1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25 
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34 
35 #define hns3_set_field(origin, shift, val)	((origin) |= (val) << (shift))
36 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37 
38 #define hns3_rl_err(fmt, ...)						\
39 	do {								\
40 		if (net_ratelimit())					\
41 			netdev_err(fmt, ##__VA_ARGS__);			\
42 	} while (0)
43 
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45 
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48 			"Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51 
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55 
56 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
57 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
58 
59 #define HNS3_INNER_VLAN_TAG	1
60 #define HNS3_OUTER_VLAN_TAG	2
61 
62 #define HNS3_MIN_TX_LEN		33U
63 
64 /* hns3_pci_tbl - PCI Device ID Table
65  *
66  * Last entry must be all 0s
67  *
68  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
69  *   Class, Class Mask, private data (not used) }
70  */
71 static const struct pci_device_id hns3_pci_tbl[] = {
72 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
73 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
74 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
75 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
77 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
79 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
81 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
83 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
84 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
85 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
87 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
88 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
89 	/* required last entry */
90 	{0, }
91 };
92 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
93 
94 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t) \
95 	{	ptype, \
96 		l, \
97 		CHECKSUM_##s, \
98 		HNS3_L3_TYPE_##t, \
99 		1 }
100 
101 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
102 		{ ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0 }
103 
104 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
105 	HNS3_RX_PTYPE_UNUSED_ENTRY(0),
106 	HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP),
107 	HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP),
108 	HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP),
109 	HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL),
110 	HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL),
111 	HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL),
112 	HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM),
113 	HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL),
114 	HNS3_RX_PTYPE_UNUSED_ENTRY(9),
115 	HNS3_RX_PTYPE_UNUSED_ENTRY(10),
116 	HNS3_RX_PTYPE_UNUSED_ENTRY(11),
117 	HNS3_RX_PTYPE_UNUSED_ENTRY(12),
118 	HNS3_RX_PTYPE_UNUSED_ENTRY(13),
119 	HNS3_RX_PTYPE_UNUSED_ENTRY(14),
120 	HNS3_RX_PTYPE_UNUSED_ENTRY(15),
121 	HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL),
122 	HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4),
123 	HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4),
124 	HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4),
125 	HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4),
126 	HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4),
127 	HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4),
128 	HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4),
129 	HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4),
130 	HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4),
131 	HNS3_RX_PTYPE_UNUSED_ENTRY(26),
132 	HNS3_RX_PTYPE_UNUSED_ENTRY(27),
133 	HNS3_RX_PTYPE_UNUSED_ENTRY(28),
134 	HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL),
135 	HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL),
136 	HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4),
137 	HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4),
138 	HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4),
139 	HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4),
140 	HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4),
141 	HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4),
142 	HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4),
143 	HNS3_RX_PTYPE_UNUSED_ENTRY(38),
144 	HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6),
145 	HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6),
146 	HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6),
147 	HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6),
148 	HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6),
149 	HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6),
150 	HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6),
151 	HNS3_RX_PTYPE_UNUSED_ENTRY(46),
152 	HNS3_RX_PTYPE_UNUSED_ENTRY(47),
153 	HNS3_RX_PTYPE_UNUSED_ENTRY(48),
154 	HNS3_RX_PTYPE_UNUSED_ENTRY(49),
155 	HNS3_RX_PTYPE_UNUSED_ENTRY(50),
156 	HNS3_RX_PTYPE_UNUSED_ENTRY(51),
157 	HNS3_RX_PTYPE_UNUSED_ENTRY(52),
158 	HNS3_RX_PTYPE_UNUSED_ENTRY(53),
159 	HNS3_RX_PTYPE_UNUSED_ENTRY(54),
160 	HNS3_RX_PTYPE_UNUSED_ENTRY(55),
161 	HNS3_RX_PTYPE_UNUSED_ENTRY(56),
162 	HNS3_RX_PTYPE_UNUSED_ENTRY(57),
163 	HNS3_RX_PTYPE_UNUSED_ENTRY(58),
164 	HNS3_RX_PTYPE_UNUSED_ENTRY(59),
165 	HNS3_RX_PTYPE_UNUSED_ENTRY(60),
166 	HNS3_RX_PTYPE_UNUSED_ENTRY(61),
167 	HNS3_RX_PTYPE_UNUSED_ENTRY(62),
168 	HNS3_RX_PTYPE_UNUSED_ENTRY(63),
169 	HNS3_RX_PTYPE_UNUSED_ENTRY(64),
170 	HNS3_RX_PTYPE_UNUSED_ENTRY(65),
171 	HNS3_RX_PTYPE_UNUSED_ENTRY(66),
172 	HNS3_RX_PTYPE_UNUSED_ENTRY(67),
173 	HNS3_RX_PTYPE_UNUSED_ENTRY(68),
174 	HNS3_RX_PTYPE_UNUSED_ENTRY(69),
175 	HNS3_RX_PTYPE_UNUSED_ENTRY(70),
176 	HNS3_RX_PTYPE_UNUSED_ENTRY(71),
177 	HNS3_RX_PTYPE_UNUSED_ENTRY(72),
178 	HNS3_RX_PTYPE_UNUSED_ENTRY(73),
179 	HNS3_RX_PTYPE_UNUSED_ENTRY(74),
180 	HNS3_RX_PTYPE_UNUSED_ENTRY(75),
181 	HNS3_RX_PTYPE_UNUSED_ENTRY(76),
182 	HNS3_RX_PTYPE_UNUSED_ENTRY(77),
183 	HNS3_RX_PTYPE_UNUSED_ENTRY(78),
184 	HNS3_RX_PTYPE_UNUSED_ENTRY(79),
185 	HNS3_RX_PTYPE_UNUSED_ENTRY(80),
186 	HNS3_RX_PTYPE_UNUSED_ENTRY(81),
187 	HNS3_RX_PTYPE_UNUSED_ENTRY(82),
188 	HNS3_RX_PTYPE_UNUSED_ENTRY(83),
189 	HNS3_RX_PTYPE_UNUSED_ENTRY(84),
190 	HNS3_RX_PTYPE_UNUSED_ENTRY(85),
191 	HNS3_RX_PTYPE_UNUSED_ENTRY(86),
192 	HNS3_RX_PTYPE_UNUSED_ENTRY(87),
193 	HNS3_RX_PTYPE_UNUSED_ENTRY(88),
194 	HNS3_RX_PTYPE_UNUSED_ENTRY(89),
195 	HNS3_RX_PTYPE_UNUSED_ENTRY(90),
196 	HNS3_RX_PTYPE_UNUSED_ENTRY(91),
197 	HNS3_RX_PTYPE_UNUSED_ENTRY(92),
198 	HNS3_RX_PTYPE_UNUSED_ENTRY(93),
199 	HNS3_RX_PTYPE_UNUSED_ENTRY(94),
200 	HNS3_RX_PTYPE_UNUSED_ENTRY(95),
201 	HNS3_RX_PTYPE_UNUSED_ENTRY(96),
202 	HNS3_RX_PTYPE_UNUSED_ENTRY(97),
203 	HNS3_RX_PTYPE_UNUSED_ENTRY(98),
204 	HNS3_RX_PTYPE_UNUSED_ENTRY(99),
205 	HNS3_RX_PTYPE_UNUSED_ENTRY(100),
206 	HNS3_RX_PTYPE_UNUSED_ENTRY(101),
207 	HNS3_RX_PTYPE_UNUSED_ENTRY(102),
208 	HNS3_RX_PTYPE_UNUSED_ENTRY(103),
209 	HNS3_RX_PTYPE_UNUSED_ENTRY(104),
210 	HNS3_RX_PTYPE_UNUSED_ENTRY(105),
211 	HNS3_RX_PTYPE_UNUSED_ENTRY(106),
212 	HNS3_RX_PTYPE_UNUSED_ENTRY(107),
213 	HNS3_RX_PTYPE_UNUSED_ENTRY(108),
214 	HNS3_RX_PTYPE_UNUSED_ENTRY(109),
215 	HNS3_RX_PTYPE_UNUSED_ENTRY(110),
216 	HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6),
217 	HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6),
218 	HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6),
219 	HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6),
220 	HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6),
221 	HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6),
222 	HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6),
223 	HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6),
224 	HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6),
225 	HNS3_RX_PTYPE_UNUSED_ENTRY(120),
226 	HNS3_RX_PTYPE_UNUSED_ENTRY(121),
227 	HNS3_RX_PTYPE_UNUSED_ENTRY(122),
228 	HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL),
229 	HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL),
230 	HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4),
231 	HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4),
232 	HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4),
233 	HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4),
234 	HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4),
235 	HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4),
236 	HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4),
237 	HNS3_RX_PTYPE_UNUSED_ENTRY(132),
238 	HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6),
239 	HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6),
240 	HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6),
241 	HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6),
242 	HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6),
243 	HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6),
244 	HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6),
245 	HNS3_RX_PTYPE_UNUSED_ENTRY(140),
246 	HNS3_RX_PTYPE_UNUSED_ENTRY(141),
247 	HNS3_RX_PTYPE_UNUSED_ENTRY(142),
248 	HNS3_RX_PTYPE_UNUSED_ENTRY(143),
249 	HNS3_RX_PTYPE_UNUSED_ENTRY(144),
250 	HNS3_RX_PTYPE_UNUSED_ENTRY(145),
251 	HNS3_RX_PTYPE_UNUSED_ENTRY(146),
252 	HNS3_RX_PTYPE_UNUSED_ENTRY(147),
253 	HNS3_RX_PTYPE_UNUSED_ENTRY(148),
254 	HNS3_RX_PTYPE_UNUSED_ENTRY(149),
255 	HNS3_RX_PTYPE_UNUSED_ENTRY(150),
256 	HNS3_RX_PTYPE_UNUSED_ENTRY(151),
257 	HNS3_RX_PTYPE_UNUSED_ENTRY(152),
258 	HNS3_RX_PTYPE_UNUSED_ENTRY(153),
259 	HNS3_RX_PTYPE_UNUSED_ENTRY(154),
260 	HNS3_RX_PTYPE_UNUSED_ENTRY(155),
261 	HNS3_RX_PTYPE_UNUSED_ENTRY(156),
262 	HNS3_RX_PTYPE_UNUSED_ENTRY(157),
263 	HNS3_RX_PTYPE_UNUSED_ENTRY(158),
264 	HNS3_RX_PTYPE_UNUSED_ENTRY(159),
265 	HNS3_RX_PTYPE_UNUSED_ENTRY(160),
266 	HNS3_RX_PTYPE_UNUSED_ENTRY(161),
267 	HNS3_RX_PTYPE_UNUSED_ENTRY(162),
268 	HNS3_RX_PTYPE_UNUSED_ENTRY(163),
269 	HNS3_RX_PTYPE_UNUSED_ENTRY(164),
270 	HNS3_RX_PTYPE_UNUSED_ENTRY(165),
271 	HNS3_RX_PTYPE_UNUSED_ENTRY(166),
272 	HNS3_RX_PTYPE_UNUSED_ENTRY(167),
273 	HNS3_RX_PTYPE_UNUSED_ENTRY(168),
274 	HNS3_RX_PTYPE_UNUSED_ENTRY(169),
275 	HNS3_RX_PTYPE_UNUSED_ENTRY(170),
276 	HNS3_RX_PTYPE_UNUSED_ENTRY(171),
277 	HNS3_RX_PTYPE_UNUSED_ENTRY(172),
278 	HNS3_RX_PTYPE_UNUSED_ENTRY(173),
279 	HNS3_RX_PTYPE_UNUSED_ENTRY(174),
280 	HNS3_RX_PTYPE_UNUSED_ENTRY(175),
281 	HNS3_RX_PTYPE_UNUSED_ENTRY(176),
282 	HNS3_RX_PTYPE_UNUSED_ENTRY(177),
283 	HNS3_RX_PTYPE_UNUSED_ENTRY(178),
284 	HNS3_RX_PTYPE_UNUSED_ENTRY(179),
285 	HNS3_RX_PTYPE_UNUSED_ENTRY(180),
286 	HNS3_RX_PTYPE_UNUSED_ENTRY(181),
287 	HNS3_RX_PTYPE_UNUSED_ENTRY(182),
288 	HNS3_RX_PTYPE_UNUSED_ENTRY(183),
289 	HNS3_RX_PTYPE_UNUSED_ENTRY(184),
290 	HNS3_RX_PTYPE_UNUSED_ENTRY(185),
291 	HNS3_RX_PTYPE_UNUSED_ENTRY(186),
292 	HNS3_RX_PTYPE_UNUSED_ENTRY(187),
293 	HNS3_RX_PTYPE_UNUSED_ENTRY(188),
294 	HNS3_RX_PTYPE_UNUSED_ENTRY(189),
295 	HNS3_RX_PTYPE_UNUSED_ENTRY(190),
296 	HNS3_RX_PTYPE_UNUSED_ENTRY(191),
297 	HNS3_RX_PTYPE_UNUSED_ENTRY(192),
298 	HNS3_RX_PTYPE_UNUSED_ENTRY(193),
299 	HNS3_RX_PTYPE_UNUSED_ENTRY(194),
300 	HNS3_RX_PTYPE_UNUSED_ENTRY(195),
301 	HNS3_RX_PTYPE_UNUSED_ENTRY(196),
302 	HNS3_RX_PTYPE_UNUSED_ENTRY(197),
303 	HNS3_RX_PTYPE_UNUSED_ENTRY(198),
304 	HNS3_RX_PTYPE_UNUSED_ENTRY(199),
305 	HNS3_RX_PTYPE_UNUSED_ENTRY(200),
306 	HNS3_RX_PTYPE_UNUSED_ENTRY(201),
307 	HNS3_RX_PTYPE_UNUSED_ENTRY(202),
308 	HNS3_RX_PTYPE_UNUSED_ENTRY(203),
309 	HNS3_RX_PTYPE_UNUSED_ENTRY(204),
310 	HNS3_RX_PTYPE_UNUSED_ENTRY(205),
311 	HNS3_RX_PTYPE_UNUSED_ENTRY(206),
312 	HNS3_RX_PTYPE_UNUSED_ENTRY(207),
313 	HNS3_RX_PTYPE_UNUSED_ENTRY(208),
314 	HNS3_RX_PTYPE_UNUSED_ENTRY(209),
315 	HNS3_RX_PTYPE_UNUSED_ENTRY(210),
316 	HNS3_RX_PTYPE_UNUSED_ENTRY(211),
317 	HNS3_RX_PTYPE_UNUSED_ENTRY(212),
318 	HNS3_RX_PTYPE_UNUSED_ENTRY(213),
319 	HNS3_RX_PTYPE_UNUSED_ENTRY(214),
320 	HNS3_RX_PTYPE_UNUSED_ENTRY(215),
321 	HNS3_RX_PTYPE_UNUSED_ENTRY(216),
322 	HNS3_RX_PTYPE_UNUSED_ENTRY(217),
323 	HNS3_RX_PTYPE_UNUSED_ENTRY(218),
324 	HNS3_RX_PTYPE_UNUSED_ENTRY(219),
325 	HNS3_RX_PTYPE_UNUSED_ENTRY(220),
326 	HNS3_RX_PTYPE_UNUSED_ENTRY(221),
327 	HNS3_RX_PTYPE_UNUSED_ENTRY(222),
328 	HNS3_RX_PTYPE_UNUSED_ENTRY(223),
329 	HNS3_RX_PTYPE_UNUSED_ENTRY(224),
330 	HNS3_RX_PTYPE_UNUSED_ENTRY(225),
331 	HNS3_RX_PTYPE_UNUSED_ENTRY(226),
332 	HNS3_RX_PTYPE_UNUSED_ENTRY(227),
333 	HNS3_RX_PTYPE_UNUSED_ENTRY(228),
334 	HNS3_RX_PTYPE_UNUSED_ENTRY(229),
335 	HNS3_RX_PTYPE_UNUSED_ENTRY(230),
336 	HNS3_RX_PTYPE_UNUSED_ENTRY(231),
337 	HNS3_RX_PTYPE_UNUSED_ENTRY(232),
338 	HNS3_RX_PTYPE_UNUSED_ENTRY(233),
339 	HNS3_RX_PTYPE_UNUSED_ENTRY(234),
340 	HNS3_RX_PTYPE_UNUSED_ENTRY(235),
341 	HNS3_RX_PTYPE_UNUSED_ENTRY(236),
342 	HNS3_RX_PTYPE_UNUSED_ENTRY(237),
343 	HNS3_RX_PTYPE_UNUSED_ENTRY(238),
344 	HNS3_RX_PTYPE_UNUSED_ENTRY(239),
345 	HNS3_RX_PTYPE_UNUSED_ENTRY(240),
346 	HNS3_RX_PTYPE_UNUSED_ENTRY(241),
347 	HNS3_RX_PTYPE_UNUSED_ENTRY(242),
348 	HNS3_RX_PTYPE_UNUSED_ENTRY(243),
349 	HNS3_RX_PTYPE_UNUSED_ENTRY(244),
350 	HNS3_RX_PTYPE_UNUSED_ENTRY(245),
351 	HNS3_RX_PTYPE_UNUSED_ENTRY(246),
352 	HNS3_RX_PTYPE_UNUSED_ENTRY(247),
353 	HNS3_RX_PTYPE_UNUSED_ENTRY(248),
354 	HNS3_RX_PTYPE_UNUSED_ENTRY(249),
355 	HNS3_RX_PTYPE_UNUSED_ENTRY(250),
356 	HNS3_RX_PTYPE_UNUSED_ENTRY(251),
357 	HNS3_RX_PTYPE_UNUSED_ENTRY(252),
358 	HNS3_RX_PTYPE_UNUSED_ENTRY(253),
359 	HNS3_RX_PTYPE_UNUSED_ENTRY(254),
360 	HNS3_RX_PTYPE_UNUSED_ENTRY(255),
361 };
362 
363 #define HNS3_INVALID_PTYPE \
364 		ARRAY_SIZE(hns3_rx_ptype_tbl)
365 
366 static irqreturn_t hns3_irq_handle(int irq, void *vector)
367 {
368 	struct hns3_enet_tqp_vector *tqp_vector = vector;
369 
370 	napi_schedule_irqoff(&tqp_vector->napi);
371 	tqp_vector->event_cnt++;
372 
373 	return IRQ_HANDLED;
374 }
375 
376 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
377 {
378 	struct hns3_enet_tqp_vector *tqp_vectors;
379 	unsigned int i;
380 
381 	for (i = 0; i < priv->vector_num; i++) {
382 		tqp_vectors = &priv->tqp_vector[i];
383 
384 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
385 			continue;
386 
387 		/* clear the affinity mask */
388 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
389 
390 		/* release the irq resource */
391 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
392 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
393 	}
394 }
395 
396 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
397 {
398 	struct hns3_enet_tqp_vector *tqp_vectors;
399 	int txrx_int_idx = 0;
400 	int rx_int_idx = 0;
401 	int tx_int_idx = 0;
402 	unsigned int i;
403 	int ret;
404 
405 	for (i = 0; i < priv->vector_num; i++) {
406 		tqp_vectors = &priv->tqp_vector[i];
407 
408 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
409 			continue;
410 
411 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
412 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
413 				 "%s-%s-%s-%d", hns3_driver_name,
414 				 pci_name(priv->ae_handle->pdev),
415 				 "TxRx", txrx_int_idx++);
416 			txrx_int_idx++;
417 		} else if (tqp_vectors->rx_group.ring) {
418 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
419 				 "%s-%s-%s-%d", hns3_driver_name,
420 				 pci_name(priv->ae_handle->pdev),
421 				 "Rx", rx_int_idx++);
422 		} else if (tqp_vectors->tx_group.ring) {
423 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
424 				 "%s-%s-%s-%d", hns3_driver_name,
425 				 pci_name(priv->ae_handle->pdev),
426 				 "Tx", tx_int_idx++);
427 		} else {
428 			/* Skip this unused q_vector */
429 			continue;
430 		}
431 
432 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
433 
434 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
435 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
436 				  tqp_vectors->name, tqp_vectors);
437 		if (ret) {
438 			netdev_err(priv->netdev, "request irq(%d) fail\n",
439 				   tqp_vectors->vector_irq);
440 			hns3_nic_uninit_irq(priv);
441 			return ret;
442 		}
443 
444 		irq_set_affinity_hint(tqp_vectors->vector_irq,
445 				      &tqp_vectors->affinity_mask);
446 
447 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
448 	}
449 
450 	return 0;
451 }
452 
453 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
454 				 u32 mask_en)
455 {
456 	writel(mask_en, tqp_vector->mask_addr);
457 }
458 
459 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
460 {
461 	napi_enable(&tqp_vector->napi);
462 	enable_irq(tqp_vector->vector_irq);
463 
464 	/* enable vector */
465 	hns3_mask_vector_irq(tqp_vector, 1);
466 }
467 
468 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
469 {
470 	/* disable vector */
471 	hns3_mask_vector_irq(tqp_vector, 0);
472 
473 	disable_irq(tqp_vector->vector_irq);
474 	napi_disable(&tqp_vector->napi);
475 	cancel_work_sync(&tqp_vector->rx_group.dim.work);
476 	cancel_work_sync(&tqp_vector->tx_group.dim.work);
477 }
478 
479 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
480 				 u32 rl_value)
481 {
482 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
483 
484 	/* this defines the configuration for RL (Interrupt Rate Limiter).
