1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (c) 2016-2017 Hisilicon Limited. */
3 
4 #include "hclge_err.h"
5 
6 static const struct hclge_hw_error hclge_imp_tcm_ecc_int[] = {
7 	{ .int_msk = BIT(1), .msg = "imp_itcm0_ecc_mbit_err",
8 	  .reset_level = HNAE3_NONE_RESET },
9 	{ .int_msk = BIT(3), .msg = "imp_itcm1_ecc_mbit_err",
10 	  .reset_level = HNAE3_NONE_RESET },
11 	{ .int_msk = BIT(5), .msg = "imp_itcm2_ecc_mbit_err",
12 	  .reset_level = HNAE3_NONE_RESET },
13 	{ .int_msk = BIT(7), .msg = "imp_itcm3_ecc_mbit_err",
14 	  .reset_level = HNAE3_NONE_RESET },
15 	{ .int_msk = BIT(9), .msg = "imp_dtcm0_mem0_ecc_mbit_err",
16 	  .reset_level = HNAE3_NONE_RESET },
17 	{ .int_msk = BIT(11), .msg = "imp_dtcm0_mem1_ecc_mbit_err",
18 	  .reset_level = HNAE3_NONE_RESET },
19 	{ .int_msk = BIT(13), .msg = "imp_dtcm1_mem0_ecc_mbit_err",
20 	  .reset_level = HNAE3_NONE_RESET },
21 	{ .int_msk = BIT(15), .msg = "imp_dtcm1_mem1_ecc_mbit_err",
22 	  .reset_level = HNAE3_NONE_RESET },
23 	{ .int_msk = BIT(17), .msg = "imp_itcm4_ecc_mbit_err",
24 	  .reset_level = HNAE3_NONE_RESET },
25 	{ /* sentinel */ }
26 };
27 
28 static const struct hclge_hw_error hclge_cmdq_nic_mem_ecc_int[] = {
29 	{ .int_msk = BIT(1), .msg = "cmdq_nic_rx_depth_ecc_mbit_err",
30 	  .reset_level = HNAE3_NONE_RESET },
31 	{ .int_msk = BIT(3), .msg = "cmdq_nic_tx_depth_ecc_mbit_err",
32 	  .reset_level = HNAE3_NONE_RESET },
33 	{ .int_msk = BIT(5), .msg = "cmdq_nic_rx_tail_ecc_mbit_err",
34 	  .reset_level = HNAE3_NONE_RESET },
35 	{ .int_msk = BIT(7), .msg = "cmdq_nic_tx_tail_ecc_mbit_err",
36 	  .reset_level = HNAE3_NONE_RESET },
37 	{ .int_msk = BIT(9), .msg = "cmdq_nic_rx_head_ecc_mbit_err",
38 	  .reset_level = HNAE3_NONE_RESET },
39 	{ .int_msk = BIT(11), .msg = "cmdq_nic_tx_head_ecc_mbit_err",
40 	  .reset_level = HNAE3_NONE_RESET },
41 	{ .int_msk = BIT(13), .msg = "cmdq_nic_rx_addr_ecc_mbit_err",
42 	  .reset_level = HNAE3_NONE_RESET },
43 	{ .int_msk = BIT(15), .msg = "cmdq_nic_tx_addr_ecc_mbit_err",
44 	  .reset_level = HNAE3_NONE_RESET },
45 	{ .int_msk = BIT(17), .msg = "cmdq_rocee_rx_depth_ecc_mbit_err",
46 	  .reset_level = HNAE3_NONE_RESET },
47 	{ .int_msk = BIT(19), .msg = "cmdq_rocee_tx_depth_ecc_mbit_err",
48 	  .reset_level = HNAE3_NONE_RESET },
49 	{ .int_msk = BIT(21), .msg = "cmdq_rocee_rx_tail_ecc_mbit_err",
50 	  .reset_level = HNAE3_NONE_RESET },
51 	{ .int_msk = BIT(23), .msg = "cmdq_rocee_tx_tail_ecc_mbit_err",
52 	  .reset_level = HNAE3_NONE_RESET },
53 	{ .int_msk = BIT(25), .msg = "cmdq_rocee_rx_head_ecc_mbit_err",
54 	  .reset_level = HNAE3_NONE_RESET },
55 	{ .int_msk = BIT(27), .msg = "cmdq_rocee_tx_head_ecc_mbit_err",
56 	  .reset_level = HNAE3_NONE_RESET },
57 	{ .int_msk = BIT(29), .msg = "cmdq_rocee_rx_addr_ecc_mbit_err",
58 	  .reset_level = HNAE3_NONE_RESET },
59 	{ .int_msk = BIT(31), .msg = "cmdq_rocee_tx_addr_ecc_mbit_err",
60 	  .reset_level = HNAE3_NONE_RESET },
61 	{ /* sentinel */ }
62 };
63 
64 static const struct hclge_hw_error hclge_tqp_int_ecc_int[] = {
65 	{ .int_msk = BIT(6), .msg = "tqp_int_cfg_even_ecc_mbit_err",
66 	  .reset_level = HNAE3_NONE_RESET },
67 	{ .int_msk = BIT(7), .msg = "tqp_int_cfg_odd_ecc_mbit_err",
68 	  .reset_level = HNAE3_NONE_RESET },
69 	{ .int_msk = BIT(8), .msg = "tqp_int_ctrl_even_ecc_mbit_err",
70 	  .reset_level = HNAE3_NONE_RESET },
71 	{ .int_msk = BIT(9), .msg = "tqp_int_ctrl_odd_ecc_mbit_err",
72 	  .reset_level = HNAE3_NONE_RESET },
73 	{ .int_msk = BIT(10), .msg = "tx_que_scan_int_ecc_mbit_err",
74 	  .reset_level = HNAE3_NONE_RESET },
75 	{ .int_msk = BIT(11), .msg = "rx_que_scan_int_ecc_mbit_err",
76 	  .reset_level = HNAE3_NONE_RESET },
77 	{ /* sentinel */ }
78 };
79 
80 static const struct hclge_hw_error hclge_msix_sram_ecc_int[] = {
81 	{ .int_msk = BIT(1), .msg = "msix_nic_ecc_mbit_err",
82 	  .reset_level = HNAE3_NONE_RESET },
83 	{ .int_msk = BIT(3), .msg = "msix_rocee_ecc_mbit_err",
84 	  .reset_level = HNAE3_NONE_RESET },
85 	{ /* sentinel */ }
86 };
87 
88 static const struct hclge_hw_error hclge_igu_int[] = {
89 	{ .int_msk = BIT(0), .msg = "igu_rx_buf0_ecc_mbit_err",
90 	  .reset_level = HNAE3_GLOBAL_RESET },
91 	{ .int_msk = BIT(2), .msg = "igu_rx_buf1_ecc_mbit_err",
92 	  .reset_level = HNAE3_GLOBAL_RESET },
93 	{ /* sentinel */ }
94 };
95 
96 static const struct hclge_hw_error hclge_igu_egu_tnl_int[] = {
97 	{ .int_msk = BIT(0), .msg = "rx_buf_overflow",
98 	  .reset_level = HNAE3_GLOBAL_RESET },
99 	{ .int_msk = BIT(1), .msg = "rx_stp_fifo_overflow",
100 	  .reset_level = HNAE3_GLOBAL_RESET },
101 	{ .int_msk = BIT(2), .msg = "rx_stp_fifo_underflow",
102 	  .reset_level = HNAE3_GLOBAL_RESET },
103 	{ .int_msk = BIT(3), .msg = "tx_buf_overflow",
104 	  .reset_level = HNAE3_GLOBAL_RESET },
105 	{ .int_msk = BIT(4), .msg = "tx_buf_underrun",
106 	  .reset_level = HNAE3_GLOBAL_RESET },
107 	{ .int_msk = BIT(5), .msg = "rx_stp_buf_overflow",
108 	  .reset_level = HNAE3_GLOBAL_RESET },
109 	{ /* sentinel */ }
110 };
111 
112 static const struct hclge_hw_error hclge_ncsi_err_int[] = {
113 	{ .int_msk = BIT(1), .msg = "ncsi_tx_ecc_mbit_err",
114 	  .reset_level = HNAE3_NONE_RESET },
115 	{ /* sentinel */ }
116 };
117 
118 static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st1[] = {
119 	{ .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_mbit_err",
120 	  .reset_level = HNAE3_GLOBAL_RESET },
121 	{ .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_mbit_err",
122 	  .reset_level = HNAE3_GLOBAL_RESET },
123 	{ .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_mbit_err",
124 	  .reset_level = HNAE3_GLOBAL_RESET },
125 	{ .int_msk = BIT(3), .msg = "umv_key_mem1_ecc_mbit_err",
126 	  .reset_level = HNAE3_GLOBAL_RESET },
127 	{ .int_msk = BIT(4), .msg = "umv_key_mem2_ecc_mbit_err",
128 	  .reset_level = HNAE3_GLOBAL_RESET },
129 	{ .int_msk = BIT(5), .msg = "umv_key_mem3_ecc_mbit_err",
130 	  .reset_level = HNAE3_GLOBAL_RESET },
131 	{ .int_msk = BIT(6), .msg = "umv_ad_mem_ecc_mbit_err",
132 	  .reset_level = HNAE3_GLOBAL_RESET },
133 	{ .int_msk = BIT(7), .msg = "rss_tc_mode_mem_ecc_mbit_err",
134 	  .reset_level = HNAE3_GLOBAL_RESET },
135 	{ .int_msk = BIT(8), .msg = "rss_idt_mem0_ecc_mbit_err",
136 	  .reset_level = HNAE3_GLOBAL_RESET },
137 	{ .int_msk = BIT(9), .msg = "rss_idt_mem1_ecc_mbit_err",
138 	  .reset_level = HNAE3_GLOBAL_RESET },
139 	{ .int_msk = BIT(10), .msg = "rss_idt_mem2_ecc_mbit_err",
140 	  .reset_level = HNAE3_GLOBAL_RESET },
141 	{ .int_msk = BIT(11), .msg = "rss_idt_mem3_ecc_mbit_err",
142 	  .reset_level = HNAE3_GLOBAL_RESET },
143 	{ .int_msk = BIT(12), .msg = "rss_idt_mem4_ecc_mbit_err",
144 	  .reset_level = HNAE3_GLOBAL_RESET },
145 	{ .int_msk = BIT(13), .msg = "rss_idt_mem5_ecc_mbit_err",
146 	  .reset_level = HNAE3_GLOBAL_RESET },
147 	{ .int_msk = BIT(14), .msg = "rss_idt_mem6_ecc_mbit_err",
148 	  .reset_level = HNAE3_GLOBAL_RESET },
149 	{ .int_msk = BIT(15), .msg = "rss_idt_mem7_ecc_mbit_err",
150 	  .reset_level = HNAE3_GLOBAL_RESET },
151 	{ .int_msk = BIT(16), .msg = "rss_idt_mem8_ecc_mbit_err",
152 	  .reset_level = HNAE3_GLOBAL_RESET },
153 	{ .int_msk = BIT(17), .msg = "rss_idt_mem9_ecc_mbit_err",
154 	  .reset_level = HNAE3_GLOBAL_RESET },
155 	{ .int_msk = BIT(18), .msg = "rss_idt_mem10_ecc_m1bit_err",
156 	  .reset_level = HNAE3_GLOBAL_RESET },
157 	{ .int_msk = BIT(19), .msg = "rss_idt_mem11_ecc_mbit_err",
158 	  .reset_level = HNAE3_GLOBAL_RESET },
159 	{ .int_msk = BIT(20), .msg = "rss_idt_mem12_ecc_mbit_err",
160 	  .reset_level = HNAE3_GLOBAL_RESET },
161 	{ .int_msk = BIT(21), .msg = "rss_idt_mem13_ecc_mbit_err",
162 	  .reset_level = HNAE3_GLOBAL_RESET },
163 	{ .int_msk = BIT(22), .msg = "rss_idt_mem14_ecc_mbit_err",
164 	  .reset_level = HNAE3_GLOBAL_RESET },
165 	{ .int_msk = BIT(23), .msg = "rss_idt_mem15_ecc_mbit_err",
166 	  .reset_level = HNAE3_GLOBAL_RESET },
167 	{ .int_msk = BIT(24), .msg = "port_vlan_mem_ecc_mbit_err",
168 	  .reset_level = HNAE3_GLOBAL_RESET },
169 	{ .int_msk = BIT(25), .msg = "mcast_linear_table_mem_ecc_mbit_err",
170 	  .reset_level = HNAE3_GLOBAL_RESET },
171 	{ .int_msk = BIT(26), .msg = "mcast_result_mem_ecc_mbit_err",
172 	  .reset_level = HNAE3_GLOBAL_RESET },
173 	{ .int_msk = BIT(27), .msg = "flow_director_ad_mem0_ecc_mbit_err",
174 	  .reset_level = HNAE3_GLOBAL_RESET },
175 	{ .int_msk = BIT(28), .msg = "flow_director_ad_mem1_ecc_mbit_err",
176 	  .reset_level = HNAE3_GLOBAL_RESET },
177 	{ .int_msk = BIT(29), .msg = "rx_vlan_tag_memory_ecc_mbit_err",
178 	  .reset_level = HNAE3_GLOBAL_RESET },
179 	{ .int_msk = BIT(30), .msg = "Tx_UP_mapping_config_mem_ecc_mbit_err",
180 	  .reset_level = HNAE3_GLOBAL_RESET },
181 	{ /* sentinel */ }
182 };
183 
184 static const struct hclge_hw_error hclge_ppp_pf_abnormal_int[] = {
185 	{ .int_msk = BIT(0), .msg = "tx_vlan_tag_err",
186 	  .reset_level = HNAE3_NONE_RESET },
187 	{ .int_msk = BIT(1), .msg = "rss_list_tc_unassigned_queue_err",
188 	  .reset_level = HNAE3_NONE_RESET },
189 	{ /* sentinel */ }
190 };
191 
192 static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st3[] = {
193 	{ .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_mbit_err",
194 	  .reset_level = HNAE3_GLOBAL_RESET },
195 	{ .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_mbit_err",
196 	  .reset_level = HNAE3_GLOBAL_RESET },
