n"); 8963 return_status = -EIO; 8964 break; 8965 default: 8966 dev_err(&hdev->pdev->dev, 8967 "add mac ethertype failed for undefined, code=%u.\n", 8968 resp_code); 8969 return_status = -EIO; 8970 } 8971 8972 return return_status; 8973 } 8974 8975 static int hclge_set_vf_mac(struct hnae3_handle *handle, int vf, 8976 u8 *mac_addr) 8977 { 8978 struct hclge_vport *vport = hclge_get_vport(handle); 8979 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8980 struct hclge_dev *hdev = vport->back; 8981 8982 vport = hclge_get_vf_vport(hdev, vf); 8983 if (!vport) 8984 return -EINVAL; 8985 8986 hnae3_format_mac_addr(format_mac_addr, mac_addr); 8987 if (ether_addr_equal(mac_addr, vport->vf_info.mac)) { 8988 dev_info(&hdev->pdev->dev, 8989 "Specified MAC(=%s) is same as before, no change committed!\n", 8990 format_mac_addr); 8991 return 0; 8992 } 8993 8994 ether_addr_copy(vport->vf_info.mac, mac_addr); 8995 8996 /* there is a timewindow for PF to know VF unalive, it may 8997 * cause send mailbox fail, but it doesn't matter, VF will 8998 * query it when reinit. 8999 */ 9000 if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) { 9001 dev_info(&hdev->pdev->dev, 9002 "MAC of VF %d has been set to %s, and it will be reinitialized!\n", 9003 vf, format_mac_addr); 9004 (void)hclge_inform_reset_assert_to_vf(vport); 9005 return 0; 9006 } 9007 9008 dev_info(&hdev->pdev->dev, "MAC of VF %d has been set to %s\n", 9009 vf, format_mac_addr); 9010 return 0; 9011 } 9012 9013 static int hclge_add_mgr_tbl(struct hclge_dev *hdev, 9014 const struct hclge_mac_mgr_tbl_entry_cmd *req) 9015 { 9016 struct hclge_desc desc; 9017 u8 resp_code; 9018 u16 retval; 9019 int ret; 9020 9021 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_ETHTYPE_ADD, false); 9022 memcpy(desc.data, req, sizeof(struct hclge_mac_mgr_tbl_entry_cmd)); 9023 9024 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9025 if (ret) { 9026 dev_err(&hdev->pdev->dev, 9027 "add mac ethertype failed for cmd_send, ret =%d.\n", 9028 ret); 9029 return ret; 9030 } 9031 9032 resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff; 9033 retval = le16_to_cpu(desc.retval); 9034 9035 return hclge_get_mac_ethertype_cmd_status(hdev, retval, resp_code); 9036 } 9037 9038 static int init_mgr_tbl(struct hclge_dev *hdev) 9039 { 9040 int ret; 9041 int i; 9042 9043 for (i = 0; i < ARRAY_SIZE(hclge_mgr_table); i++) { 9044 ret = hclge_add_mgr_tbl(hdev, &hclge_mgr_table[i]); 9045 if (ret) { 9046 dev_err(&hdev->pdev->dev, 9047 "add mac ethertype failed, ret =%d.\n", 9048 ret); 9049 return ret; 9050 } 9051 } 9052 9053 return 0; 9054 } 9055 9056 static void hclge_get_mac_addr(struct hnae3_handle *handle, u8 *p) 9057 { 9058 struct hclge_vport *vport = hclge_get_vport(handle); 9059 struct hclge_dev *hdev = vport->back; 9060 9061 ether_addr_copy(p, hdev->hw.mac.mac_addr); 9062 } 9063 9064 int hclge_update_mac_node_for_dev_addr(struct hclge_vport *vport, 9065 const u8 *old_addr, const u8 *new_addr) 9066 { 9067 struct list_head *list = &vport->uc_mac_list; 9068 struct hclge_mac_node *old_node, *new_node; 9069 9070 new_node = hclge_find_mac_node(list, new_addr); 9071 if (!new_node) { 9072 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 9073 if (!new_node) 9074 return -ENOMEM; 9075 9076 new_node->state = HCLGE_MAC_TO_ADD; 9077 ether_addr_copy(new_node->mac_addr, new_addr); 9078 list_add(&new_node->node, list); 9079 } else { 9080 if (new_node->state == HCLGE_MAC_TO_DEL) 9081 new_node->state = HCLGE_MAC_ACTIVE; 9082 9083 /* make sure the new addr is in the list head, avoid dev 9084 * addr may be not re-added into mac table for the umv space 9085 * limitation after global/imp reset which will clear mac 9086 * table by hardware. 9087 */ 9088 list_move(&new_node->node, list); 9089 } 9090 9091 if (old_addr && !ether_addr_equal(old_addr, new_addr)) { 9092 old_node = hclge_find_mac_node(list, old_addr); 9093 if (old_node) { 9094 if (old_node->state == HCLGE_MAC_TO_ADD) { 9095 list_del(&old_node->node); 9096 kfree(old_node); 9097 } else { 9098 old_node->state = HCLGE_MAC_TO_DEL; 9099 } 9100 } 9101 } 9102 9103 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state); 9104 9105 return 0; 9106 } 9107 9108 static int hclge_set_mac_addr(struct hnae3_handle *handle, const void *p, 9109 bool is_first) 9110 { 9111 const unsigned char *new_addr = (const unsigned char *)p; 9112 struct hclge_vport *vport = hclge_get_vport(handle); 9113 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 9114 struct hclge_dev *hdev = vport->back; 9115 unsigned char *old_addr = NULL; 9116 int ret; 9117 9118 /* mac addr check */ 9119 if (is_zero_ether_addr(new_addr) || 9120 is_broadcast_ether_addr(new_addr) || 9121 is_multicast_ether_addr(new_addr)) { 9122 hnae3_format_mac_addr(format_mac_addr, new_addr); 9123 dev_err(&hdev->pdev->dev, 9124 "change uc mac err! invalid mac: %s.\n", 9125 format_mac_addr); 9126 return -EINVAL; 9127 } 9128 9129 ret = hclge_pause_addr_cfg(hdev, new_addr); 9130 if (ret) { 9131 dev_err(&hdev->pdev->dev, 9132 "failed to configure mac pause address, ret = %d\n", 9133 ret); 9134 return ret; 9135 } 9136 9137 if (!is_first) 9138 old_addr = hdev->hw.mac.mac_addr; 9139 9140 spin_lock_bh(&vport->mac_list_lock); 9141 ret = hclge_update_mac_node_for_dev_addr(vport, old_addr, new_addr); 9142 if (ret) { 9143 hnae3_format_mac_addr(format_mac_addr, new_addr); 9144 dev_err(&hdev->pdev->dev, 9145 "failed to change the mac addr:%s, ret = %d\n", 9146 format_mac_addr, ret); 9147 spin_unlock_bh(&vport->mac_list_lock); 9148 9149 if (!is_first) 9150 hclge_pause_addr_cfg(hdev, old_addr); 9151 9152 return ret; 9153 } 9154 /* we must update dev addr with spin lock protect, preventing dev addr 9155 * being removed by set_rx_mode path. 9156 */ 9157 ether_addr_copy(hdev->hw.mac.mac_addr, new_addr); 9158 spin_unlock_bh(&vport->mac_list_lock); 9159 9160 hclge_task_schedule(hdev, 0); 9161 9162 return 0; 9163 } 9164 9165 static int hclge_mii_ioctl(struct hclge_dev *hdev, struct ifreq *ifr, int cmd) 9166 { 9167 struct mii_ioctl_data *data = if_mii(ifr); 9168 9169 if (!hnae3_dev_phy_imp_supported(hdev)) 9170 return -EOPNOTSUPP; 9171 9172 switch (cmd) { 9173 case SIOCGMIIPHY: 9174 data->phy_id = hdev->hw.mac.phy_addr; 9175 /* this command reads phy id and register at the same time */ 9176 fallthrough; 9177 case SIOCGMIIREG: 9178 data->val_out = hclge_read_phy_reg(hdev, data->reg_num); 9179 return 0; 9180 9181 case SIOCSMIIREG: 9182 return hclge_write_phy_reg(hdev, data->reg_num, data->val_in); 9183 default: 9184 return -EOPNOTSUPP; 9185 } 9186 } 9187 9188 static int hclge_do_ioctl(struct hnae3_handle *handle, struct ifreq *ifr, 9189 int cmd) 9190 { 9191 struct hclge_vport *vport = hclge_get_vport(handle); 9192 struct hclge_dev *hdev = vport->back; 9193 9194 switch (cmd) { 9195 case SIOCGHWTSTAMP: 9196 return hclge_ptp_get_cfg(hdev, ifr); 9197 case SIOCSHWTSTAMP: 9198 return hclge_ptp_set_cfg(hdev, ifr); 9199 default: 9200 if (!hdev->hw.mac.phydev) 9201 return hclge_mii_ioctl(hdev, ifr, cmd); 9202 } 9203 9204 return phy_mii_ioctl(hdev->hw.mac.phydev, ifr, cmd); 9205 } 9206 9207 static int hclge_set_port_vlan_filter_bypass(struct hclge_dev *hdev, u8 vf_id, 9208 bool bypass_en) 9209 { 9210 struct hclge_port_vlan_filter_bypass_cmd *req; 9211 struct hclge_desc desc; 9212 int ret; 9213 9214 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PORT_VLAN_BYPASS, false); 9215 req = (struct hclge_port_vlan_filter_bypass_cmd *)desc.data; 9216 req->vf_id = vf_id; 9217 hnae3_set_bit(req->bypass_state, HCLGE_INGRESS_BYPASS_B, 9218 bypass_en ? 1 : 0); 9219 9220 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9221 if (ret) 9222 dev_err(&hdev->pdev->dev, 9223 "failed to set vport%u port vlan filter bypass state, ret = %d.\n", 9224 vf_id, ret); 9225 9226 return ret; 9227 } 9228 9229 static int hclge_set_vlan_filter_ctrl(struct hclge_dev *hdev, u8 vlan_type, 9230 u8 fe_type, bool filter_en, u8 vf_id) 9231 { 9232 struct hclge_vlan_filter_ctrl_cmd *req; 9233 struct hclge_desc desc; 9234 int ret; 9235 9236 /* read current vlan filter parameter */ 9237 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_CTRL, true); 9238 req = (struct hclge_vlan_filter_ctrl_cmd *)desc.data; 9239 req->vlan_type = vlan_type; 9240 req->vf_id = vf_id; 9241 9242 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9243 if (ret) { 9244 dev_err(&hdev->pdev->dev, "failed to get vport%u vlan filter config, ret = %d.\n", 9245 vf_id, ret); 9246 return ret; 9247 } 9248 9249 /* modify and write new config parameter */ 9250 hclge_comm_cmd_reuse_desc(&desc, false); 9251 req->vlan_fe = filter_en ? 9252 (req->vlan_fe | fe_type) : (req->vlan_fe & ~fe_type); 9253 9254 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9255 if (ret) 9256 dev_err(&hdev->pdev->dev, "failed to set vport%u vlan filter, ret = %d.\n", 9257 vf_id, ret); 9258 9259 return ret; 9260 } 9261 9262 static int hclge_set_vport_vlan_filter(struct hclge_vport *vport, bool enable) 9263 { 9264 struct hclge_dev *hdev = vport->back; 9265 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 9266 int ret; 9267 9268 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 9269 return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 9270 HCLGE_FILTER_FE_EGRESS_V1_B, 9271 enable, vport->vport_id); 9272 9273 ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 9274 HCLGE_FILTER_FE_EGRESS, enable, 9275 vport->vport_id); 9276 if (ret) 9277 return ret; 9278 9279 if (test_bit(HNAE3_DEV_SUPPORT_PORT_VLAN_BYPASS_B, ae_dev->caps)) { 9280 ret = hclge_set_port_vlan_filter_bypass(hdev, vport->vport_id, 9281 !enable); 9282 } else if (!vport->vport_id) { 9283 if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 9284 enable = false; 9285 9286 ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT, 9287 HCLGE_FILTER_FE_INGRESS, 9288 enable, 0); 9289 } 9290 9291 return ret; 9292 } 9293 9294 static bool hclge_need_enable_vport_vlan_filter(struct hclge_vport *vport) 9295 { 9296 struct hnae3_handle *handle = &vport->nic; 9297 struct hclge_vport_vlan_cfg *vlan, *tmp; 9298 struct hclge_dev *hdev = vport->back; 9299 9300 if (vport->vport_id) { 9301 if (vport->port_base_vlan_cfg.state != 9302 HNAE3_PORT_BASE_VLAN_DISABLE) 9303 return true; 9304 9305 if (vport->vf_info.trusted && vport->vf_info.request_uc_en) 9306 return false; 9307 } else if (handle->netdev_flags & HNAE3_USER_UPE) { 9308 return false; 9309 } 9310 9311 if (!vport->req_vlan_fltr_en) 9312 return false; 9313 9314 /* compatible with former device, always enable vlan filter */ 9315 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps)) 9316 return true; 9317 9318 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) 9319 if (vlan->vlan_id != 0) 9320 return true; 9321 9322 return false; 9323 } 9324 9325 int hclge_enable_vport_vlan_filter(struct hclge_vport *vport, bool request_en) 9326 { 9327 struct hclge_dev *hdev = vport->back; 9328 bool need_en; 9329 int ret; 9330 9331 mutex_lock(&hdev->vport_lock); 9332 9333 vport->req_vlan_fltr_en = request_en; 9334 9335 need_en = hclge_need_enable_vport_vlan_filter(vport); 9336 if (need_en == vport->cur_vlan_fltr_en) { 9337 mutex_unlock(&hdev->vport_lock); 9338 return 0; 9339 } 9340 9341 ret = hclge_set_vport_vlan_filter(vport, need_en); 9342 if (ret) { 9343 mutex_unlock(&hdev->vport_lock); 9344 return ret; 9345 } 9346 9347 vport->cur_vlan_fltr_en = need_en; 9348 9349 mutex_unlock(&hdev->vport_lock); 9350 9351 return 0; 9352 } 9353 9354 static int hclge_enable_vlan_filter(struct hnae3_handle *handle, bool enable) 9355 { 9356 struct hclge_vport *vport = hclge_get_vport(handle); 9357 9358 return hclge_enable_vport_vlan_filter(vport, enable); 9359 } 9360 9361 static int hclge_set_vf_vlan_filter_cmd(struct hclge_dev *hdev, u16 vfid, 9362 bool is_kill, u16 vlan, 9363 struct hclge_desc *desc) 9364 { 9365 struct hclge_vlan_filter_vf_cfg_cmd *req0; 9366 struct hclge_vlan_filter_vf_cfg_cmd *req1; 9367 u8 vf_byte_val; 9368 u8 vf_byte_off; 9369 int ret; 9370 9371 hclge_cmd_setup_basic_desc(&desc[0], 9372 HCLGE_OPC_VLAN_FILTER_VF_CFG, false); 9373 hclge_cmd_setup_basic_desc(&desc[1], 9374 HCLGE_OPC_VLAN_FILTER_VF_CFG, false); 9375 9376 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 9377 9378 vf_byte_off = vfid / 8; 9379 vf_byte_val = 1 << (vfid % 8); 9380 9381 req0 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data; 9382 req1 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[1].data; 9383 9384 req0->vlan_id = cpu_to_le16(vlan); 9385 req0->vlan_cfg = is_kill; 9386 9387 if (vf_byte_off < HCLGE_MAX_VF_BYTES) 9388 req0->vf_bitmap[vf_byte_off] = vf_byte_val; 9389 else 9390 req1->vf_bitmap[vf_byte_off - HCLGE_MAX_VF_BYTES] = vf_byte_val; 9391 9392 ret = hclge_cmd_send(&hdev->hw, desc, 2); 9393 if (ret) { 9394 dev_err(&hdev->pdev->dev, 9395 "Send vf vlan command fail, ret =%d.\n", 9396 ret); 9397 return ret; 9398 } 9399 9400 return 0; 9401 } 9402 9403 static int hclge_check_vf_vlan_cmd_status(struct hclge_dev *hdev, u16 vfid, 9404 bool is_kill, struct hclge_desc *desc) 9405 { 9406 struct hclge_vlan_filter_vf_cfg_cmd *req; 9407 9408 req = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data; 9409 9410 if (!is_kill) { 9411 #define HCLGE_VF_VLAN_NO_ENTRY 2 9412 if (!req->resp_code || req->resp_code == 1) 9413 return 0; 9414 9415 if (req->resp_code == HCLGE_VF_VLAN_NO_ENTRY) { 9416 set_bit(vfid, hdev->vf_vlan_full); 9417 dev_warn(&hdev->pdev->dev, 9418 "vf vlan table is full, vf vlan filter is disabled\n"); 9419 return 0; 9420 } 9421 9422 dev_err(&hdev->pdev->dev, 9423 "Add vf vlan filter fail, ret =%u.\n", 9424 req->resp_code); 9425 } else { 9426 #define HCLGE_VF_VLAN_DEL_NO_FOUND 1 9427 if (!req->resp_code) 9428 return 0; 9429 9430 /* vf vlan filter is disabled when vf vlan table is full, 9431 * then new vlan id will not be added into vf vlan table. 9432 * Just return 0 without warning, avoid massive verbose 9433 * print logs when unload. 9434 */ 9435 if (req->resp_code == HCLGE_VF_VLAN_DEL_NO_FOUND) 9436 return 0; 9437 9438 dev_err(&hdev->pdev->dev, 9439 "Kill vf vlan filter fail, ret =%u.\n", 9440 req->resp_code); 9441 } 9442 9443 return -EIO; 9444 } 9445 9446 static int hclge_set_vf_vlan_common(struct hclge_dev *hdev, u16 vfid, 9447 bool is_kill, u16 vlan) 9448 { 9449 struct hclge_vport *vport = &hdev->vport[vfid]; 9450 struct hclge_desc desc[2]; 9451 int ret; 9452 9453 /* if vf vlan table is full, firmware will close vf vlan filter, it 9454 * is unable and unnecessary to add new vlan id to vf vlan filter. 9455 * If spoof check is enable, and vf vlan is full, it shouldn't add 9456 * new vlan, because tx packets with these vlan id will be dropped. 