1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/aer.h>
16 #include <linux/skbuff.h>
17 #include <linux/sctp.h>
18 #include <linux/vermagic.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 
25 #include "hnae3.h"
26 #include "hns3_enet.h"
27 /* All hns3 tracepoints are defined by the include below, which
28  * must be included exactly once across the whole kernel with
29  * CREATE_TRACE_POINTS defined
30  */
31 #define CREATE_TRACE_POINTS
32 #include "hns3_trace.h"
33 
34 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
35 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
36 
37 #define hns3_rl_err(fmt, ...)						\
38 	do {								\
39 		if (net_ratelimit())					\
40 			netdev_err(fmt, ##__VA_ARGS__);			\
41 	} while (0)
42 
43 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
44 static void hns3_remove_hw_addr(struct net_device *netdev);
45 
46 static const char hns3_driver_name[] = "hns3";
47 const char hns3_driver_version[] = VERMAGIC_STRING;
48 static const char hns3_driver_string[] =
49 			"Hisilicon Ethernet Network Driver for Hip08 Family";
50 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
51 static struct hnae3_client client;
52 
53 static int debug = -1;
54 module_param(debug, int, 0);
55 MODULE_PARM_DESC(debug, " Network interface message level setting");
56 
57 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
58 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
59 
60 #define HNS3_INNER_VLAN_TAG	1
61 #define HNS3_OUTER_VLAN_TAG	2
62 
63 #define HNS3_MIN_TX_LEN		33U
64 
65 /* hns3_pci_tbl - PCI Device ID Table
66  *
67  * Last entry must be all 0s
68  *
69  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
70  *   Class, Class Mask, private data (not used) }
71  */
72 static const struct pci_device_id hns3_pci_tbl[] = {
73 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
74 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
75 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
76 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
77 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
78 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
79 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
80 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
81 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
82 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
83 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
84 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
85 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
86 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
87 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
88 	/* required last entry */
89 	{0, }
90 };
91 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
92 
93 static irqreturn_t hns3_irq_handle(int irq, void *vector)
94 {
95 	struct hns3_enet_tqp_vector *tqp_vector = vector;
96 
97 	napi_schedule_irqoff(&tqp_vector->napi);
98 
99 	return IRQ_HANDLED;
100 }
101 
102 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
103 {
104 	struct hns3_enet_tqp_vector *tqp_vectors;
105 	unsigned int i;
106 
107 	for (i = 0; i < priv->vector_num; i++) {
108 		tqp_vectors = &priv->tqp_vector[i];
109 
110 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
111 			continue;
112 
113 		/* clear the affinity mask */
114 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
115 
116 		/* release the irq resource */
117 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
118 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
119 	}
120 }
121 
122 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
123 {
124 	struct hns3_enet_tqp_vector *tqp_vectors;
125 	int txrx_int_idx = 0;
126 	int rx_int_idx = 0;
127 	int tx_int_idx = 0;
128 	unsigned int i;
129 	int ret;
130 
131 	for (i = 0; i < priv->vector_num; i++) {
132 		tqp_vectors = &priv->tqp_vector[i];
133 
134 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
135 			continue;
136 
137 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
138 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
139 				 "%s-%s-%s-%d", hns3_driver_name,
140 				 pci_name(priv->ae_handle->pdev),
141 				 "TxRx", txrx_int_idx++);
142 			txrx_int_idx++;
143 		} else if (tqp_vectors->rx_group.ring) {
144 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
145 				 "%s-%s-%s-%d", hns3_driver_name,
146 				 pci_name(priv->ae_handle->pdev),
147 				 "Rx", rx_int_idx++);
148 		} else if (tqp_vectors->tx_group.ring) {
149 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
150 				 "%s-%s-%s-%d", hns3_driver_name,
151 				 pci_name(priv->ae_handle->pdev),
152 				 "Tx", tx_int_idx++);
153 		} else {
154 			/* Skip this unused q_vector */
155 			continue;
156 		}
157 
158 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
159 
160 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
161 				  tqp_vectors->name, tqp_vectors);
162 		if (ret) {
163 			netdev_err(priv->netdev, "request irq(%d) fail\n",
164 				   tqp_vectors->vector_irq);
165 			hns3_nic_uninit_irq(priv);
166 			return ret;
167 		}
168 
169 		disable_irq(tqp_vectors->vector_irq);
170 
171 		irq_set_affinity_hint(tqp_vectors->vector_irq,
172 				      &tqp_vectors->affinity_mask);
173 
174 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
175 	}
176 
177 	return 0;
178 }
179 
180 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
181 				 u32 mask_en)
182 {
183 	writel(mask_en, tqp_vector->mask_addr);
184 }
185 
186 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188 	napi_enable(&tqp_vector->napi);
189 	enable_irq(tqp_vector->vector_irq);
190 
191 	/* enable vector */
192 	hns3_mask_vector_irq(tqp_vector, 1);
193 }
194 
195 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
196 {
197 	/* disable vector */
198 	hns3_mask_vector_irq(tqp_vector, 0);
199 
200 	disable_irq(tqp_vector->vector_irq);
201 	napi_disable(&tqp_vector->napi);
202 }
203 
204 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
205 				 u32 rl_value)
206 {
207 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
208 
209 	/* this defines the configuration for RL (Interrupt Rate Limiter).
210 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
211 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
212 	 */
213 
214 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
215 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
216 		/* According to the hardware, the range of rl_reg is
217 		 * 0-59 and the unit is 4.
218 		 */
219 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
220 
221 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
222 }
223 
224 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
225 				    u32 gl_value)
226 {
227 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
228 
229 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
230 }
231 
232 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
233 				    u32 gl_value)
234 {
235 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
236 
237 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
238 }
239 
240 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
241 				   struct hns3_nic_priv *priv)
242 {
243 	/* initialize the configuration for interrupt coalescing.
244 	 * 1. GL (Interrupt Gap Limiter)
245 	 * 2. RL (Interrupt Rate Limiter)
246 	 *
247 	 * Default: enable interrupt coalescing self-adaptive and GL
248 	 */
249 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
250 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
251 
252 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
253 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
254 
255 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
256 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
257 }
258 
259 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
260 				      struct hns3_nic_priv *priv)
261 {
262 	struct hnae3_handle *h = priv->ae_handle;
263 
264 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
265 				       tqp_vector->tx_group.coal.int_gl);
266 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
267 				       tqp_vector->rx_group.coal.int_gl);
268 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
269 }
270 
271 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
272 {
273 	struct hnae3_handle *h = hns3_get_handle(netdev);
274 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
275 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
276 	int i, ret;
277 
278 	if (kinfo->num_tc <= 1) {
279 		netdev_reset_tc(netdev);
280 	} else {
281 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
282 		if (ret) {
283 			netdev_err(netdev,
284 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
285 			return ret;
286 		}
287 
288 		for (i = 0; i < HNAE3_MAX_TC; i++) {
289 			if (!kinfo->tc_info[i].enable)
290 				continue;
291 
292 			netdev_set_tc_queue(netdev,
293 					    kinfo->tc_info[i].tc,
294 					    kinfo->tc_info[i].tqp_count,
295 					    kinfo->tc_info[i].tqp_offset);
296 		}
297 	}
298 
299 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
300 	if (ret) {
301 		netdev_err(netdev,
302 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
303 		return ret;
304 	}
305 
306 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
307 	if (ret) {
308 		netdev_err(netdev,
309 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
310 		return ret;
311 	}
312 
313 	return 0;
314 }
315 
316 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
317 {
318 	u16 alloc_tqps, max_rss_size, rss_size;
319 
320 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
321 	rss_size = alloc_tqps / h->kinfo.num_tc;
322 
323 	return min_t(u16, rss_size, max_rss_size);
324 }
325 
326 static void hns3_tqp_enable(struct hnae3_queue *tqp)
327 {
328 	u32 rcb_reg;
329 
330 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
331 	rcb_reg |= BIT(HNS3_RING_EN_B);
332 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
333 }
334 
335 static void hns3_tqp_disable(struct hnae3_queue *tqp)
336 {
337 	u32 rcb_reg;
338 
339 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
340 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
341 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
342 }
343 
344 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
345 {
346 #ifdef CONFIG_RFS_ACCEL
347 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
348 	netdev->rx_cpu_rmap = NULL;
349 #endif
350 }
351 
352 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
353 {
354 #ifdef CONFIG_RFS_ACCEL
355 	struct hns3_nic_priv *priv = netdev_priv(netdev);
356 	struct hns3_enet_tqp_vector *tqp_vector;
357 	int i, ret;
358 
359 	if (!netdev->rx_cpu_rmap) {
360 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
361 		if (!netdev->rx_cpu_rmap)
362 			return -ENOMEM;
363 	}
364 
365 	for (i = 0; i < priv->vector_num; i++) {
366 		tqp_vector = &priv->tqp_vector[i];
367 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
368 				       tqp_vector->vector_irq);
369 		if (ret) {
370 			hns3_free_rx_cpu_rmap(netdev);
371 			return ret;
372 		}
373 	}
374 #endif
375 	return 0;
376 }
377 
378 static int hns3_nic_net_up(struct net_device *netdev)
379 {
380 	struct hns3_nic_priv *priv = netdev_priv(netdev);
381 	struct hnae3_handle *h = priv->ae_handle;
382 	int i, j;
383 	int ret;
384 
385 	ret = hns3_nic_reset_all_ring(h);
386 	if (ret)
387 		return ret;
388 
389 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
390 
391 	/* enable the vectors */
392 	for (i = 0; i < priv->vector_num; i++)
393 		hns3_vector_enable(&priv->tqp_vector[i]);
394 
395 	/* enable rcb */
396 	for (j = 0; j < h->kinfo.num_tqps; j++)
397 		hns3_tqp_enable(h->kinfo.tqp[j]);
398 
399 	/* start the ae_dev */
400 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
401 	if (ret) {
402 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
403 		while (j--)
404 			hns3_tqp_disable(h->kinfo.tqp[j]);
405 
406 		for (j = i - 1; j >= 0; j--)
407 			hns3_vector_disable(&priv->tqp_vector[j]);
408 	}
409 
410 	return ret;
411 }
412 
413 static void hns3_config_xps(struct hns3_nic_priv *priv)
414 {
415 	int i;
416 
417 	for (i = 0; i < priv->vector_num; i++) {
418 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
419 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
420 
421 		while (ring) {
422 			int ret;
423 
424 			ret = netif_set_xps_queue(priv->netdev,
425 						  &tqp_vector->affinity_mask,
426 						  ring->tqp->tqp_index);
427 			if (ret)
428 				netdev_warn(priv->netdev,
429 					    "set xps queue failed: %d", ret);
430 
431 			ring = ring->next;
432 		}
433 	}
434 }
435 
436 static int hns3_nic_net_open(struct net_device *netdev)
437 {
438 	struct hns3_nic_priv *priv = netdev_priv(netdev);
439 	struct hnae3_handle *h = hns3_get_handle(netdev);
440 	struct hnae3_knic_private_info *kinfo;
441 	int i, ret;
442 
443 	if (hns3_nic_resetting(netdev))
444 		return -EBUSY;
445 
446 	netif_carrier_off(netdev);
447 
448 	ret = hns3_nic_set_real_num_queue(netdev);
449 	if (ret)
450 		return ret;
451 
452 	ret = hns3_nic_net_up(netdev);
453 	if (ret) {
454 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
455 		return ret;
456 	}
457 
458 	kinfo = &h->kinfo;
459 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
460 		netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
461 
462 	if (h->ae_algo->ops->set_timer_task)
463 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
464 
465 	hns3_config_xps(priv);
466 
467 	netif_dbg(h, drv, netdev, "net open\n");
468 
469 	return 0;
470 }
471 
472 static void hns3_reset_tx_queue(struct hnae3_handle *h)
473 {
474 	struct net_device *ndev = h->kinfo.netdev;
475 	struct hns3_nic_priv *priv = netdev_priv(ndev);
476 	struct netdev_queue *dev_queue;
477 	u32 i;
478 
479 	for (i = 0; i < h->kinfo.num_tqps; i++) {
480 		dev_queue = netdev_get_tx_queue(ndev,
481 						priv->ring[i].queue_index);
482 		netdev_tx_reset_queue(dev_queue);
483 	}
484 }
485 
486 static void hns3_nic_net_down(struct net_device *netdev)
487 {
488 	struct hns3_nic_priv *priv = netdev_priv(netdev);
489 	struct hnae3_handle *h = hns3_get_handle(netdev);
490 	const struct hnae3_ae_ops *ops;
491 	int i;
492 
493 	/* disable vectors */
494 	for (i = 0; i < priv->vector_num; i++)
495 		hns3_vector_disable(&priv->tqp_vector[i]);
496 
497 	/* disable rcb */
498 	for (i = 0; i < h->kinfo.num_tqps; i++)
499 		hns3_tqp_disable(h->kinfo.tqp[i]);
500 
501 	/* stop ae_dev */
502 	ops = priv->ae_handle->ae_algo->ops;
503 	if (ops->stop)
504 		ops->stop(priv->ae_handle);
505 
506 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
507 	 * during reset process, because driver may not be able
508 	 * to disable the ring through firmware when downing the netdev.