197 	{ .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_mbit_err",
198 	  .reset_level = HNAE3_GLOBAL_RESET },
199 	{ .int_msk = BIT(3), .msg = "FD_CN0_memory_ecc_mbit_err",
200 	  .reset_level = HNAE3_GLOBAL_RESET },
201 	{ .int_msk = BIT(4), .msg = "FD_CN1_memory_ecc_mbit_err",
202 	  .reset_level = HNAE3_GLOBAL_RESET },
203 	{ .int_msk = BIT(5), .msg = "GRO_AD_memory_ecc_mbit_err",
204 	  .reset_level = HNAE3_GLOBAL_RESET },
205 	{ /* sentinel */ }
206 };
207 
208 static const struct hclge_hw_error hclge_tm_sch_rint[] = {
209 	{ .int_msk = BIT(1), .msg = "tm_sch_ecc_mbit_err",
210 	  .reset_level = HNAE3_GLOBAL_RESET },
211 	{ .int_msk = BIT(2), .msg = "tm_sch_port_shap_sub_fifo_wr_err",
212 	  .reset_level = HNAE3_GLOBAL_RESET },
213 	{ .int_msk = BIT(3), .msg = "tm_sch_port_shap_sub_fifo_rd_err",
214 	  .reset_level = HNAE3_GLOBAL_RESET },
215 	{ .int_msk = BIT(4), .msg = "tm_sch_pg_pshap_sub_fifo_wr_err",
216 	  .reset_level = HNAE3_GLOBAL_RESET },
217 	{ .int_msk = BIT(5), .msg = "tm_sch_pg_pshap_sub_fifo_rd_err",
218 	  .reset_level = HNAE3_GLOBAL_RESET },
219 	{ .int_msk = BIT(6), .msg = "tm_sch_pg_cshap_sub_fifo_wr_err",
220 	  .reset_level = HNAE3_GLOBAL_RESET },
221 	{ .int_msk = BIT(7), .msg = "tm_sch_pg_cshap_sub_fifo_rd_err",
222 	  .reset_level = HNAE3_GLOBAL_RESET },
223 	{ .int_msk = BIT(8), .msg = "tm_sch_pri_pshap_sub_fifo_wr_err",
224 	  .reset_level = HNAE3_GLOBAL_RESET },
225 	{ .int_msk = BIT(9), .msg = "tm_sch_pri_pshap_sub_fifo_rd_err",
226 	  .reset_level = HNAE3_GLOBAL_RESET },
227 	{ .int_msk = BIT(10), .msg = "tm_sch_pri_cshap_sub_fifo_wr_err",
228 	  .reset_level = HNAE3_GLOBAL_RESET },
229 	{ .int_msk = BIT(11), .msg = "tm_sch_pri_cshap_sub_fifo_rd_err",
230 	  .reset_level = HNAE3_GLOBAL_RESET },
231 	{ .int_msk = BIT(12), .msg = "tm_sch_port_shap_offset_fifo_wr_err",
232 	  .reset_level = HNAE3_GLOBAL_RESET },
233 	{ .int_msk = BIT(13), .msg = "tm_sch_port_shap_offset_fifo_rd_err",
234 	  .reset_level = HNAE3_GLOBAL_RESET },
235 	{ .int_msk = BIT(14), .msg = "tm_sch_pg_pshap_offset_fifo_wr_err",
236 	  .reset_level = HNAE3_GLOBAL_RESET },
237 	{ .int_msk = BIT(15), .msg = "tm_sch_pg_pshap_offset_fifo_rd_err",
238 	  .reset_level = HNAE3_GLOBAL_RESET },
239 	{ .int_msk = BIT(16), .msg = "tm_sch_pg_cshap_offset_fifo_wr_err",
240 	  .reset_level = HNAE3_GLOBAL_RESET },
241 	{ .int_msk = BIT(17), .msg = "tm_sch_pg_cshap_offset_fifo_rd_err",
242 	  .reset_level = HNAE3_GLOBAL_RESET },
243 	{ .int_msk = BIT(18), .msg = "tm_sch_pri_pshap_offset_fifo_wr_err",
244 	  .reset_level = HNAE3_GLOBAL_RESET },
245 	{ .int_msk = BIT(19), .msg = "tm_sch_pri_pshap_offset_fifo_rd_err",
246 	  .reset_level = HNAE3_GLOBAL_RESET },
247 	{ .int_msk = BIT(20), .msg = "tm_sch_pri_cshap_offset_fifo_wr_err",
248 	  .reset_level = HNAE3_GLOBAL_RESET },
249 	{ .int_msk = BIT(21), .msg = "tm_sch_pri_cshap_offset_fifo_rd_err",
250 	  .reset_level = HNAE3_GLOBAL_RESET },
251 	{ .int_msk = BIT(22), .msg = "tm_sch_rq_fifo_wr_err",
252 	  .reset_level = HNAE3_GLOBAL_RESET },
253 	{ .int_msk = BIT(23), .msg = "tm_sch_rq_fifo_rd_err",
254 	  .reset_level = HNAE3_GLOBAL_RESET },
255 	{ .int_msk = BIT(24), .msg = "tm_sch_nq_fifo_wr_err",
256 	  .reset_level = HNAE3_GLOBAL_RESET },
257 	{ .int_msk = BIT(25), .msg = "tm_sch_nq_fifo_rd_err",
258 	  .reset_level = HNAE3_GLOBAL_RESET },
259 	{ .int_msk = BIT(26), .msg = "tm_sch_roce_up_fifo_wr_err",
260 	  .reset_level = HNAE3_GLOBAL_RESET },
261 	{ .int_msk = BIT(27), .msg = "tm_sch_roce_up_fifo_rd_err",
262 	  .reset_level = HNAE3_GLOBAL_RESET },
263 	{ .int_msk = BIT(28), .msg = "tm_sch_rcb_byte_fifo_wr_err",
264 	  .reset_level = HNAE3_GLOBAL_RESET },
265 	{ .int_msk = BIT(29), .msg = "tm_sch_rcb_byte_fifo_rd_err",
266 	  .reset_level = HNAE3_GLOBAL_RESET },
267 	{ .int_msk = BIT(30), .msg = "tm_sch_ssu_byte_fifo_wr_err",
268 	  .reset_level = HNAE3_GLOBAL_RESET },
269 	{ .int_msk = BIT(31), .msg = "tm_sch_ssu_byte_fifo_rd_err",
270 	  .reset_level = HNAE3_GLOBAL_RESET },
271 	{ /* sentinel */ }
272 };
273 
274 static const struct hclge_hw_error hclge_qcn_fifo_rint[] = {
275 	{ .int_msk = BIT(0), .msg = "qcn_shap_gp0_sch_fifo_rd_err",
276 	  .reset_level = HNAE3_GLOBAL_RESET },
277 	{ .int_msk = BIT(1), .msg = "qcn_shap_gp0_sch_fifo_wr_err",
278 	  .reset_level = HNAE3_GLOBAL_RESET },
279 	{ .int_msk = BIT(2), .msg = "qcn_shap_gp1_sch_fifo_rd_err",
280 	  .reset_level = HNAE3_GLOBAL_RESET },
281 	{ .int_msk = BIT(3), .msg = "qcn_shap_gp1_sch_fifo_wr_err",
282 	  .reset_level = HNAE3_GLOBAL_RESET },
283 	{ .int_msk = BIT(4), .msg = "qcn_shap_gp2_sch_fifo_rd_err",
284 	  .reset_level = HNAE3_GLOBAL_RESET },
285 	{ .int_msk = BIT(5), .msg = "qcn_shap_gp2_sch_fifo_wr_err",
286 	  .reset_level = HNAE3_GLOBAL_RESET },
287 	{ .int_msk = BIT(6), .msg = "qcn_shap_gp3_sch_fifo_rd_err",
288 	  .reset_level = HNAE3_GLOBAL_RESET },
289 	{ .int_msk = BIT(7), .msg = "qcn_shap_gp3_sch_fifo_wr_err",
290 	  .reset_level = HNAE3_GLOBAL_RESET },
291 	{ .int_msk = BIT(8), .msg = "qcn_shap_gp0_offset_fifo_rd_err",
292 	  .reset_level = HNAE3_GLOBAL_RESET },
293 	{ .int_msk = BIT(9), .msg = "qcn_shap_gp0_offset_fifo_wr_err",
294 	  .reset_level = HNAE3_GLOBAL_RESET },
295 	{ .int_msk = BIT(10), .msg = "qcn_shap_gp1_offset_fifo_rd_err",
296 	  .reset_level = HNAE3_GLOBAL_RESET },
297 	{ .int_msk = BIT(11), .msg = "qcn_shap_gp1_offset_fifo_wr_err",
298 	  .reset_level = HNAE3_GLOBAL_RESET },
299 	{ .int_msk = BIT(12), .msg = "qcn_shap_gp2_offset_fifo_rd_err",
300 	  .reset_level = HNAE3_GLOBAL_RESET },
301 	{ .int_msk = BIT(13), .msg = "qcn_shap_gp2_offset_fifo_wr_err",
302 	  .reset_level = HNAE3_GLOBAL_RESET },
303 	{ .int_msk = BIT(14), .msg = "qcn_shap_gp3_offset_fifo_rd_err",
304 	  .reset_level = HNAE3_GLOBAL_RESET },
305 	{ .int_msk = BIT(15), .msg = "qcn_shap_gp3_offset_fifo_wr_err",
306 	  .reset_level = HNAE3_GLOBAL_RESET },
307 	{ .int_msk = BIT(16), .msg = "qcn_byte_info_fifo_rd_err",
308 	  .reset_level = HNAE3_GLOBAL_RESET },
309 	{ .int_msk = BIT(17), .msg = "qcn_byte_info_fifo_wr_err",
310 	  .reset_level = HNAE3_GLOBAL_RESET },
311 	{ /* sentinel */ }
312 };
313 
314 static const struct hclge_hw_error hclge_qcn_ecc_rint[] = {
315 	{ .int_msk = BIT(1), .msg = "qcn_byte_mem_ecc_mbit_err",
316 	  .reset_level = HNAE3_GLOBAL_RESET },
317 	{ .int_msk = BIT(3), .msg = "qcn_time_mem_ecc_mbit_err",
318 	  .reset_level = HNAE3_GLOBAL_RESET },
319 	{ .int_msk = BIT(5), .msg = "qcn_fb_mem_ecc_mbit_err",
320 	  .reset_level = HNAE3_GLOBAL_RESET },
321 	{ .int_msk = BIT(7), .msg = "qcn_link_mem_ecc_mbit_err",
322 	  .reset_level = HNAE3_GLOBAL_RESET },
323 	{ .int_msk = BIT(9), .msg = "qcn_rate_mem_ecc_mbit_err",
324 	  .reset_level = HNAE3_GLOBAL_RESET },
325 	{ .int_msk = BIT(11), .msg = "qcn_tmplt_mem_ecc_mbit_err",
326 	  .reset_level = HNAE3_GLOBAL_RESET },
327 	{ .int_msk = BIT(13), .msg = "qcn_shap_cfg_mem_ecc_mbit_err",
328 	  .reset_level = HNAE3_GLOBAL_RESET },
329 	{ .int_msk = BIT(15), .msg = "qcn_gp0_barrel_mem_ecc_mbit_err",
330 	  .reset_level = HNAE3_GLOBAL_RESET },
331 	{ .int_msk = BIT(17), .msg = "qcn_gp1_barrel_mem_ecc_mbit_err",
332 	  .reset_level = HNAE3_GLOBAL_RESET },
333 	{ .int_msk = BIT(19), .msg = "qcn_gp2_barrel_mem_ecc_mbit_err",
334 	  .reset_level = HNAE3_GLOBAL_RESET },
335 	{ .int_msk = BIT(21), .msg = "qcn_gp3_barral_mem_ecc_mbit_err",
336 	  .reset_level = HNAE3_GLOBAL_RESET },
337 	{ /* sentinel */ }
338 };
339 
340 static const struct hclge_hw_error hclge_mac_afifo_tnl_int[] = {
341 	{ .int_msk = BIT(0), .msg = "egu_cge_afifo_ecc_1bit_err",
342 	  .reset_level = HNAE3_NONE_RESET },
343 	{ .int_msk = BIT(1), .msg = "egu_cge_afifo_ecc_mbit_err",
344 	  .reset_level = HNAE3_GLOBAL_RESET },
345 	{ .int_msk = BIT(2), .msg = "egu_lge_afifo_ecc_1bit_err",
346 	  .reset_level = HNAE3_NONE_RESET },
347 	{ .int_msk = BIT(3), .msg = "egu_lge_afifo_ecc_mbit_err",
348 	  .reset_level = HNAE3_GLOBAL_RESET },
349 	{ .int_msk = BIT(4), .msg = "cge_igu_afifo_ecc_1bit_err",
350 	  .reset_level = HNAE3_NONE_RESET },
351 	{ .int_msk = BIT(5), .msg = "cge_igu_afifo_ecc_mbit_err",
352 	  .reset_level = HNAE3_GLOBAL_RESET },
353 	{ .int_msk = BIT(6), .msg = "lge_igu_afifo_ecc_1bit_err",
354 	  .reset_level = HNAE3_NONE_RESET },
355 	{ .int_msk = BIT(7), .msg = "lge_igu_afifo_ecc_mbit_err",
356 	  .reset_level = HNAE3_GLOBAL_RESET },
357 	{ .int_msk = BIT(8), .msg = "cge_igu_afifo_overflow_err",
358 	  .reset_level = HNAE3_GLOBAL_RESET },
359 	{ .int_msk = BIT(9), .msg = "lge_igu_afifo_overflow_err",
360 	  .reset_level = HNAE3_GLOBAL_RESET },
361 	{ .int_msk = BIT(10), .msg = "egu_cge_afifo_underrun_err",
362 	  .reset_level = HNAE3_GLOBAL_RESET },
363 	{ .int_msk = BIT(11), .msg = "egu_lge_afifo_underrun_err",
364 	  .reset_level = HNAE3_GLOBAL_RESET },
365 	{ .int_msk = BIT(12), .msg = "egu_ge_afifo_underrun_err",
366 	  .reset_level = HNAE3_GLOBAL_RESET },
367 	{ .int_msk = BIT(13), .msg = "ge_igu_afifo_overflow_err",
368 	  .reset_level = HNAE3_GLOBAL_RESET },
369 	{ /* sentinel */ }
370 };
371 
372 static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st2[] = {
373 	{ .int_msk = BIT(13), .msg = "rpu_rx_pkt_bit32_ecc_mbit_err",
374 	  .reset_level = HNAE3_GLOBAL_RESET },
375 	{ .int_msk = BIT(14), .msg = "rpu_rx_pkt_bit33_ecc_mbit_err",
376 	  .reset_level = HNAE3_GLOBAL_RESET },
