1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (c) 2016-2017 Hisilicon Limited. */
3 
4 #include "hclge_err.h"
5 
6 static const struct hclge_hw_error hclge_imp_tcm_ecc_int[] = {
7 	{ .int_msk = BIT(1), .msg = "imp_itcm0_ecc_mbit_err",
8 	  .reset_level = HNAE3_NONE_RESET },
9 	{ .int_msk = BIT(3), .msg = "imp_itcm1_ecc_mbit_err",
10 	  .reset_level = HNAE3_NONE_RESET },
11 	{ .int_msk = BIT(5), .msg = "imp_itcm2_ecc_mbit_err",
12 	  .reset_level = HNAE3_NONE_RESET },
13 	{ .int_msk = BIT(7), .msg = "imp_itcm3_ecc_mbit_err",
14 	  .reset_level = HNAE3_NONE_RESET },
15 	{ .int_msk = BIT(9), .msg = "imp_dtcm0_mem0_ecc_mbit_err",
16 	  .reset_level = HNAE3_NONE_RESET },
17 	{ .int_msk = BIT(11), .msg = "imp_dtcm0_mem1_ecc_mbit_err",
18 	  .reset_level = HNAE3_NONE_RESET },
19 	{ .int_msk = BIT(13), .msg = "imp_dtcm1_mem0_ecc_mbit_err",
20 	  .reset_level = HNAE3_NONE_RESET },
21 	{ .int_msk = BIT(15), .msg = "imp_dtcm1_mem1_ecc_mbit_err",
22 	  .reset_level = HNAE3_NONE_RESET },
23 	{ .int_msk = BIT(17), .msg = "imp_itcm4_ecc_mbit_err",
24 	  .reset_level = HNAE3_NONE_RESET },
25 	{ /* sentinel */ }
26 };
27 
28 static const struct hclge_hw_error hclge_cmdq_nic_mem_ecc_int[] = {
29 	{ .int_msk = BIT(1), .msg = "cmdq_nic_rx_depth_ecc_mbit_err",
30 	  .reset_level = HNAE3_NONE_RESET },
31 	{ .int_msk = BIT(3), .msg = "cmdq_nic_tx_depth_ecc_mbit_err",
32 	  .reset_level = HNAE3_NONE_RESET },
33 	{ .int_msk = BIT(5), .msg = "cmdq_nic_rx_tail_ecc_mbit_err",
34 	  .reset_level = HNAE3_NONE_RESET },
35 	{ .int_msk = BIT(7), .msg = "cmdq_nic_tx_tail_ecc_mbit_err",
36 	  .reset_level = HNAE3_NONE_RESET },
37 	{ .int_msk = BIT(9), .msg = "cmdq_nic_rx_head_ecc_mbit_err",
38 	  .reset_level = HNAE3_NONE_RESET },
39 	{ .int_msk = BIT(11), .msg = "cmdq_nic_tx_head_ecc_mbit_err",
40 	  .reset_level = HNAE3_NONE_RESET },
41 	{ .int_msk = BIT(13), .msg = "cmdq_nic_rx_addr_ecc_mbit_err",
42 	  .reset_level = HNAE3_NONE_RESET },
43 	{ .int_msk = BIT(15), .msg = "cmdq_nic_tx_addr_ecc_mbit_err",
44 	  .reset_level = HNAE3_NONE_RESET },
45 	{ .int_msk = BIT(17), .msg = "cmdq_rocee_rx_depth_ecc_mbit_err",
46 	  .reset_level = HNAE3_NONE_RESET },
47 	{ .int_msk = BIT(19), .msg = "cmdq_rocee_tx_depth_ecc_mbit_err",
48 	  .reset_level = HNAE3_NONE_RESET },
49 	{ .int_msk = BIT(21), .msg = "cmdq_rocee_rx_tail_ecc_mbit_err",
50 	  .reset_level = HNAE3_NONE_RESET },
51 	{ .int_msk = BIT(23), .msg = "cmdq_rocee_tx_tail_ecc_mbit_err",
52 	  .reset_level = HNAE3_NONE_RESET },
53 	{ .int_msk = BIT(25), .msg = "cmdq_rocee_rx_head_ecc_mbit_err",
54 	  .reset_level = HNAE3_NONE_RESET },
55 	{ .int_msk = BIT(27), .msg = "cmdq_rocee_tx_head_ecc_mbit_err",
56 	  .reset_level = HNAE3_NONE_RESET },
57 	{ .int_msk = BIT(29), .msg = "cmdq_rocee_rx_addr_ecc_mbit_err",
58 	  .reset_level = HNAE3_NONE_RESET },
59 	{ .int_msk = BIT(31), .msg = "cmdq_rocee_tx_addr_ecc_mbit_err",
60 	  .reset_level = HNAE3_NONE_RESET },
61 	{ /* sentinel */ }
62 };
63 
64 static const struct hclge_hw_error hclge_tqp_int_ecc_int[] = {
65 	{ .int_msk = BIT(6), .msg = "tqp_int_cfg_even_ecc_mbit_err",
66 	  .reset_level = HNAE3_NONE_RESET },
67 	{ .int_msk = BIT(7), .msg = "tqp_int_cfg_odd_ecc_mbit_err",
68 	  .reset_level = HNAE3_NONE_RESET },
69 	{ .int_msk = BIT(8), .msg = "tqp_int_ctrl_even_ecc_mbit_err",
70 	  .reset_level = HNAE3_NONE_RESET },
71 	{ .int_msk = BIT(9), .msg = "tqp_int_ctrl_odd_ecc_mbit_err",
72 	  .reset_level = HNAE3_NONE_RESET },
73 	{ .int_msk = BIT(10), .msg = "tx_que_scan_int_ecc_mbit_err",
74 	  .reset_level = HNAE3_NONE_RESET },
75 	{ .int_msk = BIT(11), .msg = "rx_que_scan_int_ecc_mbit_err",
76 	  .reset_level = HNAE3_NONE_RESET },
77 	{ /* sentinel */ }
78 };
79 
80 static const struct hclge_hw_error hclge_msix_sram_ecc_int[] = {
81 	{ .int_msk = BIT(1), .msg = "msix_nic_ecc_mbit_err",
82 	  .reset_level = HNAE3_NONE_RESET },
83 	{ .int_msk = BIT(3), .msg = "msix_rocee_ecc_mbit_err",
84 	  .reset_level = HNAE3_NONE_RESET },
85 	{ /* sentinel */ }
86 };
87 
88 static const struct hclge_hw_error hclge_igu_int[] = {
89 	{ .int_msk = BIT(0), .msg = "igu_rx_buf0_ecc_mbit_err",
90 	  .reset_level = HNAE3_CORE_RESET },
91 	{ .int_msk = BIT(2), .msg = "igu_rx_buf1_ecc_mbit_err",
92 	  .reset_level = HNAE3_CORE_RESET },
93 	{ /* sentinel */ }
94 };
95 
96 static const struct hclge_hw_error hclge_igu_egu_tnl_int[] = {
97 	{ .int_msk = BIT(0), .msg = "rx_buf_overflow",
98 	  .reset_level = HNAE3_CORE_RESET },
99 	{ .int_msk = BIT(1), .msg = "rx_stp_fifo_overflow",
100 	  .reset_level = HNAE3_CORE_RESET },
101 	{ .int_msk = BIT(2), .msg = "rx_stp_fifo_undeflow",
102 	  .reset_level = HNAE3_CORE_RESET },
103 	{ .int_msk = BIT(3), .msg = "tx_buf_overflow",
104 	  .reset_level = HNAE3_CORE_RESET },
105 	{ .int_msk = BIT(4), .msg = "tx_buf_underrun",
106 	  .reset_level = HNAE3_CORE_RESET },
107 	{ .int_msk = BIT(5), .msg = "rx_stp_buf_overflow",
108 	  .reset_level = HNAE3_CORE_RESET },
109 	{ /* sentinel */ }
110 };
111 
112 static const struct hclge_hw_error hclge_ncsi_err_int[] = {
113 	{ .int_msk = BIT(1), .msg = "ncsi_tx_ecc_mbit_err",
114 	  .reset_level = HNAE3_NONE_RESET },
115 	{ /* sentinel */ }
116 };
117 
118 static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st1[] = {
119 	{ .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_mbit_err",
120 	  .reset_level = HNAE3_GLOBAL_RESET },
121 	{ .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_mbit_err",
122 	  .reset_level = HNAE3_GLOBAL_RESET },
123 	{ .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_mbit_err",
124 	  .reset_level = HNAE3_GLOBAL_RESET },
125 	{ .int_msk = BIT(3), .msg = "umv_key_mem1_ecc_mbit_err",
126 	  .reset_level = HNAE3_GLOBAL_RESET },
127 	{ .int_msk = BIT(4), .msg = "umv_key_mem2_ecc_mbit_err",
128 	  .reset_level = HNAE3_GLOBAL_RESET },
129 	{ .int_msk = BIT(5), .msg = "umv_key_mem3_ecc_mbit_err",
130 	  .reset_level = HNAE3_GLOBAL_RESET },
131 	{ .int_msk = BIT(6), .msg = "umv_ad_mem_ecc_mbit_err",
132 	  .reset_level = HNAE3_GLOBAL_RESET },
133 	{ .int_msk = BIT(7), .msg = "rss_tc_mode_mem_ecc_mbit_err",
134 	  .reset_level = HNAE3_GLOBAL_RESET },
135 	{ .int_msk = BIT(8), .msg = "rss_idt_mem0_ecc_mbit_err",
136 	  .reset_level = HNAE3_GLOBAL_RESET },
137 	{ .int_msk = BIT(9), .msg = "rss_idt_mem1_ecc_mbit_err",
138 	  .reset_level = HNAE3_GLOBAL_RESET },
139 	{ .int_msk = BIT(10), .msg = "rss_idt_mem2_ecc_mbit_err",
140 	  .reset_level = HNAE3_GLOBAL_RESET },
141 	{ .int_msk = BIT(11), .msg = "rss_idt_mem3_ecc_mbit_err",
142 	  .reset_level = HNAE3_GLOBAL_RESET },
143 	{ .int_msk = BIT(12), .msg = "rss_idt_mem4_ecc_mbit_err",
144 	  .reset_level = HNAE3_GLOBAL_RESET },
145 	{ .int_msk = BIT(13), .msg = "rss_idt_mem5_ecc_mbit_err",
146 	  .reset_level = HNAE3_GLOBAL_RESET },
147 	{ .int_msk = BIT(14), .msg = "rss_idt_mem6_ecc_mbit_err",
148 	  .reset_level = HNAE3_GLOBAL_RESET },
149 	{ .int_msk = BIT(15), .msg = "rss_idt_mem7_ecc_mbit_err",
150 	  .reset_level = HNAE3_GLOBAL_RESET },
151 	{ .int_msk = BIT(16), .msg = "rss_idt_mem8_ecc_mbit_err",
152 	  .reset_level = HNAE3_GLOBAL_RESET },
153 	{ .int_msk = BIT(17), .msg = "rss_idt_mem9_ecc_mbit_err",
154 	  .reset_level = HNAE3_GLOBAL_RESET },
155 	{ .int_msk = BIT(18), .msg = "rss_idt_mem10_ecc_m1bit_err",
156 	  .reset_level = HNAE3_GLOBAL_RESET },
157 	{ .int_msk = BIT(19), .msg = "rss_idt_mem11_ecc_mbit_err",
158 	  .reset_level = HNAE3_GLOBAL_RESET },
159 	{ .int_msk = BIT(20), .msg = "rss_idt_mem12_ecc_mbit_err",
160 	  .reset_level = HNAE3_GLOBAL_RESET },
161 	{ .int_msk = BIT(21), .msg = "rss_idt_mem13_ecc_mbit_err",
162 	  .reset_level = HNAE3_GLOBAL_RESET },
163 	{ .int_msk = BIT(22), .msg = "rss_idt_mem14_ecc_mbit_err",
164 	  .reset_level = HNAE3_GLOBAL_RESET },
165 	{ .int_msk = BIT(23), .msg = "rss_idt_mem15_ecc_mbit_err",
166 	  .reset_level = HNAE3_GLOBAL_RESET },
167 	{ .int_msk = BIT(24), .msg = "port_vlan_mem_ecc_mbit_err",
168 	  .reset_level = HNAE3_GLOBAL_RESET },
169 	{ .int_msk = BIT(25), .msg = "mcast_linear_table_mem_ecc_mbit_err",
170 	  .reset_level = HNAE3_GLOBAL_RESET },
171 	{ .int_msk = BIT(26), .msg = "mcast_result_mem_ecc_mbit_err",
172 	  .reset_level = HNAE3_GLOBAL_RESET },
173 	{ .int_msk = BIT(27), .msg = "flow_director_ad_mem0_ecc_mbit_err",
174 	  .reset_level = HNAE3_GLOBAL_RESET },
175 	{ .int_msk = BIT(28), .msg = "flow_director_ad_mem1_ecc_mbit_err",
176 	  .reset_level = HNAE3_GLOBAL_RESET },
177 	{ .int_msk = BIT(29), .msg = "rx_vlan_tag_memory_ecc_mbit_err",
178 	  .reset_level = HNAE3_GLOBAL_RESET },
179 	{ .int_msk = BIT(30), .msg = "Tx_UP_mapping_config_mem_ecc_mbit_err",
180 	  .reset_level = HNAE3_GLOBAL_RESET },