509 	 */
510 	if (!hns3_nic_resetting(netdev))
511 		hns3_clear_all_ring(priv->ae_handle, false);
512 
513 	hns3_reset_tx_queue(priv->ae_handle);
514 }
515 
516 static int hns3_nic_net_stop(struct net_device *netdev)
517 {
518 	struct hns3_nic_priv *priv = netdev_priv(netdev);
519 	struct hnae3_handle *h = hns3_get_handle(netdev);
520 
521 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
522 		return 0;
523 
524 	netif_dbg(h, drv, netdev, "net stop\n");
525 
526 	if (h->ae_algo->ops->set_timer_task)
527 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
528 
529 	netif_tx_stop_all_queues(netdev);
530 	netif_carrier_off(netdev);
531 
532 	hns3_nic_net_down(netdev);
533 
534 	return 0;
535 }
536 
537 static int hns3_nic_uc_sync(struct net_device *netdev,
538 			    const unsigned char *addr)
539 {
540 	struct hnae3_handle *h = hns3_get_handle(netdev);
541 
542 	if (h->ae_algo->ops->add_uc_addr)
543 		return h->ae_algo->ops->add_uc_addr(h, addr);
544 
545 	return 0;
546 }
547 
548 static int hns3_nic_uc_unsync(struct net_device *netdev,
549 			      const unsigned char *addr)
550 {
551 	struct hnae3_handle *h = hns3_get_handle(netdev);
552 
553 	if (h->ae_algo->ops->rm_uc_addr)
554 		return h->ae_algo->ops->rm_uc_addr(h, addr);
555 
556 	return 0;
557 }
558 
559 static int hns3_nic_mc_sync(struct net_device *netdev,
560 			    const unsigned char *addr)
561 {
562 	struct hnae3_handle *h = hns3_get_handle(netdev);
563 
564 	if (h->ae_algo->ops->add_mc_addr)
565 		return h->ae_algo->ops->add_mc_addr(h, addr);
566 
567 	return 0;
568 }
569 
570 static int hns3_nic_mc_unsync(struct net_device *netdev,
571 			      const unsigned char *addr)
572 {
573 	struct hnae3_handle *h = hns3_get_handle(netdev);
574 
575 	if (h->ae_algo->ops->rm_mc_addr)
576 		return h->ae_algo->ops->rm_mc_addr(h, addr);
577 
578 	return 0;
579 }
580 
581 static u8 hns3_get_netdev_flags(struct net_device *netdev)
582 {
583 	u8 flags = 0;
584 
585 	if (netdev->flags & IFF_PROMISC) {
586 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
587 	} else {
588 		flags |= HNAE3_VLAN_FLTR;
589 		if (netdev->flags & IFF_ALLMULTI)
590 			flags |= HNAE3_USER_MPE;
591 	}
592 
593 	return flags;
594 }
595 
596 static void hns3_nic_set_rx_mode(struct net_device *netdev)
597 {
598 	struct hnae3_handle *h = hns3_get_handle(netdev);
599 	u8 new_flags;
600 	int ret;
601 
602 	new_flags = hns3_get_netdev_flags(netdev);
603 
604 	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
605 	if (ret) {
606 		netdev_err(netdev, "sync uc address fail\n");
607 		if (ret == -ENOSPC)
608 			new_flags |= HNAE3_OVERFLOW_UPE;
609 	}
610 
611 	if (netdev->flags & IFF_MULTICAST) {
612 		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
613 				    hns3_nic_mc_unsync);
614 		if (ret) {
615 			netdev_err(netdev, "sync mc address fail\n");
616 			if (ret == -ENOSPC)
617 				new_flags |= HNAE3_OVERFLOW_MPE;
618 		}
619 	}
620 
621 	/* User mode Promisc mode enable and vlan filtering is disabled to
622 	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
623 	 * vlan fitering is enabled
624 	 */
625 	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
626 	h->netdev_flags = new_flags;
627 	hns3_update_promisc_mode(netdev, new_flags);
628 }
629 
630 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
631 {
632 	struct hns3_nic_priv *priv = netdev_priv(netdev);
633 	struct hnae3_handle *h = priv->ae_handle;
634 
635 	if (h->ae_algo->ops->set_promisc_mode) {
636 		return h->ae_algo->ops->set_promisc_mode(h,
637 						promisc_flags & HNAE3_UPE,
638 						promisc_flags & HNAE3_MPE);
639 	}
640 
641 	return 0;
642 }
643 
644 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
645 {
646 	struct hns3_nic_priv *priv = netdev_priv(netdev);
647 	struct hnae3_handle *h = priv->ae_handle;
648 	bool last_state;
649 
650 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
651 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
652 		if (enable != last_state) {
653 			netdev_info(netdev,
654 				    "%s vlan filter\n",
655 				    enable ? "enable" : "disable");
656 			h->ae_algo->ops->enable_vlan_filter(h, enable);
657 		}
658 	}
659 }
660 
661 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
662 			u16 *mss, u32 *type_cs_vlan_tso)
663 {
664 	u32 l4_offset, hdr_len;
665 	union l3_hdr_info l3;
666 	union l4_hdr_info l4;
667 	u32 l4_paylen;
668 	int ret;
669 
670 	if (!skb_is_gso(skb))
671 		return 0;
672 
673 	ret = skb_cow_head(skb, 0);
674 	if (unlikely(ret < 0))
675 		return ret;
676 
677 	l3.hdr = skb_network_header(skb);
678 	l4.hdr = skb_transport_header(skb);
679 
680 	/* Software should clear the IPv4's checksum field when tso is
681 	 * needed.
682 	 */
683 	if (l3.v4->version == 4)
684 		l3.v4->check = 0;
685 
686 	/* tunnel packet */
687 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
688 					 SKB_GSO_GRE_CSUM |
689 					 SKB_GSO_UDP_TUNNEL |
690 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
691 		if ((!(skb_shinfo(skb)->gso_type &
692 		    SKB_GSO_PARTIAL)) &&
693 		    (skb_shinfo(skb)->gso_type &
694 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
695 			/* Software should clear the udp's checksum
696 			 * field when tso is needed.
697 			 */
698 			l4.udp->check = 0;
699 		}
700 		/* reset l3&l4 pointers from outer to inner headers */
701 		l3.hdr = skb_inner_network_header(skb);
702 		l4.hdr = skb_inner_transport_header(skb);
703 
704 		/* Software should clear the IPv4's checksum field when
705 		 * tso is needed.
706 		 */
707 		if (l3.v4->version == 4)
708 			l3.v4->check = 0;
709 	}
710 
711 	/* normal or tunnel packet */
712 	l4_offset = l4.hdr - skb->data;
713 	hdr_len = (l4.tcp->doff << 2) + l4_offset;
714 
715 	/* remove payload length from inner pseudo checksum when tso */
716 	l4_paylen = skb->len - l4_offset;
717 	csum_replace_by_diff(&l4.tcp->check,
718 			     (__force __wsum)htonl(l4_paylen));
719 
720 	/* find the txbd field values */
721 	*paylen = skb->len - hdr_len;
722 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
723 
724 	/* get MSS for TSO */
725 	*mss = skb_shinfo(skb)->gso_size;
726 
727 	trace_hns3_tso(skb);
728 
729 	return 0;
730 }
731 
732 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
733 				u8 *il4_proto)
734 {
735 	union l3_hdr_info l3;
736 	unsigned char *l4_hdr;
737 	unsigned char *exthdr;
738 	u8 l4_proto_tmp;
739 	__be16 frag_off;
740 
741 	/* find outer header point */
742 	l3.hdr = skb_network_header(skb);
743 	l4_hdr = skb_transport_header(skb);
744 
745 	if (skb->protocol == htons(ETH_P_IPV6)) {
746 		exthdr = l3.hdr + sizeof(*l3.v6);
747 		l4_proto_tmp = l3.v6->nexthdr;
748 		if (l4_hdr != exthdr)
749 			ipv6_skip_exthdr(skb, exthdr - skb->data,
750 					 &l4_proto_tmp, &frag_off);
751 	} else if (skb->protocol == htons(ETH_P_IP)) {
752 		l4_proto_tmp = l3.v4->protocol;
753 	} else {
754 		return -EINVAL;
755 	}
756 
757 	*ol4_proto = l4_proto_tmp;
758 
759 	/* tunnel packet */
760 	if (!skb->encapsulation) {
761 		*il4_proto = 0;
762 		return 0;
763 	}
764 
765 	/* find inner header point */
766 	l3.hdr = skb_inner_network_header(skb);
767 	l4_hdr = skb_inner_transport_header(skb);
768 
769 	if (l3.v6->version == 6) {
770 		exthdr = l3.hdr + sizeof(*l3.v6);
771 		l4_proto_tmp = l3.v6->nexthdr;
772 		if (l4_hdr != exthdr)
773 			ipv6_skip_exthdr(skb, exthdr - skb->data,
774 					 &l4_proto_tmp, &frag_off);
775 	} else if (l3.v4->version == 4) {
776 		l4_proto_tmp = l3.v4->protocol;
777 	}
778 
779 	*il4_proto = l4_proto_tmp;
780 
781 	return 0;
782 }
783 
784 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
785  * and it is udp packet, which has a dest port as the IANA assigned.
786  * the hardware is expected to do the checksum offload, but the
787  * hardware will not do the checksum offload when udp dest port is
788  * 4789.
789  */
790 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
791 {
792 	union l4_hdr_info l4;
793 
794 	l4.hdr = skb_transport_header(skb);
795 
796 	if (!(!skb->encapsulation &&
797 	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
798 		return false;
799 
800 	skb_checksum_help(skb);
801 
802 	return true;
803 }
804 
805 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
806 				  u32 *ol_type_vlan_len_msec)
807 {
808 	u32 l2_len, l3_len, l4_len;
809 	unsigned char *il2_hdr;
810 	union l3_hdr_info l3;
811 	union l4_hdr_info l4;
812 
813 	l3.hdr = skb_network_header(skb);
814 	l4.hdr = skb_transport_header(skb);
815 
816 	/* compute OL2 header size, defined in 2 Bytes */
817 	l2_len = l3.hdr - skb->data;
818 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
819 
820 	/* compute OL3 header size, defined in 4 Bytes */
821 	l3_len = l4.hdr - l3.hdr;
822 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
823 
824 	il2_hdr = skb_inner_mac_header(skb);
825 	/* compute OL4 header size, defined in 4 Bytes */
826 	l4_len = il2_hdr - l4.hdr;
827 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
828 
829 	/* define outer network header type */
830 	if (skb->protocol == htons(ETH_P_IP)) {
831 		if (skb_is_gso(skb))
832 			hns3_set_field(*ol_type_vlan_len_msec,
833 				       HNS3_TXD_OL3T_S,
834 				       HNS3_OL3T_IPV4_CSUM);
835 		else
836 			hns3_set_field(*ol_type_vlan_len_msec,
837 				       HNS3_TXD_OL3T_S,
838 				       HNS3_OL3T_IPV4_NO_CSUM);
839 
840 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
841 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
842 			       HNS3_OL3T_IPV6);
843 	}
844 
845 	if (ol4_proto == IPPROTO_UDP)
846 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
847 			       HNS3_TUN_MAC_IN_UDP);
848 	else if (ol4_proto == IPPROTO_GRE)
849 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
850 			       HNS3_TUN_NVGRE);
851 }
852 
853 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
854 			   u8 il4_proto, u32 *type_cs_vlan_tso,
855 			   u32 *ol_type_vlan_len_msec)
856 {
857 	unsigned char *l2_hdr = skb->data;
858 	u32 l4_proto = ol4_proto;
859 	union l4_hdr_info l4;
860 	union l3_hdr_info l3;
861 	u32 l2_len, l3_len;
862 
863 	l4.hdr = skb_transport_header(skb);
864 	l3.hdr = skb_network_header(skb);
865 
866 	/* handle encapsulation skb */
867 	if (skb->encapsulation) {
868 		/* If this is a not UDP/GRE encapsulation skb */
869 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
870 			/* drop the skb tunnel packet if hardware don't support,
871 			 * because hardware can't calculate csum when TSO.
872 			 */
873 			if (skb_is_gso(skb))
874 				return -EDOM;
875 
876 			/* the stack computes the IP header already,
877 			 * driver calculate l4 checksum when not TSO.
878 			 */
879 			skb_checksum_help(skb);
880 			return 0;
881 		}
882 
883 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
884 
885 		/* switch to inner header */
886 		l2_hdr = skb_inner_mac_header(skb);
887 		l3.hdr = skb_inner_network_header(skb);
888 		l4.hdr = skb_inner_transport_header(skb);
889 		l4_proto = il4_proto;
890 	}
891 
892 	if (l3.v4->version == 4) {
893 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
894 			       HNS3_L3T_IPV4);
895 
896 		/* the stack computes the IP header already, the only time we
897 		 * need the hardware to recompute it is in the case of TSO.
898 		 */
899 		if (skb_is_gso(skb))
900 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
901 	} else if (l3.v6->version == 6) {
902 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
903 			       HNS3_L3T_IPV6);
904 	}
905 
906 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
907 	l2_len = l3.hdr - l2_hdr;
908 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
909 
910 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
911 	l3_len = l4.hdr - l3.hdr;
912 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
913 
914 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
915 	switch (l4_proto) {
916 	case IPPROTO_TCP:
917 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
918 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
919 			       HNS3_L4T_TCP);
920 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
921 			       l4.tcp->doff);
922 		break;
923 	case IPPROTO_UDP:
924 		if (hns3_tunnel_csum_bug(skb))
925 			break;
926 
927 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
928 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
929 			       HNS3_L4T_UDP);
930 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
931 			       (sizeof(struct udphdr) >> 2));
932 		break;
933 	case IPPROTO_SCTP:
934 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
935 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
936 			       HNS3_L4T_SCTP);
937 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
938 			       (sizeof(struct sctphdr) >> 2));
939 		break;
940 	default:
941 		/* drop the skb tunnel packet if hardware don't support,
942 		 * because hardware can't calculate csum when TSO.
943 		 */
944 		if (skb_is_gso(skb))
945 			return -EDOM;
946 
947 		/* the stack computes the IP header already,
948 		 * driver calculate l4 checksum when not TSO.
949 		 */
950 		skb_checksum_help(skb);
951 		return 0;
952 	}
953 
954 	return 0;
955 }
956 
957 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
958 			     struct sk_buff *skb)
959 {
960 	struct hnae3_handle *handle = tx_ring->tqp->handle;
961 	struct vlan_ethhdr *vhdr;
962 	int rc;
963 
964 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
965 	      skb_vlan_tag_present(skb)))
966 		return 0;
967 
968 	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
969 	 * header is allowed in skb, otherwise it will cause RAS error.
970 	 */
971 	if (unlikely(skb_vlan_tagged_multi(skb) &&
972 		     handle->port_base_vlan_state ==
973 		     HNAE3_PORT_BASE_VLAN_ENABLE))
974 		return -EINVAL;
975 
976 	if (skb->protocol == htons(ETH_P_8021Q) &&
977 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
978 		/* When HW VLAN acceleration is turned off, and the stack
979 		 * sets the protocol to 802.1q, the driver just need to
980 		 * set the protocol to the encapsulated ethertype.
981 		 */
982 		skb->protocol = vlan_get_protocol(skb);
983 		return 0;
984 	}
985 
986 	if (skb_vlan_tag_present(skb)) {
987 		/* Based on hw strategy, use out_vtag in two layer tag case,
988 		 * and use inner_vtag in one tag case.
