1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/skbuff.h>
13 #include <linux/sctp.h>
14 #include <linux/vermagic.h>
15 #include <net/gre.h>
16 #include <net/pkt_cls.h>
17 #include <net/vxlan.h>
18 
19 #include "hnae3.h"
20 #include "hns3_enet.h"
21 
22 static void hns3_clear_all_ring(struct hnae3_handle *h);
23 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
24 
25 static const char hns3_driver_name[] = "hns3";
26 const char hns3_driver_version[] = VERMAGIC_STRING;
27 static const char hns3_driver_string[] =
28 			"Hisilicon Ethernet Network Driver for Hip08 Family";
29 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
30 static struct hnae3_client client;
31 
32 /* hns3_pci_tbl - PCI Device ID Table
33  *
34  * Last entry must be all 0s
35  *
36  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
37  *   Class, Class Mask, private data (not used) }
38  */
39 static const struct pci_device_id hns3_pci_tbl[] = {
40 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
41 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
42 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
43 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
44 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
45 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
46 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
47 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
48 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
49 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
50 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
51 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
52 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
53 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
54 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55 	/* required last entry */
56 	{0, }
57 };
58 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
59 
60 static irqreturn_t hns3_irq_handle(int irq, void *vector)
61 {
62 	struct hns3_enet_tqp_vector *tqp_vector = vector;
63 
64 	napi_schedule(&tqp_vector->napi);
65 
66 	return IRQ_HANDLED;
67 }
68 
69 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
70 {
71 	struct hns3_enet_tqp_vector *tqp_vectors;
72 	unsigned int i;
73 
74 	for (i = 0; i < priv->vector_num; i++) {
75 		tqp_vectors = &priv->tqp_vector[i];
76 
77 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
78 			continue;
79 
80 		/* release the irq resource */
81 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
82 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
83 	}
84 }
85 
86 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
87 {
88 	struct hns3_enet_tqp_vector *tqp_vectors;
89 	int txrx_int_idx = 0;
90 	int rx_int_idx = 0;
91 	int tx_int_idx = 0;
92 	unsigned int i;
93 	int ret;
94 
95 	for (i = 0; i < priv->vector_num; i++) {
96 		tqp_vectors = &priv->tqp_vector[i];
97 
98 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
99 			continue;
100 
101 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
102 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
103 				 "%s-%s-%d", priv->netdev->name, "TxRx",
104 				 txrx_int_idx++);
105 			txrx_int_idx++;
106 		} else if (tqp_vectors->rx_group.ring) {
107 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
108 				 "%s-%s-%d", priv->netdev->name, "Rx",
109 				 rx_int_idx++);
110 		} else if (tqp_vectors->tx_group.ring) {
111 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
112 				 "%s-%s-%d", priv->netdev->name, "Tx",
113 				 tx_int_idx++);
114 		} else {
115 			/* Skip this unused q_vector */
116 			continue;
117 		}
118 
119 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
120 
121 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
122 				  tqp_vectors->name,
123 				       tqp_vectors);
124 		if (ret) {
125 			netdev_err(priv->netdev, "request irq(%d) fail\n",
126 				   tqp_vectors->vector_irq);
127 			return ret;
128 		}
129 
130 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
131 	}
132 
133 	return 0;
134 }
135 
136 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
137 				 u32 mask_en)
138 {
139 	writel(mask_en, tqp_vector->mask_addr);
140 }
141 
142 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
143 {
144 	napi_enable(&tqp_vector->napi);
145 
146 	/* enable vector */
147 	hns3_mask_vector_irq(tqp_vector, 1);
148 }
149 
150 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
151 {
152 	/* disable vector */
153 	hns3_mask_vector_irq(tqp_vector, 0);
154 
155 	disable_irq(tqp_vector->vector_irq);
156 	napi_disable(&tqp_vector->napi);
157 }
158 
159 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
160 				 u32 rl_value)
161 {
162 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
163 
164 	/* this defines the configuration for RL (Interrupt Rate Limiter).
165 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
166 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
167 	 */
168 
169 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
170 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
171 		/* According to the hardware, the range of rl_reg is
172 		 * 0-59 and the unit is 4.
173 		 */
174 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
175 
176 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
177 }
178 
179 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
180 				    u32 gl_value)
181 {
182 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
183 
184 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
185 }
186 
187 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
188 				    u32 gl_value)
189 {
190 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
191 
192 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
193 }
194 
195 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
196 				   struct hns3_nic_priv *priv)
197 {
198 	struct hnae3_handle *h = priv->ae_handle;
199 
200 	/* initialize the configuration for interrupt coalescing.
201 	 * 1. GL (Interrupt Gap Limiter)
202 	 * 2. RL (Interrupt Rate Limiter)
203 	 */
204 
205 	/* Default: enable interrupt coalescing self-adaptive and GL */
206 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
207 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
208 
209 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
210 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
211 
212 	/* Default: disable RL */
213 	h->kinfo.int_rl_setting = 0;
214 
215 	tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
216 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
217 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
218 }
219 
220 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
221 				      struct hns3_nic_priv *priv)
222 {
223 	struct hnae3_handle *h = priv->ae_handle;
224 
225 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
226 				       tqp_vector->tx_group.coal.int_gl);
227 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
228 				       tqp_vector->rx_group.coal.int_gl);
229 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
230 }
231 
232 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
233 {
234 	struct hnae3_handle *h = hns3_get_handle(netdev);
235 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
236 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
237 	int i, ret;
238 
239 	if (kinfo->num_tc <= 1) {
240 		netdev_reset_tc(netdev);
241 	} else {
242 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
243 		if (ret) {
244 			netdev_err(netdev,
245 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
246 			return ret;
247 		}
248 
249 		for (i = 0; i < HNAE3_MAX_TC; i++) {
250 			if (!kinfo->tc_info[i].enable)
251 				continue;
252 
253 			netdev_set_tc_queue(netdev,
254 					    kinfo->tc_info[i].tc,
255 					    kinfo->tc_info[i].tqp_count,
256 					    kinfo->tc_info[i].tqp_offset);
257 		}
258 	}
259 
260 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
261 	if (ret) {
262 		netdev_err(netdev,
263 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
264 			   ret);
265 		return ret;
266 	}
267 
268 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
269 	if (ret) {
270 		netdev_err(netdev,
271 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
272 		return ret;
273 	}
274 
275 	return 0;
276 }
277 
278 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
279 {
280 	u16 free_tqps, max_rss_size, max_tqps;
281 
282 	h->ae_algo->ops->get_tqps_and_rss_info(h, &free_tqps, &max_rss_size);
283 	max_tqps = h->kinfo.num_tc * max_rss_size;
284 
285 	return min_t(u16, max_tqps, (free_tqps + h->kinfo.num_tqps));
286 }
287 
288 static int hns3_nic_net_up(struct net_device *netdev)
289 {
290 	struct hns3_nic_priv *priv = netdev_priv(netdev);
291 	struct hnae3_handle *h = priv->ae_handle;
292 	int i, j;
293 	int ret;
294 
295 	ret = hns3_nic_reset_all_ring(h);
296 	if (ret)
297 		return ret;
298 
299 	/* get irq resource for all vectors */
300 	ret = hns3_nic_init_irq(priv);
301 	if (ret) {
302 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
303 		return ret;
304 	}
305 
306 	/* enable the vectors */
307 	for (i = 0; i < priv->vector_num; i++)
308 		hns3_vector_enable(&priv->tqp_vector[i]);
309 
310 	/* start the ae_dev */
311 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
312 	if (ret)
313 		goto out_start_err;
314 
315 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
316 
317 	return 0;
318 
319 out_start_err:
320 	for (j = i - 1; j >= 0; j--)
321 		hns3_vector_disable(&priv->tqp_vector[j]);
322 
323 	hns3_nic_uninit_irq(priv);
324 
325 	return ret;
326 }
327 
328 static int hns3_nic_net_open(struct net_device *netdev)
329 {
330 	struct hns3_nic_priv *priv = netdev_priv(netdev);
331 	struct hnae3_handle *h = hns3_get_handle(netdev);
332 	struct hnae3_knic_private_info *kinfo;
333 	int i, ret;
334 
335 	netif_carrier_off(netdev);
336 
337 	ret = hns3_nic_set_real_num_queue(netdev);
338 	if (ret)
339 		return ret;
340 
341 	ret = hns3_nic_net_up(netdev);
342 	if (ret) {
343 		netdev_err(netdev,
344 			   "hns net up fail, ret=%d!\n", ret);
345 		return ret;
346 	}
347 
348 	kinfo = &h->kinfo;
349 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
350 		netdev_set_prio_tc_map(netdev, i,
351 				       kinfo->prio_tc[i]);
352 	}
353 
354 	priv->ae_handle->last_reset_time = jiffies;
355 	return 0;
356 }
357 
358 static void hns3_nic_net_down(struct net_device *netdev)
359 {
360 	struct hns3_nic_priv *priv = netdev_priv(netdev);
361 	const struct hnae3_ae_ops *ops;
362 	int i;
363 
364 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
365 		return;
366 
367 	/* disable vectors */
368 	for (i = 0; i < priv->vector_num; i++)
369 		hns3_vector_disable(&priv->tqp_vector[i]);
370 
371 	/* stop ae_dev */
372 	ops = priv->ae_handle->ae_algo->ops;
373 	if (ops->stop)
374 		ops->stop(priv->ae_handle);
375 
376 	/* free irq resources */
377 	hns3_nic_uninit_irq(priv);
378 
379 	hns3_clear_all_ring(priv->ae_handle);
380 }
381 
382 static int hns3_nic_net_stop(struct net_device *netdev)
383 {
384 	netif_tx_stop_all_queues(netdev);
385 	netif_carrier_off(netdev);
386 
387 	hns3_nic_net_down(netdev);
388 
389 	return 0;
390 }
391 
392 static int hns3_nic_uc_sync(struct net_device *netdev,
393 			    const unsigned char *addr)
394 {
395 	struct hnae3_handle *h = hns3_get_handle(netdev);
396 
397 	if (h->ae_algo->ops->add_uc_addr)
398 		return h->ae_algo->ops->add_uc_addr(h, addr);
399 
400 	return 0;
401 }
402 
403 static int hns3_nic_uc_unsync(struct net_device *netdev,
404 			      const unsigned char *addr)
405 {
406 	struct hnae3_handle *h = hns3_get_handle(netdev);
407 
408 	if (h->ae_algo->ops->rm_uc_addr)
409 		return h->ae_algo->ops->rm_uc_addr(h, addr);
410 
411 	return 0;
412 }
413 
414 static int hns3_nic_mc_sync(struct net_device *netdev,
415 			    const unsigned char *addr)
416 {
417 	struct hnae3_handle *h = hns3_get_handle(netdev);
418 
419 	if (h->ae_algo->ops->add_mc_addr)
420 		return h->ae_algo->ops->add_mc_addr(h, addr);
421 
422 	return 0;
423 }
424 
425 static int hns3_nic_mc_unsync(struct net_device *netdev,
426 			      const unsigned char *addr)
427 {
428 	struct hnae3_handle *h = hns3_get_handle(netdev);
429 
430 	if (h->ae_algo->ops->rm_mc_addr)
431 		return h->ae_algo->ops->rm_mc_addr(h, addr);
432 
433 	return 0;
434 }
435 
436 static void hns3_nic_set_rx_mode(struct net_device *netdev)
437 {
438 	struct hnae3_handle *h = hns3_get_handle(netdev);
439 
440 	if (h->ae_algo->ops->set_promisc_mode) {
441 		if (netdev->flags & IFF_PROMISC)
442 			h->ae_algo->ops->set_promisc_mode(h, true, true);
443 		else if (netdev->flags & IFF_ALLMULTI)
444 			h->ae_algo->ops->set_promisc_mode(h, false, true);
445 		else
446 			h->ae_algo->ops->set_promisc_mode(h, false, false);
447 	}
448 	if (__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync))
449 		netdev_err(netdev, "sync uc address fail\n");
450 	if (netdev->flags & IFF_MULTICAST) {
451 		if (__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync))
452 			netdev_err(netdev, "sync mc address fail\n");
453 
454 		if (h->ae_algo->ops->update_mta_status)
455 			h->ae_algo->ops->update_mta_status(h);
456 	}
457 }
458 
459 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
460 			u16 *mss, u32 *type_cs_vlan_tso)
461 {
462 	u32 l4_offset, hdr_len;
463 	union l3_hdr_info l3;
464 	union l4_hdr_info l4;
465 	u32 l4_paylen;
466 	int ret;
467 
468 	if (!skb_is_gso(skb))
469 		return 0;
470 
471 	ret = skb_cow_head(skb, 0);
472 	if (ret)
473 		return ret;
474 
475 	l3.hdr = skb_network_header(skb);
476 	l4.hdr = skb_transport_header(skb);
477 
478 	/* Software should clear the IPv4's checksum field when tso is
479 	 * needed.
480 	 */
481 	if (l3.v4->version == 4)
482 		l3.v4->check = 0;
483 
484 	/* tunnel packet.*/
485 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
486 					 SKB_GSO_GRE_CSUM |
487 					 SKB_GSO_UDP_TUNNEL |
488 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
489 		if ((!(skb_shinfo(skb)->gso_type &
490 		    SKB_GSO_PARTIAL)) &&
491 		    (skb_shinfo(skb)->gso_type &
492 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
493 			/* Software should clear the udp's checksum
494 			 * field when tso is needed.
495 			 */
496 			l4.udp->check = 0;
497 		}
498 		/* reset l3&l4 pointers from outer to inner headers */
499 		l3.hdr = skb_inner_network_header(skb);
500 		l4.hdr = skb_inner_transport_header(skb);
501 
502 		/* Software should clear the IPv4's checksum field when
503 		 * tso is needed.