181 	{ /* sentinel */ }
182 };
183 
184 static const struct hclge_hw_error hclge_ppp_pf_abnormal_int[] = {
185 	{ .int_msk = BIT(0), .msg = "tx_vlan_tag_err",
186 	  .reset_level = HNAE3_NONE_RESET },
187 	{ .int_msk = BIT(1), .msg = "rss_list_tc_unassigned_queue_err",
188 	  .reset_level = HNAE3_NONE_RESET },
189 	{ /* sentinel */ }
190 };
191 
192 static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st3[] = {
193 	{ .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_mbit_err",
194 	  .reset_level = HNAE3_GLOBAL_RESET },
195 	{ .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_mbit_err",
196 	  .reset_level = HNAE3_GLOBAL_RESET },
197 	{ .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_mbit_err",
198 	  .reset_level = HNAE3_GLOBAL_RESET },
199 	{ .int_msk = BIT(3), .msg = "FD_CN0_memory_ecc_mbit_err",
200 	  .reset_level = HNAE3_GLOBAL_RESET },
201 	{ .int_msk = BIT(4), .msg = "FD_CN1_memory_ecc_mbit_err",
202 	  .reset_level = HNAE3_GLOBAL_RESET },
203 	{ .int_msk = BIT(5), .msg = "GRO_AD_memory_ecc_mbit_err",
204 	  .reset_level = HNAE3_GLOBAL_RESET },
205 	{ /* sentinel */ }
206 };
207 
208 static const struct hclge_hw_error hclge_tm_sch_rint[] = {
209 	{ .int_msk = BIT(1), .msg = "tm_sch_ecc_mbit_err",
210 	  .reset_level = HNAE3_GLOBAL_RESET },
211 	{ .int_msk = BIT(2), .msg = "tm_sch_port_shap_sub_fifo_wr_err",
212 	  .reset_level = HNAE3_GLOBAL_RESET },
213 	{ .int_msk = BIT(3), .msg = "tm_sch_port_shap_sub_fifo_rd_err",
214 	  .reset_level = HNAE3_GLOBAL_RESET },
215 	{ .int_msk = BIT(4), .msg = "tm_sch_pg_pshap_sub_fifo_wr_err",
216 	  .reset_level = HNAE3_GLOBAL_RESET },
217 	{ .int_msk = BIT(5), .msg = "tm_sch_pg_pshap_sub_fifo_rd_err",
218 	  .reset_level = HNAE3_GLOBAL_RESET },
219 	{ .int_msk = BIT(6), .msg = "tm_sch_pg_cshap_sub_fifo_wr_err",
220 	  .reset_level = HNAE3_GLOBAL_RESET },
221 	{ .int_msk = BIT(7), .msg = "tm_sch_pg_cshap_sub_fifo_rd_err",
222 	  .reset_level = HNAE3_GLOBAL_RESET },
223 	{ .int_msk = BIT(8), .msg = "tm_sch_pri_pshap_sub_fifo_wr_err",
224 	  .reset_level = HNAE3_GLOBAL_RESET },
225 	{ .int_msk = BIT(9), .msg = "tm_sch_pri_pshap_sub_fifo_rd_err",
226 	  .reset_level = HNAE3_GLOBAL_RESET },
227 	{ .int_msk = BIT(10), .msg = "tm_sch_pri_cshap_sub_fifo_wr_err",
228 	  .reset_level = HNAE3_GLOBAL_RESET },
229 	{ .int_msk = BIT(11), .msg = "tm_sch_pri_cshap_sub_fifo_rd_err",
230 	  .reset_level = HNAE3_GLOBAL_RESET },
231 	{ .int_msk = BIT(12), .msg = "tm_sch_port_shap_offset_fifo_wr_err",
232 	  .reset_level = HNAE3_GLOBAL_RESET },
233 	{ .int_msk = BIT(13), .msg = "tm_sch_port_shap_offset_fifo_rd_err",
234 	  .reset_level = HNAE3_GLOBAL_RESET },
235 	{ .int_msk = BIT(14), .msg = "tm_sch_pg_pshap_offset_fifo_wr_err",
236 	  .reset_level = HNAE3_GLOBAL_RESET },
237 	{ .int_msk = BIT(15), .msg = "tm_sch_pg_pshap_offset_fifo_rd_err",
238 	  .reset_level = HNAE3_GLOBAL_RESET },
239 	{ .int_msk = BIT(16), .msg = "tm_sch_pg_cshap_offset_fifo_wr_err",
240 	  .reset_level = HNAE3_GLOBAL_RESET },
241 	{ .int_msk = BIT(17), .msg = "tm_sch_pg_cshap_offset_fifo_rd_err",
242 	  .reset_level = HNAE3_GLOBAL_RESET },
243 	{ .int_msk = BIT(18), .msg = "tm_sch_pri_pshap_offset_fifo_wr_err",
244 	  .reset_level = HNAE3_GLOBAL_RESET },
245 	{ .int_msk = BIT(19), .msg = "tm_sch_pri_pshap_offset_fifo_rd_err",
246 	  .reset_level = HNAE3_GLOBAL_RESET },
247 	{ .int_msk = BIT(20), .msg = "tm_sch_pri_cshap_offset_fifo_wr_err",
248 	  .reset_level = HNAE3_GLOBAL_RESET },
249 	{ .int_msk = BIT(21), .msg = "tm_sch_pri_cshap_offset_fifo_rd_err",
250 	  .reset_level = HNAE3_GLOBAL_RESET },
251 	{ .int_msk = BIT(22), .msg = "tm_sch_rq_fifo_wr_err",
252 	  .reset_level = HNAE3_GLOBAL_RESET },
253 	{ .int_msk = BIT(23), .msg = "tm_sch_rq_fifo_rd_err",
254 	  .reset_level = HNAE3_GLOBAL_RESET },
255 	{ .int_msk = BIT(24), .msg = "tm_sch_nq_fifo_wr_err",
256 	  .reset_level = HNAE3_GLOBAL_RESET },
257 	{ .int_msk = BIT(25), .msg = "tm_sch_nq_fifo_rd_err",
258 	  .reset_level = HNAE3_GLOBAL_RESET },
259 	{ .int_msk = BIT(26), .msg = "tm_sch_roce_up_fifo_wr_err",
260 	  .reset_level = HNAE3_GLOBAL_RESET },
261 	{ .int_msk = BIT(27), .msg = "tm_sch_roce_up_fifo_rd_err",
262 	  .reset_level = HNAE3_GLOBAL_RESET },
263 	{ .int_msk = BIT(28), .msg = "tm_sch_rcb_byte_fifo_wr_err",
264 	  .reset_level = HNAE3_GLOBAL_RESET },
265 	{ .int_msk = BIT(29), .msg = "tm_sch_rcb_byte_fifo_rd_err",
266 	  .reset_level = HNAE3_GLOBAL_RESET },
267 	{ .int_msk = BIT(30), .msg = "tm_sch_ssu_byte_fifo_wr_err",
268 	  .reset_level = HNAE3_GLOBAL_RESET },
269 	{ .int_msk = BIT(31), .msg = "tm_sch_ssu_byte_fifo_rd_err",
270 	  .reset_level = HNAE3_GLOBAL_RESET },
271 	{ /* sentinel */ }
272 };
273 
274 static const struct hclge_hw_error hclge_qcn_fifo_rint[] = {
275 	{ .int_msk = BIT(0), .msg = "qcn_shap_gp0_sch_fifo_rd_err",
276 	  .reset_level = HNAE3_GLOBAL_RESET },
277 	{ .int_msk = BIT(1), .msg = "qcn_shap_gp0_sch_fifo_wr_err",
278 	  .reset_level = HNAE3_GLOBAL_RESET },
279 	{ .int_msk = BIT(2), .msg = "qcn_shap_gp1_sch_fifo_rd_err",
280 	  .reset_level = HNAE3_GLOBAL_RESET },
281 	{ .int_msk = BIT(3), .msg = "qcn_shap_gp1_sch_fifo_wr_err",
282 	  .reset_level = HNAE3_GLOBAL_RESET },
283 	{ .int_msk = BIT(4), .msg = "qcn_shap_gp2_sch_fifo_rd_err",
284 	  .reset_level = HNAE3_GLOBAL_RESET },
285 	{ .int_msk = BIT(5), .msg = "qcn_shap_gp2_sch_fifo_wr_err",
286 	  .reset_level = HNAE3_GLOBAL_RESET },
287 	{ .int_msk = BIT(6), .msg = "qcn_shap_gp3_sch_fifo_rd_err",
288 	  .reset_level = HNAE3_GLOBAL_RESET },
289 	{ .int_msk = BIT(7), .msg = "qcn_shap_gp3_sch_fifo_wr_err",
290 	  .reset_level = HNAE3_GLOBAL_RESET },
291 	{ .int_msk = BIT(8), .msg = "qcn_shap_gp0_offset_fifo_rd_err",
292 	  .reset_level = HNAE3_GLOBAL_RESET },
293 	{ .int_msk = BIT(9), .msg = "qcn_shap_gp0_offset_fifo_wr_err",
294 	  .reset_level = HNAE3_GLOBAL_RESET },
295 	{ .int_msk = BIT(10), .msg = "qcn_shap_gp1_offset_fifo_rd_err",
296 	  .reset_level = HNAE3_GLOBAL_RESET },
297 	{ .int_msk = BIT(11), .msg = "qcn_shap_gp1_offset_fifo_wr_err",
298 	  .reset_level = HNAE3_GLOBAL_RESET },
299 	{ .int_msk = BIT(12), .msg = "qcn_shap_gp2_offset_fifo_rd_err",
300 	  .reset_level = HNAE3_GLOBAL_RESET },
301 	{ .int_msk = BIT(13), .msg = "qcn_shap_gp2_offset_fifo_wr_err",
302 	  .reset_level = HNAE3_GLOBAL_RESET },
303 	{ .int_msk = BIT(14), .msg = "qcn_shap_gp3_offset_fifo_rd_err",
304 	  .reset_level = HNAE3_GLOBAL_RESET },
305 	{ .int_msk = BIT(15), .msg = "qcn_shap_gp3_offset_fifo_wr_err",
306 	  .reset_level = HNAE3_GLOBAL_RESET },
307 	{ .int_msk = BIT(16), .msg = "qcn_byte_info_fifo_rd_err",
308 	  .reset_level = HNAE3_GLOBAL_RESET },
309 	{ .int_msk = BIT(17), .msg = "qcn_byte_info_fifo_wr_err",
310 	  .reset_level = HNAE3_GLOBAL_RESET },
311 	{ /* sentinel */ }
312 };
313 
314 static const struct hclge_hw_error hclge_qcn_ecc_rint[] = {
315 	{ .int_msk = BIT(1), .msg = "qcn_byte_mem_ecc_mbit_err",
316 	  .reset_level = HNAE3_GLOBAL_RESET },
317 	{ .int_msk = BIT(3), .msg = "qcn_time_mem_ecc_mbit_err",
318 	  .reset_level = HNAE3_GLOBAL_RESET },
319 	{ .int_msk = BIT(5), .msg = "qcn_fb_mem_ecc_mbit_err",
320 	  .reset_level = HNAE3_GLOBAL_RESET },
321 	{ .int_msk = BIT(7), .msg = "qcn_link_mem_ecc_mbit_err",
322 	  .reset_level = HNAE3_GLOBAL_RESET },
323 	{ .int_msk = BIT(9), .msg = "qcn_rate_mem_ecc_mbit_err",
324 	  .reset_level = HNAE3_GLOBAL_RESET },
325 	{ .int_msk = BIT(11), .msg = "qcn_tmplt_mem_ecc_mbit_err",
326 	  .reset_level = HNAE3_GLOBAL_RESET },
327 	{ .int_msk = BIT(13), .msg = "qcn_shap_cfg_mem_ecc_mbit_err",
328 	  .reset_level = HNAE3_GLOBAL_RESET },
329 	{ .int_msk = BIT(15), .msg = "qcn_gp0_barrel_mem_ecc_mbit_err",
330 	  .reset_level = HNAE3_GLOBAL_RESET },
331 	{ .int_msk = BIT(17), .msg = "qcn_gp1_barrel_mem_ecc_mbit_err",
332 	  .reset_level = HNAE3_GLOBAL_RESET },
333 	{ .int_msk = BIT(19), .msg = "qcn_gp2_barrel_mem_ecc_mbit_err",
334 	  .reset_level = HNAE3_GLOBAL_RESET },
335 	{ .int_msk = BIT(21), .msg = "qcn_gp3_barral_mem_ecc_mbit_err",
336 	  .reset_level = HNAE3_GLOBAL_RESET },
337 	{ /* sentinel */ }
338 };
339 
340 static const struct hclge_hw_error hclge_mac_afifo_tnl_int[] = {
341 	{ .int_msk = BIT(0), .msg = "egu_cge_afifo_ecc_1bit_err",
342 	  .reset_level = HNAE3_NONE_RESET },
343 	{ .int_msk = BIT(1), .msg = "egu_cge_afifo_ecc_mbit_err",
344 	  .reset_level = HNAE3_GLOBAL_RESET },
345 	{ .int_msk = BIT(2), .msg = "egu_lge_afifo_ecc_1bit_err",
346 	  .reset_level = HNAE3_NONE_RESET },
347 	{ .int_msk = BIT(3), .msg = "egu_lge_afifo_ecc_mbit_err",
348 	  .reset_level = HNAE3_GLOBAL_RESET },