9457 */ 9458 if (test_bit(vfid, hdev->vf_vlan_full) && !is_kill) { 9459 if (vport->vf_info.spoofchk && vlan) { 9460 dev_err(&hdev->pdev->dev, 9461 "Can't add vlan due to spoof check is on and vf vlan table is full\n"); 9462 return -EPERM; 9463 } 9464 return 0; 9465 } 9466 9467 ret = hclge_set_vf_vlan_filter_cmd(hdev, vfid, is_kill, vlan, desc); 9468 if (ret) 9469 return ret; 9470 9471 return hclge_check_vf_vlan_cmd_status(hdev, vfid, is_kill, desc); 9472 } 9473 9474 static int hclge_set_port_vlan_filter(struct hclge_dev *hdev, __be16 proto, 9475 u16 vlan_id, bool is_kill) 9476 { 9477 struct hclge_vlan_filter_pf_cfg_cmd *req; 9478 struct hclge_desc desc; 9479 u8 vlan_offset_byte_val; 9480 u8 vlan_offset_byte; 9481 u8 vlan_offset_160; 9482 int ret; 9483 9484 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_PF_CFG, false); 9485 9486 vlan_offset_160 = vlan_id / HCLGE_VLAN_ID_OFFSET_STEP; 9487 vlan_offset_byte = (vlan_id % HCLGE_VLAN_ID_OFFSET_STEP) / 9488 HCLGE_VLAN_BYTE_SIZE; 9489 vlan_offset_byte_val = 1 << (vlan_id % HCLGE_VLAN_BYTE_SIZE); 9490 9491 req = (struct hclge_vlan_filter_pf_cfg_cmd *)desc.data; 9492 req->vlan_offset = vlan_offset_160; 9493 req->vlan_cfg = is_kill; 9494 req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val; 9495 9496 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9497 if (ret) 9498 dev_err(&hdev->pdev->dev, 9499 "port vlan command, send fail, ret =%d.\n", ret); 9500 return ret; 9501 } 9502 9503 static bool hclge_need_update_port_vlan(struct hclge_dev *hdev, u16 vport_id, 9504 u16 vlan_id, bool is_kill) 9505 { 9506 /* vlan 0 may be added twice when 8021q module is enabled */ 9507 if (!is_kill && !vlan_id && 9508 test_bit(vport_id, hdev->vlan_table[vlan_id])) 9509 return false; 9510 9511 if (!is_kill && test_and_set_bit(vport_id, hdev->vlan_table[vlan_id])) { 9512 dev_warn(&hdev->pdev->dev, 9513 "Add port vlan failed, vport %u is already in vlan %u\n", 9514 vport_id, vlan_id); 9515 return false; 9516 } 9517 9518 if (is_kill && 9519 !test_and_clear_bit(vport_id, hdev->vlan_table[vlan_id])) { 9520 dev_warn(&hdev->pdev->dev, 9521 "Delete port vlan failed, vport %u is not in vlan %u\n", 9522 vport_id, vlan_id); 9523 return false; 9524 } 9525 9526 return true; 9527 } 9528 9529 static int hclge_set_vlan_filter_hw(struct hclge_dev *hdev, __be16 proto, 9530 u16 vport_id, u16 vlan_id, 9531 bool is_kill) 9532 { 9533 u16 vport_idx, vport_num = 0; 9534 int ret; 9535 9536 if (is_kill && !vlan_id) 9537 return 0; 9538 9539 if (vlan_id >= VLAN_N_VID) 9540 return -EINVAL; 9541 9542 ret = hclge_set_vf_vlan_common(hdev, vport_id, is_kill, vlan_id); 9543 if (ret) { 9544 dev_err(&hdev->pdev->dev, 9545 "Set %u vport vlan filter config fail, ret =%d.\n", 9546 vport_id, ret); 9547 return ret; 9548 } 9549 9550 if (!hclge_need_update_port_vlan(hdev, vport_id, vlan_id, is_kill)) 9551 return 0; 9552 9553 for_each_set_bit(vport_idx, hdev->vlan_table[vlan_id], HCLGE_VPORT_NUM) 9554 vport_num++; 9555 9556 if ((is_kill && vport_num == 0) || (!is_kill && vport_num == 1)) 9557 ret = hclge_set_port_vlan_filter(hdev, proto, vlan_id, 9558 is_kill); 9559 9560 return ret; 9561 } 9562 9563 static int hclge_set_vlan_tx_offload_cfg(struct hclge_vport *vport) 9564 { 9565 struct hclge_tx_vtag_cfg *vcfg = &vport->txvlan_cfg; 9566 struct hclge_vport_vtag_tx_cfg_cmd *req; 9567 struct hclge_dev *hdev = vport->back; 9568 struct hclge_desc desc; 9569 u16 bmap_index; 9570 int status; 9571 9572 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_TX_CFG, false); 9573 9574 req = (struct hclge_vport_vtag_tx_cfg_cmd *)desc.data; 9575 req->def_vlan_tag1 = cpu_to_le16(vcfg->default_tag1); 9576 req->def_vlan_tag2 = cpu_to_le16(vcfg->default_tag2); 9577 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG1_B, 9578 vcfg->accept_tag1 ? 1 : 0); 9579 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG1_B, 9580 vcfg->accept_untag1 ? 1 : 0); 9581 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG2_B, 9582 vcfg->accept_tag2 ? 1 : 0); 9583 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG2_B, 9584 vcfg->accept_untag2 ? 1 : 0); 9585 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG1_EN_B, 9586 vcfg->insert_tag1_en ? 1 : 0); 9587 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG2_EN_B, 9588 vcfg->insert_tag2_en ? 1 : 0); 9589 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_TAG_SHIFT_MODE_EN_B, 9590 vcfg->tag_shift_mode_en ? 1 : 0); 9591 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_CFG_NIC_ROCE_SEL_B, 0); 9592 9593 req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD; 9594 bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD / 9595 HCLGE_VF_NUM_PER_BYTE; 9596 req->vf_bitmap[bmap_index] = 9597 1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE); 9598 9599 status = hclge_cmd_send(&hdev->hw, &desc, 1); 9600 if (status) 9601 dev_err(&hdev->pdev->dev, 9602 "Send port txvlan cfg command fail, ret =%d\n", 9603 status); 9604 9605 return status; 9606 } 9607 9608 static int hclge_set_vlan_rx_offload_cfg(struct hclge_vport *vport) 9609 { 9610 struct hclge_rx_vtag_cfg *vcfg = &vport->rxvlan_cfg; 9611 struct hclge_vport_vtag_rx_cfg_cmd *req; 9612 struct hclge_dev *hdev = vport->back; 9613 struct hclge_desc desc; 9614 u16 bmap_index; 9615 int status; 9616 9617 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_RX_CFG, false); 9618 9619 req = (struct hclge_vport_vtag_rx_cfg_cmd *)desc.data; 9620 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG1_EN_B, 9621 vcfg->strip_tag1_en ? 1 : 0); 9622 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG2_EN_B, 9623 vcfg->strip_tag2_en ? 1 : 0); 9624 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG1_EN_B, 9625 vcfg->vlan1_vlan_prionly ? 1 : 0); 9626 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG2_EN_B, 9627 vcfg->vlan2_vlan_prionly ? 1 : 0); 9628 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG1_EN_B, 9629 vcfg->strip_tag1_discard_en ? 1 : 0); 9630 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG2_EN_B, 9631 vcfg->strip_tag2_discard_en ? 1 : 0); 9632 9633 req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD; 9634 bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD / 9635 HCLGE_VF_NUM_PER_BYTE; 9636 req->vf_bitmap[bmap_index] = 9637 1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE); 9638 9639 status = hclge_cmd_send(&hdev->hw, &desc, 1); 9640 if (status) 9641 dev_err(&hdev->pdev->dev, 9642 "Send port rxvlan cfg command fail, ret =%d\n", 9643 status); 9644 9645 return status; 9646 } 9647 9648 static int hclge_vlan_offload_cfg(struct hclge_vport *vport, 9649 u16 port_base_vlan_state, 9650 u16 vlan_tag, u8 qos) 9651 { 9652 int ret; 9653 9654 if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) { 9655 vport->txvlan_cfg.accept_tag1 = true; 9656 vport->txvlan_cfg.insert_tag1_en = false; 9657 vport->txvlan_cfg.default_tag1 = 0; 9658 } else { 9659 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(vport->nic.pdev); 9660 9661 vport->txvlan_cfg.accept_tag1 = 9662 ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3; 9663 vport->txvlan_cfg.insert_tag1_en = true; 9664 vport->txvlan_cfg.default_tag1 = (qos << VLAN_PRIO_SHIFT) | 9665 vlan_tag; 9666 } 9667 9668 vport->txvlan_cfg.accept_untag1 = true; 9669 9670 /* accept_tag2 and accept_untag2 are not supported on 9671 * pdev revision(0x20), new revision support them, 9672 * this two fields can not be configured by user. 9673 */ 9674 vport->txvlan_cfg.accept_tag2 = true; 9675 vport->txvlan_cfg.accept_untag2 = true; 9676 vport->txvlan_cfg.insert_tag2_en = false; 9677 vport->txvlan_cfg.default_tag2 = 0; 9678 vport->txvlan_cfg.tag_shift_mode_en = true; 9679 9680 if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) { 9681 vport->rxvlan_cfg.strip_tag1_en = false; 9682 vport->rxvlan_cfg.strip_tag2_en = 9683 vport->rxvlan_cfg.rx_vlan_offload_en; 9684 vport->rxvlan_cfg.strip_tag2_discard_en = false; 9685 } else { 9686 vport->rxvlan_cfg.strip_tag1_en = 9687 vport->rxvlan_cfg.rx_vlan_offload_en; 9688 vport->rxvlan_cfg.strip_tag2_en = true; 9689 vport->rxvlan_cfg.strip_tag2_discard_en = true; 9690 } 9691 9692 vport->rxvlan_cfg.strip_tag1_discard_en = false; 9693 vport->rxvlan_cfg.vlan1_vlan_prionly = false; 9694 vport->rxvlan_cfg.vlan2_vlan_prionly = false; 9695 9696 ret = hclge_set_vlan_tx_offload_cfg(vport); 9697 if (ret) 9698 return ret; 9699 9700 return hclge_set_vlan_rx_offload_cfg(vport); 9701 } 9702 9703 static int hclge_set_vlan_protocol_type(struct hclge_dev *hdev) 9704 { 9705 struct hclge_rx_vlan_type_cfg_cmd *rx_req; 9706 struct hclge_tx_vlan_type_cfg_cmd *tx_req; 9707 struct hclge_desc desc; 9708 int status; 9709 9710 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_TYPE_ID, false); 9711 rx_req = (struct hclge_rx_vlan_type_cfg_cmd *)desc.data; 9712 rx_req->ot_fst_vlan_type = 9713 cpu_to_le16(hdev->vlan_type_cfg.rx_ot_fst_vlan_type); 9714 rx_req->ot_sec_vlan_type = 9715 cpu_to_le16(hdev->vlan_type_cfg.rx_ot_sec_vlan_type); 9716 rx_req->in_fst_vlan_type = 9717 cpu_to_le16(hdev->vlan_type_cfg.rx_in_fst_vlan_type); 9718 rx_req->in_sec_vlan_type = 9719 cpu_to_le16(hdev->vlan_type_cfg.rx_in_sec_vlan_type); 9720 9721 status = hclge_cmd_send(&hdev->hw, &desc, 1); 9722 if (status) { 9723 dev_err(&hdev->pdev->dev, 9724 "Send rxvlan protocol type command fail, ret =%d\n", 9725 status); 9726 return status; 9727 } 9728 9729 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_INSERT, false); 9730 9731 tx_req = (struct hclge_tx_vlan_type_cfg_cmd *)desc.data; 9732 tx_req->ot_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_ot_vlan_type); 9733 tx_req->in_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_in_vlan_type); 9734 9735 status = hclge_cmd_send(&hdev->hw, &desc, 1); 9736 if (status) 9737 dev_err(&hdev->pdev->dev, 9738 "Send txvlan protocol type command fail, ret =%d\n", 9739 status); 9740 9741 return status; 9742 } 9743 9744 static int hclge_init_vlan_filter(struct hclge_dev *hdev) 9745 { 9746 struct hclge_vport *vport; 9747 int ret; 9748 int i; 9749 9750 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 9751 return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 9752 HCLGE_FILTER_FE_EGRESS_V1_B, 9753 true, 0); 9754 9755 /* for revision 0x21, vf vlan filter is per function */ 9756 for (i = 0; i < hdev->num_alloc_vport; i++) { 9757 vport = &hdev->vport[i]; 9758 ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 9759 HCLGE_FILTER_FE_EGRESS, true, 9760 vport->vport_id); 9761 if (ret) 9762 return ret; 9763 vport->cur_vlan_fltr_en = true; 9764 } 9765 9766 return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT, 9767 HCLGE_FILTER_FE_INGRESS, true, 0); 9768 } 9769 9770 static int hclge_init_vlan_type(struct hclge_dev *hdev) 9771 { 9772 hdev->vlan_type_cfg.rx_in_fst_vlan_type = ETH_P_8021Q; 9773 hdev->vlan_type_cfg.rx_in_sec_vlan_type = ETH_P_8021Q; 9774 hdev->vlan_type_cfg.rx_ot_fst_vlan_type = ETH_P_8021Q; 9775 hdev->vlan_type_cfg.rx_ot_sec_vlan_type = ETH_P_8021Q; 9776 hdev->vlan_type_cfg.tx_ot_vlan_type = ETH_P_8021Q; 9777 hdev->vlan_type_cfg.tx_in_vlan_type = ETH_P_8021Q; 9778 9779 return hclge_set_vlan_protocol_type(hdev); 9780 } 9781 9782 static int hclge_init_vport_vlan_offload(struct hclge_dev *hdev) 9783 { 9784 struct hclge_port_base_vlan_config *cfg; 9785 struct hclge_vport *vport; 9786 int ret; 9787 int i; 9788 9789 for (i = 0; i < hdev->num_alloc_vport; i++) { 9790 vport = &hdev->vport[i]; 9791 cfg = &vport->port_base_vlan_cfg; 9792 9793 ret = hclge_vlan_offload_cfg(vport, cfg->state, 9794 cfg->vlan_info.vlan_tag, 9795 cfg->vlan_info.qos); 9796 if (ret) 9797 return ret; 9798 } 9799 return 0; 9800 } 9801 9802 static int hclge_init_vlan_config(struct hclge_dev *hdev) 9803 { 9804 struct hnae3_handle *handle = &hdev->vport[0].nic; 9805 int ret; 9806 9807 ret = hclge_init_vlan_filter(hdev); 9808 if (ret) 9809 return ret; 9810 9811 ret = hclge_init_vlan_type(hdev); 9812 if (ret) 9813 return ret; 9814 9815 ret = hclge_init_vport_vlan_offload(hdev); 9816 if (ret) 9817 return ret; 9818 9819 return hclge_set_vlan_filter(handle, htons(ETH_P_8021Q), 0, false); 9820 } 9821 9822 static void hclge_add_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id, 9823 bool writen_to_tbl) 9824 { 9825 struct hclge_vport_vlan_cfg *vlan, *tmp; 9826 struct hclge_dev *hdev = vport->back; 9827 9828 mutex_lock(&hdev->vport_lock); 9829 9830 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 9831 if (vlan->vlan_id == vlan_id) { 9832 mutex_unlock(&hdev->vport_lock); 9833 return; 9834 } 9835 } 9836 9837 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); 9838 if (!vlan) { 9839 mutex_unlock(&hdev->vport_lock); 9840 return; 9841 } 9842 9843 vlan->hd_tbl_status = writen_to_tbl; 9844 vlan->vlan_id = vlan_id; 9845 9846 list_add_tail(&vlan->node, &vport->vlan_list); 9847 mutex_unlock(&hdev->vport_lock); 9848 } 9849 9850 static int hclge_add_vport_all_vlan_table(struct hclge_vport *vport) 9851 { 9852 struct hclge_vport_vlan_cfg *vlan, *tmp; 9853 struct hclge_dev *hdev = vport->back; 9854 int ret; 9855 9856 mutex_lock(&hdev->vport_lock); 9857 9858 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 9859 if (!vlan->hd_tbl_status) { 9860 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 9861 vport->vport_id, 9862 vlan->vlan_id, false); 9863 if (ret) { 9864 dev_err(&hdev->pdev->dev, 9865 "restore vport vlan list failed, ret=%d\n", 9866 ret); 9867 9868 mutex_unlock(&hdev->vport_lock); 9869 return ret; 9870 } 9871 } 9872 vlan->hd_tbl_status = true; 9873 } 9874 9875 mutex_unlock(&hdev->vport_lock); 9876 9877 return 0; 9878 } 9879 9880 static void hclge_rm_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id, 9881 bool is_write_tbl) 9882 { 9883 struct hclge_vport_vlan_cfg *vlan, *tmp; 9884 struct hclge_dev *hdev = vport->back; 9885 9886 mutex_lock(&hdev->vport_lock); 9887 9888 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 9889 if (vlan->vlan_id == vlan_id) { 9890 if (is_write_tbl && vlan->hd_tbl_status) 9891 hclge_set_vlan_filter_hw(hdev, 9892 htons(ETH_P_8021Q), 9893 vport->vport_id, 9894 vlan_id, 9895 true); 9896 9897 list_del(&vlan->node); 9898 kfree(vlan); 9899 break; 9900 } 9901 } 9902 9903 mutex_unlock(&hdev->vport_lock); 9904 } 9905 9906 void hclge_rm_vport_all_vlan_table(struct hclge_vport *vport, bool is_del_list) 9907 { 9908 struct hclge_vport_vlan_cfg *vlan, *tmp; 9909 struct hclge_dev *hdev = vport->back; 9910 9911 mutex_lock(&hdev->vport_lock); 9912 9913 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 9914 if (vlan->hd_tbl_status) 9915 hclge_set_vlan_filter_hw(hdev, 9916 htons(ETH_P_8021Q), 9917 vport->vport_id, 9918 vlan->vlan_id, 9919 true); 9920 9921 vlan->hd_tbl_status = false; 9922 if (is_del_list) { 9923 list_del(&vlan->node); 9924 kfree(vlan); 9925 } 9926 } 9927 clear_bit(vport->vport_id, hdev->vf_vlan_full); 9928 mutex_unlock(&hdev->vport_lock); 9929 } 9930 9931 void hclge_uninit_vport_vlan_table(struct hclge_dev *hdev) 9932 { 9933 struct hclge_vport_vlan_cfg *vlan, *tmp; 9934 struct hclge_vport *vport; 9935 int i; 9936 9937 mutex_lock(&hdev->vport_lock); 9938 9939 for (i = 0; i < hdev->num_alloc_vport; i++) { 9940 vport = &hdev->vport[i]; 9941 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 9942 list_del(&vlan->node); 9943 kfree(vlan); 9944 } 9945 } 9946 9947 mutex_unlock(&hdev->vport_lock); 9948 } 9949 9950 void hclge_restore_vport_port_base_vlan_config(struct hclge_dev *hdev) 9951 { 9952 struct hclge_vlan_info *vlan_info; 9953 struct hclge_vport *vport; 9954 u16 vlan_proto; 9955 u16 vlan_id; 9956 u16 state; 9957 int vf_id; 9958 int ret; 9959 9960 /* PF should restore all vfs port base vlan */ 9961 for (vf_id = 0; vf_id < hdev->num_alloc_vfs; vf_id++) { 9962 vport = &hdev->vport[vf_id + HCLGE_VF_VPORT_START_NUM]; 9963 vlan_info = vport->port_base_vlan_cfg.tbl_sta ? 