504 		 */
505 		if (l3.v4->version == 4)
506 			l3.v4->check = 0;
507 	}
508 
509 	/* normal or tunnel packet*/
510 	l4_offset = l4.hdr - skb->data;
511 	hdr_len = (l4.tcp->doff * 4) + l4_offset;
512 
513 	/* remove payload length from inner pseudo checksum when tso*/
514 	l4_paylen = skb->len - l4_offset;
515 	csum_replace_by_diff(&l4.tcp->check,
516 			     (__force __wsum)htonl(l4_paylen));
517 
518 	/* find the txbd field values */
519 	*paylen = skb->len - hdr_len;
520 	hnae3_set_bit(*type_cs_vlan_tso,
521 		      HNS3_TXD_TSO_B, 1);
522 
523 	/* get MSS for TSO */
524 	*mss = skb_shinfo(skb)->gso_size;
525 
526 	return 0;
527 }
528 
529 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
530 				u8 *il4_proto)
531 {
532 	union {
533 		struct iphdr *v4;
534 		struct ipv6hdr *v6;
535 		unsigned char *hdr;
536 	} l3;
537 	unsigned char *l4_hdr;
538 	unsigned char *exthdr;
539 	u8 l4_proto_tmp;
540 	__be16 frag_off;
541 
542 	/* find outer header point */
543 	l3.hdr = skb_network_header(skb);
544 	l4_hdr = skb_transport_header(skb);
545 
546 	if (skb->protocol == htons(ETH_P_IPV6)) {
547 		exthdr = l3.hdr + sizeof(*l3.v6);
548 		l4_proto_tmp = l3.v6->nexthdr;
549 		if (l4_hdr != exthdr)
550 			ipv6_skip_exthdr(skb, exthdr - skb->data,
551 					 &l4_proto_tmp, &frag_off);
552 	} else if (skb->protocol == htons(ETH_P_IP)) {
553 		l4_proto_tmp = l3.v4->protocol;
554 	} else {
555 		return -EINVAL;
556 	}
557 
558 	*ol4_proto = l4_proto_tmp;
559 
560 	/* tunnel packet */
561 	if (!skb->encapsulation) {
562 		*il4_proto = 0;
563 		return 0;
564 	}
565 
566 	/* find inner header point */
567 	l3.hdr = skb_inner_network_header(skb);
568 	l4_hdr = skb_inner_transport_header(skb);
569 
570 	if (l3.v6->version == 6) {
571 		exthdr = l3.hdr + sizeof(*l3.v6);
572 		l4_proto_tmp = l3.v6->nexthdr;
573 		if (l4_hdr != exthdr)
574 			ipv6_skip_exthdr(skb, exthdr - skb->data,
575 					 &l4_proto_tmp, &frag_off);
576 	} else if (l3.v4->version == 4) {
577 		l4_proto_tmp = l3.v4->protocol;
578 	}
579 
580 	*il4_proto = l4_proto_tmp;
581 
582 	return 0;
583 }
584 
585 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
586 				u8 il4_proto, u32 *type_cs_vlan_tso,
587 				u32 *ol_type_vlan_len_msec)
588 {
589 	union {
590 		struct iphdr *v4;
591 		struct ipv6hdr *v6;
592 		unsigned char *hdr;
593 	} l3;
594 	union {
595 		struct tcphdr *tcp;
596 		struct udphdr *udp;
597 		struct gre_base_hdr *gre;
598 		unsigned char *hdr;
599 	} l4;
600 	unsigned char *l2_hdr;
601 	u8 l4_proto = ol4_proto;
602 	u32 ol2_len;
603 	u32 ol3_len;
604 	u32 ol4_len;
605 	u32 l2_len;
606 	u32 l3_len;
607 
608 	l3.hdr = skb_network_header(skb);
609 	l4.hdr = skb_transport_header(skb);
610 
611 	/* compute L2 header size for normal packet, defined in 2 Bytes */
612 	l2_len = l3.hdr - skb->data;
613 	hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
614 			HNS3_TXD_L2LEN_S, l2_len >> 1);
615 
616 	/* tunnel packet*/
617 	if (skb->encapsulation) {
618 		/* compute OL2 header size, defined in 2 Bytes */
619 		ol2_len = l2_len;
620 		hnae3_set_field(*ol_type_vlan_len_msec,
621 				HNS3_TXD_L2LEN_M,
622 				HNS3_TXD_L2LEN_S, ol2_len >> 1);
623 
624 		/* compute OL3 header size, defined in 4 Bytes */
625 		ol3_len = l4.hdr - l3.hdr;
626 		hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
627 				HNS3_TXD_L3LEN_S, ol3_len >> 2);
628 
629 		/* MAC in UDP, MAC in GRE (0x6558)*/
630 		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
631 			/* switch MAC header ptr from outer to inner header.*/
632 			l2_hdr = skb_inner_mac_header(skb);
633 
634 			/* compute OL4 header size, defined in 4 Bytes. */
635 			ol4_len = l2_hdr - l4.hdr;
636 			hnae3_set_field(*ol_type_vlan_len_msec,
637 					HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
638 					ol4_len >> 2);
639 
640 			/* switch IP header ptr from outer to inner header */
641 			l3.hdr = skb_inner_network_header(skb);
642 
643 			/* compute inner l2 header size, defined in 2 Bytes. */
644 			l2_len = l3.hdr - l2_hdr;
645 			hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
646 					HNS3_TXD_L2LEN_S, l2_len >> 1);
647 		} else {
648 			/* skb packet types not supported by hardware,
649 			 * txbd len fild doesn't be filled.
650 			 */
651 			return;
652 		}
653 
654 		/* switch L4 header pointer from outer to inner */
655 		l4.hdr = skb_inner_transport_header(skb);
656 
657 		l4_proto = il4_proto;
658 	}
659 
660 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
661 	l3_len = l4.hdr - l3.hdr;
662 	hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
663 			HNS3_TXD_L3LEN_S, l3_len >> 2);
664 
665 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
666 	switch (l4_proto) {
667 	case IPPROTO_TCP:
668 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
669 				HNS3_TXD_L4LEN_S, l4.tcp->doff);
670 		break;
671 	case IPPROTO_SCTP:
672 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
673 				HNS3_TXD_L4LEN_S,
674 				(sizeof(struct sctphdr) >> 2));
675 		break;
676 	case IPPROTO_UDP:
677 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
678 				HNS3_TXD_L4LEN_S,
679 				(sizeof(struct udphdr) >> 2));
680 		break;
681 	default:
682 		/* skb packet types not supported by hardware,
683 		 * txbd len fild doesn't be filled.
684 		 */
685 		return;
686 	}
687 }
688 
689 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
690  * and it is udp packet, which has a dest port as the IANA assigned.
691  * the hardware is expected to do the checksum offload, but the
692  * hardware will not do the checksum offload when udp dest port is
693  * 4789.
694  */
695 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
696 {
697 #define IANA_VXLAN_PORT	4789
698 	union {
699 		struct tcphdr *tcp;
700 		struct udphdr *udp;
701 		struct gre_base_hdr *gre;
702 		unsigned char *hdr;
703 	} l4;
704 
705 	l4.hdr = skb_transport_header(skb);
706 
707 	if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
708 		return false;
709 
710 	skb_checksum_help(skb);
711 
712 	return true;
713 }
714 
715 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
716 				   u8 il4_proto, u32 *type_cs_vlan_tso,
717 				   u32 *ol_type_vlan_len_msec)
718 {
719 	union {
720 		struct iphdr *v4;
721 		struct ipv6hdr *v6;
722 		unsigned char *hdr;
723 	} l3;
724 	u32 l4_proto = ol4_proto;
725 
726 	l3.hdr = skb_network_header(skb);
727 
728 	/* define OL3 type and tunnel type(OL4).*/
729 	if (skb->encapsulation) {
730 		/* define outer network header type.*/
731 		if (skb->protocol == htons(ETH_P_IP)) {
732 			if (skb_is_gso(skb))
733 				hnae3_set_field(*ol_type_vlan_len_msec,
734 						HNS3_TXD_OL3T_M,
735 						HNS3_TXD_OL3T_S,
736 						HNS3_OL3T_IPV4_CSUM);
737 			else
738 				hnae3_set_field(*ol_type_vlan_len_msec,
739 						HNS3_TXD_OL3T_M,
740 						HNS3_TXD_OL3T_S,
741 						HNS3_OL3T_IPV4_NO_CSUM);
742 
743 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
744 			hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
745 					HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
746 		}
747 
748 		/* define tunnel type(OL4).*/
749 		switch (l4_proto) {
750 		case IPPROTO_UDP:
751 			hnae3_set_field(*ol_type_vlan_len_msec,
752 					HNS3_TXD_TUNTYPE_M,
753 					HNS3_TXD_TUNTYPE_S,
754 					HNS3_TUN_MAC_IN_UDP);
755 			break;
756 		case IPPROTO_GRE:
757 			hnae3_set_field(*ol_type_vlan_len_msec,
758 					HNS3_TXD_TUNTYPE_M,
759 					HNS3_TXD_TUNTYPE_S,
760 					HNS3_TUN_NVGRE);
761 			break;
762 		default:
763 			/* drop the skb tunnel packet if hardware don't support,
764 			 * because hardware can't calculate csum when TSO.
765 			 */
766 			if (skb_is_gso(skb))
767 				return -EDOM;
768 
769 			/* the stack computes the IP header already,
770 			 * driver calculate l4 checksum when not TSO.
771 			 */
772 			skb_checksum_help(skb);
773 			return 0;
774 		}
775 
776 		l3.hdr = skb_inner_network_header(skb);
777 		l4_proto = il4_proto;
778 	}
779 
780 	if (l3.v4->version == 4) {
781 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
782 				HNS3_TXD_L3T_S, HNS3_L3T_IPV4);
783 
784 		/* the stack computes the IP header already, the only time we
785 		 * need the hardware to recompute it is in the case of TSO.
786 		 */
787 		if (skb_is_gso(skb))
788 			hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
789 	} else if (l3.v6->version == 6) {
790 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
791 				HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
792 	}
793 
794 	switch (l4_proto) {
795 	case IPPROTO_TCP:
796 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
797 		hnae3_set_field(*type_cs_vlan_tso,
798 				HNS3_TXD_L4T_M,
799 				HNS3_TXD_L4T_S,
800 				HNS3_L4T_TCP);
801 		break;
802 	case IPPROTO_UDP:
803 		if (hns3_tunnel_csum_bug(skb))
804 			break;
805 
806 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
807 		hnae3_set_field(*type_cs_vlan_tso,
808 				HNS3_TXD_L4T_M,
809 				HNS3_TXD_L4T_S,
810 				HNS3_L4T_UDP);
811 		break;
812 	case IPPROTO_SCTP:
813 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
814 		hnae3_set_field(*type_cs_vlan_tso,
815 				HNS3_TXD_L4T_M,
816 				HNS3_TXD_L4T_S,
817 				HNS3_L4T_SCTP);
818 		break;
819 	default:
820 		/* drop the skb tunnel packet if hardware don't support,
821 		 * because hardware can't calculate csum when TSO.
822 		 */
823 		if (skb_is_gso(skb))
824 			return -EDOM;
825 
826 		/* the stack computes the IP header already,
827 		 * driver calculate l4 checksum when not TSO.
828 		 */
829 		skb_checksum_help(skb);
830 		return 0;
831 	}
832 
833 	return 0;
834 }
835 
836 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
837 {
838 	/* Config bd buffer end */
839 	hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
840 			HNS3_TXD_BDTYPE_S, 0);
841 	hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
842 	hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
843 	hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
844 }
845 
846 static int hns3_fill_desc_vtags(struct sk_buff *skb,
847 				struct hns3_enet_ring *tx_ring,
848 				u32 *inner_vlan_flag,
849 				u32 *out_vlan_flag,
850 				u16 *inner_vtag,
851 				u16 *out_vtag)
852 {
853 #define HNS3_TX_VLAN_PRIO_SHIFT 13
854 
855 	if (skb->protocol == htons(ETH_P_8021Q) &&
856 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
857 	    NETIF_F_HW_VLAN_CTAG_TX)) {
858 		/* When HW VLAN acceleration is turned off, and the stack
859 		 * sets the protocol to 802.1q, the driver just need to
860 		 * set the protocol to the encapsulated ethertype.
861 		 */
862 		skb->protocol = vlan_get_protocol(skb);
863 		return 0;
864 	}
865 
866 	if (skb_vlan_tag_present(skb)) {
867 		u16 vlan_tag;
868 
869 		vlan_tag = skb_vlan_tag_get(skb);
870 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
871 
872 		/* Based on hw strategy, use out_vtag in two layer tag case,
873 		 * and use inner_vtag in one tag case.
874 		 */
875 		if (skb->protocol == htons(ETH_P_8021Q)) {
876 			hnae3_set_bit(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
877 			*out_vtag = vlan_tag;
878 		} else {
879 			hnae3_set_bit(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
880 			*inner_vtag = vlan_tag;
881 		}
882 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
883 		struct vlan_ethhdr *vhdr;
884 		int rc;
885 
886 		rc = skb_cow_head(skb, 0);
887 		if (rc < 0)
888 			return rc;
889 		vhdr = (struct vlan_ethhdr *)skb->data;
890 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
891 					<< HNS3_TX_VLAN_PRIO_SHIFT);
892 	}
893 
894 	skb->protocol = vlan_get_protocol(skb);
895 	return 0;
896 }
897 
898 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
899 			  int size, dma_addr_t dma, int frag_end,
900 			  enum hns_desc_type type)
901 {
902 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
903 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
904 	u32 ol_type_vlan_len_msec = 0;
905 	u16 bdtp_fe_sc_vld_ra_ri = 0;
906 	u32 type_cs_vlan_tso = 0;
907 	struct sk_buff *skb;
908 	u16 inner_vtag = 0;
909 	u16 out_vtag = 0;
910 	u32 paylen = 0;
911 	u16 mss = 0;
912 	u8 ol4_proto;
913 	u8 il4_proto;
914 	int ret;
915 
916 	/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
917 	desc_cb->priv = priv;
918 	desc_cb->length = size;
919 	desc_cb->dma = dma;
920 	desc_cb->type = type;
921 
922 	/* now, fill the descriptor */
923 	desc->addr = cpu_to_le64(dma);
924 	desc->tx.send_size = cpu_to_le16((u16)size);
925 	hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
926 	desc->tx.bdtp_fe_sc_vld_ra_ri = cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
927 
928 	if (type == DESC_TYPE_SKB) {
929 		skb = (struct sk_buff *)priv;
930 		paylen = skb->len;
931 
932 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
933 					   &ol_type_vlan_len_msec,
934 					   &inner_vtag, &out_vtag);
935 		if (unlikely(ret))
936 			return ret;
937 
938 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
939 			skb_reset_mac_len(skb);
940 
941 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
942 			if (ret)
943 				return ret;
944 			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
945 					    &type_cs_vlan_tso,
946 					    &ol_type_vlan_len_msec);
947 			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
948 						      &type_cs_vlan_tso,
949 						      &ol_type_vlan_len_msec);
950 			if (ret)
951 				return ret;
952 
953 			ret = hns3_set_tso(skb, &paylen, &mss,
954 					   &type_cs_vlan_tso);
955 			if (ret)
956 				return ret;
957 		}
958 
959 		/* Set txbd */
960 		desc->tx.ol_type_vlan_len_msec =
961 			cpu_to_le32(ol_type_vlan_len_msec);
962 		desc->tx.type_cs_vlan_tso_len =
963 			cpu_to_le32(type_cs_vlan_tso);
964 		desc->tx.paylen = cpu_to_le32(paylen);
965 		desc->tx.mss = cpu_to_le16(mss);
966 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
967 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
968 	}
969 
970 	/* move ring pointer to next.*/
971 	ring_ptr_move_fw(ring, next_to_use);
972 
973 	return 0;
974 }
975 
976 static int hns3_fill_desc_tso(struct hns3_enet_ring *ring, void *priv,
977 			      int size, dma_addr_t dma, int frag_end,
978 			      enum hns_desc_type type)
979 {
980 	unsigned int frag_buf_num;
981 	unsigned int k;
982 	int sizeoflast;
983 	int ret;
984 
985 	frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
986 	sizeoflast = size % HNS3_MAX_BD_SIZE;
987 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
988 
989 	/* When the frag size is bigger than hardware, split this frag */
990 	for (k = 0; k < frag_buf_num; k++) {
991 		ret = hns3_fill_desc(ring, priv,
992 				     (k == frag_buf_num - 1) ?