349 	{ .int_msk = BIT(4), .msg = "cge_igu_afifo_ecc_1bit_err",
350 	  .reset_level = HNAE3_NONE_RESET },
351 	{ .int_msk = BIT(5), .msg = "cge_igu_afifo_ecc_mbit_err",
352 	  .reset_level = HNAE3_GLOBAL_RESET },
353 	{ .int_msk = BIT(6), .msg = "lge_igu_afifo_ecc_1bit_err",
354 	  .reset_level = HNAE3_NONE_RESET },
355 	{ .int_msk = BIT(7), .msg = "lge_igu_afifo_ecc_mbit_err",
356 	  .reset_level = HNAE3_GLOBAL_RESET },
357 	{ .int_msk = BIT(8), .msg = "cge_igu_afifo_overflow_err",
358 	  .reset_level = HNAE3_GLOBAL_RESET },
359 	{ .int_msk = BIT(9), .msg = "lge_igu_afifo_overflow_err",
360 	  .reset_level = HNAE3_GLOBAL_RESET },
361 	{ .int_msk = BIT(10), .msg = "egu_cge_afifo_underrun_err",
362 	  .reset_level = HNAE3_GLOBAL_RESET },
363 	{ .int_msk = BIT(11), .msg = "egu_lge_afifo_underrun_err",
364 	  .reset_level = HNAE3_GLOBAL_RESET },
365 	{ .int_msk = BIT(12), .msg = "egu_ge_afifo_underrun_err",
366 	  .reset_level = HNAE3_GLOBAL_RESET },
367 	{ .int_msk = BIT(13), .msg = "ge_igu_afifo_overflow_err",
368 	  .reset_level = HNAE3_GLOBAL_RESET },
369 	{ /* sentinel */ }
370 };
371 
372 static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st2[] = {
373 	{ .int_msk = BIT(13), .msg = "rpu_rx_pkt_bit32_ecc_mbit_err",
374 	  .reset_level = HNAE3_GLOBAL_RESET },
375 	{ .int_msk = BIT(14), .msg = "rpu_rx_pkt_bit33_ecc_mbit_err",
376 	  .reset_level = HNAE3_GLOBAL_RESET },
377 	{ .int_msk = BIT(15), .msg = "rpu_rx_pkt_bit34_ecc_mbit_err",
378 	  .reset_level = HNAE3_GLOBAL_RESET },
379 	{ .int_msk = BIT(16), .msg = "rpu_rx_pkt_bit35_ecc_mbit_err",
380 	  .reset_level = HNAE3_GLOBAL_RESET },
381 	{ .int_msk = BIT(17), .msg = "rcb_tx_ring_ecc_mbit_err",
382 	  .reset_level = HNAE3_GLOBAL_RESET },
383 	{ .int_msk = BIT(18), .msg = "rcb_rx_ring_ecc_mbit_err",
384 	  .reset_level = HNAE3_GLOBAL_RESET },
385 	{ .int_msk = BIT(19), .msg = "rcb_tx_fbd_ecc_mbit_err",
386 	  .reset_level = HNAE3_GLOBAL_RESET },
387 	{ .int_msk = BIT(20), .msg = "rcb_rx_ebd_ecc_mbit_err",
388 	  .reset_level = HNAE3_GLOBAL_RESET },
389 	{ .int_msk = BIT(21), .msg = "rcb_tso_info_ecc_mbit_err",
390 	  .reset_level = HNAE3_GLOBAL_RESET },
391 	{ .int_msk = BIT(22), .msg = "rcb_tx_int_info_ecc_mbit_err",
392 	  .reset_level = HNAE3_GLOBAL_RESET },
393 	{ .int_msk = BIT(23), .msg = "rcb_rx_int_info_ecc_mbit_err",
394 	  .reset_level = HNAE3_GLOBAL_RESET },
395 	{ .int_msk = BIT(24), .msg = "tpu_tx_pkt_0_ecc_mbit_err",
396 	  .reset_level = HNAE3_GLOBAL_RESET },
397 	{ .int_msk = BIT(25), .msg = "tpu_tx_pkt_1_ecc_mbit_err",
398 	  .reset_level = HNAE3_GLOBAL_RESET },
399 	{ .int_msk = BIT(26), .msg = "rd_bus_err",
400 	  .reset_level = HNAE3_GLOBAL_RESET },
401 	{ .int_msk = BIT(27), .msg = "wr_bus_err",
402 	  .reset_level = HNAE3_GLOBAL_RESET },
403 	{ .int_msk = BIT(28), .msg = "reg_search_miss",
404 	  .reset_level = HNAE3_GLOBAL_RESET },
405 	{ .int_msk = BIT(29), .msg = "rx_q_search_miss",
406 	  .reset_level = HNAE3_NONE_RESET },
407 	{ .int_msk = BIT(30), .msg = "ooo_ecc_err_detect",
408 	  .reset_level = HNAE3_NONE_RESET },
409 	{ .int_msk = BIT(31), .msg = "ooo_ecc_err_multpl",
410 	  .reset_level = HNAE3_GLOBAL_RESET },
411 	{ /* sentinel */ }
412 };
413 
414 static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st3[] = {
415 	{ .int_msk = BIT(4), .msg = "gro_bd_ecc_mbit_err",
416 	  .reset_level = HNAE3_CORE_RESET },
417 	{ .int_msk = BIT(5), .msg = "gro_context_ecc_mbit_err",
418 	  .reset_level = HNAE3_CORE_RESET },
419 	{ .int_msk = BIT(6), .msg = "rx_stash_cfg_ecc_mbit_err",
420 	  .reset_level = HNAE3_CORE_RESET },
421 	{ .int_msk = BIT(7), .msg = "axi_rd_fbd_ecc_mbit_err",
422 	  .reset_level = HNAE3_CORE_RESET },
423 	{ /* sentinel */ }
424 };
425 
426 static const struct hclge_hw_error hclge_ppu_pf_abnormal_int[] = {
427 	{ .int_msk = BIT(0), .msg = "over_8bd_no_fe",
428 	  .reset_level = HNAE3_FUNC_RESET },
429 	{ .int_msk = BIT(1), .msg = "tso_mss_cmp_min_err",
430 	  .reset_level = HNAE3_NONE_RESET },
431 	{ .int_msk = BIT(2), .msg = "tso_mss_cmp_max_err",
432 	  .reset_level = HNAE3_NONE_RESET },
433 	{ .int_msk = BIT(3), .msg = "tx_rd_fbd_poison",
434 	  .reset_level = HNAE3_FUNC_RESET },
435 	{ .int_msk = BIT(4), .msg = "rx_rd_ebd_poison",
436 	  .reset_level = HNAE3_FUNC_RESET },
437 	{ .int_msk = BIT(5), .msg = "buf_wait_timeout",
438 	  .reset_level = HNAE3_NONE_RESET },
439 	{ /* sentinel */ }
440 };
441 
442 static const struct hclge_hw_error hclge_ssu_com_err_int[] = {
443 	{ .int_msk = BIT(0), .msg = "buf_sum_err",
444 	  .reset_level = HNAE3_NONE_RESET },
445 	{ .int_msk = BIT(1), .msg = "ppp_mb_num_err",
446 	  .reset_level = HNAE3_NONE_RESET },
447 	{ .int_msk = BIT(2), .msg = "ppp_mbid_err",
448 	  .reset_level = HNAE3_GLOBAL_RESET },
449 	{ .int_msk = BIT(3), .msg = "ppp_rlt_mac_err",
450 	  .reset_level = HNAE3_GLOBAL_RESET },
451 	{ .int_msk = BIT(4), .msg = "ppp_rlt_host_err",
452 	  .reset_level = HNAE3_GLOBAL_RESET },
453 	{ .int_msk = BIT(5), .msg = "cks_edit_position_err",
454 	  .reset_level = HNAE3_GLOBAL_RESET },
455 	{ .int_msk = BIT(6), .msg = "cks_edit_condition_err",
456 	  .reset_level = HNAE3_GLOBAL_RESET },
457 	{ .int_msk = BIT(7), .msg = "vlan_edit_condition_err",
458 	  .reset_level = HNAE3_GLOBAL_RESET },
459 	{ .int_msk = BIT(8), .msg = "vlan_num_ot_err",
460 	  .reset_level = HNAE3_GLOBAL_RESET },
461 	{ .int_msk = BIT(9), .msg = "vlan_num_in_err",
462 	  .reset_level = HNAE3_GLOBAL_RESET },
463 	{ /* sentinel */ }
464 };
465 
466 #define HCLGE_SSU_MEM_ECC_ERR(x) \
467 	{ .int_msk = BIT(x), .msg = "ssu_mem" #x "_ecc_mbit_err", \
468 	  .reset_level = HNAE3_GLOBAL_RESET }
469 
470 static const struct hclge_hw_error hclge_ssu_mem_ecc_err_int[] = {
471 	HCLGE_SSU_MEM_ECC_ERR(0),
472 	HCLGE_SSU_MEM_ECC_ERR(1),
473 	HCLGE_SSU_MEM_ECC_ERR(2),
474 	HCLGE_SSU_MEM_ECC_ERR(3),
475 	HCLGE_SSU_MEM_ECC_ERR(4),
476 	HCLGE_SSU_MEM_ECC_ERR(5),
477 	HCLGE_SSU_MEM_ECC_ERR(6),
478 	HCLGE_SSU_MEM_ECC_ERR(7),
479 	HCLGE_SSU_MEM_ECC_ERR(8),
480 	HCLGE_SSU_MEM_ECC_ERR(9),
481 	HCLGE_SSU_MEM_ECC_ERR(10),
482 	HCLGE_SSU_MEM_ECC_ERR(11),
483 	HCLGE_SSU_MEM_ECC_ERR(12),
484 	HCLGE_SSU_MEM_ECC_ERR(13),
485 	HCLGE_SSU_MEM_ECC_ERR(14),
486 	HCLGE_SSU_MEM_ECC_ERR(15),
487 	HCLGE_SSU_MEM_ECC_ERR(16),
488 	HCLGE_SSU_MEM_ECC_ERR(17),
489 	HCLGE_SSU_MEM_ECC_ERR(18),
490 	HCLGE_SSU_MEM_ECC_ERR(19),
491 	HCLGE_SSU_MEM_ECC_ERR(20),
492 	HCLGE_SSU_MEM_ECC_ERR(21),
493 	HCLGE_SSU_MEM_ECC_ERR(22),
494 	HCLGE_SSU_MEM_ECC_ERR(23),
495 	HCLGE_SSU_MEM_ECC_ERR(24),
496 	HCLGE_SSU_MEM_ECC_ERR(25),
497 	HCLGE_SSU_MEM_ECC_ERR(26),
498 	HCLGE_SSU_MEM_ECC_ERR(27),
499 	HCLGE_SSU_MEM_ECC_ERR(28),
500 	HCLGE_SSU_MEM_ECC_ERR(29),
501 	HCLGE_SSU_MEM_ECC_ERR(30),
502 	HCLGE_SSU_MEM_ECC_ERR(31),
503 	{ /* sentinel */ }
504 };
505 
506 static const struct hclge_hw_error hclge_ssu_port_based_err_int[] = {
507 	{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port",
508 	  .reset_level = HNAE3_GLOBAL_RESET },
509 	{ .int_msk = BIT(1), .msg = "tpu_pkt_without_key_port",
510 	  .reset_level = HNAE3_GLOBAL_RESET },
511 	{ .int_msk = BIT(2), .msg = "igu_pkt_without_key_port",
512 	  .reset_level = HNAE3_GLOBAL_RESET },
513 	{ .int_msk = BIT(3), .msg = "roc_eof_mis_match_port",
514 	  .reset_level = HNAE3_GLOBAL_RESET },
515 	{ .int_msk = BIT(4), .msg = "tpu_eof_mis_match_port",
516 	  .reset_level = HNAE3_GLOBAL_RESET },
517 	{ .int_msk = BIT(5), .msg = "igu_eof_mis_match_port",
518 	  .reset_level = HNAE3_GLOBAL_RESET },
519 	{ .int_msk = BIT(6), .msg = "roc_sof_mis_match_port",
520 	  .reset_level = HNAE3_GLOBAL_RESET },
521 	{ .int_msk = BIT(7), .msg = "tpu_sof_mis_match_port",
522 	  .reset_level = HNAE3_GLOBAL_RESET },
523 	{ .int_msk = BIT(8), .msg = "igu_sof_mis_match_port",
524 	  .reset_level = HNAE3_GLOBAL_RESET },
525 	{ .int_msk = BIT(11), .msg = "ets_rd_int_rx_port",
526 	  .reset_level = HNAE3_GLOBAL_RESET },
527 	{ .int_msk = BIT(12), .msg = "ets_wr_int_rx_port",
528 	  .reset_level = HNAE3_GLOBAL_RESET },
529 	{ .int_msk = BIT(13), .msg = "ets_rd_int_tx_port",
530 	  .reset_level = HNAE3_GLOBAL_RESET },
531 	{ .int_msk = BIT(14), .msg = "ets_wr_int_tx_port",
532 	  .reset_level = HNAE3_GLOBAL_RESET },
533 	{ /* sentinel */ }
534 };
535 
536 static const struct hclge_hw_error hclge_ssu_fifo_overflow_int[] = {
537 	{ .int_msk = BIT(0), .msg = "ig_mac_inf_int",
538 	  .reset_level = HNAE3_GLOBAL_RESET },
539 	{ .int_msk = BIT(1), .msg = "ig_host_inf_int",
540 	  .reset_level = HNAE3_GLOBAL_RESET },
541 	{ .int_msk = BIT(2), .msg = "ig_roc_buf_int",
542 	  .reset_level = HNAE3_GLOBAL_RESET },
543 	{ .int_msk = BIT(3), .msg = "ig_host_data_fifo_int",
544 	  .reset_level = HNAE3_GLOBAL_RESET },