9964 &vport->port_base_vlan_cfg.vlan_info : 9965 &vport->port_base_vlan_cfg.old_vlan_info; 9966 9967 vlan_id = vlan_info->vlan_tag; 9968 vlan_proto = vlan_info->vlan_proto; 9969 state = vport->port_base_vlan_cfg.state; 9970 9971 if (state != HNAE3_PORT_BASE_VLAN_DISABLE) { 9972 clear_bit(vport->vport_id, hdev->vlan_table[vlan_id]); 9973 ret = hclge_set_vlan_filter_hw(hdev, htons(vlan_proto), 9974 vport->vport_id, 9975 vlan_id, false); 9976 vport->port_base_vlan_cfg.tbl_sta = ret == 0; 9977 } 9978 } 9979 } 9980 9981 void hclge_restore_vport_vlan_table(struct hclge_vport *vport) 9982 { 9983 struct hclge_vport_vlan_cfg *vlan, *tmp; 9984 struct hclge_dev *hdev = vport->back; 9985 int ret; 9986 9987 mutex_lock(&hdev->vport_lock); 9988 9989 if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) { 9990 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 9991 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 9992 vport->vport_id, 9993 vlan->vlan_id, false); 9994 if (ret) 9995 break; 9996 vlan->hd_tbl_status = true; 9997 } 9998 } 9999 10000 mutex_unlock(&hdev->vport_lock); 10001 } 10002 10003 /* For global reset and imp reset, hardware will clear the mac table, 10004 * so we change the mac address state from ACTIVE to TO_ADD, then they 10005 * can be restored in the service task after reset complete. Furtherly, 10006 * the mac addresses with state TO_DEL or DEL_FAIL are unnecessary to 10007 * be restored after reset, so just remove these mac nodes from mac_list. 10008 */ 10009 static void hclge_mac_node_convert_for_reset(struct list_head *list) 10010 { 10011 struct hclge_mac_node *mac_node, *tmp; 10012 10013 list_for_each_entry_safe(mac_node, tmp, list, node) { 10014 if (mac_node->state == HCLGE_MAC_ACTIVE) { 10015 mac_node->state = HCLGE_MAC_TO_ADD; 10016 } else if (mac_node->state == HCLGE_MAC_TO_DEL) { 10017 list_del(&mac_node->node); 10018 kfree(mac_node); 10019 } 10020 } 10021 } 10022 10023 void hclge_restore_mac_table_common(struct hclge_vport *vport) 10024 { 10025 spin_lock_bh(&vport->mac_list_lock); 10026 10027 hclge_mac_node_convert_for_reset(&vport->uc_mac_list); 10028 hclge_mac_node_convert_for_reset(&vport->mc_mac_list); 10029 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state); 10030 10031 spin_unlock_bh(&vport->mac_list_lock); 10032 } 10033 10034 static void hclge_restore_hw_table(struct hclge_dev *hdev) 10035 { 10036 struct hclge_vport *vport = &hdev->vport[0]; 10037 struct hnae3_handle *handle = &vport->nic; 10038 10039 hclge_restore_mac_table_common(vport); 10040 hclge_restore_vport_port_base_vlan_config(hdev); 10041 hclge_restore_vport_vlan_table(vport); 10042 set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state); 10043 hclge_restore_fd_entries(handle); 10044 } 10045 10046 int hclge_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 10047 { 10048 struct hclge_vport *vport = hclge_get_vport(handle); 10049 10050 if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) { 10051 vport->rxvlan_cfg.strip_tag1_en = false; 10052 vport->rxvlan_cfg.strip_tag2_en = enable; 10053 vport->rxvlan_cfg.strip_tag2_discard_en = false; 10054 } else { 10055 vport->rxvlan_cfg.strip_tag1_en = enable; 10056 vport->rxvlan_cfg.strip_tag2_en = true; 10057 vport->rxvlan_cfg.strip_tag2_discard_en = true; 10058 } 10059 10060 vport->rxvlan_cfg.strip_tag1_discard_en = false; 10061 vport->rxvlan_cfg.vlan1_vlan_prionly = false; 10062 vport->rxvlan_cfg.vlan2_vlan_prionly = false; 10063 vport->rxvlan_cfg.rx_vlan_offload_en = enable; 10064 10065 return hclge_set_vlan_rx_offload_cfg(vport); 10066 } 10067 10068 static void hclge_set_vport_vlan_fltr_change(struct hclge_vport *vport) 10069 { 10070 struct hclge_dev *hdev = vport->back; 10071 10072 if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps)) 10073 set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, &vport->state); 10074 } 10075 10076 static int hclge_update_vlan_filter_entries(struct hclge_vport *vport, 10077 u16 port_base_vlan_state, 10078 struct hclge_vlan_info *new_info, 10079 struct hclge_vlan_info *old_info) 10080 { 10081 struct hclge_dev *hdev = vport->back; 10082 int ret; 10083 10084 if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_ENABLE) { 10085 hclge_rm_vport_all_vlan_table(vport, false); 10086 /* force clear VLAN 0 */ 10087 ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, true, 0); 10088 if (ret) 10089 return ret; 10090 return hclge_set_vlan_filter_hw(hdev, 10091 htons(new_info->vlan_proto), 10092 vport->vport_id, 10093 new_info->vlan_tag, 10094 false); 10095 } 10096 10097 vport->port_base_vlan_cfg.tbl_sta = false; 10098 10099 /* force add VLAN 0 */ 10100 ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, false, 0); 10101 if (ret) 10102 return ret; 10103 10104 ret = hclge_set_vlan_filter_hw(hdev, htons(old_info->vlan_proto), 10105 vport->vport_id, old_info->vlan_tag, 10106 true); 10107 if (ret) 10108 return ret; 10109 10110 return hclge_add_vport_all_vlan_table(vport); 10111 } 10112 10113 static bool hclge_need_update_vlan_filter(const struct hclge_vlan_info *new_cfg, 10114 const struct hclge_vlan_info *old_cfg) 10115 { 10116 if (new_cfg->vlan_tag != old_cfg->vlan_tag) 10117 return true; 10118 10119 if (new_cfg->vlan_tag == 0 && (new_cfg->qos == 0 || old_cfg->qos == 0)) 10120 return true; 10121 10122 return false; 10123 } 10124 10125 static int hclge_modify_port_base_vlan_tag(struct hclge_vport *vport, 10126 struct hclge_vlan_info *new_info, 10127 struct hclge_vlan_info *old_info) 10128 { 10129 struct hclge_dev *hdev = vport->back; 10130 int ret; 10131 10132 /* add new VLAN tag */ 10133 ret = hclge_set_vlan_filter_hw(hdev, htons(new_info->vlan_proto), 10134 vport->vport_id, new_info->vlan_tag, 10135 false); 10136 if (ret) 10137 return ret; 10138 10139 /* remove old VLAN tag */ 10140 if (old_info->vlan_tag == 0) 10141 ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, 10142 true, 0); 10143 else 10144 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10145 vport->vport_id, 10146 old_info->vlan_tag, true); 10147 if (ret) 10148 dev_err(&hdev->pdev->dev, 10149 "failed to clear vport%u port base vlan %u, ret = %d.\n", 10150 vport->vport_id, old_info->vlan_tag, ret); 10151 10152 return ret; 10153 } 10154 10155 int hclge_update_port_base_vlan_cfg(struct hclge_vport *vport, u16 state, 10156 struct hclge_vlan_info *vlan_info) 10157 { 10158 struct hnae3_handle *nic = &vport->nic; 10159 struct hclge_vlan_info *old_vlan_info; 10160 int ret; 10161 10162 old_vlan_info = &vport->port_base_vlan_cfg.vlan_info; 10163 10164 ret = hclge_vlan_offload_cfg(vport, state, vlan_info->vlan_tag, 10165 vlan_info->qos); 10166 if (ret) 10167 return ret; 10168 10169 if (!hclge_need_update_vlan_filter(vlan_info, old_vlan_info)) 10170 goto out; 10171 10172 if (state == HNAE3_PORT_BASE_VLAN_MODIFY) 10173 ret = hclge_modify_port_base_vlan_tag(vport, vlan_info, 10174 old_vlan_info); 10175 else 10176 ret = hclge_update_vlan_filter_entries(vport, state, vlan_info, 10177 old_vlan_info); 10178 if (ret) 10179 return ret; 10180 10181 out: 10182 vport->port_base_vlan_cfg.state = state; 10183 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) 10184 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE; 10185 else 10186 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; 10187 10188 vport->port_base_vlan_cfg.old_vlan_info = *old_vlan_info; 10189 vport->port_base_vlan_cfg.vlan_info = *vlan_info; 10190 vport->port_base_vlan_cfg.tbl_sta = true; 10191 hclge_set_vport_vlan_fltr_change(vport); 10192 10193 return 0; 10194 } 10195 10196 static u16 hclge_get_port_base_vlan_state(struct hclge_vport *vport, 10197 enum hnae3_port_base_vlan_state state, 10198 u16 vlan, u8 qos) 10199 { 10200 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) { 10201 if (!vlan && !qos) 10202 return HNAE3_PORT_BASE_VLAN_NOCHANGE; 10203 10204 return HNAE3_PORT_BASE_VLAN_ENABLE; 10205 } 10206 10207 if (!vlan && !qos) 10208 return HNAE3_PORT_BASE_VLAN_DISABLE; 10209 10210 if (vport->port_base_vlan_cfg.vlan_info.vlan_tag == vlan && 10211 vport->port_base_vlan_cfg.vlan_info.qos == qos) 10212 return HNAE3_PORT_BASE_VLAN_NOCHANGE; 10213 10214 return HNAE3_PORT_BASE_VLAN_MODIFY; 10215 } 10216 10217 static int hclge_set_vf_vlan_filter(struct hnae3_handle *handle, int vfid, 10218 u16 vlan, u8 qos, __be16 proto) 10219 { 10220 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 10221 struct hclge_vport *vport = hclge_get_vport(handle); 10222 struct hclge_dev *hdev = vport->back; 10223 struct hclge_vlan_info vlan_info; 10224 u16 state; 10225 int ret; 10226 10227 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 10228 return -EOPNOTSUPP; 10229 10230 vport = hclge_get_vf_vport(hdev, vfid); 10231 if (!vport) 10232 return -EINVAL; 10233 10234 /* qos is a 3 bits value, so can not be bigger than 7 */ 10235 if (vlan > VLAN_N_VID - 1 || qos > 7) 10236 return -EINVAL; 10237 if (proto != htons(ETH_P_8021Q)) 10238 return -EPROTONOSUPPORT; 10239 10240 state = hclge_get_port_base_vlan_state(vport, 10241 vport->port_base_vlan_cfg.state, 10242 vlan, qos); 10243 if (state == HNAE3_PORT_BASE_VLAN_NOCHANGE) 10244 return 0; 10245 10246 vlan_info.vlan_tag = vlan; 10247 vlan_info.qos = qos; 10248 vlan_info.vlan_proto = ntohs(proto); 10249 10250 ret = hclge_update_port_base_vlan_cfg(vport, state, &vlan_info); 10251 if (ret) { 10252 dev_err(&hdev->pdev->dev, 10253 "failed to update port base vlan for vf %d, ret = %d\n", 10254 vfid, ret); 10255 return ret; 10256 } 10257 10258 /* there is a timewindow for PF to know VF unalive, it may 10259 * cause send mailbox fail, but it doesn't matter, VF will 10260 * query it when reinit. 10261 * for DEVICE_VERSION_V3, vf doesn't need to know about the port based 10262 * VLAN state. 10263 */ 10264 if (ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3 && 10265 test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) 10266 (void)hclge_push_vf_port_base_vlan_info(&hdev->vport[0], 10267 vport->vport_id, 10268 state, &vlan_info); 10269 10270 return 0; 10271 } 10272 10273 static void hclge_clear_vf_vlan(struct hclge_dev *hdev) 10274 { 10275 struct hclge_vlan_info *vlan_info; 10276 struct hclge_vport *vport; 10277 int ret; 10278 int vf; 10279 10280 /* clear port base vlan for all vf */ 10281 for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) { 10282 vport = &hdev->vport[vf]; 10283 vlan_info = &vport->port_base_vlan_cfg.vlan_info; 10284 10285 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10286 vport->vport_id, 10287 vlan_info->vlan_tag, true); 10288 if (ret) 10289 dev_err(&hdev->pdev->dev, 10290 "failed to clear vf vlan for vf%d, ret = %d\n", 10291 vf - HCLGE_VF_VPORT_START_NUM, ret); 10292 } 10293 } 10294 10295 int hclge_set_vlan_filter(struct hnae3_handle *handle, __be16 proto, 10296 u16 vlan_id, bool is_kill) 10297 { 10298 struct hclge_vport *vport = hclge_get_vport(handle); 10299 struct hclge_dev *hdev = vport->back; 10300 bool writen_to_tbl = false; 10301 int ret = 0; 10302 10303 /* When device is resetting or reset failed, firmware is unable to 10304 * handle mailbox. Just record the vlan id, and remove it after 10305 * reset finished. 10306 */ 10307 if ((test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) || 10308 test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) && is_kill) { 10309 set_bit(vlan_id, vport->vlan_del_fail_bmap); 10310 return -EBUSY; 10311 } 10312 10313 /* when port base vlan enabled, we use port base vlan as the vlan 10314 * filter entry. In this case, we don't update vlan filter table 10315 * when user add new vlan or remove exist vlan, just update the vport 10316 * vlan list. The vlan id in vlan list will be writen in vlan filter 10317 * table until port base vlan disabled 10318 */ 10319 if (handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) { 10320 ret = hclge_set_vlan_filter_hw(hdev, proto, vport->vport_id, 10321 vlan_id, is_kill); 10322 writen_to_tbl = true; 10323 } 10324 10325 if (!ret) { 10326 if (!is_kill) 10327 hclge_add_vport_vlan_table(vport, vlan_id, 10328 writen_to_tbl); 10329 else if (is_kill && vlan_id != 0) 10330 hclge_rm_vport_vlan_table(vport, vlan_id, false); 10331 } else if (is_kill) { 10332 /* when remove hw vlan filter failed, record the vlan id, 10333 * and try to remove it from hw later, to be consistence 10334 * with stack 10335 */ 10336 set_bit(vlan_id, vport->vlan_del_fail_bmap); 10337 } 10338 10339 hclge_set_vport_vlan_fltr_change(vport); 10340 10341 return ret; 10342 } 10343 10344 static void hclge_sync_vlan_fltr_state(struct hclge_dev *hdev) 10345 { 10346 struct hclge_vport *vport; 10347 int ret; 10348 u16 i; 10349 10350 for (i = 0; i < hdev->num_alloc_vport; i++) { 10351 vport = &hdev->vport[i]; 10352 if (!test_and_clear_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, 10353 &vport->state)) 10354 continue; 10355 10356 ret = hclge_enable_vport_vlan_filter(vport, 10357 vport->req_vlan_fltr_en); 10358 if (ret) { 10359 dev_err(&hdev->pdev->dev, 10360 "failed to sync vlan filter state for vport%u, ret = %d\n", 10361 vport->vport_id, ret); 10362 set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, 10363 &vport->state); 10364 return; 10365 } 10366 } 10367 } 10368 10369 static void hclge_sync_vlan_filter(struct hclge_dev *hdev) 10370 { 10371 #define HCLGE_MAX_SYNC_COUNT 60 10372 10373 int i, ret, sync_cnt = 0; 10374 u16 vlan_id; 10375 10376 /* start from vport 1 for PF is always alive */ 10377 for (i = 0; i < hdev->num_alloc_vport; i++) { 10378 struct hclge_vport *vport = &hdev->vport[i]; 10379 10380 vlan_id = find_first_bit(vport->vlan_del_fail_bmap, 10381 VLAN_N_VID); 10382 while (vlan_id != VLAN_N_VID) { 10383 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10384 vport->vport_id, vlan_id, 10385 true); 10386 if (ret && ret != -EINVAL) 10387 return; 10388 10389 clear_bit(vlan_id, vport->vlan_del_fail_bmap); 10390 hclge_rm_vport_vlan_table(vport, vlan_id, false); 10391 hclge_set_vport_vlan_fltr_change(vport); 10392 10393 sync_cnt++; 10394 if (sync_cnt >= HCLGE_MAX_SYNC_COUNT) 10395 return; 10396 10397 vlan_id = find_first_bit(vport->vlan_del_fail_bmap, 10398 VLAN_N_VID); 10399 } 10400 } 10401 10402 hclge_sync_vlan_fltr_state(hdev); 10403 } 10404 10405 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps) 10406 { 10407 struct hclge_config_max_frm_size_cmd *req; 10408 struct hclge_desc desc; 10409 10410 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAX_FRM_SIZE, false); 10411 10412 req = (struct hclge_config_max_frm_size_cmd *)desc.data; 10413 req->max_frm_size = cpu_to_le16(new_mps); 10414 req->min_frm_size = HCLGE_MAC_MIN_FRAME; 10415 10416 return hclge_cmd_send(&hdev->hw, &desc, 1); 10417 } 10418 10419 static int hclge_set_mtu(struct hnae3_handle *handle, int new_mtu) 10420 { 10421 struct hclge_vport *vport = hclge_get_vport(handle); 10422 10423 return hclge_set_vport_mtu(vport, new_mtu); 10424 } 10425 10426 int hclge_set_vport_mtu(struct hclge_vport *vport, int new_mtu) 10427 { 10428 struct hclge_dev *hdev = vport->back; 10429 int i, max_frm_size, ret; 10430 10431 /* HW supprt 2 layer vlan */ 10432 max_frm_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + 2 * VLAN_HLEN; 10433 if (max_frm_size < HCLGE_MAC_MIN_FRAME || 10434 max_frm_size > hdev->ae_dev->dev_specs.max_frm_size) 10435 return -EINVAL; 10436 10437 max_frm_size = max(max_frm_size, HCLGE_MAC_DEFAULT_FRAME); 10438 mutex_lock(&hdev->vport_lock); 10439 /* VF's mps must fit within hdev->mps */ 10440 if (vport->vport_id && max_frm_size > hdev->mps) { 10441 mutex_unlock(&hdev->vport_lock); 10442 return -EINVAL; 10443 } else if (vport->vport_id) { 10444 vport->mps = max_frm_size; 10445 mutex_unlock(&hdev->vport_lock); 10446 return 0; 10447 } 10448 10449 /* PF's mps must be greater then VF's mps */ 10450 for (i = 1; i < hdev->num_alloc_vport; i++) 10451 if (max_frm_size < hdev->vport[i].mps) { 10452 mutex_unlock(&hdev->vport_lock); 10453 return -EINVAL; 10454 } 10455 10456 hclge_notify_client(hdev, HNAE3_DOWN_CLIENT); 10457 10458 ret = hclge_set_mac_mtu(hdev, max_frm_size); 10459 if (ret) { 10460 dev_err(&hdev->pdev->dev, 10461 "Change mtu fail, ret =%d\n", ret); 10462 goto out; 10463 } 10464 10465 hdev->mps = max_frm_size; 10466 vport->mps = max_frm_size; 10467 10468 ret = hclge_buffer_alloc(hdev); 10469 if (ret) 10470 dev_err(&hdev->pdev->dev, 10471 "Allocate buffer fail, ret =%d\n", ret); 10472 10473 out: 10474 hclge_notify_client(hdev, HNAE3_UP_CLIENT); 10475 mutex_unlock(&hdev->vport_lock); 10476 return ret; 10477 } 10478 10479 static int hclge_reset_tqp_cmd_send(struct hclge_dev *hdev, u16 queue_id, 10480 bool enable) 10481 { 10482 struct hclge_reset_tqp_queue_cmd *req; 10483 struct hclge_desc desc; 10484 int ret; 10485 10486 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, false); 10487 10488 req = (struct hclge_reset_tqp_queue_cmd *)desc.data; 10489 req->tqp_id = cpu_to_le16(queue_id); 10490 if (enable) 10491 hnae3_set_bit(req->reset_req, HCLGE_TQP_RESET_B, 1U); 10492 10493 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 10494 if (ret) { 10495 dev_err(&hdev->pdev->dev, 10496 "Send tqp reset cmd error, status =%d\n", ret); 10497 return ret; 10498 } 10499 10500 return 0; 10501 } 10502 10503 static int hclge_get_reset_status(struct hclge_dev *hdev, u16 queue_id, 10504 u8 *reset_status) 10505 { 10506 struct hclge_reset_tqp_queue_cmd *req; 10507 struct hclge_desc desc; 10508 int ret; 10509 10510 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, true); 10511 10512 req = (struct hclge_reset_tqp_queue_cmd *)desc.data; 10513 req->tqp_id = cpu_to_le16(queue_id); 10514 10515 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 10516 if (ret) { 10517 dev_err(&hdev->pdev->dev, 10518 "Get reset status error, status =%d\n", ret); 10519 return ret; 10520 } 10521 10522 *reset_status = hnae3_get_bit(req->ready_to_reset, HCLGE_TQP_RESET_B); 10523 10524 return 0; 10525 } 10526 10527 u16 hclge_covert_handle_qid_global(struct hnae3_handle *handle, u16 queue_id) 10528 { 10529 struct hclge_comm_tqp *tqp; 10530 struct hnae3_queue *queue; 10531 10532 queue = handle->kinfo.tqp[queue_id]; 10533 tqp = container_of(queue, struct hclge_comm_tqp, q); 10534 10535 return tqp->index; 10536 } 10537 10538 static int hclge_reset_tqp_cmd(struct hnae3_handle *handle) 10539 { 10540 struct hclge_vport *vport = hclge_get_vport(handle); 10541 struct hclge_dev *hdev = vport->back; 10542 u16 reset_try_times = 0; 10543 u8 reset_status; 10544 u16 queue_gid; 10545 int ret; 10546 u16 i; 10547 10548 for (i = 0; i < handle->kinfo.num_tqps; i++) { 10549 queue_gid = hclge_covert_handle_qid_global(handle, i); 10550 ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, true); 10551 if (ret) { 10552 dev_err(&hdev->pdev->dev, 10553 "failed to send reset tqp cmd, ret = %d\n", 10554 ret); 10555 return ret; 10556 } 10557 10558 while (reset_try_times++ < HCLGE_TQP_RESET_TRY_TIMES) { 10559 ret = hclge_get_reset_status(hdev, queue_gid, 10560 &reset_status); 10561 if (ret) 10562 return ret; 10563 10564 if (reset_status) 10565 break; 10566 10567 /* Wait for tqp hw reset */ 10568 usleep_range(1000, 1200); 10569 } 10570 10571 if (reset_try_times >= HCLGE_TQP_RESET_TRY_TIMES) { 10572 dev_err(&hdev->pdev->dev, 10573 "wait for tqp hw reset timeout\n"); 10574 return -ETIME; 10575 } 10576 10577 ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, false); 10578 if (ret) { 10579 dev_err(&hdev->pdev->dev, 10580 "failed to deassert soft reset, ret = %d\n", 10581 ret); 10582 return ret; 10583 } 10584 reset_try_times = 0; 10585 } 10586 return 0; 10587 } 10588 10589 static int hclge_reset_rcb(struct hnae3_handle *handle) 10590 { 10591 #define HCLGE_RESET_RCB_NOT_SUPPORT 0U 10592 #define HCLGE_RESET_RCB_SUCCESS 1U 10593 10594 struct hclge_vport *vport = hclge_get_vport(handle); 10595 struct hclge_dev *hdev = vport->back; 10596 struct hclge_reset_cmd *req; 10597 struct hclge_desc desc; 10598 u8 return_status; 10599 u16 queue_gid; 10600 int ret; 10601 10602 queue_gid = hclge_covert_handle_qid_global(handle, 0); 10603 10604 req = (struct hclge_reset_cmd *)desc.data; 10605 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false); 10606 hnae3_set_bit(req->fun_reset_rcb, HCLGE_CFG_RESET_RCB_B, 1); 10607 req->fun_reset_rcb_vqid_start = cpu_to_le16(queue_gid); 10608 req->fun_reset_rcb_vqid_num = cpu_to_le16(handle->kinfo.num_tqps); 10609 10610 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 10611 if (ret) { 10612 dev_err(&hdev->pdev->dev, 10613 "failed to send rcb reset cmd, ret = %d\n", ret); 10614 return ret; 10615 } 10616 10617 return_status = req->fun_reset_rcb_return_status; 10618 if (return_status == HCLGE_RESET_RCB_SUCCESS) 10619 return 0; 10620 10621 if (return_status != HCLGE_RESET_RCB_NOT_SUPPORT) { 10622 dev_err(&hdev->pdev->dev, "failed to reset rcb, ret = %u\n", 10623 return_status); 10624 return -EIO; 10625 } 10626 10627 /* if reset rcb cmd is unsupported, we need to send reset tqp cmd 10628 * again to reset all tqps 10629 */ 10630 return hclge_reset_tqp_cmd(handle); 10631 } 10632 10633 int hclge_reset_tqp(struct hnae3_handle *handle) 10634 { 10635 struct hclge_vport *vport = hclge_get_vport(handle); 10636 struct hclge_dev *hdev = vport->back; 10637 int ret; 10638 10639 /* only need to disable PF's tqp */ 10640 if (!vport->vport_id) { 10641 ret = hclge_tqp_enable(handle, false); 10642 if (ret) { 10643 dev_err(&hdev->pdev->dev, 10644 "failed to disable tqp, ret = %d\n", ret); 10645 return ret; 10646 } 10647 } 10648 10649 return hclge_reset_rcb(handle); 10650 } 10651 10652 static u32 hclge_get_fw_version(struct hnae3_handle *handle) 10653 { 10654 struct hclge_vport *vport = hclge_get_vport(handle); 10655 struct hclge_dev *hdev = vport->back; 10656 10657 return hdev->fw_version; 10658 } 10659 10660 static void hclge_set_flowctrl_adv(struct hclge_dev *hdev, u32 rx_en, u32 tx_en) 10661 { 10662 struct phy_device *phydev = hdev->hw.mac.phydev; 10663 10664 if (!phydev) 10665 return; 10666 10667 phy_set_asym_pause(phydev, rx_en, tx_en); 10668 } 10669 10670 static int hclge_cfg_pauseparam(struct hclge_dev *hdev, u32 rx_en, u32 tx_en) 10671 { 10672 int ret; 10673 10674 if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) 10675 return 0; 10676 10677 ret = hclge_mac_pause_en_cfg(hdev, tx_en, rx_en); 10678 if (ret) 10679 dev_err(&hdev->pdev->dev, 10680 "configure pauseparam error, ret = %d.\n", ret); 10681 10682 return ret; 10683 } 10684 10685 int hclge_cfg_flowctrl(struct hclge_dev *hdev) 10686 { 10687 struct phy_device *phydev = hdev->hw.mac.phydev; 10688 u16 remote_advertising = 0; 10689 u16 local_advertising; 10690 u32 rx_pause, tx_pause; 10691 u8 flowctl; 10692 10693 if (!phydev->link || !phydev->autoneg) 10694 return 0; 10695 10696 local_advertising = linkmode_adv_to_lcl_adv_t(phydev->advertising); 10697 10698 if (phydev->pause) 10699 remote_advertising = LPA_PAUSE_CAP; 10700 10701 if (phydev->asym_pause) 10702 remote_advertising |= LPA_PAUSE_ASYM; 10703 10704 flowctl = mii_resolve_flowctrl_fdx(local_advertising, 10705 remote_advertising); 10706 tx_pause = flowctl & FLOW_CTRL_TX; 10707 rx_pause = flowctl & FLOW_CTRL_RX; 10708 10709 if (phydev->duplex == HCLGE_MAC_HALF) { 10710 tx_pause = 0; 10711 rx_pause = 0; 10712 } 10713 10714 return hclge_cfg_pauseparam(hdev, rx_pause, tx_pause); 10715 } 10716 10717 static void hclge_get_pauseparam(struct hnae3_handle *handle, u32 *auto_neg, 10718 u32 *rx_en, u32 *tx_en) 10719 { 10720 struct hclge_vport *vport = hclge_get_vport(handle); 10721 struct hclge_dev *hdev = vport->back; 10722 u8 media_type = hdev->hw.mac.media_type; 10723 10724 *auto_neg = (media_type == HNAE3_MEDIA_TYPE_COPPER) ? 10725 hclge_get_autoneg(handle) : 0; 10726 10727 if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) { 10728 *rx_en = 0; 10729 *tx_en = 0; 10730 return; 10731 } 10732 10733 if (hdev->tm_info.fc_mode == HCLGE_FC_RX_PAUSE) { 10734 *rx_en = 1; 10735 *tx_en = 0; 10736 } else if (hdev->tm_info.fc_mode == HCLGE_FC_TX_PAUSE) { 10737 *tx_en = 1; 10738 *rx_en = 0; 10739 } else if (hdev->tm_info.fc_mode == HCLGE_FC_FULL) { 10740 *rx_en = 1; 10741 *tx_en = 1; 10742 } else { 10743 *rx_en = 0; 10744 *tx_en = 0; 10745 } 10746 } 10747 10748 static void hclge_record_user_pauseparam(struct hclge_dev *hdev, 10749 u32 rx_en, u32 tx_en) 10750 { 10751 if (rx_en && tx_en) 10752 hdev->fc_mode_last_time = HCLGE_FC_FULL; 10753 else if (rx_en && !tx_en) 10754 hdev->fc_mode_last_time = HCLGE_FC_RX_PAUSE; 10755 else if (!rx_en && tx_en) 10756 hdev->fc_mode_last_time = HCLGE_FC_TX_PAUSE; 10757 else 10758 hdev->fc_mode_last_time = HCLGE_FC_NONE; 10759 10760 hdev->tm_info.fc_mode = hdev->fc_mode_last_time; 10761 } 10762 10763 static int hclge_set_pauseparam(struct hnae3_handle *handle, u32 auto_neg, 10764 u32 rx_en, u32 tx_en) 10765 { 10766 struct hclge_vport *vport = hclge_get_vport(handle); 10767 struct hclge_dev *hdev = vport->back; 10768 struct phy_device *phydev = hdev->hw.mac.phydev; 10769 u32 fc_autoneg; 10770 10771 if (phydev || hnae3_dev_phy_imp_supported(hdev)) { 10772 fc_autoneg = hclge_get_autoneg(handle); 10773 if (auto_neg != fc_autoneg) { 10774 dev_info(&hdev->pdev->dev, 10775 "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n"); 10776 return -EOPNOTSUPP; 10777 } 10778 } 10779 10780 if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) { 10781 dev_info(&hdev->pdev->dev, 10782 "Priority flow control enabled. Cannot set link flow control.\n"); 10783 return -EOPNOTSUPP; 10784 } 10785 10786 hclge_set_flowctrl_adv(hdev, rx_en, tx_en); 10787 10788 hclge_record_user_pauseparam(hdev, rx_en, tx_en); 10789 10790 if (!auto_neg || hnae3_dev_phy_imp_supported(hdev)) 10791 return hclge_cfg_pauseparam(hdev, rx_en, tx_en); 10792 10793 if (phydev) 10794 return phy_start_aneg(phydev); 10795 10796 return -EOPNOTSUPP; 10797 } 10798 10799 static void hclge_get_ksettings_an_result(struct hnae3_handle *handle, 10800 u8 *auto_neg, u32 *speed, u8 *duplex) 10801 { 10802 struct hclge_vport *vport = hclge_get_vport(handle); 10803 struct hclge_dev *hdev = vport->back; 10804 10805 if (speed) 10806 *speed = hdev->hw.mac.speed; 10807 if (duplex) 10808 *duplex = hdev->hw.mac.duplex; 10809 if (auto_neg) 10810 *auto_neg = hdev->hw.mac.autoneg; 10811 } 10812 10813 static void hclge_get_media_type(struct hnae3_handle *handle, u8 *media_type, 10814 u8 *module_type) 10815 { 10816 struct hclge_vport *vport = hclge_get_vport(handle); 10817 struct hclge_dev *hdev = vport->back; 10818 10819 /* When nic is down, the service task is not running, doesn't update 10820 * the port information per second. Query the port information before 10821 * return the media type, ensure getting the correct media information. 10822 */ 10823 hclge_update_port_info(hdev); 10824 10825 if (media_type) 10826 *media_type = hdev->hw.mac.media_type; 10827 10828 if (module_type) 10829 *module_type = hdev->hw.mac.module_type; 10830 } 10831 10832 static void hclge_get_mdix_mode(struct hnae3_handle *handle, 10833 u8 *tp_mdix_ctrl, u8 *tp_mdix) 10834 { 10835 struct hclge_vport *vport = hclge_get_vport(handle); 10836 struct hclge_dev *hdev = vport->back; 10837 struct phy_device *phydev = hdev->hw.mac.phydev; 10838 int mdix_ctrl, mdix, is_resolved; 10839 unsigned int retval; 10840 10841 if (!phydev) { 10842 *tp_mdix_ctrl = ETH_TP_MDI_INVALID; 10843 *tp_mdix = ETH_TP_MDI_INVALID; 10844 return; 10845 } 10846 10847 phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_MDIX); 10848 10849 retval = phy_read(phydev, HCLGE_PHY_CSC_REG); 10850 mdix_ctrl = hnae3_get_field(retval, HCLGE_PHY_MDIX_CTRL_M, 10851 HCLGE_PHY_MDIX_CTRL_S); 10852 10853 retval = phy_read(phydev, HCLGE_PHY_CSS_REG); 10854 mdix = hnae3_get_bit(retval, HCLGE_PHY_MDIX_STATUS_B); 10855 is_resolved = hnae3_get_bit(retval, HCLGE_PHY_SPEED_DUP_RESOLVE_B); 10856 10857 phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_COPPER); 10858 10859 switch (mdix_ctrl) { 10860 case 0x0: 10861 *tp_mdix_ctrl = ETH_TP_MDI; 10862 break; 10863 case 0x1: 10864 *tp_mdix_ctrl = ETH_TP_MDI_X; 10865 break; 10866 case 0x3: 10867 *tp_mdix_ctrl = ETH_TP_MDI_AUTO; 10868 break; 10869 default: 10870 *tp_mdix_ctrl = ETH_TP_MDI_INVALID; 10871 break; 10872 } 10873 10874 if (!is_resolved) 10875 *tp_mdix = ETH_TP_MDI_INVALID; 10876 else if (mdix) 10877 *tp_mdix = ETH_TP_MDI_X; 10878 else 10879 *tp_mdix = ETH_TP_MDI; 10880 } 10881 10882 static void hclge_info_show(struct hclge_dev *hdev) 10883 { 10884 struct device *dev = &hdev->pdev->dev; 10885 10886 dev_info(dev, "PF info begin:\n"); 10887 10888 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); 10889 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); 10890 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); 10891 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); 10892 dev_info(dev, "Numbers of VF for this PF: %u\n", hdev->num_req_vfs); 10893 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); 10894 dev_info(dev, "Total buffer size for TX/RX: %u\n", hdev->pkt_buf_size); 10895 dev_info(dev, "TX buffer size for each TC: %u\n", hdev->tx_buf_size); 10896 dev_info(dev, "DV buffer size for each TC: %u\n", hdev->dv_buf_size); 10897 dev_info(dev, "This is %s PF\n", 10898 hdev->flag & HCLGE_FLAG_MAIN ? "main" : "not main"); 10899 dev_info(dev, "DCB %s\n", 10900 hdev->flag & HCLGE_FLAG_DCB_ENABLE ? "enable" : "disable"); 10901 dev_info(dev, "MQPRIO %s\n", 10902 hdev->flag & HCLGE_FLAG_MQPRIO_ENABLE ? "enable" : "disable"); 10903 dev_info(dev, "Default tx spare buffer size: %u\n", 10904 hdev->tx_spare_buf_size); 10905 10906 dev_info(dev, "PF info end.