485 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
486 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
487 	 */
488 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
489 	    !tqp_vector->rx_group.coal.adapt_enable)
490 		/* According to the hardware, the range of rl_reg is
491 		 * 0-59 and the unit is 4.
492 		 */
493 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
494 
495 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
496 }
497 
498 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
499 				    u32 gl_value)
500 {
501 	u32 new_val;
502 
503 	if (tqp_vector->rx_group.coal.unit_1us)
504 		new_val = gl_value | HNS3_INT_GL_1US;
505 	else
506 		new_val = hns3_gl_usec_to_reg(gl_value);
507 
508 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
509 }
510 
511 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
512 				    u32 gl_value)
513 {
514 	u32 new_val;
515 
516 	if (tqp_vector->tx_group.coal.unit_1us)
517 		new_val = gl_value | HNS3_INT_GL_1US;
518 	else
519 		new_val = hns3_gl_usec_to_reg(gl_value);
520 
521 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
522 }
523 
524 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
525 				    u32 ql_value)
526 {
527 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
528 }
529 
530 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
531 				    u32 ql_value)
532 {
533 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
534 }
535 
536 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
537 				      struct hns3_nic_priv *priv)
538 {
539 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
540 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
541 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
542 	struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
543 	struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
544 
545 	tx_coal->adapt_enable = ptx_coal->adapt_enable;
546 	rx_coal->adapt_enable = prx_coal->adapt_enable;
547 
548 	tx_coal->int_gl = ptx_coal->int_gl;
549 	rx_coal->int_gl = prx_coal->int_gl;
550 
551 	rx_coal->flow_level = prx_coal->flow_level;
552 	tx_coal->flow_level = ptx_coal->flow_level;
553 
554 	/* device version above V3(include V3), GL can configure 1us
555 	 * unit, so uses 1us unit.
556 	 */
557 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
558 		tx_coal->unit_1us = 1;
559 		rx_coal->unit_1us = 1;
560 	}
561 
562 	if (ae_dev->dev_specs.int_ql_max) {
563 		tx_coal->ql_enable = 1;
564 		rx_coal->ql_enable = 1;
565 		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
566 		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
567 		tx_coal->int_ql = ptx_coal->int_ql;
568 		rx_coal->int_ql = prx_coal->int_ql;
569 	}
570 }
571 
572 static void
573 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
574 			     struct hns3_nic_priv *priv)
575 {
576 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
577 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
578 	struct hnae3_handle *h = priv->ae_handle;
579 
580 	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
581 	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
582 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
583 
584 	if (tx_coal->ql_enable)
585 		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
586 
587 	if (rx_coal->ql_enable)
588 		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
589 }
590 
591 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
592 {
593 	struct hnae3_handle *h = hns3_get_handle(netdev);
594 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
595 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
596 	unsigned int queue_size = kinfo->num_tqps;
597 	int i, ret;
598 
599 	if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
600 		netdev_reset_tc(netdev);
601 	} else {
602 		ret = netdev_set_num_tc(netdev, tc_info->num_tc);
603 		if (ret) {
604 			netdev_err(netdev,
605 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
606 			return ret;
607 		}
608 
609 		for (i = 0; i < HNAE3_MAX_TC; i++) {
610 			if (!test_bit(i, &tc_info->tc_en))
611 				continue;
612 
613 			netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
614 					    tc_info->tqp_offset[i]);
615 		}
616 	}
617 
618 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
619 	if (ret) {
620 		netdev_err(netdev,
621 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
622 		return ret;
623 	}
624 
625 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
626 	if (ret) {
627 		netdev_err(netdev,
628 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
629 		return ret;
630 	}
631 
632 	return 0;
633 }
634 
635 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
636 {
637 	u16 alloc_tqps, max_rss_size, rss_size;
638 
639 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
640 	rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
641 
642 	return min_t(u16, rss_size, max_rss_size);
643 }
644 
645 static void hns3_tqp_enable(struct hnae3_queue *tqp)
646 {
647 	u32 rcb_reg;
648 
649 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
650 	rcb_reg |= BIT(HNS3_RING_EN_B);
651 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
652 }
653 
654 static void hns3_tqp_disable(struct hnae3_queue *tqp)
655 {
656 	u32 rcb_reg;
657 
658 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
659 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
660 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
661 }
662 
663 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
664 {
665 #ifdef CONFIG_RFS_ACCEL
666 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
667 	netdev->rx_cpu_rmap = NULL;
668 #endif
669 }
670 
671 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
672 {
673 #ifdef CONFIG_RFS_ACCEL
674 	struct hns3_nic_priv *priv = netdev_priv(netdev);
675 	struct hns3_enet_tqp_vector *tqp_vector;
676 	int i, ret;
677 
678 	if (!netdev->rx_cpu_rmap) {
679 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
680 		if (!netdev->rx_cpu_rmap)
681 			return -ENOMEM;
682 	}
683 
684 	for (i = 0; i < priv->vector_num; i++) {
685 		tqp_vector = &priv->tqp_vector[i];
686 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
687 				       tqp_vector->vector_irq);
688 		if (ret) {
689 			hns3_free_rx_cpu_rmap(netdev);
690 			return ret;
691 		}
692 	}
693 #endif
694 	return 0;
695 }
696 
697 static int hns3_nic_net_up(struct net_device *netdev)
698 {
699 	struct hns3_nic_priv *priv = netdev_priv(netdev);
700 	struct hnae3_handle *h = priv->ae_handle;
701 	int i, j;
702 	int ret;
703 
704 	ret = hns3_nic_reset_all_ring(h);
705 	if (ret)
706 		return ret;
707 
708 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
709 
710 	/* enable the vectors */
711 	for (i = 0; i < priv->vector_num; i++)
712 		hns3_vector_enable(&priv->tqp_vector[i]);
713 
714 	/* enable rcb */
715 	for (j = 0; j < h->kinfo.num_tqps; j++)
716 		hns3_tqp_enable(h->kinfo.tqp[j]);
717 
718 	/* start the ae_dev */
719 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
720 	if (ret) {
721 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
722 		while (j--)
723 			hns3_tqp_disable(h->kinfo.tqp[j]);
724 
725 		for (j = i - 1; j >= 0; j--)
726 			hns3_vector_disable(&priv->tqp_vector[j]);
727 	}
728 
729 	return ret;
730 }
731 
732 static void hns3_config_xps(struct hns3_nic_priv *priv)
733 {
734 	int i;
735 
736 	for (i = 0; i < priv->vector_num; i++) {
737 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
738 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
739 
740 		while (ring) {
741 			int ret;
742 
743 			ret = netif_set_xps_queue(priv->netdev,
744 						  &tqp_vector->affinity_mask,
745 						  ring->tqp->tqp_index);
746 			if (ret)
747 				netdev_warn(priv->netdev,
748 					    "set xps queue failed: %d", ret);
749 
750 			ring = ring->next;
751 		}
752 	}
753 }
754 
755 static int hns3_nic_net_open(struct net_device *netdev)
756 {
757 	struct hns3_nic_priv *priv = netdev_priv(netdev);
758 	struct hnae3_handle *h = hns3_get_handle(netdev);
759 	struct hnae3_knic_private_info *kinfo;
760 	int i, ret;
761 
762 	if (hns3_nic_resetting(netdev))
763 		return -EBUSY;
764 
765 	netif_carrier_off(netdev);
766 
767 	ret = hns3_nic_set_real_num_queue(netdev);
768 	if (ret)
769 		return ret;
770 
771 	ret = hns3_nic_net_up(netdev);
772 	if (ret) {
773 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
774 		return ret;
775 	}
776 
777 	kinfo = &h->kinfo;
778 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
779 		netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
780 
781 	if (h->ae_algo->ops->set_timer_task)
782 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
783 
784 	hns3_config_xps(priv);
785 
786 	netif_dbg(h, drv, netdev, "net open\n");
787 
788 	return 0;
789 }
790 
791 static void hns3_reset_tx_queue(struct hnae3_handle *h)
792 {
793 	struct net_device *ndev = h->kinfo.netdev;
794 	struct hns3_nic_priv *priv = netdev_priv(ndev);
795 	struct netdev_queue *dev_queue;
796 	u32 i;
797 
798 	for (i = 0; i < h->kinfo.num_tqps; i++) {
799 		dev_queue = netdev_get_tx_queue(ndev,
800 						priv->ring[i].queue_index);
801 		netdev_tx_reset_queue(dev_queue);
802 	}
803 }
804 
805 static void hns3_nic_net_down(struct net_device *netdev)
806 {
807 	struct hns3_nic_priv *priv = netdev_priv(netdev);
808 	struct hnae3_handle *h = hns3_get_handle(netdev);
809 	const struct hnae3_ae_ops *ops;
810 	int i;
811 
812 	/* disable vectors */
813 	for (i = 0; i < priv->vector_num; i++)
814 		hns3_vector_disable(&priv->tqp_vector[i]);
815 
816 	/* disable rcb */
817 	for (i = 0; i < h->kinfo.num_tqps; i++)
818 		hns3_tqp_disable(h->kinfo.tqp[i]);
819 
820 	/* stop ae_dev */
821 	ops = priv->ae_handle->ae_algo->ops;
822 	if (ops->stop)
823 		ops->stop(priv->ae_handle);
824 
825 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
826 	 * during reset process, because driver may not be able
827 	 * to disable the ring through firmware when downing the netdev.
828 	 */
829 	if (!hns3_nic_resetting(netdev))
830 		hns3_clear_all_ring(priv->ae_handle, false);
831 
832 	hns3_reset_tx_queue(priv->ae_handle);
833 }
834 
835 static int hns3_nic_net_stop(struct net_device *netdev)
836 {
837 	struct hns3_nic_priv *priv = netdev_priv(netdev);
838 	struct hnae3_handle *h = hns3_get_handle(netdev);
839 
840 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
841 		return 0;
842 
843 	netif_dbg(h, drv, netdev, "net stop\n");
844 
845 	if (h->ae_algo->ops->set_timer_task)
846 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
847 
848 	netif_carrier_off(netdev);
849 	netif_tx_disable(netdev);
850 
851 	hns3_nic_net_down(netdev);
852 
853 	return 0;
854 }
855 
856 static int hns3_nic_uc_sync(struct net_device *netdev,
857 			    const unsigned char *addr)
858 {
859 	struct hnae3_handle *h = hns3_get_handle(netdev);
860 
861 	if (h->ae_algo->ops->add_uc_addr)
862 		return h->ae_algo->ops->add_uc_addr(h, addr);
863 
864 	return 0;
865 }
866 
867 static int hns3_nic_uc_unsync(struct net_device *netdev,
868 			      const unsigned char *addr)
869 {
870 	struct hnae3_handle *h = hns3_get_handle(netdev);
871 
872 	/* need ignore the request of removing device address, because
873 	 * we store the device address and other addresses of uc list
874 	 * in the function's mac filter list.
875 	 */
876 	if (ether_addr_equal(addr, netdev->dev_addr))
877 		return 0;
878 
879 	if (h->ae_algo->ops->rm_uc_addr)
880 		return h->ae_algo->ops->rm_uc_addr(h, addr);
881 
882 	return 0;
883 }
884 
885 static int hns3_nic_mc_sync(struct net_device *netdev,
886 			    const unsigned char *addr)
887 {
888 	struct hnae3_handle *h = hns3_get_handle(netdev);
889 
890 	if (h->ae_algo->ops->add_mc_addr)
891 		return h->ae_algo->ops->add_mc_addr(h, addr);
892 
893 	return 0;
894 }
895 
896 static int hns3_nic_mc_unsync(struct net_device *netdev,
897 			      const unsigned char *addr)
898 {
899 	struct hnae3_handle *h = hns3_get_handle(netdev);
900 
901 	if (h->ae_algo->ops->rm_mc_addr)
902 		return h->ae_algo->ops->rm_mc_addr(h, addr);
903 
904 	return 0;
905 }
906 
907 static u8 hns3_get_netdev_flags(struct net_device *netdev)
908 {
909 	u8 flags = 0;
910 
911 	if (netdev->flags & IFF_PROMISC)
912 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
913 	else if (netdev->flags & IFF_ALLMULTI)
914 		flags = HNAE3_USER_MPE;
915 
916 	return flags;
917 }
918 
919 static void hns3_nic_set_rx_mode(struct net_device *netdev)
920 {
921 	struct hnae3_handle *h = hns3_get_handle(netdev);
922 	u8 new_flags;
923 
924 	new_flags = hns3_get_netdev_flags(netdev);
925 
926 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
927 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
928 
929 	/* User mode Promisc mode enable and vlan filtering is disabled to
930 	 * let all packets in.
931 	 */
932 	h->netdev_flags = new_flags;
933 	hns3_request_update_promisc_mode(h);
934 }
935 
936 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
937 {
938 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
939 
940 	if (ops->request_update_promisc_mode)
941 		ops->request_update_promisc_mode(handle);
942 }
943 
944 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
945 			u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
946 {
947 	u32 l4_offset, hdr_len;
948 	union l3_hdr_info l3;
949 	union l4_hdr_info l4;
950 	u32 l4_paylen;
951 	int ret;
952 
953 	if (!skb_is_gso(skb))
954 		return 0;
955 
956 	ret = skb_cow_head(skb, 0);
957 	if (unlikely(ret < 0))
958 		return ret;
959 
960 	l3.hdr = skb_network_header(skb);
961 	l4.hdr = skb_transport_header(skb);
962 
963 	/* Software should clear the IPv4's checksum field when tso is
964 	 * needed.
965 	 */
966 	if (l3.v4->version == 4)
967 		l3.v4->check = 0;
968 
969 	/* tunnel packet */
970 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
971 					 SKB_GSO_GRE_CSUM |
972 					 SKB_GSO_UDP_TUNNEL |
973 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
974 		/* reset l3&l4 pointers from outer to inner headers */
975 		l3.hdr = skb_inner_network_header(skb);
976 		l4.hdr = skb_inner_transport_header(skb);
977 
978 		/* Software should clear the IPv4's checksum field when
979 		 * tso is needed.
980 		 */
981 		if (l3.v4->version == 4)
982 			l3.v4->check = 0;
983 	}
984 
985 	/* normal or tunnel packet */
986 	l4_offset = l4.hdr - skb->data;
987 
988 	/* remove payload length from inner pseudo checksum when tso */
989 	l4_paylen = skb->len - l4_offset;
990 
991 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
992 		hdr_len = sizeof(*l4.udp) + l4_offset;
993 		csum_replace_by_diff(&l4.udp->check,
994 				     (__force __wsum)htonl(l4_paylen));
995 	} else {
996 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
997 		csum_replace_by_diff(&l4.tcp->check,
998 				     (__force __wsum)htonl(l4_paylen));
999 	}
1000 
1001 	*send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1002 
1003 	/* find the txbd field values */
1004 	*paylen_fdop_ol4cs = skb->len - hdr_len;
1005 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1006 
1007 	/* offload outer UDP header checksum */
1008 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1009 		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1010 
1011 	/* get MSS for TSO */
1012 	*mss = skb_shinfo(skb)->gso_size;
1013 
1014 	trace_hns3_tso(skb);
1015 
1016 	return 0;
1017 }
1018 
1019 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1020 				u8 *il4_proto)
1021 {
1022 	union l3_hdr_info l3;
1023 	unsigned char *l4_hdr;
1024 	unsigned char *exthdr;
1025 	u8 l4_proto_tmp;
1026 	__be16 frag_off;
1027 
1028 	/* find outer header point */
1029 	l3.hdr = skb_network_header(skb);
1030 	l4_hdr = skb_transport_header(skb);
1031 
1032 	if (skb->protocol == htons(ETH_P_IPV6)) {
1033 		exthdr = l3.hdr + sizeof(*l3.v6);
1034 		l4_proto_tmp = l3.v6->nexthdr;
1035 		if (l4_hdr != exthdr)
1036 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1037 					 &l4_proto_tmp, &frag_off);
1038 	} else if (skb->protocol == htons(ETH_P_IP)) {
1039 		l4_proto_tmp = l3.v4->protocol;
1040 	} else {
1041 		return -EINVAL;
1042 	}
1043 
1044 	*ol4_proto = l4_proto_tmp;
1045 
1046 	/* tunnel packet */
1047 	if (!skb->encapsulation) {
1048 		*il4_proto = 0;
1049 		return 0;
1050 	}
1051 
1052 	/* find inner header point */
1053 	l3.hdr = skb_inner_network_header(skb);
1054 	l4_hdr = skb_inner_transport_header(skb);
1055 
1056 	if (l3.v6->version == 6) {
1057 		exthdr = l3.hdr + sizeof(*l3.v6);
1058 		l4_proto_tmp = l3.v6->nexthdr;
1059 		if (l4_hdr != exthdr)
1060 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1061 					 &l4_proto_tmp, &frag_off);
1062 	} else if (l3.v4->version == 4) {
1063 		l4_proto_tmp = l3.v4->protocol;
1064 	}
1065 
1066 	*il4_proto = l4_proto_tmp;
1067 
1068 	return 0;
1069 }
1070 
1071 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1072  * and it is udp packet, which has a dest port as the IANA assigned.
1073  * the hardware is expected to do the checksum offload, but the
1074  * hardware will not do the checksum offload when udp dest port is
1075  * 4789, 4790 or 6081.
1076  */
1077 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1078 {
1079 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1080 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
1081 	union l4_hdr_info l4;
1082 
1083 	/* device version above V3(include V3), the hardware can
1084 	 * do this checksum offload.
1085 	 */
1086 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1087 		return false;
1088 
1089 	l4.hdr = skb_transport_header(skb);
1090 
1091 	if (!(!skb->encapsulation &&
1092 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1093 	      l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1094 	      l4.udp->dest == htons(4790))))
1095 		return false;
1096 
1097 	return true;
1098 }
1099 
1100 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1101 				  u32 *ol_type_vlan_len_msec)
1102 {
1103 	u32 l2_len, l3_len, l4_len;
1104 	unsigned char *il2_hdr;
1105 	union l3_hdr_info l3;
1106 	union l4_hdr_info l4;
1107 
1108 	l3.hdr = skb_network_header(skb);
1109 	l4.hdr = skb_transport_header(skb);
1110 
1111 	/* compute OL2 header size, defined in 2 Bytes */
1112 	l2_len = l3.hdr - skb->data;
1113 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1114 
1115 	/* compute OL3 header size, defined in 4 Bytes */
1116 	l3_len = l4.hdr - l3.hdr;
1117 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1118 
1119 	il2_hdr = skb_inner_mac_header(skb);
1120 	/* compute OL4 header size, defined in 4 Bytes */
1121 	l4_len = il2_hdr - l4.hdr;
1122 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1123 
1124 	/* define outer network header type */
1125 	if (skb->protocol == htons(ETH_P_IP)) {
1126 		if (skb_is_gso(skb))
1127 			hns3_set_field(*ol_type_vlan_len_msec,
1128 				       HNS3_TXD_OL3T_S,
1129 				       HNS3_OL3T_IPV4_CSUM);
1130 		else
1131 			hns3_set_field(*ol_type_vlan_len_msec,
1132 				       HNS3_TXD_OL3T_S,
1133 				       HNS3_OL3T_IPV4_NO_CSUM);
1134 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
1135 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1136 			       HNS3_OL3T_IPV6);
1137 	}
1138 
1139 	if (ol4_proto == IPPROTO_UDP)
1140 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1141 			       HNS3_TUN_MAC_IN_UDP);
1142 	else if (ol4_proto == IPPROTO_GRE)
1143 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1144 			       HNS3_TUN_NVGRE);
1145 }
1146 
1147 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1148 			   u8 il4_proto, u32 *type_cs_vlan_tso,
1149 			   u32 *ol_type_vlan_len_msec)
1150 {
1151 	unsigned char *l2_hdr = skb->data;
1152 	u32 l4_proto = ol4_proto;
1153 	union l4_hdr_info l4;
1154 	union l3_hdr_info l3;
1155 	u32 l2_len, l3_len;
1156 
1157 	l4.hdr = skb_transport_header(skb);
1158 	l3.hdr = skb_network_header(skb);
1159 
1160 	/* handle encapsulation skb */
1161 	if (skb->encapsulation) {
1162 		/* If this is a not UDP/GRE encapsulation skb */
1163 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1164 			/* drop the skb tunnel packet if hardware don't support,
1165 			 * because hardware can't calculate csum when TSO.