989 		 */
990 		if (skb->protocol == htons(ETH_P_8021Q) &&
991 		    handle->port_base_vlan_state ==
992 		    HNAE3_PORT_BASE_VLAN_DISABLE)
993 			rc = HNS3_OUTER_VLAN_TAG;
994 		else
995 			rc = HNS3_INNER_VLAN_TAG;
996 
997 		skb->protocol = vlan_get_protocol(skb);
998 		return rc;
999 	}
1000 
1001 	rc = skb_cow_head(skb, 0);
1002 	if (unlikely(rc < 0))
1003 		return rc;
1004 
1005 	vhdr = (struct vlan_ethhdr *)skb->data;
1006 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1007 					 & VLAN_PRIO_MASK);
1008 
1009 	skb->protocol = vlan_get_protocol(skb);
1010 	return 0;
1011 }
1012 
1013 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1014 			      struct sk_buff *skb, struct hns3_desc *desc)
1015 {
1016 	u32 ol_type_vlan_len_msec = 0;
1017 	u32 type_cs_vlan_tso = 0;
1018 	u32 paylen = skb->len;
1019 	u16 inner_vtag = 0;
1020 	u16 out_vtag = 0;
1021 	u16 mss = 0;
1022 	int ret;
1023 
1024 	ret = hns3_handle_vtags(ring, skb);
1025 	if (unlikely(ret < 0)) {
1026 		u64_stats_update_begin(&ring->syncp);
1027 		ring->stats.tx_vlan_err++;
1028 		u64_stats_update_end(&ring->syncp);
1029 		return ret;
1030 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1031 		inner_vtag = skb_vlan_tag_get(skb);
1032 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1033 				VLAN_PRIO_MASK;
1034 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1035 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1036 		out_vtag = skb_vlan_tag_get(skb);
1037 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1038 				VLAN_PRIO_MASK;
1039 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1040 			       1);
1041 	}
1042 
1043 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1044 		u8 ol4_proto, il4_proto;
1045 
1046 		skb_reset_mac_len(skb);
1047 
1048 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1049 		if (unlikely(ret < 0)) {
1050 			u64_stats_update_begin(&ring->syncp);
1051 			ring->stats.tx_l4_proto_err++;
1052 			u64_stats_update_end(&ring->syncp);
1053 			return ret;
1054 		}
1055 
1056 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1057 				      &type_cs_vlan_tso,
1058 				      &ol_type_vlan_len_msec);
1059 		if (unlikely(ret < 0)) {
1060 			u64_stats_update_begin(&ring->syncp);
1061 			ring->stats.tx_l2l3l4_err++;
1062 			u64_stats_update_end(&ring->syncp);
1063 			return ret;
1064 		}
1065 
1066 		ret = hns3_set_tso(skb, &paylen, &mss,
1067 				   &type_cs_vlan_tso);
1068 		if (unlikely(ret < 0)) {
1069 			u64_stats_update_begin(&ring->syncp);
1070 			ring->stats.tx_tso_err++;
1071 			u64_stats_update_end(&ring->syncp);
1072 			return ret;
1073 		}
1074 	}
1075 
1076 	/* Set txbd */
1077 	desc->tx.ol_type_vlan_len_msec =
1078 		cpu_to_le32(ol_type_vlan_len_msec);
1079 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1080 	desc->tx.paylen = cpu_to_le32(paylen);
1081 	desc->tx.mss = cpu_to_le16(mss);
1082 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1083 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1084 
1085 	return 0;
1086 }
1087 
1088 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1089 			  unsigned int size, enum hns_desc_type type)
1090 {
1091 #define HNS3_LIKELY_BD_NUM	1
1092 
1093 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1094 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1095 	struct device *dev = ring_to_dev(ring);
1096 	skb_frag_t *frag;
1097 	unsigned int frag_buf_num;
1098 	int k, sizeoflast;
1099 	dma_addr_t dma;
1100 
1101 	if (type == DESC_TYPE_SKB) {
1102 		struct sk_buff *skb = (struct sk_buff *)priv;
1103 		int ret;
1104 
1105 		ret = hns3_fill_skb_desc(ring, skb, desc);
1106 		if (unlikely(ret < 0))
1107 			return ret;
1108 
1109 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1110 	} else {
1111 		frag = (skb_frag_t *)priv;
1112 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1113 	}
1114 
1115 	if (unlikely(dma_mapping_error(dev, dma))) {
1116 		u64_stats_update_begin(&ring->syncp);
1117 		ring->stats.sw_err_cnt++;
1118 		u64_stats_update_end(&ring->syncp);
1119 		return -ENOMEM;
1120 	}
1121 
1122 	desc_cb->length = size;
1123 
1124 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1125 		desc_cb->priv = priv;
1126 		desc_cb->dma = dma;
1127 		desc_cb->type = type;
1128 		desc->addr = cpu_to_le64(dma);
1129 		desc->tx.send_size = cpu_to_le16(size);
1130 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1131 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1132 
1133 		trace_hns3_tx_desc(ring, ring->next_to_use);
1134 		ring_ptr_move_fw(ring, next_to_use);
1135 		return HNS3_LIKELY_BD_NUM;
1136 	}
1137 
1138 	frag_buf_num = hns3_tx_bd_count(size);
1139 	sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1140 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1141 
1142 	/* When frag size is bigger than hardware limit, split this frag */
1143 	for (k = 0; k < frag_buf_num; k++) {
1144 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1145 		desc_cb->priv = priv;
1146 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1147 		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1148 				DESC_TYPE_SKB : DESC_TYPE_PAGE;
1149 
1150 		/* now, fill the descriptor */
1151 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1152 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1153 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1154 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1155 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1156 
1157 		trace_hns3_tx_desc(ring, ring->next_to_use);
1158 		/* move ring pointer to next */
1159 		ring_ptr_move_fw(ring, next_to_use);
1160 
1161 		desc_cb = &ring->desc_cb[ring->next_to_use];
1162 		desc = &ring->desc[ring->next_to_use];
1163 	}
1164 
1165 	return frag_buf_num;
1166 }
1167 
1168 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1169 				    unsigned int bd_num)
1170 {
1171 	unsigned int size;
1172 	int i;
1173 
1174 	size = skb_headlen(skb);
1175 	while (size > HNS3_MAX_BD_SIZE) {
1176 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1177 		size -= HNS3_MAX_BD_SIZE;
1178 
1179 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1180 			return bd_num;
1181 	}
1182 
1183 	if (size) {
1184 		bd_size[bd_num++] = size;
1185 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1186 			return bd_num;
1187 	}
1188 
1189 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1190 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1191 		size = skb_frag_size(frag);
1192 		if (!size)
1193 			continue;
1194 
1195 		while (size > HNS3_MAX_BD_SIZE) {
1196 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1197 			size -= HNS3_MAX_BD_SIZE;
1198 
1199 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1200 				return bd_num;
1201 		}
1202 
1203 		bd_size[bd_num++] = size;
1204 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1205 			return bd_num;
1206 	}
1207 
1208 	return bd_num;
1209 }
1210 
1211 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size)
1212 {
1213 	struct sk_buff *frag_skb;
1214 	unsigned int bd_num = 0;
1215 
1216 	/* If the total len is within the max bd limit */
1217 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1218 		   skb_shinfo(skb)->nr_frags < HNS3_MAX_NON_TSO_BD_NUM))
1219 		return skb_shinfo(skb)->nr_frags + 1U;
1220 
1221 	/* The below case will always be linearized, return
1222 	 * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1223 	 */
1224 	if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1225 		     (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)))
1226 		return HNS3_MAX_TSO_BD_NUM + 1U;
1227 
1228 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1229 
1230 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1231 		return bd_num;
1232 
1233 	skb_walk_frags(skb, frag_skb) {
1234 		bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1235 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1236 			return bd_num;
1237 	}
1238 
1239 	return bd_num;
1240 }
1241 
1242 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1243 {
1244 	if (!skb->encapsulation)
1245 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1246 
1247 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1248 }
1249 
1250 /* HW need every continuous 8 buffer data to be larger than MSS,
1251  * we simplify it by ensuring skb_headlen + the first continuous
1252  * 7 frags to to be larger than gso header len + mss, and the remaining
1253  * continuous 7 frags to be larger than MSS except the last 7 frags.
1254  */
1255 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1256 				     unsigned int bd_num)
1257 {
1258 	unsigned int tot_len = 0;
1259 	int i;
1260 
1261 	for (i = 0; i < HNS3_MAX_NON_TSO_BD_NUM - 1U; i++)
1262 		tot_len += bd_size[i];
1263 
1264 	/* ensure the first 8 frags is greater than mss + header */
1265 	if (tot_len + bd_size[HNS3_MAX_NON_TSO_BD_NUM - 1U] <
1266 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1267 		return true;
1268 
1269 	/* ensure every continuous 7 buffer is greater than mss
1270 	 * except the last one.
1271 	 */
1272 	for (i = 0; i < bd_num - HNS3_MAX_NON_TSO_BD_NUM; i++) {
1273 		tot_len -= bd_size[i];
1274 		tot_len += bd_size[i + HNS3_MAX_NON_TSO_BD_NUM - 1U];
1275 
1276 		if (tot_len < skb_shinfo(skb)->gso_size)
1277 			return true;
1278 	}
1279 
1280 	return false;
1281 }
1282 
1283 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1284 {
1285 	int i = 0;
1286 
1287 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1288 		size[i] = skb_frag_size(&shinfo->frags[i]);
1289 }
1290 
1291 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1292 				  struct net_device *netdev,
1293 				  struct sk_buff *skb)
1294 {
1295 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1296 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1297 	unsigned int bd_num;
1298 
1299 	bd_num = hns3_tx_bd_num(skb, bd_size);
1300 	if (unlikely(bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1301 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1302 		    !hns3_skb_need_linearized(skb, bd_size, bd_num)) {
1303 			trace_hns3_over_8bd(skb);
1304 			goto out;
1305 		}
1306 
1307 		if (__skb_linearize(skb))
1308 			return -ENOMEM;
1309 
1310 		bd_num = hns3_tx_bd_count(skb->len);
1311 		if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1312 		    (!skb_is_gso(skb) &&
1313 		     bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1314 			trace_hns3_over_8bd(skb);
1315 			return -ENOMEM;
1316 		}
1317 
1318 		u64_stats_update_begin(&ring->syncp);
1319 		ring->stats.tx_copy++;
1320 		u64_stats_update_end(&ring->syncp);
1321 	}
1322 
1323 out:
1324 	if (likely(ring_space(ring) >= bd_num))
1325 		return bd_num;
1326 
1327 	netif_stop_subqueue(netdev, ring->queue_index);
1328 	smp_mb(); /* Memory barrier before checking ring_space */
1329 
1330 	/* Start queue in case hns3_clean_tx_ring has just made room
1331 	 * available and has not seen the queue stopped state performed
1332 	 * by netif_stop_subqueue above.
1333 	 */
1334 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1335 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1336 		netif_start_subqueue(netdev, ring->queue_index);
1337 		return bd_num;
1338 	}
1339 
1340 	return -EBUSY;
1341 }
1342 
1343 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1344 {
1345 	struct device *dev = ring_to_dev(ring);
1346 	unsigned int i;
1347 
1348 	for (i = 0; i < ring->desc_num; i++) {
1349 		/* check if this is where we started */
1350 		if (ring->next_to_use == next_to_use_orig)
1351 			break;
1352 
1353 		/* rollback one */
1354 		ring_ptr_move_bw(ring, next_to_use);
1355 
1356 		/* unmap the descriptor dma address */
1357 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1358 			dma_unmap_single(dev,
1359 					 ring->desc_cb[ring->next_to_use].dma,
1360 					ring->desc_cb[ring->next_to_use].length,
1361 					DMA_TO_DEVICE);
1362 		else if (ring->desc_cb[ring->next_to_use].length)
1363 			dma_unmap_page(dev,
1364 				       ring->desc_cb[ring->next_to_use].dma,
1365 				       ring->desc_cb[ring->next_to_use].length,
1366 				       DMA_TO_DEVICE);
1367 
1368 		ring->desc_cb[ring->next_to_use].length = 0;
1369 		ring->desc_cb[ring->next_to_use].dma = 0;
1370 	}
1371 }
1372 
1373 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1374 				 struct sk_buff *skb, enum hns_desc_type type)
1375 {
1376 	unsigned int size = skb_headlen(skb);
1377 	int i, ret, bd_num = 0;
1378 
1379 	if (size) {
1380 		ret = hns3_fill_desc(ring, skb, size, type);
1381 		if (unlikely(ret < 0))
1382 			return ret;
1383 
1384 		bd_num += ret;
1385 	}
1386 
1387 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1388 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1389 
1390 		size = skb_frag_size(frag);
1391 		if (!size)
1392 			continue;
1393 
1394 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1395 		if (unlikely(ret < 0))
1396 			return ret;
1397 
1398 		bd_num += ret;
1399 	}
1400 
1401 	return bd_num;
1402 }
1403 
1404 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1405 {
1406 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1407 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1408 	struct netdev_queue *dev_queue;
1409 	int pre_ntu, next_to_use_head;
1410 	struct sk_buff *frag_skb;
1411 	int bd_num = 0;
1412 	int ret;
1413 
1414 	/* Hardware can only handle short frames above 32 bytes */
1415 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN))
1416 		return NETDEV_TX_OK;
1417 
1418 	/* Prefetch the data used later */
1419 	prefetch(skb->data);
1420 
1421 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1422 	if (unlikely(ret <= 0)) {
1423 		if (ret == -EBUSY) {
1424 			u64_stats_update_begin(&ring->syncp);
1425 			ring->stats.tx_busy++;
1426 			u64_stats_update_end(&ring->syncp);
1427 			return NETDEV_TX_BUSY;
1428 		} else if (ret == -ENOMEM) {
1429 			u64_stats_update_begin(&ring->syncp);
1430 			ring->stats.sw_err_cnt++;
1431 			u64_stats_update_end(&ring->syncp);
1432 		}
1433 
1434 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1435 		goto out_err_tx_ok;
1436 	}
1437 
1438 	next_to_use_head = ring->next_to_use;
1439 
1440 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1441 	if (unlikely(ret < 0))
1442 		goto fill_err;
1443 
1444 	bd_num += ret;
1445 
1446 	if (!skb_has_frag_list(skb))
1447 		goto out;
1448 
1449 	skb_walk_frags(skb, frag_skb) {
1450 		ret = hns3_fill_skb_to_desc(ring, frag_skb, DESC_TYPE_PAGE);
1451 		if (unlikely(ret < 0))
1452 			goto fill_err;
1453 
1454 		bd_num += ret;
1455 	}
1456 out:
1457 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1458 					(ring->desc_num - 1);
1459 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1460 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1461 	trace_hns3_tx_desc(ring, pre_ntu);
1462 
1463 	/* Complete translate all packets */
1464 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1465 	netdev_tx_sent_queue(dev_queue, skb->len);
1466 
1467 	wmb(); /* Commit all data before submit */
1468 
1469 	hnae3_queue_xmit(ring->tqp, bd_num);
1470 
1471 	return NETDEV_TX_OK;
1472 
1473 fill_err:
1474 	hns3_clear_desc(ring, next_to_use_head);
1475 
1476 out_err_tx_ok:
1477 	dev_kfree_skb_any(skb);
1478 	return NETDEV_TX_OK;
1479 }
1480 
1481 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1482 {
1483 	struct hnae3_handle *h = hns3_get_handle(netdev);
1484 	struct sockaddr *mac_addr = p;
1485 	int ret;
1486 
1487 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1488 		return -EADDRNOTAVAIL;
1489 
1490 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1491 		netdev_info(netdev, "already using mac address %pM\n",
1492 			    mac_addr->sa_data);
1493 		return 0;
1494 	}
1495 
1496 	/* For VF device, if there is a perm_addr, then the user will not
1497 	 * be allowed to change the address.