377 	{ .int_msk = BIT(15), .msg = "rpu_rx_pkt_bit34_ecc_mbit_err",
378 	  .reset_level = HNAE3_GLOBAL_RESET },
379 	{ .int_msk = BIT(16), .msg = "rpu_rx_pkt_bit35_ecc_mbit_err",
380 	  .reset_level = HNAE3_GLOBAL_RESET },
381 	{ .int_msk = BIT(17), .msg = "rcb_tx_ring_ecc_mbit_err",
382 	  .reset_level = HNAE3_GLOBAL_RESET },
383 	{ .int_msk = BIT(18), .msg = "rcb_rx_ring_ecc_mbit_err",
384 	  .reset_level = HNAE3_GLOBAL_RESET },
385 	{ .int_msk = BIT(19), .msg = "rcb_tx_fbd_ecc_mbit_err",
386 	  .reset_level = HNAE3_GLOBAL_RESET },
387 	{ .int_msk = BIT(20), .msg = "rcb_rx_ebd_ecc_mbit_err",
388 	  .reset_level = HNAE3_GLOBAL_RESET },
389 	{ .int_msk = BIT(21), .msg = "rcb_tso_info_ecc_mbit_err",
390 	  .reset_level = HNAE3_GLOBAL_RESET },
391 	{ .int_msk = BIT(22), .msg = "rcb_tx_int_info_ecc_mbit_err",
392 	  .reset_level = HNAE3_GLOBAL_RESET },
393 	{ .int_msk = BIT(23), .msg = "rcb_rx_int_info_ecc_mbit_err",
394 	  .reset_level = HNAE3_GLOBAL_RESET },
395 	{ .int_msk = BIT(24), .msg = "tpu_tx_pkt_0_ecc_mbit_err",
396 	  .reset_level = HNAE3_GLOBAL_RESET },
397 	{ .int_msk = BIT(25), .msg = "tpu_tx_pkt_1_ecc_mbit_err",
398 	  .reset_level = HNAE3_GLOBAL_RESET },
399 	{ .int_msk = BIT(26), .msg = "rd_bus_err",
400 	  .reset_level = HNAE3_GLOBAL_RESET },
401 	{ .int_msk = BIT(27), .msg = "wr_bus_err",
402 	  .reset_level = HNAE3_GLOBAL_RESET },
403 	{ .int_msk = BIT(28), .msg = "reg_search_miss",
404 	  .reset_level = HNAE3_GLOBAL_RESET },
405 	{ .int_msk = BIT(29), .msg = "rx_q_search_miss",
406 	  .reset_level = HNAE3_NONE_RESET },
407 	{ .int_msk = BIT(30), .msg = "ooo_ecc_err_detect",
408 	  .reset_level = HNAE3_NONE_RESET },
409 	{ .int_msk = BIT(31), .msg = "ooo_ecc_err_multpl",
410 	  .reset_level = HNAE3_GLOBAL_RESET },
411 	{ /* sentinel */ }
412 };
413 
414 static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st3[] = {
415 	{ .int_msk = BIT(4), .msg = "gro_bd_ecc_mbit_err",
416 	  .reset_level = HNAE3_GLOBAL_RESET },
417 	{ .int_msk = BIT(5), .msg = "gro_context_ecc_mbit_err",
418 	  .reset_level = HNAE3_GLOBAL_RESET },
419 	{ .int_msk = BIT(6), .msg = "rx_stash_cfg_ecc_mbit_err",
420 	  .reset_level = HNAE3_GLOBAL_RESET },
421 	{ .int_msk = BIT(7), .msg = "axi_rd_fbd_ecc_mbit_err",
422 	  .reset_level = HNAE3_GLOBAL_RESET },
423 	{ /* sentinel */ }
424 };
425 
426 static const struct hclge_hw_error hclge_ppu_pf_abnormal_int[] = {
427 	{ .int_msk = BIT(0), .msg = "over_8bd_no_fe",
428 	  .reset_level = HNAE3_FUNC_RESET },
429 	{ .int_msk = BIT(1), .msg = "tso_mss_cmp_min_err",
430 	  .reset_level = HNAE3_NONE_RESET },
431 	{ .int_msk = BIT(2), .msg = "tso_mss_cmp_max_err",
432 	  .reset_level = HNAE3_NONE_RESET },
433 	{ .int_msk = BIT(3), .msg = "tx_rd_fbd_poison",
434 	  .reset_level = HNAE3_FUNC_RESET },
435 	{ .int_msk = BIT(4), .msg = "rx_rd_ebd_poison",
436 	  .reset_level = HNAE3_FUNC_RESET },
437 	{ .int_msk = BIT(5), .msg = "buf_wait_timeout",
438 	  .reset_level = HNAE3_NONE_RESET },
439 	{ /* sentinel */ }
440 };
441 
442 static const struct hclge_hw_error hclge_ssu_com_err_int[] = {
443 	{ .int_msk = BIT(0), .msg = "buf_sum_err",
444 	  .reset_level = HNAE3_NONE_RESET },
445 	{ .int_msk = BIT(1), .msg = "ppp_mb_num_err",
446 	  .reset_level = HNAE3_NONE_RESET },
447 	{ .int_msk = BIT(2), .msg = "ppp_mbid_err",
448 	  .reset_level = HNAE3_GLOBAL_RESET },
449 	{ .int_msk = BIT(3), .msg = "ppp_rlt_mac_err",
450 	  .reset_level = HNAE3_GLOBAL_RESET },
451 	{ .int_msk = BIT(4), .msg = "ppp_rlt_host_err",
452 	  .reset_level = HNAE3_GLOBAL_RESET },
453 	{ .int_msk = BIT(5), .msg = "cks_edit_position_err",
454 	  .reset_level = HNAE3_GLOBAL_RESET },
455 	{ .int_msk = BIT(6), .msg = "cks_edit_condition_err",
456 	  .reset_level = HNAE3_GLOBAL_RESET },
457 	{ .int_msk = BIT(7), .msg = "vlan_edit_condition_err",
458 	  .reset_level = HNAE3_GLOBAL_RESET },
459 	{ .int_msk = BIT(8), .msg = "vlan_num_ot_err",
460 	  .reset_level = HNAE3_GLOBAL_RESET },
461 	{ .int_msk = BIT(9), .msg = "vlan_num_in_err",
462 	  .reset_level = HNAE3_GLOBAL_RESET },
463 	{ /* sentinel */ }
464 };
465 
466 #define HCLGE_SSU_MEM_ECC_ERR(x) \
467 	{ .int_msk = BIT(x), .msg = "ssu_mem" #x "_ecc_mbit_err", \
468 	  .reset_level = HNAE3_GLOBAL_RESET }
469 
470 static const struct hclge_hw_error hclge_ssu_mem_ecc_err_int[] = {
471 	HCLGE_SSU_MEM_ECC_ERR(0),
472 	HCLGE_SSU_MEM_ECC_ERR(1),
473 	HCLGE_SSU_MEM_ECC_ERR(2),
474 	HCLGE_SSU_MEM_ECC_ERR(3),
475 	HCLGE_SSU_MEM_ECC_ERR(4),
476 	HCLGE_SSU_MEM_ECC_ERR(5),
477 	HCLGE_SSU_MEM_ECC_ERR(6),
478 	HCLGE_SSU_MEM_ECC_ERR(7),
479 	HCLGE_SSU_MEM_ECC_ERR(8),
480 	HCLGE_SSU_MEM_ECC_ERR(9),
481 	HCLGE_SSU_MEM_ECC_ERR(10),
482 	HCLGE_SSU_MEM_ECC_ERR(11),
483 	HCLGE_SSU_MEM_ECC_ERR(12),
484 	HCLGE_SSU_MEM_ECC_ERR(13),
485 	HCLGE_SSU_MEM_ECC_ERR(14),
486 	HCLGE_SSU_MEM_ECC_ERR(15),
487 	HCLGE_SSU_MEM_ECC_ERR(16),
488 	HCLGE_SSU_MEM_ECC_ERR(17),
489 	HCLGE_SSU_MEM_ECC_ERR(18),
490 	HCLGE_SSU_MEM_ECC_ERR(19),
491 	HCLGE_SSU_MEM_ECC_ERR(20),
492 	HCLGE_SSU_MEM_ECC_ERR(21),
493 	HCLGE_SSU_MEM_ECC_ERR(22),
494 	HCLGE_SSU_MEM_ECC_ERR(23),
495 	HCLGE_SSU_MEM_ECC_ERR(24),
496 	HCLGE_SSU_MEM_ECC_ERR(25),
497 	HCLGE_SSU_MEM_ECC_ERR(26),
498 	HCLGE_SSU_MEM_ECC_ERR(27),
499 	HCLGE_SSU_MEM_ECC_ERR(28),
500 	HCLGE_SSU_MEM_ECC_ERR(29),
501 	HCLGE_SSU_MEM_ECC_ERR(30),
502 	HCLGE_SSU_MEM_ECC_ERR(31),
503 	{ /* sentinel */ }
504 };
505 
506 static const struct hclge_hw_error hclge_ssu_port_based_err_int[] = {
507 	{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port",
508 	  .reset_level = HNAE3_FUNC_RESET },
509 	{ .int_msk = BIT(1), .msg = "tpu_pkt_without_key_port",
510 	  .reset_level = HNAE3_GLOBAL_RESET },
511 	{ .int_msk = BIT(2), .msg = "igu_pkt_without_key_port",
512 	  .reset_level = HNAE3_GLOBAL_RESET },
513 	{ .int_msk = BIT(3), .msg = "roc_eof_mis_match_port",
514 	  .reset_level = HNAE3_GLOBAL_RESET },
515 	{ .int_msk = BIT(4), .msg = "tpu_eof_mis_match_port",
516 	  .reset_level = HNAE3_GLOBAL_RESET },
517 	{ .int_msk = BIT(5), .msg = "igu_eof_mis_match_port",
518 	  .reset_level = HNAE3_GLOBAL_RESET },
519 	{ .int_msk = BIT(6), .msg = "roc_sof_mis_match_port",
520 	  .reset_level = HNAE3_GLOBAL_RESET },
521 	{ .int_msk = BIT(7), .msg = "tpu_sof_mis_match_port",
522 	  .reset_level = HNAE3_GLOBAL_RESET },
523 	{ .int_msk = BIT(8), .msg = "igu_sof_mis_match_port",
524 	  .reset_level = HNAE3_GLOBAL_RESET },
525 	{ .int_msk = BIT(11), .msg = "ets_rd_int_rx_port",
526 	  .reset_level = HNAE3_GLOBAL_RESET },
527 	{ .int_msk = BIT(12), .msg = "ets_wr_int_rx_port",
528 	  .reset_level = HNAE3_GLOBAL_RESET },
529 	{ .int_msk = BIT(13), .msg = "ets_rd_int_tx_port",
530 	  .reset_level = HNAE3_GLOBAL_RESET },
531 	{ .int_msk = BIT(14), .msg = "ets_wr_int_tx_port",
532 	  .reset_level = HNAE3_GLOBAL_RESET },
533 	{ /* sentinel */ }
534 };
535 
536 static const struct hclge_hw_error hclge_ssu_fifo_overflow_int[] = {
537 	{ .int_msk = BIT(0), .msg = "ig_mac_inf_int",
538 	  .reset_level = HNAE3_GLOBAL_RESET },
539 	{ .int_msk = BIT(1), .msg = "ig_host_inf_int",
540 	  .reset_level = HNAE3_GLOBAL_RESET },
541 	{ .int_msk = BIT(2), .msg = "ig_roc_buf_int",
542 	  .reset_level = HNAE3_GLOBAL_RESET },
543 	{ .int_msk = BIT(3), .msg = "ig_host_data_fifo_int",
544 	  .reset_level = HNAE3_GLOBAL_RESET },
545 	{ .int_msk = BIT(4), .msg = "ig_host_key_fifo_int",
546 	  .reset_level = HNAE3_GLOBAL_RESET },
547 	{ .int_msk = BIT(5), .msg = "tx_qcn_fifo_int",
548 	  .reset_level = HNAE3_GLOBAL_RESET },
549 	{ .int_msk = BIT(6), .msg = "rx_qcn_fifo_int",
550 	  .reset_level = HNAE3_GLOBAL_RESET },
551 	{ .int_msk = BIT(7), .msg = "tx_pf_rd_fifo_int",
552 	  .reset_level = HNAE3_GLOBAL_RESET },
553 	{ .int_msk = BIT(8), .msg = "rx_pf_rd_fifo_int",
554 	  .reset_level = HNAE3_GLOBAL_RESET },
555 	{ .int_msk = BIT(9), .msg = "qm_eof_fifo_int",
556 	  .reset_level = HNAE3_GLOBAL_RESET },
557 	{ .int_msk = BIT(10), .msg = "mb_rlt_fifo_int",
558 	  .reset_level = HNAE3_GLOBAL_RESET },
559 	{ .int_msk = BIT(11), .msg = "dup_uncopy_fifo_int",
560 	  .reset_level = HNAE3_GLOBAL_RESET },
561 	{ .int_msk = BIT(12), .msg = "dup_cnt_rd_fifo_int",
562 	  .reset_level = HNAE3_GLOBAL_RESET },
563 	{ .int_msk = BIT(13), .msg = "dup_cnt_drop_fifo_int",
564 	  .reset_level = HNAE3_GLOBAL_RESET },
565 	{ .int_msk = BIT(14), .msg = "dup_cnt_wrb_fifo_int",
566 	  .reset_level = HNAE3_GLOBAL_RESET },
567 	{ .int_msk = BIT(15), .msg = "host_cmd_fifo_int",
568 	  .reset_level = HNAE3_GLOBAL_RESET },
569 	{ .int_msk = BIT(16), .msg = "mac_cmd_fifo_int",
570 	  .reset_level = HNAE3_GLOBAL_RESET },
571 	{ .int_msk = BIT(17), .msg = "host_cmd_bitmap_empty_int",
572 	  .reset_level = HNAE3_GLOBAL_RESET },
573 	{ .int_msk = BIT(18), .msg = "mac_cmd_bitmap_empty_int",
574 	  .reset_level = HNAE3_GLOBAL_RESET },
575 	{ .int_msk = BIT(19), .msg = "dup_bitmap_empty_int",
576 	  .reset_level = HNAE3_GLOBAL_RESET },
577 	{ .int_msk = BIT(20), .msg = "out_queue_bitmap_empty_int",
578 	  .reset_level = HNAE3_GLOBAL_RESET },
579 	{ .int_msk = BIT(21), .msg = "bank2_bitmap_empty_int",
580 	  .reset_level = HNAE3_GLOBAL_RESET },
581 	{ .int_msk = BIT(22), .msg = "bank1_bitmap_empty_int",
582 	  .reset_level = HNAE3_GLOBAL_RESET },
583 	{ .int_msk = BIT(23), .msg = "bank0_bitmap_empty_int",
584 	  .reset_level = HNAE3_GLOBAL_RESET },
585 	{ /* sentinel */ }
586 };
587 
588 static const struct hclge_hw_error hclge_ssu_ets_tcg_int[] = {