1166 			 */
1167 			if (skb_is_gso(skb))
1168 				return -EDOM;
1169 
1170 			/* the stack computes the IP header already,
1171 			 * driver calculate l4 checksum when not TSO.
1172 			 */
1173 			return skb_checksum_help(skb);
1174 		}
1175 
1176 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1177 
1178 		/* switch to inner header */
1179 		l2_hdr = skb_inner_mac_header(skb);
1180 		l3.hdr = skb_inner_network_header(skb);
1181 		l4.hdr = skb_inner_transport_header(skb);
1182 		l4_proto = il4_proto;
1183 	}
1184 
1185 	if (l3.v4->version == 4) {
1186 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1187 			       HNS3_L3T_IPV4);
1188 
1189 		/* the stack computes the IP header already, the only time we
1190 		 * need the hardware to recompute it is in the case of TSO.
1191 		 */
1192 		if (skb_is_gso(skb))
1193 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1194 	} else if (l3.v6->version == 6) {
1195 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1196 			       HNS3_L3T_IPV6);
1197 	}
1198 
1199 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
1200 	l2_len = l3.hdr - l2_hdr;
1201 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1202 
1203 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
1204 	l3_len = l4.hdr - l3.hdr;
1205 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1206 
1207 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
1208 	switch (l4_proto) {
1209 	case IPPROTO_TCP:
1210 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1211 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1212 			       HNS3_L4T_TCP);
1213 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1214 			       l4.tcp->doff);
1215 		break;
1216 	case IPPROTO_UDP:
1217 		if (hns3_tunnel_csum_bug(skb))
1218 			return skb_checksum_help(skb);
1219 
1220 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1221 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1222 			       HNS3_L4T_UDP);
1223 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1224 			       (sizeof(struct udphdr) >> 2));
1225 		break;
1226 	case IPPROTO_SCTP:
1227 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1228 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1229 			       HNS3_L4T_SCTP);
1230 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1231 			       (sizeof(struct sctphdr) >> 2));
1232 		break;
1233 	default:
1234 		/* drop the skb tunnel packet if hardware don't support,
1235 		 * because hardware can't calculate csum when TSO.
1236 		 */
1237 		if (skb_is_gso(skb))
1238 			return -EDOM;
1239 
1240 		/* the stack computes the IP header already,
1241 		 * driver calculate l4 checksum when not TSO.
1242 		 */
1243 		return skb_checksum_help(skb);
1244 	}
1245 
1246 	return 0;
1247 }
1248 
1249 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1250 			     struct sk_buff *skb)
1251 {
1252 	struct hnae3_handle *handle = tx_ring->tqp->handle;
1253 	struct hnae3_ae_dev *ae_dev;
1254 	struct vlan_ethhdr *vhdr;
1255 	int rc;
1256 
1257 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
1258 	      skb_vlan_tag_present(skb)))
1259 		return 0;
1260 
1261 	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1262 	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1263 	 * will cause RAS error.
1264 	 */
1265 	ae_dev = pci_get_drvdata(handle->pdev);
1266 	if (unlikely(skb_vlan_tagged_multi(skb) &&
1267 		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1268 		     handle->port_base_vlan_state ==
1269 		     HNAE3_PORT_BASE_VLAN_ENABLE))
1270 		return -EINVAL;
1271 
1272 	if (skb->protocol == htons(ETH_P_8021Q) &&
1273 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1274 		/* When HW VLAN acceleration is turned off, and the stack
1275 		 * sets the protocol to 802.1q, the driver just need to
1276 		 * set the protocol to the encapsulated ethertype.
1277 		 */
1278 		skb->protocol = vlan_get_protocol(skb);
1279 		return 0;
1280 	}
1281 
1282 	if (skb_vlan_tag_present(skb)) {
1283 		/* Based on hw strategy, use out_vtag in two layer tag case,
1284 		 * and use inner_vtag in one tag case.
1285 		 */
1286 		if (skb->protocol == htons(ETH_P_8021Q) &&
1287 		    handle->port_base_vlan_state ==
1288 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1289 			rc = HNS3_OUTER_VLAN_TAG;
1290 		else
1291 			rc = HNS3_INNER_VLAN_TAG;
1292 
1293 		skb->protocol = vlan_get_protocol(skb);
1294 		return rc;
1295 	}
1296 
1297 	rc = skb_cow_head(skb, 0);
1298 	if (unlikely(rc < 0))
1299 		return rc;
1300 
1301 	vhdr = (struct vlan_ethhdr *)skb->data;
1302 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1303 					 & VLAN_PRIO_MASK);
1304 
1305 	skb->protocol = vlan_get_protocol(skb);
1306 	return 0;
1307 }
1308 
1309 /* check if the hardware is capable of checksum offloading */
1310 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1311 {
1312 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1313 
1314 	/* Kindly note, due to backward compatibility of the TX descriptor,
1315 	 * HW checksum of the non-IP packets and GSO packets is handled at
1316 	 * different place in the following code
1317 	 */
1318 	if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1319 	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1320 		return false;
1321 
1322 	return true;
1323 }
1324 
1325 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1326 			      struct sk_buff *skb, struct hns3_desc *desc,
1327 			      struct hns3_desc_cb *desc_cb)
1328 {
1329 	u32 ol_type_vlan_len_msec = 0;
1330 	u32 paylen_ol4cs = skb->len;
1331 	u32 type_cs_vlan_tso = 0;
1332 	u16 mss_hw_csum = 0;
1333 	u16 inner_vtag = 0;
1334 	u16 out_vtag = 0;
1335 	int ret;
1336 
1337 	ret = hns3_handle_vtags(ring, skb);
1338 	if (unlikely(ret < 0)) {
1339 		u64_stats_update_begin(&ring->syncp);
1340 		ring->stats.tx_vlan_err++;
1341 		u64_stats_update_end(&ring->syncp);
1342 		return ret;
1343 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1344 		inner_vtag = skb_vlan_tag_get(skb);
1345 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1346 				VLAN_PRIO_MASK;
1347 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1348 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1349 		out_vtag = skb_vlan_tag_get(skb);
1350 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1351 				VLAN_PRIO_MASK;
1352 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1353 			       1);
1354 	}
1355 
1356 	desc_cb->send_bytes = skb->len;
1357 
1358 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1359 		u8 ol4_proto, il4_proto;
1360 
1361 		if (hns3_check_hw_tx_csum(skb)) {
1362 			/* set checksum start and offset, defined in 2 Bytes */
1363 			hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1364 				       skb_checksum_start_offset(skb) >> 1);
1365 			hns3_set_field(ol_type_vlan_len_msec,
1366 				       HNS3_TXD_CSUM_OFFSET_S,
1367 				       skb->csum_offset >> 1);
1368 			mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1369 			goto out_hw_tx_csum;
1370 		}
1371 
1372 		skb_reset_mac_len(skb);
1373 
1374 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1375 		if (unlikely(ret < 0)) {
1376 			u64_stats_update_begin(&ring->syncp);
1377 			ring->stats.tx_l4_proto_err++;
1378 			u64_stats_update_end(&ring->syncp);
1379 			return ret;
1380 		}
1381 
1382 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1383 				      &type_cs_vlan_tso,
1384 				      &ol_type_vlan_len_msec);
1385 		if (unlikely(ret < 0)) {
1386 			u64_stats_update_begin(&ring->syncp);
1387 			ring->stats.tx_l2l3l4_err++;
1388 			u64_stats_update_end(&ring->syncp);
1389 			return ret;
1390 		}
1391 
1392 		ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1393 				   &type_cs_vlan_tso, &desc_cb->send_bytes);
1394 		if (unlikely(ret < 0)) {
1395 			u64_stats_update_begin(&ring->syncp);
1396 			ring->stats.tx_tso_err++;
1397 			u64_stats_update_end(&ring->syncp);
1398 			return ret;
1399 		}
1400 	}
1401 
1402 out_hw_tx_csum:
1403 	/* Set txbd */
1404 	desc->tx.ol_type_vlan_len_msec =
1405 		cpu_to_le32(ol_type_vlan_len_msec);
1406 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1407 	desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1408 	desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1409 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1410 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1411 
1412 	return 0;
1413 }
1414 
1415 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1416 			  unsigned int size, enum hns_desc_type type)
1417 {
1418 #define HNS3_LIKELY_BD_NUM	1
1419 
1420 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1421 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1422 	struct device *dev = ring_to_dev(ring);
1423 	skb_frag_t *frag;
1424 	unsigned int frag_buf_num;
1425 	int k, sizeoflast;
1426 	dma_addr_t dma;
1427 
1428 	if (type == DESC_TYPE_FRAGLIST_SKB ||
1429 	    type == DESC_TYPE_SKB) {
1430 		struct sk_buff *skb = (struct sk_buff *)priv;
1431 
1432 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1433 	} else {
1434 		frag = (skb_frag_t *)priv;
1435 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1436 	}
1437 
1438 	if (unlikely(dma_mapping_error(dev, dma))) {
1439 		u64_stats_update_begin(&ring->syncp);
1440 		ring->stats.sw_err_cnt++;
1441 		u64_stats_update_end(&ring->syncp);
1442 		return -ENOMEM;
1443 	}
1444 
1445 	desc_cb->priv = priv;
1446 	desc_cb->length = size;
1447 	desc_cb->dma = dma;
1448 	desc_cb->type = type;
1449 
1450 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1451 		desc->addr = cpu_to_le64(dma);
1452 		desc->tx.send_size = cpu_to_le16(size);
1453 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1454 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1455 
1456 		trace_hns3_tx_desc(ring, ring->next_to_use);
1457 		ring_ptr_move_fw(ring, next_to_use);
1458 		return HNS3_LIKELY_BD_NUM;
1459 	}
1460 
1461 	frag_buf_num = hns3_tx_bd_count(size);
1462 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1463 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1464 
1465 	/* When frag size is bigger than hardware limit, split this frag */
1466 	for (k = 0; k < frag_buf_num; k++) {
1467 		/* now, fill the descriptor */
1468 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1469 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1470 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1471 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1472 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1473 
1474 		trace_hns3_tx_desc(ring, ring->next_to_use);
1475 		/* move ring pointer to next */
1476 		ring_ptr_move_fw(ring, next_to_use);
1477 
1478 		desc = &ring->desc[ring->next_to_use];
1479 	}
1480 
1481 	return frag_buf_num;
1482 }
1483 
1484 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1485 				    unsigned int bd_num)
1486 {
1487 	unsigned int size;
1488 	int i;
1489 
1490 	size = skb_headlen(skb);
1491 	while (size > HNS3_MAX_BD_SIZE) {
1492 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1493 		size -= HNS3_MAX_BD_SIZE;
1494 
1495 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1496 			return bd_num;
1497 	}
1498 
1499 	if (size) {
1500 		bd_size[bd_num++] = size;
1501 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1502 			return bd_num;
1503 	}
1504 
1505 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1506 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1507 		size = skb_frag_size(frag);
1508 		if (!size)
1509 			continue;
1510 
1511 		while (size > HNS3_MAX_BD_SIZE) {
1512 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1513 			size -= HNS3_MAX_BD_SIZE;
1514 
1515 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1516 				return bd_num;
1517 		}
1518 
1519 		bd_size[bd_num++] = size;
1520 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1521 			return bd_num;
1522 	}
1523 
1524 	return bd_num;
1525 }
1526 
1527 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1528 				   u8 max_non_tso_bd_num, unsigned int bd_num,
1529 				   unsigned int recursion_level)
1530 {
1531 #define HNS3_MAX_RECURSION_LEVEL	24
1532 
1533 	struct sk_buff *frag_skb;
1534 
1535 	/* If the total len is within the max bd limit */
1536 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1537 		   !skb_has_frag_list(skb) &&
1538 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1539 		return skb_shinfo(skb)->nr_frags + 1U;
1540 
1541 	if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1542 		return UINT_MAX;
1543 
1544 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1545 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1546 		return bd_num;
1547 
1548 	skb_walk_frags(skb, frag_skb) {
1549 		bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1550 					bd_num, recursion_level + 1);
1551 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1552 			return bd_num;
1553 	}
1554 
1555 	return bd_num;
1556 }
1557 
1558 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1559 {
1560 	if (!skb->encapsulation)
1561 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1562 
1563 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1564 }
1565 
1566 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1567  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1568  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1569  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1570  * than MSS except the last max_non_tso_bd_num - 1 frags.
1571  */
1572 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1573 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1574 {
1575 	unsigned int tot_len = 0;
1576 	int i;
1577 
1578 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1579 		tot_len += bd_size[i];
1580 
1581 	/* ensure the first max_non_tso_bd_num frags is greater than
1582 	 * mss + header
1583 	 */
1584 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1585 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1586 		return true;
1587 
1588 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1589 	 * than mss except the last one.
1590 	 */
1591 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1592 		tot_len -= bd_size[i];
1593 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1594 
1595 		if (tot_len < skb_shinfo(skb)->gso_size)
1596 			return true;
1597 	}
1598 
1599 	return false;
1600 }
1601 
1602 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1603 {
1604 	int i;
1605 
1606 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1607 		size[i] = skb_frag_size(&shinfo->frags[i]);
1608 }
1609 
1610 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1611 			      struct sk_buff *skb,
1612 			      u8 max_non_tso_bd_num,
1613 			      unsigned int bd_num)
1614 {
1615 	/* 'bd_num == UINT_MAX' means the skb' fraglist has a
1616 	 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1617 	 */
1618 	if (bd_num == UINT_MAX) {
1619 		u64_stats_update_begin(&ring->syncp);
1620 		ring->stats.over_max_recursion++;
1621 		u64_stats_update_end(&ring->syncp);
1622 		return -ENOMEM;
1623 	}
1624 
1625 	/* The skb->len has exceeded the hw limitation, linearization
1626 	 * will not help.
1627 	 */
1628 	if (skb->len > HNS3_MAX_TSO_SIZE ||
1629 	    (!skb_is_gso(skb) && skb->len >
1630 	     HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))) {
1631 		u64_stats_update_begin(&ring->syncp);
1632 		ring->stats.hw_limitation++;
1633 		u64_stats_update_end(&ring->syncp);
1634 		return -ENOMEM;
1635 	}
1636 
1637 	if (__skb_linearize(skb)) {
1638 		u64_stats_update_begin(&ring->syncp);
1639 		ring->stats.sw_err_cnt++;
1640 		u64_stats_update_end(&ring->syncp);
1641 		return -ENOMEM;
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1648 				  struct net_device *netdev,
1649 				  struct sk_buff *skb)
1650 {
1651 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1652 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1653 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1654 	unsigned int bd_num;
1655 
1656 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1657 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1658 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1659 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1660 					      max_non_tso_bd_num)) {
1661 			trace_hns3_over_max_bd(skb);
1662 			goto out;
1663 		}
1664 
1665 		if (hns3_skb_linearize(ring, skb, max_non_tso_bd_num,
1666 				       bd_num))
1667 			return -ENOMEM;
1668 
1669 		bd_num = hns3_tx_bd_count(skb->len);
1670 
1671 		u64_stats_update_begin(&ring->syncp);
1672 		ring->stats.tx_copy++;
1673 		u64_stats_update_end(&ring->syncp);
1674 	}
1675 
1676 out:
1677 	if (likely(ring_space(ring) >= bd_num))
1678 		return bd_num;
1679 
1680 	netif_stop_subqueue(netdev, ring->queue_index);
1681 	smp_mb(); /* Memory barrier before checking ring_space */
1682 
1683 	/* Start queue in case hns3_clean_tx_ring has just made room
1684 	 * available and has not seen the queue stopped state performed
1685 	 * by netif_stop_subqueue above.
1686 	 */
1687 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1688 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1689 		netif_start_subqueue(netdev, ring->queue_index);
1690 		return bd_num;
1691 	}
1692 
1693 	u64_stats_update_begin(&ring->syncp);
1694 	ring->stats.tx_busy++;
1695 	u64_stats_update_end(&ring->syncp);
1696 
1697 	return -EBUSY;
1698 }
1699 
1700 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1701 {
1702 	struct device *dev = ring_to_dev(ring);
1703 	unsigned int i;
1704 
1705 	for (i = 0; i < ring->desc_num; i++) {
1706 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1707 
1708 		memset(desc, 0, sizeof(*desc));
1709 
1710 		/* check if this is where we started */
1711 		if (ring->next_to_use == next_to_use_orig)
1712 			break;
1713 
1714 		/* rollback one */
1715 		ring_ptr_move_bw(ring, next_to_use);
1716 
1717 		if (!ring->desc_cb[ring->next_to_use].dma)
1718 			continue;
1719 
1720 		/* unmap the descriptor dma address */
1721 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1722 		    ring->desc_cb[ring->next_to_use].type ==
1723 		    DESC_TYPE_FRAGLIST_SKB)
1724 			dma_unmap_single(dev,
1725 					 ring->desc_cb[ring->next_to_use].dma,
1726 					ring->desc_cb[ring->next_to_use].length,
1727 					DMA_TO_DEVICE);
1728 		else if (ring->desc_cb[ring->next_to_use].length)
1729 			dma_unmap_page(dev,
1730 				       ring->desc_cb[ring->next_to_use].dma,
1731 				       ring->desc_cb[ring->next_to_use].length,
1732 				       DMA_TO_DEVICE);
1733 
1734 		ring->desc_cb[ring->next_to_use].length = 0;
1735 		ring->desc_cb[ring->next_to_use].dma = 0;
1736 		ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1737 	}
1738 }
1739 
1740 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1741 				 struct sk_buff *skb, enum hns_desc_type type)
1742 {
1743 	unsigned int size = skb_headlen(skb);
1744 	struct sk_buff *frag_skb;
1745 	int i, ret, bd_num = 0;
1746 
1747 	if (size) {
1748 		ret = hns3_fill_desc(ring, skb, size, type);
1749 		if (unlikely(ret < 0))
1750 			return ret;
1751 
1752 		bd_num += ret;
1753 	}
1754 
1755 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1756 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1757 
1758 		size = skb_frag_size(frag);
1759 		if (!size)
1760 			continue;
1761 
1762 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1763 		if (unlikely(ret < 0))
1764 			return ret;
1765 
1766 		bd_num += ret;
1767 	}
1768 
1769 	skb_walk_frags(skb, frag_skb) {
1770 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
1771 					    DESC_TYPE_FRAGLIST_SKB);
1772 		if (unlikely(ret < 0))
1773 			return ret;
1774 
1775 		bd_num += ret;
1776 	}
1777 
1778 	return bd_num;
1779 }
1780 
1781 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
1782 			     bool doorbell)
1783 {
1784 	ring->pending_buf += num;
1785 
1786 	if (!doorbell) {
1787 		u64_stats_update_begin(&ring->syncp);
1788 		ring->stats.tx_more++;
1789 		u64_stats_update_end(&ring->syncp);
1790 		return;
1791 	}
1792 
1793 	if (!ring->pending_buf)
1794 		return;
1795 
1796 	writel(ring->pending_buf,
1797 	       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
1798 	ring->pending_buf = 0;
1799 	WRITE_ONCE(ring->last_to_use, ring->next_to_use);
1800 }
1801 
1802 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
1803 		      struct hns3_desc *desc)
1804 {
1805 	struct hnae3_handle *h = hns3_get_handle(netdev);
1806 
1807 	if (!(h->ae_algo->ops->set_tx_hwts_info &&
1808 	      h->ae_algo->ops->set_tx_hwts_info(h, skb)))
1809 		return;
1810 
1811 	desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
1812 }
1813 
1814 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1815 {
1816 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1817 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1818 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1819 	struct netdev_queue *dev_queue;
1820 	int pre_ntu, next_to_use_head;
1821 	bool doorbell;
1822 	int ret;
1823 
1824 	/* Hardware can only handle short frames above 32 bytes */
1825 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
1826 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1827 
1828 		u64_stats_update_begin(&ring->syncp);
1829 		ring->stats.sw_err_cnt++;
1830 		u64_stats_update_end(&ring->syncp);
1831 
1832 		return NETDEV_TX_OK;
1833 	}
1834 
1835 	/* Prefetch the data used later */
1836 	prefetch(skb->data);
1837 
1838 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1839 	if (unlikely(ret <= 0)) {
1840 		if (ret == -EBUSY) {
1841 			hns3_tx_doorbell(ring, 0, true);
1842 			return NETDEV_TX_BUSY;
1843 		}
1844 
1845 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1846 		goto out_err_tx_ok;
1847 	}
1848 
1849 	next_to_use_head = ring->next_to_use;
1850 
1851 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
1852 				 desc_cb);
1853 	if (unlikely(ret < 0))
1854 		goto fill_err;
1855 
1856 	/* 'ret < 0' means filling error, 'ret == 0' means skb->len is
1857 	 * zero, which is unlikely, and 'ret > 0' means how many tx desc
1858 	 * need to be notified to the hw.