1498 	 */
1499 	if (!hns3_is_phys_func(h->pdev) &&
1500 	    !is_zero_ether_addr(netdev->perm_addr)) {
1501 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1502 			   netdev->perm_addr, mac_addr->sa_data);
1503 		return -EPERM;
1504 	}
1505 
1506 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1507 	if (ret) {
1508 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1509 		return ret;
1510 	}
1511 
1512 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1513 
1514 	return 0;
1515 }
1516 
1517 static int hns3_nic_do_ioctl(struct net_device *netdev,
1518 			     struct ifreq *ifr, int cmd)
1519 {
1520 	struct hnae3_handle *h = hns3_get_handle(netdev);
1521 
1522 	if (!netif_running(netdev))
1523 		return -EINVAL;
1524 
1525 	if (!h->ae_algo->ops->do_ioctl)
1526 		return -EOPNOTSUPP;
1527 
1528 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1529 }
1530 
1531 static int hns3_nic_set_features(struct net_device *netdev,
1532 				 netdev_features_t features)
1533 {
1534 	netdev_features_t changed = netdev->features ^ features;
1535 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1536 	struct hnae3_handle *h = priv->ae_handle;
1537 	bool enable;
1538 	int ret;
1539 
1540 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1541 		enable = !!(features & NETIF_F_GRO_HW);
1542 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1543 		if (ret)
1544 			return ret;
1545 	}
1546 
1547 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1548 	    h->ae_algo->ops->enable_vlan_filter) {
1549 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1550 		h->ae_algo->ops->enable_vlan_filter(h, enable);
1551 	}
1552 
1553 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1554 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1555 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1556 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1557 		if (ret)
1558 			return ret;
1559 	}
1560 
1561 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1562 		enable = !!(features & NETIF_F_NTUPLE);
1563 		h->ae_algo->ops->enable_fd(h, enable);
1564 	}
1565 
1566 	netdev->features = features;
1567 	return 0;
1568 }
1569 
1570 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1571 					     struct net_device *dev,
1572 					     netdev_features_t features)
1573 {
1574 #define HNS3_MAX_HDR_LEN	480U
1575 #define HNS3_MAX_L4_HDR_LEN	60U
1576 
1577 	size_t len;
1578 
1579 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1580 		return features;
1581 
1582 	if (skb->encapsulation)
1583 		len = skb_inner_transport_header(skb) - skb->data;
1584 	else
1585 		len = skb_transport_header(skb) - skb->data;
1586 
1587 	/* Assume L4 is 60 byte as TCP is the only protocol with a
1588 	 * a flexible value, and it's max len is 60 bytes.
1589 	 */
1590 	len += HNS3_MAX_L4_HDR_LEN;
1591 
1592 	/* Hardware only supports checksum on the skb with a max header
1593 	 * len of 480 bytes.
1594 	 */
1595 	if (len > HNS3_MAX_HDR_LEN)
1596 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1597 
1598 	return features;
1599 }
1600 
1601 static void hns3_nic_get_stats64(struct net_device *netdev,
1602 				 struct rtnl_link_stats64 *stats)
1603 {
1604 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1605 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1606 	struct hnae3_handle *handle = priv->ae_handle;
1607 	struct hns3_enet_ring *ring;
1608 	u64 rx_length_errors = 0;
1609 	u64 rx_crc_errors = 0;
1610 	u64 rx_multicast = 0;
1611 	unsigned int start;
1612 	u64 tx_errors = 0;
1613 	u64 rx_errors = 0;
1614 	unsigned int idx;
1615 	u64 tx_bytes = 0;
1616 	u64 rx_bytes = 0;
1617 	u64 tx_pkts = 0;
1618 	u64 rx_pkts = 0;
1619 	u64 tx_drop = 0;
1620 	u64 rx_drop = 0;
1621 
1622 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1623 		return;
1624 
1625 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1626 
1627 	for (idx = 0; idx < queue_num; idx++) {
1628 		/* fetch the tx stats */
1629 		ring = &priv->ring[idx];
1630 		do {
1631 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1632 			tx_bytes += ring->stats.tx_bytes;
1633 			tx_pkts += ring->stats.tx_pkts;
1634 			tx_drop += ring->stats.sw_err_cnt;
1635 			tx_drop += ring->stats.tx_vlan_err;
1636 			tx_drop += ring->stats.tx_l4_proto_err;
1637 			tx_drop += ring->stats.tx_l2l3l4_err;
1638 			tx_drop += ring->stats.tx_tso_err;
1639 			tx_errors += ring->stats.sw_err_cnt;
1640 			tx_errors += ring->stats.tx_vlan_err;
1641 			tx_errors += ring->stats.tx_l4_proto_err;
1642 			tx_errors += ring->stats.tx_l2l3l4_err;
1643 			tx_errors += ring->stats.tx_tso_err;
1644 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1645 
1646 		/* fetch the rx stats */
1647 		ring = &priv->ring[idx + queue_num];
1648 		do {
1649 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1650 			rx_bytes += ring->stats.rx_bytes;
1651 			rx_pkts += ring->stats.rx_pkts;
1652 			rx_drop += ring->stats.l2_err;
1653 			rx_errors += ring->stats.l2_err;
1654 			rx_errors += ring->stats.l3l4_csum_err;
1655 			rx_crc_errors += ring->stats.l2_err;
1656 			rx_multicast += ring->stats.rx_multicast;
1657 			rx_length_errors += ring->stats.err_pkt_len;
1658 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1659 	}
1660 
1661 	stats->tx_bytes = tx_bytes;
1662 	stats->tx_packets = tx_pkts;
1663 	stats->rx_bytes = rx_bytes;
1664 	stats->rx_packets = rx_pkts;
1665 
1666 	stats->rx_errors = rx_errors;
1667 	stats->multicast = rx_multicast;
1668 	stats->rx_length_errors = rx_length_errors;
1669 	stats->rx_crc_errors = rx_crc_errors;
1670 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1671 
1672 	stats->tx_errors = tx_errors;
1673 	stats->rx_dropped = rx_drop;
1674 	stats->tx_dropped = tx_drop;
1675 	stats->collisions = netdev->stats.collisions;
1676 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1677 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1678 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1679 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1680 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1681 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1682 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1683 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1684 	stats->rx_compressed = netdev->stats.rx_compressed;
1685 	stats->tx_compressed = netdev->stats.tx_compressed;
1686 }
1687 
1688 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1689 {
1690 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1691 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1692 	struct hnae3_knic_private_info *kinfo;
1693 	u8 tc = mqprio_qopt->qopt.num_tc;
1694 	u16 mode = mqprio_qopt->mode;
1695 	u8 hw = mqprio_qopt->qopt.hw;
1696 	struct hnae3_handle *h;
1697 
1698 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1699 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1700 		return -EOPNOTSUPP;
1701 
1702 	if (tc > HNAE3_MAX_TC)
1703 		return -EINVAL;
1704 
1705 	if (!netdev)
1706 		return -EINVAL;
1707 
1708 	h = hns3_get_handle(netdev);
1709 	kinfo = &h->kinfo;
1710 
1711 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1712 
1713 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1714 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1715 }
1716 
1717 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1718 			     void *type_data)
1719 {
1720 	if (type != TC_SETUP_QDISC_MQPRIO)
1721 		return -EOPNOTSUPP;
1722 
1723 	return hns3_setup_tc(dev, type_data);
1724 }
1725 
1726 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1727 				__be16 proto, u16 vid)
1728 {
1729 	struct hnae3_handle *h = hns3_get_handle(netdev);
1730 	int ret = -EIO;
1731 
1732 	if (h->ae_algo->ops->set_vlan_filter)
1733 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1734 
1735 	return ret;
1736 }
1737 
1738 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1739 				 __be16 proto, u16 vid)
1740 {
1741 	struct hnae3_handle *h = hns3_get_handle(netdev);
1742 	int ret = -EIO;
1743 
1744 	if (h->ae_algo->ops->set_vlan_filter)
1745 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1746 
1747 	return ret;
1748 }
1749 
1750 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1751 				u8 qos, __be16 vlan_proto)
1752 {
1753 	struct hnae3_handle *h = hns3_get_handle(netdev);
1754 	int ret = -EIO;
1755 
1756 	netif_dbg(h, drv, netdev,
1757 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1758 		  vf, vlan, qos, ntohs(vlan_proto));
1759 
1760 	if (h->ae_algo->ops->set_vf_vlan_filter)
1761 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1762 							  qos, vlan_proto);
1763 
1764 	return ret;
1765 }
1766 
1767 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1768 {
1769 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1770 
1771 	if (hns3_nic_resetting(netdev))
1772 		return -EBUSY;
1773 
1774 	if (!handle->ae_algo->ops->set_vf_spoofchk)
1775 		return -EOPNOTSUPP;
1776 
1777 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1778 }
1779 
1780 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1781 {
1782 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1783 
1784 	if (!handle->ae_algo->ops->set_vf_trust)
1785 		return -EOPNOTSUPP;
1786 
1787 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1788 }
1789 
1790 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1791 {
1792 	struct hnae3_handle *h = hns3_get_handle(netdev);
1793 	int ret;
1794 
1795 	if (hns3_nic_resetting(netdev))
1796 		return -EBUSY;
1797 
1798 	if (!h->ae_algo->ops->set_mtu)
1799 		return -EOPNOTSUPP;
1800 
1801 	netif_dbg(h, drv, netdev,
1802 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1803 
1804 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1805 	if (ret)
1806 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1807 			   ret);
1808 	else
1809 		netdev->mtu = new_mtu;
1810 
1811 	return ret;
1812 }
1813 
1814 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1815 {
1816 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1817 	struct hnae3_handle *h = hns3_get_handle(ndev);
1818 	struct hns3_enet_ring *tx_ring;
1819 	struct napi_struct *napi;
1820 	int timeout_queue = 0;
1821 	int hw_head, hw_tail;
1822 	int fbd_num, fbd_oft;
1823 	int ebd_num, ebd_oft;
1824 	int bd_num, bd_err;
1825 	int ring_en, tc;
1826 	int i;
1827 
1828 	/* Find the stopped queue the same way the stack does */
1829 	for (i = 0; i < ndev->num_tx_queues; i++) {
1830 		struct netdev_queue *q;
1831 		unsigned long trans_start;
1832 
1833 		q = netdev_get_tx_queue(ndev, i);
1834 		trans_start = q->trans_start;
1835 		if (netif_xmit_stopped(q) &&
1836 		    time_after(jiffies,
1837 			       (trans_start + ndev->watchdog_timeo))) {
1838 			timeout_queue = i;
1839 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1840 				    q->state,
1841 				    jiffies_to_msecs(jiffies - trans_start));
1842 			break;
1843 		}
1844 	}
1845 
1846 	if (i == ndev->num_tx_queues) {
1847 		netdev_info(ndev,
1848 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1849 			    priv->tx_timeout_count);
1850 		return false;
1851 	}
1852 
1853 	priv->tx_timeout_count++;
1854 
1855 	tx_ring = &priv->ring[timeout_queue];
1856 	napi = &tx_ring->tqp_vector->napi;
1857 
1858 	netdev_info(ndev,
1859 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1860 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1861 		    tx_ring->next_to_clean, napi->state);
1862 
1863 	netdev_info(ndev,
1864 		    "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
1865 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1866 		    tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);
1867 
1868 	netdev_info(ndev,
1869 		    "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
1870 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
1871 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1872 
1873 	/* When mac received many pause frames continuous, it's unable to send
1874 	 * packets, which may cause tx timeout
1875 	 */
1876 	if (h->ae_algo->ops->get_mac_stats) {
1877 		struct hns3_mac_stats mac_stats;
1878 
1879 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1880 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1881 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1882 	}
1883 
1884 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1885 				HNS3_RING_TX_RING_HEAD_REG);
1886 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1887 				HNS3_RING_TX_RING_TAIL_REG);
1888 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1889 				HNS3_RING_TX_RING_FBDNUM_REG);
1890 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1891 				HNS3_RING_TX_RING_OFFSET_REG);
1892 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1893 				HNS3_RING_TX_RING_EBDNUM_REG);
1894 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1895 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
1896 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
1897 			       HNS3_RING_TX_RING_BD_NUM_REG);
1898 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
1899 			       HNS3_RING_TX_RING_BD_ERR_REG);
1900 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1901 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1902 
1903 	netdev_info(ndev,
1904 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1905 		    bd_num, hw_head, hw_tail, bd_err,
1906 		    readl(tx_ring->tqp_vector->mask_addr));
1907 	netdev_info(ndev,
1908 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1909 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1910 
1911 	return true;
1912 }
1913 
1914 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1915 {
1916 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1917 	struct hnae3_handle *h = priv->ae_handle;
1918 
1919 	if (!hns3_get_tx_timeo_queue_info(ndev))
1920 		return;
1921 
1922 	/* request the reset, and let the hclge to determine
1923 	 * which reset level should be done
1924 	 */
1925 	if (h->ae_algo->ops->reset_event)
1926 		h->ae_algo->ops->reset_event(h->pdev, h);
1927 }
1928 
1929 #ifdef CONFIG_RFS_ACCEL
1930 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
1931 			      u16 rxq_index, u32 flow_id)
1932 {
1933 	struct hnae3_handle *h = hns3_get_handle(dev);
1934 	struct flow_keys fkeys;
1935 
1936 	if (!h->ae_algo->ops->add_arfs_entry)
1937 		return -EOPNOTSUPP;
1938 
1939 	if (skb->encapsulation)
1940 		return -EPROTONOSUPPORT;
1941 
1942 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
1943 		return -EPROTONOSUPPORT;
1944 
1945 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
1946 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
1947 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
1948 	     fkeys.basic.ip_proto != IPPROTO_UDP))
1949 		return -EPROTONOSUPPORT;
1950 
1951 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
1952 }
1953 #endif
1954 
1955 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
1956 				  struct ifla_vf_info *ivf)
1957 {
1958 	struct hnae3_handle *h = hns3_get_handle(ndev);
1959 
1960 	if (!h->ae_algo->ops->get_vf_config)
1961 		return -EOPNOTSUPP;
1962 
1963 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
1964 }
1965 
1966 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
1967 				      int link_state)
1968 {
1969 	struct hnae3_handle *h = hns3_get_handle(ndev);
1970 
1971 	if (!h->ae_algo->ops->set_vf_link_state)
1972 		return -EOPNOTSUPP;
1973 
1974 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
1975 }
1976 
1977 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
1978 				int min_tx_rate, int max_tx_rate)
1979 {
1980 	struct hnae3_handle *h = hns3_get_handle(ndev);
1981 
1982 	if (!h->ae_algo->ops->set_vf_rate)
1983 		return -EOPNOTSUPP;
1984 
1985 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
1986 					    false);
1987 }
1988 
1989 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1990 {
1991 	struct hnae3_handle *h = hns3_get_handle(netdev);
1992 
1993 	if (!h->ae_algo->ops->set_vf_mac)
1994 		return -EOPNOTSUPP;
1995 
1996 	if (is_multicast_ether_addr(mac)) {
1997 		netdev_err(netdev,
1998 			   "Invalid MAC:%pM specified. Could not set MAC\n",
1999 			   mac);
2000 		return -EINVAL;
2001 	}
2002 
2003 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2004 }
2005 
2006 static const struct net_device_ops hns3_nic_netdev_ops = {
2007 	.ndo_open		= hns3_nic_net_open,
2008 	.ndo_stop		= hns3_nic_net_stop,
2009 	.ndo_start_xmit		= hns3_nic_net_xmit,
2010 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2011 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2012 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2013 	.ndo_change_mtu		= hns3_nic_change_mtu,
2014 	.ndo_set_features	= hns3_nic_set_features,
2015 	.ndo_features_check	= hns3_features_check,
2016 	.ndo_get_stats64	= hns3_nic_get_stats64,
2017 	.ndo_setup_tc		= hns3_nic_setup_tc,
2018 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2019 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2020 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2021 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2022 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2023 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2024 #ifdef CONFIG_RFS_ACCEL
2025 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2026 #endif
2027 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2028 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2029 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2030 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2031 };
2032 
2033 bool hns3_is_phys_func(struct pci_dev *pdev)
2034 {
2035 	u32 dev_id = pdev->device;
2036 
2037 	switch (dev_id) {
2038 	case HNAE3_DEV_ID_GE:
2039 	case HNAE3_DEV_ID_25GE:
2040 	case HNAE3_DEV_ID_25GE_RDMA:
2041 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2042 	case HNAE3_DEV_ID_50GE_RDMA:
2043 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2044 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2045 		return true;
2046 	case HNAE3_DEV_ID_100G_VF:
2047 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
2048 		return false;
2049 	default:
2050 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2051 			 dev_id);
2052 	}
2053 
2054 	return false;
2055 }
2056 
2057 static void hns3_disable_sriov(struct pci_dev *pdev)
2058 {
2059 	/* If our VFs are assigned we cannot shut down SR-IOV
2060 	 * without causing issues, so just leave the hardware
2061 	 * available but disabled
2062 	 */
2063 	if (pci_vfs_assigned(pdev)) {
2064 		dev_warn(&pdev->dev,
2065 			 "disabling driver while VFs are assigned\n");
2066 		return;
2067 	}
2068 
2069 	pci_disable_sriov(pdev);
2070 }
2071 
2072 static void hns3_get_dev_capability(struct pci_dev *pdev,
2073 				    struct hnae3_ae_dev *ae_dev)
2074 {
2075 	if (pdev->revision >= 0x21) {
2076 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
2077 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
2078 	}
2079 }
2080 
2081 /* hns3_probe - Device initialization routine
2082  * @pdev: PCI device information struct
2083  * @ent: entry in hns3_pci_tbl
2084  *
2085  * hns3_probe initializes a PF identified by a pci_dev structure.