589 	{ .int_msk = BIT(0), .msg = "ets_rd_int_rx_tcg",
590 	  .reset_level = HNAE3_GLOBAL_RESET },
591 	{ .int_msk = BIT(1), .msg = "ets_wr_int_rx_tcg",
592 	  .reset_level = HNAE3_GLOBAL_RESET },
593 	{ .int_msk = BIT(2), .msg = "ets_rd_int_tx_tcg",
594 	  .reset_level = HNAE3_GLOBAL_RESET },
595 	{ .int_msk = BIT(3), .msg = "ets_wr_int_tx_tcg",
596 	  .reset_level = HNAE3_GLOBAL_RESET },
597 	{ /* sentinel */ }
598 };
599 
600 static const struct hclge_hw_error hclge_ssu_port_based_pf_int[] = {
601 	{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port",
602 	  .reset_level = HNAE3_FUNC_RESET },
603 	{ .int_msk = BIT(9), .msg = "low_water_line_err_port",
604 	  .reset_level = HNAE3_NONE_RESET },
605 	{ .int_msk = BIT(10), .msg = "hi_water_line_err_port",
606 	  .reset_level = HNAE3_GLOBAL_RESET },
607 	{ /* sentinel */ }
608 };
609 
610 static const struct hclge_hw_error hclge_rocee_qmm_ovf_err_int[] = {
611 	{ .int_msk = 0, .msg = "rocee qmm ovf: sgid invalid err" },
612 	{ .int_msk = 0x4, .msg = "rocee qmm ovf: sgid ovf err" },
613 	{ .int_msk = 0x8, .msg = "rocee qmm ovf: smac invalid err" },
614 	{ .int_msk = 0xC, .msg = "rocee qmm ovf: smac ovf err" },
615 	{ .int_msk = 0x10, .msg = "rocee qmm ovf: cqc invalid err" },
616 	{ .int_msk = 0x11, .msg = "rocee qmm ovf: cqc ovf err" },
617 	{ .int_msk = 0x12, .msg = "rocee qmm ovf: cqc hopnum err" },
618 	{ .int_msk = 0x13, .msg = "rocee qmm ovf: cqc ba0 err" },
619 	{ .int_msk = 0x14, .msg = "rocee qmm ovf: srqc invalid err" },
620 	{ .int_msk = 0x15, .msg = "rocee qmm ovf: srqc ovf err" },
621 	{ .int_msk = 0x16, .msg = "rocee qmm ovf: srqc hopnum err" },
622 	{ .int_msk = 0x17, .msg = "rocee qmm ovf: srqc ba0 err" },
623 	{ .int_msk = 0x18, .msg = "rocee qmm ovf: mpt invalid err" },
624 	{ .int_msk = 0x19, .msg = "rocee qmm ovf: mpt ovf err" },
625 	{ .int_msk = 0x1A, .msg = "rocee qmm ovf: mpt hopnum err" },
626 	{ .int_msk = 0x1B, .msg = "rocee qmm ovf: mpt ba0 err" },
627 	{ .int_msk = 0x1C, .msg = "rocee qmm ovf: qpc invalid err" },
628 	{ .int_msk = 0x1D, .msg = "rocee qmm ovf: qpc ovf err" },
629 	{ .int_msk = 0x1E, .msg = "rocee qmm ovf: qpc hopnum err" },
630 	{ .int_msk = 0x1F, .msg = "rocee qmm ovf: qpc ba0 err" },
631 	{ /* sentinel */ }
632 };
633 
634 static void hclge_log_error(struct device *dev, char *reg,
635 			    const struct hclge_hw_error *err,
636 			    u32 err_sts, unsigned long *reset_requests)
637 {
638 	while (err->msg) {
639 		if (err->int_msk & err_sts) {
640 			dev_err(dev, "%s %s found [error status=0x%x]\n",
641 				reg, err->msg, err_sts);
642 			if (err->reset_level &&
643 			    err->reset_level != HNAE3_NONE_RESET)
644 				set_bit(err->reset_level, reset_requests);
645 		}
646 		err++;
647 	}
648 }
649 
650 /* hclge_cmd_query_error: read the error information
651  * @hdev: pointer to struct hclge_dev
652  * @desc: descriptor for describing the command
653  * @cmd:  command opcode
654  * @flag: flag for extended command structure
655  *
656  * This function query the error info from hw register/s using command
657  */
658 static int hclge_cmd_query_error(struct hclge_dev *hdev,
659 				 struct hclge_desc *desc, u32 cmd, u16 flag)
660 {
661 	struct device *dev = &hdev->pdev->dev;
662 	int desc_num = 1;
663 	int ret;
664 
665 	hclge_cmd_setup_basic_desc(&desc[0], cmd, true);
666 	if (flag) {
667 		desc[0].flag |= cpu_to_le16(flag);
668 		hclge_cmd_setup_basic_desc(&desc[1], cmd, true);
669 		desc_num = 2;
670 	}
671 
672 	ret = hclge_cmd_send(&hdev->hw, &desc[0], desc_num);
673 	if (ret)
674 		dev_err(dev, "query error cmd failed (%d)\n", ret);
675 
676 	return ret;
677 }
678 
679 static int hclge_clear_mac_tnl_int(struct hclge_dev *hdev)
680 {
681 	struct hclge_desc desc;
682 
683 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_MAC_TNL_INT, false);
684 	desc.data[0] = cpu_to_le32(HCLGE_MAC_TNL_INT_CLR);
685 
686 	return hclge_cmd_send(&hdev->hw, &desc, 1);
687 }
688 
689 static int hclge_config_common_hw_err_int(struct hclge_dev *hdev, bool en)
690 {
691 	struct device *dev = &hdev->pdev->dev;
692 	struct hclge_desc desc[2];
693 	int ret;
694 
695 	/* configure common error interrupts */
696 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_COMMON_ECC_INT_CFG, false);
697 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
698 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_COMMON_ECC_INT_CFG, false);
699 
700 	if (en) {
701 		desc[0].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN);
702 		desc[0].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN |
703 					HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN);
704 		desc[0].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN);
705 		desc[0].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN |
706 					      HCLGE_MSIX_SRAM_ECC_ERR_INT_EN);
707 		desc[0].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN);
708 	}
709 
710 	desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN_MASK);
711 	desc[1].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN_MASK |
712 				HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN_MASK);
713 	desc[1].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN_MASK);
714 	desc[1].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN_MASK |
715 				      HCLGE_MSIX_SRAM_ECC_ERR_INT_EN_MASK);
716 	desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN_MASK);
717 
718 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
719 	if (ret)
720 		dev_err(dev,
721 			"fail(%d) to configure common err interrupts\n", ret);
722 
723 	return ret;
724 }
725 
726 static int hclge_config_ncsi_hw_err_int(struct hclge_dev *hdev, bool en)
727 {
728 	struct device *dev = &hdev->pdev->dev;
729 	struct hclge_desc desc;
730 	int ret;
731 
732 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
733 		return 0;
734 
735 	/* configure NCSI error interrupts */
736 	hclge_cmd_setup_basic_desc(&desc, HCLGE_NCSI_INT_EN, false);
737 	if (en)
738 		desc.data[0] = cpu_to_le32(HCLGE_NCSI_ERR_INT_EN);
739 
740 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
741 	if (ret)
742 		dev_err(dev,
743 			"fail(%d) to configure  NCSI error interrupts\n", ret);
744 
745 	return ret;
746 }
747 
748 static int hclge_config_igu_egu_hw_err_int(struct hclge_dev *hdev, bool en)
749 {
750 	struct device *dev = &hdev->pdev->dev;
751 	struct hclge_desc desc;
752 	int ret;
753 
754 	/* configure IGU,EGU error interrupts */
755 	hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_COMMON_INT_EN, false);
756 	desc.data[0] = cpu_to_le32(HCLGE_IGU_ERR_INT_TYPE);
757 	if (en)
758 		desc.data[0] |= cpu_to_le32(HCLGE_IGU_ERR_INT_EN);
759 
760 	desc.data[1] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN_MASK);
761 
762 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
763 	if (ret) {
764 		dev_err(dev,
765 			"fail(%d) to configure IGU common interrupts\n", ret);
766 		return ret;
767 	}
768 
769 	hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_EGU_TNL_INT_EN, false);
770 	if (en)
771 		desc.data[0] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN);
772 
773 	desc.data[1] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN_MASK);
774 
775 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
776 	if (ret) {
777 		dev_err(dev,
778 			"fail(%d) to configure IGU-EGU TNL interrupts\n", ret);
779 		return ret;
780 	}
781 
782 	ret = hclge_config_ncsi_hw_err_int(hdev, en);
783 
784 	return ret;
785 }
786 
787 static int hclge_config_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd,
788 					    bool en)
789 {
790 	struct device *dev = &hdev->pdev->dev;
791 	struct hclge_desc desc[2];
792 	int ret;
793 
794 	/* configure PPP error interrupts */
795 	hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
796 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
797 	hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
798 
799 	if (cmd == HCLGE_PPP_CMD0_INT_CMD) {
800 		if (en) {
801 			desc[0].data[0] =
802 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN);
803 			desc[0].data[1] =
804 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN);
805 			desc[0].data[4] = cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN);
806 		}
807 
808 		desc[1].data[0] =
809 			cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN_MASK);
810 		desc[1].data[1] =
811 			cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN_MASK);
812 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
813 			desc[1].data[2] =
814 				cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN_MASK);
815 	} else if (cmd == HCLGE_PPP_CMD1_INT_CMD) {
816 		if (en) {
817 			desc[0].data[0] =
818 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN);
819 			desc[0].data[1] =
820 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN);
821 		}
822 
823 		desc[1].data[0] =
824 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN_MASK);
825 		desc[1].data[1] =
826 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN_MASK);
827 	}
828 
829 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
830 	if (ret)
831 		dev_err(dev, "fail(%d) to configure PPP error intr\n", ret);
832 
833 	return ret;
834 }
835 
836 static int hclge_config_ppp_hw_err_int(struct hclge_dev *hdev, bool en)
837 {
838 	int ret;
839 
840 	ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD0_INT_CMD,