1859 	 */
1860 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1861 	if (unlikely(ret <= 0))
1862 		goto fill_err;
1863 
1864 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1865 					(ring->desc_num - 1);
1866 
1867 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
1868 		hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
1869 
1870 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1871 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1872 	trace_hns3_tx_desc(ring, pre_ntu);
1873 
1874 	skb_tx_timestamp(skb);
1875 
1876 	/* Complete translate all packets */
1877 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1878 	doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
1879 					  netdev_xmit_more());
1880 	hns3_tx_doorbell(ring, ret, doorbell);
1881 
1882 	return NETDEV_TX_OK;
1883 
1884 fill_err:
1885 	hns3_clear_desc(ring, next_to_use_head);
1886 
1887 out_err_tx_ok:
1888 	dev_kfree_skb_any(skb);
1889 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1890 	return NETDEV_TX_OK;
1891 }
1892 
1893 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1894 {
1895 	struct hnae3_handle *h = hns3_get_handle(netdev);
1896 	struct sockaddr *mac_addr = p;
1897 	int ret;
1898 
1899 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1900 		return -EADDRNOTAVAIL;
1901 
1902 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1903 		netdev_info(netdev, "already using mac address %pM\n",
1904 			    mac_addr->sa_data);
1905 		return 0;
1906 	}
1907 
1908 	/* For VF device, if there is a perm_addr, then the user will not
1909 	 * be allowed to change the address.
1910 	 */
1911 	if (!hns3_is_phys_func(h->pdev) &&
1912 	    !is_zero_ether_addr(netdev->perm_addr)) {
1913 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1914 			   netdev->perm_addr, mac_addr->sa_data);
1915 		return -EPERM;
1916 	}
1917 
1918 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1919 	if (ret) {
1920 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1921 		return ret;
1922 	}
1923 
1924 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1925 
1926 	return 0;
1927 }
1928 
1929 static int hns3_nic_do_ioctl(struct net_device *netdev,
1930 			     struct ifreq *ifr, int cmd)
1931 {
1932 	struct hnae3_handle *h = hns3_get_handle(netdev);
1933 
1934 	if (!netif_running(netdev))
1935 		return -EINVAL;
1936 
1937 	if (!h->ae_algo->ops->do_ioctl)
1938 		return -EOPNOTSUPP;
1939 
1940 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1941 }
1942 
1943 static int hns3_nic_set_features(struct net_device *netdev,
1944 				 netdev_features_t features)
1945 {
1946 	netdev_features_t changed = netdev->features ^ features;
1947 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1948 	struct hnae3_handle *h = priv->ae_handle;
1949 	bool enable;
1950 	int ret;
1951 
1952 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1953 		enable = !!(features & NETIF_F_GRO_HW);
1954 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1955 		if (ret)
1956 			return ret;
1957 	}
1958 
1959 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1960 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1961 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1962 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1963 		if (ret)
1964 			return ret;
1965 	}
1966 
1967 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1968 		enable = !!(features & NETIF_F_NTUPLE);
1969 		h->ae_algo->ops->enable_fd(h, enable);
1970 	}
1971 
1972 	if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
1973 	    h->ae_algo->ops->cls_flower_active(h)) {
1974 		netdev_err(netdev,
1975 			   "there are offloaded TC filters active, cannot disable HW TC offload");
1976 		return -EINVAL;
1977 	}
1978 
1979 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1980 	    h->ae_algo->ops->enable_vlan_filter) {
1981 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1982 		ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
1983 		if (ret)
1984 			return ret;
1985 	}
1986 
1987 	netdev->features = features;
1988 	return 0;
1989 }
1990 
1991 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1992 					     struct net_device *dev,
1993 					     netdev_features_t features)
1994 {
1995 #define HNS3_MAX_HDR_LEN	480U
1996 #define HNS3_MAX_L4_HDR_LEN	60U
1997 
1998 	size_t len;
1999 
2000 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2001 		return features;
2002 
2003 	if (skb->encapsulation)
2004 		len = skb_inner_transport_header(skb) - skb->data;
2005 	else
2006 		len = skb_transport_header(skb) - skb->data;
2007 
2008 	/* Assume L4 is 60 byte as TCP is the only protocol with a
2009 	 * a flexible value, and it's max len is 60 bytes.
2010 	 */
2011 	len += HNS3_MAX_L4_HDR_LEN;
2012 
2013 	/* Hardware only supports checksum on the skb with a max header
2014 	 * len of 480 bytes.
2015 	 */
2016 	if (len > HNS3_MAX_HDR_LEN)
2017 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2018 
2019 	return features;
2020 }
2021 
2022 static void hns3_nic_get_stats64(struct net_device *netdev,
2023 				 struct rtnl_link_stats64 *stats)
2024 {
2025 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2026 	int queue_num = priv->ae_handle->kinfo.num_tqps;
2027 	struct hnae3_handle *handle = priv->ae_handle;
2028 	struct hns3_enet_ring *ring;
2029 	u64 rx_length_errors = 0;
2030 	u64 rx_crc_errors = 0;
2031 	u64 rx_multicast = 0;
2032 	unsigned int start;
2033 	u64 tx_errors = 0;
2034 	u64 rx_errors = 0;
2035 	unsigned int idx;
2036 	u64 tx_bytes = 0;
2037 	u64 rx_bytes = 0;
2038 	u64 tx_pkts = 0;
2039 	u64 rx_pkts = 0;
2040 	u64 tx_drop = 0;
2041 	u64 rx_drop = 0;
2042 
2043 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2044 		return;
2045 
2046 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
2047 
2048 	for (idx = 0; idx < queue_num; idx++) {
2049 		/* fetch the tx stats */
2050 		ring = &priv->ring[idx];
2051 		do {
2052 			start = u64_stats_fetch_begin_irq(&ring->syncp);
2053 			tx_bytes += ring->stats.tx_bytes;
2054 			tx_pkts += ring->stats.tx_pkts;
2055 			tx_drop += ring->stats.sw_err_cnt;
2056 			tx_drop += ring->stats.tx_vlan_err;
2057 			tx_drop += ring->stats.tx_l4_proto_err;
2058 			tx_drop += ring->stats.tx_l2l3l4_err;
2059 			tx_drop += ring->stats.tx_tso_err;
2060 			tx_drop += ring->stats.over_max_recursion;
2061 			tx_drop += ring->stats.hw_limitation;
2062 			tx_errors += ring->stats.sw_err_cnt;
2063 			tx_errors += ring->stats.tx_vlan_err;
2064 			tx_errors += ring->stats.tx_l4_proto_err;
2065 			tx_errors += ring->stats.tx_l2l3l4_err;
2066 			tx_errors += ring->stats.tx_tso_err;
2067 			tx_errors += ring->stats.over_max_recursion;
2068 			tx_errors += ring->stats.hw_limitation;
2069 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
2070 
2071 		/* fetch the rx stats */
2072 		ring = &priv->ring[idx + queue_num];
2073 		do {
2074 			start = u64_stats_fetch_begin_irq(&ring->syncp);
2075 			rx_bytes += ring->stats.rx_bytes;
2076 			rx_pkts += ring->stats.rx_pkts;
2077 			rx_drop += ring->stats.l2_err;
2078 			rx_errors += ring->stats.l2_err;
2079 			rx_errors += ring->stats.l3l4_csum_err;
2080 			rx_crc_errors += ring->stats.l2_err;
2081 			rx_multicast += ring->stats.rx_multicast;
2082 			rx_length_errors += ring->stats.err_pkt_len;
2083 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
2084 	}
2085 
2086 	stats->tx_bytes = tx_bytes;
2087 	stats->tx_packets = tx_pkts;
2088 	stats->rx_bytes = rx_bytes;
2089 	stats->rx_packets = rx_pkts;
2090 
2091 	stats->rx_errors = rx_errors;
2092 	stats->multicast = rx_multicast;
2093 	stats->rx_length_errors = rx_length_errors;
2094 	stats->rx_crc_errors = rx_crc_errors;
2095 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2096 
2097 	stats->tx_errors = tx_errors;
2098 	stats->rx_dropped = rx_drop;
2099 	stats->tx_dropped = tx_drop;
2100 	stats->collisions = netdev->stats.collisions;
2101 	stats->rx_over_errors = netdev->stats.rx_over_errors;
2102 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2103 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2104 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2105 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2106 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2107 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2108 	stats->tx_window_errors = netdev->stats.tx_window_errors;
2109 	stats->rx_compressed = netdev->stats.rx_compressed;
2110 	stats->tx_compressed = netdev->stats.tx_compressed;
2111 }
2112 
2113 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2114 {
2115 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2116 	struct hnae3_knic_private_info *kinfo;
2117 	u8 tc = mqprio_qopt->qopt.num_tc;
2118 	u16 mode = mqprio_qopt->mode;
2119 	u8 hw = mqprio_qopt->qopt.hw;
2120 	struct hnae3_handle *h;
2121 
2122 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2123 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2124 		return -EOPNOTSUPP;
2125 
2126 	if (tc > HNAE3_MAX_TC)
2127 		return -EINVAL;
2128 
2129 	if (!netdev)
2130 		return -EINVAL;
2131 
2132 	h = hns3_get_handle(netdev);
2133 	kinfo = &h->kinfo;
2134 
2135 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2136 
2137 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2138 		kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2139 }
2140 
2141 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2142 				    struct flow_cls_offload *flow)
2143 {
2144 	int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2145 	struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2146 
2147 	switch (flow->command) {
2148 	case FLOW_CLS_REPLACE:
2149 		if (h->ae_algo->ops->add_cls_flower)
2150 			return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2151 		break;
2152 	case FLOW_CLS_DESTROY:
2153 		if (h->ae_algo->ops->del_cls_flower)
2154 			return h->ae_algo->ops->del_cls_flower(h, flow);
2155 		break;
2156 	default:
2157 		break;
2158 	}
2159 
2160 	return -EOPNOTSUPP;
2161 }
2162 
2163 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2164 				  void *cb_priv)
2165 {
2166 	struct hns3_nic_priv *priv = cb_priv;
2167 
2168 	if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2169 		return -EOPNOTSUPP;
2170 
2171 	switch (type) {
2172 	case TC_SETUP_CLSFLOWER:
2173 		return hns3_setup_tc_cls_flower(priv, type_data);
2174 	default:
2175 		return -EOPNOTSUPP;
2176 	}
2177 }
2178 
2179 static LIST_HEAD(hns3_block_cb_list);
2180 
2181 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2182 			     void *type_data)
2183 {
2184 	struct hns3_nic_priv *priv = netdev_priv(dev);
2185 	int ret;
2186 
2187 	switch (type) {
2188 	case TC_SETUP_QDISC_MQPRIO:
2189 		ret = hns3_setup_tc(dev, type_data);
2190 		break;
2191 	case TC_SETUP_BLOCK:
2192 		ret = flow_block_cb_setup_simple(type_data,
2193 						 &hns3_block_cb_list,
2194 						 hns3_setup_tc_block_cb,
2195 						 priv, priv, true);
2196 		break;
2197 	default:
2198 		return -EOPNOTSUPP;
2199 	}
2200 
2201 	return ret;
2202 }
2203 
2204 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2205 				__be16 proto, u16 vid)
2206 {
2207 	struct hnae3_handle *h = hns3_get_handle(netdev);
2208 	int ret = -EIO;
2209 
2210 	if (h->ae_algo->ops->set_vlan_filter)
2211 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2212 
2213 	return ret;
2214 }
2215 
2216 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2217 				 __be16 proto, u16 vid)
2218 {
2219 	struct hnae3_handle *h = hns3_get_handle(netdev);
2220 	int ret = -EIO;
2221 
2222 	if (h->ae_algo->ops->set_vlan_filter)
2223 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2224 
2225 	return ret;
2226 }
2227 
2228 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2229 				u8 qos, __be16 vlan_proto)
2230 {
2231 	struct hnae3_handle *h = hns3_get_handle(netdev);
2232 	int ret = -EIO;
2233 
2234 	netif_dbg(h, drv, netdev,
2235 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2236 		  vf, vlan, qos, ntohs(vlan_proto));
2237 
2238 	if (h->ae_algo->ops->set_vf_vlan_filter)
2239 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2240 							  qos, vlan_proto);
2241 
2242 	return ret;
2243 }
2244 
2245 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2246 {
2247 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2248 
2249 	if (hns3_nic_resetting(netdev))
2250 		return -EBUSY;
2251 
2252 	if (!handle->ae_algo->ops->set_vf_spoofchk)
2253 		return -EOPNOTSUPP;
2254 
2255 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2256 }
2257 
2258 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2259 {
2260 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2261 
2262 	if (!handle->ae_algo->ops->set_vf_trust)
2263 		return -EOPNOTSUPP;
2264 
2265 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2266 }
2267 
2268 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2269 {
2270 	struct hnae3_handle *h = hns3_get_handle(netdev);
2271 	int ret;
2272 
2273 	if (hns3_nic_resetting(netdev))
2274 		return -EBUSY;
2275 
2276 	if (!h->ae_algo->ops->set_mtu)
2277 		return -EOPNOTSUPP;
2278 
2279 	netif_dbg(h, drv, netdev,
2280 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2281 
2282 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2283 	if (ret)
2284 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
2285 			   ret);
2286 	else
2287 		netdev->mtu = new_mtu;
2288 
2289 	return ret;
2290 }
2291 
2292 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2293 {
2294 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2295 	struct hnae3_handle *h = hns3_get_handle(ndev);
2296 	struct hns3_enet_ring *tx_ring;
2297 	struct napi_struct *napi;
2298 	int timeout_queue = 0;
2299 	int hw_head, hw_tail;
2300 	int fbd_num, fbd_oft;
2301 	int ebd_num, ebd_oft;
2302 	int bd_num, bd_err;
2303 	int ring_en, tc;
2304 	int i;
2305 
2306 	/* Find the stopped queue the same way the stack does */
2307 	for (i = 0; i < ndev->num_tx_queues; i++) {
2308 		struct netdev_queue *q;
2309 		unsigned long trans_start;
2310 
2311 		q = netdev_get_tx_queue(ndev, i);
2312 		trans_start = q->trans_start;
2313 		if (netif_xmit_stopped(q) &&
2314 		    time_after(jiffies,
2315 			       (trans_start + ndev->watchdog_timeo))) {
2316 			timeout_queue = i;
2317 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2318 				    q->state,
2319 				    jiffies_to_msecs(jiffies - trans_start));
2320 			break;
2321 		}
2322 	}
2323 
2324 	if (i == ndev->num_tx_queues) {
2325 		netdev_info(ndev,
2326 			    "no netdev TX timeout queue found, timeout count: %llu\n",
2327 			    priv->tx_timeout_count);
2328 		return false;
2329 	}
2330 
2331 	priv->tx_timeout_count++;
2332 
2333 	tx_ring = &priv->ring[timeout_queue];
2334 	napi = &tx_ring->tqp_vector->napi;
2335 
2336 	netdev_info(ndev,
2337 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2338 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2339 		    tx_ring->next_to_clean, napi->state);
2340 
2341 	netdev_info(ndev,
2342 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2343 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2344 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2345 
2346 	netdev_info(ndev,
2347 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2348 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2349 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2350 
2351 	/* When mac received many pause frames continuous, it's unable to send
2352 	 * packets, which may cause tx timeout
2353 	 */
2354 	if (h->ae_algo->ops->get_mac_stats) {
2355 		struct hns3_mac_stats mac_stats;
2356 
2357 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2358 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2359 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2360 	}
2361 
2362 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
2363 				HNS3_RING_TX_RING_HEAD_REG);
2364 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
2365 				HNS3_RING_TX_RING_TAIL_REG);
2366 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
2367 				HNS3_RING_TX_RING_FBDNUM_REG);
2368 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
2369 				HNS3_RING_TX_RING_OFFSET_REG);
2370 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
2371 				HNS3_RING_TX_RING_EBDNUM_REG);
2372 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
2373 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
2374 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
2375 			       HNS3_RING_TX_RING_BD_NUM_REG);
2376 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
2377 			       HNS3_RING_TX_RING_BD_ERR_REG);
2378 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
2379 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
2380 
2381 	netdev_info(ndev,
2382 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2383 		    bd_num, hw_head, hw_tail, bd_err,
2384 		    readl(tx_ring->tqp_vector->mask_addr));
2385 	netdev_info(ndev,
2386 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2387 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2388 
2389 	return true;
2390 }
2391 
2392 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2393 {
2394 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2395 	struct hnae3_handle *h = priv->ae_handle;
2396 
2397 	if (!hns3_get_tx_timeo_queue_info(ndev))
2398 		return;
2399 
2400 	/* request the reset, and let the hclge to determine
2401 	 * which reset level should be done
2402 	 */
2403 	if (h->ae_algo->ops->reset_event)
2404 		h->ae_algo->ops->reset_event(h->pdev, h);
2405 }
2406 
2407 #ifdef CONFIG_RFS_ACCEL
2408 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2409 			      u16 rxq_index, u32 flow_id)
2410 {
2411 	struct hnae3_handle *h = hns3_get_handle(dev);
2412 	struct flow_keys fkeys;
2413 
2414 	if (!h->ae_algo->ops->add_arfs_entry)
2415 		return -EOPNOTSUPP;
2416 
2417 	if (skb->encapsulation)
2418 		return -EPROTONOSUPPORT;
2419 
2420 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2421 		return -EPROTONOSUPPORT;
2422 
2423 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2424 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2425 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2426 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2427 		return -EPROTONOSUPPORT;
2428 
2429 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2430 }
2431 #endif
2432 
2433 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2434 				  struct ifla_vf_info *ivf)
2435 {
2436 	struct hnae3_handle *h = hns3_get_handle(ndev);
2437 
2438 	if (!h->ae_algo->ops->get_vf_config)
2439 		return -EOPNOTSUPP;
2440 
2441 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2442 }
2443 
2444 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2445 				      int link_state)
2446 {
2447 	struct hnae3_handle *h = hns3_get_handle(ndev);
2448 
2449 	if (!h->ae_algo->ops->set_vf_link_state)
2450 		return -EOPNOTSUPP;
2451 
2452 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2453 }
2454 
2455 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2456 				int min_tx_rate, int max_tx_rate)
2457 {
2458 	struct hnae3_handle *h = hns3_get_handle(ndev);
2459 
2460 	if (!h->ae_algo->ops->set_vf_rate)
2461 		return -EOPNOTSUPP;
2462 
2463 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2464 					    false);
2465 }
2466 
2467 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2468 {
2469 	struct hnae3_handle *h = hns3_get_handle(netdev);
2470 
2471 	if (!h->ae_algo->ops->set_vf_mac)
2472 		return -EOPNOTSUPP;
2473 
2474 	if (is_multicast_ether_addr(mac)) {
2475 		netdev_err(netdev,
2476 			   "Invalid MAC:%pM specified. Could not set MAC\n",
2477 			   mac);
2478 		return -EINVAL;
2479 	}
2480 
2481 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2482 }
2483 
2484 static const struct net_device_ops hns3_nic_netdev_ops = {
2485 	.ndo_open		= hns3_nic_net_open,
2486 	.ndo_stop		= hns3_nic_net_stop,
2487 	.ndo_start_xmit		= hns3_nic_net_xmit,
2488 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2489 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2490 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2491 	.ndo_change_mtu		= hns3_nic_change_mtu,
2492 	.ndo_set_features	= hns3_nic_set_features,
2493 	.ndo_features_check	= hns3_features_check,
2494 	.ndo_get_stats64	= hns3_nic_get_stats64,
2495 	.ndo_setup_tc		= hns3_nic_setup_tc,
2496 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2497 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2498 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2499 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2500 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2501 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2502 #ifdef CONFIG_RFS_ACCEL
2503 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2504 #endif
2505 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2506 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2507 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2508 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2509 };
2510 
2511 bool hns3_is_phys_func(struct pci_dev *pdev)
2512 {
2513 	u32 dev_id = pdev->device;
2514 
2515 	switch (dev_id) {
2516 	case HNAE3_DEV_ID_GE:
2517 	case HNAE3_DEV_ID_25GE:
2518 	case HNAE3_DEV_ID_25GE_RDMA:
2519 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2520 	case HNAE3_DEV_ID_50GE_RDMA:
2521 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2522 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2523 	case HNAE3_DEV_ID_200G_RDMA:
2524 		return true;
2525 	case HNAE3_DEV_ID_VF:
2526 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2527 		return false;
2528 	default:
2529 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2530 			 dev_id);
2531 	}
2532 
2533 	return false;
2534 }
2535 
2536 static void hns3_disable_sriov(struct pci_dev *pdev)
2537 {
2538 	/* If our VFs are assigned we cannot shut down SR-IOV
2539 	 * without causing issues, so just leave the hardware
2540 	 * available but disabled
2541 	 */
2542 	if (pci_vfs_assigned(pdev)) {
2543 		dev_warn(&pdev->dev,
2544 			 "disabling driver while VFs are assigned\n");
2545 		return;
2546 	}
2547 
2548 	pci_disable_sriov(pdev);
2549 }
2550 
2551 /* hns3_probe - Device initialization routine
2552  * @pdev: PCI device information struct
2553  * @ent: entry in hns3_pci_tbl
2554  *
2555  * hns3_probe initializes a PF identified by a pci_dev structure.