545 	{ .int_msk = BIT(4), .msg = "ig_host_key_fifo_int",
546 	  .reset_level = HNAE3_GLOBAL_RESET },
547 	{ .int_msk = BIT(5), .msg = "tx_qcn_fifo_int",
548 	  .reset_level = HNAE3_GLOBAL_RESET },
549 	{ .int_msk = BIT(6), .msg = "rx_qcn_fifo_int",
550 	  .reset_level = HNAE3_GLOBAL_RESET },
551 	{ .int_msk = BIT(7), .msg = "tx_pf_rd_fifo_int",
552 	  .reset_level = HNAE3_GLOBAL_RESET },
553 	{ .int_msk = BIT(8), .msg = "rx_pf_rd_fifo_int",
554 	  .reset_level = HNAE3_GLOBAL_RESET },
555 	{ .int_msk = BIT(9), .msg = "qm_eof_fifo_int",
556 	  .reset_level = HNAE3_GLOBAL_RESET },
557 	{ .int_msk = BIT(10), .msg = "mb_rlt_fifo_int",
558 	  .reset_level = HNAE3_GLOBAL_RESET },
559 	{ .int_msk = BIT(11), .msg = "dup_uncopy_fifo_int",
560 	  .reset_level = HNAE3_GLOBAL_RESET },
561 	{ .int_msk = BIT(12), .msg = "dup_cnt_rd_fifo_int",
562 	  .reset_level = HNAE3_GLOBAL_RESET },
563 	{ .int_msk = BIT(13), .msg = "dup_cnt_drop_fifo_int",
564 	  .reset_level = HNAE3_GLOBAL_RESET },
565 	{ .int_msk = BIT(14), .msg = "dup_cnt_wrb_fifo_int",
566 	  .reset_level = HNAE3_GLOBAL_RESET },
567 	{ .int_msk = BIT(15), .msg = "host_cmd_fifo_int",
568 	  .reset_level = HNAE3_GLOBAL_RESET },
569 	{ .int_msk = BIT(16), .msg = "mac_cmd_fifo_int",
570 	  .reset_level = HNAE3_GLOBAL_RESET },
571 	{ .int_msk = BIT(17), .msg = "host_cmd_bitmap_empty_int",
572 	  .reset_level = HNAE3_GLOBAL_RESET },
573 	{ .int_msk = BIT(18), .msg = "mac_cmd_bitmap_empty_int",
574 	  .reset_level = HNAE3_GLOBAL_RESET },
575 	{ .int_msk = BIT(19), .msg = "dup_bitmap_empty_int",
576 	  .reset_level = HNAE3_GLOBAL_RESET },
577 	{ .int_msk = BIT(20), .msg = "out_queue_bitmap_empty_int",
578 	  .reset_level = HNAE3_GLOBAL_RESET },
579 	{ .int_msk = BIT(21), .msg = "bank2_bitmap_empty_int",
580 	  .reset_level = HNAE3_GLOBAL_RESET },
581 	{ .int_msk = BIT(22), .msg = "bank1_bitmap_empty_int",
582 	  .reset_level = HNAE3_GLOBAL_RESET },
583 	{ .int_msk = BIT(23), .msg = "bank0_bitmap_empty_int",
584 	  .reset_level = HNAE3_GLOBAL_RESET },
585 	{ /* sentinel */ }
586 };
587 
588 static const struct hclge_hw_error hclge_ssu_ets_tcg_int[] = {
589 	{ .int_msk = BIT(0), .msg = "ets_rd_int_rx_tcg",
590 	  .reset_level = HNAE3_GLOBAL_RESET },
591 	{ .int_msk = BIT(1), .msg = "ets_wr_int_rx_tcg",
592 	  .reset_level = HNAE3_GLOBAL_RESET },
593 	{ .int_msk = BIT(2), .msg = "ets_rd_int_tx_tcg",
594 	  .reset_level = HNAE3_GLOBAL_RESET },
595 	{ .int_msk = BIT(3), .msg = "ets_wr_int_tx_tcg",
596 	  .reset_level = HNAE3_GLOBAL_RESET },
597 	{ /* sentinel */ }
598 };
599 
600 static const struct hclge_hw_error hclge_ssu_port_based_pf_int[] = {
601 	{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port",
602 	  .reset_level = HNAE3_GLOBAL_RESET },
603 	{ .int_msk = BIT(9), .msg = "low_water_line_err_port",
604 	  .reset_level = HNAE3_NONE_RESET },
605 	{ .int_msk = BIT(10), .msg = "hi_water_line_err_port",
606 	  .reset_level = HNAE3_GLOBAL_RESET },
607 	{ /* sentinel */ }
608 };
609 
610 static const struct hclge_hw_error hclge_rocee_qmm_ovf_err_int[] = {
611 	{ .int_msk = 0, .msg = "rocee qmm ovf: sgid invalid err" },
612 	{ .int_msk = 0x4, .msg = "rocee qmm ovf: sgid ovf err" },
613 	{ .int_msk = 0x8, .msg = "rocee qmm ovf: smac invalid err" },
614 	{ .int_msk = 0xC, .msg = "rocee qmm ovf: smac ovf err" },
615 	{ .int_msk = 0x10, .msg = "rocee qmm ovf: cqc invalid err" },
616 	{ .int_msk = 0x11, .msg = "rocee qmm ovf: cqc ovf err" },
617 	{ .int_msk = 0x12, .msg = "rocee qmm ovf: cqc hopnum err" },
618 	{ .int_msk = 0x13, .msg = "rocee qmm ovf: cqc ba0 err" },
619 	{ .int_msk = 0x14, .msg = "rocee qmm ovf: srqc invalid err" },
620 	{ .int_msk = 0x15, .msg = "rocee qmm ovf: srqc ovf err" },
621 	{ .int_msk = 0x16, .msg = "rocee qmm ovf: srqc hopnum err" },
622 	{ .int_msk = 0x17, .msg = "rocee qmm ovf: srqc ba0 err" },
623 	{ .int_msk = 0x18, .msg = "rocee qmm ovf: mpt invalid err" },
624 	{ .int_msk = 0x19, .msg = "rocee qmm ovf: mpt ovf err" },
625 	{ .int_msk = 0x1A, .msg = "rocee qmm ovf: mpt hopnum err" },
626 	{ .int_msk = 0x1B, .msg = "rocee qmm ovf: mpt ba0 err" },
627 	{ .int_msk = 0x1C, .msg = "rocee qmm ovf: qpc invalid err" },
628 	{ .int_msk = 0x1D, .msg = "rocee qmm ovf: qpc ovf err" },
629 	{ .int_msk = 0x1E, .msg = "rocee qmm ovf: qpc hopnum err" },
630 	{ .int_msk = 0x1F, .msg = "rocee qmm ovf: qpc ba0 err" },
631 	{ /* sentinel */ }
632 };
633 
634 static enum hnae3_reset_type hclge_log_error(struct device *dev, char *reg,
635 					     const struct hclge_hw_error *err,
636 					     u32 err_sts)
637 {
638 	enum hnae3_reset_type reset_level = HNAE3_FUNC_RESET;
639 	bool need_reset = false;
640 
641 	while (err->msg) {
642 		if (err->int_msk & err_sts) {
643 			dev_warn(dev, "%s %s found [error status=0x%x]\n",
644 				 reg, err->msg, err_sts);
645 			if (err->reset_level != HNAE3_NONE_RESET &&
646 			    err->reset_level >= reset_level) {
647 				reset_level = err->reset_level;
648 				need_reset = true;
649 			}
650 		}
651 		err++;
652 	}
653 	if (need_reset)
654 		return reset_level;
655 	else
656 		return HNAE3_NONE_RESET;
657 }
658 
659 /* hclge_cmd_query_error: read the error information
660  * @hdev: pointer to struct hclge_dev
661  * @desc: descriptor for describing the command
662  * @cmd:  command opcode
663  * @flag: flag for extended command structure
664  * @w_num: offset for setting the read interrupt type.
665  * @int_type: select which type of the interrupt for which the error
666  * info will be read(RAS-CE/RAS-NFE/RAS-FE etc).
667  *
668  * This function query the error info from hw register/s using command
669  */
670 static int hclge_cmd_query_error(struct hclge_dev *hdev,
671 				 struct hclge_desc *desc, u32 cmd,
672 				 u16 flag, u8 w_num,
673 				 enum hclge_err_int_type int_type)
674 {
675 	struct device *dev = &hdev->pdev->dev;
676 	int num = 1;
677 	int ret;
678 
679 	hclge_cmd_setup_basic_desc(&desc[0], cmd, true);
680 	if (flag) {
681 		desc[0].flag |= cpu_to_le16(flag);
682 		hclge_cmd_setup_basic_desc(&desc[1], cmd, true);
683 		num = 2;
684 	}
685 	if (w_num)
686 		desc[0].data[w_num] = cpu_to_le32(int_type);
687 
688 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
689 	if (ret)
690 		dev_err(dev, "query error cmd failed (%d)\n", ret);
691 
692 	return ret;
693 }
694 
695 static int hclge_config_common_hw_err_int(struct hclge_dev *hdev, bool en)
696 {
697 	struct device *dev = &hdev->pdev->dev;
698 	struct hclge_desc desc[2];
699 	int ret;
700 
701 	/* configure common error interrupts */
702 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_COMMON_ECC_INT_CFG, false);
703 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
704 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_COMMON_ECC_INT_CFG, false);
705 
706 	if (en) {
707 		desc[0].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN);
708 		desc[0].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN |
709 					HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN);
710 		desc[0].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN);
711 		desc[0].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN |
712 					      HCLGE_MSIX_SRAM_ECC_ERR_INT_EN);
713 		desc[0].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN);
714 	}
715 
716 	desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN_MASK);
717 	desc[1].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN_MASK |
718 				HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN_MASK);
719 	desc[1].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN_MASK);
720 	desc[1].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN_MASK |
721 				      HCLGE_MSIX_SRAM_ECC_ERR_INT_EN_MASK);
722 	desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN_MASK);
723 
724 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
725 	if (ret)
726 		dev_err(dev,
727 			"fail(%d) to configure common err interrupts\n", ret);
728 
729 	return ret;
730 }
731 
732 static int hclge_config_ncsi_hw_err_int(struct hclge_dev *hdev, bool en)
733 {
734 	struct device *dev = &hdev->pdev->dev;
735 	struct hclge_desc desc;
736 	int ret;
737 
738 	if (hdev->pdev->revision < 0x21)
739 		return 0;
740 
741 	/* configure NCSI error interrupts */
742 	hclge_cmd_setup_basic_desc(&desc, HCLGE_NCSI_INT_EN, false);
743 	if (en)
744 		desc.data[0] = cpu_to_le32(HCLGE_NCSI_ERR_INT_EN);
745 
746 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
747 	if (ret)
748 		dev_err(dev,
749 			"fail(%d) to configure  NCSI error interrupts\n", ret);
750 
751 	return ret;
752 }
753 
754 static int hclge_config_igu_egu_hw_err_int(struct hclge_dev *hdev, bool en)
755 {