841 					       en);
842 	if (ret)
843 		return ret;
844 
845 	ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD1_INT_CMD,
846 					       en);
847 
848 	return ret;
849 }
850 
851 static int hclge_config_tm_hw_err_int(struct hclge_dev *hdev, bool en)
852 {
853 	struct device *dev = &hdev->pdev->dev;
854 	struct hclge_desc desc;
855 	int ret;
856 
857 	/* configure TM SCH hw errors */
858 	hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_SCH_ECC_INT_EN, false);
859 	if (en)
860 		desc.data[0] = cpu_to_le32(HCLGE_TM_SCH_ECC_ERR_INT_EN);
861 
862 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
863 	if (ret) {
864 		dev_err(dev, "fail(%d) to configure TM SCH errors\n", ret);
865 		return ret;
866 	}
867 
868 	/* configure TM QCN hw errors */
869 	hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_QCN_MEM_INT_CFG, false);
870 	if (en)
871 		desc.data[1] = cpu_to_le32(HCLGE_TM_QCN_MEM_ERR_INT_EN);
872 
873 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
874 	if (ret)
875 		dev_err(dev,
876 			"fail(%d) to configure TM QCN mem errors\n", ret);
877 
878 	return ret;
879 }
880 
881 static int hclge_config_mac_err_int(struct hclge_dev *hdev, bool en)
882 {
883 	struct device *dev = &hdev->pdev->dev;
884 	struct hclge_desc desc;
885 	int ret;
886 
887 	/* configure MAC common error interrupts */
888 	hclge_cmd_setup_basic_desc(&desc, HCLGE_MAC_COMMON_INT_EN, false);
889 	if (en)
890 		desc.data[0] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN);
891 
892 	desc.data[1] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN_MASK);
893 
894 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
895 	if (ret)
896 		dev_err(dev,
897 			"fail(%d) to configure MAC COMMON error intr\n", ret);
898 
899 	return ret;
900 }
901 
902 int hclge_config_mac_tnl_int(struct hclge_dev *hdev, bool en)
903 {
904 	struct hclge_desc desc;
905 
906 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_TNL_INT_EN, false);
907 	if (en)
908 		desc.data[0] = cpu_to_le32(HCLGE_MAC_TNL_INT_EN);
909 	else
910 		desc.data[0] = 0;
911 
912 	desc.data[1] = cpu_to_le32(HCLGE_MAC_TNL_INT_EN_MASK);
913 
914 	return hclge_cmd_send(&hdev->hw, &desc, 1);
915 }
916 
917 static int hclge_config_ppu_error_interrupts(struct hclge_dev *hdev, u32 cmd,
918 					     bool en)
919 {
920 	struct device *dev = &hdev->pdev->dev;
921 	struct hclge_desc desc[2];
922 	int desc_num = 1;
923 	int ret;
924 
925 	/* configure PPU error interrupts */
926 	if (cmd == HCLGE_PPU_MPF_ECC_INT_CMD) {
927 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
928 		desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
929 		hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
930 		if (en) {
931 			desc[0].data[0] =
932 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT0_EN);
933 			desc[0].data[1] =
934 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT1_EN);
935 			desc[1].data[3] =
936 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT3_EN);
937 			desc[1].data[4] =
938 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN);
939 		}
940 
941 		desc[1].data[0] =
942 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT0_EN_MASK);
943 		desc[1].data[1] =
944 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT1_EN_MASK);
945 		desc[1].data[2] =
946 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN_MASK);
947 		desc[1].data[3] |=
948 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT3_EN_MASK);
949 		desc_num = 2;
950 	} else if (cmd == HCLGE_PPU_MPF_OTHER_INT_CMD) {
951 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
952 		if (en)
953 			desc[0].data[0] =
954 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN2);
955 
956 		desc[0].data[2] =
957 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN2_MASK);
958 	} else if (cmd == HCLGE_PPU_PF_OTHER_INT_CMD) {
959 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
960 		if (en)
961 			desc[0].data[0] =
962 				cpu_to_le32(HCLGE_PPU_PF_ABNORMAL_INT_EN);
963 
964 		desc[0].data[2] =
965 			cpu_to_le32(HCLGE_PPU_PF_ABNORMAL_INT_EN_MASK);
966 	} else {
967 		dev_err(dev, "Invalid cmd to configure PPU error interrupts\n");
968 		return -EINVAL;
969 	}
970 
971 	ret = hclge_cmd_send(&hdev->hw, &desc[0], desc_num);
972 
973 	return ret;
974 }
975 
976 static int hclge_config_ppu_hw_err_int(struct hclge_dev *hdev, bool en)
977 {
978 	struct device *dev = &hdev->pdev->dev;
979 	int ret;
980 
981 	ret = hclge_config_ppu_error_interrupts(hdev, HCLGE_PPU_MPF_ECC_INT_CMD,
982 						en);
983 	if (ret) {
984 		dev_err(dev, "fail(%d) to configure PPU MPF ECC error intr\n",
985 			ret);
986 		return ret;
987 	}
988 
989 	ret = hclge_config_ppu_error_interrupts(hdev,
990 						HCLGE_PPU_MPF_OTHER_INT_CMD,
991 						en);
992 	if (ret) {
993 		dev_err(dev, "fail(%d) to configure PPU MPF other intr\n", ret);
994 		return ret;
995 	}
996 
997 	ret = hclge_config_ppu_error_interrupts(hdev,
998 						HCLGE_PPU_PF_OTHER_INT_CMD, en);
999 	if (ret)
1000 		dev_err(dev, "fail(%d) to configure PPU PF error interrupts\n",
1001 			ret);
1002 	return ret;
1003 }
1004 
1005 static int hclge_config_ssu_hw_err_int(struct hclge_dev *hdev, bool en)
1006 {
1007 	struct device *dev = &hdev->pdev->dev;
1008 	struct hclge_desc desc[2];
1009 	int ret;
1010 
1011 	/* configure SSU ecc error interrupts */
1012 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_ECC_INT_CMD, false);
1013 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1014 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_ECC_INT_CMD, false);
1015 	if (en) {
1016 		desc[0].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN);
1017 		desc[0].data[1] =
1018 			cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN);
1019 		desc[0].data[4] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN);
1020 	}
1021 
1022 	desc[1].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN_MASK);
1023 	desc[1].data[1] = cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN_MASK);
1024 	desc[1].data[2] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN_MASK);
1025 
1026 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
1027 	if (ret) {
1028 		dev_err(dev,
1029 			"fail(%d) to configure SSU ECC error interrupt\n", ret);
1030 		return ret;
1031 	}
1032 
1033 	/* configure SSU common error interrupts */
1034 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_COMMON_INT_CMD, false);
1035 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1036 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_COMMON_INT_CMD, false);
1037 
1038 	if (en) {
1039 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
1040 			desc[0].data[0] =
1041 				cpu_to_le32(HCLGE_SSU_COMMON_INT_EN);
1042 		else
1043 			desc[0].data[0] =
1044 				cpu_to_le32(HCLGE_SSU_COMMON_INT_EN & ~BIT(5));
1045 		desc[0].data[1] = cpu_to_le32(HCLGE_SSU_PORT_BASED_ERR_INT_EN);
1046 		desc[0].data[2] =
1047 			cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN);
1048 	}
1049 
1050 	desc[1].data[0] = cpu_to_le32(HCLGE_SSU_COMMON_INT_EN_MASK |
1051 				HCLGE_SSU_PORT_BASED_ERR_INT_EN_MASK);
1052 	desc[1].data[1] = cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN_MASK);
1053 
1054 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
1055 	if (ret)
1056 		dev_err(dev,
1057 			"fail(%d) to configure SSU COMMON error intr\n", ret);
1058 
1059 	return ret;
1060 }
1061 
1062 /* hclge_query_bd_num: query number of buffer descriptors
1063  * @hdev: pointer to struct hclge_dev
1064  * @is_ras: true for ras, false for msix
1065  * @mpf_bd_num: number of main PF interrupt buffer descriptors
1066  * @pf_bd_num: number of not main PF interrupt buffer descriptors
1067  *
1068  * This function querys number of mpf and pf buffer descriptors.
1069  */
1070 static int hclge_query_bd_num(struct hclge_dev *hdev, bool is_ras,
1071 			      u32 *mpf_bd_num, u32 *pf_bd_num)
1072 {
1073 	struct device *dev = &hdev->pdev->dev;
1074 	u32 mpf_min_bd_num, pf_min_bd_num;
1075 	enum hclge_opcode_type opcode;
1076 	struct hclge_desc desc_bd;
1077 	int ret;
1078 
1079 	if (is_ras) {
1080 		opcode = HCLGE_QUERY_RAS_INT_STS_BD_NUM;
1081 		mpf_min_bd_num = HCLGE_MPF_RAS_INT_MIN_BD_NUM;
1082 		pf_min_bd_num = HCLGE_PF_RAS_INT_MIN_BD_NUM;
1083 	} else {
1084 		opcode = HCLGE_QUERY_MSIX_INT_STS_BD_NUM;
1085 		mpf_min_bd_num = HCLGE_MPF_MSIX_INT_MIN_BD_NUM;
1086 		pf_min_bd_num = HCLGE_PF_MSIX_INT_MIN_BD_NUM;
1087 	}
1088 
1089 	hclge_cmd_setup_basic_desc(&desc_bd, opcode, true);
1090 	ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
1091 	if (ret) {
1092 		dev_err(dev, "fail(%d) to query msix int status bd num\n",
1093 			ret);
1094 		return ret;
1095 	}
1096 
1097 	*mpf_bd_num = le32_to_cpu(desc_bd.data[0]);
1098 	*pf_bd_num = le32_to_cpu(desc_bd.data[1]);
1099 	if (*mpf_bd_num < mpf_min_bd_num || *pf_bd_num < pf_min_bd_num) {
1100 		dev_err(dev, "Invalid bd num: mpf(%u), pf(%u)\n",
1101 			*mpf_bd_num, *pf_bd_num);
1102 		return -EINVAL;
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 /* hclge_handle_mpf_ras_error: handle all main PF RAS errors
1109  * @hdev: pointer to struct hclge_dev
1110  * @desc: descriptor for describing the command
1111  * @num:  number of extended command structures
1112  *
1113  * This function handles all the main PF RAS errors in the
1114  * hw register/s using command.