\n"); 10907 } 10908 10909 static int hclge_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, 10910 struct hclge_vport *vport) 10911 { 10912 struct hnae3_client *client = vport->nic.client; 10913 struct hclge_dev *hdev = ae_dev->priv; 10914 int rst_cnt = hdev->rst_stats.reset_cnt; 10915 int ret; 10916 10917 ret = client->ops->init_instance(&vport->nic); 10918 if (ret) 10919 return ret; 10920 10921 set_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state); 10922 if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) || 10923 rst_cnt != hdev->rst_stats.reset_cnt) { 10924 ret = -EBUSY; 10925 goto init_nic_err; 10926 } 10927 10928 /* Enable nic hw error interrupts */ 10929 ret = hclge_config_nic_hw_error(hdev, true); 10930 if (ret) { 10931 dev_err(&ae_dev->pdev->dev, 10932 "fail(%d) to enable hw error interrupts\n", ret); 10933 goto init_nic_err; 10934 } 10935 10936 hnae3_set_client_init_flag(client, ae_dev, 1); 10937 10938 if (netif_msg_drv(&hdev->vport->nic)) 10939 hclge_info_show(hdev); 10940 10941 return ret; 10942 10943 init_nic_err: 10944 clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state); 10945 while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 10946 msleep(HCLGE_WAIT_RESET_DONE); 10947 10948 client->ops->uninit_instance(&vport->nic, 0); 10949 10950 return ret; 10951 } 10952 10953 static int hclge_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, 10954 struct hclge_vport *vport) 10955 { 10956 struct hclge_dev *hdev = ae_dev->priv; 10957 struct hnae3_client *client; 10958 int rst_cnt; 10959 int ret; 10960 10961 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || 10962 !hdev->nic_client) 10963 return 0; 10964 10965 client = hdev->roce_client; 10966 ret = hclge_init_roce_base_info(vport); 10967 if (ret) 10968 return ret; 10969 10970 rst_cnt = hdev->rst_stats.reset_cnt; 10971 ret = client->ops->init_instance(&vport->roce); 10972 if (ret) 10973 return ret; 10974 10975 set_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state); 10976 if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) || 10977 rst_cnt != hdev->rst_stats.reset_cnt) { 10978 ret = -EBUSY; 10979 goto init_roce_err; 10980 } 10981 10982 /* Enable roce ras interrupts */ 10983 ret = hclge_config_rocee_ras_interrupt(hdev, true); 10984 if (ret) { 10985 dev_err(&ae_dev->pdev->dev, 10986 "fail(%d) to enable roce ras interrupts\n", ret); 10987 goto init_roce_err; 10988 } 10989 10990 hnae3_set_client_init_flag(client, ae_dev, 1); 10991 10992 return 0; 10993 10994 init_roce_err: 10995 clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state); 10996 while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 10997 msleep(HCLGE_WAIT_RESET_DONE); 10998 10999 hdev->roce_client->ops->uninit_instance(&vport->roce, 0); 11000 11001 return ret; 11002 } 11003 11004 static int hclge_init_client_instance(struct hnae3_client *client, 11005 struct hnae3_ae_dev *ae_dev) 11006 { 11007 struct hclge_dev *hdev = ae_dev->priv; 11008 struct hclge_vport *vport = &hdev->vport[0]; 11009 int ret; 11010 11011 switch (client->type) { 11012 case HNAE3_CLIENT_KNIC: 11013 hdev->nic_client = client; 11014 vport->nic.client = client; 11015 ret = hclge_init_nic_client_instance(ae_dev, vport); 11016 if (ret) 11017 goto clear_nic; 11018 11019 ret = hclge_init_roce_client_instance(ae_dev, vport); 11020 if (ret) 11021 goto clear_roce; 11022 11023 break; 11024 case HNAE3_CLIENT_ROCE: 11025 if (hnae3_dev_roce_supported(hdev)) { 11026 hdev->roce_client = client; 11027 vport->roce.client = client; 11028 } 11029 11030 ret = hclge_init_roce_client_instance(ae_dev, vport); 11031 if (ret) 11032 goto clear_roce; 11033 11034 break; 11035 default: 11036 return -EINVAL; 11037 } 11038 11039 return 0; 11040 11041 clear_nic: 11042 hdev->nic_client = NULL; 11043 vport->nic.client = NULL; 11044 return ret; 11045 clear_roce: 11046 hdev->roce_client = NULL; 11047 vport->roce.client = NULL; 11048 return ret; 11049 } 11050 11051 static void hclge_uninit_client_instance(struct hnae3_client *client, 11052 struct hnae3_ae_dev *ae_dev) 11053 { 11054 struct hclge_dev *hdev = ae_dev->priv; 11055 struct hclge_vport *vport = &hdev->vport[0]; 11056 11057 if (hdev->roce_client) { 11058 clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state); 11059 while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 11060 msleep(HCLGE_WAIT_RESET_DONE); 11061 11062 hdev->roce_client->ops->uninit_instance(&vport->roce, 0); 11063 hdev->roce_client = NULL; 11064 vport->roce.client = NULL; 11065 } 11066 if (client->type == HNAE3_CLIENT_ROCE) 11067 return; 11068 if (hdev->nic_client && client->ops->uninit_instance) { 11069 clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state); 11070 while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 11071 msleep(HCLGE_WAIT_RESET_DONE); 11072 11073 client->ops->uninit_instance(&vport->nic, 0); 11074 hdev->nic_client = NULL; 11075 vport->nic.client = NULL; 11076 } 11077 } 11078 11079 static int hclge_dev_mem_map(struct hclge_dev *hdev) 11080 { 11081 struct pci_dev *pdev = hdev->pdev; 11082 struct hclge_hw *hw = &hdev->hw; 11083 11084 /* for device does not have device memory, return directly */ 11085 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGE_MEM_BAR))) 11086 return 0; 11087 11088 hw->hw.mem_base = 11089 devm_ioremap_wc(&pdev->dev, 11090 pci_resource_start(pdev, HCLGE_MEM_BAR), 11091 pci_resource_len(pdev, HCLGE_MEM_BAR)); 11092 if (!hw->hw.mem_base) { 11093 dev_err(&pdev->dev, "failed to map device memory\n"); 11094 return -EFAULT; 11095 } 11096 11097 return 0; 11098 } 11099 11100 static int hclge_pci_init(struct hclge_dev *hdev) 11101 { 11102 struct pci_dev *pdev = hdev->pdev; 11103 struct hclge_hw *hw; 11104 int ret; 11105 11106 ret = pci_enable_device(pdev); 11107 if (ret) { 11108 dev_err(&pdev->dev, "failed to enable PCI device\n"); 11109 return ret; 11110 } 11111 11112 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 11113 if (ret) { 11114 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 11115 if (ret) { 11116 dev_err(&pdev->dev, 11117 "can't set consistent PCI DMA"); 11118 goto err_disable_device; 11119 } 11120 dev_warn(&pdev->dev, "set DMA mask to 32 bits\n"); 11121 } 11122 11123 ret = pci_request_regions(pdev, HCLGE_DRIVER_NAME); 11124 if (ret) { 11125 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 11126 goto err_disable_device; 11127 } 11128 11129 pci_set_master(pdev); 11130 hw = &hdev->hw; 11131 hw->hw.io_base = pcim_iomap(pdev, 2, 0); 11132 if (!hw->hw.io_base) { 11133 dev_err(&pdev->dev, "Can't map configuration register space\n"); 11134 ret = -ENOMEM; 11135 goto err_clr_master; 11136 } 11137 11138 ret = hclge_dev_mem_map(hdev); 11139 if (ret) 11140 goto err_unmap_io_base; 11141 11142 hdev->num_req_vfs = pci_sriov_get_totalvfs(pdev); 11143 11144 return 0; 11145 11146 err_unmap_io_base: 11147 pcim_iounmap(pdev, hdev->hw.hw.io_base); 11148 err_clr_master: 11149 pci_clear_master(pdev); 11150 pci_release_regions(pdev); 11151 err_disable_device: 11152 pci_disable_device(pdev); 11153 11154 return ret; 11155 } 11156 11157 static void hclge_pci_uninit(struct hclge_dev *hdev) 11158 { 11159 struct pci_dev *pdev = hdev->pdev; 11160 11161 if (hdev->hw.hw.mem_base) 11162 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base); 11163 11164 pcim_iounmap(pdev, hdev->hw.hw.io_base); 11165 pci_free_irq_vectors(pdev); 11166 pci_clear_master(pdev); 11167 pci_release_mem_regions(pdev); 11168 pci_disable_device(pdev); 11169 } 11170 11171 static void hclge_state_init(struct hclge_dev *hdev) 11172 { 11173 set_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state); 11174 set_bit(HCLGE_STATE_DOWN, &hdev->state); 11175 clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state); 11176 clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 11177 clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state); 11178 clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state); 11179 clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state); 11180 } 11181 11182 static void hclge_state_uninit(struct hclge_dev *hdev) 11183 { 11184 set_bit(HCLGE_STATE_DOWN, &hdev->state); 11185 set_bit(HCLGE_STATE_REMOVING, &hdev->state); 11186 11187 if (hdev->reset_timer.function) 11188 del_timer_sync(&hdev->reset_timer); 11189 if (hdev->service_task.work.func) 11190 cancel_delayed_work_sync(&hdev->service_task); 11191 } 11192 11193 static void hclge_reset_prepare_general(struct hnae3_ae_dev *ae_dev, 11194 enum hnae3_reset_type rst_type) 11195 { 11196 #define HCLGE_RESET_RETRY_WAIT_MS 500 11197 #define HCLGE_RESET_RETRY_CNT 5 11198 11199 struct hclge_dev *hdev = ae_dev->priv; 11200 int retry_cnt = 0; 11201 int ret; 11202 11203 while (retry_cnt++ < HCLGE_RESET_RETRY_CNT) { 11204 down(&hdev->reset_sem); 11205 set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 11206 hdev->reset_type = rst_type; 11207 ret = hclge_reset_prepare(hdev); 11208 if (!ret && !hdev->reset_pending) 11209 break; 11210 11211 dev_err(&hdev->pdev->dev, 11212 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n", 11213 ret, hdev->reset_pending, retry_cnt); 11214 clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 11215 up(&hdev->reset_sem); 11216 msleep(HCLGE_RESET_RETRY_WAIT_MS); 11217 } 11218 11219 /* disable misc vector before reset done */ 11220 hclge_enable_vector(&hdev->misc_vector, false); 11221 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 11222 11223 if (hdev->reset_type == HNAE3_FLR_RESET) 11224 hdev->rst_stats.flr_rst_cnt++; 11225 } 11226 11227 static void hclge_reset_done(struct hnae3_ae_dev *ae_dev) 11228 { 11229 struct hclge_dev *hdev = ae_dev->priv; 11230 int ret; 11231 11232 hclge_enable_vector(&hdev->misc_vector, true); 11233 11234 ret = hclge_reset_rebuild(hdev); 11235 if (ret) 11236 dev_err(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", ret); 11237 11238 hdev->reset_type = HNAE3_NONE_RESET; 11239 clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 11240 up(&hdev->reset_sem); 11241 } 11242 11243 static void hclge_clear_resetting_state(struct hclge_dev *hdev) 11244 { 11245 u16 i; 11246 11247 for (i = 0; i < hdev->num_alloc_vport; i++) { 11248 struct hclge_vport *vport = &hdev->vport[i]; 11249 int ret; 11250 11251 /* Send cmd to clear vport's FUNC_RST_ING */ 11252 ret = hclge_set_vf_rst(hdev, vport->vport_id, false); 11253 if (ret) 11254 dev_warn(&hdev->pdev->dev, 11255 "clear vport(%u) rst failed %d!\n", 11256 vport->vport_id, ret); 11257 } 11258 } 11259 11260 static int hclge_clear_hw_resource(struct hclge_dev *hdev) 11261 { 11262 struct hclge_desc desc; 11263 int ret; 11264 11265 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_HW_RESOURCE, false); 11266 11267 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 11268 /* This new command is only supported by new firmware, it will 11269 * fail with older firmware. Error value -EOPNOSUPP can only be 11270 * returned by older firmware running this command, to keep code 11271 * backward compatible we will override this value and return 11272 * success. 11273 */ 11274 if (ret && ret != -EOPNOTSUPP) { 11275 dev_err(&hdev->pdev->dev, 11276 "failed to clear hw resource, ret = %d\n", ret); 11277 return ret; 11278 } 11279 return 0; 11280 } 11281 11282 static void hclge_init_rxd_adv_layout(struct hclge_dev *hdev) 11283 { 11284 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 11285 hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 1); 11286 } 11287 11288 static void hclge_uninit_rxd_adv_layout(struct hclge_dev *hdev) 11289 { 11290 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 11291 hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 0); 11292 } 11293 11294 static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev) 11295 { 11296 struct pci_dev *pdev = ae_dev->pdev; 11297 struct hclge_dev *hdev; 11298 int ret; 11299 11300 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 11301 if (!hdev) 11302 return -ENOMEM; 11303 11304 hdev->pdev = pdev; 11305 hdev->ae_dev = ae_dev; 11306 hdev->reset_type = HNAE3_NONE_RESET; 11307 hdev->reset_level = HNAE3_FUNC_RESET; 11308 ae_dev->priv = hdev; 11309 11310 /* HW supprt 2 layer vlan */ 11311 hdev->mps = ETH_FRAME_LEN + ETH_FCS_LEN + 2 * VLAN_HLEN; 11312 11313 mutex_init(&hdev->vport_lock); 11314 spin_lock_init(&hdev->fd_rule_lock); 11315 sema_init(&hdev->reset_sem, 1); 11316 11317 ret = hclge_pci_init(hdev); 11318 if (ret) 11319 goto out; 11320 11321 ret = hclge_devlink_init(hdev); 11322 if (ret) 11323 goto err_pci_uninit; 11324 11325 /* Firmware command queue initialize */ 11326 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw); 11327 if (ret) 11328 goto err_devlink_uninit; 11329 11330 /* Firmware command initialize */ 11331 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version, 11332 true, hdev->reset_pending); 11333 if (ret) 11334 goto err_cmd_uninit; 11335 11336 ret = hclge_clear_hw_resource(hdev); 11337 if (ret) 11338 goto err_cmd_uninit; 11339 11340 ret = hclge_get_cap(hdev); 11341 if (ret) 11342 goto err_cmd_uninit; 11343 11344 ret = hclge_query_dev_specs(hdev); 11345 if (ret) { 11346 dev_err(&pdev->dev, "failed to query dev specifications, ret = %d.\n", 11347 ret); 11348 goto err_cmd_uninit; 11349 } 11350 11351 ret = hclge_configure(hdev); 11352 if (ret) { 11353 dev_err(&pdev->dev, "Configure dev error, ret = %d.\n", ret); 11354 goto err_cmd_uninit; 11355 } 11356 11357 ret = hclge_init_msi(hdev); 11358 if (ret) { 11359 dev_err(&pdev->dev, "Init MSI/MSI-X error, ret = %d.\n", ret); 11360 goto err_cmd_uninit; 11361 } 11362 11363 ret = hclge_misc_irq_init(hdev); 11364 if (ret) 11365 goto err_msi_uninit; 11366 11367 ret = hclge_alloc_tqps(hdev); 11368 if (ret) { 11369 dev_err(&pdev->dev, "Allocate TQPs error, ret = %d.\n", ret); 11370 goto err_msi_irq_uninit; 11371 } 11372 11373 ret = hclge_alloc_vport(hdev); 11374 if (ret) 11375 goto err_msi_irq_uninit; 11376 11377 ret = hclge_map_tqp(hdev); 11378 if (ret) 11379 goto err_msi_irq_uninit; 11380 11381 if (hdev->hw.mac.media_type == HNAE3_MEDIA_TYPE_COPPER && 11382 !hnae3_dev_phy_imp_supported(hdev)) { 11383 ret = hclge_mac_mdio_config(hdev); 11384 if (ret) 11385 goto err_msi_irq_uninit; 11386 } 11387 11388 ret = hclge_init_umv_space(hdev); 11389 if (ret) 11390 goto err_mdiobus_unreg; 11391 11392 ret = hclge_mac_init(hdev); 11393 if (ret) { 11394 dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret); 11395 goto err_mdiobus_unreg; 11396 } 11397 11398 ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX); 11399 if (ret) { 11400 dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret); 11401 goto err_mdiobus_unreg; 11402 } 11403 11404 ret = hclge_config_gro(hdev); 11405 if (ret) 11406 goto err_mdiobus_unreg; 11407 11408 ret = hclge_init_vlan_config(hdev); 11409 if (ret) { 11410 dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret); 11411 goto err_mdiobus_unreg; 11412 } 11413 11414 ret = hclge_tm_schd_init(hdev); 11415 if (ret) { 11416 dev_err(&pdev->dev, "tm schd init fail, ret =%d\n", ret); 11417 goto err_mdiobus_unreg; 11418 } 11419 11420 ret = hclge_comm_rss_init_cfg(&hdev->vport->nic, hdev->ae_dev, 11421 &hdev->rss_cfg); 11422 if (ret) { 11423 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret); 11424 goto err_mdiobus_unreg; 11425 } 11426 11427 ret = hclge_rss_init_hw(hdev); 11428 if (ret) { 11429 dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret); 11430 goto err_mdiobus_unreg; 11431 } 11432 11433 ret = init_mgr_tbl(hdev); 11434 if (ret) { 11435 dev_err(&pdev->dev, "manager table init fail, ret =%d\n", ret); 11436 goto err_mdiobus_unreg; 11437 } 11438 11439 ret = hclge_init_fd_config(hdev); 11440 if (ret) { 11441 dev_err(&pdev->dev, 11442 "fd table init fail, ret=%d\n", ret); 11443 goto err_mdiobus_unreg; 11444 } 11445 11446 ret = hclge_ptp_init(hdev); 11447 if (ret) 11448 goto err_mdiobus_unreg; 11449 11450 INIT_KFIFO(hdev->mac_tnl_log); 11451 11452 hclge_dcb_ops_set(hdev); 11453 11454 timer_setup(&hdev->reset_timer, hclge_reset_timer, 0); 11455 INIT_DELAYED_WORK(&hdev->service_task, hclge_service_task); 11456 11457 /* Setup affinity after service timer setup because add_timer_on 11458 * is called in affinity notify. 