756 	struct device *dev = &hdev->pdev->dev;
757 	struct hclge_desc desc;
758 	int ret;
759 
760 	/* configure IGU,EGU error interrupts */
761 	hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_COMMON_INT_EN, false);
762 	if (en)
763 		desc.data[0] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN);
764 
765 	desc.data[1] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN_MASK);
766 
767 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
768 	if (ret) {
769 		dev_err(dev,
770 			"fail(%d) to configure IGU common interrupts\n", ret);
771 		return ret;
772 	}
773 
774 	hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_EGU_TNL_INT_EN, false);
775 	if (en)
776 		desc.data[0] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN);
777 
778 	desc.data[1] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN_MASK);
779 
780 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
781 	if (ret) {
782 		dev_err(dev,
783 			"fail(%d) to configure IGU-EGU TNL interrupts\n", ret);
784 		return ret;
785 	}
786 
787 	ret = hclge_config_ncsi_hw_err_int(hdev, en);
788 
789 	return ret;
790 }
791 
792 static int hclge_config_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd,
793 					    bool en)
794 {
795 	struct device *dev = &hdev->pdev->dev;
796 	struct hclge_desc desc[2];
797 	int ret;
798 
799 	/* configure PPP error interrupts */
800 	hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
801 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
802 	hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
803 
804 	if (cmd == HCLGE_PPP_CMD0_INT_CMD) {
805 		if (en) {
806 			desc[0].data[0] =
807 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN);
808 			desc[0].data[1] =
809 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN);
810 			desc[0].data[4] = cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN);
811 		}
812 
813 		desc[1].data[0] =
814 			cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN_MASK);
815 		desc[1].data[1] =
816 			cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN_MASK);
817 		if (hdev->pdev->revision >= 0x21)
818 			desc[1].data[2] =
819 				cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN_MASK);
820 	} else if (cmd == HCLGE_PPP_CMD1_INT_CMD) {
821 		if (en) {
822 			desc[0].data[0] =
823 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN);
824 			desc[0].data[1] =
825 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN);
826 		}
827 
828 		desc[1].data[0] =
829 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN_MASK);
830 		desc[1].data[1] =
831 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN_MASK);
832 	}
833 
834 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
835 	if (ret)
836 		dev_err(dev, "fail(%d) to configure PPP error intr\n", ret);
837 
838 	return ret;
839 }
840 
841 static int hclge_config_ppp_hw_err_int(struct hclge_dev *hdev, bool en)
842 {
843 	int ret;
844 
845 	ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD0_INT_CMD,
846 					       en);
847 	if (ret)
848 		return ret;
849 
850 	ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD1_INT_CMD,
851 					       en);
852 
853 	return ret;
854 }
855 
856 static int hclge_config_tm_hw_err_int(struct hclge_dev *hdev, bool en)
857 {
858 	struct device *dev = &hdev->pdev->dev;
859 	struct hclge_desc desc;
860 	int ret;
861 
862 	/* configure TM SCH hw errors */
863 	hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_SCH_ECC_INT_EN, false);
864 	if (en)
865 		desc.data[0] = cpu_to_le32(HCLGE_TM_SCH_ECC_ERR_INT_EN);
866 
867 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
868 	if (ret) {
869 		dev_err(dev, "fail(%d) to configure TM SCH errors\n", ret);
870 		return ret;
871 	}
872 
873 	/* configure TM QCN hw errors */
874 	ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_QCN_MEM_INT_CFG,
875 				    0, 0, 0);
876 	if (ret) {
877 		dev_err(dev, "fail(%d) to read TM QCN CFG status\n", ret);
878 		return ret;
879 	}
880 
881 	hclge_cmd_reuse_desc(&desc, false);
882 	if (en)
883 		desc.data[1] = cpu_to_le32(HCLGE_TM_QCN_MEM_ERR_INT_EN);
884 
885 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
886 	if (ret)
887 		dev_err(dev,
888 			"fail(%d) to configure TM QCN mem errors\n", ret);
889 
890 	return ret;
891 }
892 
893 static int hclge_config_mac_err_int(struct hclge_dev *hdev, bool en)
894 {
895 	struct device *dev = &hdev->pdev->dev;
896 	struct hclge_desc desc;
897 	int ret;
898 
899 	/* configure MAC common error interrupts */
900 	hclge_cmd_setup_basic_desc(&desc, HCLGE_MAC_COMMON_INT_EN, false);
901 	if (en)
902 		desc.data[0] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN);
903 
904 	desc.data[1] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN_MASK);
905 
906 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
907 	if (ret)
908 		dev_err(dev,
909 			"fail(%d) to configure MAC COMMON error intr\n", ret);
910 
911 	return ret;
912 }
913 
914 static int hclge_config_ppu_error_interrupts(struct hclge_dev *hdev, u32 cmd,
915 					     bool en)
916 {
917 	struct device *dev = &hdev->pdev->dev;
918 	struct hclge_desc desc[2];
919 	int num = 1;
920 	int ret;
921 
922 	/* configure PPU error interrupts */
923 	if (cmd == HCLGE_PPU_MPF_ECC_INT_CMD) {
924 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
925 		desc[0].flag |= HCLGE_CMD_FLAG_NEXT;
926 		hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
927 		if (en) {
928 			desc[0].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT0_EN;
929 			desc[0].data[1] = HCLGE_PPU_MPF_ABNORMAL_INT1_EN;
930 			desc[1].data[3] = HCLGE_PPU_MPF_ABNORMAL_INT3_EN;
931 			desc[1].data[4] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN;
932 		}
933 
934 		desc[1].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT0_EN_MASK;
935 		desc[1].data[1] = HCLGE_PPU_MPF_ABNORMAL_INT1_EN_MASK;
936 		desc[1].data[2] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN_MASK;
937 		desc[1].data[3] |= HCLGE_PPU_MPF_ABNORMAL_INT3_EN_MASK;
938 		num = 2;
939 	} else if (cmd == HCLGE_PPU_MPF_OTHER_INT_CMD) {
940 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
941 		if (en)
942 			desc[0].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN2;
943 
944 		desc[0].data[2] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN2_MASK;
945 	} else if (cmd == HCLGE_PPU_PF_OTHER_INT_CMD) {
946 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
947 		if (en)
948 			desc[0].data[0] = HCLGE_PPU_PF_ABNORMAL_INT_EN;
949 
950 		desc[0].data[2] = HCLGE_PPU_PF_ABNORMAL_INT_EN_MASK;
951 	} else {
952 		dev_err(dev, "Invalid cmd to configure PPU error interrupts\n");
953 		return -EINVAL;
954 	}
955 
956 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
957 
958 	return ret;
959 }
960 
961 static int hclge_config_ppu_hw_err_int(struct hclge_dev *hdev, bool en)
962 {
963 	struct device *dev = &hdev->pdev->dev;
964 	int ret;
965 
966 	ret = hclge_config_ppu_error_interrupts(hdev, HCLGE_PPU_MPF_ECC_INT_CMD,
967 						en);
968 	if (ret) {
969 		dev_err(dev, "fail(%d) to configure PPU MPF ECC error intr\n",
970 			ret);
971 		return ret;
972 	}
973 
974 	ret = hclge_config_ppu_error_interrupts(hdev,
975 						HCLGE_PPU_MPF_OTHER_INT_CMD,
976 						en);
977 	if (ret) {
978 		dev_err(dev, "fail(%d) to configure PPU MPF other intr\n", ret);
979 		return ret;
980 	}
981 
982 	ret = hclge_config_ppu_error_interrupts(hdev,
983 						HCLGE_PPU_PF_OTHER_INT_CMD, en);
984 	if (ret)
985 		dev_err(dev, "fail(%d) to configure PPU PF error interrupts\n",
986 			ret);
987 	return ret;
988 }
989 
990 static int hclge_config_ssu_hw_err_int(struct hclge_dev *hdev, bool en)
991 {
992 	struct device *dev = &hdev->pdev->dev;
993 	struct hclge_desc desc[2];
994 	int ret;
995 
996 	/* configure SSU ecc error interrupts */
997 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_ECC_INT_CMD, false);
998 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
999 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_ECC_INT_CMD, false);
1000 	if (en) {
1001 		desc[0].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN);
1002 		desc[0].data[1] =
1003 			cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN);
1004 		desc[0].data[4] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN);
1005 	}
1006 
1007 	desc[1].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN_MASK);
1008 	desc[1].data[1] = cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN_MASK);
1009 	desc[1].data[2] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN_MASK);
1010 
1011 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
1012 	if (ret) {
1013 		dev_err(dev,
1014 			"fail(%d) to configure SSU ECC error interrupt\n", ret);