2086  * The OS initialization, configuring of the PF private structure,
2087  * and a hardware reset occur.
2088  *
2089  * Returns 0 on success, negative on failure
2090  */
2091 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2092 {
2093 	struct hnae3_ae_dev *ae_dev;
2094 	int ret;
2095 
2096 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2097 	if (!ae_dev)
2098 		return -ENOMEM;
2099 
2100 	ae_dev->pdev = pdev;
2101 	ae_dev->flag = ent->driver_data;
2102 	ae_dev->reset_type = HNAE3_NONE_RESET;
2103 	hns3_get_dev_capability(pdev, ae_dev);
2104 	pci_set_drvdata(pdev, ae_dev);
2105 
2106 	ret = hnae3_register_ae_dev(ae_dev);
2107 	if (ret) {
2108 		devm_kfree(&pdev->dev, ae_dev);
2109 		pci_set_drvdata(pdev, NULL);
2110 	}
2111 
2112 	return ret;
2113 }
2114 
2115 /* hns3_remove - Device removal routine
2116  * @pdev: PCI device information struct
2117  */
2118 static void hns3_remove(struct pci_dev *pdev)
2119 {
2120 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2121 
2122 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2123 		hns3_disable_sriov(pdev);
2124 
2125 	hnae3_unregister_ae_dev(ae_dev);
2126 	pci_set_drvdata(pdev, NULL);
2127 }
2128 
2129 /**
2130  * hns3_pci_sriov_configure
2131  * @pdev: pointer to a pci_dev structure
2132  * @num_vfs: number of VFs to allocate
2133  *
2134  * Enable or change the number of VFs. Called when the user updates the number
2135  * of VFs in sysfs.
2136  **/
2137 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2138 {
2139 	int ret;
2140 
2141 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2142 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2143 		return -EINVAL;
2144 	}
2145 
2146 	if (num_vfs) {
2147 		ret = pci_enable_sriov(pdev, num_vfs);
2148 		if (ret)
2149 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2150 		else
2151 			return num_vfs;
2152 	} else if (!pci_vfs_assigned(pdev)) {
2153 		pci_disable_sriov(pdev);
2154 	} else {
2155 		dev_warn(&pdev->dev,
2156 			 "Unable to free VFs because some are assigned to VMs.\n");
2157 	}
2158 
2159 	return 0;
2160 }
2161 
2162 static void hns3_shutdown(struct pci_dev *pdev)
2163 {
2164 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2165 
2166 	hnae3_unregister_ae_dev(ae_dev);
2167 	devm_kfree(&pdev->dev, ae_dev);
2168 	pci_set_drvdata(pdev, NULL);
2169 
2170 	if (system_state == SYSTEM_POWER_OFF)
2171 		pci_set_power_state(pdev, PCI_D3hot);
2172 }
2173 
2174 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2175 					    pci_channel_state_t state)
2176 {
2177 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2178 	pci_ers_result_t ret;
2179 
2180 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2181 
2182 	if (state == pci_channel_io_perm_failure)
2183 		return PCI_ERS_RESULT_DISCONNECT;
2184 
2185 	if (!ae_dev || !ae_dev->ops) {
2186 		dev_err(&pdev->dev,
2187 			"Can't recover - error happened before device initialized\n");
2188 		return PCI_ERS_RESULT_NONE;
2189 	}
2190 
2191 	if (ae_dev->ops->handle_hw_ras_error)
2192 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2193 	else
2194 		return PCI_ERS_RESULT_NONE;
2195 
2196 	return ret;
2197 }
2198 
2199 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2200 {
2201 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2202 	const struct hnae3_ae_ops *ops;
2203 	enum hnae3_reset_type reset_type;
2204 	struct device *dev = &pdev->dev;
2205 
2206 	if (!ae_dev || !ae_dev->ops)
2207 		return PCI_ERS_RESULT_NONE;
2208 
2209 	ops = ae_dev->ops;
2210 	/* request the reset */
2211 	if (ops->reset_event && ops->get_reset_level &&
2212 	    ops->set_default_reset_request) {
2213 		if (ae_dev->hw_err_reset_req) {
2214 			reset_type = ops->get_reset_level(ae_dev,
2215 						&ae_dev->hw_err_reset_req);
2216 			ops->set_default_reset_request(ae_dev, reset_type);
2217 			dev_info(dev, "requesting reset due to PCI error\n");
2218 			ops->reset_event(pdev, NULL);
2219 		}
2220 
2221 		return PCI_ERS_RESULT_RECOVERED;
2222 	}
2223 
2224 	return PCI_ERS_RESULT_DISCONNECT;
2225 }
2226 
2227 static void hns3_reset_prepare(struct pci_dev *pdev)
2228 {
2229 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2230 
2231 	dev_info(&pdev->dev, "hns3 flr prepare\n");
2232 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2233 		ae_dev->ops->flr_prepare(ae_dev);
2234 }
2235 
2236 static void hns3_reset_done(struct pci_dev *pdev)
2237 {
2238 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2239 
2240 	dev_info(&pdev->dev, "hns3 flr done\n");
2241 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2242 		ae_dev->ops->flr_done(ae_dev);
2243 }
2244 
2245 static const struct pci_error_handlers hns3_err_handler = {
2246 	.error_detected = hns3_error_detected,
2247 	.slot_reset     = hns3_slot_reset,
2248 	.reset_prepare	= hns3_reset_prepare,
2249 	.reset_done	= hns3_reset_done,
2250 };
2251 
2252 static struct pci_driver hns3_driver = {
2253 	.name     = hns3_driver_name,
2254 	.id_table = hns3_pci_tbl,
2255 	.probe    = hns3_probe,
2256 	.remove   = hns3_remove,
2257 	.shutdown = hns3_shutdown,
2258 	.sriov_configure = hns3_pci_sriov_configure,
2259 	.err_handler    = &hns3_err_handler,
2260 };
2261 
2262 /* set default feature to hns3 */
2263 static void hns3_set_default_feature(struct net_device *netdev)
2264 {
2265 	struct hnae3_handle *h = hns3_get_handle(netdev);
2266 	struct pci_dev *pdev = h->pdev;
2267 
2268 	netdev->priv_flags |= IFF_UNICAST_FLT;
2269 
2270 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2271 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2272 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2273 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2274 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2275 		NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2276 
2277 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2278 
2279 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2280 		NETIF_F_HW_VLAN_CTAG_FILTER |
2281 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2282 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2283 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2284 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2285 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2286 		NETIF_F_FRAGLIST;
2287 
2288 	netdev->vlan_features |=
2289 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
2290 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2291 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2292 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2293 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2294 		NETIF_F_FRAGLIST;
2295 
2296 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2297 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2298 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2299 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2300 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2301 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2302 		NETIF_F_FRAGLIST;
2303 
2304 	if (pdev->revision >= 0x21) {
2305 		netdev->hw_features |= NETIF_F_GRO_HW;
2306 		netdev->features |= NETIF_F_GRO_HW;
2307 
2308 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2309 			netdev->hw_features |= NETIF_F_NTUPLE;
2310 			netdev->features |= NETIF_F_NTUPLE;
2311 		}
2312 	}
2313 }
2314 
2315 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2316 			     struct hns3_desc_cb *cb)
2317 {
2318 	unsigned int order = hns3_page_order(ring);
2319 	struct page *p;
2320 
2321 	p = dev_alloc_pages(order);
2322 	if (!p)
2323 		return -ENOMEM;
2324 
2325 	cb->priv = p;
2326 	cb->page_offset = 0;
2327 	cb->reuse_flag = 0;
2328 	cb->buf  = page_address(p);
2329 	cb->length = hns3_page_size(ring);
2330 	cb->type = DESC_TYPE_PAGE;
2331 
2332 	return 0;
2333 }
2334 
2335 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2336 			     struct hns3_desc_cb *cb)
2337 {
2338 	if (cb->type == DESC_TYPE_SKB)
2339 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
2340 	else if (!HNAE3_IS_TX_RING(ring))
2341 		put_page((struct page *)cb->priv);
2342 	memset(cb, 0, sizeof(*cb));
2343 }
2344 
2345 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2346 {
2347 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2348 			       cb->length, ring_to_dma_dir(ring));
2349 
2350 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2351 		return -EIO;
2352 
2353 	return 0;
2354 }
2355 
2356 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2357 			      struct hns3_desc_cb *cb)
2358 {
2359 	if (cb->type == DESC_TYPE_SKB)
2360 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2361 				 ring_to_dma_dir(ring));
2362 	else if (cb->length)
2363 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2364 			       ring_to_dma_dir(ring));
2365 }
2366 
2367 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2368 {
2369 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2370 	ring->desc[i].addr = 0;
2371 }
2372 
2373 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2374 {
2375 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2376 
2377 	if (!ring->desc_cb[i].dma)
2378 		return;
2379 
2380 	hns3_buffer_detach(ring, i);
2381 	hns3_free_buffer(ring, cb);
2382 }
2383 
2384 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2385 {
2386 	int i;
2387 
2388 	for (i = 0; i < ring->desc_num; i++)
2389 		hns3_free_buffer_detach(ring, i);
2390 }
2391 
2392 /* free desc along with its attached buffer */
2393 static void hns3_free_desc(struct hns3_enet_ring *ring)
2394 {
2395 	int size = ring->desc_num * sizeof(ring->desc[0]);
2396 
2397 	hns3_free_buffers(ring);
2398 
2399 	if (ring->desc) {
2400 		dma_free_coherent(ring_to_dev(ring), size,
2401 				  ring->desc, ring->desc_dma_addr);
2402 		ring->desc = NULL;
2403 	}
2404 }
2405 
2406 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2407 {
2408 	int size = ring->desc_num * sizeof(ring->desc[0]);
2409 
2410 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2411 					&ring->desc_dma_addr, GFP_KERNEL);
2412 	if (!ring->desc)
2413 		return -ENOMEM;
2414 
2415 	return 0;
2416 }
2417 
2418 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2419 				   struct hns3_desc_cb *cb)
2420 {
2421 	int ret;
2422 
2423 	ret = hns3_alloc_buffer(ring, cb);
2424 	if (ret)
2425 		goto out;
2426 
2427 	ret = hns3_map_buffer(ring, cb);
2428 	if (ret)
2429 		goto out_with_buf;
2430 
2431 	return 0;
2432 
2433 out_with_buf:
2434 	hns3_free_buffer(ring, cb);
2435 out:
2436 	return ret;
2437 }
2438 
2439 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2440 {
2441 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2442 
2443 	if (ret)
2444 		return ret;
2445 
2446 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2447 
2448 	return 0;
2449 }
2450 
2451 /* Allocate memory for raw pkg, and map with dma */
2452 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2453 {
2454 	int i, j, ret;
2455 
2456 	for (i = 0; i < ring->desc_num; i++) {
2457 		ret = hns3_alloc_buffer_attach(ring, i);
2458 		if (ret)
2459 			goto out_buffer_fail;
2460 	}
2461 
2462 	return 0;
2463 
2464 out_buffer_fail:
2465 	for (j = i - 1; j >= 0; j--)
2466 		hns3_free_buffer_detach(ring, j);
2467 	return ret;
2468 }
2469 
2470 /* detach a in-used buffer and replace with a reserved one */
2471 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2472 				struct hns3_desc_cb *res_cb)
2473 {
2474 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2475 	ring->desc_cb[i] = *res_cb;
2476 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2477 	ring->desc[i].rx.bd_base_info = 0;
2478 }
2479 
2480 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2481 {
2482 	ring->desc_cb[i].reuse_flag = 0;
2483 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2484 					 ring->desc_cb[i].page_offset);
2485 	ring->desc[i].rx.bd_base_info = 0;
2486 }
2487 
2488 static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
2489 				  int *bytes, int *pkts)
2490 {
2491 	int ntc = ring->next_to_clean;
2492 	struct hns3_desc_cb *desc_cb;
2493 
2494 	while (head != ntc) {
2495 		desc_cb = &ring->desc_cb[ntc];
2496 		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2497 		(*bytes) += desc_cb->length;
2498 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2499 		hns3_free_buffer_detach(ring, ntc);
2500 
2501 		if (++ntc == ring->desc_num)
2502 			ntc = 0;
2503 
2504 		/* Issue prefetch for next Tx descriptor */
2505 		prefetch(&ring->desc_cb[ntc]);
2506 	}
2507 
2508 	/* This smp_store_release() pairs with smp_load_acquire() in
2509 	 * ring_space called by hns3_nic_net_xmit.