11459 */ 11460 hclge_misc_affinity_setup(hdev); 11461 11462 hclge_clear_all_event_cause(hdev); 11463 hclge_clear_resetting_state(hdev); 11464 11465 /* Log and clear the hw errors those already occurred */ 11466 if (hnae3_dev_ras_imp_supported(hdev)) 11467 hclge_handle_occurred_error(hdev); 11468 else 11469 hclge_handle_all_hns_hw_errors(ae_dev); 11470 11471 /* request delayed reset for the error recovery because an immediate 11472 * global reset on a PF affecting pending initialization of other PFs 11473 */ 11474 if (ae_dev->hw_err_reset_req) { 11475 enum hnae3_reset_type reset_level; 11476 11477 reset_level = hclge_get_reset_level(ae_dev, 11478 &ae_dev->hw_err_reset_req); 11479 hclge_set_def_reset_request(ae_dev, reset_level); 11480 mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL); 11481 } 11482 11483 hclge_init_rxd_adv_layout(hdev); 11484 11485 /* Enable MISC vector(vector0) */ 11486 hclge_enable_vector(&hdev->misc_vector, true); 11487 11488 hclge_state_init(hdev); 11489 hdev->last_reset_time = jiffies; 11490 11491 dev_info(&hdev->pdev->dev, "%s driver initialization finished.\n", 11492 HCLGE_DRIVER_NAME); 11493 11494 hclge_task_schedule(hdev, round_jiffies_relative(HZ)); 11495 11496 return 0; 11497 11498 err_mdiobus_unreg: 11499 if (hdev->hw.mac.phydev) 11500 mdiobus_unregister(hdev->hw.mac.mdio_bus); 11501 err_msi_irq_uninit: 11502 hclge_misc_irq_uninit(hdev); 11503 err_msi_uninit: 11504 pci_free_irq_vectors(pdev); 11505 err_cmd_uninit: 11506 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 11507 err_devlink_uninit: 11508 hclge_devlink_uninit(hdev); 11509 err_pci_uninit: 11510 pcim_iounmap(pdev, hdev->hw.hw.io_base); 11511 pci_clear_master(pdev); 11512 pci_release_regions(pdev); 11513 pci_disable_device(pdev); 11514 out: 11515 mutex_destroy(&hdev->vport_lock); 11516 return ret; 11517 } 11518 11519 static void hclge_stats_clear(struct hclge_dev *hdev) 11520 { 11521 memset(&hdev->mac_stats, 0, sizeof(hdev->mac_stats)); 11522 } 11523 11524 static int hclge_set_mac_spoofchk(struct hclge_dev *hdev, int vf, bool enable) 11525 { 11526 return hclge_config_switch_param(hdev, vf, enable, 11527 HCLGE_SWITCH_ANTI_SPOOF_MASK); 11528 } 11529 11530 static int hclge_set_vlan_spoofchk(struct hclge_dev *hdev, int vf, bool enable) 11531 { 11532 return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 11533 HCLGE_FILTER_FE_NIC_INGRESS_B, 11534 enable, vf); 11535 } 11536 11537 static int hclge_set_vf_spoofchk_hw(struct hclge_dev *hdev, int vf, bool enable) 11538 { 11539 int ret; 11540 11541 ret = hclge_set_mac_spoofchk(hdev, vf, enable); 11542 if (ret) { 11543 dev_err(&hdev->pdev->dev, 11544 "Set vf %d mac spoof check %s failed, ret=%d\n", 11545 vf, enable ? "on" : "off", ret); 11546 return ret; 11547 } 11548 11549 ret = hclge_set_vlan_spoofchk(hdev, vf, enable); 11550 if (ret) 11551 dev_err(&hdev->pdev->dev, 11552 "Set vf %d vlan spoof check %s failed, ret=%d\n", 11553 vf, enable ? "on" : "off", ret); 11554 11555 return ret; 11556 } 11557 11558 static int hclge_set_vf_spoofchk(struct hnae3_handle *handle, int vf, 11559 bool enable) 11560 { 11561 struct hclge_vport *vport = hclge_get_vport(handle); 11562 struct hclge_dev *hdev = vport->back; 11563 u32 new_spoofchk = enable ? 1 : 0; 11564 int ret; 11565 11566 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 11567 return -EOPNOTSUPP; 11568 11569 vport = hclge_get_vf_vport(hdev, vf); 11570 if (!vport) 11571 return -EINVAL; 11572 11573 if (vport->vf_info.spoofchk == new_spoofchk) 11574 return 0; 11575 11576 if (enable && test_bit(vport->vport_id, hdev->vf_vlan_full)) 11577 dev_warn(&hdev->pdev->dev, 11578 "vf %d vlan table is full, enable spoof check may cause its packet send fail\n", 11579 vf); 11580 else if (enable && hclge_is_umv_space_full(vport, true)) 11581 dev_warn(&hdev->pdev->dev, 11582 "vf %d mac table is full, enable spoof check may cause its packet send fail\n", 11583 vf); 11584 11585 ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, enable); 11586 if (ret) 11587 return ret; 11588 11589 vport->vf_info.spoofchk = new_spoofchk; 11590 return 0; 11591 } 11592 11593 static int hclge_reset_vport_spoofchk(struct hclge_dev *hdev) 11594 { 11595 struct hclge_vport *vport = hdev->vport; 11596 int ret; 11597 int i; 11598 11599 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 11600 return 0; 11601 11602 /* resume the vf spoof check state after reset */ 11603 for (i = 0; i < hdev->num_alloc_vport; i++) { 11604 ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, 11605 vport->vf_info.spoofchk); 11606 if (ret) 11607 return ret; 11608 11609 vport++; 11610 } 11611 11612 return 0; 11613 } 11614 11615 static int hclge_set_vf_trust(struct hnae3_handle *handle, int vf, bool enable) 11616 { 11617 struct hclge_vport *vport = hclge_get_vport(handle); 11618 struct hclge_dev *hdev = vport->back; 11619 u32 new_trusted = enable ? 1 : 0; 11620 11621 vport = hclge_get_vf_vport(hdev, vf); 11622 if (!vport) 11623 return -EINVAL; 11624 11625 if (vport->vf_info.trusted == new_trusted) 11626 return 0; 11627 11628 vport->vf_info.trusted = new_trusted; 11629 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 11630 hclge_task_schedule(hdev, 0); 11631 11632 return 0; 11633 } 11634 11635 static void hclge_reset_vf_rate(struct hclge_dev *hdev) 11636 { 11637 int ret; 11638 int vf; 11639 11640 /* reset vf rate to default value */ 11641 for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) { 11642 struct hclge_vport *vport = &hdev->vport[vf]; 11643 11644 vport->vf_info.max_tx_rate = 0; 11645 ret = hclge_tm_qs_shaper_cfg(vport, vport->vf_info.max_tx_rate); 11646 if (ret) 11647 dev_err(&hdev->pdev->dev, 11648 "vf%d failed to reset to default, ret=%d\n", 11649 vf - HCLGE_VF_VPORT_START_NUM, ret); 11650 } 11651 } 11652 11653 static int hclge_vf_rate_param_check(struct hclge_dev *hdev, 11654 int min_tx_rate, int max_tx_rate) 11655 { 11656 if (min_tx_rate != 0 || 11657 max_tx_rate < 0 || max_tx_rate > hdev->hw.mac.max_speed) { 11658 dev_err(&hdev->pdev->dev, 11659 "min_tx_rate:%d [0], max_tx_rate:%d [0, %u]\n", 11660 min_tx_rate, max_tx_rate, hdev->hw.mac.max_speed); 11661 return -EINVAL; 11662 } 11663 11664 return 0; 11665 } 11666 11667 static int hclge_set_vf_rate(struct hnae3_handle *handle, int vf, 11668 int min_tx_rate, int max_tx_rate, bool force) 11669 { 11670 struct hclge_vport *vport = hclge_get_vport(handle); 11671 struct hclge_dev *hdev = vport->back; 11672 int ret; 11673 11674 ret = hclge_vf_rate_param_check(hdev, min_tx_rate, max_tx_rate); 11675 if (ret) 11676 return ret; 11677 11678 vport = hclge_get_vf_vport(hdev, vf); 11679 if (!vport) 11680 return -EINVAL; 11681 11682 if (!force && max_tx_rate == vport->vf_info.max_tx_rate) 11683 return 0; 11684 11685 ret = hclge_tm_qs_shaper_cfg(vport, max_tx_rate); 11686 if (ret) 11687 return ret; 11688 11689 vport->vf_info.max_tx_rate = max_tx_rate; 11690 11691 return 0; 11692 } 11693 11694 static int hclge_resume_vf_rate(struct hclge_dev *hdev) 11695 { 11696 struct hnae3_handle *handle = &hdev->vport->nic; 11697 struct hclge_vport *vport; 11698 int ret; 11699 int vf; 11700 11701 /* resume the vf max_tx_rate after reset */ 11702 for (vf = 0; vf < pci_num_vf(hdev->pdev); vf++) { 11703 vport = hclge_get_vf_vport(hdev, vf); 11704 if (!vport) 11705 return -EINVAL; 11706 11707 /* zero means max rate, after reset, firmware already set it to 11708 * max rate, so just continue. 11709 */ 11710 if (!vport->vf_info.max_tx_rate) 11711 continue; 11712 11713 ret = hclge_set_vf_rate(handle, vf, 0, 11714 vport->vf_info.max_tx_rate, true); 11715 if (ret) { 11716 dev_err(&hdev->pdev->dev, 11717 "vf%d failed to resume tx_rate:%u, ret=%d\n", 11718 vf, vport->vf_info.max_tx_rate, ret); 11719 return ret; 11720 } 11721 } 11722 11723 return 0; 11724 } 11725 11726 static void hclge_reset_vport_state(struct hclge_dev *hdev) 11727 { 11728 struct hclge_vport *vport = hdev->vport; 11729 int i; 11730 11731 for (i = 0; i < hdev->num_alloc_vport; i++) { 11732 hclge_vport_stop(vport); 11733 vport++; 11734 } 11735 } 11736 11737 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev) 11738 { 11739 struct hclge_dev *hdev = ae_dev->priv; 11740 struct pci_dev *pdev = ae_dev->pdev; 11741 int ret; 11742 11743 set_bit(HCLGE_STATE_DOWN, &hdev->state); 11744 11745 hclge_stats_clear(hdev); 11746 /* NOTE: pf reset needn't to clear or restore pf and vf table entry. 11747 * so here should not clean table in memory. 11748 */ 11749 if (hdev->reset_type == HNAE3_IMP_RESET || 11750 hdev->reset_type == HNAE3_GLOBAL_RESET) { 11751 memset(hdev->vlan_table, 0, sizeof(hdev->vlan_table)); 11752 memset(hdev->vf_vlan_full, 0, sizeof(hdev->vf_vlan_full)); 11753 bitmap_set(hdev->vport_config_block, 0, hdev->num_alloc_vport); 11754 hclge_reset_umv_space(hdev); 11755 } 11756 11757 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version, 11758 true, hdev->reset_pending); 11759 if (ret) { 11760 dev_err(&pdev->dev, "Cmd queue init failed\n"); 11761 return ret; 11762 } 11763 11764 ret = hclge_map_tqp(hdev); 11765 if (ret) { 11766 dev_err(&pdev->dev, "Map tqp error, ret = %d.\n", ret); 11767 return ret; 11768 } 11769 11770 ret = hclge_mac_init(hdev); 11771 if (ret) { 11772 dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret); 11773 return ret; 11774 } 11775 11776 ret = hclge_tp_port_init(hdev); 11777 if (ret) { 11778 dev_err(&pdev->dev, "failed to init tp port, ret = %d\n", 11779 ret); 11780 return ret; 11781 } 11782 11783 ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX); 11784 if (ret) { 11785 dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret); 11786 return ret; 11787 } 11788 11789 ret = hclge_config_gro(hdev); 11790 if (ret) 11791 return ret; 11792 11793 ret = hclge_init_vlan_config(hdev); 11794 if (ret) { 11795 dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret); 11796 return ret; 11797 } 11798 11799 ret = hclge_tm_init_hw(hdev, true); 11800 if (ret) { 11801 dev_err(&pdev->dev, "tm init hw fail, ret =%d\n", ret); 11802 return ret; 11803 } 11804 11805 ret = hclge_rss_init_hw(hdev); 11806 if (ret) { 11807 dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret); 11808 return ret; 11809 } 11810 11811 ret = init_mgr_tbl(hdev); 11812 if (ret) { 11813 dev_err(&pdev->dev, 11814 "failed to reinit manager table, ret = %d\n", ret); 11815 return ret; 11816 } 11817 11818 ret = hclge_init_fd_config(hdev); 11819 if (ret) { 11820 dev_err(&pdev->dev, "fd table init fail, ret=%d\n", ret); 11821 return ret; 11822 } 11823 11824 ret = hclge_ptp_init(hdev); 11825 if (ret) 11826 return ret; 11827 11828 /* Log and clear the hw errors those already occurred */ 11829 if (hnae3_dev_ras_imp_supported(hdev)) 11830 hclge_handle_occurred_error(hdev); 11831 else 11832 hclge_handle_all_hns_hw_errors(ae_dev); 11833 11834 /* Re-enable the hw error interrupts because 11835 * the interrupts get disabled on global reset. 11836 */ 11837 ret = hclge_config_nic_hw_error(hdev, true); 11838 if (ret) { 11839 dev_err(&pdev->dev, 11840 "fail(%d) to re-enable NIC hw error interrupts\n", 11841 ret); 11842 return ret; 11843 } 11844 11845 if (hdev->roce_client) { 11846 ret = hclge_config_rocee_ras_interrupt(hdev, true); 11847 if (ret) { 11848 dev_err(&pdev->dev, 11849 "fail(%d) to re-enable roce ras interrupts\n", 11850 ret); 11851 return ret; 11852 } 11853 } 11854 11855 hclge_reset_vport_state(hdev); 11856 ret = hclge_reset_vport_spoofchk(hdev); 11857 if (ret) 11858 return ret; 11859 11860 ret = hclge_resume_vf_rate(hdev); 11861 if (ret) 11862 return ret; 11863 11864 hclge_init_rxd_adv_layout(hdev); 11865 11866 dev_info(&pdev->dev, "Reset done, %s driver initialization finished.\n", 11867 HCLGE_DRIVER_NAME); 11868 11869 return 0; 11870 } 11871 11872 static void hclge_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 11873 { 11874 struct hclge_dev *hdev = ae_dev->priv; 11875 struct hclge_mac *mac = &hdev->hw.mac; 11876 11877 hclge_reset_vf_rate(hdev); 11878 hclge_clear_vf_vlan(hdev); 11879 hclge_misc_affinity_teardown(hdev); 11880 hclge_state_uninit(hdev); 11881 hclge_ptp_uninit(hdev); 11882 hclge_uninit_rxd_adv_layout(hdev); 11883 hclge_uninit_mac_table(hdev); 11884 hclge_del_all_fd_entries(hdev); 11885 11886 if (mac->phydev) 11887 mdiobus_unregister(mac->mdio_bus); 11888 11889 /* Disable MISC vector(vector0) */ 11890 hclge_enable_vector(&hdev->misc_vector, false); 11891 synchronize_irq(hdev->misc_vector.vector_irq); 11892 11893 /* Disable all hw interrupts */ 11894 hclge_config_mac_tnl_int(hdev, false); 11895 hclge_config_nic_hw_error(hdev, false); 11896 hclge_config_rocee_ras_interrupt(hdev, false); 11897 11898 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 11899 hclge_misc_irq_uninit(hdev); 11900 hclge_devlink_uninit(hdev); 11901 hclge_pci_uninit(hdev); 11902 hclge_uninit_vport_vlan_table(hdev); 11903 mutex_destroy(&hdev->vport_lock); 11904 ae_dev->priv = NULL; 11905 } 11906 11907 static u32 hclge_get_max_channels(struct hnae3_handle *handle) 11908 { 11909 struct hclge_vport *vport = hclge_get_vport(handle); 11910 struct hclge_dev *hdev = vport->back; 11911 11912 return min_t(u32, hdev->pf_rss_size_max, vport->alloc_tqps); 11913 } 11914 11915 static void hclge_get_channels(struct hnae3_handle *handle, 11916 struct ethtool_channels *ch) 11917 { 11918 ch->max_combined = hclge_get_max_channels(handle); 11919 ch->other_count = 1; 11920 ch->max_other = 1; 11921 ch->combined_count = handle->kinfo.rss_size; 11922 } 11923 11924 static void hclge_get_tqps_and_rss_info(struct hnae3_handle *handle, 11925 u16 *alloc_tqps, u16 *max_rss_size) 11926 { 11927 struct hclge_vport *vport = hclge_get_vport(handle); 11928 struct hclge_dev *hdev = vport->back; 11929 11930 *alloc_tqps = vport->alloc_tqps; 11931 *max_rss_size = hdev->pf_rss_size_max; 11932 } 11933 11934 static int hclge_set_rss_tc_mode_cfg(struct hnae3_handle *handle) 11935 { 11936 struct hclge_vport *vport = hclge_get_vport(handle); 11937 u16 tc_offset[HCLGE_MAX_TC_NUM] = {0}; 11938 struct hclge_dev *hdev = vport->back; 11939 u16 tc_size[HCLGE_MAX_TC_NUM] = {0}; 11940 u16 tc_valid[HCLGE_MAX_TC_NUM]; 11941 u16 roundup_size; 11942 unsigned int i; 11943 11944 roundup_size = roundup_pow_of_two(vport->nic.kinfo.rss_size); 11945 roundup_size = ilog2(roundup_size); 11946 /* Set the RSS TC mode according to the new RSS size */ 11947 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 11948 tc_valid[i] = 0; 11949 11950 if (!