1015 		return ret;
1016 	}
1017 
1018 	/* configure SSU common error interrupts */
1019 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_COMMON_INT_CMD, false);
1020 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1021 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_COMMON_INT_CMD, false);
1022 
1023 	if (en) {
1024 		if (hdev->pdev->revision >= 0x21)
1025 			desc[0].data[0] =
1026 				cpu_to_le32(HCLGE_SSU_COMMON_INT_EN);
1027 		else
1028 			desc[0].data[0] =
1029 				cpu_to_le32(HCLGE_SSU_COMMON_INT_EN & ~BIT(5));
1030 		desc[0].data[1] = cpu_to_le32(HCLGE_SSU_PORT_BASED_ERR_INT_EN);
1031 		desc[0].data[2] =
1032 			cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN);
1033 	}
1034 
1035 	desc[1].data[0] = cpu_to_le32(HCLGE_SSU_COMMON_INT_EN_MASK |
1036 				HCLGE_SSU_PORT_BASED_ERR_INT_EN_MASK);
1037 	desc[1].data[1] = cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN_MASK);
1038 
1039 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
1040 	if (ret)
1041 		dev_err(dev,
1042 			"fail(%d) to configure SSU COMMON error intr\n", ret);
1043 
1044 	return ret;
1045 }
1046 
1047 #define HCLGE_SET_DEFAULT_RESET_REQUEST(reset_type) \
1048 	do { \
1049 		if (ae_dev->ops->set_default_reset_request) \
1050 			ae_dev->ops->set_default_reset_request(ae_dev, \
1051 							       reset_type); \
1052 	} while (0)
1053 
1054 /* hclge_handle_mpf_ras_error: handle all main PF RAS errors
1055  * @hdev: pointer to struct hclge_dev
1056  * @desc: descriptor for describing the command
1057  * @num:  number of extended command structures
1058  *
1059  * This function handles all the main PF RAS errors in the
1060  * hw register/s using command.
1061  */
1062 static int hclge_handle_mpf_ras_error(struct hclge_dev *hdev,
1063 				      struct hclge_desc *desc,
1064 				      int num)
1065 {
1066 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1067 	enum hnae3_reset_type reset_level;
1068 	struct device *dev = &hdev->pdev->dev;
1069 	__le32 *desc_data;
1070 	u32 status;
1071 	int ret;
1072 
1073 	/* query all main PF RAS errors */
1074 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_MPF_RAS_INT,
1075 				   true);
1076 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1077 
1078 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1079 	if (ret) {
1080 		dev_err(dev, "query all mpf ras int cmd failed (%d)\n", ret);
1081 		return ret;
1082 	}
1083 
1084 	/* log HNS common errors */
1085 	status = le32_to_cpu(desc[0].data[0]);
1086 	if (status) {
1087 		reset_level = hclge_log_error(dev, "IMP_TCM_ECC_INT_STS",
1088 					      &hclge_imp_tcm_ecc_int[0],
1089 					      status);
1090 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1091 	}
1092 
1093 	status = le32_to_cpu(desc[0].data[1]);
1094 	if (status) {
1095 		reset_level = hclge_log_error(dev, "CMDQ_MEM_ECC_INT_STS",
1096 					      &hclge_cmdq_nic_mem_ecc_int[0],
1097 					      status);
1098 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1099 	}
1100 
1101 	if ((le32_to_cpu(desc[0].data[2])) & BIT(0)) {
1102 		dev_warn(dev, "imp_rd_data_poison_err found\n");
1103 		HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_NONE_RESET);
1104 	}
1105 
1106 	status = le32_to_cpu(desc[0].data[3]);
1107 	if (status) {
1108 		reset_level = hclge_log_error(dev, "TQP_INT_ECC_INT_STS",
1109 					      &hclge_tqp_int_ecc_int[0],
1110 					      status);
1111 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1112 	}
1113 
1114 	status = le32_to_cpu(desc[0].data[4]);
1115 	if (status) {
1116 		reset_level = hclge_log_error(dev, "MSIX_ECC_INT_STS",
1117 					      &hclge_msix_sram_ecc_int[0],
1118 					      status);
1119 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1120 	}
1121 
1122 	/* log SSU(Storage Switch Unit) errors */
1123 	desc_data = (__le32 *)&desc[2];
1124 	status = le32_to_cpu(*(desc_data + 2));
1125 	if (status) {
1126 		reset_level = hclge_log_error(dev, "SSU_ECC_MULTI_BIT_INT_0",
1127 					      &hclge_ssu_mem_ecc_err_int[0],
1128 					      status);
1129 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1130 	}
1131 
1132 	status = le32_to_cpu(*(desc_data + 3)) & BIT(0);
1133 	if (status) {
1134 		dev_warn(dev, "SSU_ECC_MULTI_BIT_INT_1 ssu_mem32_ecc_mbit_err found [error status=0x%x]\n",
1135 			 status);
1136 		HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
1137 	}
1138 
1139 	status = le32_to_cpu(*(desc_data + 4)) & HCLGE_SSU_COMMON_ERR_INT_MASK;
1140 	if (status) {
1141 		reset_level = hclge_log_error(dev, "SSU_COMMON_ERR_INT",
1142 					      &hclge_ssu_com_err_int[0],
1143 					      status);
1144 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1145 	}
1146 
1147 	/* log IGU(Ingress Unit) errors */
1148 	desc_data = (__le32 *)&desc[3];
1149 	status = le32_to_cpu(*desc_data) & HCLGE_IGU_INT_MASK;
1150 	if (status) {
1151 		reset_level = hclge_log_error(dev, "IGU_INT_STS",
1152 					      &hclge_igu_int[0], status);
1153 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1154 	}
1155 
1156 	/* log PPP(Programmable Packet Process) errors */
1157 	desc_data = (__le32 *)&desc[4];
1158 	status = le32_to_cpu(*(desc_data + 1));
1159 	if (status) {
1160 		reset_level =
1161 			hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST1",
1162 					&hclge_ppp_mpf_abnormal_int_st1[0],
1163 					status);
1164 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1165 	}
1166 
1167 	status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPP_MPF_INT_ST3_MASK;
1168 	if (status) {
1169 		reset_level =
1170 			hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST3",
1171 					&hclge_ppp_mpf_abnormal_int_st3[0],
1172 					status);
1173 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1174 	}
1175 
1176 	/* log PPU(RCB) errors */
1177 	desc_data = (__le32 *)&desc[5];
1178 	status = le32_to_cpu(*(desc_data + 1));
1179 	if (status) {
1180 		dev_warn(dev, "PPU_MPF_ABNORMAL_INT_ST1 %s found\n",
1181 			 "rpu_rx_pkt_ecc_mbit_err");
1182 		HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
1183 	}
1184 
1185 	status = le32_to_cpu(*(desc_data + 2));
1186 	if (status) {
1187 		reset_level =
1188 			hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST2",
1189 					&hclge_ppu_mpf_abnormal_int_st2[0],
1190 					status);
1191 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1192 	}
1193 
1194 	status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPU_MPF_INT_ST3_MASK;
1195 	if (status) {
1196 		reset_level =
1197 			hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST3",
1198 					&hclge_ppu_mpf_abnormal_int_st3[0],
1199 					status);
1200 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1201 	}
1202 
1203 	/* log TM(Traffic Manager) errors */
1204 	desc_data = (__le32 *)&desc[6];
1205 	status = le32_to_cpu(*desc_data);
1206 	if (status) {
1207 		reset_level = hclge_log_error(dev, "TM_SCH_RINT",
1208 					      &hclge_tm_sch_rint[0], status);
1209 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1210 	}
1211 
1212 	/* log QCN(Quantized Congestion Control) errors */
1213 	desc_data = (__le32 *)&desc[7];
1214 	status = le32_to_cpu(*desc_data) & HCLGE_QCN_FIFO_INT_MASK;
1215 	if (status) {
1216 		reset_level = hclge_log_error(dev, "QCN_FIFO_RINT",
1217 					      &hclge_qcn_fifo_rint[0], status);
1218 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1219 	}
1220 
1221 	status = le32_to_cpu(*(desc_data + 1)) & HCLGE_QCN_ECC_INT_MASK;
1222 	if (status) {
1223 		reset_level = hclge_log_error(dev, "QCN_ECC_RINT",
1224 					      &hclge_qcn_ecc_rint[0],
1225 					      status);
1226 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1227 	}
1228 
1229 	/* log NCSI errors */
1230 	desc_data = (__le32 *)&desc[9];
1231 	status = le32_to_cpu(*desc_data) & HCLGE_NCSI_ECC_INT_MASK;
1232 	if (status) {
1233 		reset_level = hclge_log_error(dev, "NCSI_ECC_INT_RPT",
1234 					      &hclge_ncsi_err_int[0], status);
1235 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1236 	}
1237 
1238 	/* clear all main PF RAS errors */
1239 	hclge_cmd_reuse_desc(&desc[0], false);
1240 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1241 
1242 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1243 	if (ret)
1244 		dev_err(dev, "clear all mpf ras int cmd failed (%d)\n", ret);
1245 
1246 	return ret;
1247 }
1248 
1249 /* hclge_handle_pf_ras_error: handle all PF RAS errors
1250  * @hdev: pointer to struct hclge_dev
1251  * @desc: descriptor for describing the command
1252  * @num:  number of extended command structures
1253  *
1254  * This function handles all the PF RAS errors in the
1255  * hw register/s using command.