1115  */
1116 static int hclge_handle_mpf_ras_error(struct hclge_dev *hdev,
1117 				      struct hclge_desc *desc,
1118 				      int num)
1119 {
1120 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1121 	struct device *dev = &hdev->pdev->dev;
1122 	__le32 *desc_data;
1123 	u32 status;
1124 	int ret;
1125 
1126 	/* query all main PF RAS errors */
1127 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_MPF_RAS_INT,
1128 				   true);
1129 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1130 	if (ret) {
1131 		dev_err(dev, "query all mpf ras int cmd failed (%d)\n", ret);
1132 		return ret;
1133 	}
1134 
1135 	/* log HNS common errors */
1136 	status = le32_to_cpu(desc[0].data[0]);
1137 	if (status)
1138 		hclge_log_error(dev, "IMP_TCM_ECC_INT_STS",
1139 				&hclge_imp_tcm_ecc_int[0], status,
1140 				&ae_dev->hw_err_reset_req);
1141 
1142 	status = le32_to_cpu(desc[0].data[1]);
1143 	if (status)
1144 		hclge_log_error(dev, "CMDQ_MEM_ECC_INT_STS",
1145 				&hclge_cmdq_nic_mem_ecc_int[0], status,
1146 				&ae_dev->hw_err_reset_req);
1147 
1148 	if ((le32_to_cpu(desc[0].data[2])) & BIT(0))
1149 		dev_warn(dev, "imp_rd_data_poison_err found\n");
1150 
1151 	status = le32_to_cpu(desc[0].data[3]);
1152 	if (status)
1153 		hclge_log_error(dev, "TQP_INT_ECC_INT_STS",
1154 				&hclge_tqp_int_ecc_int[0], status,
1155 				&ae_dev->hw_err_reset_req);
1156 
1157 	status = le32_to_cpu(desc[0].data[4]);
1158 	if (status)
1159 		hclge_log_error(dev, "MSIX_ECC_INT_STS",
1160 				&hclge_msix_sram_ecc_int[0], status,
1161 				&ae_dev->hw_err_reset_req);
1162 
1163 	/* log SSU(Storage Switch Unit) errors */
1164 	desc_data = (__le32 *)&desc[2];
1165 	status = le32_to_cpu(*(desc_data + 2));
1166 	if (status)
1167 		hclge_log_error(dev, "SSU_ECC_MULTI_BIT_INT_0",
1168 				&hclge_ssu_mem_ecc_err_int[0], status,
1169 				&ae_dev->hw_err_reset_req);
1170 
1171 	status = le32_to_cpu(*(desc_data + 3)) & BIT(0);
1172 	if (status) {
1173 		dev_err(dev, "SSU_ECC_MULTI_BIT_INT_1 ssu_mem32_ecc_mbit_err found [error status=0x%x]\n",
1174 			status);
1175 		set_bit(HNAE3_GLOBAL_RESET, &ae_dev->hw_err_reset_req);
1176 	}
1177 
1178 	status = le32_to_cpu(*(desc_data + 4)) & HCLGE_SSU_COMMON_ERR_INT_MASK;
1179 	if (status)
1180 		hclge_log_error(dev, "SSU_COMMON_ERR_INT",
1181 				&hclge_ssu_com_err_int[0], status,
1182 				&ae_dev->hw_err_reset_req);
1183 
1184 	/* log IGU(Ingress Unit) errors */
1185 	desc_data = (__le32 *)&desc[3];
1186 	status = le32_to_cpu(*desc_data) & HCLGE_IGU_INT_MASK;
1187 	if (status)
1188 		hclge_log_error(dev, "IGU_INT_STS",
1189 				&hclge_igu_int[0], status,
1190 				&ae_dev->hw_err_reset_req);
1191 
1192 	/* log PPP(Programmable Packet Process) errors */
1193 	desc_data = (__le32 *)&desc[4];
1194 	status = le32_to_cpu(*(desc_data + 1));
1195 	if (status)
1196 		hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST1",
1197 				&hclge_ppp_mpf_abnormal_int_st1[0], status,
1198 				&ae_dev->hw_err_reset_req);
1199 
1200 	status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPP_MPF_INT_ST3_MASK;
1201 	if (status)
1202 		hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST3",
1203 				&hclge_ppp_mpf_abnormal_int_st3[0], status,
1204 				&ae_dev->hw_err_reset_req);
1205 
1206 	/* log PPU(RCB) errors */
1207 	desc_data = (__le32 *)&desc[5];
1208 	status = le32_to_cpu(*(desc_data + 1));
1209 	if (status) {
1210 		dev_err(dev,
1211 			"PPU_MPF_ABNORMAL_INT_ST1 rpu_rx_pkt_ecc_mbit_err found\n");
1212 		set_bit(HNAE3_GLOBAL_RESET, &ae_dev->hw_err_reset_req);
1213 	}
1214 
1215 	status = le32_to_cpu(*(desc_data + 2));
1216 	if (status)
1217 		hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST2",
1218 				&hclge_ppu_mpf_abnormal_int_st2[0], status,
1219 				&ae_dev->hw_err_reset_req);
1220 
1221 	status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPU_MPF_INT_ST3_MASK;
1222 	if (status)
1223 		hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST3",
1224 				&hclge_ppu_mpf_abnormal_int_st3[0], status,
1225 				&ae_dev->hw_err_reset_req);
1226 
1227 	/* log TM(Traffic Manager) errors */
1228 	desc_data = (__le32 *)&desc[6];
1229 	status = le32_to_cpu(*desc_data);
1230 	if (status)
1231 		hclge_log_error(dev, "TM_SCH_RINT",
1232 				&hclge_tm_sch_rint[0], status,
1233 				&ae_dev->hw_err_reset_req);
1234 
1235 	/* log QCN(Quantized Congestion Control) errors */
1236 	desc_data = (__le32 *)&desc[7];
1237 	status = le32_to_cpu(*desc_data) & HCLGE_QCN_FIFO_INT_MASK;
1238 	if (status)
1239 		hclge_log_error(dev, "QCN_FIFO_RINT",
1240 				&hclge_qcn_fifo_rint[0], status,
1241 				&ae_dev->hw_err_reset_req);
1242 
1243 	status = le32_to_cpu(*(desc_data + 1)) & HCLGE_QCN_ECC_INT_MASK;
1244 	if (status)
1245 		hclge_log_error(dev, "QCN_ECC_RINT",
1246 				&hclge_qcn_ecc_rint[0], status,
1247 				&ae_dev->hw_err_reset_req);
1248 
1249 	/* log NCSI errors */
1250 	desc_data = (__le32 *)&desc[9];
1251 	status = le32_to_cpu(*desc_data) & HCLGE_NCSI_ECC_INT_MASK;
1252 	if (status)
1253 		hclge_log_error(dev, "NCSI_ECC_INT_RPT",
1254 				&hclge_ncsi_err_int[0], status,
1255 				&ae_dev->hw_err_reset_req);
1256 
1257 	/* clear all main PF RAS errors */
1258 	hclge_cmd_reuse_desc(&desc[0], false);
1259 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1260 	if (ret)
1261 		dev_err(dev, "clear all mpf ras int cmd failed (%d)\n", ret);
1262 
1263 	return ret;
1264 }
1265 
1266 /* hclge_handle_pf_ras_error: handle all PF RAS errors
1267  * @hdev: pointer to struct hclge_dev
1268  * @desc: descriptor for describing the command
1269  * @num:  number of extended command structures
1270  *
1271  * This function handles all the PF RAS errors in the
1272  * hw register/s using command.
1273  */
1274 static int hclge_handle_pf_ras_error(struct hclge_dev *hdev,
1275 				     struct hclge_desc *desc,
1276 				     int num)
1277 {
1278 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1279 	struct device *dev = &hdev->pdev->dev;
1280 	__le32 *desc_data;
1281 	u32 status;
1282 	int ret;
1283 
1284 	/* query all PF RAS errors */
1285 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_PF_RAS_INT,
1286 				   true);
1287 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1288 	if (ret) {
1289 		dev_err(dev, "query all pf ras int cmd failed (%d)\n", ret);
1290 		return ret;
1291 	}
1292 
1293 	/* log SSU(Storage Switch Unit) errors */
1294 	status = le32_to_cpu(desc[0].data[0]);
1295 	if (status)
1296 		hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
1297 				&hclge_ssu_port_based_err_int[0], status,
1298 				&ae_dev->hw_err_reset_req);
1299 
1300 	status = le32_to_cpu(desc[0].data[1]);
1301 	if (status)
1302 		hclge_log_error(dev, "SSU_FIFO_OVERFLOW_INT",
1303 				&hclge_ssu_fifo_overflow_int[0], status,
1304 				&ae_dev->hw_err_reset_req);
1305 
1306 	status = le32_to_cpu(desc[0].data[2]);
1307 	if (status)
1308 		hclge_log_error(dev, "SSU_ETS_TCG_INT",
1309 				&hclge_ssu_ets_tcg_int[0], status,
1310 				&ae_dev->hw_err_reset_req);
1311 
1312 	/* log IGU(Ingress Unit) EGU(Egress Unit) TNL errors */
1313 	desc_data = (__le32 *)&desc[1];
1314 	status = le32_to_cpu(*desc_data) & HCLGE_IGU_EGU_TNL_INT_MASK;
1315 	if (status)
1316 		hclge_log_error(dev, "IGU_EGU_TNL_INT_STS",
1317 				&hclge_igu_egu_tnl_int[0], status,
1318 				&ae_dev->hw_err_reset_req);
1319 
1320 	/* log PPU(RCB) errors */
1321 	desc_data = (__le32 *)&desc[3];
1322 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_RAS_MASK;
1323 	if (status) {
1324 		hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST0",
1325 				&hclge_ppu_pf_abnormal_int[0], status,
1326 				&ae_dev->hw_err_reset_req);
1327 		hclge_report_hw_error(hdev, HNAE3_PPU_POISON_ERROR);
1328 	}
1329 
1330 	/* clear all PF RAS errors */
1331 	hclge_cmd_reuse_desc(&desc[0], false);
1332 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1333 	if (ret)
1334 		dev_err(dev, "clear all pf ras int cmd failed (%d)\n", ret);
1335 
1336 	return ret;
1337 }
1338 
1339 static int hclge_handle_all_ras_errors(struct hclge_dev *hdev)
1340 {
1341 	u32 mpf_bd_num, pf_bd_num, bd_num;
1342 	struct hclge_desc *desc;
1343 	int ret;
1344 
1345 	/* query the number of registers in the RAS int status */
1346 	ret = hclge_query_bd_num(hdev, true, &mpf_bd_num, &pf_bd_num);
1347 	if (ret)
1348 		return ret;
1349 
1350 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
1351 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
1352 	if (!desc)
1353 		return -ENOMEM;
1354 
1355 	/* handle all main PF RAS errors */
1356 	ret = hclge_handle_mpf_ras_error(hdev, desc, mpf_bd_num);
1357 	if (ret) {
1358 		kfree(desc);
1359 		return ret;
1360 	}
1361 	memset(desc, 0, bd_num * sizeof(struct hclge_desc));
1362 
1363 	/* handle all PF RAS errors */
1364 	ret = hclge_handle_pf_ras_error(hdev, desc, pf_bd_num);
1365 	kfree(desc);
1366 
1367 	return ret;
1368 }
1369 
1370 static int hclge_log_rocee_axi_error(struct hclge_dev *hdev)
1371 {
1372 	struct device *dev = &hdev->pdev->dev;
1373 	struct hclge_desc desc[3];
1374 	int ret;
1375 
1376 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
1377 				   true);
1378 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
1379 				   true);
1380 	hclge_cmd_setup_basic_desc(&desc[2], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
1381 				   true);
1382 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1383 	desc[1].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1384 
1385 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 3);
1386 	if (ret) {
1387 		dev_err(dev, "failed(%d) to query ROCEE AXI error sts\n", ret);
1388 		return ret;
1389 	}
1390 
1391 	dev_err(dev, "AXI1: %08X %08X %08X %08X %08X %08X\n",
1392 		le32_to_cpu(desc[0].data[0]), le32_to_cpu(desc[0].data[1]),
1393 		le32_to_cpu(desc[0].data[2]), le32_to_cpu(desc[0].data[3]),