(hdev->hw_tc_map & BIT(i))) 11951 continue; 11952 11953 tc_valid[i] = 1; 11954 tc_size[i] = roundup_size; 11955 tc_offset[i] = vport->nic.kinfo.rss_size * i; 11956 } 11957 11958 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid, 11959 tc_size); 11960 } 11961 11962 static int hclge_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, 11963 bool rxfh_configured) 11964 { 11965 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 11966 struct hclge_vport *vport = hclge_get_vport(handle); 11967 struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo; 11968 struct hclge_dev *hdev = vport->back; 11969 u16 cur_rss_size = kinfo->rss_size; 11970 u16 cur_tqps = kinfo->num_tqps; 11971 u32 *rss_indir; 11972 unsigned int i; 11973 int ret; 11974 11975 kinfo->req_rss_size = new_tqps_num; 11976 11977 ret = hclge_tm_vport_map_update(hdev); 11978 if (ret) { 11979 dev_err(&hdev->pdev->dev, "tm vport map fail, ret =%d\n", ret); 11980 return ret; 11981 } 11982 11983 ret = hclge_set_rss_tc_mode_cfg(handle); 11984 if (ret) 11985 return ret; 11986 11987 /* RSS indirection table has been configured by user */ 11988 if (rxfh_configured) 11989 goto out; 11990 11991 /* Reinitializes the rss indirect table according to the new RSS size */ 11992 rss_indir = kcalloc(ae_dev->dev_specs.rss_ind_tbl_size, sizeof(u32), 11993 GFP_KERNEL); 11994 if (!rss_indir) 11995 return -ENOMEM; 11996 11997 for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++) 11998 rss_indir[i] = i % kinfo->rss_size; 11999 12000 ret = hclge_set_rss(handle, rss_indir, NULL, 0); 12001 if (ret) 12002 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", 12003 ret); 12004 12005 kfree(rss_indir); 12006 12007 out: 12008 if (!ret) 12009 dev_info(&hdev->pdev->dev, 12010 "Channels changed, rss_size from %u to %u, tqps from %u to %u", 12011 cur_rss_size, kinfo->rss_size, 12012 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc); 12013 12014 return ret; 12015 } 12016 12017 static int hclge_get_regs_num(struct hclge_dev *hdev, u32 *regs_num_32_bit, 12018 u32 *regs_num_64_bit) 12019 { 12020 struct hclge_desc desc; 12021 u32 total_num; 12022 int ret; 12023 12024 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_REG_NUM, true); 12025 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 12026 if (ret) { 12027 dev_err(&hdev->pdev->dev, 12028 "Query register number cmd failed, ret = %d.\n", ret); 12029 return ret; 12030 } 12031 12032 *regs_num_32_bit = le32_to_cpu(desc.data[0]); 12033 *regs_num_64_bit = le32_to_cpu(desc.data[1]); 12034 12035 total_num = *regs_num_32_bit + *regs_num_64_bit; 12036 if (!total_num) 12037 return -EINVAL; 12038 12039 return 0; 12040 } 12041 12042 static int hclge_get_32_bit_regs(struct hclge_dev *hdev, u32 regs_num, 12043 void *data) 12044 { 12045 #define HCLGE_32_BIT_REG_RTN_DATANUM 8 12046 #define HCLGE_32_BIT_DESC_NODATA_LEN 2 12047 12048 struct hclge_desc *desc; 12049 u32 *reg_val = data; 12050 __le32 *desc_data; 12051 int nodata_num; 12052 int cmd_num; 12053 int i, k, n; 12054 int ret; 12055 12056 if (regs_num == 0) 12057 return 0; 12058 12059 nodata_num = HCLGE_32_BIT_DESC_NODATA_LEN; 12060 cmd_num = DIV_ROUND_UP(regs_num + nodata_num, 12061 HCLGE_32_BIT_REG_RTN_DATANUM); 12062 desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL); 12063 if (!desc) 12064 return -ENOMEM; 12065 12066 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_32_BIT_REG, true); 12067 ret = hclge_cmd_send(&hdev->hw, desc, cmd_num); 12068 if (ret) { 12069 dev_err(&hdev->pdev->dev, 12070 "Query 32 bit register cmd failed, ret = %d.\n", ret); 12071 kfree(desc); 12072 return ret; 12073 } 12074 12075 for (i = 0; i < cmd_num; i++) { 12076 if (i == 0) { 12077 desc_data = (__le32 *)(&desc[i].data[0]); 12078 n = HCLGE_32_BIT_REG_RTN_DATANUM - nodata_num; 12079 } else { 12080 desc_data = (__le32 *)(&desc[i]); 12081 n = HCLGE_32_BIT_REG_RTN_DATANUM; 12082 } 12083 for (k = 0; k < n; k++) { 12084 *reg_val++ = le32_to_cpu(*desc_data++); 12085 12086 regs_num--; 12087 if (!regs_num) 12088 break; 12089 } 12090 } 12091 12092 kfree(desc); 12093 return 0; 12094 } 12095 12096 static int hclge_get_64_bit_regs(struct hclge_dev *hdev, u32 regs_num, 12097 void *data) 12098 { 12099 #define HCLGE_64_BIT_REG_RTN_DATANUM 4 12100 #define HCLGE_64_BIT_DESC_NODATA_LEN 1 12101 12102 struct hclge_desc *desc; 12103 u64 *reg_val = data; 12104 __le64 *desc_data; 12105 int nodata_len; 12106 int cmd_num; 12107 int i, k, n; 12108 int ret; 12109 12110 if (regs_num == 0) 12111 return 0; 12112 12113 nodata_len = HCLGE_64_BIT_DESC_NODATA_LEN; 12114 cmd_num = DIV_ROUND_UP(regs_num + nodata_len, 12115 HCLGE_64_BIT_REG_RTN_DATANUM); 12116 desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL); 12117 if (!desc) 12118 return -ENOMEM; 12119 12120 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_64_BIT_REG, true); 12121 ret = hclge_cmd_send(&hdev->hw, desc, cmd_num); 12122 if (ret) { 12123 dev_err(&hdev->pdev->dev, 12124 "Query 64 bit register cmd failed, ret = %d.\n", ret); 12125 kfree(desc); 12126 return ret; 12127 } 12128 12129 for (i = 0; i < cmd_num; i++) { 12130 if (i == 0) { 12131 desc_data = (__le64 *)(&desc[i].data[0]); 12132 n = HCLGE_64_BIT_REG_RTN_DATANUM - nodata_len; 12133 } else { 12134 desc_data = (__le64 *)(&desc[i]); 12135 n = HCLGE_64_BIT_REG_RTN_DATANUM; 12136 } 12137 for (k = 0; k < n; k++) { 12138 *reg_val++ = le64_to_cpu(*desc_data++); 12139 12140 regs_num--; 12141 if (!regs_num) 12142 break; 12143 } 12144 } 12145 12146 kfree(desc); 12147 return 0; 12148 } 12149 12150 #define MAX_SEPARATE_NUM 4 12151 #define SEPARATOR_VALUE 0xFDFCFBFA 12152 #define REG_NUM_PER_LINE 4 12153 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32)) 12154 #define REG_SEPARATOR_LINE 1 12155 #define REG_NUM_REMAIN_MASK 3 12156 12157 int hclge_query_bd_num_cmd_send(struct hclge_dev *hdev, struct hclge_desc *desc) 12158 { 12159 int i; 12160 12161 /* initialize command BD except the last one */ 12162 for (i = 0; i < HCLGE_GET_DFX_REG_TYPE_CNT - 1; i++) { 12163 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_DFX_BD_NUM, 12164 true); 12165 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 12166 } 12167 12168 /* initialize the last command BD */ 12169 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_DFX_BD_NUM, true); 12170 12171 return hclge_cmd_send(&hdev->hw, desc, HCLGE_GET_DFX_REG_TYPE_CNT); 12172 } 12173 12174 static int hclge_get_dfx_reg_bd_num(struct hclge_dev *hdev, 12175 int *bd_num_list, 12176 u32 type_num) 12177 { 12178 u32 entries_per_desc, desc_index, index, offset, i; 12179 struct hclge_desc desc[HCLGE_GET_DFX_REG_TYPE_CNT]; 12180 int ret; 12181 12182 ret = hclge_query_bd_num_cmd_send(hdev, desc); 12183 if (ret) { 12184 dev_err(&hdev->pdev->dev, 12185 "Get dfx bd num fail, status is %d.\n", ret); 12186 return ret; 12187 } 12188 12189 entries_per_desc = ARRAY_SIZE(desc[0].data); 12190 for (i = 0; i < type_num; i++) { 12191 offset = hclge_dfx_bd_offset_list[i]; 12192 index = offset % entries_per_desc; 12193 desc_index = offset / entries_per_desc; 12194 bd_num_list[i] = le32_to_cpu(desc[desc_index].data[index]); 12195 } 12196 12197 return ret; 12198 } 12199 12200 static int hclge_dfx_reg_cmd_send(struct hclge_dev *hdev, 12201 struct hclge_desc *desc_src, int bd_num, 12202 enum hclge_opcode_type cmd) 12203 { 12204 struct hclge_desc *desc = desc_src; 12205 int i, ret; 12206 12207 hclge_cmd_setup_basic_desc(desc, cmd, true); 12208 for (i = 0; i < bd_num - 1; i++) { 12209 desc->flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 12210 desc++; 12211 hclge_cmd_setup_basic_desc(desc, cmd, true); 12212 } 12213 12214 desc = desc_src; 12215 ret = hclge_cmd_send(&hdev->hw, desc, bd_num); 12216 if (ret) 12217 dev_err(&hdev->pdev->dev, 12218 "Query dfx reg cmd(0x%x) send fail, status is %d.\n", 12219 cmd, ret); 12220 12221 return ret; 12222 } 12223 12224 static int hclge_dfx_reg_fetch_data(struct hclge_desc *desc_src, int bd_num, 12225 void *data) 12226 { 12227 int entries_per_desc, reg_num, separator_num, desc_index, index, i; 12228 struct hclge_desc *desc = desc_src; 12229 u32 *reg = data; 12230 12231 entries_per_desc = ARRAY_SIZE(desc->data); 12232 reg_num = entries_per_desc * bd_num; 12233 separator_num = REG_NUM_PER_LINE - (reg_num & REG_NUM_REMAIN_MASK); 12234 for (i = 0; i < reg_num; i++) { 12235 index = i % entries_per_desc; 12236 desc_index = i / entries_per_desc; 12237 *reg++ = le32_to_cpu(desc[desc_index].data[index]); 12238 } 12239 for (i = 0; i < separator_num; i++) 12240 *reg++ = SEPARATOR_VALUE; 12241 12242 return reg_num + separator_num; 12243 } 12244 12245 static int hclge_get_dfx_reg_len(struct hclge_dev *hdev, int *len) 12246 { 12247 u32 dfx_reg_type_num = ARRAY_SIZE(hclge_dfx_bd_offset_list); 12248 int data_len_per_desc, bd_num, i; 12249 int *bd_num_list; 12250 u32 data_len; 12251 int ret; 12252 12253 bd_num_list = kcalloc(dfx_reg_type_num, sizeof(int), GFP_KERNEL); 12254 if (!bd_num_list) 12255 return -ENOMEM; 12256 12257 ret = hclge_get_dfx_reg_bd_num(hdev, bd_num_list, dfx_reg_type_num); 12258 if (ret) { 12259 dev_err(&hdev->pdev->dev, 12260 "Get dfx reg bd num fail, status is %d.\n", ret); 12261 goto out; 12262 } 12263 12264 data_len_per_desc = sizeof_field(struct hclge_desc, data); 12265 *len = 0; 12266 for (i = 0; i < dfx_reg_type_num; i++) { 12267 bd_num = bd_num_list[i]; 12268 data_len = data_len_per_desc * bd_num; 12269 *len += (data_len / REG_LEN_PER_LINE + 1) * REG_LEN_PER_LINE; 12270 } 12271 12272 out: 12273 kfree(bd_num_list); 12274 return ret; 12275 } 12276 12277 static int hclge_get_dfx_reg(struct hclge_dev *hdev, void *data) 12278 { 12279 u32 dfx_reg_type_num = ARRAY_SIZE(hclge_dfx_bd_offset_list); 12280 int bd_num, bd_num_max, buf_len, i; 12281 struct hclge_desc *desc_src; 12282 int *bd_num_list; 12283 u32 *reg = data; 12284 int ret; 12285 12286 bd_num_list = kcalloc(dfx_reg_type_num, sizeof(int), GFP_KERNEL); 12287 if (!bd_num_list) 12288 return -ENOMEM; 12289 12290 ret = hclge_get_dfx_reg_bd_num(hdev, bd_num_list, dfx_reg_type_num); 12291 if (ret) { 12292 dev_err(&hdev->pdev->dev, 12293 "Get dfx reg bd num fail, status is %d.\n", ret); 12294 goto out; 12295 } 12296 12297 bd_num_max = bd_num_list[0]; 12298 for (i = 1; i < dfx_reg_type_num; i++) 12299 bd_num_max = max_t(int, bd_num_max, bd_num_list[i]); 12300 12301 buf_len = sizeof(*desc_src) * bd_num_max; 12302 desc_src = kzalloc(buf_len, GFP_KERNEL); 12303 if (!desc_src) { 12304 ret = -ENOMEM; 12305 goto out; 12306 } 12307 12308 for (i = 0; i < dfx_reg_type_num; i++) { 12309 bd_num = bd_num_list[i]; 12310 ret = hclge_dfx_reg_cmd_send(hdev, desc_src, bd_num, 12311 hclge_dfx_reg_opcode_list[i]); 12312 if (ret) { 12313 dev_err(&hdev->pdev->dev, 12314 "Get dfx reg fail, status is %d.\n", ret); 12315 break; 12316 } 12317 12318 reg += hclge_dfx_reg_fetch_data(desc_src, bd_num, reg); 12319 } 12320 12321 kfree(desc_src); 12322 out: 12323 kfree(bd_num_list); 12324 return ret; 12325 } 12326 12327 static int hclge_fetch_pf_reg(struct hclge_dev *hdev, void *data, 12328 struct hnae3_knic_private_info *kinfo) 12329 { 12330 #define HCLGE_RING_REG_OFFSET 0x200 12331 #define HCLGE_RING_INT_REG_OFFSET 0x4 12332 12333 int i, j, reg_num, separator_num; 12334 int data_num_sum; 12335 u32 *reg = data; 12336 12337 /* fetching per-PF registers valus from PF PCIe register space */ 12338 reg_num = ARRAY_SIZE(cmdq_reg_addr_list); 12339 separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK); 12340 for (i = 0; i < reg_num; i++) 12341 *reg++ = hclge_read_dev(&hdev->hw, cmdq_reg_addr_list[i]); 12342 for (i = 0; i < separator_num; i++) 12343 *reg++ = SEPARATOR_VALUE; 12344 data_num_sum = reg_num + separator_num; 12345 12346 reg_num = ARRAY_SIZE(common_reg_addr_list); 12347 separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK); 12348 for (i = 0; i < reg_num; i++) 12349 *reg++ = hclge_read_dev(&hdev->hw, common_reg_addr_list[i]); 12350 for (i = 0; i < separator_num; i++) 12351 *reg++ = SEPARATOR_VALUE; 12352 data_num_sum += reg_num + separator_num; 12353 12354 reg_num = ARRAY_SIZE(ring_reg_addr_list); 12355 separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK); 12356 for (j = 0; j < kinfo->num_tqps; j++) { 12357 for (i = 0; i < reg_num; i++) 12358 *reg++ = hclge_read_dev(&hdev->hw, 12359 ring_reg_addr_list[i] + 12360 HCLGE_RING_REG_OFFSET * j); 12361 for (i = 0; i < separator_num; i++) 12362 *reg++ = SEPARATOR_VALUE; 12363 } 12364 data_num_sum += (reg_num + separator_num) * kinfo->num_tqps; 12365 12366 reg_num = ARRAY_SIZE(tqp_intr_reg_addr_list); 12367 separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK); 12368 for (j = 0; j < hdev->num_msi_used - 1; j++) { 12369 for (i = 0; i < reg_num; i++) 12370 *reg++ = hclge_read_dev(&hdev->hw, 12371 tqp_intr_reg_addr_list[i] + 12372 HCLGE_RING_INT_REG_OFFSET * j); 12373 for (i = 0; i < separator_num; i++) 12374 *reg++ = SEPARATOR_VALUE; 12375 } 12376 data_num_sum += (reg_num + separator_num) * (hdev->num_msi_used - 1); 12377 12378 return data_num_sum; 12379 } 12380 12381 static int hclge_get_regs_len(struct hnae3_handle *handle) 12382 { 12383 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines; 12384 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 12385 struct hclge_vport *vport = hclge_get_vport(handle); 12386 struct hclge_dev *hdev = vport->back; 12387 int regs_num_32_bit, regs_num_64_bit, dfx_regs_len; 12388 int regs_lines_32_bit, regs_lines_64_bit; 12389 int ret; 12390 12391 ret = hclge_get_regs_num(hdev, ®s_num_32_bit, ®s_num_64_bit); 12392 if (ret) { 12393 dev_err(&hdev->pdev->dev, 12394 "Get register number failed, ret = %d.\n", ret); 12395 return ret; 12396 } 12397 12398 ret = hclge_get_dfx_reg_len(hdev, &dfx_regs_len); 12399 if (ret) { 12400 dev_err(&hdev->pdev->dev, 12401 "Get dfx reg len failed, ret = %d.\n", ret); 12402 return ret; 12403 } 12404 12405 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 12406 REG_SEPARATOR_LINE; 12407 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 12408 REG_SEPARATOR_LINE; 12409 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 12410 REG_SEPARATOR_LINE; 12411 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 12412 REG_SEPARATOR_LINE; 12413 regs_lines_32_bit = regs_num_32_bit * sizeof(u32) / REG_LEN_PER_LINE + 12414 REG_SEPARATOR_LINE; 12415 regs_lines_64_bit = regs_num_64_bit * sizeof(u64) / REG_LEN_PER_LINE + 12416 REG_SEPARATOR_LINE; 12417 12418 return (cmdq_lines + common_lines + ring_lines * kinfo->num_tqps + 12419 tqp_intr_lines * (hdev->num_msi_used - 1) + regs_lines_32_bit + 12420 regs_lines_64_bit) * REG_LEN_PER_LINE + dfx_regs_len; 12421 } 12422 12423 static void hclge_get_regs(struct hnae3_handle *handle, u32 *version, 12424 void *data) 12425 { 12426 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 12427 struct hclge_vport *vport = hclge_get_vport(handle); 12428 struct hclge_dev *hdev = vport->back; 12429 u32 regs_num_32_bit, regs_num_64_bit; 12430 int i, reg_num, separator_num, ret; 12431 u32 *reg = data; 12432 12433 *version = hdev->fw_version; 12434 12435 ret = hclge_get_regs_num(hdev, ®s_num_32_bit, ®s_num_64_bit); 12436 if (ret) { 12437 dev_err(&hdev->pdev->dev, 12438 "Get register number failed, ret = %d.\n", ret); 12439 return; 12440 } 12441 12442 reg += hclge_fetch_pf_reg(hdev, reg, kinfo); 12443 12444 ret = hclge_get_32_bit_regs(hdev, regs_num_32_bit, reg); 12445 if (ret) { 12446 dev_err(&hdev->pdev->dev, 12447 "Get 32 bit register failed, ret = %d.\n", ret); 12448 return; 12449 } 12450 reg_num = regs_num_32_bit; 12451 reg += reg_num; 12452 separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK); 12453 for (i = 0; i < separator_num; i++) 12454 *reg++ = SEPARATOR_VALUE; 12455 12456 ret = hclge_get_64_bit_regs(hdev, regs_num_64_bit, reg); 12457 if (ret) { 12458 dev_err(&hdev->pdev->dev, 12459 "Get 64 bit register failed, ret = %d.