2510 	 */
2511 	smp_store_release(&ring->next_to_clean, ntc);
2512 }
2513 
2514 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2515 {
2516 	int u = ring->next_to_use;
2517 	int c = ring->next_to_clean;
2518 
2519 	if (unlikely(h > ring->desc_num))
2520 		return 0;
2521 
2522 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2523 }
2524 
2525 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2526 {
2527 	struct net_device *netdev = ring_to_netdev(ring);
2528 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2529 	struct netdev_queue *dev_queue;
2530 	int bytes, pkts;
2531 	int head;
2532 
2533 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2534 
2535 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2536 		return; /* no data to poll */
2537 
2538 	rmb(); /* Make sure head is ready before touch any data */
2539 
2540 	if (unlikely(!is_valid_clean_head(ring, head))) {
2541 		hns3_rl_err(netdev, "wrong head (%d, %d-%d)\n", head,
2542 			    ring->next_to_use, ring->next_to_clean);
2543 
2544 		u64_stats_update_begin(&ring->syncp);
2545 		ring->stats.io_err_cnt++;
2546 		u64_stats_update_end(&ring->syncp);
2547 		return;
2548 	}
2549 
2550 	bytes = 0;
2551 	pkts = 0;
2552 	hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2553 
2554 	ring->tqp_vector->tx_group.total_bytes += bytes;
2555 	ring->tqp_vector->tx_group.total_packets += pkts;
2556 
2557 	u64_stats_update_begin(&ring->syncp);
2558 	ring->stats.tx_bytes += bytes;
2559 	ring->stats.tx_pkts += pkts;
2560 	u64_stats_update_end(&ring->syncp);
2561 
2562 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2563 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2564 
2565 	if (unlikely(netif_carrier_ok(netdev) &&
2566 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2567 		/* Make sure that anybody stopping the queue after this
2568 		 * sees the new next_to_clean.
2569 		 */
2570 		smp_mb();
2571 		if (netif_tx_queue_stopped(dev_queue) &&
2572 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2573 			netif_tx_wake_queue(dev_queue);
2574 			ring->stats.restart_queue++;
2575 		}
2576 	}
2577 }
2578 
2579 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2580 {
2581 	int ntc = ring->next_to_clean;
2582 	int ntu = ring->next_to_use;
2583 
2584 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2585 }
2586 
2587 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2588 				      int cleand_count)
2589 {
2590 	struct hns3_desc_cb *desc_cb;
2591 	struct hns3_desc_cb res_cbs;
2592 	int i, ret;
2593 
2594 	for (i = 0; i < cleand_count; i++) {
2595 		desc_cb = &ring->desc_cb[ring->next_to_use];
2596 		if (desc_cb->reuse_flag) {
2597 			u64_stats_update_begin(&ring->syncp);
2598 			ring->stats.reuse_pg_cnt++;
2599 			u64_stats_update_end(&ring->syncp);
2600 
2601 			hns3_reuse_buffer(ring, ring->next_to_use);
2602 		} else {
2603 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2604 			if (ret) {
2605 				u64_stats_update_begin(&ring->syncp);
2606 				ring->stats.sw_err_cnt++;
2607 				u64_stats_update_end(&ring->syncp);
2608 
2609 				hns3_rl_err(ring_to_netdev(ring),
2610 					    "alloc rx buffer failed: %d\n",
2611 					    ret);
2612 				break;
2613 			}
2614 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2615 
2616 			u64_stats_update_begin(&ring->syncp);
2617 			ring->stats.non_reuse_pg++;
2618 			u64_stats_update_end(&ring->syncp);
2619 		}
2620 
2621 		ring_ptr_move_fw(ring, next_to_use);
2622 	}
2623 
2624 	wmb(); /* Make all data has been write before submit */
2625 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2626 }
2627 
2628 static bool hns3_page_is_reusable(struct page *page)
2629 {
2630 	return page_to_nid(page) == numa_mem_id() &&
2631 		!page_is_pfmemalloc(page);
2632 }
2633 
2634 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2635 				struct hns3_enet_ring *ring, int pull_len,
2636 				struct hns3_desc_cb *desc_cb)
2637 {
2638 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2639 	int size = le16_to_cpu(desc->rx.size);
2640 	u32 truesize = hns3_buf_size(ring);
2641 
2642 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2643 			size - pull_len, truesize);
2644 
2645 	/* Avoid re-using remote pages, or the stack is still using the page
2646 	 * when page_offset rollback to zero, flag default unreuse
2647 	 */
2648 	if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2649 	    (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2650 		return;
2651 
2652 	/* Move offset up to the next cache line */
2653 	desc_cb->page_offset += truesize;
2654 
2655 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2656 		desc_cb->reuse_flag = 1;
2657 		/* Bump ref count on page before it is given */
2658 		get_page(desc_cb->priv);
2659 	} else if (page_count(desc_cb->priv) == 1) {
2660 		desc_cb->reuse_flag = 1;
2661 		desc_cb->page_offset = 0;
2662 		get_page(desc_cb->priv);
2663 	}
2664 }
2665 
2666 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2667 {
2668 	__be16 type = skb->protocol;
2669 	struct tcphdr *th;
2670 	int depth = 0;
2671 
2672 	while (eth_type_vlan(type)) {
2673 		struct vlan_hdr *vh;
2674 
2675 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2676 			return -EFAULT;
2677 
2678 		vh = (struct vlan_hdr *)(skb->data + depth);
2679 		type = vh->h_vlan_encapsulated_proto;
2680 		depth += VLAN_HLEN;
2681 	}
2682 
2683 	skb_set_network_header(skb, depth);
2684 
2685 	if (type == htons(ETH_P_IP)) {
2686 		const struct iphdr *iph = ip_hdr(skb);
2687 
2688 		depth += sizeof(struct iphdr);
2689 		skb_set_transport_header(skb, depth);
2690 		th = tcp_hdr(skb);
2691 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2692 					  iph->daddr, 0);
2693 	} else if (type == htons(ETH_P_IPV6)) {
2694 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2695 
2696 		depth += sizeof(struct ipv6hdr);
2697 		skb_set_transport_header(skb, depth);
2698 		th = tcp_hdr(skb);
2699 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2700 					  &iph->daddr, 0);
2701 	} else {
2702 		hns3_rl_err(skb->dev,
2703 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2704 			    be16_to_cpu(type), depth);
2705 		return -EFAULT;
2706 	}
2707 
2708 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2709 	if (th->cwr)
2710 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2711 
2712 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2713 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2714 
2715 	skb->csum_start = (unsigned char *)th - skb->head;
2716 	skb->csum_offset = offsetof(struct tcphdr, check);
2717 	skb->ip_summed = CHECKSUM_PARTIAL;
2718 
2719 	trace_hns3_gro(skb);
2720 
2721 	return 0;
2722 }
2723 
2724 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2725 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2726 {
2727 	struct net_device *netdev = ring_to_netdev(ring);
2728 	int l3_type, l4_type;
2729 	int ol4_type;
2730 
2731 	skb->ip_summed = CHECKSUM_NONE;
2732 
2733 	skb_checksum_none_assert(skb);
2734 
2735 	if (!(netdev->features & NETIF_F_RXCSUM))
2736 		return;
2737 
2738 	/* check if hardware has done checksum */
2739 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2740 		return;
2741 
2742 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2743 				 BIT(HNS3_RXD_OL3E_B) |
2744 				 BIT(HNS3_RXD_OL4E_B)))) {
2745 		u64_stats_update_begin(&ring->syncp);
2746 		ring->stats.l3l4_csum_err++;
2747 		u64_stats_update_end(&ring->syncp);
2748 
2749 		return;
2750 	}
2751 
2752 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2753 				   HNS3_RXD_OL4ID_S);
2754 	switch (ol4_type) {
2755 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2756 	case HNS3_OL4_TYPE_NVGRE:
2757 		skb->csum_level = 1;
2758 		/* fall through */
2759 	case HNS3_OL4_TYPE_NO_TUN:
2760 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2761 					  HNS3_RXD_L3ID_S);
2762 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2763 					  HNS3_RXD_L4ID_S);
2764 
2765 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2766 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2767 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2768 		    (l4_type == HNS3_L4_TYPE_UDP ||
2769 		     l4_type == HNS3_L4_TYPE_TCP ||
2770 		     l4_type == HNS3_L4_TYPE_SCTP))
2771 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2772 		break;
2773 	default:
2774 		break;
2775 	}
2776 }
2777 
2778 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2779 {
2780 	if (skb_has_frag_list(skb))
2781 		napi_gro_flush(&ring->tqp_vector->napi, false);
2782 
2783 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2784 }
2785 
2786 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2787 				struct hns3_desc *desc, u32 l234info,
2788 				u16 *vlan_tag)
2789 {
2790 	struct hnae3_handle *handle = ring->tqp->handle;
2791 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2792 
2793 	if (pdev->revision == 0x20) {
2794 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2795 		if (!(*vlan_tag & VLAN_VID_MASK))
2796 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2797 
2798 		return (*vlan_tag != 0);
2799 	}
2800 
2801 #define HNS3_STRP_OUTER_VLAN	0x1
2802 #define HNS3_STRP_INNER_VLAN	0x2
2803 #define HNS3_STRP_BOTH		0x3
2804 
2805 	/* Hardware always insert VLAN tag into RX descriptor when
2806 	 * remove the tag from packet, driver needs to determine
2807 	 * reporting which tag to stack.
2808 	 */
2809 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2810 				HNS3_RXD_STRP_TAGP_S)) {
2811 	case HNS3_STRP_OUTER_VLAN:
2812 		if (handle->port_base_vlan_state !=
2813 				HNAE3_PORT_BASE_VLAN_DISABLE)
2814 			return false;
2815 
2816 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2817 		return true;
2818 	case HNS3_STRP_INNER_VLAN:
2819 		if (handle->port_base_vlan_state !=
2820 				HNAE3_PORT_BASE_VLAN_DISABLE)
2821 			return false;
2822 
2823 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2824 		return true;
2825 	case HNS3_STRP_BOTH:
2826 		if (handle->port_base_vlan_state ==
2827 				HNAE3_PORT_BASE_VLAN_DISABLE)
2828 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2829 		else
2830 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2831 
2832 		return true;
2833 	default:
2834 		return false;
2835 	}
2836 }
2837 
2838 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2839 			  unsigned char *va)
2840 {
2841 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2842 	struct net_device *netdev = ring_to_netdev(ring);
2843 	struct sk_buff *skb;
2844 
2845 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2846 	skb = ring->skb;
2847 	if (unlikely(!skb)) {
2848 		hns3_rl_err(netdev, "alloc rx skb fail\n");
2849 
2850 		u64_stats_update_begin(&ring->syncp);
2851 		ring->stats.sw_err_cnt++;
2852 		u64_stats_update_end(&ring->syncp);
2853 
2854 		return -ENOMEM;
2855 	}
2856 
2857 	trace_hns3_rx_desc(ring);
2858 	prefetchw(skb->data);
2859 
2860 	ring->pending_buf = 1;
2861 	ring->frag_num = 0;
2862 	ring->tail_skb = NULL;
2863 	if (length <= HNS3_RX_HEAD_SIZE) {
2864 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2865 
2866 		/* We can reuse buffer as-is, just make sure it is local */
2867 		if (likely(hns3_page_is_reusable(desc_cb->priv)))
2868 			desc_cb->reuse_flag = 1;
2869 		else /* This page cannot be reused so discard it */
2870 			put_page(desc_cb->priv);
2871 
2872 		ring_ptr_move_fw(ring, next_to_clean);
2873 		return 0;
2874 	}
2875 	u64_stats_update_begin(&ring->syncp);
2876 	ring->stats.seg_pkt_cnt++;
2877 	u64_stats_update_end(&ring->syncp);
2878 
2879 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2880 	__skb_put(skb, ring->pull_len);
2881 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2882 			    desc_cb);
2883 	ring_ptr_move_fw(ring, next_to_clean);
2884 
2885 	return 0;
2886 }
2887 
2888 static int hns3_add_frag(struct hns3_enet_ring *ring)
2889 {
2890 	struct sk_buff *skb = ring->skb;
2891 	struct sk_buff *head_skb = skb;
2892 	struct sk_buff *new_skb;
2893 	struct hns3_desc_cb *desc_cb;
2894 	struct hns3_desc *desc;
2895 	u32 bd_base_info;
2896 
2897 	do {
2898 		desc = &ring->desc[ring->next_to_clean];
2899 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2900 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2901 		/* make sure HW write desc complete */
2902 		dma_rmb();
2903 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2904 			return -ENXIO;
2905 
2906 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2907 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
2908 			if (unlikely(!new_skb)) {
2909 				hns3_rl_err(ring_to_netdev(ring),
2910 					    "alloc rx fraglist skb fail\n");
2911 				return -ENXIO;
2912 			}
2913 			ring->frag_num = 0;
2914 
2915 			if (ring->tail_skb) {
2916 				ring->tail_skb->next = new_skb;
2917 				ring->tail_skb = new_skb;
2918 			} else {
2919 				skb_shinfo(skb)->frag_list = new_skb;
2920 				ring->tail_skb = new_skb;
2921 			}
2922 		}
2923 
2924 		if (ring->tail_skb) {
2925 			head_skb->truesize += hns3_buf_size(ring);
2926 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2927 			head_skb->len += le16_to_cpu(desc->rx.size);
2928 			skb = ring->tail_skb;
2929 		}
2930 
2931 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2932 		trace_hns3_rx_desc(ring);
2933 		ring_ptr_move_fw(ring, next_to_clean);
2934 		ring->pending_buf++;
2935 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
2936 
2937 	return 0;
2938 }
2939 
2940 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
2941 				     struct sk_buff *skb, u32 l234info,
2942 				     u32 bd_base_info, u32 ol_info)
2943 {
2944 	u32 l3_type;
2945 
2946 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2947 						    HNS3_RXD_GRO_SIZE_M,
2948 						    HNS3_RXD_GRO_SIZE_S);
2949 	/* if there is no HW GRO, do not set gro params */
2950 	if (!skb_shinfo(skb)->gso_size) {
2951 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2952 		return 0;
2953 	}
2954 
2955 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
2956 						  HNS3_RXD_GRO_COUNT_M,
2957 						  HNS3_RXD_GRO_COUNT_S);
2958 
2959 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2960 	if (l3_type == HNS3_L3_TYPE_IPV4)
2961 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2962 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2963 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2964 	else
2965 		return -EFAULT;
2966 
2967 	return  hns3_gro_complete(skb, l234info);
2968 }
2969 
2970 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2971 				     struct sk_buff *skb, u32 rss_hash)
2972 {
2973 	struct hnae3_handle *handle = ring->tqp->handle;
2974 	enum pkt_hash_types rss_type;
2975 
2976 	if (rss_hash)
2977 		rss_type = handle->kinfo.rss_type;
2978 	else
2979 		rss_type = PKT_HASH_TYPE_NONE;
2980 
2981 	skb_set_hash(skb, rss_hash, rss_type);
2982 }
2983 
2984 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2985 {
2986 	struct net_device *netdev = ring_to_netdev(ring);
2987 	enum hns3_pkt_l2t_type l2_frame_type;
2988 	u32 bd_base_info, l234info, ol_info;
2989 	struct hns3_desc *desc;
2990 	unsigned int len;
2991 	int pre_ntc, ret;
2992 
2993 	/* bdinfo handled below is only valid on the last BD of the
2994 	 * current packet, and ring->next_to_clean indicates the first
2995 	 * descriptor of next packet, so need - 1 below.