993 				sizeoflast : HNS3_MAX_BD_SIZE,
994 				dma + HNS3_MAX_BD_SIZE * k,
995 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
996 				(type == DESC_TYPE_SKB && !k) ?
997 					DESC_TYPE_SKB : DESC_TYPE_PAGE);
998 		if (ret)
999 			return ret;
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1006 				   struct hns3_enet_ring *ring)
1007 {
1008 	struct sk_buff *skb = *out_skb;
1009 	struct skb_frag_struct *frag;
1010 	int bdnum_for_frag;
1011 	int frag_num;
1012 	int buf_num;
1013 	int size;
1014 	int i;
1015 
1016 	size = skb_headlen(skb);
1017 	buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1018 
1019 	frag_num = skb_shinfo(skb)->nr_frags;
1020 	for (i = 0; i < frag_num; i++) {
1021 		frag = &skb_shinfo(skb)->frags[i];
1022 		size = skb_frag_size(frag);
1023 		bdnum_for_frag =
1024 			(size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1025 		if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
1026 			return -ENOMEM;
1027 
1028 		buf_num += bdnum_for_frag;
1029 	}
1030 
1031 	if (buf_num > ring_space(ring))
1032 		return -EBUSY;
1033 
1034 	*bnum = buf_num;
1035 	return 0;
1036 }
1037 
1038 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1039 				  struct hns3_enet_ring *ring)
1040 {
1041 	struct sk_buff *skb = *out_skb;
1042 	int buf_num;
1043 
1044 	/* No. of segments (plus a header) */
1045 	buf_num = skb_shinfo(skb)->nr_frags + 1;
1046 
1047 	if (buf_num > ring_space(ring))
1048 		return -EBUSY;
1049 
1050 	*bnum = buf_num;
1051 
1052 	return 0;
1053 }
1054 
1055 static void hns_nic_dma_unmap(struct hns3_enet_ring *ring, int next_to_use_orig)
1056 {
1057 	struct device *dev = ring_to_dev(ring);
1058 	unsigned int i;
1059 
1060 	for (i = 0; i < ring->desc_num; i++) {
1061 		/* check if this is where we started */
1062 		if (ring->next_to_use == next_to_use_orig)
1063 			break;
1064 
1065 		/* unmap the descriptor dma address */
1066 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1067 			dma_unmap_single(dev,
1068 					 ring->desc_cb[ring->next_to_use].dma,
1069 					ring->desc_cb[ring->next_to_use].length,
1070 					DMA_TO_DEVICE);
1071 		else
1072 			dma_unmap_page(dev,
1073 				       ring->desc_cb[ring->next_to_use].dma,
1074 				       ring->desc_cb[ring->next_to_use].length,
1075 				       DMA_TO_DEVICE);
1076 
1077 		/* rollback one */
1078 		ring_ptr_move_bw(ring, next_to_use);
1079 	}
1080 }
1081 
1082 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1083 {
1084 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1085 	struct hns3_nic_ring_data *ring_data =
1086 		&tx_ring_data(priv, skb->queue_mapping);
1087 	struct hns3_enet_ring *ring = ring_data->ring;
1088 	struct device *dev = priv->dev;
1089 	struct netdev_queue *dev_queue;
1090 	struct skb_frag_struct *frag;
1091 	int next_to_use_head;
1092 	int next_to_use_frag;
1093 	dma_addr_t dma;
1094 	int buf_num;
1095 	int seg_num;
1096 	int size;
1097 	int ret;
1098 	int i;
1099 
1100 	/* Prefetch the data used later */
1101 	prefetch(skb->data);
1102 
1103 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1104 	case -EBUSY:
1105 		u64_stats_update_begin(&ring->syncp);
1106 		ring->stats.tx_busy++;
1107 		u64_stats_update_end(&ring->syncp);
1108 
1109 		goto out_net_tx_busy;
1110 	case -ENOMEM:
1111 		u64_stats_update_begin(&ring->syncp);
1112 		ring->stats.sw_err_cnt++;
1113 		u64_stats_update_end(&ring->syncp);
1114 		netdev_err(netdev, "no memory to xmit!\n");
1115 
1116 		goto out_err_tx_ok;
1117 	default:
1118 		break;
1119 	}
1120 
1121 	/* No. of segments (plus a header) */
1122 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1123 	/* Fill the first part */
1124 	size = skb_headlen(skb);
1125 
1126 	next_to_use_head = ring->next_to_use;
1127 
1128 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1129 	if (dma_mapping_error(dev, dma)) {
1130 		netdev_err(netdev, "TX head DMA map failed\n");
1131 		ring->stats.sw_err_cnt++;
1132 		goto out_err_tx_ok;
1133 	}
1134 
1135 	ret = priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
1136 			   DESC_TYPE_SKB);
1137 	if (ret)
1138 		goto head_dma_map_err;
1139 
1140 	next_to_use_frag = ring->next_to_use;
1141 	/* Fill the fragments */
1142 	for (i = 1; i < seg_num; i++) {
1143 		frag = &skb_shinfo(skb)->frags[i - 1];
1144 		size = skb_frag_size(frag);
1145 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1146 		if (dma_mapping_error(dev, dma)) {
1147 			netdev_err(netdev, "TX frag(%d) DMA map failed\n", i);
1148 			ring->stats.sw_err_cnt++;
1149 			goto frag_dma_map_err;
1150 		}
1151 		ret = priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
1152 				    seg_num - 1 == i ? 1 : 0,
1153 				    DESC_TYPE_PAGE);
1154 
1155 		if (ret)
1156 			goto frag_dma_map_err;
1157 	}
1158 
1159 	/* Complete translate all packets */
1160 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1161 	netdev_tx_sent_queue(dev_queue, skb->len);
1162 
1163 	wmb(); /* Commit all data before submit */
1164 
1165 	hnae3_queue_xmit(ring->tqp, buf_num);
1166 
1167 	return NETDEV_TX_OK;
1168 
1169 frag_dma_map_err:
1170 	hns_nic_dma_unmap(ring, next_to_use_frag);
1171 
1172 head_dma_map_err:
1173 	hns_nic_dma_unmap(ring, next_to_use_head);
1174 
1175 out_err_tx_ok:
1176 	dev_kfree_skb_any(skb);
1177 	return NETDEV_TX_OK;
1178 
1179 out_net_tx_busy:
1180 	netif_stop_subqueue(netdev, ring_data->queue_index);
1181 	smp_mb(); /* Commit all data before submit */
1182 
1183 	return NETDEV_TX_BUSY;
1184 }
1185 
1186 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1187 {
1188 	struct hnae3_handle *h = hns3_get_handle(netdev);
1189 	struct sockaddr *mac_addr = p;
1190 	int ret;
1191 
1192 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1193 		return -EADDRNOTAVAIL;
1194 
1195 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1196 		netdev_info(netdev, "already using mac address %pM\n",
1197 			    mac_addr->sa_data);
1198 		return 0;
1199 	}
1200 
1201 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1202 	if (ret) {
1203 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1204 		return ret;
1205 	}
1206 
1207 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1208 
1209 	return 0;
1210 }
1211 
1212 static int hns3_nic_set_features(struct net_device *netdev,
1213 				 netdev_features_t features)
1214 {
1215 	netdev_features_t changed = netdev->features ^ features;
1216 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1217 	struct hnae3_handle *h = priv->ae_handle;
1218 	int ret;
1219 
1220 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1221 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1222 			priv->ops.fill_desc = hns3_fill_desc_tso;
1223 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1224 		} else {
1225 			priv->ops.fill_desc = hns3_fill_desc;
1226 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1227 		}
1228 	}
1229 
1230 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1231 	    h->ae_algo->ops->enable_vlan_filter) {
1232 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
1233 			h->ae_algo->ops->enable_vlan_filter(h, true);
1234 		else
1235 			h->ae_algo->ops->enable_vlan_filter(h, false);
1236 	}
1237 
1238 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1239 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1240 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
1241 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, true);
1242 		else
1243 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, false);
1244 
1245 		if (ret)
1246 			return ret;
1247 	}
1248 
1249 	netdev->features = features;
1250 	return 0;
1251 }
1252 
1253 static void hns3_nic_get_stats64(struct net_device *netdev,
1254 				 struct rtnl_link_stats64 *stats)
1255 {
1256 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1257 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1258 	struct hnae3_handle *handle = priv->ae_handle;
1259 	struct hns3_enet_ring *ring;
1260 	unsigned int start;
1261 	unsigned int idx;
1262 	u64 tx_bytes = 0;
1263 	u64 rx_bytes = 0;
1264 	u64 tx_pkts = 0;
1265 	u64 rx_pkts = 0;
1266 	u64 tx_drop = 0;
1267 	u64 rx_drop = 0;
1268 
1269 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1270 		return;
1271 
1272 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1273 
1274 	for (idx = 0; idx < queue_num; idx++) {
1275 		/* fetch the tx stats */
1276 		ring = priv->ring_data[idx].ring;
1277 		do {
1278 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1279 			tx_bytes += ring->stats.tx_bytes;
1280 			tx_pkts += ring->stats.tx_pkts;
1281 			tx_drop += ring->stats.tx_busy;
1282 			tx_drop += ring->stats.sw_err_cnt;
1283 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1284 
1285 		/* fetch the rx stats */
1286 		ring = priv->ring_data[idx + queue_num].ring;
1287 		do {
1288 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1289 			rx_bytes += ring->stats.rx_bytes;
1290 			rx_pkts += ring->stats.rx_pkts;
1291 			rx_drop += ring->stats.non_vld_descs;
1292 			rx_drop += ring->stats.err_pkt_len;
1293 			rx_drop += ring->stats.l2_err;
1294 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1295 	}
1296 
1297 	stats->tx_bytes = tx_bytes;
1298 	stats->tx_packets = tx_pkts;
1299 	stats->rx_bytes = rx_bytes;
1300 	stats->rx_packets = rx_pkts;
1301 
1302 	stats->rx_errors = netdev->stats.rx_errors;
1303 	stats->multicast = netdev->stats.multicast;
1304 	stats->rx_length_errors = netdev->stats.rx_length_errors;
1305 	stats->rx_crc_errors = netdev->stats.rx_crc_errors;
1306 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1307 
1308 	stats->tx_errors = netdev->stats.tx_errors;
1309 	stats->rx_dropped = rx_drop + netdev->stats.rx_dropped;
1310 	stats->tx_dropped = tx_drop + netdev->stats.tx_dropped;
1311 	stats->collisions = netdev->stats.collisions;
1312 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1313 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1314 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1315 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1316 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1317 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1318 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1319 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1320 	stats->rx_compressed = netdev->stats.rx_compressed;
1321 	stats->tx_compressed = netdev->stats.tx_compressed;
1322 }
1323 
1324 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1325 {
1326 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1327 	struct hnae3_handle *h = hns3_get_handle(netdev);
1328 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1329 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1330 	u8 tc = mqprio_qopt->qopt.num_tc;
1331 	u16 mode = mqprio_qopt->mode;
1332 	u8 hw = mqprio_qopt->qopt.hw;
1333 	bool if_running;
1334 	int ret;
1335 
1336 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1337 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1338 		return -EOPNOTSUPP;
1339 
1340 	if (tc > HNAE3_MAX_TC)
1341 		return -EINVAL;
1342 
1343 	if (!netdev)
1344 		return -EINVAL;
1345 
1346 	if_running = netif_running(netdev);
1347 	if (if_running) {
1348 		hns3_nic_net_stop(netdev);
1349 		msleep(100);
1350 	}
1351 
1352 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1353 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1354 	if (ret)
1355 		goto out;
1356 
1357 	ret = hns3_nic_set_real_num_queue(netdev);
1358 
1359 out:
1360 	if (if_running)
1361 		hns3_nic_net_open(netdev);
1362 
1363 	return ret;
1364 }
1365 
1366 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1367 			     void *type_data)
1368 {
1369 	if (type != TC_SETUP_QDISC_MQPRIO)
1370 		return -EOPNOTSUPP;
1371 
1372 	return hns3_setup_tc(dev, type_data);
1373 }
1374 
1375 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1376 				__be16 proto, u16 vid)
1377 {
1378 	struct hnae3_handle *h = hns3_get_handle(netdev);
1379 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1380 	int ret = -EIO;
1381 
1382 	if (h->ae_algo->ops->set_vlan_filter)
1383 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1384 
1385 	if (!ret)
1386 		set_bit(vid, priv->active_vlans);
1387 
1388 	return ret;
1389 }
1390 
1391 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1392 				 __be16 proto, u16 vid)
1393 {
1394 	struct hnae3_handle *h = hns3_get_handle(netdev);
1395 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1396 	int ret = -EIO;
1397 
1398 	if (h->ae_algo->ops->set_vlan_filter)
1399 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1400 
1401 	if (!ret)
1402 		clear_bit(vid, priv->active_vlans);
1403 
1404 	return ret;
1405 }
1406 
1407 static void hns3_restore_vlan(struct net_device *netdev)
1408 {
1409 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1410 	u16 vid;
1411 	int ret;
1412 
1413 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1414 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1415 		if (ret)
1416 			netdev_warn(netdev, "Restore vlan: %d filter, ret:%d\n",
1417 				    vid, ret);
1418 	}
1419 }
1420 
1421 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1422 				u8 qos, __be16 vlan_proto)
1423 {
1424 	struct hnae3_handle *h = hns3_get_handle(netdev);
1425 	int ret = -EIO;
1426 
1427 	if (h->ae_algo->ops->set_vf_vlan_filter)
1428 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1429 						   qos, vlan_proto);
1430 
1431 	return ret;
1432 }
1433 
1434 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1435 {
1436 	struct hnae3_handle *h = hns3_get_handle(netdev);
1437 	bool if_running = netif_running(netdev);
1438 	int ret;
1439 
1440 	if (!h->ae_algo->ops->set_mtu)
1441 		return -EOPNOTSUPP;
1442 
1443 	/* if this was called with netdev up then bring netdevice down */
1444 	if (if_running) {
1445 		(void)hns3_nic_net_stop(netdev);
1446 		msleep(100);
1447 	}
1448 
1449 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1450 	if (ret) {
1451 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1452 			   ret);
1453 		return ret;
1454 	}
1455 
1456 	netdev->mtu = new_mtu;
1457 
1458 	/* if the netdev was running earlier, bring it up again */
1459 	if (if_running && hns3_nic_net_open(netdev))
1460 		ret = -EINVAL;
1461 
1462 	return ret;
1463 }
1464 
1465 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1466 {
1467 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1468 	struct hns3_enet_ring *tx_ring = NULL;
1469 	int timeout_queue = 0;
1470 	int hw_head, hw_tail;
1471 	int i;
1472 
1473 	/* Find the stopped queue the same way the stack does */
1474 	for (i = 0; i < ndev->real_num_tx_queues; i++) {
1475 		struct netdev_queue *q;
1476 		unsigned long trans_start;
1477 