\n", ret); 12460 return; 12461 } 12462 reg_num = regs_num_64_bit * 2; 12463 reg += reg_num; 12464 separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK); 12465 for (i = 0; i < separator_num; i++) 12466 *reg++ = SEPARATOR_VALUE; 12467 12468 ret = hclge_get_dfx_reg(hdev, reg); 12469 if (ret) 12470 dev_err(&hdev->pdev->dev, 12471 "Get dfx register failed, ret = %d.\n", ret); 12472 } 12473 12474 static int hclge_set_led_status(struct hclge_dev *hdev, u8 locate_led_status) 12475 { 12476 struct hclge_set_led_state_cmd *req; 12477 struct hclge_desc desc; 12478 int ret; 12479 12480 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_LED_STATUS_CFG, false); 12481 12482 req = (struct hclge_set_led_state_cmd *)desc.data; 12483 hnae3_set_field(req->locate_led_config, HCLGE_LED_LOCATE_STATE_M, 12484 HCLGE_LED_LOCATE_STATE_S, locate_led_status); 12485 12486 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 12487 if (ret) 12488 dev_err(&hdev->pdev->dev, 12489 "Send set led state cmd error, ret =%d\n", ret); 12490 12491 return ret; 12492 } 12493 12494 enum hclge_led_status { 12495 HCLGE_LED_OFF, 12496 HCLGE_LED_ON, 12497 HCLGE_LED_NO_CHANGE = 0xFF, 12498 }; 12499 12500 static int hclge_set_led_id(struct hnae3_handle *handle, 12501 enum ethtool_phys_id_state status) 12502 { 12503 struct hclge_vport *vport = hclge_get_vport(handle); 12504 struct hclge_dev *hdev = vport->back; 12505 12506 switch (status) { 12507 case ETHTOOL_ID_ACTIVE: 12508 return hclge_set_led_status(hdev, HCLGE_LED_ON); 12509 case ETHTOOL_ID_INACTIVE: 12510 return hclge_set_led_status(hdev, HCLGE_LED_OFF); 12511 default: 12512 return -EINVAL; 12513 } 12514 } 12515 12516 static void hclge_get_link_mode(struct hnae3_handle *handle, 12517 unsigned long *supported, 12518 unsigned long *advertising) 12519 { 12520 unsigned int size = BITS_TO_LONGS(__ETHTOOL_LINK_MODE_MASK_NBITS); 12521 struct hclge_vport *vport = hclge_get_vport(handle); 12522 struct hclge_dev *hdev = vport->back; 12523 unsigned int idx = 0; 12524 12525 for (; idx < size; idx++) { 12526 supported[idx] = hdev->hw.mac.supported[idx]; 12527 advertising[idx] = hdev->hw.mac.advertising[idx]; 12528 } 12529 } 12530 12531 static int hclge_gro_en(struct hnae3_handle *handle, bool enable) 12532 { 12533 struct hclge_vport *vport = hclge_get_vport(handle); 12534 struct hclge_dev *hdev = vport->back; 12535 bool gro_en_old = hdev->gro_en; 12536 int ret; 12537 12538 hdev->gro_en = enable; 12539 ret = hclge_config_gro(hdev); 12540 if (ret) 12541 hdev->gro_en = gro_en_old; 12542 12543 return ret; 12544 } 12545 12546 static void hclge_sync_promisc_mode(struct hclge_dev *hdev) 12547 { 12548 struct hclge_vport *vport = &hdev->vport[0]; 12549 struct hnae3_handle *handle = &vport->nic; 12550 u8 tmp_flags; 12551 int ret; 12552 u16 i; 12553 12554 if (vport->last_promisc_flags != vport->overflow_promisc_flags) { 12555 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 12556 vport->last_promisc_flags = vport->overflow_promisc_flags; 12557 } 12558 12559 if (test_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state)) { 12560 tmp_flags = handle->netdev_flags | vport->last_promisc_flags; 12561 ret = hclge_set_promisc_mode(handle, tmp_flags & HNAE3_UPE, 12562 tmp_flags & HNAE3_MPE); 12563 if (!ret) { 12564 clear_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, 12565 &vport->state); 12566 set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, 12567 &vport->state); 12568 } 12569 } 12570 12571 for (i = 1; i < hdev->num_alloc_vport; i++) { 12572 bool uc_en = false; 12573 bool mc_en = false; 12574 bool bc_en; 12575 12576 vport = &hdev->vport[i]; 12577 12578 if (!test_and_clear_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, 12579 &vport->state)) 12580 continue; 12581 12582 if (vport->vf_info.trusted) { 12583 uc_en = vport->vf_info.request_uc_en > 0 || 12584 vport->overflow_promisc_flags & 12585 HNAE3_OVERFLOW_UPE; 12586 mc_en = vport->vf_info.request_mc_en > 0 || 12587 vport->overflow_promisc_flags & 12588 HNAE3_OVERFLOW_MPE; 12589 } 12590 bc_en = vport->vf_info.request_bc_en > 0; 12591 12592 ret = hclge_cmd_set_promisc_mode(hdev, vport->vport_id, uc_en, 12593 mc_en, bc_en); 12594 if (ret) { 12595 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, 12596 &vport->state); 12597 return; 12598 } 12599 hclge_set_vport_vlan_fltr_change(vport); 12600 } 12601 } 12602 12603 static bool hclge_module_existed(struct hclge_dev *hdev) 12604 { 12605 struct hclge_desc desc; 12606 u32 existed; 12607 int ret; 12608 12609 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_EXIST, true); 12610 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 12611 if (ret) { 12612 dev_err(&hdev->pdev->dev, 12613 "failed to get SFP exist state, ret = %d\n", ret); 12614 return false; 12615 } 12616 12617 existed = le32_to_cpu(desc.data[0]); 12618 12619 return existed != 0; 12620 } 12621 12622 /* need 6 bds(total 140 bytes) in one reading 12623 * return the number of bytes actually read, 0 means read failed. 12624 */ 12625 static u16 hclge_get_sfp_eeprom_info(struct hclge_dev *hdev, u32 offset, 12626 u32 len, u8 *data) 12627 { 12628 struct hclge_desc desc[HCLGE_SFP_INFO_CMD_NUM]; 12629 struct hclge_sfp_info_bd0_cmd *sfp_info_bd0; 12630 u16 read_len; 12631 u16 copy_len; 12632 int ret; 12633 int i; 12634 12635 /* setup all 6 bds to read module eeprom info. */ 12636 for (i = 0; i < HCLGE_SFP_INFO_CMD_NUM; i++) { 12637 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_SFP_EEPROM, 12638 true); 12639 12640 /* bd0~bd4 need next flag */ 12641 if (i < HCLGE_SFP_INFO_CMD_NUM - 1) 12642 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 12643 } 12644 12645 /* setup bd0, this bd contains offset and read length. */ 12646 sfp_info_bd0 = (struct hclge_sfp_info_bd0_cmd *)desc[0].data; 12647 sfp_info_bd0->offset = cpu_to_le16((u16)offset); 12648 read_len = min_t(u16, len, HCLGE_SFP_INFO_MAX_LEN); 12649 sfp_info_bd0->read_len = cpu_to_le16(read_len); 12650 12651 ret = hclge_cmd_send(&hdev->hw, desc, i); 12652 if (ret) { 12653 dev_err(&hdev->pdev->dev, 12654 "failed to get SFP eeprom info, ret = %d\n", ret); 12655 return 0; 12656 } 12657 12658 /* copy sfp info from bd0 to out buffer. */ 12659 copy_len = min_t(u16, len, HCLGE_SFP_INFO_BD0_LEN); 12660 memcpy(data, sfp_info_bd0->data, copy_len); 12661 read_len = copy_len; 12662 12663 /* copy sfp info from bd1~bd5 to out buffer if needed. */ 12664 for (i = 1; i < HCLGE_SFP_INFO_CMD_NUM; i++) { 12665 if (read_len >= len) 12666 return read_len; 12667 12668 copy_len = min_t(u16, len - read_len, HCLGE_SFP_INFO_BDX_LEN); 12669 memcpy(data + read_len, desc[i].data, copy_len); 12670 read_len += copy_len; 12671 } 12672 12673 return read_len; 12674 } 12675 12676 static int hclge_get_module_eeprom(struct hnae3_handle *handle, u32 offset, 12677 u32 len, u8 *data) 12678 { 12679 struct hclge_vport *vport = hclge_get_vport(handle); 12680 struct hclge_dev *hdev = vport->back; 12681 u32 read_len = 0; 12682 u16 data_len; 12683 12684 if (hdev->hw.mac.media_type != HNAE3_MEDIA_TYPE_FIBER) 12685 return -EOPNOTSUPP; 12686 12687 if (!hclge_module_existed(hdev)) 12688 return -ENXIO; 12689 12690 while (read_len < len) { 12691 data_len = hclge_get_sfp_eeprom_info(hdev, 12692 offset + read_len, 12693 len - read_len, 12694 data + read_len); 12695 if (!data_len) 12696 return -EIO; 12697 12698 read_len += data_len; 12699 } 12700 12701 return 0; 12702 } 12703 12704 static int hclge_get_link_diagnosis_info(struct hnae3_handle *handle, 12705 u32 *status_code) 12706 { 12707 struct hclge_vport *vport = hclge_get_vport(handle); 12708 struct hclge_dev *hdev = vport->back; 12709 struct hclge_desc desc; 12710 int ret; 12711 12712 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2) 12713 return -EOPNOTSUPP; 12714 12715 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_DIAGNOSIS, true); 12716 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 12717 if (ret) { 12718 dev_err(&hdev->pdev->dev, 12719 "failed to query link diagnosis info, ret = %d\n", ret); 12720 return ret; 12721 } 12722 12723 *status_code = le32_to_cpu(desc.data[0]); 12724 return 0; 12725 } 12726 12727 /* After disable sriov, VF still has some config and info need clean, 12728 * which configed by PF. 12729 */ 12730 static void hclge_clear_vport_vf_info(struct hclge_vport *vport, int vfid) 12731 { 12732 struct hclge_dev *hdev = vport->back; 12733 struct hclge_vlan_info vlan_info; 12734 int ret; 12735 12736 /* after disable sriov, clean VF rate configured by PF */ 12737 ret = hclge_tm_qs_shaper_cfg(vport, 0); 12738 if (ret) 12739 dev_err(&hdev->pdev->dev, 12740 "failed to clean vf%d rate config, ret = %d\n", 12741 vfid, ret); 12742 12743 vlan_info.vlan_tag = 0; 12744 vlan_info.qos = 0; 12745 vlan_info.vlan_proto = ETH_P_8021Q; 12746 ret = hclge_update_port_base_vlan_cfg(vport, 12747 HNAE3_PORT_BASE_VLAN_DISABLE, 12748 &vlan_info); 12749 if (ret) 12750 dev_err(&hdev->pdev->dev, 12751 "failed to clean vf%d port base vlan, ret = %d\n", 12752 vfid, ret); 12753 12754 ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, false); 12755 if (ret) 12756 dev_err(&hdev->pdev->dev, 12757 "failed to clean vf%d spoof config, ret = %d\n", 12758 vfid, ret); 12759 12760 memset(&vport->vf_info, 0, sizeof(vport->vf_info)); 12761 } 12762 12763 static void hclge_clean_vport_config(struct hnae3_ae_dev *ae_dev, int num_vfs) 12764 { 12765 struct hclge_dev *hdev = ae_dev->priv; 12766 struct hclge_vport *vport; 12767 int i; 12768 12769 for (i = 0; i < num_vfs; i++) { 12770 vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM]; 12771 12772 hclge_clear_vport_vf_info(vport, i); 12773 } 12774 } 12775 12776 static const struct hnae3_ae_ops hclge_ops = { 12777 .init_ae_dev = hclge_init_ae_dev, 12778 .uninit_ae_dev = hclge_uninit_ae_dev, 12779 .reset_prepare = hclge_reset_prepare_general, 12780 .reset_done = hclge_reset_done, 12781 .init_client_instance = hclge_init_client_instance, 12782 .uninit_client_instance = hclge_uninit_client_instance, 12783 .map_ring_to_vector = hclge_map_ring_to_vector, 12784 .unmap_ring_from_vector = hclge_unmap_ring_frm_vector, 12785 .get_vector = hclge_get_vector, 12786 .put_vector = hclge_put_vector, 12787 .set_promisc_mode = hclge_set_promisc_mode, 12788 .request_update_promisc_mode = hclge_request_update_promisc_mode, 12789 .set_loopback = hclge_set_loopback, 12790 .start = hclge_ae_start, 12791 .stop = hclge_ae_stop, 12792 .client_start = hclge_client_start, 12793 .client_stop = hclge_client_stop, 12794 .get_status = hclge_get_status, 12795 .get_ksettings_an_result = hclge_get_ksettings_an_result, 12796 .cfg_mac_speed_dup_h = hclge_cfg_mac_speed_dup_h, 12797 .get_media_type = hclge_get_media_type, 12798 .check_port_speed = hclge_check_port_speed, 12799 .get_fec = hclge_get_fec, 12800 .set_fec = hclge_set_fec, 12801 .get_rss_key_size = hclge_comm_get_rss_key_size, 12802 .get_rss = hclge_get_rss, 12803 .set_rss = hclge_set_rss, 12804 .set_rss_tuple = hclge_set_rss_tuple, 12805 .get_rss_tuple = hclge_get_rss_tuple, 12806 .get_tc_size = hclge_get_tc_size, 12807 .get_mac_addr = hclge_get_mac_addr, 12808 .set_mac_addr = hclge_set_mac_addr, 12809 .do_ioctl = hclge_do_ioctl, 12810 .add_uc_addr = hclge_add_uc_addr, 12811 .rm_uc_addr = hclge_rm_uc_addr, 12812 .add_mc_addr = hclge_add_mc_addr, 12813 .rm_mc_addr = hclge_rm_mc_addr, 12814 .set_autoneg = hclge_set_autoneg, 12815 .get_autoneg = hclge_get_autoneg, 12816 .restart_autoneg = hclge_restart_autoneg, 12817 .halt_autoneg = hclge_halt_autoneg, 12818 .get_pauseparam = hclge_get_pauseparam, 12819 .set_pauseparam = hclge_set_pauseparam, 12820 .set_mtu = hclge_set_mtu, 12821 .reset_queue = hclge_reset_tqp, 12822 .get_stats = hclge_get_stats, 12823 .get_mac_stats = hclge_get_mac_stat, 12824 .update_stats = hclge_update_stats, 12825 .get_strings = hclge_get_strings, 12826 .get_sset_count = hclge_get_sset_count, 12827 .get_fw_version = hclge_get_fw_version, 12828 .get_mdix_mode = hclge_get_mdix_mode, 12829 .enable_vlan_filter = hclge_enable_vlan_filter, 12830 .set_vlan_filter = hclge_set_vlan_filter, 12831 .set_vf_vlan_filter = hclge_set_vf_vlan_filter, 12832 .enable_hw_strip_rxvtag = hclge_en_hw_strip_rxvtag, 12833 .reset_event = hclge_reset_event, 12834 .get_reset_level = hclge_get_reset_level, 12835 .set_default_reset_request = hclge_set_def_reset_request, 12836 .get_tqps_and_rss_info = hclge_get_tqps_and_rss_info, 12837 .set_channels = hclge_set_channels, 12838 .get_channels = hclge_get_channels, 12839 .get_regs_len = hclge_get_regs_len, 12840 .get_regs = hclge_get_regs, 12841 .set_led_id = hclge_set_led_id, 12842 .get_link_mode = hclge_get_link_mode, 12843 .add_fd_entry = hclge_add_fd_entry, 12844 .del_fd_entry = hclge_del_fd_entry, 12845 .get_fd_rule_cnt = hclge_get_fd_rule_cnt, 12846 .get_fd_rule_info = hclge_get_fd_rule_info, 12847 .get_fd_all_rules = hclge_get_all_rules, 12848 .enable_fd = hclge_enable_fd, 12849 .add_arfs_entry = hclge_add_fd_entry_by_arfs, 12850 .dbg_read_cmd = hclge_dbg_read_cmd, 12851 .handle_hw_ras_error = hclge_handle_hw_ras_error, 12852 .get_hw_reset_stat = hclge_get_hw_reset_stat, 12853 .ae_dev_resetting = hclge_ae_dev_resetting, 12854 .ae_dev_reset_cnt = hclge_ae_dev_reset_cnt, 12855 .set_gro_en = hclge_gro_en, 12856 .get_global_queue_id = hclge_covert_handle_qid_global, 12857 .set_timer_task = hclge_set_timer_task, 12858 .mac_connect_phy = hclge_mac_connect_phy, 12859 .mac_disconnect_phy = hclge_mac_disconnect_phy, 12860 .get_vf_config = hclge_get_vf_config, 12861 .set_vf_link_state = hclge_set_vf_link_state, 12862 .set_vf_spoofchk = hclge_set_vf_spoofchk, 12863 .set_vf_trust = hclge_set_vf_trust, 12864 .set_vf_rate = hclge_set_vf_rate, 12865 .set_vf_mac = hclge_set_vf_mac, 12866 .get_module_eeprom = hclge_get_module_eeprom, 12867 .get_cmdq_stat = hclge_get_cmdq_stat, 12868 .add_cls_flower = hclge_add_cls_flower, 12869 .del_cls_flower = hclge_del_cls_flower, 12870 .cls_flower_active = hclge_is_cls_flower_active, 12871 .get_phy_link_ksettings = hclge_get_phy_link_ksettings, 12872 .set_phy_link_ksettings = hclge_set_phy_link_ksettings, 12873 .set_tx_hwts_info = hclge_ptp_set_tx_info, 12874 .get_rx_hwts = hclge_ptp_get_rx_hwts, 12875 .get_ts_info = hclge_ptp_get_ts_info, 12876 .get_link_diagnosis_info = hclge_get_link_diagnosis_info, 12877 .clean_vf_config = hclge_clean_vport_config, 12878 }; 12879 12880 static struct hnae3_ae_algo ae_algo = { 12881 .ops = &hclge_ops, 12882 .pdev_id_table = ae_algo_pci_tbl, 12883 }; 12884 12885 static int hclge_init(void) 12886 { 12887 pr_info("%s is initializing\n", HCLGE_NAME); 12888 12889 hclge_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGE_NAME); 12890 if (!hclge_wq) { 12891 pr_err("%s: failed to create workqueue\n", HCLGE_NAME); 12892 return -ENOMEM; 12893 } 12894 12895 hnae3_register_ae_algo(&ae_algo); 12896 12897 return 0; 12898 } 12899 12900 static void hclge_exit(void) 12901 { 12902 hnae3_unregister_ae_algo_prepare(&ae_algo); 12903 hnae3_unregister_ae_algo(&ae_algo); 12904 destroy_workqueue(hclge_wq); 12905 } 12906 module_init(hclge_init); 12907 module_exit(hclge_exit); 12908 12909 MODULE_LICENSE("GPL"); 12910 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 12911 MODULE_DESCRIPTION("HCLGE Driver"); 12912 MODULE_VERSION(HCLGE_MOD_VERSION); 12913