2556  * The OS initialization, configuring of the PF private structure,
2557  * and a hardware reset occur.
2558  *
2559  * Returns 0 on success, negative on failure
2560  */
2561 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2562 {
2563 	struct hnae3_ae_dev *ae_dev;
2564 	int ret;
2565 
2566 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2567 	if (!ae_dev)
2568 		return -ENOMEM;
2569 
2570 	ae_dev->pdev = pdev;
2571 	ae_dev->flag = ent->driver_data;
2572 	pci_set_drvdata(pdev, ae_dev);
2573 
2574 	ret = hnae3_register_ae_dev(ae_dev);
2575 	if (ret)
2576 		pci_set_drvdata(pdev, NULL);
2577 
2578 	return ret;
2579 }
2580 
2581 /* hns3_remove - Device removal routine
2582  * @pdev: PCI device information struct
2583  */
2584 static void hns3_remove(struct pci_dev *pdev)
2585 {
2586 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2587 
2588 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2589 		hns3_disable_sriov(pdev);
2590 
2591 	hnae3_unregister_ae_dev(ae_dev);
2592 	pci_set_drvdata(pdev, NULL);
2593 }
2594 
2595 /**
2596  * hns3_pci_sriov_configure
2597  * @pdev: pointer to a pci_dev structure
2598  * @num_vfs: number of VFs to allocate
2599  *
2600  * Enable or change the number of VFs. Called when the user updates the number
2601  * of VFs in sysfs.
2602  **/
2603 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2604 {
2605 	int ret;
2606 
2607 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2608 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2609 		return -EINVAL;
2610 	}
2611 
2612 	if (num_vfs) {
2613 		ret = pci_enable_sriov(pdev, num_vfs);
2614 		if (ret)
2615 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2616 		else
2617 			return num_vfs;
2618 	} else if (!pci_vfs_assigned(pdev)) {
2619 		pci_disable_sriov(pdev);
2620 	} else {
2621 		dev_warn(&pdev->dev,
2622 			 "Unable to free VFs because some are assigned to VMs.\n");
2623 	}
2624 
2625 	return 0;
2626 }
2627 
2628 static void hns3_shutdown(struct pci_dev *pdev)
2629 {
2630 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2631 
2632 	hnae3_unregister_ae_dev(ae_dev);
2633 	pci_set_drvdata(pdev, NULL);
2634 
2635 	if (system_state == SYSTEM_POWER_OFF)
2636 		pci_set_power_state(pdev, PCI_D3hot);
2637 }
2638 
2639 static int __maybe_unused hns3_suspend(struct device *dev)
2640 {
2641 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
2642 
2643 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
2644 		dev_info(dev, "Begin to suspend.\n");
2645 		if (ae_dev->ops && ae_dev->ops->reset_prepare)
2646 			ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
2647 	}
2648 
2649 	return 0;
2650 }
2651 
2652 static int __maybe_unused hns3_resume(struct device *dev)
2653 {
2654 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
2655 
2656 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
2657 		dev_info(dev, "Begin to resume.\n");
2658 		if (ae_dev->ops && ae_dev->ops->reset_done)
2659 			ae_dev->ops->reset_done(ae_dev);
2660 	}
2661 
2662 	return 0;
2663 }
2664 
2665 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2666 					    pci_channel_state_t state)
2667 {
2668 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2669 	pci_ers_result_t ret;
2670 
2671 	dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
2672 
2673 	if (state == pci_channel_io_perm_failure)
2674 		return PCI_ERS_RESULT_DISCONNECT;
2675 
2676 	if (!ae_dev || !ae_dev->ops) {
2677 		dev_err(&pdev->dev,
2678 			"Can't recover - error happened before device initialized\n");
2679 		return PCI_ERS_RESULT_NONE;
2680 	}
2681 
2682 	if (ae_dev->ops->handle_hw_ras_error)
2683 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2684 	else
2685 		return PCI_ERS_RESULT_NONE;
2686 
2687 	return ret;
2688 }
2689 
2690 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2691 {
2692 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2693 	const struct hnae3_ae_ops *ops;
2694 	enum hnae3_reset_type reset_type;
2695 	struct device *dev = &pdev->dev;
2696 
2697 	if (!ae_dev || !ae_dev->ops)
2698 		return PCI_ERS_RESULT_NONE;
2699 
2700 	ops = ae_dev->ops;
2701 	/* request the reset */
2702 	if (ops->reset_event && ops->get_reset_level &&
2703 	    ops->set_default_reset_request) {
2704 		if (ae_dev->hw_err_reset_req) {
2705 			reset_type = ops->get_reset_level(ae_dev,
2706 						&ae_dev->hw_err_reset_req);
2707 			ops->set_default_reset_request(ae_dev, reset_type);
2708 			dev_info(dev, "requesting reset due to PCI error\n");
2709 			ops->reset_event(pdev, NULL);
2710 		}
2711 
2712 		return PCI_ERS_RESULT_RECOVERED;
2713 	}
2714 
2715 	return PCI_ERS_RESULT_DISCONNECT;
2716 }
2717 
2718 static void hns3_reset_prepare(struct pci_dev *pdev)
2719 {
2720 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2721 
2722 	dev_info(&pdev->dev, "FLR prepare\n");
2723 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
2724 		ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
2725 }
2726 
2727 static void hns3_reset_done(struct pci_dev *pdev)
2728 {
2729 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2730 
2731 	dev_info(&pdev->dev, "FLR done\n");
2732 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
2733 		ae_dev->ops->reset_done(ae_dev);
2734 }
2735 
2736 static const struct pci_error_handlers hns3_err_handler = {
2737 	.error_detected = hns3_error_detected,
2738 	.slot_reset     = hns3_slot_reset,
2739 	.reset_prepare	= hns3_reset_prepare,
2740 	.reset_done	= hns3_reset_done,
2741 };
2742 
2743 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
2744 
2745 static struct pci_driver hns3_driver = {
2746 	.name     = hns3_driver_name,
2747 	.id_table = hns3_pci_tbl,
2748 	.probe    = hns3_probe,
2749 	.remove   = hns3_remove,
2750 	.shutdown = hns3_shutdown,
2751 	.driver.pm  = &hns3_pm_ops,
2752 	.sriov_configure = hns3_pci_sriov_configure,
2753 	.err_handler    = &hns3_err_handler,
2754 };
2755 
2756 /* set default feature to hns3 */
2757 static void hns3_set_default_feature(struct net_device *netdev)
2758 {
2759 	struct hnae3_handle *h = hns3_get_handle(netdev);
2760 	struct pci_dev *pdev = h->pdev;
2761 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2762 
2763 	netdev->priv_flags |= IFF_UNICAST_FLT;
2764 
2765 	netdev->hw_enc_features |= NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2766 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2767 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2768 		NETIF_F_SCTP_CRC | NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2769 
2770 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2771 
2772 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2773 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2774 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2775 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2776 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2777 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2778 
2779 	netdev->vlan_features |= NETIF_F_RXCSUM |
2780 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2781 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2782 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2783 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2784 
2785 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
2786 		NETIF_F_HW_VLAN_CTAG_RX |
2787 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2788 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2789 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2790 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2791 
2792 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2793 		netdev->hw_features |= NETIF_F_GRO_HW;
2794 		netdev->features |= NETIF_F_GRO_HW;
2795 
2796 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2797 			netdev->hw_features |= NETIF_F_NTUPLE;
2798 			netdev->features |= NETIF_F_NTUPLE;
2799 		}
2800 	}
2801 
2802 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) {
2803 		netdev->hw_features |= NETIF_F_GSO_UDP_L4;
2804 		netdev->features |= NETIF_F_GSO_UDP_L4;
2805 		netdev->vlan_features |= NETIF_F_GSO_UDP_L4;
2806 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
2807 	}
2808 
2809 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) {
2810 		netdev->hw_features |= NETIF_F_HW_CSUM;
2811 		netdev->features |= NETIF_F_HW_CSUM;
2812 		netdev->vlan_features |= NETIF_F_HW_CSUM;
2813 		netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2814 	} else {
2815 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2816 		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2817 		netdev->vlan_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2818 		netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2819 	}
2820 
2821 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) {
2822 		netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2823 		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2824 		netdev->vlan_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2825 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2826 	}
2827 
2828 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) {
2829 		netdev->hw_features |= NETIF_F_HW_TC;
2830 		netdev->features |= NETIF_F_HW_TC;
2831 	}
2832 
2833 	if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
2834 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2835 }
2836 
2837 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2838 			     struct hns3_desc_cb *cb)
2839 {
2840 	unsigned int order = hns3_page_order(ring);
2841 	struct page *p;
2842 
2843 	p = dev_alloc_pages(order);
2844 	if (!p)
2845 		return -ENOMEM;
2846 
2847 	cb->priv = p;
2848 	cb->page_offset = 0;
2849 	cb->reuse_flag = 0;
2850 	cb->buf  = page_address(p);
2851 	cb->length = hns3_page_size(ring);
2852 	cb->type = DESC_TYPE_PAGE;
2853 	page_ref_add(p, USHRT_MAX - 1);
2854 	cb->pagecnt_bias = USHRT_MAX;
2855 
2856 	return 0;
2857 }
2858 
2859 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2860 			     struct hns3_desc_cb *cb, int budget)
2861 {
2862 	if (cb->type == DESC_TYPE_SKB)
2863 		napi_consume_skb(cb->priv, budget);
2864 	else if (!HNAE3_IS_TX_RING(ring) && cb->pagecnt_bias)
2865 		__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
2866 	memset(cb, 0, sizeof(*cb));
2867 }
2868 
2869 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2870 {
2871 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2872 			       cb->length, ring_to_dma_dir(ring));
2873 
2874 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2875 		return -EIO;
2876 
2877 	return 0;
2878 }
2879 
2880 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2881 			      struct hns3_desc_cb *cb)
2882 {
2883 	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2884 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2885 				 ring_to_dma_dir(ring));
2886 	else if (cb->length)
2887 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2888 			       ring_to_dma_dir(ring));
2889 }
2890 
2891 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2892 {
2893 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2894 	ring->desc[i].addr = 0;
2895 }
2896 
2897 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
2898 				    int budget)
2899 {
2900 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2901 
2902 	if (!ring->desc_cb[i].dma)
2903 		return;
2904 
2905 	hns3_buffer_detach(ring, i);
2906 	hns3_free_buffer(ring, cb, budget);
2907 }
2908 
2909 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2910 {
2911 	int i;
2912 
2913 	for (i = 0; i < ring->desc_num; i++)
2914 		hns3_free_buffer_detach(ring, i, 0);
2915 }
2916 
2917 /* free desc along with its attached buffer */
2918 static void hns3_free_desc(struct hns3_enet_ring *ring)
2919 {
2920 	int size = ring->desc_num * sizeof(ring->desc[0]);
2921 
2922 	hns3_free_buffers(ring);
2923 
2924 	if (ring->desc) {
2925 		dma_free_coherent(ring_to_dev(ring), size,
2926 				  ring->desc, ring->desc_dma_addr);
2927 		ring->desc = NULL;
2928 	}
2929 }
2930 
2931 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2932 {
2933 	int size = ring->desc_num * sizeof(ring->desc[0]);
2934 
2935 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2936 					&ring->desc_dma_addr, GFP_KERNEL);
2937 	if (!ring->desc)
2938 		return -ENOMEM;
2939 
2940 	return 0;
2941 }
2942 
2943 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2944 				   struct hns3_desc_cb *cb)
2945 {
2946 	int ret;
2947 
2948 	ret = hns3_alloc_buffer(ring, cb);
2949 	if (ret)
2950 		goto out;
2951 
2952 	ret = hns3_map_buffer(ring, cb);
2953 	if (ret)
2954 		goto out_with_buf;
2955 
2956 	return 0;
2957 
2958 out_with_buf:
2959 	hns3_free_buffer(ring, cb, 0);
2960 out:
2961 	return ret;
2962 }
2963 
2964 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2965 {
2966 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2967 
2968 	if (ret)
2969 		return ret;
2970 
2971 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2972 
2973 	return 0;
2974 }
2975 
2976 /* Allocate memory for raw pkg, and map with dma */
2977 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2978 {
2979 	int i, j, ret;
2980 
2981 	for (i = 0; i < ring->desc_num; i++) {
2982 		ret = hns3_alloc_and_attach_buffer(ring, i);
2983 		if (ret)
2984 			goto out_buffer_fail;
2985 	}
2986 
2987 	return 0;
2988 
2989 out_buffer_fail:
2990 	for (j = i - 1; j >= 0; j--)
2991 		hns3_free_buffer_detach(ring, j, 0);
2992 	return ret;
2993 }
2994 
2995 /* detach a in-used buffer and replace with a reserved one */
2996 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2997 				struct hns3_desc_cb *res_cb)
2998 {
2999 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3000 	ring->desc_cb[i] = *res_cb;
3001 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
3002 	ring->desc[i].rx.bd_base_info = 0;
3003 }
3004 
3005 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3006 {
3007 	ring->desc_cb[i].reuse_flag = 0;
3008 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3009 					 ring->desc_cb[i].page_offset);
3010 	ring->desc[i].rx.bd_base_info = 0;
3011 
3012 	dma_sync_single_for_device(ring_to_dev(ring),
3013 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3014 			hns3_buf_size(ring),
3015 			DMA_FROM_DEVICE);
3016 }
3017 
3018 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3019 				  int *bytes, int *pkts, int budget)
3020 {
3021 	/* pair with ring->last_to_use update in hns3_tx_doorbell(),
3022 	 * smp_store_release() is not used in hns3_tx_doorbell() because
3023 	 * the doorbell operation already have the needed barrier operation.
3024 	 */
3025 	int ltu = smp_load_acquire(&ring->last_to_use);
3026 	int ntc = ring->next_to_clean;
3027 	struct hns3_desc_cb *desc_cb;
3028 	bool reclaimed = false;
3029 	struct hns3_desc *desc;
3030 
3031 	while (ltu != ntc) {
3032 		desc = &ring->desc[ntc];
3033 
3034 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3035 				BIT(HNS3_TXD_VLD_B))
3036 			break;
3037 
3038 		desc_cb = &ring->desc_cb[ntc];
3039 
3040 		if (desc_cb->type == DESC_TYPE_SKB) {
3041 			(*pkts)++;
3042 			(*bytes) += desc_cb->send_bytes;
3043 		}
3044 
3045 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3046 		hns3_free_buffer_detach(ring, ntc, budget);
3047 
3048 		if (++ntc == ring->desc_num)
3049 			ntc = 0;
3050 
3051 		/* Issue prefetch for next Tx descriptor */
3052 		prefetch(&ring->desc_cb[ntc]);
3053 		reclaimed = true;
3054 	}
3055 
3056 	if (unlikely(!reclaimed))
3057 		return false;
3058 
3059 	/* This smp_store_release() pairs with smp_load_acquire() in
3060 	 * ring_space called by hns3_nic_net_xmit.
3061 	 */
3062 	smp_store_release(&ring->next_to_clean, ntc);
3063 	return true;
3064 }
3065 
3066 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3067 {
3068 	struct net_device *netdev = ring_to_netdev(ring);
3069 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3070 	struct netdev_queue *dev_queue;
3071 	int bytes, pkts;
3072 
3073 	bytes = 0;
3074 	pkts = 0;
3075 
3076 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3077 		return;
3078 
3079 	ring->tqp_vector->tx_group.total_bytes += bytes;
3080 	ring->tqp_vector->tx_group.total_packets += pkts;
3081 
3082 	u64_stats_update_begin(&ring->syncp);
3083 	ring->stats.tx_bytes += bytes;
3084 	ring->stats.tx_pkts += pkts;
3085 	u64_stats_update_end(&ring->syncp);
3086 
3087 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3088 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
3089 
3090 	if (unlikely(netif_carrier_ok(netdev) &&
3091 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3092 		/* Make sure that anybody stopping the queue after this
3093 		 * sees the new next_to_clean.