1478 		q = netdev_get_tx_queue(ndev, i);
1479 		trans_start = q->trans_start;
1480 		if (netif_xmit_stopped(q) &&
1481 		    time_after(jiffies,
1482 			       (trans_start + ndev->watchdog_timeo))) {
1483 			timeout_queue = i;
1484 			break;
1485 		}
1486 	}
1487 
1488 	if (i == ndev->num_tx_queues) {
1489 		netdev_info(ndev,
1490 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1491 			    priv->tx_timeout_count);
1492 		return false;
1493 	}
1494 
1495 	tx_ring = priv->ring_data[timeout_queue].ring;
1496 
1497 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1498 				HNS3_RING_TX_RING_HEAD_REG);
1499 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1500 				HNS3_RING_TX_RING_TAIL_REG);
1501 	netdev_info(ndev,
1502 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1503 		    priv->tx_timeout_count,
1504 		    timeout_queue,
1505 		    tx_ring->next_to_use,
1506 		    tx_ring->next_to_clean,
1507 		    hw_head,
1508 		    hw_tail,
1509 		    readl(tx_ring->tqp_vector->mask_addr));
1510 
1511 	return true;
1512 }
1513 
1514 static void hns3_nic_net_timeout(struct net_device *ndev)
1515 {
1516 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1517 	struct hnae3_handle *h = priv->ae_handle;
1518 
1519 	if (!hns3_get_tx_timeo_queue_info(ndev))
1520 		return;
1521 
1522 	priv->tx_timeout_count++;
1523 
1524 	if (time_before(jiffies, (h->last_reset_time + ndev->watchdog_timeo)))
1525 		return;
1526 
1527 	/* request the reset */
1528 	if (h->ae_algo->ops->reset_event)
1529 		h->ae_algo->ops->reset_event(h);
1530 }
1531 
1532 static const struct net_device_ops hns3_nic_netdev_ops = {
1533 	.ndo_open		= hns3_nic_net_open,
1534 	.ndo_stop		= hns3_nic_net_stop,
1535 	.ndo_start_xmit		= hns3_nic_net_xmit,
1536 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1537 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1538 	.ndo_change_mtu		= hns3_nic_change_mtu,
1539 	.ndo_set_features	= hns3_nic_set_features,
1540 	.ndo_get_stats64	= hns3_nic_get_stats64,
1541 	.ndo_setup_tc		= hns3_nic_setup_tc,
1542 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1543 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1544 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1545 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1546 };
1547 
1548 static bool hns3_is_phys_func(struct pci_dev *pdev)
1549 {
1550 	u32 dev_id = pdev->device;
1551 
1552 	switch (dev_id) {
1553 	case HNAE3_DEV_ID_GE:
1554 	case HNAE3_DEV_ID_25GE:
1555 	case HNAE3_DEV_ID_25GE_RDMA:
1556 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1557 	case HNAE3_DEV_ID_50GE_RDMA:
1558 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1559 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1560 		return true;
1561 	case HNAE3_DEV_ID_100G_VF:
1562 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1563 		return false;
1564 	default:
1565 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1566 			 dev_id);
1567 	}
1568 
1569 	return false;
1570 }
1571 
1572 static void hns3_disable_sriov(struct pci_dev *pdev)
1573 {
1574 	/* If our VFs are assigned we cannot shut down SR-IOV
1575 	 * without causing issues, so just leave the hardware
1576 	 * available but disabled
1577 	 */
1578 	if (pci_vfs_assigned(pdev)) {
1579 		dev_warn(&pdev->dev,
1580 			 "disabling driver while VFs are assigned\n");
1581 		return;
1582 	}
1583 
1584 	pci_disable_sriov(pdev);
1585 }
1586 
1587 /* hns3_probe - Device initialization routine
1588  * @pdev: PCI device information struct
1589  * @ent: entry in hns3_pci_tbl
1590  *
1591  * hns3_probe initializes a PF identified by a pci_dev structure.
1592  * The OS initialization, configuring of the PF private structure,
1593  * and a hardware reset occur.
1594  *
1595  * Returns 0 on success, negative on failure
1596  */
1597 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1598 {
1599 	struct hnae3_ae_dev *ae_dev;
1600 	int ret;
1601 
1602 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1603 			      GFP_KERNEL);
1604 	if (!ae_dev) {
1605 		ret = -ENOMEM;
1606 		return ret;
1607 	}
1608 
1609 	ae_dev->pdev = pdev;
1610 	ae_dev->flag = ent->driver_data;
1611 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1612 	pci_set_drvdata(pdev, ae_dev);
1613 
1614 	hnae3_register_ae_dev(ae_dev);
1615 
1616 	return 0;
1617 }
1618 
1619 /* hns3_remove - Device removal routine
1620  * @pdev: PCI device information struct
1621  */
1622 static void hns3_remove(struct pci_dev *pdev)
1623 {
1624 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1625 
1626 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1627 		hns3_disable_sriov(pdev);
1628 
1629 	hnae3_unregister_ae_dev(ae_dev);
1630 }
1631 
1632 /**
1633  * hns3_pci_sriov_configure
1634  * @pdev: pointer to a pci_dev structure
1635  * @num_vfs: number of VFs to allocate
1636  *
1637  * Enable or change the number of VFs. Called when the user updates the number
1638  * of VFs in sysfs.
1639  **/
1640 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1641 {
1642 	int ret;
1643 
1644 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1645 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1646 		return -EINVAL;
1647 	}
1648 
1649 	if (num_vfs) {
1650 		ret = pci_enable_sriov(pdev, num_vfs);
1651 		if (ret)
1652 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1653 		else
1654 			return num_vfs;
1655 	} else if (!pci_vfs_assigned(pdev)) {
1656 		pci_disable_sriov(pdev);
1657 	} else {
1658 		dev_warn(&pdev->dev,
1659 			 "Unable to free VFs because some are assigned to VMs.\n");
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 static struct pci_driver hns3_driver = {
1666 	.name     = hns3_driver_name,
1667 	.id_table = hns3_pci_tbl,
1668 	.probe    = hns3_probe,
1669 	.remove   = hns3_remove,
1670 	.sriov_configure = hns3_pci_sriov_configure,
1671 };
1672 
1673 /* set default feature to hns3 */
1674 static void hns3_set_default_feature(struct net_device *netdev)
1675 {
1676 	struct hnae3_handle *h = hns3_get_handle(netdev);
1677 	struct pci_dev *pdev = h->pdev;
1678 
1679 	netdev->priv_flags |= IFF_UNICAST_FLT;
1680 
1681 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1682 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1683 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1684 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1685 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1686 
1687 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1688 
1689 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1690 
1691 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1692 		NETIF_F_HW_VLAN_CTAG_FILTER |
1693 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1694 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1695 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1696 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1697 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1698 
1699 	netdev->vlan_features |=
1700 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1701 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1702 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1703 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1704 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1705 
1706 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1707 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1708 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1709 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1710 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1711 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1712 
1713 	if (pdev->revision != 0x20)
1714 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1715 }
1716 
1717 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1718 			     struct hns3_desc_cb *cb)
1719 {
1720 	unsigned int order = hnae3_page_order(ring);
1721 	struct page *p;
1722 
1723 	p = dev_alloc_pages(order);
1724 	if (!p)
1725 		return -ENOMEM;
1726 
1727 	cb->priv = p;
1728 	cb->page_offset = 0;
1729 	cb->reuse_flag = 0;
1730 	cb->buf  = page_address(p);
1731 	cb->length = hnae3_page_size(ring);
1732 	cb->type = DESC_TYPE_PAGE;
1733 
1734 	return 0;
1735 }
1736 
1737 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1738 			     struct hns3_desc_cb *cb)
1739 {
1740 	if (cb->type == DESC_TYPE_SKB)
1741 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
1742 	else if (!HNAE3_IS_TX_RING(ring))
1743 		put_page((struct page *)cb->priv);
1744 	memset(cb, 0, sizeof(*cb));
1745 }
1746 
1747 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1748 {
1749 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1750 			       cb->length, ring_to_dma_dir(ring));
1751 
1752 	if (dma_mapping_error(ring_to_dev(ring), cb->dma))
1753 		return -EIO;
1754 
1755 	return 0;
1756 }
1757 
1758 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1759 			      struct hns3_desc_cb *cb)
1760 {
1761 	if (cb->type == DESC_TYPE_SKB)
1762 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1763 				 ring_to_dma_dir(ring));
1764 	else
1765 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1766 			       ring_to_dma_dir(ring));
1767 }
1768 
1769 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
1770 {
1771 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1772 	ring->desc[i].addr = 0;
1773 }
1774 
1775 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
1776 {
1777 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
1778 
1779 	if (!ring->desc_cb[i].dma)
1780 		return;
1781 
1782 	hns3_buffer_detach(ring, i);
1783 	hns3_free_buffer(ring, cb);
1784 }
1785 
1786 static void hns3_free_buffers(struct hns3_enet_ring *ring)
1787 {
1788 	int i;
1789 
1790 	for (i = 0; i < ring->desc_num; i++)
1791 		hns3_free_buffer_detach(ring, i);
1792 }
1793 
1794 /* free desc along with its attached buffer */
1795 static void hns3_free_desc(struct hns3_enet_ring *ring)
1796 {
1797 	int size = ring->desc_num * sizeof(ring->desc[0]);
1798 
1799 	hns3_free_buffers(ring);
1800 
1801 	if (ring->desc) {
1802 		dma_free_coherent(ring_to_dev(ring), size,
1803 				  ring->desc, ring->desc_dma_addr);
1804 		ring->desc = NULL;
1805 	}
1806 }
1807 
1808 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
1809 {
1810 	int size = ring->desc_num * sizeof(ring->desc[0]);
1811 
1812 	ring->desc = dma_zalloc_coherent(ring_to_dev(ring), size,
1813 					 &ring->desc_dma_addr,
1814 					 GFP_KERNEL);
1815 	if (!ring->desc)
1816 		return -ENOMEM;
1817 
1818 	return 0;
1819 }
1820 
1821 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
1822 				   struct hns3_desc_cb *cb)
1823 {
1824 	int ret;
1825 
1826 	ret = hns3_alloc_buffer(ring, cb);
1827 	if (ret)
1828 		goto out;
1829 
1830 	ret = hns3_map_buffer(ring, cb);
1831 	if (ret)
1832 		goto out_with_buf;
1833 
1834 	return 0;
1835 
1836 out_with_buf:
1837 	hns3_free_buffer(ring, cb);
1838 out:
1839 	return ret;
1840 }
1841 
1842 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
1843 {
1844 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
1845 
1846 	if (ret)
1847 		return ret;
1848 
1849 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1850 
1851 	return 0;
1852 }
1853 
1854 /* Allocate memory for raw pkg, and map with dma */
1855 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
1856 {
1857 	int i, j, ret;
1858 
1859 	for (i = 0; i < ring->desc_num; i++) {
1860 		ret = hns3_alloc_buffer_attach(ring, i);
1861 		if (ret)
1862 			goto out_buffer_fail;
1863 	}
1864 
1865 	return 0;
1866 
1867 out_buffer_fail:
1868 	for (j = i - 1; j >= 0; j--)
1869 		hns3_free_buffer_detach(ring, j);
1870 	return ret;
1871 }
1872 
1873 /* detach a in-used buffer and replace with a reserved one  */
1874 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
1875 				struct hns3_desc_cb *res_cb)
1876 {
1877 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1878 	ring->desc_cb[i] = *res_cb;
1879 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1880 	ring->desc[i].rx.bd_base_info = 0;
1881 }
1882 
1883 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
1884 {
1885 	ring->desc_cb[i].reuse_flag = 0;
1886 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
1887 		+ ring->desc_cb[i].page_offset);
1888 	ring->desc[i].rx.bd_base_info = 0;
1889 }
1890 
1891 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
1892 				      int *pkts)
1893 {
1894 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
1895 
1896 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
1897 	(*bytes) += desc_cb->length;
1898 	/* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
1899 	hns3_free_buffer_detach(ring, ring->next_to_clean);
1900 
1901 	ring_ptr_move_fw(ring, next_to_clean);
1902 }
1903 
1904 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
1905 {
1906 	int u = ring->next_to_use;
1907 	int c = ring->next_to_clean;
1908 
1909 	if (unlikely(h > ring->desc_num))
1910 		return 0;
1911 
1912 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
1913 }
1914 
1915 bool hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
1916 {
1917 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
1918 	struct netdev_queue *dev_queue;
1919 	int bytes, pkts;
1920 	int head;
1921 
1922 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
1923 	rmb(); /* Make sure head is ready before touch any data */
1924 
1925 	if (is_ring_empty(ring) || head == ring->next_to_clean)
1926 		return true; /* no data to poll */
1927 
1928 	if (unlikely(!is_valid_clean_head(ring, head))) {
1929 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
1930 			   ring->next_to_use, ring->next_to_clean);
1931 
1932 		u64_stats_update_begin(&ring->syncp);
1933 		ring->stats.io_err_cnt++;
1934 		u64_stats_update_end(&ring->syncp);
1935 		return true;
1936 	}
1937 
1938 	bytes = 0;
1939 	pkts = 0;
1940 	while (head != ring->next_to_clean && budget) {
1941 		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
1942 		/* Issue prefetch for next Tx descriptor */
1943 		prefetch(&ring->desc_cb[ring->next_to_clean]);
1944 		budget--;
1945 	}
1946 
1947 	ring->tqp_vector->tx_group.total_bytes += bytes;
1948 	ring->tqp_vector->tx_group.total_packets += pkts;
1949 
1950 	u64_stats_update_begin(&ring->syncp);
1951 	ring->stats.tx_bytes += bytes;
1952 	ring->stats.tx_pkts += pkts;
1953 	u64_stats_update_end(&ring->syncp);
1954 
1955 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
1956 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
1957 
1958 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
1959 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
1960 		/* Make sure that anybody stopping the queue after this
1961 		 * sees the new next_to_clean.