2996 	 */
2997 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
2998 					(ring->desc_num - 1);
2999 	desc = &ring->desc[pre_ntc];
3000 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3001 	l234info = le32_to_cpu(desc->rx.l234_info);
3002 	ol_info = le32_to_cpu(desc->rx.ol_info);
3003 
3004 	/* Based on hw strategy, the tag offloaded will be stored at
3005 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3006 	 * in one layer tag case.
3007 	 */
3008 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3009 		u16 vlan_tag;
3010 
3011 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3012 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3013 					       vlan_tag);
3014 	}
3015 
3016 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3017 				  BIT(HNS3_RXD_L2E_B))))) {
3018 		u64_stats_update_begin(&ring->syncp);
3019 		if (l234info & BIT(HNS3_RXD_L2E_B))
3020 			ring->stats.l2_err++;
3021 		else
3022 			ring->stats.err_pkt_len++;
3023 		u64_stats_update_end(&ring->syncp);
3024 
3025 		return -EFAULT;
3026 	}
3027 
3028 	len = skb->len;
3029 
3030 	/* Do update ip stack process */
3031 	skb->protocol = eth_type_trans(skb, netdev);
3032 
3033 	/* This is needed in order to enable forwarding support */
3034 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3035 					bd_base_info, ol_info);
3036 	if (unlikely(ret)) {
3037 		u64_stats_update_begin(&ring->syncp);
3038 		ring->stats.rx_err_cnt++;
3039 		u64_stats_update_end(&ring->syncp);
3040 		return ret;
3041 	}
3042 
3043 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3044 					HNS3_RXD_DMAC_S);
3045 
3046 	u64_stats_update_begin(&ring->syncp);
3047 	ring->stats.rx_pkts++;
3048 	ring->stats.rx_bytes += len;
3049 
3050 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3051 		ring->stats.rx_multicast++;
3052 
3053 	u64_stats_update_end(&ring->syncp);
3054 
3055 	ring->tqp_vector->rx_group.total_bytes += len;
3056 
3057 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3058 	return 0;
3059 }
3060 
3061 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3062 {
3063 	struct sk_buff *skb = ring->skb;
3064 	struct hns3_desc_cb *desc_cb;
3065 	struct hns3_desc *desc;
3066 	unsigned int length;
3067 	u32 bd_base_info;
3068 	int ret;
3069 
3070 	desc = &ring->desc[ring->next_to_clean];
3071 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3072 
3073 	prefetch(desc);
3074 
3075 	length = le16_to_cpu(desc->rx.size);
3076 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3077 
3078 	/* Check valid BD */
3079 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3080 		return -ENXIO;
3081 
3082 	if (!skb)
3083 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
3084 
3085 	/* Prefetch first cache line of first page
3086 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
3087 	 * line size is 64B so need to prefetch twice to make it 128B. But in
3088 	 * actual we can have greater size of caches with 128B Level 1 cache
3089 	 * lines. In such a case, single fetch would suffice to cache in the
3090 	 * relevant part of the header.
3091 	 */
3092 	prefetch(ring->va);
3093 #if L1_CACHE_BYTES < 128
3094 	prefetch(ring->va + L1_CACHE_BYTES);
3095 #endif
3096 
3097 	if (!skb) {
3098 		ret = hns3_alloc_skb(ring, length, ring->va);
3099 		skb = ring->skb;
3100 
3101 		if (ret < 0) /* alloc buffer fail */
3102 			return ret;
3103 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3104 			ret = hns3_add_frag(ring);
3105 			if (ret)
3106 				return ret;
3107 		}
3108 	} else {
3109 		ret = hns3_add_frag(ring);
3110 		if (ret)
3111 			return ret;
3112 	}
3113 
3114 	/* As the head data may be changed when GRO enable, copy
3115 	 * the head data in after other data rx completed
3116 	 */
3117 	if (skb->len > HNS3_RX_HEAD_SIZE)
3118 		memcpy(skb->data, ring->va,
3119 		       ALIGN(ring->pull_len, sizeof(long)));
3120 
3121 	ret = hns3_handle_bdinfo(ring, skb);
3122 	if (unlikely(ret)) {
3123 		dev_kfree_skb_any(skb);
3124 		return ret;
3125 	}
3126 
3127 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3128 	return 0;
3129 }
3130 
3131 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3132 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3133 {
3134 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3135 	int unused_count = hns3_desc_unused(ring);
3136 	int recv_pkts = 0;
3137 	int recv_bds = 0;
3138 	int err, num;
3139 
3140 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
3141 	num -= unused_count;
3142 	unused_count -= ring->pending_buf;
3143 
3144 	if (num <= 0)
3145 		goto out;
3146 
3147 	rmb(); /* Make sure num taken effect before the other data is touched */
3148 
3149 	while (recv_pkts < budget && recv_bds < num) {
3150 		/* Reuse or realloc buffers */
3151 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3152 			hns3_nic_alloc_rx_buffers(ring, unused_count);
3153 			unused_count = hns3_desc_unused(ring) -
3154 					ring->pending_buf;
3155 		}
3156 
3157 		/* Poll one pkt */
3158 		err = hns3_handle_rx_bd(ring);
3159 		/* Do not get FE for the packet or failed to alloc skb */
3160 		if (unlikely(!ring->skb || err == -ENXIO)) {
3161 			goto out;
3162 		} else if (likely(!err)) {
3163 			rx_fn(ring, ring->skb);
3164 			recv_pkts++;
3165 		}
3166 
3167 		recv_bds += ring->pending_buf;
3168 		unused_count += ring->pending_buf;
3169 		ring->skb = NULL;
3170 		ring->pending_buf = 0;
3171 	}
3172 
3173 out:
3174 	/* Make all data has been write before submit */
3175 	if (unused_count > 0)
3176 		hns3_nic_alloc_rx_buffers(ring, unused_count);
3177 
3178 	return recv_pkts;
3179 }
3180 
3181 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3182 {
3183 #define HNS3_RX_LOW_BYTE_RATE 10000
3184 #define HNS3_RX_MID_BYTE_RATE 20000
3185 #define HNS3_RX_ULTRA_PACKET_RATE 40
3186 
3187 	enum hns3_flow_level_range new_flow_level;
3188 	struct hns3_enet_tqp_vector *tqp_vector;
3189 	int packets_per_msecs, bytes_per_msecs;
3190 	u32 time_passed_ms;
3191 
3192 	tqp_vector = ring_group->ring->tqp_vector;
3193 	time_passed_ms =
3194 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3195 	if (!time_passed_ms)
3196 		return false;
3197 
3198 	do_div(ring_group->total_packets, time_passed_ms);
3199 	packets_per_msecs = ring_group->total_packets;
3200 
3201 	do_div(ring_group->total_bytes, time_passed_ms);
3202 	bytes_per_msecs = ring_group->total_bytes;
3203 
3204 	new_flow_level = ring_group->coal.flow_level;
3205 
3206 	/* Simple throttlerate management
3207 	 * 0-10MB/s   lower     (50000 ints/s)
3208 	 * 10-20MB/s   middle    (20000 ints/s)
3209 	 * 20-1249MB/s high      (18000 ints/s)
3210 	 * > 40000pps  ultra     (8000 ints/s)
3211 	 */
3212 	switch (new_flow_level) {
3213 	case HNS3_FLOW_LOW:
3214 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3215 			new_flow_level = HNS3_FLOW_MID;
3216 		break;
3217 	case HNS3_FLOW_MID:
3218 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3219 			new_flow_level = HNS3_FLOW_HIGH;
3220 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3221 			new_flow_level = HNS3_FLOW_LOW;
3222 		break;
3223 	case HNS3_FLOW_HIGH:
3224 	case HNS3_FLOW_ULTRA:
3225 	default:
3226 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3227 			new_flow_level = HNS3_FLOW_MID;
3228 		break;
3229 	}
3230 
3231 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3232 	    &tqp_vector->rx_group == ring_group)
3233 		new_flow_level = HNS3_FLOW_ULTRA;
3234 
3235 	ring_group->total_bytes = 0;
3236 	ring_group->total_packets = 0;
3237 	ring_group->coal.flow_level = new_flow_level;
3238 
3239 	return true;
3240 }
3241 
3242 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3243 {
3244 	struct hns3_enet_tqp_vector *tqp_vector;
3245 	u16 new_int_gl;
3246 
3247 	if (!ring_group->ring)
3248 		return false;
3249 
3250 	tqp_vector = ring_group->ring->tqp_vector;
3251 	if (!tqp_vector->last_jiffies)
3252 		return false;
3253 
3254 	if (ring_group->total_packets == 0) {
3255 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3256 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3257 		return true;
3258 	}
3259 
3260 	if (!hns3_get_new_flow_lvl(ring_group))
3261 		return false;
3262 
3263 	new_int_gl = ring_group->coal.int_gl;
3264 	switch (ring_group->coal.flow_level) {
3265 	case HNS3_FLOW_LOW:
3266 		new_int_gl = HNS3_INT_GL_50K;
3267 		break;
3268 	case HNS3_FLOW_MID:
3269 		new_int_gl = HNS3_INT_GL_20K;
3270 		break;
3271 	case HNS3_FLOW_HIGH:
3272 		new_int_gl = HNS3_INT_GL_18K;
3273 		break;
3274 	case HNS3_FLOW_ULTRA:
3275 		new_int_gl = HNS3_INT_GL_8K;
3276 		break;
3277 	default:
3278 		break;
3279 	}
3280 
3281 	if (new_int_gl != ring_group->coal.int_gl) {
3282 		ring_group->coal.int_gl = new_int_gl;
3283 		return true;
3284 	}
3285 	return false;
3286 }
3287 
3288 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3289 {
3290 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3291 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3292 	bool rx_update, tx_update;
3293 
3294 	/* update param every 1000ms */
3295 	if (time_before(jiffies,
3296 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3297 		return;
3298 
3299 	if (rx_group->coal.gl_adapt_enable) {
3300 		rx_update = hns3_get_new_int_gl(rx_group);
3301 		if (rx_update)
3302 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3303 						       rx_group->coal.int_gl);
3304 	}
3305 
3306 	if (tx_group->coal.gl_adapt_enable) {
3307 		tx_update = hns3_get_new_int_gl(tx_group);
3308 		if (tx_update)
3309 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3310 						       tx_group->coal.int_gl);
3311 	}
3312 
3313 	tqp_vector->last_jiffies = jiffies;
3314 }
3315 
3316 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3317 {
3318 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3319 	struct hns3_enet_ring *ring;
3320 	int rx_pkt_total = 0;
3321 
3322 	struct hns3_enet_tqp_vector *tqp_vector =
3323 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3324 	bool clean_complete = true;
3325 	int rx_budget = budget;
3326 
3327 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3328 		napi_complete(napi);
3329 		return 0;
3330 	}
3331 
3332 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3333 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3334 	 */
3335 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3336 		hns3_clean_tx_ring(ring);
3337 
3338 	/* make sure rx ring budget not smaller than 1 */
3339 	if (tqp_vector->num_tqps > 1)
3340 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3341 
3342 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3343 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3344 						    hns3_rx_skb);
3345 
3346 		if (rx_cleaned >= rx_budget)
3347 			clean_complete = false;
3348 
3349 		rx_pkt_total += rx_cleaned;
3350 	}
3351 
3352 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3353 
3354 	if (!clean_complete)
3355 		return budget;
3356 
3357 	if (napi_complete(napi) &&
3358 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3359 		hns3_update_new_int_gl(tqp_vector);
3360 		hns3_mask_vector_irq(tqp_vector, 1);
3361 	}
3362 
3363 	return rx_pkt_total;
3364 }
3365 
3366 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3367 				      struct hnae3_ring_chain_node *head)
3368 {
3369 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3370 	struct hnae3_ring_chain_node *cur_chain = head;
3371 	struct hnae3_ring_chain_node *chain;
3372 	struct hns3_enet_ring *tx_ring;
3373 	struct hns3_enet_ring *rx_ring;
3374 
3375 	tx_ring = tqp_vector->tx_group.ring;
3376 	if (tx_ring) {
3377 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3378 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3379 			      HNAE3_RING_TYPE_TX);
3380 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3381 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3382 
3383 		cur_chain->next = NULL;
3384 
3385 		while (tx_ring->next) {
3386 			tx_ring = tx_ring->next;
3387 
3388 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3389 					     GFP_KERNEL);
3390 			if (!chain)
3391 				goto err_free_chain;
3392 
3393 			cur_chain->next = chain;
3394 			chain->tqp_index = tx_ring->tqp->tqp_index;
3395 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3396 				      HNAE3_RING_TYPE_TX);
3397 			hnae3_set_field(chain->int_gl_idx,
3398 					HNAE3_RING_GL_IDX_M,
3399 					HNAE3_RING_GL_IDX_S,
3400 					HNAE3_RING_GL_TX);
3401 
3402 			cur_chain = chain;
3403 		}
3404 	}
3405 
3406 	rx_ring = tqp_vector->rx_group.ring;
3407 	if (!tx_ring && rx_ring) {
3408 		cur_chain->next = NULL;
3409 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3410 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3411 			      HNAE3_RING_TYPE_RX);
3412 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3413 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3414 
3415 		rx_ring = rx_ring->next;
3416 	}
3417 
3418 	while (rx_ring) {