3094 		 */
3095 		smp_mb();
3096 		if (netif_tx_queue_stopped(dev_queue) &&
3097 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3098 			netif_tx_wake_queue(dev_queue);
3099 			ring->stats.restart_queue++;
3100 		}
3101 	}
3102 }
3103 
3104 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3105 {
3106 	int ntc = ring->next_to_clean;
3107 	int ntu = ring->next_to_use;
3108 
3109 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3110 }
3111 
3112 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3113 				      int cleand_count)
3114 {
3115 	struct hns3_desc_cb *desc_cb;
3116 	struct hns3_desc_cb res_cbs;
3117 	int i, ret;
3118 
3119 	for (i = 0; i < cleand_count; i++) {
3120 		desc_cb = &ring->desc_cb[ring->next_to_use];
3121 		if (desc_cb->reuse_flag) {
3122 			u64_stats_update_begin(&ring->syncp);
3123 			ring->stats.reuse_pg_cnt++;
3124 			u64_stats_update_end(&ring->syncp);
3125 
3126 			hns3_reuse_buffer(ring, ring->next_to_use);
3127 		} else {
3128 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3129 			if (ret) {
3130 				u64_stats_update_begin(&ring->syncp);
3131 				ring->stats.sw_err_cnt++;
3132 				u64_stats_update_end(&ring->syncp);
3133 
3134 				hns3_rl_err(ring_to_netdev(ring),
3135 					    "alloc rx buffer failed: %d\n",
3136 					    ret);
3137 				break;
3138 			}
3139 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3140 
3141 			u64_stats_update_begin(&ring->syncp);
3142 			ring->stats.non_reuse_pg++;
3143 			u64_stats_update_end(&ring->syncp);
3144 		}
3145 
3146 		ring_ptr_move_fw(ring, next_to_use);
3147 	}
3148 
3149 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3150 }
3151 
3152 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3153 {
3154 	return (page_count(cb->priv) - cb->pagecnt_bias) == 1;
3155 }
3156 
3157 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3158 				struct hns3_enet_ring *ring, int pull_len,
3159 				struct hns3_desc_cb *desc_cb)
3160 {
3161 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3162 	int size = le16_to_cpu(desc->rx.size);
3163 	u32 truesize = hns3_buf_size(ring);
3164 
3165 	desc_cb->pagecnt_bias--;
3166 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
3167 			size - pull_len, truesize);
3168 
3169 	/* Avoid re-using remote and pfmemalloc pages, or the stack is still
3170 	 * using the page when page_offset rollback to zero, flag default
3171 	 * unreuse
3172 	 */
3173 	if (!dev_page_is_reusable(desc_cb->priv) ||
3174 	    (!desc_cb->page_offset && !hns3_can_reuse_page(desc_cb))) {
3175 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3176 		return;
3177 	}
3178 
3179 	/* Move offset up to the next cache line */
3180 	desc_cb->page_offset += truesize;
3181 
3182 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
3183 		desc_cb->reuse_flag = 1;
3184 	} else if (hns3_can_reuse_page(desc_cb)) {
3185 		desc_cb->reuse_flag = 1;
3186 		desc_cb->page_offset = 0;
3187 	} else if (desc_cb->pagecnt_bias) {
3188 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3189 		return;
3190 	}
3191 
3192 	if (unlikely(!desc_cb->pagecnt_bias)) {
3193 		page_ref_add(desc_cb->priv, USHRT_MAX);
3194 		desc_cb->pagecnt_bias = USHRT_MAX;
3195 	}
3196 }
3197 
3198 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3199 {
3200 	__be16 type = skb->protocol;
3201 	struct tcphdr *th;
3202 	int depth = 0;
3203 
3204 	while (eth_type_vlan(type)) {
3205 		struct vlan_hdr *vh;
3206 
3207 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
3208 			return -EFAULT;
3209 
3210 		vh = (struct vlan_hdr *)(skb->data + depth);
3211 		type = vh->h_vlan_encapsulated_proto;
3212 		depth += VLAN_HLEN;
3213 	}
3214 
3215 	skb_set_network_header(skb, depth);
3216 
3217 	if (type == htons(ETH_P_IP)) {
3218 		const struct iphdr *iph = ip_hdr(skb);
3219 
3220 		depth += sizeof(struct iphdr);
3221 		skb_set_transport_header(skb, depth);
3222 		th = tcp_hdr(skb);
3223 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3224 					  iph->daddr, 0);
3225 	} else if (type == htons(ETH_P_IPV6)) {
3226 		const struct ipv6hdr *iph = ipv6_hdr(skb);
3227 
3228 		depth += sizeof(struct ipv6hdr);
3229 		skb_set_transport_header(skb, depth);
3230 		th = tcp_hdr(skb);
3231 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3232 					  &iph->daddr, 0);
3233 	} else {
3234 		hns3_rl_err(skb->dev,
3235 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3236 			    be16_to_cpu(type), depth);
3237 		return -EFAULT;
3238 	}
3239 
3240 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3241 	if (th->cwr)
3242 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3243 
3244 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3245 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3246 
3247 	skb->csum_start = (unsigned char *)th - skb->head;
3248 	skb->csum_offset = offsetof(struct tcphdr, check);
3249 	skb->ip_summed = CHECKSUM_PARTIAL;
3250 
3251 	trace_hns3_gro(skb);
3252 
3253 	return 0;
3254 }
3255 
3256 static bool hns3_checksum_complete(struct hns3_enet_ring *ring,
3257 				   struct sk_buff *skb, u32 ptype, u16 csum)
3258 {
3259 	if (ptype == HNS3_INVALID_PTYPE ||
3260 	    hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3261 		return false;
3262 
3263 	u64_stats_update_begin(&ring->syncp);
3264 	ring->stats.csum_complete++;
3265 	u64_stats_update_end(&ring->syncp);
3266 	skb->ip_summed = CHECKSUM_COMPLETE;
3267 	skb->csum = csum_unfold((__force __sum16)csum);
3268 
3269 	return true;
3270 }
3271 
3272 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3273 				u32 ol_info, u32 ptype)
3274 {
3275 	int l3_type, l4_type;
3276 	int ol4_type;
3277 
3278 	if (ptype != HNS3_INVALID_PTYPE) {
3279 		skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3280 		skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3281 
3282 		return;
3283 	}
3284 
3285 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3286 				   HNS3_RXD_OL4ID_S);
3287 	switch (ol4_type) {
3288 	case HNS3_OL4_TYPE_MAC_IN_UDP:
3289 	case HNS3_OL4_TYPE_NVGRE:
3290 		skb->csum_level = 1;
3291 		fallthrough;
3292 	case HNS3_OL4_TYPE_NO_TUN:
3293 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3294 					  HNS3_RXD_L3ID_S);
3295 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3296 					  HNS3_RXD_L4ID_S);
3297 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3298 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3299 		     l3_type == HNS3_L3_TYPE_IPV6) &&
3300 		    (l4_type == HNS3_L4_TYPE_UDP ||
3301 		     l4_type == HNS3_L4_TYPE_TCP ||
3302 		     l4_type == HNS3_L4_TYPE_SCTP))
3303 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3304 		break;
3305 	default:
3306 		break;
3307 	}
3308 }
3309 
3310 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3311 			     u32 l234info, u32 bd_base_info, u32 ol_info,
3312 			     u16 csum)
3313 {
3314 	struct net_device *netdev = ring_to_netdev(ring);
3315 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3316 	u32 ptype = HNS3_INVALID_PTYPE;
3317 
3318 	skb->ip_summed = CHECKSUM_NONE;
3319 
3320 	skb_checksum_none_assert(skb);
3321 
3322 	if (!(netdev->features & NETIF_F_RXCSUM))
3323 		return;
3324 
3325 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3326 		ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3327 					HNS3_RXD_PTYPE_S);
3328 
3329 	if (hns3_checksum_complete(ring, skb, ptype, csum))
3330 		return;
3331 
3332 	/* check if hardware has done checksum */
3333 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3334 		return;
3335 
3336 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3337 				 BIT(HNS3_RXD_OL3E_B) |
3338 				 BIT(HNS3_RXD_OL4E_B)))) {
3339 		u64_stats_update_begin(&ring->syncp);
3340 		ring->stats.l3l4_csum_err++;
3341 		u64_stats_update_end(&ring->syncp);
3342 
3343 		return;
3344 	}
3345 
3346 	hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3347 }
3348 
3349 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3350 {
3351 	if (skb_has_frag_list(skb))
3352 		napi_gro_flush(&ring->tqp_vector->napi, false);
3353 
3354 	napi_gro_receive(&ring->tqp_vector->napi, skb);
3355 }
3356 
3357 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3358 				struct hns3_desc *desc, u32 l234info,
3359 				u16 *vlan_tag)
3360 {
3361 	struct hnae3_handle *handle = ring->tqp->handle;
3362 	struct pci_dev *pdev = ring->tqp->handle->pdev;
3363 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3364 
3365 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3366 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3367 		if (!(*vlan_tag & VLAN_VID_MASK))
3368 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3369 
3370 		return (*vlan_tag != 0);
3371 	}
3372 
3373 #define HNS3_STRP_OUTER_VLAN	0x1
3374 #define HNS3_STRP_INNER_VLAN	0x2
3375 #define HNS3_STRP_BOTH		0x3
3376 
3377 	/* Hardware always insert VLAN tag into RX descriptor when
3378 	 * remove the tag from packet, driver needs to determine
3379 	 * reporting which tag to stack.
3380 	 */
3381 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3382 				HNS3_RXD_STRP_TAGP_S)) {
3383 	case HNS3_STRP_OUTER_VLAN:
3384 		if (handle->port_base_vlan_state !=
3385 				HNAE3_PORT_BASE_VLAN_DISABLE)
3386 			return false;
3387 
3388 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3389 		return true;
3390 	case HNS3_STRP_INNER_VLAN:
3391 		if (handle->port_base_vlan_state !=
3392 				HNAE3_PORT_BASE_VLAN_DISABLE)
3393 			return false;
3394 
3395 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3396 		return true;
3397 	case HNS3_STRP_BOTH:
3398 		if (handle->port_base_vlan_state ==
3399 				HNAE3_PORT_BASE_VLAN_DISABLE)
3400 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3401 		else
3402 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3403 
3404 		return true;
3405 	default:
3406 		return false;
3407 	}
3408 }
3409 
3410 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
3411 {
3412 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
3413 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
3414 	ring->next_to_clean += 1;
3415 
3416 	if (unlikely(ring->next_to_clean == ring->desc_num))
3417 		ring->next_to_clean = 0;
3418 }
3419 
3420 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3421 			  unsigned char *va)
3422 {
3423 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3424 	struct net_device *netdev = ring_to_netdev(ring);
3425 	struct sk_buff *skb;
3426 
3427 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3428 	skb = ring->skb;
3429 	if (unlikely(!skb)) {
3430 		hns3_rl_err(netdev, "alloc rx skb fail\n");
3431 
3432 		u64_stats_update_begin(&ring->syncp);
3433 		ring->stats.sw_err_cnt++;
3434 		u64_stats_update_end(&ring->syncp);
3435 
3436 		return -ENOMEM;
3437 	}
3438 
3439 	trace_hns3_rx_desc(ring);
3440 	prefetchw(skb->data);
3441 
3442 	ring->pending_buf = 1;
3443 	ring->frag_num = 0;
3444 	ring->tail_skb = NULL;
3445 	if (length <= HNS3_RX_HEAD_SIZE) {
3446 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3447 
3448 		/* We can reuse buffer as-is, just make sure it is reusable */
3449 		if (dev_page_is_reusable(desc_cb->priv))
3450 			desc_cb->reuse_flag = 1;
3451 		else /* This page cannot be reused so discard it */
3452 			__page_frag_cache_drain(desc_cb->priv,
3453 						desc_cb->pagecnt_bias);
3454 
3455 		hns3_rx_ring_move_fw(ring);
3456 		return 0;
3457 	}
3458 	u64_stats_update_begin(&ring->syncp);
3459 	ring->stats.seg_pkt_cnt++;
3460 	u64_stats_update_end(&ring->syncp);
3461 
3462 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3463 	__skb_put(skb, ring->pull_len);
3464 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3465 			    desc_cb);
3466 	hns3_rx_ring_move_fw(ring);
3467 
3468 	return 0;
3469 }
3470 
3471 static int hns3_add_frag(struct hns3_enet_ring *ring)
3472 {
3473 	struct sk_buff *skb = ring->skb;
3474 	struct sk_buff *head_skb = skb;
3475 	struct sk_buff *new_skb;
3476 	struct hns3_desc_cb *desc_cb;
3477 	struct hns3_desc *desc;
3478 	u32 bd_base_info;
3479 
3480 	do {
3481 		desc = &ring->desc[ring->next_to_clean];
3482 		desc_cb = &ring->desc_cb[ring->next_to_clean];
3483 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3484 		/* make sure HW write desc complete */
3485 		dma_rmb();
3486 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3487 			return -ENXIO;
3488 
3489 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3490 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3491 			if (unlikely(!new_skb)) {
3492 				hns3_rl_err(ring_to_netdev(ring),
3493 					    "alloc rx fraglist skb fail\n");
3494 				return -ENXIO;
3495 			}
3496 			ring->frag_num = 0;
3497 
3498 			if (ring->tail_skb) {
3499 				ring->tail_skb->next = new_skb;
3500 				ring->tail_skb = new_skb;
3501 			} else {
3502 				skb_shinfo(skb)->frag_list = new_skb;
3503 				ring->tail_skb = new_skb;
3504 			}
3505 		}
3506 
3507 		if (ring->tail_skb) {
3508 			head_skb->truesize += hns3_buf_size(ring);
3509 			head_skb->data_len += le16_to_cpu(desc->rx.size);
3510 			head_skb->len += le16_to_cpu(desc->rx.size);
3511 			skb = ring->tail_skb;
3512 		}
3513 
3514 		dma_sync_single_for_cpu(ring_to_dev(ring),
3515 				desc_cb->dma + desc_cb->page_offset,
3516 				hns3_buf_size(ring),
3517 				DMA_FROM_DEVICE);
3518 
3519 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3520 		trace_hns3_rx_desc(ring);
3521 		hns3_rx_ring_move_fw(ring);
3522 		ring->pending_buf++;
3523 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3524 
3525 	return 0;
3526 }
3527 
3528 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3529 				     struct sk_buff *skb, u32 l234info,
3530 				     u32 bd_base_info, u32 ol_info, u16 csum)
3531 {
3532 	struct net_device *netdev = ring_to_netdev(ring);
3533 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3534 	u32 l3_type;
3535 
3536 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3537 						    HNS3_RXD_GRO_SIZE_M,
3538 						    HNS3_RXD_GRO_SIZE_S);
3539 	/* if there is no HW GRO, do not set gro params */
3540 	if (!skb_shinfo(skb)->gso_size) {
3541 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
3542 				 csum);
3543 		return 0;
3544 	}
3545 
3546 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3547 						  HNS3_RXD_GRO_COUNT_M,
3548 						  HNS3_RXD_GRO_COUNT_S);
3549 
3550 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
3551 		u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3552 					    HNS3_RXD_PTYPE_S);
3553 
3554 		l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
3555 	} else {
3556 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3557 					  HNS3_RXD_L3ID_S);
3558 	}
3559 
3560 	if (l3_type == HNS3_L3_TYPE_IPV4)
3561 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3562 	else if (l3_type == HNS3_L3_TYPE_IPV6)
3563 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3564 	else
3565 		return -EFAULT;
3566 
3567 	return  hns3_gro_complete(skb, l234info);
3568 }
3569 
3570 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3571 				     struct sk_buff *skb, u32 rss_hash)
3572 {
3573 	struct hnae3_handle *handle = ring->tqp->handle;
3574 	enum pkt_hash_types rss_type;
3575 
3576 	if (rss_hash)
3577 		rss_type = handle->kinfo.rss_type;
3578 	else
3579 		rss_type = PKT_HASH_TYPE_NONE;
3580 
3581 	skb_set_hash(skb, rss_hash, rss_type);
3582 }
3583 
3584 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
3585 {
3586 	struct net_device *netdev = ring_to_netdev(ring);
3587 	enum hns3_pkt_l2t_type l2_frame_type;
3588 	u32 bd_base_info, l234info, ol_info;
3589 	struct hns3_desc *desc;
3590 	unsigned int len;
3591 	int pre_ntc, ret;
3592 	u16 csum;
3593 
3594 	/* bdinfo handled below is only valid on the last BD of the
3595 	 * current packet, and ring->next_to_clean indicates the first
3596 	 * descriptor of next packet, so need - 1 below.
3597 	 */
3598 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
3599 					(ring->desc_num - 1);
3600 	desc = &ring->desc[pre_ntc];
3601 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3602 	l234info = le32_to_cpu(desc->rx.l234_info);
3603 	ol_info = le32_to_cpu(desc->rx.ol_info);
3604 	csum = le16_to_cpu(desc->csum);
3605 
3606 	if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
3607 		struct hnae3_handle *h = hns3_get_handle(netdev);
3608 		u32 nsec = le32_to_cpu(desc->ts_nsec);
3609 		u32 sec = le32_to_cpu(desc->ts_sec);
3610 
3611 		if (h->ae_algo->ops->get_rx_hwts)
3612 			h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
3613 	}
3614 
3615 	/* Based on hw strategy, the tag offloaded will be stored at
3616 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3617 	 * in one layer tag case.
3618 	 */
3619 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3620 		u16 vlan_tag;
3621 
3622 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3623 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3624 					       vlan_tag);
3625 	}
3626 
3627 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3628 				  BIT(HNS3_RXD_L2E_B))))) {
3629 		u64_stats_update_begin(&ring->syncp);
3630 		if (l234info & BIT(HNS3_RXD_L2E_B))
3631 			ring->stats.l2_err++;
3632 		else
3633 			ring->stats.err_pkt_len++;
3634 		u64_stats_update_end(&ring->syncp);
3635 
3636 		return -EFAULT;
3637 	}
3638 
3639 	len = skb->len;
3640 
3641 	/* Do update ip stack process */
3642 	skb->protocol = eth_type_trans(skb, netdev);
3643 
3644 	/* This is needed in order to enable forwarding support */
3645 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3646 					bd_base_info, ol_info, csum);
3647 	if (unlikely(ret)) {
3648 		u64_stats_update_begin(&ring->syncp);
3649 		ring->stats.rx_err_cnt++;
3650 		u64_stats_update_end(&ring->syncp);
3651 		return ret;
3652 	}
3653 
3654 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3655 					HNS3_RXD_DMAC_S);
3656 
3657 	u64_stats_update_begin(&ring->syncp);
3658 	ring->stats.rx_pkts++;
3659 	ring->stats.rx_bytes += len;
3660 
3661 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3662 		ring->stats.rx_multicast++;
3663 
3664 	u64_stats_update_end(&ring->syncp);
3665 
3666 	ring->tqp_vector->rx_group.total_bytes += len;
3667 
3668 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3669 	return 0;
3670 }
3671 
3672 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3673 {
3674 	struct sk_buff *skb = ring->skb;
3675 	struct hns3_desc_cb *desc_cb;
3676 	struct hns3_desc *desc;
3677 	unsigned int length;
3678 	u32 bd_base_info;
3679 	int ret;
3680 
3681 	desc = &ring->desc[ring->next_to_clean];
3682 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3683 
3684 	prefetch(desc);
3685 
3686 	if (!skb) {
3687 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3688 		/* Check valid BD */
3689 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3690 			return -ENXIO;
3691 
3692 		dma_rmb();
3693 		length = le16_to_cpu(desc->rx.size);
3694 
3695 		ring->va = desc_cb->buf + desc_cb->page_offset;
3696 
3697 		dma_sync_single_for_cpu(ring_to_dev(ring),
3698 				desc_cb->dma + desc_cb->page_offset,
3699 				hns3_buf_size(ring),
3700 				DMA_FROM_DEVICE);
3701 
3702 		/* Prefetch first cache line of first page.
3703 		 * Idea is to cache few bytes of the header of the packet.
3704 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
3705 		 * it 128B. But in actual we can have greater size of caches with
3706 		 * 128B Level 1 cache lines. In such a case, single fetch would
3707 		 * suffice to cache in the relevant part of the header.