1962 		 */
1963 		smp_mb();
1964 		if (netif_tx_queue_stopped(dev_queue)) {
1965 			netif_tx_wake_queue(dev_queue);
1966 			ring->stats.restart_queue++;
1967 		}
1968 	}
1969 
1970 	return !!budget;
1971 }
1972 
1973 static int hns3_desc_unused(struct hns3_enet_ring *ring)
1974 {
1975 	int ntc = ring->next_to_clean;
1976 	int ntu = ring->next_to_use;
1977 
1978 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
1979 }
1980 
1981 static void
1982 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
1983 {
1984 	struct hns3_desc_cb *desc_cb;
1985 	struct hns3_desc_cb res_cbs;
1986 	int i, ret;
1987 
1988 	for (i = 0; i < cleand_count; i++) {
1989 		desc_cb = &ring->desc_cb[ring->next_to_use];
1990 		if (desc_cb->reuse_flag) {
1991 			u64_stats_update_begin(&ring->syncp);
1992 			ring->stats.reuse_pg_cnt++;
1993 			u64_stats_update_end(&ring->syncp);
1994 
1995 			hns3_reuse_buffer(ring, ring->next_to_use);
1996 		} else {
1997 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
1998 			if (ret) {
1999 				u64_stats_update_begin(&ring->syncp);
2000 				ring->stats.sw_err_cnt++;
2001 				u64_stats_update_end(&ring->syncp);
2002 
2003 				netdev_err(ring->tqp->handle->kinfo.netdev,
2004 					   "hnae reserve buffer map failed.\n");
2005 				break;
2006 			}
2007 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2008 		}
2009 
2010 		ring_ptr_move_fw(ring, next_to_use);
2011 	}
2012 
2013 	wmb(); /* Make all data has been write before submit */
2014 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2015 }
2016 
2017 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2018 				struct hns3_enet_ring *ring, int pull_len,
2019 				struct hns3_desc_cb *desc_cb)
2020 {
2021 	struct hns3_desc *desc;
2022 	int truesize, size;
2023 	int last_offset;
2024 	bool twobufs;
2025 
2026 	twobufs = ((PAGE_SIZE < 8192) &&
2027 		hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2028 
2029 	desc = &ring->desc[ring->next_to_clean];
2030 	size = le16_to_cpu(desc->rx.size);
2031 
2032 	truesize = hnae3_buf_size(ring);
2033 
2034 	if (!twobufs)
2035 		last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2036 
2037 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2038 			size - pull_len, truesize);
2039 
2040 	 /* Avoid re-using remote pages,flag default unreuse */
2041 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2042 		return;
2043 
2044 	if (twobufs) {
2045 		/* If we are only owner of page we can reuse it */
2046 		if (likely(page_count(desc_cb->priv) == 1)) {
2047 			/* Flip page offset to other buffer */
2048 			desc_cb->page_offset ^= truesize;
2049 
2050 			desc_cb->reuse_flag = 1;
2051 			/* bump ref count on page before it is given*/
2052 			get_page(desc_cb->priv);
2053 		}
2054 		return;
2055 	}
2056 
2057 	/* Move offset up to the next cache line */
2058 	desc_cb->page_offset += truesize;
2059 
2060 	if (desc_cb->page_offset <= last_offset) {
2061 		desc_cb->reuse_flag = 1;
2062 		/* Bump ref count on page before it is given*/
2063 		get_page(desc_cb->priv);
2064 	}
2065 }
2066 
2067 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2068 			     struct hns3_desc *desc)
2069 {
2070 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2071 	int l3_type, l4_type;
2072 	u32 bd_base_info;
2073 	int ol4_type;
2074 	u32 l234info;
2075 
2076 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2077 	l234info = le32_to_cpu(desc->rx.l234_info);
2078 
2079 	skb->ip_summed = CHECKSUM_NONE;
2080 
2081 	skb_checksum_none_assert(skb);
2082 
2083 	if (!(netdev->features & NETIF_F_RXCSUM))
2084 		return;
2085 
2086 	/* check if hardware has done checksum */
2087 	if (!hnae3_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
2088 		return;
2089 
2090 	if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L3E_B) ||
2091 		     hnae3_get_bit(l234info, HNS3_RXD_L4E_B) ||
2092 		     hnae3_get_bit(l234info, HNS3_RXD_OL3E_B) ||
2093 		     hnae3_get_bit(l234info, HNS3_RXD_OL4E_B))) {
2094 		netdev_err(netdev, "L3/L4 error pkt\n");
2095 		u64_stats_update_begin(&ring->syncp);
2096 		ring->stats.l3l4_csum_err++;
2097 		u64_stats_update_end(&ring->syncp);
2098 
2099 		return;
2100 	}
2101 
2102 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2103 				  HNS3_RXD_L3ID_S);
2104 	l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2105 				  HNS3_RXD_L4ID_S);
2106 
2107 	ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2108 				   HNS3_RXD_OL4ID_S);
2109 	switch (ol4_type) {
2110 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2111 	case HNS3_OL4_TYPE_NVGRE:
2112 		skb->csum_level = 1;
2113 		/* fall through */
2114 	case HNS3_OL4_TYPE_NO_TUN:
2115 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2116 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2117 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2118 		    (l4_type == HNS3_L4_TYPE_UDP ||
2119 		     l4_type == HNS3_L4_TYPE_TCP ||
2120 		     l4_type == HNS3_L4_TYPE_SCTP))
2121 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2122 		break;
2123 	}
2124 }
2125 
2126 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2127 {
2128 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2129 }
2130 
2131 static u16 hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2132 			       struct hns3_desc *desc, u32 l234info)
2133 {
2134 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2135 	u16 vlan_tag;
2136 
2137 	if (pdev->revision == 0x20) {
2138 		vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2139 		if (!(vlan_tag & VLAN_VID_MASK))
2140 			vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2141 
2142 		return vlan_tag;
2143 	}
2144 
2145 #define HNS3_STRP_OUTER_VLAN	0x1
2146 #define HNS3_STRP_INNER_VLAN	0x2
2147 
2148 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2149 				HNS3_RXD_STRP_TAGP_S)) {
2150 	case HNS3_STRP_OUTER_VLAN:
2151 		vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2152 		break;
2153 	case HNS3_STRP_INNER_VLAN:
2154 		vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2155 		break;
2156 	default:
2157 		vlan_tag = 0;
2158 		break;
2159 	}
2160 
2161 	return vlan_tag;
2162 }
2163 
2164 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2165 			     struct sk_buff **out_skb, int *out_bnum)
2166 {
2167 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2168 	struct hns3_desc_cb *desc_cb;
2169 	struct hns3_desc *desc;
2170 	struct sk_buff *skb;
2171 	unsigned char *va;
2172 	u32 bd_base_info;
2173 	int pull_len;
2174 	u32 l234info;
2175 	int length;
2176 	int bnum;
2177 
2178 	desc = &ring->desc[ring->next_to_clean];
2179 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2180 
2181 	prefetch(desc);
2182 
2183 	length = le16_to_cpu(desc->rx.size);
2184 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2185 
2186 	/* Check valid BD */
2187 	if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B)))
2188 		return -EFAULT;
2189 
2190 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2191 
2192 	/* Prefetch first cache line of first page
2193 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2194 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2195 	 * actual we can have greater size of caches with 128B Level 1 cache
2196 	 * lines. In such a case, single fetch would suffice to cache in the
2197 	 * relevant part of the header.
2198 	 */
2199 	prefetch(va);
2200 #if L1_CACHE_BYTES < 128
2201 	prefetch(va + L1_CACHE_BYTES);
2202 #endif
2203 
2204 	skb = *out_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2205 					HNS3_RX_HEAD_SIZE);
2206 	if (unlikely(!skb)) {
2207 		netdev_err(netdev, "alloc rx skb fail\n");
2208 
2209 		u64_stats_update_begin(&ring->syncp);
2210 		ring->stats.sw_err_cnt++;
2211 		u64_stats_update_end(&ring->syncp);
2212 
2213 		return -ENOMEM;
2214 	}
2215 
2216 	prefetchw(skb->data);
2217 
2218 	bnum = 1;
2219 	if (length <= HNS3_RX_HEAD_SIZE) {
2220 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2221 
2222 		/* We can reuse buffer as-is, just make sure it is local */
2223 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2224 			desc_cb->reuse_flag = 1;
2225 		else /* This page cannot be reused so discard it */
2226 			put_page(desc_cb->priv);
2227 
2228 		ring_ptr_move_fw(ring, next_to_clean);
2229 	} else {
2230 		u64_stats_update_begin(&ring->syncp);
2231 		ring->stats.seg_pkt_cnt++;
2232 		u64_stats_update_end(&ring->syncp);
2233 
2234 		pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2235 
2236 		memcpy(__skb_put(skb, pull_len), va,
2237 		       ALIGN(pull_len, sizeof(long)));
2238 
2239 		hns3_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
2240 		ring_ptr_move_fw(ring, next_to_clean);
2241 
2242 		while (!hnae3_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
2243 			desc = &ring->desc[ring->next_to_clean];
2244 			desc_cb = &ring->desc_cb[ring->next_to_clean];
2245 			bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2246 			hns3_nic_reuse_page(skb, bnum, ring, 0, desc_cb);
2247 			ring_ptr_move_fw(ring, next_to_clean);
2248 			bnum++;
2249 		}
2250 	}
2251 
2252 	*out_bnum = bnum;
2253 
2254 	l234info = le32_to_cpu(desc->rx.l234_info);
2255 
2256 	/* Based on hw strategy, the tag offloaded will be stored at
2257 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2258 	 * in one layer tag case.