1256  */
1257 static int hclge_handle_pf_ras_error(struct hclge_dev *hdev,
1258 				     struct hclge_desc *desc,
1259 				     int num)
1260 {
1261 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1262 	struct device *dev = &hdev->pdev->dev;
1263 	enum hnae3_reset_type reset_level;
1264 	__le32 *desc_data;
1265 	u32 status;
1266 	int ret;
1267 
1268 	/* query all PF RAS errors */
1269 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_PF_RAS_INT,
1270 				   true);
1271 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1272 
1273 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1274 	if (ret) {
1275 		dev_err(dev, "query all pf ras int cmd failed (%d)\n", ret);
1276 		return ret;
1277 	}
1278 
1279 	/* log SSU(Storage Switch Unit) errors */
1280 	status = le32_to_cpu(desc[0].data[0]);
1281 	if (status) {
1282 		reset_level = hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
1283 					      &hclge_ssu_port_based_err_int[0],
1284 					      status);
1285 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1286 	}
1287 
1288 	status = le32_to_cpu(desc[0].data[1]);
1289 	if (status) {
1290 		reset_level = hclge_log_error(dev, "SSU_FIFO_OVERFLOW_INT",
1291 					      &hclge_ssu_fifo_overflow_int[0],
1292 					      status);
1293 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1294 	}
1295 
1296 	status = le32_to_cpu(desc[0].data[2]);
1297 	if (status) {
1298 		reset_level = hclge_log_error(dev, "SSU_ETS_TCG_INT",
1299 					      &hclge_ssu_ets_tcg_int[0],
1300 					      status);
1301 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1302 	}
1303 
1304 	/* log IGU(Ingress Unit) EGU(Egress Unit) TNL errors */
1305 	desc_data = (__le32 *)&desc[1];
1306 	status = le32_to_cpu(*desc_data) & HCLGE_IGU_EGU_TNL_INT_MASK;
1307 	if (status) {
1308 		reset_level = hclge_log_error(dev, "IGU_EGU_TNL_INT_STS",
1309 					      &hclge_igu_egu_tnl_int[0],
1310 					      status);
1311 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1312 	}
1313 
1314 	/* log PPU(RCB) errors */
1315 	desc_data = (__le32 *)&desc[3];
1316 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_RAS_MASK;
1317 	if (status) {
1318 		reset_level = hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST0",
1319 					      &hclge_ppu_pf_abnormal_int[0],
1320 					      status);
1321 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_level);
1322 	}
1323 
1324 	/* clear all PF RAS errors */
1325 	hclge_cmd_reuse_desc(&desc[0], false);
1326 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1327 
1328 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1329 	if (ret)
1330 		dev_err(dev, "clear all pf ras int cmd failed (%d)\n", ret);
1331 
1332 	return ret;
1333 }
1334 
1335 static int hclge_handle_all_ras_errors(struct hclge_dev *hdev)
1336 {
1337 	struct device *dev = &hdev->pdev->dev;
1338 	u32 mpf_bd_num, pf_bd_num, bd_num;
1339 	struct hclge_desc desc_bd;
1340 	struct hclge_desc *desc;
1341 	int ret;
1342 
1343 	/* query the number of registers in the RAS int status */
1344 	hclge_cmd_setup_basic_desc(&desc_bd, HCLGE_QUERY_RAS_INT_STS_BD_NUM,
1345 				   true);
1346 	ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
1347 	if (ret) {
1348 		dev_err(dev, "fail(%d) to query ras int status bd num\n", ret);
1349 		return ret;
1350 	}
1351 	mpf_bd_num = le32_to_cpu(desc_bd.data[0]);
1352 	pf_bd_num = le32_to_cpu(desc_bd.data[1]);
1353 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
1354 
1355 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
1356 	if (!desc)
1357 		return -ENOMEM;
1358 
1359 	/* handle all main PF RAS errors */
1360 	ret = hclge_handle_mpf_ras_error(hdev, desc, mpf_bd_num);
1361 	if (ret) {
1362 		kfree(desc);
1363 		return ret;
1364 	}
1365 	memset(desc, 0, bd_num * sizeof(struct hclge_desc));
1366 
1367 	/* handle all PF RAS errors */
1368 	ret = hclge_handle_pf_ras_error(hdev, desc, pf_bd_num);
1369 	kfree(desc);
1370 
1371 	return ret;
1372 }
1373 
1374 static int hclge_log_rocee_ovf_error(struct hclge_dev *hdev)
1375 {
1376 	struct device *dev = &hdev->pdev->dev;
1377 	struct hclge_desc desc[2];
1378 	int ret;
1379 
1380 	/* read overflow error status */
1381 	ret = hclge_cmd_query_error(hdev, &desc[0],
1382 				    HCLGE_ROCEE_PF_RAS_INT_CMD,
1383 				    0, 0, 0);
1384 	if (ret) {
1385 		dev_err(dev, "failed(%d) to query ROCEE OVF error sts\n", ret);
1386 		return ret;
1387 	}
1388 
1389 	/* log overflow error */
1390 	if (le32_to_cpu(desc[0].data[0]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
1391 		const struct hclge_hw_error *err;
1392 		u32 err_sts;
1393 
1394 		err = &hclge_rocee_qmm_ovf_err_int[0];
1395 		err_sts = HCLGE_ROCEE_OVF_ERR_TYPE_MASK &
1396 			  le32_to_cpu(desc[0].data[0]);
1397 		while (err->msg) {
1398 			if (err->int_msk == err_sts) {
1399 				dev_warn(dev, "%s [error status=0x%x] found\n",
1400 					 err->msg,
1401 					 le32_to_cpu(desc[0].data[0]));
1402 				break;
1403 			}
1404 			err++;
1405 		}
1406 	}
1407 
1408 	if (le32_to_cpu(desc[0].data[1]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
1409 		dev_warn(dev, "ROCEE TSP OVF [error status=0x%x] found\n",
1410 			 le32_to_cpu(desc[0].data[1]));
1411 	}
1412 
1413 	if (le32_to_cpu(desc[0].data[2]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
1414 		dev_warn(dev, "ROCEE SCC OVF [error status=0x%x] found\n",
1415 			 le32_to_cpu(desc[0].data[2]));
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 static enum hnae3_reset_type
1422 hclge_log_and_clear_rocee_ras_error(struct hclge_dev *hdev)
1423 {
1424 	enum hnae3_reset_type reset_type = HNAE3_NONE_RESET;
1425 	struct device *dev = &hdev->pdev->dev;
1426 	struct hclge_desc desc[2];
1427 	unsigned int status;
1428 	int ret;
1429 
1430 	/* read RAS error interrupt status */
1431 	ret = hclge_cmd_query_error(hdev, &desc[0],
1432 				    HCLGE_QUERY_CLEAR_ROCEE_RAS_INT,
1433 				    0, 0, 0);
1434 	if (ret) {
1435 		dev_err(dev, "failed(%d) to query ROCEE RAS INT SRC\n", ret);
1436 		/* reset everything for now */
1437 		return HNAE3_GLOBAL_RESET;
1438 	}
1439 
1440 	status = le32_to_cpu(desc[0].data[0]);
1441 
1442 	if (status & HCLGE_ROCEE_RERR_INT_MASK) {
1443 		dev_warn(dev, "ROCEE RAS AXI rresp error\n");
1444 		reset_type = HNAE3_FUNC_RESET;
1445 	}
1446 
1447 	if (status & HCLGE_ROCEE_BERR_INT_MASK) {
1448 		dev_warn(dev, "ROCEE RAS AXI bresp error\n");
1449 		reset_type = HNAE3_FUNC_RESET;
1450 	}
1451 
1452 	if (status & HCLGE_ROCEE_ECC_INT_MASK) {
1453 		dev_warn(dev, "ROCEE RAS 2bit ECC error\n");
1454 		reset_type = HNAE3_GLOBAL_RESET;
1455 	}
1456 
1457 	if (status & HCLGE_ROCEE_OVF_INT_MASK) {
1458 		ret = hclge_log_rocee_ovf_error(hdev);
1459 		if (ret) {
1460 			dev_err(dev, "failed(%d) to process ovf error\n", ret);
1461 			/* reset everything for now */
1462 			return HNAE3_GLOBAL_RESET;
1463 		}
1464 		reset_type = HNAE3_FUNC_RESET;
1465 	}
1466 
1467 	/* clear error status */
1468 	hclge_cmd_reuse_desc(&desc[0], false);
1469 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 1);
1470 	if (ret) {
1471 		dev_err(dev, "failed(%d) to clear ROCEE RAS error\n", ret);
1472 		/* reset everything for now */
1473 		return HNAE3_GLOBAL_RESET;
1474 	}
1475 
1476 	return reset_type;
1477 }
1478 
1479 static int hclge_config_rocee_ras_interrupt(struct hclge_dev *hdev, bool en)
1480 {
1481 	struct device *dev = &hdev->pdev->dev;
1482 	struct hclge_desc desc;
1483 	int ret;
1484 
1485 	if (hdev->pdev->revision < 0x21 || !hnae3_dev_roce_supported(hdev))
1486 		return 0;
1487 
1488 	hclge_cmd_setup_basic_desc(&desc, HCLGE_CONFIG_ROCEE_RAS_INT_EN, false);
1489 	if (en) {
1490 		/* enable ROCEE hw error interrupts */
1491 		desc.data[0] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN);
1492 		desc.data[1] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN);
1493 
1494 		hclge_log_and_clear_rocee_ras_error(hdev);
1495 	}
1496 	desc.data[2] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN_MASK);
1497 	desc.data[3] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN_MASK);
1498 