3708 		 */
3709 		net_prefetch(ring->va);
3710 
3711 		ret = hns3_alloc_skb(ring, length, ring->va);
3712 		skb = ring->skb;
3713 
3714 		if (ret < 0) /* alloc buffer fail */
3715 			return ret;
3716 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3717 			ret = hns3_add_frag(ring);
3718 			if (ret)
3719 				return ret;
3720 		}
3721 	} else {
3722 		ret = hns3_add_frag(ring);
3723 		if (ret)
3724 			return ret;
3725 	}
3726 
3727 	/* As the head data may be changed when GRO enable, copy
3728 	 * the head data in after other data rx completed
3729 	 */
3730 	if (skb->len > HNS3_RX_HEAD_SIZE)
3731 		memcpy(skb->data, ring->va,
3732 		       ALIGN(ring->pull_len, sizeof(long)));
3733 
3734 	ret = hns3_handle_bdinfo(ring, skb);
3735 	if (unlikely(ret)) {
3736 		dev_kfree_skb_any(skb);
3737 		return ret;
3738 	}
3739 
3740 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3741 	return 0;
3742 }
3743 
3744 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3745 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3746 {
3747 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3748 	int unused_count = hns3_desc_unused(ring);
3749 	int recv_pkts = 0;
3750 	int err;
3751 
3752 	unused_count -= ring->pending_buf;
3753 
3754 	while (recv_pkts < budget) {
3755 		/* Reuse or realloc buffers */
3756 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3757 			hns3_nic_alloc_rx_buffers(ring, unused_count);
3758 			unused_count = hns3_desc_unused(ring) -
3759 					ring->pending_buf;
3760 		}
3761 
3762 		/* Poll one pkt */
3763 		err = hns3_handle_rx_bd(ring);
3764 		/* Do not get FE for the packet or failed to alloc skb */
3765 		if (unlikely(!ring->skb || err == -ENXIO)) {
3766 			goto out;
3767 		} else if (likely(!err)) {
3768 			rx_fn(ring, ring->skb);
3769 			recv_pkts++;
3770 		}
3771 
3772 		unused_count += ring->pending_buf;
3773 		ring->skb = NULL;
3774 		ring->pending_buf = 0;
3775 	}
3776 
3777 out:
3778 	/* Make all data has been write before submit */
3779 	if (unused_count > 0)
3780 		hns3_nic_alloc_rx_buffers(ring, unused_count);
3781 
3782 	return recv_pkts;
3783 }
3784 
3785 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
3786 {
3787 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3788 	struct dim_sample sample = {};
3789 
3790 	if (!rx_group->coal.adapt_enable)
3791 		return;
3792 
3793 	dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
3794 			  rx_group->total_bytes, &sample);
3795 	net_dim(&rx_group->dim, sample);
3796 }
3797 
3798 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
3799 {
3800 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3801 	struct dim_sample sample = {};
3802 
3803 	if (!tx_group->coal.adapt_enable)
3804 		return;
3805 
3806 	dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
3807 			  tx_group->total_bytes, &sample);
3808 	net_dim(&tx_group->dim, sample);
3809 }
3810 
3811 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3812 {
3813 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3814 	struct hns3_enet_ring *ring;
3815 	int rx_pkt_total = 0;
3816 
3817 	struct hns3_enet_tqp_vector *tqp_vector =
3818 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3819 	bool clean_complete = true;
3820 	int rx_budget = budget;
3821 
3822 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3823 		napi_complete(napi);
3824 		return 0;
3825 	}
3826 
3827 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3828 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3829 	 */
3830 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3831 		hns3_clean_tx_ring(ring, budget);
3832 
3833 	/* make sure rx ring budget not smaller than 1 */
3834 	if (tqp_vector->num_tqps > 1)
3835 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3836 
3837 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3838 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3839 						    hns3_rx_skb);
3840 		if (rx_cleaned >= rx_budget)
3841 			clean_complete = false;
3842 
3843 		rx_pkt_total += rx_cleaned;
3844 	}
3845 
3846 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3847 
3848 	if (!clean_complete)
3849 		return budget;
3850 
3851 	if (napi_complete(napi) &&
3852 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3853 		hns3_update_rx_int_coalesce(tqp_vector);
3854 		hns3_update_tx_int_coalesce(tqp_vector);
3855 
3856 		hns3_mask_vector_irq(tqp_vector, 1);
3857 	}
3858 
3859 	return rx_pkt_total;
3860 }
3861 
3862 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3863 				      struct hnae3_ring_chain_node *head)
3864 {
3865 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3866 	struct hnae3_ring_chain_node *cur_chain = head;
3867 	struct hnae3_ring_chain_node *chain;
3868 	struct hns3_enet_ring *tx_ring;
3869 	struct hns3_enet_ring *rx_ring;
3870 
3871 	tx_ring = tqp_vector->tx_group.ring;
3872 	if (tx_ring) {
3873 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3874 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3875 			      HNAE3_RING_TYPE_TX);
3876 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3877 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3878 
3879 		cur_chain->next = NULL;
3880 
3881 		while (tx_ring->next) {
3882 			tx_ring = tx_ring->next;
3883 
3884 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3885 					     GFP_KERNEL);
3886 			if (!chain)
3887 				goto err_free_chain;
3888 
3889 			cur_chain->next = chain;
3890 			chain->tqp_index = tx_ring->tqp->tqp_index;
3891 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3892 				      HNAE3_RING_TYPE_TX);
3893 			hnae3_set_field(chain->int_gl_idx,
3894 					HNAE3_RING_GL_IDX_M,
3895 					HNAE3_RING_GL_IDX_S,
3896 					HNAE3_RING_GL_TX);
3897 
3898 			cur_chain = chain;
3899 		}
3900 	}
3901 
3902 	rx_ring = tqp_vector->rx_group.ring;
3903 	if (!tx_ring && rx_ring) {
3904 		cur_chain->next = NULL;
3905 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3906 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3907 			      HNAE3_RING_TYPE_RX);
3908 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3909 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3910 
3911 		rx_ring = rx_ring->next;
3912 	}
3913 
3914 	while (rx_ring) {
3915 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3916 		if (!chain)
3917 			goto err_free_chain;
3918 
3919 		cur_chain->next = chain;
3920 		chain->tqp_index = rx_ring->tqp->tqp_index;
3921 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3922 			      HNAE3_RING_TYPE_RX);
3923 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3924 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3925 
3926 		cur_chain = chain;
3927 
3928 		rx_ring = rx_ring->next;
3929 	}
3930 
3931 	return 0;
3932 
3933 err_free_chain:
3934 	cur_chain = head->next;
3935 	while (cur_chain) {
3936 		chain = cur_chain->next;
3937 		devm_kfree(&pdev->dev, cur_chain);
3938 		cur_chain = chain;
3939 	}
3940 	head->next = NULL;
3941 
3942 	return -ENOMEM;
3943 }
3944 
3945 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3946 					struct hnae3_ring_chain_node *head)
3947 {
3948 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3949 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3950 
3951 	chain = head->next;
3952 
3953 	while (chain) {
3954 		chain_tmp = chain->next;
3955 		devm_kfree(&pdev->dev, chain);
3956 		chain = chain_tmp;
3957 	}
3958 }
3959 
3960 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3961 				   struct hns3_enet_ring *ring)
3962 {
3963 	ring->next = group->ring;
3964 	group->ring = ring;
3965 
3966 	group->count++;
3967 }
3968 
3969 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3970 {
3971 	struct pci_dev *pdev = priv->ae_handle->pdev;
3972 	struct hns3_enet_tqp_vector *tqp_vector;
3973 	int num_vectors = priv->vector_num;
3974 	int numa_node;
3975 	int vector_i;
3976 
3977 	numa_node = dev_to_node(&pdev->dev);
3978 
3979 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3980 		tqp_vector = &priv->tqp_vector[vector_i];
3981 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3982 				&tqp_vector->affinity_mask);
3983 	}
3984 }
3985 
3986 static void hns3_rx_dim_work(struct work_struct *work)
3987 {
3988 	struct dim *dim = container_of(work, struct dim, work);
3989 	struct hns3_enet_ring_group *group = container_of(dim,
3990 		struct hns3_enet_ring_group, dim);
3991 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
3992 	struct dim_cq_moder cur_moder =
3993 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
3994 
3995 	hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
3996 	tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
3997 
3998 	if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
3999 		hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4000 		tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4001 	}
4002 
4003 	dim->state = DIM_START_MEASURE;
4004 }
4005 
4006 static void hns3_tx_dim_work(struct work_struct *work)
4007 {
4008 	struct dim *dim = container_of(work, struct dim, work);
4009 	struct hns3_enet_ring_group *group = container_of(dim,
4010 		struct hns3_enet_ring_group, dim);
4011 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4012 	struct dim_cq_moder cur_moder =
4013 		net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4014 
4015 	hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4016 	tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4017 
4018 	if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4019 		hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4020 		tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4021 	}
4022 
4023 	dim->state = DIM_START_MEASURE;
4024 }
4025 
4026 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4027 {
4028 	INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4029 	tqp_vector->rx_group.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
4030 	INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4031 	tqp_vector->tx_group.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
4032 }
4033 
4034 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4035 {
4036 	struct hnae3_handle *h = priv->ae_handle;
4037 	struct hns3_enet_tqp_vector *tqp_vector;
4038 	int ret;
4039 	int i;
4040 
4041 	hns3_nic_set_cpumask(priv);
4042 
4043 	for (i = 0; i < priv->vector_num; i++) {
4044 		tqp_vector = &priv->tqp_vector[i];
4045 		hns3_vector_coalesce_init_hw(tqp_vector, priv);
4046 		tqp_vector->num_tqps = 0;
4047 		hns3_nic_init_dim(tqp_vector);
4048 	}
4049 
4050 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4051 		u16 vector_i = i % priv->vector_num;
4052 		u16 tqp_num = h->kinfo.num_tqps;
4053 
4054 		tqp_vector = &priv->tqp_vector[vector_i];
4055 
4056 		hns3_add_ring_to_group(&tqp_vector->tx_group,
4057 				       &priv->ring[i]);
4058 
4059 		hns3_add_ring_to_group(&tqp_vector->rx_group,
4060 				       &priv->ring[i + tqp_num]);
4061 
4062 		priv->ring[i].tqp_vector = tqp_vector;
4063 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4064 		tqp_vector->num_tqps++;
4065 	}
4066 
4067 	for (i = 0; i < priv->vector_num; i++) {
4068 		struct hnae3_ring_chain_node vector_ring_chain;
4069 
4070 		tqp_vector = &priv->tqp_vector[i];
4071 
4072 		tqp_vector->rx_group.total_bytes = 0;
4073 		tqp_vector->rx_group.total_packets = 0;
4074 		tqp_vector->tx_group.total_bytes = 0;
4075 		tqp_vector->tx_group.total_packets = 0;
4076 		tqp_vector->handle = h;
4077 
4078 		ret = hns3_get_vector_ring_chain(tqp_vector,
4079 						 &vector_ring_chain);
4080 		if (ret)
4081 			goto map_ring_fail;
4082 
4083 		ret = h->ae_algo->ops->map_ring_to_vector(h,
4084 			tqp_vector->vector_irq, &vector_ring_chain);
4085 
4086 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
4087 
4088 		if (ret)
4089 			goto map_ring_fail;
4090 
4091 		netif_napi_add(priv->netdev, &tqp_vector->napi,
4092 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
4093 	}
4094 
4095 	return 0;
4096 
4097 map_ring_fail:
4098 	while (i--)
4099 		netif_napi_del(&priv->tqp_vector[i].napi);
4100 
4101 	return ret;
4102 }
4103 
4104 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4105 {
4106 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
4107 	struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4108 	struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4109 
4110 	/* initialize the configuration for interrupt coalescing.
4111 	 * 1. GL (Interrupt Gap Limiter)
4112 	 * 2. RL (Interrupt Rate Limiter)
4113 	 * 3. QL (Interrupt Quantity Limiter)
4114 	 *
4115 	 * Default: enable interrupt coalescing self-adaptive and GL
4116 	 */
4117 	tx_coal->adapt_enable = 1;
4118 	rx_coal->adapt_enable = 1;
4119 
4120 	tx_coal->int_gl = HNS3_INT_GL_50K;
4121 	rx_coal->int_gl = HNS3_INT_GL_50K;
4122 
4123 	rx_coal->flow_level = HNS3_FLOW_LOW;
4124 	tx_coal->flow_level = HNS3_FLOW_LOW;
4125 
4126 	if (ae_dev->dev_specs.int_ql_max) {
4127 		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4128 		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4129 	}
4130 }
4131 
4132 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4133 {
4134 	struct hnae3_handle *h = priv->ae_handle;
4135 	struct hns3_enet_tqp_vector *tqp_vector;
4136 	struct hnae3_vector_info *vector;
4137 	struct pci_dev *pdev = h->pdev;
4138 	u16 tqp_num = h->kinfo.num_tqps;
4139 	u16 vector_num;
4140 	int ret = 0;
4141 	u16 i;
4142 
4143 	/* RSS size, cpu online and vector_num should be the same */
4144 	/* Should consider 2p/4p later */
4145 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
4146 
4147 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4148 			      GFP_KERNEL);
4149 	if (!vector)
4150 		return -ENOMEM;
4151 
4152 	/* save the actual available vector number */
4153 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4154 
4155 	priv->vector_num = vector_num;
4156 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4157 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4158 			     GFP_KERNEL);
4159 	if (!priv->tqp_vector) {
4160 		ret = -ENOMEM;
4161 		goto out;
4162 	}
4163 
4164 	for (i = 0; i < priv->vector_num; i++) {
4165 		tqp_vector = &priv->tqp_vector[i];
4166 		tqp_vector->idx = i;
4167 		tqp_vector->mask_addr = vector[i].io_addr;
4168 		tqp_vector->vector_irq = vector[i].vector;
4169 		hns3_vector_coalesce_init(tqp_vector, priv);
4170 	}
4171 
4172 out:
4173 	devm_kfree(&pdev->dev, vector);
4174 	return ret;
4175 }
4176 
4177 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4178 {
4179 	group->ring = NULL;
4180 	group->count = 0;
4181 }
4182 
4183 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4184 {
4185 	struct hnae3_ring_chain_node vector_ring_chain;
4186 	struct hnae3_handle *h = priv->ae_handle;
4187 	struct hns3_enet_tqp_vector *tqp_vector;
4188 	int i;
4189 
4190 	for (i = 0; i < priv->vector_num; i++) {
4191 		tqp_vector = &priv->tqp_vector[i];
4192 
4193 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4194 			continue;
4195 
4196 		/* Since the mapping can be overwritten, when fail to get the
4197 		 * chain between vector and ring, we should go on to deal with
4198 		 * the remaining options.
4199 		 */
4200 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
4201 			dev_warn(priv->dev, "failed to get ring chain\n");
4202 
4203 		h->ae_algo->ops->unmap_ring_from_vector(h,
4204 			tqp_vector->vector_irq, &vector_ring_chain);
4205 
4206 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
4207 
4208 		hns3_clear_ring_group(&tqp_vector->rx_group);
4209 		hns3_clear_ring_group(&tqp_vector->tx_group);
4210 		netif_napi_del(&priv->tqp_vector[i].napi);
4211 	}
4212 }
4213 
4214 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4215 {
4216 	struct hnae3_handle *h = priv->ae_handle;
4217 	struct pci_dev *pdev = h->pdev;
4218 	int i, ret;
4219 
4220 	for (i = 0; i < priv->vector_num; i++) {
4221 		struct hns3_enet_tqp_vector *tqp_vector;
4222 
4223 		tqp_vector = &priv->tqp_vector[i];
4224 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4225 		if (ret)
4226 			return;
4227 	}
4228 
4229 	devm_kfree(&pdev->dev, priv->tqp_vector);
4230 }
4231 
4232 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4233 			      unsigned int ring_type)
4234 {
4235 	int queue_num = priv->ae_handle->kinfo.num_tqps;
4236 	struct hns3_enet_ring *ring;
4237 	int desc_num;
4238 
4239 	if (ring_type == HNAE3_RING_TYPE_TX) {
4240 		ring = &priv->ring[q->tqp_index];
4241 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
4242 		ring->queue_index = q->tqp_index;
4243 	} else {
4244 		ring = &priv->ring[q->tqp_index + queue_num];
4245 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
4246 		ring->queue_index = q->tqp_index;
4247 	}
4248 
4249 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4250 
4251 	ring->tqp = q;
4252 	ring->desc = NULL;
4253 	ring->desc_cb = NULL;
4254 	ring->dev = priv->dev;
4255 	ring->desc_dma_addr = 0;
4256 	ring->buf_size = q->buf_size;
4257 	ring->desc_num = desc_num;
4258 	ring->next_to_use = 0;
4259 	ring->next_to_clean = 0;
4260 	ring->last_to_use = 0;
4261 }
4262 
4263 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4264 			       struct hns3_nic_priv *priv)
4265 {
4266 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4267 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4268 }
4269 
4270 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4271 {
4272 	struct hnae3_handle *h = priv->ae_handle;
4273 	struct pci_dev *pdev = h->pdev;
4274 	int i;
4275 
4276 	priv->ring = devm_kzalloc(&pdev->dev,
4277 				  array3_size(h->kinfo.num_tqps,
4278 					      sizeof(*priv->ring), 2),
4279 				  GFP_KERNEL);
4280 	if (!priv->ring)
4281 		return -ENOMEM;
4282 
4283 	for (i = 0; i < h->kinfo.num_tqps; i++)
4284 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4285 
4286 	return 0;
4287 }
4288 
4289 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4290 {
4291 	if (!priv->ring)
4292 		return;
4293 
4294 	devm_kfree(priv->dev, priv->ring);
4295 	priv->ring = NULL;
4296 }
4297 
4298 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4299 {
4300 	int ret;
4301 
4302 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
4303 		return -EINVAL;
4304 
4305 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4306 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
4307 	if (!ring->desc_cb) {
4308 		ret = -ENOMEM;
4309 		goto out;
4310 	}
4311 
4312 	ret = hns3_alloc_desc(ring);
4313 	if (ret)
4314 		goto out_with_desc_cb;
4315 
4316 	if (!HNAE3_IS_TX_RING(ring)) {
4317 		ret = hns3_alloc_ring_buffers(ring);
4318 		if (ret)
4319 			goto out_with_desc;
4320 	}
4321 
4322 	return 0;
4323 
4324 out_with_desc:
4325 	hns3_free_desc(ring);
4326 out_with_desc_cb:
4327 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4328 	ring->desc_cb = NULL;
4329 out:
4330 	return ret;
4331 }
4332 
4333 void hns3_fini_ring(struct hns3_enet_ring *ring)
4334 {
4335 	hns3_free_desc(ring);
4336 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4337 	ring->desc_cb = NULL;
4338 	ring->next_to_clean = 0;
4339 	ring->next_to_use = 0;
4340 	ring->last_to_use = 0;
4341 	ring->pending_buf = 0;
4342 	if (ring->skb) {
4343 		dev_kfree_skb_any(ring->skb);
4344 		ring->skb = NULL;
4345 	}
4346 }
4347 
4348 static int hns3_buf_size2type(u32 buf_size)
4349 {
4350 	int bd_size_type;
4351 
4352 	switch (buf_size) {
4353 	case 512:
4354 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
4355 		break;
4356 	case 1024:
4357 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
4358 		break;
4359 	case 2048:
4360 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4361 		break;
4362 	case 4096:
4363 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
4364 		break;
4365 	default:
4366 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4367 	}
4368 
4369 	return bd_size_type;
4370 }
4371 
4372 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
4373 {
4374 	dma_addr_t dma = ring->desc_dma_addr;
4375 	struct hnae3_queue *q = ring->tqp;
4376 
4377 	if (!HNAE3_IS_TX_RING(ring)) {
4378 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
4379 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
4380 			       (u32)((dma >> 31) >> 1));
4381 
4382 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
4383 			       hns3_buf_size2type(ring->buf_size));
4384 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
4385 			       ring->desc_num / 8 - 1);
4386 	} else {
4387 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
4388 			       (u32)dma);
4389 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
4390 			       (u32)((dma >> 31) >> 1));
4391 
4392 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
4393 			       ring->desc_num / 8 - 1);
4394 	}
4395 }
4396 
4397 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
4398 {
4399 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4400 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
4401 	int i;
4402 
4403 	for (i = 0; i < HNAE3_MAX_TC; i++) {
4404 		int j;
4405 
4406 		if (!test_bit(i, &tc_info->tc_en))
4407 			continue;
4408 
4409 		for (j = 0; j < tc_info->tqp_count[i]; j++) {
4410 			struct hnae3_queue *q;
4411 
4412 			q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
4413 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
4414 		}
4415 	}
4416 }
4417 
4418 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4419 {
4420 	struct hnae3_handle *h = priv->ae_handle;
4421 	int ring_num = h->kinfo.num_tqps * 2;
4422 	int i, j;
4423 	int ret;
4424 
4425 	for (i = 0; i < ring_num; i++) {
4426 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
4427 		if (ret) {
4428 			dev_err(priv->dev,
4429 				"Alloc ring memory fail! ret=%d\n", ret);
4430 			goto out_when_alloc_ring_memory;
4431 		}
4432 
4433 		u64_stats_init(&priv->ring[i].syncp);
4434 	}
4435 
4436 	return 0;
4437 
4438 out_when_alloc_ring_memory:
4439 	for (j = i - 1; j >= 0; j--)
4440 		hns3_fini_ring(&priv->ring[j]);
4441 