1394 		le32_to_cpu(desc[0].data[4]), le32_to_cpu(desc[0].data[5]));
1395 	dev_err(dev, "AXI2: %08X %08X %08X %08X %08X %08X\n",
1396 		le32_to_cpu(desc[1].data[0]), le32_to_cpu(desc[1].data[1]),
1397 		le32_to_cpu(desc[1].data[2]), le32_to_cpu(desc[1].data[3]),
1398 		le32_to_cpu(desc[1].data[4]), le32_to_cpu(desc[1].data[5]));
1399 	dev_err(dev, "AXI3: %08X %08X %08X %08X\n",
1400 		le32_to_cpu(desc[2].data[0]), le32_to_cpu(desc[2].data[1]),
1401 		le32_to_cpu(desc[2].data[2]), le32_to_cpu(desc[2].data[3]));
1402 
1403 	return 0;
1404 }
1405 
1406 static int hclge_log_rocee_ecc_error(struct hclge_dev *hdev)
1407 {
1408 	struct device *dev = &hdev->pdev->dev;
1409 	struct hclge_desc desc[2];
1410 	int ret;
1411 
1412 	ret = hclge_cmd_query_error(hdev, &desc[0],
1413 				    HCLGE_QUERY_ROCEE_ECC_RAS_INFO_CMD,
1414 				    HCLGE_CMD_FLAG_NEXT);
1415 	if (ret) {
1416 		dev_err(dev, "failed(%d) to query ROCEE ECC error sts\n", ret);
1417 		return ret;
1418 	}
1419 
1420 	dev_err(dev, "ECC1: %08X %08X %08X %08X %08X %08X\n",
1421 		le32_to_cpu(desc[0].data[0]), le32_to_cpu(desc[0].data[1]),
1422 		le32_to_cpu(desc[0].data[2]), le32_to_cpu(desc[0].data[3]),
1423 		le32_to_cpu(desc[0].data[4]), le32_to_cpu(desc[0].data[5]));
1424 	dev_err(dev, "ECC2: %08X %08X %08X\n", le32_to_cpu(desc[1].data[0]),
1425 		le32_to_cpu(desc[1].data[1]), le32_to_cpu(desc[1].data[2]));
1426 
1427 	return 0;
1428 }
1429 
1430 static int hclge_log_rocee_ovf_error(struct hclge_dev *hdev)
1431 {
1432 	struct device *dev = &hdev->pdev->dev;
1433 	struct hclge_desc desc[2];
1434 	int ret;
1435 
1436 	/* read overflow error status */
1437 	ret = hclge_cmd_query_error(hdev, &desc[0], HCLGE_ROCEE_PF_RAS_INT_CMD,
1438 				    0);
1439 	if (ret) {
1440 		dev_err(dev, "failed(%d) to query ROCEE OVF error sts\n", ret);
1441 		return ret;
1442 	}
1443 
1444 	/* log overflow error */
1445 	if (le32_to_cpu(desc[0].data[0]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
1446 		const struct hclge_hw_error *err;
1447 		u32 err_sts;
1448 
1449 		err = &hclge_rocee_qmm_ovf_err_int[0];
1450 		err_sts = HCLGE_ROCEE_OVF_ERR_TYPE_MASK &
1451 			  le32_to_cpu(desc[0].data[0]);
1452 		while (err->msg) {
1453 			if (err->int_msk == err_sts) {
1454 				dev_err(dev, "%s [error status=0x%x] found\n",
1455 					err->msg,
1456 					le32_to_cpu(desc[0].data[0]));
1457 				break;
1458 			}
1459 			err++;
1460 		}
1461 	}
1462 
1463 	if (le32_to_cpu(desc[0].data[1]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
1464 		dev_err(dev, "ROCEE TSP OVF [error status=0x%x] found\n",
1465 			le32_to_cpu(desc[0].data[1]));
1466 	}
1467 
1468 	if (le32_to_cpu(desc[0].data[2]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
1469 		dev_err(dev, "ROCEE SCC OVF [error status=0x%x] found\n",
1470 			le32_to_cpu(desc[0].data[2]));
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 static enum hnae3_reset_type
1477 hclge_log_and_clear_rocee_ras_error(struct hclge_dev *hdev)
1478 {
1479 	enum hnae3_reset_type reset_type = HNAE3_NONE_RESET;
1480 	struct device *dev = &hdev->pdev->dev;
1481 	struct hclge_desc desc[2];
1482 	unsigned int status;
1483 	int ret;
1484 
1485 	/* read RAS error interrupt status */
1486 	ret = hclge_cmd_query_error(hdev, &desc[0],
1487 				    HCLGE_QUERY_CLEAR_ROCEE_RAS_INT, 0);
1488 	if (ret) {
1489 		dev_err(dev, "failed(%d) to query ROCEE RAS INT SRC\n", ret);
1490 		/* reset everything for now */
1491 		return HNAE3_GLOBAL_RESET;
1492 	}
1493 
1494 	status = le32_to_cpu(desc[0].data[0]);
1495 	if (status & HCLGE_ROCEE_AXI_ERR_INT_MASK) {
1496 		if (status & HCLGE_ROCEE_RERR_INT_MASK)
1497 			dev_err(dev, "ROCEE RAS AXI rresp error\n");
1498 
1499 		if (status & HCLGE_ROCEE_BERR_INT_MASK)
1500 			dev_err(dev, "ROCEE RAS AXI bresp error\n");
1501 
1502 		reset_type = HNAE3_FUNC_RESET;
1503 
1504 		hclge_report_hw_error(hdev, HNAE3_ROCEE_AXI_RESP_ERROR);
1505 
1506 		ret = hclge_log_rocee_axi_error(hdev);
1507 		if (ret)
1508 			return HNAE3_GLOBAL_RESET;
1509 	}
1510 
1511 	if (status & HCLGE_ROCEE_ECC_INT_MASK) {
1512 		dev_err(dev, "ROCEE RAS 2bit ECC error\n");
1513 		reset_type = HNAE3_GLOBAL_RESET;
1514 
1515 		ret = hclge_log_rocee_ecc_error(hdev);
1516 		if (ret)
1517 			return HNAE3_GLOBAL_RESET;
1518 	}
1519 
1520 	if (status & HCLGE_ROCEE_OVF_INT_MASK) {
1521 		ret = hclge_log_rocee_ovf_error(hdev);
1522 		if (ret) {
1523 			dev_err(dev, "failed(%d) to process ovf error\n", ret);
1524 			/* reset everything for now */
1525 			return HNAE3_GLOBAL_RESET;
1526 		}
1527 	}
1528 
1529 	/* clear error status */
1530 	hclge_cmd_reuse_desc(&desc[0], false);
1531 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 1);
1532 	if (ret) {
1533 		dev_err(dev, "failed(%d) to clear ROCEE RAS error\n", ret);
1534 		/* reset everything for now */
1535 		return HNAE3_GLOBAL_RESET;
1536 	}
1537 
1538 	return reset_type;
1539 }
1540 
1541 int hclge_config_rocee_ras_interrupt(struct hclge_dev *hdev, bool en)
1542 {
1543 	struct device *dev = &hdev->pdev->dev;
1544 	struct hclge_desc desc;
1545 	int ret;
1546 
1547 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2 ||
1548 	    !hnae3_dev_roce_supported(hdev))
1549 		return 0;
1550 
1551 	hclge_cmd_setup_basic_desc(&desc, HCLGE_CONFIG_ROCEE_RAS_INT_EN, false);
1552 	if (en) {
1553 		/* enable ROCEE hw error interrupts */
1554 		desc.data[0] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN);
1555 		desc.data[1] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN);
1556 
1557 		hclge_log_and_clear_rocee_ras_error(hdev);
1558 	}
1559 	desc.data[2] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN_MASK);
1560 	desc.data[3] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN_MASK);
1561 
1562 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1563 	if (ret)
1564 		dev_err(dev, "failed(%d) to config ROCEE RAS interrupt\n", ret);
1565 
1566 	return ret;
1567 }
1568 
1569 static void hclge_handle_rocee_ras_error(struct hnae3_ae_dev *ae_dev)
1570 {
1571 	struct hclge_dev *hdev = ae_dev->priv;
1572 	enum hnae3_reset_type reset_type;
1573 
1574 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
1575 		return;
1576 
1577 	reset_type = hclge_log_and_clear_rocee_ras_error(hdev);
1578 	if (reset_type != HNAE3_NONE_RESET)
1579 		set_bit(reset_type, &ae_dev->hw_err_reset_req);
1580 }
1581 
1582 static const struct hclge_hw_blk hw_blk[] = {
1583 	{
1584 	  .msk = BIT(0), .name = "IGU_EGU",
1585 	  .config_err_int = hclge_config_igu_egu_hw_err_int,
1586 	},
1587 	{
1588 	  .msk = BIT(1), .name = "PPP",
1589 	  .config_err_int = hclge_config_ppp_hw_err_int,
1590 	},
1591 	{
1592 	  .msk = BIT(2), .name = "SSU",
1593 	  .config_err_int = hclge_config_ssu_hw_err_int,
1594 	},
1595 	{
1596 	  .msk = BIT(3), .name = "PPU",
1597 	  .config_err_int = hclge_config_ppu_hw_err_int,
1598 	},
1599 	{
1600 	  .msk = BIT(4), .name = "TM",
1601 	  .config_err_int = hclge_config_tm_hw_err_int,
1602 	},
1603 	{
1604 	  .msk = BIT(5), .name = "COMMON",
1605 	  .config_err_int = hclge_config_common_hw_err_int,
1606 	},
1607 	{
1608 	  .msk = BIT(8), .name = "MAC",
1609 	  .config_err_int = hclge_config_mac_err_int,
1610 	},
1611 	{ /* sentinel */ }
1612 };
1613 
1614 int hclge_config_nic_hw_error(struct hclge_dev *hdev, bool state)
1615 {
1616 	const struct hclge_hw_blk *module = hw_blk;
1617 	int ret = 0;
1618 
1619 	while (module->name) {
1620 		if (module->config_err_int) {
1621 			ret = module->config_err_int(hdev, state);
1622 			if (ret)
1623 				return ret;
1624 		}
1625 		module++;
1626 	}
1627 
1628 	return ret;
1629 }
1630 
1631 pci_ers_result_t hclge_handle_hw_ras_error(struct hnae3_ae_dev *ae_dev)
1632 {
1633 	struct hclge_dev *hdev = ae_dev->priv;
1634 	struct device *dev = &hdev->pdev->dev;
1635 	u32 status;
1636 
1637 	if (!test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state)) {
1638 		dev_err(dev,
1639 			"Can't recover - RAS error reported during dev init\n");
1640 		return PCI_ERS_RESULT_NONE;
1641 	}
1642 
1643 	status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
1644 	if (status & HCLGE_RAS_REG_NFE_MASK ||
1645 	    status & HCLGE_RAS_REG_ROCEE_ERR_MASK)
1646 		ae_dev->hw_err_reset_req = 0;
1647 	else
1648 		goto out;
1649 
1650 	/* Handling Non-fatal HNS RAS errors */
1651 	if (status & HCLGE_RAS_REG_NFE_MASK) {
1652 		dev_err(dev,
1653 			"HNS Non-Fatal RAS error(status=0x%x) identified\n",
1654 			status);
1655 		hclge_handle_all_ras_errors(hdev);
1656 	}
1657 
1658 	/* Handling Non-fatal Rocee RAS errors */
1659 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
1660 	    status & HCLGE_RAS_REG_ROCEE_ERR_MASK) {
1661 		dev_err(dev, "ROCEE Non-Fatal RAS error identified\n");
1662 		hclge_handle_rocee_ras_error(ae_dev);
1663 	}
1664 
1665 	if (ae_dev->hw_err_reset_req)
1666 		return PCI_ERS_RESULT_NEED_RESET;
1667 
1668 out:
1669 	return PCI_ERS_RESULT_RECOVERED;
1670 }
1671 
1672 static int hclge_clear_hw_msix_error(struct hclge_dev *hdev,
1673 				     struct hclge_desc *desc, bool is_mpf,
1674 				     u32 bd_num)
1675 {
1676 	if (is_mpf)
1677 		desc[0].opcode =
1678 			cpu_to_le16(HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT);
1679 	else
1680 		desc[0].opcode = cpu_to_le16(HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT);
1681 
1682 	desc[0].flag = cpu_to_le16(HCLGE_CMD_FLAG_NO_INTR | HCLGE_CMD_FLAG_IN);
1683 
1684 	return hclge_cmd_send(&hdev->hw, &desc[0], bd_num);
1685 }
1686 
1687 /* hclge_query_8bd_info: query information about over_8bd_nfe_err
1688  * @hdev: pointer to struct hclge_dev
1689  * @vf_id: Index of the virtual function with error
1690  * @q_id: Physical index of the queue with error
1691  *
1692  * This function get specific index of queue and function which causes
1693  * over_8bd_nfe_err by using command. If vf_id is 0, it means error is
1694  * caused by PF instead of VF.