1499 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1500 	if (ret)
1501 		dev_err(dev, "failed(%d) to config ROCEE RAS interrupt\n", ret);
1502 
1503 	return ret;
1504 }
1505 
1506 static void hclge_handle_rocee_ras_error(struct hnae3_ae_dev *ae_dev)
1507 {
1508 	enum hnae3_reset_type reset_type = HNAE3_NONE_RESET;
1509 	struct hclge_dev *hdev = ae_dev->priv;
1510 
1511 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
1512 	    hdev->pdev->revision < 0x21)
1513 		return;
1514 
1515 	reset_type = hclge_log_and_clear_rocee_ras_error(hdev);
1516 	if (reset_type != HNAE3_NONE_RESET)
1517 		HCLGE_SET_DEFAULT_RESET_REQUEST(reset_type);
1518 }
1519 
1520 static const struct hclge_hw_blk hw_blk[] = {
1521 	{
1522 	  .msk = BIT(0), .name = "IGU_EGU",
1523 	  .config_err_int = hclge_config_igu_egu_hw_err_int,
1524 	},
1525 	{
1526 	  .msk = BIT(1), .name = "PPP",
1527 	  .config_err_int = hclge_config_ppp_hw_err_int,
1528 	},
1529 	{
1530 	  .msk = BIT(2), .name = "SSU",
1531 	  .config_err_int = hclge_config_ssu_hw_err_int,
1532 	},
1533 	{
1534 	  .msk = BIT(3), .name = "PPU",
1535 	  .config_err_int = hclge_config_ppu_hw_err_int,
1536 	},
1537 	{
1538 	  .msk = BIT(4), .name = "TM",
1539 	  .config_err_int = hclge_config_tm_hw_err_int,
1540 	},
1541 	{
1542 	  .msk = BIT(5), .name = "COMMON",
1543 	  .config_err_int = hclge_config_common_hw_err_int,
1544 	},
1545 	{
1546 	  .msk = BIT(8), .name = "MAC",
1547 	  .config_err_int = hclge_config_mac_err_int,
1548 	},
1549 	{ /* sentinel */ }
1550 };
1551 
1552 int hclge_hw_error_set_state(struct hclge_dev *hdev, bool state)
1553 {
1554 	const struct hclge_hw_blk *module = hw_blk;
1555 	struct device *dev = &hdev->pdev->dev;
1556 	int ret = 0;
1557 
1558 	while (module->name) {
1559 		if (module->config_err_int) {
1560 			ret = module->config_err_int(hdev, state);
1561 			if (ret)
1562 				return ret;
1563 		}
1564 		module++;
1565 	}
1566 
1567 	ret = hclge_config_rocee_ras_interrupt(hdev, state);
1568 	if (ret)
1569 		dev_err(dev, "fail(%d) to configure ROCEE err int\n", ret);
1570 
1571 	return ret;
1572 }
1573 
1574 pci_ers_result_t hclge_handle_hw_ras_error(struct hnae3_ae_dev *ae_dev)
1575 {
1576 	struct hclge_dev *hdev = ae_dev->priv;
1577 	struct device *dev = &hdev->pdev->dev;
1578 	u32 status;
1579 
1580 	status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
1581 
1582 	/* Handling Non-fatal HNS RAS errors */
1583 	if (status & HCLGE_RAS_REG_NFE_MASK) {
1584 		dev_warn(dev,
1585 			 "HNS Non-Fatal RAS error(status=0x%x) identified\n",
1586 			 status);
1587 		hclge_handle_all_ras_errors(hdev);
1588 	} else {
1589 		if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
1590 		    hdev->pdev->revision < 0x21) {
1591 			ae_dev->override_pci_need_reset = 1;
1592 			return PCI_ERS_RESULT_RECOVERED;
1593 		}
1594 	}
1595 
1596 	if (status & HCLGE_RAS_REG_ROCEE_ERR_MASK) {
1597 		dev_warn(dev, "ROCEE uncorrected RAS error identified\n");
1598 		hclge_handle_rocee_ras_error(ae_dev);
1599 	}
1600 
1601 	if (status & HCLGE_RAS_REG_NFE_MASK ||
1602 	    status & HCLGE_RAS_REG_ROCEE_ERR_MASK) {
1603 		ae_dev->override_pci_need_reset = 0;
1604 		return PCI_ERS_RESULT_NEED_RESET;
1605 	}
1606 	ae_dev->override_pci_need_reset = 1;
1607 
1608 	return PCI_ERS_RESULT_RECOVERED;
1609 }
1610 
1611 int hclge_handle_hw_msix_error(struct hclge_dev *hdev,
1612 			       unsigned long *reset_requests)
1613 {
1614 	struct device *dev = &hdev->pdev->dev;
1615 	u32 mpf_bd_num, pf_bd_num, bd_num;
1616 	enum hnae3_reset_type reset_level;
1617 	struct hclge_desc desc_bd;
1618 	struct hclge_desc *desc;
1619 	__le32 *desc_data;
1620 	u32 status;
1621 	int ret;
1622 
1623 	/* query the number of bds for the MSIx int status */
1624 	hclge_cmd_setup_basic_desc(&desc_bd, HCLGE_QUERY_MSIX_INT_STS_BD_NUM,
1625 				   true);
1626 	ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
1627 	if (ret) {
1628 		dev_err(dev, "fail(%d) to query msix int status bd num\n",
1629 			ret);
1630 		/* reset everything for now */
1631 		set_bit(HNAE3_GLOBAL_RESET, reset_requests);
1632 		return ret;
1633 	}
1634 
1635 	mpf_bd_num = le32_to_cpu(desc_bd.data[0]);
1636 	pf_bd_num = le32_to_cpu(desc_bd.data[1]);
1637 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
1638 
1639 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
1640 	if (!desc)
1641 		goto out;
1642 
1643 	/* query all main PF MSIx errors */
1644 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT,
1645 				   true);
1646 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1647 
1648 	ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num);
1649 	if (ret) {
1650 		dev_err(dev, "query all mpf msix int cmd failed (%d)\n",
1651 			ret);
1652 		/* reset everything for now */
1653 		set_bit(HNAE3_GLOBAL_RESET, reset_requests);
1654 		goto msi_error;
1655 	}
1656 
1657 	/* log MAC errors */
1658 	desc_data = (__le32 *)&desc[1];
1659 	status = le32_to_cpu(*desc_data);
1660 	if (status) {
1661 		reset_level = hclge_log_error(dev, "MAC_AFIFO_TNL_INT_R",
1662 					      &hclge_mac_afifo_tnl_int[0],
1663 					      status);
1664 		set_bit(reset_level, reset_requests);
1665 	}
1666 
1667 	/* log PPU(RCB) MPF errors */
1668 	desc_data = (__le32 *)&desc[5];
1669 	status = le32_to_cpu(*(desc_data + 2)) &
1670 			HCLGE_PPU_MPF_INT_ST2_MSIX_MASK;
1671 	if (status) {
1672 		reset_level =
1673 			hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST2",
1674 					&hclge_ppu_mpf_abnormal_int_st2[0],
1675 					status);
1676 		set_bit(reset_level, reset_requests);
1677 	}
1678 
1679 	/* clear all main PF MSIx errors */
1680 	hclge_cmd_reuse_desc(&desc[0], false);
1681 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1682 
1683 	ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num);
1684 	if (ret) {
1685 		dev_err(dev, "clear all mpf msix int cmd failed (%d)\n",
1686 			ret);
1687 		/* reset everything for now */
1688 		set_bit(HNAE3_GLOBAL_RESET, reset_requests);
1689 		goto msi_error;
1690 	}
1691 
1692 	/* query all PF MSIx errors */
1693 	memset(desc, 0, bd_num * sizeof(struct hclge_desc));
1694 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT,
1695 				   true);
1696 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1697 
1698 	ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num);
1699 	if (ret) {
1700 		dev_err(dev, "query all pf msix int cmd failed (%d)\n",
1701 			ret);
1702 		/* reset everything for now */
1703 		set_bit(HNAE3_GLOBAL_RESET, reset_requests);
1704 		goto msi_error;
1705 	}
1706 
1707 	/* log SSU PF errors */
1708 	status = le32_to_cpu(desc[0].data[0]) & HCLGE_SSU_PORT_INT_MSIX_MASK;
1709 	if (status) {
1710 		reset_level = hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
1711 					      &hclge_ssu_port_based_pf_int[0],
1712 					      status);
1713 		set_bit(reset_level, reset_requests);
1714 	}
1715 
1716 	/* read and log PPP PF errors */
1717 	desc_data = (__le32 *)&desc[2];
1718 	status = le32_to_cpu(*desc_data);
1719 	if (status) {
1720 		reset_level = hclge_log_error(dev, "PPP_PF_ABNORMAL_INT_ST0",
1721 					      &hclge_ppp_pf_abnormal_int[0],
1722 					      status);
1723 		set_bit(reset_level, reset_requests);
1724 	}
1725 
1726 	/* log PPU(RCB) PF errors */
1727 	desc_data = (__le32 *)&desc[3];
1728 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_MSIX_MASK;
1729 	if (status) {
1730 		reset_level = hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST",
1731 					      &hclge_ppu_pf_abnormal_int[0],
1732 					      status);
1733 		set_bit(reset_level, reset_requests);
1734 	}
1735 
1736 	/* clear all PF MSIx errors */
1737 	hclge_cmd_reuse_desc(&desc[0], false);
1738 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1739 
1740 	ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num);
1741 	if (ret) {
1742 		dev_err(dev, "clear all pf msix int cmd failed (%d)\n",
1743 			ret);
1744 		/* reset everything for now */
1745 		set_bit(HNAE3_GLOBAL_RESET, reset_requests);
1746 	}
1747 
1748 msi_error:
1749 	kfree(desc);
1750 out:
1751 	return ret;
1752 }
1753