2259 	 */
2260 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2261 		u16 vlan_tag;
2262 
2263 		vlan_tag = hns3_parse_vlan_tag(ring, desc, l234info);
2264 		if (vlan_tag & VLAN_VID_MASK)
2265 			__vlan_hwaccel_put_tag(skb,
2266 					       htons(ETH_P_8021Q),
2267 					       vlan_tag);
2268 	}
2269 
2270 	if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
2271 		netdev_err(netdev, "no valid bd,%016llx,%016llx\n",
2272 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
2273 		u64_stats_update_begin(&ring->syncp);
2274 		ring->stats.non_vld_descs++;
2275 		u64_stats_update_end(&ring->syncp);
2276 
2277 		dev_kfree_skb_any(skb);
2278 		return -EINVAL;
2279 	}
2280 
2281 	if (unlikely((!desc->rx.pkt_len) ||
2282 		     hnae3_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
2283 		netdev_err(netdev, "truncated pkt\n");
2284 		u64_stats_update_begin(&ring->syncp);
2285 		ring->stats.err_pkt_len++;
2286 		u64_stats_update_end(&ring->syncp);
2287 
2288 		dev_kfree_skb_any(skb);
2289 		return -EFAULT;
2290 	}
2291 
2292 	if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L2E_B))) {
2293 		netdev_err(netdev, "L2 error pkt\n");
2294 		u64_stats_update_begin(&ring->syncp);
2295 		ring->stats.l2_err++;
2296 		u64_stats_update_end(&ring->syncp);
2297 
2298 		dev_kfree_skb_any(skb);
2299 		return -EFAULT;
2300 	}
2301 
2302 	u64_stats_update_begin(&ring->syncp);
2303 	ring->stats.rx_pkts++;
2304 	ring->stats.rx_bytes += skb->len;
2305 	u64_stats_update_end(&ring->syncp);
2306 
2307 	ring->tqp_vector->rx_group.total_bytes += skb->len;
2308 
2309 	hns3_rx_checksum(ring, skb, desc);
2310 	return 0;
2311 }
2312 
2313 int hns3_clean_rx_ring(
2314 		struct hns3_enet_ring *ring, int budget,
2315 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2316 {
2317 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2318 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2319 	int recv_pkts, recv_bds, clean_count, err;
2320 	int unused_count = hns3_desc_unused(ring);
2321 	struct sk_buff *skb = NULL;
2322 	int num, bnum = 0;
2323 
2324 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2325 	rmb(); /* Make sure num taken effect before the other data is touched */
2326 
2327 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2328 	num -= unused_count;
2329 
2330 	while (recv_pkts < budget && recv_bds < num) {
2331 		/* Reuse or realloc buffers */
2332 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2333 			hns3_nic_alloc_rx_buffers(ring,
2334 						  clean_count + unused_count);
2335 			clean_count = 0;
2336 			unused_count = hns3_desc_unused(ring);
2337 		}
2338 
2339 		/* Poll one pkt */
2340 		err = hns3_handle_rx_bd(ring, &skb, &bnum);
2341 		if (unlikely(!skb)) /* This fault cannot be repaired */
2342 			goto out;
2343 
2344 		recv_bds += bnum;
2345 		clean_count += bnum;
2346 		if (unlikely(err)) {  /* Do jump the err */
2347 			recv_pkts++;
2348 			continue;
2349 		}
2350 
2351 		/* Do update ip stack process */
2352 		skb->protocol = eth_type_trans(skb, netdev);
2353 		rx_fn(ring, skb);
2354 
2355 		recv_pkts++;
2356 	}
2357 
2358 out:
2359 	/* Make all data has been write before submit */
2360 	if (clean_count + unused_count > 0)
2361 		hns3_nic_alloc_rx_buffers(ring,
2362 					  clean_count + unused_count);
2363 
2364 	return recv_pkts;
2365 }
2366 
2367 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2368 {
2369 	struct hns3_enet_tqp_vector *tqp_vector =
2370 					ring_group->ring->tqp_vector;
2371 	enum hns3_flow_level_range new_flow_level;
2372 	int packets_per_msecs;
2373 	int bytes_per_msecs;
2374 	u32 time_passed_ms;
2375 	u16 new_int_gl;
2376 
2377 	if (!ring_group->coal.int_gl || !tqp_vector->last_jiffies)
2378 		return false;
2379 
2380 	if (ring_group->total_packets == 0) {
2381 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2382 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2383 		return true;
2384 	}
2385 
2386 	/* Simple throttlerate management
2387 	 * 0-10MB/s   lower     (50000 ints/s)
2388 	 * 10-20MB/s   middle    (20000 ints/s)
2389 	 * 20-1249MB/s high      (18000 ints/s)
2390 	 * > 40000pps  ultra     (8000 ints/s)
2391 	 */
2392 	new_flow_level = ring_group->coal.flow_level;
2393 	new_int_gl = ring_group->coal.int_gl;
2394 	time_passed_ms =
2395 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2396 
2397 	if (!time_passed_ms)
2398 		return false;
2399 
2400 	do_div(ring_group->total_packets, time_passed_ms);
2401 	packets_per_msecs = ring_group->total_packets;
2402 
2403 	do_div(ring_group->total_bytes, time_passed_ms);
2404 	bytes_per_msecs = ring_group->total_bytes;
2405 
2406 #define HNS3_RX_LOW_BYTE_RATE 10000
2407 #define HNS3_RX_MID_BYTE_RATE 20000
2408 
2409 	switch (new_flow_level) {
2410 	case HNS3_FLOW_LOW:
2411 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2412 			new_flow_level = HNS3_FLOW_MID;
2413 		break;
2414 	case HNS3_FLOW_MID:
2415 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2416 			new_flow_level = HNS3_FLOW_HIGH;
2417 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2418 			new_flow_level = HNS3_FLOW_LOW;
2419 		break;
2420 	case HNS3_FLOW_HIGH:
2421 	case HNS3_FLOW_ULTRA:
2422 	default:
2423 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2424 			new_flow_level = HNS3_FLOW_MID;
2425 		break;
2426 	}
2427 
2428 #define HNS3_RX_ULTRA_PACKET_RATE 40
2429 
2430 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2431 	    &tqp_vector->rx_group == ring_group)
2432 		new_flow_level = HNS3_FLOW_ULTRA;
2433 
2434 	switch (new_flow_level) {
2435 	case HNS3_FLOW_LOW:
2436 		new_int_gl = HNS3_INT_GL_50K;
2437 		break;
2438 	case HNS3_FLOW_MID:
2439 		new_int_gl = HNS3_INT_GL_20K;
2440 		break;
2441 	case HNS3_FLOW_HIGH:
2442 		new_int_gl = HNS3_INT_GL_18K;
2443 		break;
2444 	case HNS3_FLOW_ULTRA:
2445 		new_int_gl = HNS3_INT_GL_8K;
2446 		break;
2447 	default:
2448 		break;
2449 	}
2450 
2451 	ring_group->total_bytes = 0;
2452 	ring_group->total_packets = 0;
2453 	ring_group->coal.flow_level = new_flow_level;
2454 	if (new_int_gl != ring_group->coal.int_gl) {
2455 		ring_group->coal.int_gl = new_int_gl;
2456 		return true;
2457 	}
2458 	return false;
2459 }
2460 
2461 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2462 {
2463 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2464 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2465 	bool rx_update, tx_update;
2466 
2467 	if (tqp_vector->int_adapt_down > 0) {
2468 		tqp_vector->int_adapt_down--;
2469 		return;
2470 	}
2471 
2472 	if (rx_group->coal.gl_adapt_enable) {
2473 		rx_update = hns3_get_new_int_gl(rx_group);
2474 		if (rx_update)
2475 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
2476 						       rx_group->coal.int_gl);
2477 	}
2478 
2479 	if (tx_group->coal.gl_adapt_enable) {
2480 		tx_update = hns3_get_new_int_gl(&tqp_vector->tx_group);
2481 		if (tx_update)
2482 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
2483 						       tx_group->coal.int_gl);
2484 	}
2485 
2486 	tqp_vector->last_jiffies = jiffies;
2487 	tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
2488 }
2489 
2490 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2491 {
2492 	struct hns3_enet_ring *ring;
2493 	int rx_pkt_total = 0;
2494 
2495 	struct hns3_enet_tqp_vector *tqp_vector =
2496 		container_of(napi, struct hns3_enet_tqp_vector, napi);
2497 	bool clean_complete = true;
2498 	int rx_budget;
2499 
2500 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2501 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2502 	 */
2503 	hns3_for_each_ring(ring, tqp_vector->tx_group) {
2504 		if (!hns3_clean_tx_ring(ring, budget))
2505 			clean_complete = false;
2506 	}
2507 
2508 	/* make sure rx ring budget not smaller than 1 */
2509 	rx_budget = max(budget / tqp_vector->num_tqps, 1);
2510 
2511 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
2512 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2513 						    hns3_rx_skb);
2514 
2515 		if (rx_cleaned >= rx_budget)
2516 			clean_complete = false;
2517 
2518 		rx_pkt_total += rx_cleaned;
2519 	}
2520 
2521 	tqp_vector->rx_group.total_packets += rx_pkt_total;
2522 
2523 	if (!clean_complete)
2524 		return budget;
2525 
2526 	napi_complete(napi);
2527 	hns3_update_new_int_gl(tqp_vector);
2528 	hns3_mask_vector_irq(tqp_vector, 1);
2529 
2530 	return rx_pkt_total;
2531 }
2532 
2533 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2534 				      struct hnae3_ring_chain_node *head)
2535 {
2536 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2537 	struct hnae3_ring_chain_node *cur_chain = head;
2538 	struct hnae3_ring_chain_node *chain;
2539 	struct hns3_enet_ring *tx_ring;
2540 	struct hns3_enet_ring *rx_ring;
2541 
2542 	tx_ring = tqp_vector->tx_group.ring;
2543 	if (tx_ring) {
2544 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2545 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2546 			      HNAE3_RING_TYPE_TX);
2547 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2548 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2549 
2550 		cur_chain->next = NULL;
2551 
2552 		while (tx_ring->next) {
2553 			tx_ring = tx_ring->next;
2554 
2555 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2556 					     GFP_KERNEL);
2557 			if (!chain)
2558 				return -ENOMEM;
2559 
2560 			cur_chain->next = chain;
2561 			chain->tqp_index = tx_ring->tqp->tqp_index;
2562 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2563 				      HNAE3_RING_TYPE_TX);
2564 			hnae3_set_field(chain->int_gl_idx,
2565 					HNAE3_RING_GL_IDX_M,
2566 					HNAE3_RING_GL_IDX_S,
2567 					HNAE3_RING_GL_TX);
2568 
2569 			cur_chain = chain;
2570 		}
2571 	}
2572 
2573 	rx_ring = tqp_vector->rx_group.ring;
2574 	if (!tx_ring && rx_ring) {
2575 		cur_chain->next = NULL;
2576 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2577 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2578 			      HNAE3_RING_TYPE_RX);
2579 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2580 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2581 
2582 		rx_ring = rx_ring->next;
2583 	}
2584 
2585 	while (rx_ring) {
2586 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2587 		if (!chain)
2588 			return -ENOMEM;
2589 
2590 		cur_chain->next = chain;
2591 		chain->tqp_index = rx_ring->tqp->tqp_index;
2592 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2593 			      HNAE3_RING_TYPE_RX);
2594 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2595 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2596 
2597 		cur_chain = chain;
2598 
2599 		rx_ring = rx_ring->next;
2600 	}
2601 
2602 	return 0;
2603 }
2604 
2605 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2606 					struct hnae3_ring_chain_node *head)
2607 {
2608 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2609 	struct hnae3_ring_chain_node *chain_tmp, *chain;
2610 
2611 	chain = head->next;
2612 
2613 	while (chain) {
2614 		chain_tmp = chain->next;
2615 		devm_kfree(&pdev->dev, chain);
2616 		chain = chain_tmp;
2617 	}
2618 }
2619 
2620 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
2621 				   struct hns3_enet_ring *ring)
2622 {
2623 	ring->next = group->ring;
2624 	group->ring = ring;
2625 
2626 	group->count++;
2627 }
2628 
2629 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
2630 {
2631 	struct hnae3_ring_chain_node vector_ring_chain;
2632 	struct hnae3_handle *h = priv->ae_handle;
2633 	struct hns3_enet_tqp_vector *tqp_vector;
2634 	int ret = 0;
2635 	u16 i;
2636 
2637 	for (i = 0; i < priv->vector_num; i++) {
2638 		tqp_vector = &priv->tqp_vector[i];
2639 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
2640 		tqp_vector->num_tqps = 0;
2641 	}
2642 
2643 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2644 		u16 vector_i = i % priv->vector_num;
2645 		u16 tqp_num = h->kinfo.num_tqps;
2646 
2647 		tqp_vector = &priv->tqp_vector[vector_i];
2648 
2649 		hns3_add_ring_to_group(&tqp_vector->tx_group,
2650 				       priv->ring_data[i].ring);
2651 
2652 		hns3_add_ring_to_group(&tqp_vector->rx_group,
2653 				       priv->ring_data[i + tqp_num].ring);
2654 
2655 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
2656 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
2657 		tqp_vector->num_tqps++;
2658 	}
2659 
2660 	for (i = 0; i < priv->vector_num; i++) {
2661 		tqp_vector = &priv->tqp_vector[i];
2662 
2663 		tqp_vector->rx_group.total_bytes = 0;
2664 		tqp_vector->rx_group.total_packets = 0;
2665 		tqp_vector->tx_group.total_bytes = 0;
2666 		tqp_vector->tx_group.total_packets = 0;
2667 		tqp_vector->handle = h;
2668 
2669 		ret = hns3_get_vector_ring_chain(tqp_vector,
2670 						 &vector_ring_chain);
2671 		if (ret)
2672 			return ret;
2673 
2674 		ret = h->ae_algo->ops->map_ring_to_vector(h,
2675 			tqp_vector->vector_irq, &vector_ring_chain);
2676 
2677 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2678 
2679 		if (ret)
2680 			return ret;
2681 
2682 		netif_napi_add(priv->netdev, &tqp_vector->napi,
2683 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
2684 	}
2685 
2686 	return 0;
2687 }
2688 
2689 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
2690 {
2691 	struct hnae3_handle *h = priv->ae_handle;
2692 	struct hns3_enet_tqp_vector *tqp_vector;
2693 	struct hnae3_vector_info *vector;
2694 	struct pci_dev *pdev = h->pdev;
2695 	u16 tqp_num = h->kinfo.num_tqps;
2696 	u16 vector_num;
2697 	int ret = 0;
2698 	u16 i;
2699 
2700 	/* RSS size, cpu online and vector_num should be the same */
2701 	/* Should consider 2p/4p later */
2702 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
2703 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
2704 			      GFP_KERNEL);
2705 	if (!vector)
2706 		return -ENOMEM;
2707 
2708 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
2709 
2710 	priv->vector_num = vector_num;
2711 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
2712 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
2713 			     GFP_KERNEL);
2714 	if (!priv->tqp_vector) {
2715 		ret = -ENOMEM;
2716 		goto out;
2717 	}
2718 
2719 	for (i = 0; i < priv->vector_num; i++) {
2720 		tqp_vector = &priv->tqp_vector[i];
2721 		tqp_vector->idx = i;
2722 		tqp_vector->mask_addr = vector[i].io_addr;
2723 		tqp_vector->vector_irq = vector[i].vector;
2724 		hns3_vector_gl_rl_init(tqp_vector, priv);
2725 	}
2726 
2727 out:
2728 	devm_kfree(&pdev->dev, vector);
2729 	return ret;
2730 }
2731 
2732 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
2733 {
2734 	group->ring = NULL;
2735 	group->count = 0;
2736 }
2737 
2738 static int hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
2739 {
2740 	struct hnae3_ring_chain_node vector_ring_chain;
2741 	struct hnae3_handle *h = priv->ae_handle;
2742 	struct hns3_enet_tqp_vector *tqp_vector;
2743 	int i, ret;
2744 
2745 	for (i = 0; i < priv->vector_num; i++) {
2746 		tqp_vector = &priv->tqp_vector[i];
2747 
2748 		ret = hns3_get_vector_ring_chain(tqp_vector,
2749 						 &vector_ring_chain);
2750 		if (ret)
2751 			return ret;
2752 
2753 		ret = h->ae_algo->ops->unmap_ring_from_vector(h,
2754 			tqp_vector->vector_irq, &vector_ring_chain);
2755 		if (ret)
2756 			return ret;
2757 
2758 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2759 
2760 		if (priv->tqp_vector[i].irq_init_flag == HNS3_VECTOR_INITED) {