1695  */
1696 static int hclge_query_over_8bd_err_info(struct hclge_dev *hdev, u16 *vf_id,
1697 					 u16 *q_id)
1698 {
1699 	struct hclge_query_ppu_pf_other_int_dfx_cmd *req;
1700 	struct hclge_desc desc;
1701 	int ret;
1702 
1703 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PPU_PF_OTHER_INT_DFX, true);
1704 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1705 	if (ret)
1706 		return ret;
1707 
1708 	req = (struct hclge_query_ppu_pf_other_int_dfx_cmd *)desc.data;
1709 	*vf_id = le16_to_cpu(req->over_8bd_no_fe_vf_id);
1710 	*q_id = le16_to_cpu(req->over_8bd_no_fe_qid);
1711 
1712 	return 0;
1713 }
1714 
1715 /* hclge_handle_over_8bd_err: handle MSI-X error named over_8bd_nfe_err
1716  * @hdev: pointer to struct hclge_dev
1717  * @reset_requests: reset level that we need to trigger later
1718  *
1719  * over_8bd_nfe_err is a special MSI-X because it may caused by a VF, in
1720  * that case, we need to trigger VF reset. Otherwise, a PF reset is needed.
1721  */
1722 static void hclge_handle_over_8bd_err(struct hclge_dev *hdev,
1723 				      unsigned long *reset_requests)
1724 {
1725 	struct device *dev = &hdev->pdev->dev;
1726 	u16 vf_id;
1727 	u16 q_id;
1728 	int ret;
1729 
1730 	ret = hclge_query_over_8bd_err_info(hdev, &vf_id, &q_id);
1731 	if (ret) {
1732 		dev_err(dev, "fail(%d) to query over_8bd_no_fe info\n",
1733 			ret);
1734 		return;
1735 	}
1736 
1737 	dev_err(dev, "PPU_PF_ABNORMAL_INT_ST over_8bd_no_fe found, vf_id(%u), queue_id(%u)\n",
1738 		vf_id, q_id);
1739 
1740 	if (vf_id) {
1741 		if (vf_id >= hdev->num_alloc_vport) {
1742 			dev_err(dev, "invalid vf id(%u)\n", vf_id);
1743 			return;
1744 		}
1745 
1746 		/* If we need to trigger other reset whose level is higher
1747 		 * than HNAE3_VF_FUNC_RESET, no need to trigger a VF reset
1748 		 * here.
1749 		 */
1750 		if (*reset_requests != 0)
1751 			return;
1752 
1753 		ret = hclge_inform_reset_assert_to_vf(&hdev->vport[vf_id]);
1754 		if (ret)
1755 			dev_err(dev, "inform reset to vf(%u) failed %d!\n",
1756 				hdev->vport->vport_id, ret);
1757 	} else {
1758 		set_bit(HNAE3_FUNC_RESET, reset_requests);
1759 	}
1760 }
1761 
1762 /* hclge_handle_mpf_msix_error: handle all main PF MSI-X errors
1763  * @hdev: pointer to struct hclge_dev
1764  * @desc: descriptor for describing the command
1765  * @mpf_bd_num: number of extended command structures
1766  * @reset_requests: record of the reset level that we need
1767  *
1768  * This function handles all the main PF MSI-X errors in the hw register/s
1769  * using command.
1770  */
1771 static int hclge_handle_mpf_msix_error(struct hclge_dev *hdev,
1772 				       struct hclge_desc *desc,
1773 				       int mpf_bd_num,
1774 				       unsigned long *reset_requests)
1775 {
1776 	struct device *dev = &hdev->pdev->dev;
1777 	__le32 *desc_data;
1778 	u32 status;
1779 	int ret;
1780 	/* query all main PF MSIx errors */
1781 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT,
1782 				   true);
1783 	ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num);
1784 	if (ret) {
1785 		dev_err(dev, "query all mpf msix int cmd failed (%d)\n", ret);
1786 		return ret;
1787 	}
1788 
1789 	/* log MAC errors */
1790 	desc_data = (__le32 *)&desc[1];
1791 	status = le32_to_cpu(*desc_data);
1792 	if (status)
1793 		hclge_log_error(dev, "MAC_AFIFO_TNL_INT_R",
1794 				&hclge_mac_afifo_tnl_int[0], status,
1795 				reset_requests);
1796 
1797 	/* log PPU(RCB) MPF errors */
1798 	desc_data = (__le32 *)&desc[5];
1799 	status = le32_to_cpu(*(desc_data + 2)) &
1800 			HCLGE_PPU_MPF_INT_ST2_MSIX_MASK;
1801 	if (status)
1802 		dev_err(dev, "PPU_MPF_ABNORMAL_INT_ST2 rx_q_search_miss found [dfx status=0x%x\n]",
1803 			status);
1804 
1805 	/* clear all main PF MSIx errors */
1806 	ret = hclge_clear_hw_msix_error(hdev, desc, true, mpf_bd_num);
1807 	if (ret)
1808 		dev_err(dev, "clear all mpf msix int cmd failed (%d)\n", ret);
1809 
1810 	return ret;
1811 }
1812 
1813 /* hclge_handle_pf_msix_error: handle all PF MSI-X errors
1814  * @hdev: pointer to struct hclge_dev
1815  * @desc: descriptor for describing the command
1816  * @mpf_bd_num: number of extended command structures
1817  * @reset_requests: record of the reset level that we need
1818  *
1819  * This function handles all the PF MSI-X errors in the hw register/s using
1820  * command.
1821  */
1822 static int hclge_handle_pf_msix_error(struct hclge_dev *hdev,
1823 				      struct hclge_desc *desc,
1824 				      int pf_bd_num,
1825 				      unsigned long *reset_requests)
1826 {
1827 	struct device *dev = &hdev->pdev->dev;
1828 	__le32 *desc_data;
1829 	u32 status;
1830 	int ret;
1831 
1832 	/* query all PF MSIx errors */
1833 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT,
1834 				   true);
1835 	ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num);
1836 	if (ret) {
1837 		dev_err(dev, "query all pf msix int cmd failed (%d)\n", ret);
1838 		return ret;
1839 	}
1840 
1841 	/* log SSU PF errors */
1842 	status = le32_to_cpu(desc[0].data[0]) & HCLGE_SSU_PORT_INT_MSIX_MASK;
1843 	if (status)
1844 		hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
1845 				&hclge_ssu_port_based_pf_int[0],
1846 				status, reset_requests);
1847 
1848 	/* read and log PPP PF errors */
1849 	desc_data = (__le32 *)&desc[2];
1850 	status = le32_to_cpu(*desc_data);
1851 	if (status)
1852 		hclge_log_error(dev, "PPP_PF_ABNORMAL_INT_ST0",
1853 				&hclge_ppp_pf_abnormal_int[0],
1854 				status, reset_requests);
1855 
1856 	/* log PPU(RCB) PF errors */
1857 	desc_data = (__le32 *)&desc[3];
1858 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_MSIX_MASK;
1859 	if (status)
1860 		hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST",
1861 				&hclge_ppu_pf_abnormal_int[0],
1862 				status, reset_requests);
1863 
1864 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_OVER_8BD_ERR_MASK;
1865 	if (status)
1866 		hclge_handle_over_8bd_err(hdev, reset_requests);
1867 
1868 	/* clear all PF MSIx errors */
1869 	ret = hclge_clear_hw_msix_error(hdev, desc, false, pf_bd_num);
1870 	if (ret)
1871 		dev_err(dev, "clear all pf msix int cmd failed (%d)\n", ret);
1872 
1873 	return ret;
1874 }
1875 
1876 static int hclge_handle_all_hw_msix_error(struct hclge_dev *hdev,
1877 					  unsigned long *reset_requests)
1878 {
1879 	struct hclge_mac_tnl_stats mac_tnl_stats;
1880 	struct device *dev = &hdev->pdev->dev;
1881 	u32 mpf_bd_num, pf_bd_num, bd_num;
1882 	struct hclge_desc *desc;
1883 	u32 status;
1884 	int ret;
1885 
1886 	/* query the number of bds for the MSIx int status */
1887 	ret = hclge_query_bd_num(hdev, false, &mpf_bd_num, &pf_bd_num);
1888 	if (ret)
1889 		goto out;
1890 
1891 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
1892 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
1893 	if (!desc)
1894 		return -ENOMEM;
1895 
1896 	ret = hclge_handle_mpf_msix_error(hdev, desc, mpf_bd_num,
1897 					  reset_requests);
1898 	if (ret)
1899 		goto msi_error;
1900 
1901 	memset(desc, 0, bd_num * sizeof(struct hclge_desc));
1902 	ret = hclge_handle_pf_msix_error(hdev, desc, pf_bd_num, reset_requests);
1903 	if (ret)
1904 		goto msi_error;
1905 
1906 	/* query and clear mac tnl interruptions */
1907 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_MAC_TNL_INT,
1908 				   true);
1909 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 1);
1910 	if (ret) {
1911 		dev_err(dev, "query mac tnl int cmd failed (%d)\n", ret);
1912 		goto msi_error;
1913 	}
1914 
1915 	status = le32_to_cpu(desc->data[0]);
1916 	if (status) {
1917 		/* When mac tnl interrupt occurs, we record current time and
1918 		 * register status here in a fifo, then clear the status. So
1919 		 * that if link status changes suddenly at some time, we can
1920 		 * query them by debugfs.
1921 		 */
1922 		mac_tnl_stats.time = local_clock();
1923 		mac_tnl_stats.status = status;
1924 		kfifo_put(&hdev->mac_tnl_log, mac_tnl_stats);
1925 		ret = hclge_clear_mac_tnl_int(hdev);
1926 		if (ret)
1927 			dev_err(dev, "clear mac tnl int failed (%d)\n", ret);
1928 	}
1929 
1930 msi_error:
1931 	kfree(desc);
1932 out:
1933 	return ret;
1934 }
1935 
1936 int hclge_handle_hw_msix_error(struct hclge_dev *hdev,
1937 			       unsigned long *reset_requests)
1938 {
1939 	struct device *dev = &hdev->pdev->dev;
1940 
1941 	if (!test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state)) {
1942 		dev_err(dev,
1943 			"Can't handle - MSIx error reported during dev init\n");
1944 		return 0;
1945 	}
1946 
1947 	return hclge_handle_all_hw_msix_error(hdev, reset_requests);
1948 }
1949 
1950 void hclge_handle_all_hns_hw_errors(struct hnae3_ae_dev *ae_dev)
1951 {
1952 #define HCLGE_DESC_NO_DATA_LEN 8
1953 
1954 	struct hclge_dev *hdev = ae_dev->priv;
1955 	struct device *dev = &hdev->pdev->dev;
1956 	u32 mpf_bd_num, pf_bd_num, bd_num;
1957 	struct hclge_desc *desc;
1958 	u32 status;
1959 	int ret;
1960 
1961 	ae_dev->hw_err_reset_req = 0;
1962 	status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
1963 
1964 	/* query the number of bds for the MSIx int status */
1965 	ret = hclge_query_bd_num(hdev, false, &mpf_bd_num, &pf_bd_num);
1966 	if (ret)
1967 		return;
1968 
1969 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
1970 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
1971 	if (!desc)
1972 		return;
1973 
1974 	/* Clear HNS hw errors reported through msix  */
1975 	memset(&desc[0].data[0], 0xFF, mpf_bd_num * sizeof(struct hclge_desc) -
1976 	       HCLGE_DESC_NO_DATA_LEN);
1977 	ret = hclge_clear_hw_msix_error(hdev, desc, true, mpf_bd_num);
1978 	if (ret) {
1979 		dev_err(dev, "fail(%d) to clear mpf msix int during init\n",
1980 			ret);
1981 		goto msi_error;
1982 	}
1983 
1984 	memset(&desc[0].data[0], 0xFF, pf_bd_num * sizeof(struct hclge_desc) -
1985 	       HCLGE_DESC_NO_DATA_LEN);
1986 	ret = hclge_clear_hw_msix_error(hdev, desc, false, pf_bd_num);
1987 	if (ret) {
1988 		dev_err(dev, "fail(%d) to clear pf msix int during init\n",
1989 			ret);
1990 		goto msi_error;
1991 	}
1992 
1993 	/* Handle Non-fatal HNS RAS errors */
1994 	if (status & HCLGE_RAS_REG_NFE_MASK) {
1995 		dev_err(dev, "HNS hw error(RAS) identified during init\n");
1996 		hclge_handle_all_ras_errors(hdev);
1997 	}
1998 
1999 msi_error:
2000 	kfree(desc);
2001 }
2002