4442 	return -ENOMEM;
4443 }
4444 
4445 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4446 {
4447 	struct hnae3_handle *h = priv->ae_handle;
4448 	int i;
4449 
4450 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4451 		hns3_fini_ring(&priv->ring[i]);
4452 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4453 	}
4454 }
4455 
4456 /* Set mac addr if it is configured. or leave it to the AE driver */
4457 static int hns3_init_mac_addr(struct net_device *netdev)
4458 {
4459 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4460 	struct hnae3_handle *h = priv->ae_handle;
4461 	u8 mac_addr_temp[ETH_ALEN];
4462 	int ret = 0;
4463 
4464 	if (h->ae_algo->ops->get_mac_addr)
4465 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4466 
4467 	/* Check if the MAC address is valid, if not get a random one */
4468 	if (!is_valid_ether_addr(mac_addr_temp)) {
4469 		eth_hw_addr_random(netdev);
4470 		dev_warn(priv->dev, "using random MAC address %pM\n",
4471 			 netdev->dev_addr);
4472 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4473 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
4474 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4475 	} else {
4476 		return 0;
4477 	}
4478 
4479 	if (h->ae_algo->ops->set_mac_addr)
4480 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4481 
4482 	return ret;
4483 }
4484 
4485 static int hns3_init_phy(struct net_device *netdev)
4486 {
4487 	struct hnae3_handle *h = hns3_get_handle(netdev);
4488 	int ret = 0;
4489 
4490 	if (h->ae_algo->ops->mac_connect_phy)
4491 		ret = h->ae_algo->ops->mac_connect_phy(h);
4492 
4493 	return ret;
4494 }
4495 
4496 static void hns3_uninit_phy(struct net_device *netdev)
4497 {
4498 	struct hnae3_handle *h = hns3_get_handle(netdev);
4499 
4500 	if (h->ae_algo->ops->mac_disconnect_phy)
4501 		h->ae_algo->ops->mac_disconnect_phy(h);
4502 }
4503 
4504 static int hns3_client_start(struct hnae3_handle *handle)
4505 {
4506 	if (!handle->ae_algo->ops->client_start)
4507 		return 0;
4508 
4509 	return handle->ae_algo->ops->client_start(handle);
4510 }
4511 
4512 static void hns3_client_stop(struct hnae3_handle *handle)
4513 {
4514 	if (!handle->ae_algo->ops->client_stop)
4515 		return;
4516 
4517 	handle->ae_algo->ops->client_stop(handle);
4518 }
4519 
4520 static void hns3_info_show(struct hns3_nic_priv *priv)
4521 {
4522 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4523 
4524 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4525 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4526 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4527 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4528 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4529 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4530 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4531 	dev_info(priv->dev, "Total number of enabled TCs: %u\n",
4532 		 kinfo->tc_info.num_tc);
4533 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4534 }
4535 
4536 static int hns3_client_init(struct hnae3_handle *handle)
4537 {
4538 	struct pci_dev *pdev = handle->pdev;
4539 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4540 	u16 alloc_tqps, max_rss_size;
4541 	struct hns3_nic_priv *priv;
4542 	struct net_device *netdev;
4543 	int ret;
4544 
4545 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
4546 						    &max_rss_size);
4547 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
4548 	if (!netdev)
4549 		return -ENOMEM;
4550 
4551 	priv = netdev_priv(netdev);
4552 	priv->dev = &pdev->dev;
4553 	priv->netdev = netdev;
4554 	priv->ae_handle = handle;
4555 	priv->tx_timeout_count = 0;
4556 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
4557 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4558 
4559 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4560 
4561 	handle->kinfo.netdev = netdev;
4562 	handle->priv = (void *)priv;
4563 
4564 	hns3_init_mac_addr(netdev);
4565 
4566 	hns3_set_default_feature(netdev);
4567 
4568 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4569 	netdev->priv_flags |= IFF_UNICAST_FLT;
4570 	netdev->netdev_ops = &hns3_nic_netdev_ops;
4571 	SET_NETDEV_DEV(netdev, &pdev->dev);
4572 	hns3_ethtool_set_ops(netdev);
4573 
4574 	/* Carrier off reporting is important to ethtool even BEFORE open */
4575 	netif_carrier_off(netdev);
4576 
4577 	ret = hns3_get_ring_config(priv);
4578 	if (ret) {
4579 		ret = -ENOMEM;
4580 		goto out_get_ring_cfg;
4581 	}
4582 
4583 	hns3_nic_init_coal_cfg(priv);
4584 
4585 	ret = hns3_nic_alloc_vector_data(priv);
4586 	if (ret) {
4587 		ret = -ENOMEM;
4588 		goto out_alloc_vector_data;
4589 	}
4590 
4591 	ret = hns3_nic_init_vector_data(priv);
4592 	if (ret) {
4593 		ret = -ENOMEM;
4594 		goto out_init_vector_data;
4595 	}
4596 
4597 	ret = hns3_init_all_ring(priv);
4598 	if (ret) {
4599 		ret = -ENOMEM;
4600 		goto out_init_ring;
4601 	}
4602 
4603 	ret = hns3_init_phy(netdev);
4604 	if (ret)
4605 		goto out_init_phy;
4606 
4607 	/* the device can work without cpu rmap, only aRFS needs it */
4608 	ret = hns3_set_rx_cpu_rmap(netdev);
4609 	if (ret)
4610 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4611 
4612 	ret = hns3_nic_init_irq(priv);
4613 	if (ret) {
4614 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4615 		hns3_free_rx_cpu_rmap(netdev);
4616 		goto out_init_irq_fail;
4617 	}
4618 
4619 	ret = hns3_client_start(handle);
4620 	if (ret) {
4621 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4622 		goto out_client_start;
4623 	}
4624 
4625 	hns3_dcbnl_setup(handle);
4626 
4627 	ret = hns3_dbg_init(handle);
4628 	if (ret) {
4629 		dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
4630 			ret);
4631 		goto out_client_start;
4632 	}
4633 
4634 	netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
4635 
4636 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
4637 		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
4638 
4639 	if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
4640 		set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
4641 
4642 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4643 
4644 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
4645 		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
4646 
4647 	ret = register_netdev(netdev);
4648 	if (ret) {
4649 		dev_err(priv->dev, "probe register netdev fail!\n");
4650 		goto out_reg_netdev_fail;
4651 	}
4652 
4653 	if (netif_msg_drv(handle))
4654 		hns3_info_show(priv);
4655 
4656 	return ret;
4657 
4658 out_reg_netdev_fail:
4659 	hns3_dbg_uninit(handle);
4660 out_client_start:
4661 	hns3_free_rx_cpu_rmap(netdev);
4662 	hns3_nic_uninit_irq(priv);
4663 out_init_irq_fail:
4664 	hns3_uninit_phy(netdev);
4665 out_init_phy:
4666 	hns3_uninit_all_ring(priv);
4667 out_init_ring:
4668 	hns3_nic_uninit_vector_data(priv);
4669 out_init_vector_data:
4670 	hns3_nic_dealloc_vector_data(priv);
4671 out_alloc_vector_data:
4672 	priv->ring = NULL;
4673 out_get_ring_cfg:
4674 	priv->ae_handle = NULL;
4675 	free_netdev(netdev);
4676 	return ret;
4677 }
4678 
4679 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4680 {
4681 	struct net_device *netdev = handle->kinfo.netdev;
4682 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4683 
4684 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4685 		unregister_netdev(netdev);
4686 
4687 	hns3_client_stop(handle);
4688 
4689 	hns3_uninit_phy(netdev);
4690 
4691 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4692 		netdev_warn(netdev, "already uninitialized\n");
4693 		goto out_netdev_free;
4694 	}
4695 
4696 	hns3_free_rx_cpu_rmap(netdev);
4697 
4698 	hns3_nic_uninit_irq(priv);
4699 
4700 	hns3_clear_all_ring(handle, true);
4701 
4702 	hns3_nic_uninit_vector_data(priv);
4703 
4704 	hns3_nic_dealloc_vector_data(priv);
4705 
4706 	hns3_uninit_all_ring(priv);
4707 
4708 	hns3_put_ring_config(priv);
4709 
4710 out_netdev_free:
4711 	hns3_dbg_uninit(handle);
4712 	free_netdev(netdev);
4713 }
4714 
4715 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4716 {
4717 	struct net_device *netdev = handle->kinfo.netdev;
4718 
4719 	if (!netdev)
4720 		return;
4721 
4722 	if (linkup) {
4723 		netif_tx_wake_all_queues(netdev);
4724 		netif_carrier_on(netdev);
4725 		if (netif_msg_link(handle))
4726 			netdev_info(netdev, "link up\n");
4727 	} else {
4728 		netif_carrier_off(netdev);
4729 		netif_tx_stop_all_queues(netdev);
4730 		if (netif_msg_link(handle))
4731 			netdev_info(netdev, "link down\n");
4732 	}
4733 }
4734 
4735 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4736 {
4737 	while (ring->next_to_clean != ring->next_to_use) {
4738 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4739 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
4740 		ring_ptr_move_fw(ring, next_to_clean);
4741 	}
4742 
4743 	ring->pending_buf = 0;
4744 }
4745 
4746 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4747 {
4748 	struct hns3_desc_cb res_cbs;
4749 	int ret;
4750 
4751 	while (ring->next_to_use != ring->next_to_clean) {
4752 		/* When a buffer is not reused, it's memory has been
4753 		 * freed in hns3_handle_rx_bd or will be freed by
4754 		 * stack, so we need to replace the buffer here.
4755 		 */
4756 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4757 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4758 			if (ret) {
4759 				u64_stats_update_begin(&ring->syncp);
4760 				ring->stats.sw_err_cnt++;
4761 				u64_stats_update_end(&ring->syncp);
4762 				/* if alloc new buffer fail, exit directly
4763 				 * and reclear in up flow.
4764 				 */
4765 				netdev_warn(ring_to_netdev(ring),
4766 					    "reserve buffer map failed, ret = %d\n",
4767 					    ret);
4768 				return ret;
4769 			}
4770 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4771 		}
4772 		ring_ptr_move_fw(ring, next_to_use);
4773 	}
4774 
4775 	/* Free the pending skb in rx ring */
4776 	if (ring->skb) {
4777 		dev_kfree_skb_any(ring->skb);
4778 		ring->skb = NULL;
4779 		ring->pending_buf = 0;
4780 	}
4781 
4782 	return 0;
4783 }
4784 
4785 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4786 {
4787 	while (ring->next_to_use != ring->next_to_clean) {
4788 		/* When a buffer is not reused, it's memory has been
4789 		 * freed in hns3_handle_rx_bd or will be freed by
4790 		 * stack, so only need to unmap the buffer here.
4791 		 */
4792 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4793 			hns3_unmap_buffer(ring,
4794 					  &ring->desc_cb[ring->next_to_use]);
4795 			ring->desc_cb[ring->next_to_use].dma = 0;
4796 		}
4797 
4798 		ring_ptr_move_fw(ring, next_to_use);
4799 	}
4800 }
4801 
4802 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4803 {
4804 	struct net_device *ndev = h->kinfo.netdev;
4805 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4806 	u32 i;
4807 
4808 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4809 		struct hns3_enet_ring *ring;
4810 
4811 		ring = &priv->ring[i];
4812 		hns3_clear_tx_ring(ring);
4813 
4814 		ring = &priv->ring[i + h->kinfo.num_tqps];
4815 		/* Continue to clear other rings even if clearing some
4816 		 * rings failed.
4817 		 */
4818 		if (force)
4819 			hns3_force_clear_rx_ring(ring);
4820 		else
4821 			hns3_clear_rx_ring(ring);
4822 	}
4823 }
4824 
4825 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4826 {
4827 	struct net_device *ndev = h->kinfo.netdev;
4828 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4829 	struct hns3_enet_ring *rx_ring;
4830 	int i, j;
4831 	int ret;
4832 
4833 	ret = h->ae_algo->ops->reset_queue(h);
4834 	if (ret)
4835 		return ret;
4836 
4837 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4838 		hns3_init_ring_hw(&priv->ring[i]);
4839 
4840 		/* We need to clear tx ring here because self test will
4841 		 * use the ring and will not run down before up
4842 		 */
4843 		hns3_clear_tx_ring(&priv->ring[i]);
4844 		priv->ring[i].next_to_clean = 0;
4845 		priv->ring[i].next_to_use = 0;
4846 		priv->ring[i].last_to_use = 0;
4847 
4848 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4849 		hns3_init_ring_hw(rx_ring);
4850 		ret = hns3_clear_rx_ring(rx_ring);
4851 		if (ret)
4852 			return ret;
4853 
4854 		/* We can not know the hardware head and tail when this
4855 		 * function is called in reset flow, so we reuse all desc.
4856 		 */
4857 		for (j = 0; j < rx_ring->desc_num; j++)
4858 			hns3_reuse_buffer(rx_ring, j);
4859 
4860 		rx_ring->next_to_clean = 0;
4861 		rx_ring->next_to_use = 0;
4862 	}
4863 
4864 	hns3_init_tx_ring_tc(priv);
4865 
4866 	return 0;
4867 }
4868 
4869 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4870 {
4871 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4872 	struct net_device *ndev = kinfo->netdev;
4873 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4874 
4875 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4876 		return 0;
4877 
4878 	if (!netif_running(ndev))
4879 		return 0;
4880 
4881 	return hns3_nic_net_stop(ndev);
4882 }
4883 
4884 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4885 {
4886 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4887 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4888 	int ret = 0;
4889 
4890 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4891 		netdev_err(kinfo->netdev, "device is not initialized yet\n");
4892 		return -EFAULT;
4893 	}
4894 
4895 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4896 
4897 	if (netif_running(kinfo->netdev)) {
4898 		ret = hns3_nic_net_open(kinfo->netdev);
4899 		if (ret) {
4900 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4901 			netdev_err(kinfo->netdev,
4902 				   "net up fail, ret=%d!\n", ret);
4903 			return ret;
4904 		}
4905 	}
4906 
4907 	return ret;
4908 }
4909 
4910 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4911 {
4912 	struct net_device *netdev = handle->kinfo.netdev;
4913 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4914 	int ret;
4915 
4916 	/* Carrier off reporting is important to ethtool even BEFORE open */
4917 	netif_carrier_off(netdev);
4918 
4919 	ret = hns3_get_ring_config(priv);
4920 	if (ret)
4921 		return ret;
4922 
4923 	ret = hns3_nic_alloc_vector_data(priv);
4924 	if (ret)
4925 		goto err_put_ring;
4926 
4927 	ret = hns3_nic_init_vector_data(priv);
4928 	if (ret)
4929 		goto err_dealloc_vector;
4930 
4931 	ret = hns3_init_all_ring(priv);
4932 	if (ret)
4933 		goto err_uninit_vector;
4934 
4935 	/* the device can work without cpu rmap, only aRFS needs it */
4936 	ret = hns3_set_rx_cpu_rmap(netdev);
4937 	if (ret)
4938 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4939 
4940 	ret = hns3_nic_init_irq(priv);
4941 	if (ret) {
4942 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4943 		hns3_free_rx_cpu_rmap(netdev);
4944 		goto err_init_irq_fail;
4945 	}
4946 
4947 	if (!hns3_is_phys_func(handle->pdev))
4948 		hns3_init_mac_addr(netdev);
4949 
4950 	ret = hns3_client_start(handle);
4951 	if (ret) {
4952 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4953 		goto err_client_start_fail;
4954 	}
4955 
4956 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4957 
4958 	return ret;
4959 
4960 err_client_start_fail:
4961 	hns3_free_rx_cpu_rmap(netdev);
4962 	hns3_nic_uninit_irq(priv);
4963 err_init_irq_fail:
4964 	hns3_uninit_all_ring(priv);
4965 err_uninit_vector:
4966 	hns3_nic_uninit_vector_data(priv);
4967 err_dealloc_vector:
4968 	hns3_nic_dealloc_vector_data(priv);
4969 err_put_ring:
4970 	hns3_put_ring_config(priv);
4971 
4972 	return ret;
4973 }
4974 
4975 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4976 {
4977 	struct net_device *netdev = handle->kinfo.netdev;
4978 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4979 
4980 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4981 		netdev_warn(netdev, "already uninitialized\n");
4982 		return 0;
4983 	}
4984 
4985 	hns3_free_rx_cpu_rmap(netdev);
4986 	hns3_nic_uninit_irq(priv);
4987 	hns3_clear_all_ring(handle, true);
4988 	hns3_reset_tx_queue(priv->ae_handle);
4989 
4990 	hns3_nic_uninit_vector_data(priv);
4991 
4992 	hns3_nic_dealloc_vector_data(priv);
4993 
4994 	hns3_uninit_all_ring(priv);
4995 
4996 	hns3_put_ring_config(priv);
4997 
4998 	return 0;
4999 }
5000 
5001 static int hns3_reset_notify(struct hnae3_handle *handle,
5002 			     enum hnae3_reset_notify_type type)
5003 {
5004 	int ret = 0;
5005 
5006 	switch (type) {
5007 	case HNAE3_UP_CLIENT:
5008 		ret = hns3_reset_notify_up_enet(handle);
5009 		break;
5010 	case HNAE3_DOWN_CLIENT:
5011 		ret = hns3_reset_notify_down_enet(handle);
5012 		break;
5013 	case HNAE3_INIT_CLIENT:
5014 		ret = hns3_reset_notify_init_enet(handle);
5015 		break;
5016 	case HNAE3_UNINIT_CLIENT:
5017 		ret = hns3_reset_notify_uninit_enet(handle);
5018 		break;
5019 	default:
5020 		break;
5021 	}
5022 
5023 	return ret;
5024 }
5025 
5026 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5027 				bool rxfh_configured)
5028 {
5029 	int ret;
5030 
5031 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5032 						 rxfh_configured);
5033 	if (ret) {
5034 		dev_err(&handle->pdev->dev,
5035 			"Change tqp num(%u) fail.\n", new_tqp_num);
5036 		return ret;
5037 	}
5038 
5039 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5040 	if (ret)
5041 		return ret;
5042 
5043 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5044 	if (ret)
5045 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5046 
5047 	return ret;
5048 }
5049 
5050 int hns3_set_channels(struct net_device *netdev,
5051 		      struct ethtool_channels *ch)
5052 {
5053 	struct hnae3_handle *h = hns3_get_handle(netdev);
5054 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
5055 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
5056 	u32 new_tqp_num = ch->combined_count;
5057 	u16 org_tqp_num;
5058 	int ret;
5059 
5060 	if (hns3_nic_resetting(netdev))
5061 		return -EBUSY;
5062 
5063 	if (ch->rx_count || ch->tx_count)
5064 		return -EINVAL;
5065 
5066 	if (kinfo->tc_info.mqprio_active) {
5067 		dev_err(&netdev->dev,
5068 			"it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5069 		return -EINVAL;
5070 	}
5071 
5072 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
5073 	    new_tqp_num < 1) {
5074 		dev_err(&netdev->dev,
5075 			"Change tqps fail, the tqp range is from 1 to %u",
5076 			hns3_get_max_available_channels(h));
5077 		return -EINVAL;
5078 	}
5079 
5080 	if (kinfo->rss_size == new_tqp_num)
5081 		return 0;
5082 
5083 	netif_dbg(h, drv, netdev,
5084 		  "set channels: tqp_num=%u, rxfh=%d\n",
5085 		  new_tqp_num, rxfh_configured);
5086 
5087 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5088 	if (ret)
5089 		return ret;
5090 
5091 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5092 	if (ret)
5093 		return ret;
5094 
5095 	org_tqp_num = h->kinfo.num_tqps;
5096 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5097 	if (ret) {
5098 		int ret1;
5099 
5100 		netdev_warn(netdev,
5101 			    "Change channels fail, revert to old value\n");
5102 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5103 		if (ret1) {
5104 			netdev_err(netdev,
5105 				   "revert to old channel fail\n");
5106 			return ret1;
5107 		}
5108 
5109 		return ret;
5110 	}
5111 
5112 	return 0;
5113 }
5114 
5115 static const struct hns3_hw_error_info hns3_hw_err[] = {
5116 	{ .type = HNAE3_PPU_POISON_ERROR,
5117 	  .msg = "PPU poison" },
5118 	{ .type = HNAE3_CMDQ_ECC_ERROR,
5119 	  .msg = "IMP CMDQ error" },
5120 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
5121 	  .msg = "IMP RD poison" },
5122 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5123 	  .msg = "ROCEE AXI RESP error" },
5124 };
5125 
5126 static void hns3_process_hw_error(struct hnae3_handle *handle,
5127 				  enum hnae3_hw_error_type type)
5128 {
5129 	int i;
5130 
5131 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
5132 		if (hns3_hw_err[i].type == type) {
5133 			dev_err(&handle->pdev->dev, "Detected %s!\n",
5134 				hns3_hw_err[i].msg);
5135 			break;
5136 		}
5137 	}
5138 }
5139 
5140 static const struct hnae3_client_ops client_ops = {
5141 	.init_instance = hns3_client_init,
5142 	.uninit_instance = hns3_client_uninit,
5143 	.link_status_change = hns3_link_status_change,
5144 	.reset_notify = hns3_reset_notify,
5145 	.process_hw_error = hns3_process_hw_error,
5146 };
5147 
5148 /* hns3_init_module - Driver registration routine
5149  * hns3_init_module is the first routine called when the driver is
5150  * loaded. All it does is register with the PCI subsystem.
5151  */
5152 static int __init hns3_init_module(void)
5153 {
5154 	int ret;
5155 
5156 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
5157 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
5158 
5159 	client.type = HNAE3_CLIENT_KNIC;
5160 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
5161 		 hns3_driver_name);
5162 
5163 	client.ops = &client_ops;
5164 
5165 	INIT_LIST_HEAD(&client.node);
5166 
5167 	hns3_dbg_register_debugfs(hns3_driver_name);
5168 
5169 	ret = hnae3_register_client(&client);
5170 	if (ret)
5171 		goto err_reg_client;
5172 
5173 	ret = pci_register_driver(&hns3_driver);
5174 	if (ret)
5175 		goto err_reg_driver;
5176 
5177 	return ret;
5178 
5179 err_reg_driver:
5180 	hnae3_unregister_client(&client);
5181 err_reg_client:
5182 	hns3_dbg_unregister_debugfs();
5183 	return ret;
5184 }
5185 module_init(hns3_init_module);
5186 
5187 /* hns3_exit_module - Driver exit cleanup routine
5188  * hns3_exit_module is called just before the driver is removed
5189  * from memory.
5190  */
5191 static void __exit hns3_exit_module(void)
5192 {
5193 	pci_unregister_driver(&hns3_driver);
5194 	hnae3_unregister_client(&client);
5195 	hns3_dbg_unregister_debugfs();
5196 }
5197 module_exit(hns3_exit_module);
5198 
5199 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
5200 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
5201 MODULE_LICENSE("GPL");
5202 MODULE_ALIAS("pci:hns-nic");
5203