2761 			(void)irq_set_affinity_hint(
2762 				priv->tqp_vector[i].vector_irq,
2763 						    NULL);
2764 			free_irq(priv->tqp_vector[i].vector_irq,
2765 				 &priv->tqp_vector[i]);
2766 		}
2767 
2768 		priv->ring_data[i].ring->irq_init_flag = HNS3_VECTOR_NOT_INITED;
2769 		hns3_clear_ring_group(&tqp_vector->rx_group);
2770 		hns3_clear_ring_group(&tqp_vector->tx_group);
2771 		netif_napi_del(&priv->tqp_vector[i].napi);
2772 	}
2773 
2774 	return 0;
2775 }
2776 
2777 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
2778 {
2779 	struct hnae3_handle *h = priv->ae_handle;
2780 	struct pci_dev *pdev = h->pdev;
2781 	int i, ret;
2782 
2783 	for (i = 0; i < priv->vector_num; i++) {
2784 		struct hns3_enet_tqp_vector *tqp_vector;
2785 
2786 		tqp_vector = &priv->tqp_vector[i];
2787 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
2788 		if (ret)
2789 			return ret;
2790 	}
2791 
2792 	devm_kfree(&pdev->dev, priv->tqp_vector);
2793 	return 0;
2794 }
2795 
2796 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
2797 			     int ring_type)
2798 {
2799 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
2800 	int queue_num = priv->ae_handle->kinfo.num_tqps;
2801 	struct pci_dev *pdev = priv->ae_handle->pdev;
2802 	struct hns3_enet_ring *ring;
2803 
2804 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
2805 	if (!ring)
2806 		return -ENOMEM;
2807 
2808 	if (ring_type == HNAE3_RING_TYPE_TX) {
2809 		ring_data[q->tqp_index].ring = ring;
2810 		ring_data[q->tqp_index].queue_index = q->tqp_index;
2811 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
2812 	} else {
2813 		ring_data[q->tqp_index + queue_num].ring = ring;
2814 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
2815 		ring->io_base = q->io_base;
2816 	}
2817 
2818 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
2819 
2820 	ring->tqp = q;
2821 	ring->desc = NULL;
2822 	ring->desc_cb = NULL;
2823 	ring->dev = priv->dev;
2824 	ring->desc_dma_addr = 0;
2825 	ring->buf_size = q->buf_size;
2826 	ring->desc_num = q->desc_num;
2827 	ring->next_to_use = 0;
2828 	ring->next_to_clean = 0;
2829 
2830 	return 0;
2831 }
2832 
2833 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
2834 			      struct hns3_nic_priv *priv)
2835 {
2836 	int ret;
2837 
2838 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
2839 	if (ret)
2840 		return ret;
2841 
2842 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
2843 	if (ret)
2844 		return ret;
2845 
2846 	return 0;
2847 }
2848 
2849 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
2850 {
2851 	struct hnae3_handle *h = priv->ae_handle;
2852 	struct pci_dev *pdev = h->pdev;
2853 	int i, ret;
2854 
2855 	priv->ring_data =  devm_kzalloc(&pdev->dev,
2856 					array3_size(h->kinfo.num_tqps,
2857 						    sizeof(*priv->ring_data),
2858 						    2),
2859 					GFP_KERNEL);
2860 	if (!priv->ring_data)
2861 		return -ENOMEM;
2862 
2863 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2864 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
2865 		if (ret)
2866 			goto err;
2867 	}
2868 
2869 	return 0;
2870 err:
2871 	devm_kfree(&pdev->dev, priv->ring_data);
2872 	return ret;
2873 }
2874 
2875 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
2876 {
2877 	struct hnae3_handle *h = priv->ae_handle;
2878 	int i;
2879 
2880 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2881 		devm_kfree(priv->dev, priv->ring_data[i].ring);
2882 		devm_kfree(priv->dev,
2883 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
2884 	}
2885 	devm_kfree(priv->dev, priv->ring_data);
2886 }
2887 
2888 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
2889 {
2890 	int ret;
2891 
2892 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
2893 		return -EINVAL;
2894 
2895 	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
2896 				GFP_KERNEL);
2897 	if (!ring->desc_cb) {
2898 		ret = -ENOMEM;
2899 		goto out;
2900 	}
2901 
2902 	ret = hns3_alloc_desc(ring);
2903 	if (ret)
2904 		goto out_with_desc_cb;
2905 
2906 	if (!HNAE3_IS_TX_RING(ring)) {
2907 		ret = hns3_alloc_ring_buffers(ring);
2908 		if (ret)
2909 			goto out_with_desc;
2910 	}
2911 
2912 	return 0;
2913 
2914 out_with_desc:
2915 	hns3_free_desc(ring);
2916 out_with_desc_cb:
2917 	kfree(ring->desc_cb);
2918 	ring->desc_cb = NULL;
2919 out:
2920 	return ret;
2921 }
2922 
2923 static void hns3_fini_ring(struct hns3_enet_ring *ring)
2924 {
2925 	hns3_free_desc(ring);
2926 	kfree(ring->desc_cb);
2927 	ring->desc_cb = NULL;
2928 	ring->next_to_clean = 0;
2929 	ring->next_to_use = 0;
2930 }
2931 
2932 static int hns3_buf_size2type(u32 buf_size)
2933 {
2934 	int bd_size_type;
2935 
2936 	switch (buf_size) {
2937 	case 512:
2938 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
2939 		break;
2940 	case 1024:
2941 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
2942 		break;
2943 	case 2048:
2944 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2945 		break;
2946 	case 4096:
2947 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
2948 		break;
2949 	default:
2950 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2951 	}
2952 
2953 	return bd_size_type;
2954 }
2955 
2956 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
2957 {
2958 	dma_addr_t dma = ring->desc_dma_addr;
2959 	struct hnae3_queue *q = ring->tqp;
2960 
2961 	if (!HNAE3_IS_TX_RING(ring)) {
2962 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
2963 			       (u32)dma);
2964 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
2965 			       (u32)((dma >> 31) >> 1));
2966 
2967 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
2968 			       hns3_buf_size2type(ring->buf_size));
2969 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
2970 			       ring->desc_num / 8 - 1);
2971 
2972 	} else {
2973 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
2974 			       (u32)dma);
2975 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
2976 			       (u32)((dma >> 31) >> 1));
2977 
2978 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
2979 			       ring->desc_num / 8 - 1);
2980 	}
2981 }
2982 
2983 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
2984 {
2985 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
2986 	int i;
2987 
2988 	for (i = 0; i < HNAE3_MAX_TC; i++) {
2989 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
2990 		int j;
2991 
2992 		if (!tc_info->enable)
2993 			continue;
2994 
2995 		for (j = 0; j < tc_info->tqp_count; j++) {
2996 			struct hnae3_queue *q;
2997 
2998 			q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
2999 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3000 				       tc_info->tc);
3001 		}
3002 	}
3003 }
3004 
3005 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3006 {
3007 	struct hnae3_handle *h = priv->ae_handle;
3008 	int ring_num = h->kinfo.num_tqps * 2;
3009 	int i, j;
3010 	int ret;
3011 
3012 	for (i = 0; i < ring_num; i++) {
3013 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3014 		if (ret) {
3015 			dev_err(priv->dev,
3016 				"Alloc ring memory fail! ret=%d\n", ret);
3017 			goto out_when_alloc_ring_memory;
3018 		}
3019 
3020 		u64_stats_init(&priv->ring_data[i].ring->syncp);
3021 	}
3022 
3023 	return 0;
3024 
3025 out_when_alloc_ring_memory:
3026 	for (j = i - 1; j >= 0; j--)
3027 		hns3_fini_ring(priv->ring_data[j].ring);
3028 
3029 	return -ENOMEM;
3030 }
3031 
3032 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3033 {
3034 	struct hnae3_handle *h = priv->ae_handle;
3035 	int i;
3036 
3037 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3038 		if (h->ae_algo->ops->reset_queue)
3039 			h->ae_algo->ops->reset_queue(h, i);
3040 
3041 		hns3_fini_ring(priv->ring_data[i].ring);
3042 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3043 	}
3044 	return 0;
3045 }
3046 
3047 /* Set mac addr if it is configured. or leave it to the AE driver */
3048 static void hns3_init_mac_addr(struct net_device *netdev, bool init)
3049 {
3050 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3051 	struct hnae3_handle *h = priv->ae_handle;
3052 	u8 mac_addr_temp[ETH_ALEN];
3053 
3054 	if (h->ae_algo->ops->get_mac_addr && init) {
3055 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3056 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3057 	}
3058 
3059 	/* Check if the MAC address is valid, if not get a random one */
3060 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3061 		eth_hw_addr_random(netdev);
3062 		dev_warn(priv->dev, "using random MAC address %pM\n",
3063 			 netdev->dev_addr);
3064 	}
3065 
3066 	if (h->ae_algo->ops->set_mac_addr)
3067 		h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3068 
3069 }
3070 
3071 static void hns3_uninit_mac_addr(struct net_device *netdev)
3072 {
3073 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3074 	struct hnae3_handle *h = priv->ae_handle;
3075 
3076 	if (h->ae_algo->ops->rm_uc_addr)
3077 		h->ae_algo->ops->rm_uc_addr(h, netdev->dev_addr);
3078 }
3079 
3080 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3081 {
3082 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3083 
3084 	if ((netdev->features & NETIF_F_TSO) ||
3085 	    (netdev->features & NETIF_F_TSO6)) {
3086 		priv->ops.fill_desc = hns3_fill_desc_tso;
3087 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3088 	} else {
3089 		priv->ops.fill_desc = hns3_fill_desc;
3090 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3091 	}
3092 }
3093 
3094 static int hns3_client_init(struct hnae3_handle *handle)
3095 {
3096 	struct pci_dev *pdev = handle->pdev;
3097 	struct hns3_nic_priv *priv;
3098 	struct net_device *netdev;
3099 	int ret;
3100 
3101 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv),
3102 				   hns3_get_max_available_channels(handle));
3103 	if (!netdev)
3104 		return -ENOMEM;
3105 
3106 	priv = netdev_priv(netdev);
3107 	priv->dev = &pdev->dev;
3108 	priv->netdev = netdev;
3109 	priv->ae_handle = handle;
3110 	priv->ae_handle->last_reset_time = jiffies;
3111 	priv->tx_timeout_count = 0;
3112 
3113 	handle->kinfo.netdev = netdev;
3114 	handle->priv = (void *)priv;
3115 
3116 	hns3_init_mac_addr(netdev, true);
3117 
3118 	hns3_set_default_feature(netdev);
3119 
3120 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3121 	netdev->priv_flags |= IFF_UNICAST_FLT;
3122 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3123 	SET_NETDEV_DEV(netdev, &pdev->dev);
3124 	hns3_ethtool_set_ops(netdev);
3125 	hns3_nic_set_priv_ops(netdev);
3126 
3127 	/* Carrier off reporting is important to ethtool even BEFORE open */
3128 	netif_carrier_off(netdev);
3129 
3130 	if (handle->flags & HNAE3_SUPPORT_VF)
3131 		handle->reset_level = HNAE3_VF_RESET;
3132 	else
3133 		handle->reset_level = HNAE3_FUNC_RESET;
3134 
3135 	ret = hns3_get_ring_config(priv);
3136 	if (ret) {
3137 		ret = -ENOMEM;
3138 		goto out_get_ring_cfg;
3139 	}
3140 
3141 	ret = hns3_nic_alloc_vector_data(priv);
3142 	if (ret) {
3143 		ret = -ENOMEM;
3144 		goto out_alloc_vector_data;
3145 	}
3146 
3147 	ret = hns3_nic_init_vector_data(priv);
3148 	if (ret) {
3149 		ret = -ENOMEM;
3150 		goto out_init_vector_data;
3151 	}
3152 
3153 	ret = hns3_init_all_ring(priv);
3154 	if (ret) {
3155 		ret = -ENOMEM;
3156 		goto out_init_ring_data;
3157 	}
3158 
3159 	ret = register_netdev(netdev);
3160 	if (ret) {
3161 		dev_err(priv->dev, "probe register netdev fail!\n");
3162 		goto out_reg_netdev_fail;
3163 	}
3164 
3165 	hns3_dcbnl_setup(handle);
3166 
3167 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9706) */
3168 	netdev->max_mtu = HNS3_MAX_MTU - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3169 
3170 	return ret;
3171 
3172 out_reg_netdev_fail:
3173 out_init_ring_data:
3174 	(void)hns3_nic_uninit_vector_data(priv);
3175 out_init_vector_data:
3176 	hns3_nic_dealloc_vector_data(priv);
3177 out_alloc_vector_data:
3178 	priv->ring_data = NULL;
3179 out_get_ring_cfg:
3180 	priv->ae_handle = NULL;
3181 	free_netdev(netdev);
3182 	return ret;
3183 }
3184 
3185 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3186 {
3187 	struct net_device *netdev = handle->kinfo.netdev;
3188 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3189 	int ret;
3190 
3191 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3192 		unregister_netdev(netdev);
3193 
3194 	hns3_force_clear_all_rx_ring(handle);
3195 
3196 	ret = hns3_nic_uninit_vector_data(priv);
3197 	if (ret)
3198 		netdev_err(netdev, "uninit vector error\n");
3199 
3200 	ret = hns3_nic_dealloc_vector_data(priv);
3201 	if (ret)
3202 		netdev_err(netdev, "dealloc vector error\n");
3203 
3204 	ret = hns3_uninit_all_ring(priv);
3205 	if (ret)
3206 		netdev_err(netdev, "uninit ring error\n");
3207 
3208 	hns3_put_ring_config(priv);
3209 
3210 	priv->ring_data = NULL;
3211 
3212 	hns3_uninit_mac_addr(netdev);
3213 
3214 	free_netdev(netdev);
3215 }
3216 
3217 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3218 {
3219 	struct net_device *netdev = handle->kinfo.netdev;
3220 
3221 	if (!netdev)
3222 		return;
3223 
3224 	if (linkup) {
3225 		netif_carrier_on(netdev);
3226 		netif_tx_wake_all_queues(netdev);
3227 		netdev_info(netdev, "link up\n");
3228 	} else {
3229 		netif_carrier_off(netdev);
3230 		netif_tx_stop_all_queues(netdev);
3231 		netdev_info(netdev, "link down\n");
3232 	}
3233 }
3234 
3235 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3236 {
3237 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3238 	struct net_device *ndev = kinfo->netdev;
3239 	bool if_running;
3240 	int ret;
3241 
3242 	if (tc > HNAE3_MAX_TC)
3243 		return -EINVAL;
3244 
3245 	if (!ndev)
3246 		return -ENODEV;
3247 
3248 	if_running = netif_running(ndev);
3249 
3250 	if (if_running) {
3251 		(void)hns3_nic_net_stop(ndev);
3252 		msleep(100);
3253 	}
3254 
3255 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->map_update) ?
3256 		kinfo->dcb_ops->map_update(handle) : -EOPNOTSUPP;
3257 	if (ret)
3258 		goto err_out;
3259 
3260 	ret = hns3_nic_set_real_num_queue(ndev);
3261 
3262 err_out:
3263 	if (if_running)
3264 		(void)hns3_nic_net_open(ndev);
3265 
3266 	return ret;
3267 }
3268 
3269 static void hns3_recover_hw_addr(struct net_device *ndev)
3270 {
3271 	struct netdev_hw_addr_list *list;
3272 	struct netdev_hw_addr *ha, *tmp;
3273 
3274 	/* go through and sync uc_addr entries to the device */
3275 	list = &ndev->uc;
3276 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3277 		hns3_nic_uc_sync(ndev, ha->addr);
3278 
3279 	/* go through and sync mc_addr entries to the device */
3280 	list = &ndev->mc;
3281 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3282 		hns3_nic_mc_sync(ndev, ha->addr);
3283 }
3284 
3285 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3286 {
3287 	while (ring->next_to_clean != ring->next_to_use) {
3288 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3289 		hns3_free_buffer_detach(ring, ring->next_to_clean);
3290 		ring_ptr_move_fw(ring, next_to_clean);
3291 	}
3292 }
3293 
3294 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3295 {
3296 	struct hns3_desc_cb res_cbs;
3297 	int ret;
3298 
3299 	while (ring->next_to_use != ring->next_to_clean) {
3300 		/* When a buffer is not reused, it's memory has been
3301 		 * freed in hns3_handle_rx_bd or will be freed by
3302 		 * stack, so we need to replace the buffer here.
3303 		 */
3304 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3305 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
3306 			if (ret) {
3307 				u64_stats_update_begin(&ring->syncp);
3308 				ring->stats.sw_err_cnt++;
3309 				u64_stats_update_end(&ring->syncp);
3310 				/* if alloc new buffer fail, exit directly
3311 				 * and reclear in up flow.
3312 				 */
3313 				netdev_warn(ring->tqp->handle->kinfo.netdev,
3314 					    "reserve buffer map failed, ret = %d\n",
3315 					    ret);
3316 				return ret;
3317 			}
3318 			hns3_replace_buffer(ring, ring->next_to_use,
3319 					    &res_cbs);
3320 		}
3321 		ring_ptr_move_fw(ring, next_to_use);
3322 	}
3323 
3324 	return 0;
3325 }
3326 
3327 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3328 {
3329 	while (ring->next_to_use != ring->next_to_clean) {
3330 		/* When a buffer is not reused, it's memory has been
3331 		 * freed in hns3_handle_rx_bd or will be freed by
3332 		 * stack, so only need to unmap the buffer here.
3333 		 */
3334 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3335 			hns3_unmap_buffer(ring,
3336 					  &ring->desc_cb[ring->next_to_use]);
3337 			ring->desc_cb[ring->next_to_use].dma = 0;
3338 		}
3339 
3340 		ring_ptr_move_fw(ring, next_to_use);
3341 	}
3342 }
3343 
3344 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3345 {
3346 	struct net_device *ndev = h->kinfo.netdev;
3347 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3348 	struct hns3_enet_ring *ring;
3349 	u32 i;
3350 
3351 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3352 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3353 		hns3_force_clear_rx_ring(ring);
3354 	}
3355 }
3356 
3357 static void hns3_clear_all_ring(struct hnae3_handle *h)
3358 {
3359 	struct net_device *ndev = h->kinfo.netdev;
3360 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3361 	u32 i;
3362 
3363 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3364 		struct netdev_queue *dev_queue;
3365 		struct hns3_enet_ring *ring;
3366 
3367 		ring = priv->ring_data[i].ring;
3368 		hns3_clear_tx_ring(ring);
3369 		dev_queue = netdev_get_tx_queue(ndev,
3370 						priv->ring_data[i].queue_index);
3371 		netdev_tx_reset_queue(dev_queue);
3372 
3373 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3374 		/* Continue to clear other rings even if clearing some
3375 		 * rings failed.
3376 		 */
3377 		hns3_clear_rx_ring(ring);
3378 	}
3379 }
3380 
3381 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3382 {
3383 	struct net_device *ndev = h->kinfo.netdev;
3384 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3385 	struct hns3_enet_ring *rx_ring;
3386 	int i, j;
3387 	int ret;
3388 
3389 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3390 		h->ae_algo->ops->reset_queue(h, i);
3391 		hns3_init_ring_hw(priv->ring_data[i].ring);
3392 
3393 		/* We need to clear tx ring here because self test will
3394 		 * use the ring and will not run down before up
3395 		 */
3396 		hns3_clear_tx_ring(priv->ring_data[i].ring);
3397 		priv->ring_data[i].ring->next_to_clean = 0;
3398 		priv->ring_data[i].ring->next_to_use = 0;
3399 
3400 		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3401 		hns3_init_ring_hw(rx_ring);
3402 		ret = hns3_clear_rx_ring(rx_ring);
3403 		if (ret)
3404 			return ret;
3405 
3406 		/* We can not know the hardware head and tail when this
3407 		 * function is called in reset flow, so we reuse all desc.
3408 		 */
3409 		for (j = 0; j < rx_ring->desc_num; j++)
3410 			hns3_reuse_buffer(rx_ring, j);
3411 
3412 		rx_ring->next_to_clean = 0;
3413 		rx_ring->next_to_use = 0;
3414 	}
3415 
3416 	hns3_init_tx_ring_tc(priv);
3417 
3418 	return 0;
3419 }
3420 
3421 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3422 {
3423 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3424 	struct net_device *ndev = kinfo->netdev;
3425 
3426 	if (!netif_running(ndev))
3427 		return 0;
3428 
3429 	return hns3_nic_net_stop(ndev);
3430 }
3431 
3432 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
3433 {
3434 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3435 	int ret = 0;
3436 
3437 	if (netif_running(kinfo->netdev)) {
3438 		ret = hns3_nic_net_up(kinfo->netdev);
3439 		if (ret) {
3440 			netdev_err(kinfo->netdev,
3441 				   "hns net up fail, ret=%d!\n", ret);
3442 			return ret;
3443 		}
3444 		handle->last_reset_time = jiffies;
3445 	}
3446 
3447 	return ret;
3448 }
3449 
3450 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
3451 {
3452 	struct net_device *netdev = handle->kinfo.netdev;
3453 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3454 	int ret;
3455 
3456 	hns3_init_mac_addr(netdev, false);
3457 	hns3_nic_set_rx_mode(netdev);
3458 	hns3_recover_hw_addr(netdev);
3459 
3460 	/* Hardware table is only clear when pf resets */
3461 	if (!(handle->flags & HNAE3_SUPPORT_VF))
3462 		hns3_restore_vlan(netdev);
3463 
3464 	/* Carrier off reporting is important to ethtool even BEFORE open */
3465 	netif_carrier_off(netdev);
3466 
3467 	ret = hns3_nic_init_vector_data(priv);
3468 	if (ret)
3469 		return ret;
3470 
3471 	ret = hns3_init_all_ring(priv);
3472 	if (ret) {
3473 		hns3_nic_uninit_vector_data(priv);
3474 		priv->ring_data = NULL;
3475 	}
3476 
3477 	return ret;
3478 }
3479 
3480 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
3481 {
3482 	struct net_device *netdev = handle->kinfo.netdev;
3483 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3484 	int ret;
3485 
3486 	hns3_force_clear_all_rx_ring(handle);
3487 
3488 	ret = hns3_nic_uninit_vector_data(priv);
3489 	if (ret) {
3490 		netdev_err(netdev, "uninit vector error\n");
3491 		return ret;
3492 	}
3493 
3494 	ret = hns3_uninit_all_ring(priv);
3495 	if (ret)
3496 		netdev_err(netdev, "uninit ring error\n");
3497 
3498 	hns3_uninit_mac_addr(netdev);
3499 
3500 	return ret;
3501 }
3502 
3503 static int hns3_reset_notify(struct hnae3_handle *handle,
3504 			     enum hnae3_reset_notify_type type)
3505 {
3506 	int ret = 0;
3507 
3508 	switch (type) {
3509 	case HNAE3_UP_CLIENT:
3510 		ret = hns3_reset_notify_up_enet(handle);
3511 		break;
3512 	case HNAE3_DOWN_CLIENT:
3513 		ret = hns3_reset_notify_down_enet(handle);
3514 		break;
3515 	case HNAE3_INIT_CLIENT:
3516 		ret = hns3_reset_notify_init_enet(handle);
3517 		break;
3518 	case HNAE3_UNINIT_CLIENT:
3519 		ret = hns3_reset_notify_uninit_enet(handle);
3520 		break;
3521 	default:
3522 		break;
3523 	}
3524 
3525 	return ret;
3526 }
3527 
3528 static void hns3_restore_coal(struct hns3_nic_priv *priv,
3529 			      struct hns3_enet_coalesce *tx,
3530 			      struct hns3_enet_coalesce *rx)
3531 {
3532 	u16 vector_num = priv->vector_num;
3533 	int i;
3534 
3535 	for (i = 0; i < vector_num; i++) {
3536 		memcpy(&priv->tqp_vector[i].tx_group.coal, tx,
3537 		       sizeof(struct hns3_enet_coalesce));
3538 		memcpy(&priv->tqp_vector[i].rx_group.coal, rx,
3539 		       sizeof(struct hns3_enet_coalesce));
3540 	}
3541 }
3542 
3543 static int hns3_modify_tqp_num(struct net_device *netdev, u16 new_tqp_num,
3544 			       struct hns3_enet_coalesce *tx,
3545 			       struct hns3_enet_coalesce *rx)
3546 {
3547 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3548 	struct hnae3_handle *h = hns3_get_handle(netdev);
3549 	int ret;
3550 
3551 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num);
3552 	if (ret)
3553 		return ret;
3554 
3555 	ret = hns3_get_ring_config(priv);
3556 	if (ret)
3557 		return ret;
3558 
3559 	ret = hns3_nic_alloc_vector_data(priv);
3560 	if (ret)
3561 		goto err_alloc_vector;
3562 
3563 	hns3_restore_coal(priv, tx, rx);
3564 
3565 	ret = hns3_nic_init_vector_data(priv);
3566 	if (ret)
3567 		goto err_uninit_vector;
3568 
3569 	ret = hns3_init_all_ring(priv);
3570 	if (ret)
3571 		goto err_put_ring;
3572 
3573 	return 0;
3574 
3575 err_put_ring:
3576 	hns3_put_ring_config(priv);
3577 err_uninit_vector:
3578 	hns3_nic_uninit_vector_data(priv);
3579 err_alloc_vector:
3580 	hns3_nic_dealloc_vector_data(priv);
3581 	return ret;
3582 }
3583 
3584 static int hns3_adjust_tqps_num(u8 num_tc, u32 new_tqp_num)
3585 {
3586 	return (new_tqp_num / num_tc) * num_tc;
3587 }
3588 
3589 int hns3_set_channels(struct net_device *netdev,
3590 		      struct ethtool_channels *ch)
3591 {
3592 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3593 	struct hnae3_handle *h = hns3_get_handle(netdev);
3594 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
3595 	struct hns3_enet_coalesce tx_coal, rx_coal;
3596 	bool if_running = netif_running(netdev);
3597 	u32 new_tqp_num = ch->combined_count;
3598 	u16 org_tqp_num;
3599 	int ret;
3600 
3601 	if (ch->rx_count || ch->tx_count)
3602 		return -EINVAL;
3603 
3604 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
3605 	    new_tqp_num < kinfo->num_tc) {
3606 		dev_err(&netdev->dev,
3607 			"Change tqps fail, the tqp range is from %d to %d",
3608 			kinfo->num_tc,
3609 			hns3_get_max_available_channels(h));
3610 		return -EINVAL;
3611 	}
3612 
3613 	new_tqp_num = hns3_adjust_tqps_num(kinfo->num_tc, new_tqp_num);
3614 	if (kinfo->num_tqps == new_tqp_num)
3615 		return 0;
3616 
3617 	if (if_running)
3618 		hns3_nic_net_stop(netdev);
3619 
3620 	ret = hns3_nic_uninit_vector_data(priv);
3621 	if (ret) {
3622 		dev_err(&netdev->dev,
3623 			"Unbind vector with tqp fail, nothing is changed");
3624 		goto open_netdev;
3625 	}
3626 
3627 	/* Changing the tqp num may also change the vector num,
3628 	 * ethtool only support setting and querying one coal
3629 	 * configuation for now, so save the vector 0' coal
3630 	 * configuation here in order to restore it.
3631 	 */
3632 	memcpy(&tx_coal, &priv->tqp_vector[0].tx_group.coal,
3633 	       sizeof(struct hns3_enet_coalesce));
3634 	memcpy(&rx_coal, &priv->tqp_vector[0].rx_group.coal,
3635 	       sizeof(struct hns3_enet_coalesce));
3636 
3637 	hns3_nic_dealloc_vector_data(priv);
3638 
3639 	hns3_uninit_all_ring(priv);
3640 	hns3_put_ring_config(priv);
3641 
3642 	org_tqp_num = h->kinfo.num_tqps;
3643 	ret = hns3_modify_tqp_num(netdev, new_tqp_num, &tx_coal, &rx_coal);
3644 	if (ret) {
3645 		ret = hns3_modify_tqp_num(netdev, org_tqp_num,
3646 					  &tx_coal, &rx_coal);
3647 		if (ret) {
3648 			/* If revert to old tqp failed, fatal error occurred */
3649 			dev_err(&netdev->dev,
3650 				"Revert to old tqp num fail, ret=%d", ret);
3651 			return ret;
3652 		}
3653 		dev_info(&netdev->dev,
3654 			 "Change tqp num fail, Revert to old tqp num");
3655 	}
3656 
3657 open_netdev:
3658 	if (if_running)
3659 		hns3_nic_net_open(netdev);
3660 
3661 	return ret;
3662 }
3663 
3664 static const struct hnae3_client_ops client_ops = {
3665 	.init_instance = hns3_client_init,
3666 	.uninit_instance = hns3_client_uninit,
3667 	.link_status_change = hns3_link_status_change,
3668 	.setup_tc = hns3_client_setup_tc,
3669 	.reset_notify = hns3_reset_notify,
3670 };
3671 
3672 /* hns3_init_module - Driver registration routine
3673  * hns3_init_module is the first routine called when the driver is
3674  * loaded. All it does is register with the PCI subsystem.
3675  */
3676 static int __init hns3_init_module(void)
3677 {
3678 	int ret;
3679 
3680 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
3681 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
3682 
3683 	client.type = HNAE3_CLIENT_KNIC;
3684 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
3685 		 hns3_driver_name);
3686 
3687 	client.ops = &client_ops;
3688 
3689 	INIT_LIST_HEAD(&client.node);
3690 
3691 	ret = hnae3_register_client(&client);
3692 	if (ret)
3693 		return ret;
3694 
3695 	ret = pci_register_driver(&hns3_driver);
3696 	if (ret)
3697 		hnae3_unregister_client(&client);
3698 
3699 	return ret;
3700 }
3701 module_init(hns3_init_module);
3702 
3703 /* hns3_exit_module - Driver exit cleanup routine
3704  * hns3_exit_module is called just before the driver is removed
3705  * from memory.
3706  */
3707 static void __exit hns3_exit_module(void)
3708 {
3709 	pci_unregister_driver(&hns3_driver);
3710 	hnae3_unregister_client(&client);
3711 }
3712 module_exit(hns3_exit_module);
3713 
3714 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
3715 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3716 MODULE_LICENSE("GPL");
3717 MODULE_ALIAS("pci:hns-nic");
3718 MODULE_VERSION(HNS3_MOD_VERSION);
3719