3419 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3420 		if (!chain)
3421 			goto err_free_chain;
3422 
3423 		cur_chain->next = chain;
3424 		chain->tqp_index = rx_ring->tqp->tqp_index;
3425 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3426 			      HNAE3_RING_TYPE_RX);
3427 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3428 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3429 
3430 		cur_chain = chain;
3431 
3432 		rx_ring = rx_ring->next;
3433 	}
3434 
3435 	return 0;
3436 
3437 err_free_chain:
3438 	cur_chain = head->next;
3439 	while (cur_chain) {
3440 		chain = cur_chain->next;
3441 		devm_kfree(&pdev->dev, cur_chain);
3442 		cur_chain = chain;
3443 	}
3444 	head->next = NULL;
3445 
3446 	return -ENOMEM;
3447 }
3448 
3449 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3450 					struct hnae3_ring_chain_node *head)
3451 {
3452 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3453 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3454 
3455 	chain = head->next;
3456 
3457 	while (chain) {
3458 		chain_tmp = chain->next;
3459 		devm_kfree(&pdev->dev, chain);
3460 		chain = chain_tmp;
3461 	}
3462 }
3463 
3464 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3465 				   struct hns3_enet_ring *ring)
3466 {
3467 	ring->next = group->ring;
3468 	group->ring = ring;
3469 
3470 	group->count++;
3471 }
3472 
3473 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3474 {
3475 	struct pci_dev *pdev = priv->ae_handle->pdev;
3476 	struct hns3_enet_tqp_vector *tqp_vector;
3477 	int num_vectors = priv->vector_num;
3478 	int numa_node;
3479 	int vector_i;
3480 
3481 	numa_node = dev_to_node(&pdev->dev);
3482 
3483 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3484 		tqp_vector = &priv->tqp_vector[vector_i];
3485 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3486 				&tqp_vector->affinity_mask);
3487 	}
3488 }
3489 
3490 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3491 {
3492 	struct hnae3_ring_chain_node vector_ring_chain;
3493 	struct hnae3_handle *h = priv->ae_handle;
3494 	struct hns3_enet_tqp_vector *tqp_vector;
3495 	int ret = 0;
3496 	int i;
3497 
3498 	hns3_nic_set_cpumask(priv);
3499 
3500 	for (i = 0; i < priv->vector_num; i++) {
3501 		tqp_vector = &priv->tqp_vector[i];
3502 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3503 		tqp_vector->num_tqps = 0;
3504 	}
3505 
3506 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3507 		u16 vector_i = i % priv->vector_num;
3508 		u16 tqp_num = h->kinfo.num_tqps;
3509 
3510 		tqp_vector = &priv->tqp_vector[vector_i];
3511 
3512 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3513 				       &priv->ring[i]);
3514 
3515 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3516 				       &priv->ring[i + tqp_num]);
3517 
3518 		priv->ring[i].tqp_vector = tqp_vector;
3519 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3520 		tqp_vector->num_tqps++;
3521 	}
3522 
3523 	for (i = 0; i < priv->vector_num; i++) {
3524 		tqp_vector = &priv->tqp_vector[i];
3525 
3526 		tqp_vector->rx_group.total_bytes = 0;
3527 		tqp_vector->rx_group.total_packets = 0;
3528 		tqp_vector->tx_group.total_bytes = 0;
3529 		tqp_vector->tx_group.total_packets = 0;
3530 		tqp_vector->handle = h;
3531 
3532 		ret = hns3_get_vector_ring_chain(tqp_vector,
3533 						 &vector_ring_chain);
3534 		if (ret)
3535 			goto map_ring_fail;
3536 
3537 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3538 			tqp_vector->vector_irq, &vector_ring_chain);
3539 
3540 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3541 
3542 		if (ret)
3543 			goto map_ring_fail;
3544 
3545 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3546 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3547 	}
3548 
3549 	return 0;
3550 
3551 map_ring_fail:
3552 	while (i--)
3553 		netif_napi_del(&priv->tqp_vector[i].napi);
3554 
3555 	return ret;
3556 }
3557 
3558 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3559 {
3560 #define HNS3_VECTOR_PF_MAX_NUM		64
3561 
3562 	struct hnae3_handle *h = priv->ae_handle;
3563 	struct hns3_enet_tqp_vector *tqp_vector;
3564 	struct hnae3_vector_info *vector;
3565 	struct pci_dev *pdev = h->pdev;
3566 	u16 tqp_num = h->kinfo.num_tqps;
3567 	u16 vector_num;
3568 	int ret = 0;
3569 	u16 i;
3570 
3571 	/* RSS size, cpu online and vector_num should be the same */
3572 	/* Should consider 2p/4p later */
3573 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3574 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3575 
3576 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3577 			      GFP_KERNEL);
3578 	if (!vector)
3579 		return -ENOMEM;
3580 
3581 	/* save the actual available vector number */
3582 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3583 
3584 	priv->vector_num = vector_num;
3585 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3586 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3587 			     GFP_KERNEL);
3588 	if (!priv->tqp_vector) {
3589 		ret = -ENOMEM;
3590 		goto out;
3591 	}
3592 
3593 	for (i = 0; i < priv->vector_num; i++) {
3594 		tqp_vector = &priv->tqp_vector[i];
3595 		tqp_vector->idx = i;
3596 		tqp_vector->mask_addr = vector[i].io_addr;
3597 		tqp_vector->vector_irq = vector[i].vector;
3598 		hns3_vector_gl_rl_init(tqp_vector, priv);
3599 	}
3600 
3601 out:
3602 	devm_kfree(&pdev->dev, vector);
3603 	return ret;
3604 }
3605 
3606 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3607 {
3608 	group->ring = NULL;
3609 	group->count = 0;
3610 }
3611 
3612 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3613 {
3614 	struct hnae3_ring_chain_node vector_ring_chain;
3615 	struct hnae3_handle *h = priv->ae_handle;
3616 	struct hns3_enet_tqp_vector *tqp_vector;
3617 	int i;
3618 
3619 	for (i = 0; i < priv->vector_num; i++) {
3620 		tqp_vector = &priv->tqp_vector[i];
3621 
3622 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3623 			continue;
3624 
3625 		/* Since the mapping can be overwritten, when fail to get the
3626 		 * chain between vector and ring, we should go on to deal with
3627 		 * the remaining options.
3628 		 */
3629 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3630 			dev_warn(priv->dev, "failed to get ring chain\n");
3631 
3632 		h->ae_algo->ops->unmap_ring_from_vector(h,
3633 			tqp_vector->vector_irq, &vector_ring_chain);
3634 
3635 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3636 
3637 		hns3_clear_ring_group(&tqp_vector->rx_group);
3638 		hns3_clear_ring_group(&tqp_vector->tx_group);
3639 		netif_napi_del(&priv->tqp_vector[i].napi);
3640 	}
3641 }
3642 
3643 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3644 {
3645 	struct hnae3_handle *h = priv->ae_handle;
3646 	struct pci_dev *pdev = h->pdev;
3647 	int i, ret;
3648 
3649 	for (i = 0; i < priv->vector_num; i++) {
3650 		struct hns3_enet_tqp_vector *tqp_vector;
3651 
3652 		tqp_vector = &priv->tqp_vector[i];
3653 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3654 		if (ret)
3655 			return;
3656 	}
3657 
3658 	devm_kfree(&pdev->dev, priv->tqp_vector);
3659 }
3660 
3661 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3662 			      unsigned int ring_type)
3663 {
3664 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3665 	struct hns3_enet_ring *ring;
3666 	int desc_num;
3667 
3668 	if (ring_type == HNAE3_RING_TYPE_TX) {
3669 		ring = &priv->ring[q->tqp_index];
3670 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3671 		ring->queue_index = q->tqp_index;
3672 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3673 	} else {
3674 		ring = &priv->ring[q->tqp_index + queue_num];
3675 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3676 		ring->queue_index = q->tqp_index;
3677 		ring->io_base = q->io_base;
3678 	}
3679 
3680 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3681 
3682 	ring->tqp = q;
3683 	ring->desc = NULL;
3684 	ring->desc_cb = NULL;
3685 	ring->dev = priv->dev;
3686 	ring->desc_dma_addr = 0;
3687 	ring->buf_size = q->buf_size;
3688 	ring->desc_num = desc_num;
3689 	ring->next_to_use = 0;
3690 	ring->next_to_clean = 0;
3691 }
3692 
3693 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3694 			       struct hns3_nic_priv *priv)
3695 {
3696 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3697 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3698 }
3699 
3700 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3701 {
3702 	struct hnae3_handle *h = priv->ae_handle;
3703 	struct pci_dev *pdev = h->pdev;
3704 	int i;
3705 
3706 	priv->ring = devm_kzalloc(&pdev->dev,
3707 				  array3_size(h->kinfo.num_tqps,
3708 					      sizeof(*priv->ring), 2),
3709 				  GFP_KERNEL);
3710 	if (!priv->ring)
3711 		return -ENOMEM;
3712 
3713 	for (i = 0; i < h->kinfo.num_tqps; i++)
3714 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3715 
3716 	return 0;
3717 }
3718 
3719 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3720 {
3721 	if (!priv->ring)
3722 		return;
3723 
3724 	devm_kfree(priv->dev, priv->ring);
3725 	priv->ring = NULL;
3726 }
3727 
3728 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3729 {
3730 	int ret;
3731 
3732 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3733 		return -EINVAL;
3734 
3735 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3736 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3737 	if (!ring->desc_cb) {
3738 		ret = -ENOMEM;
3739 		goto out;
3740 	}
3741 
3742 	ret = hns3_alloc_desc(ring);
3743 	if (ret)
3744 		goto out_with_desc_cb;
3745 
3746 	if (!HNAE3_IS_TX_RING(ring)) {
3747 		ret = hns3_alloc_ring_buffers(ring);
3748 		if (ret)
3749 			goto out_with_desc;
3750 	}
3751 
3752 	return 0;
3753 
3754 out_with_desc:
3755 	hns3_free_desc(ring);
3756 out_with_desc_cb:
3757 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3758 	ring->desc_cb = NULL;
3759 out:
3760 	return ret;
3761 }
3762 
3763 void hns3_fini_ring(struct hns3_enet_ring *ring)
3764 {
3765 	hns3_free_desc(ring);
3766 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3767 	ring->desc_cb = NULL;
3768 	ring->next_to_clean = 0;
3769 	ring->next_to_use = 0;
3770 	ring->pending_buf = 0;
3771 	if (ring->skb) {
3772 		dev_kfree_skb_any(ring->skb);
3773 		ring->skb = NULL;
3774 	}
3775 }
3776 
3777 static int hns3_buf_size2type(u32 buf_size)
3778 {
3779 	int bd_size_type;
3780 
3781 	switch (buf_size) {
3782 	case 512:
3783 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3784 		break;
3785 	case 1024:
3786 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3787 		break;
3788 	case 2048:
3789 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3790 		break;
3791 	case 4096:
3792 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3793 		break;
3794 	default:
3795 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3796 	}
3797 
3798 	return bd_size_type;
3799 }
3800 
3801 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3802 {
3803 	dma_addr_t dma = ring->desc_dma_addr;
3804 	struct hnae3_queue *q = ring->tqp;
3805 
3806 	if (!HNAE3_IS_TX_RING(ring)) {
3807 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3808 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3809 			       (u32)((dma >> 31) >> 1));
3810 
3811 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3812 			       hns3_buf_size2type(ring->buf_size));
3813 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3814 			       ring->desc_num / 8 - 1);
3815 
3816 	} else {
3817 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3818 			       (u32)dma);
3819 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3820 			       (u32)((dma >> 31) >> 1));
3821 
3822 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3823 			       ring->desc_num / 8 - 1);
3824 	}
3825 }
3826 
3827 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3828 {
3829 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3830 	int i;
3831 
3832 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3833 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3834 		int j;
3835 
3836 		if (!tc_info->enable)
3837 			continue;
3838 
3839 		for (j = 0; j < tc_info->tqp_count; j++) {
3840 			struct hnae3_queue *q;
3841 
3842 			q = priv->ring[tc_info->tqp_offset + j].tqp;
3843 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3844 				       tc_info->tc);
3845 		}
3846 	}
3847 }
3848 
3849 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3850 {
3851 	struct hnae3_handle *h = priv->ae_handle;
3852 	int ring_num = h->kinfo.num_tqps * 2;
3853 	int i, j;
3854 	int ret;
3855 
3856 	for (i = 0; i < ring_num; i++) {
3857 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
3858 		if (ret) {
3859 			dev_err(priv->dev,
3860 				"Alloc ring memory fail! ret=%d\n", ret);
3861 			goto out_when_alloc_ring_memory;
3862 		}
3863 
3864 		u64_stats_init(&priv->ring[i].syncp);
3865 	}
3866 
3867 	return 0;
3868 
3869 out_when_alloc_ring_memory:
3870 	for (j = i - 1; j >= 0; j--)
3871 		hns3_fini_ring(&priv->ring[j]);
3872 
3873 	return -ENOMEM;
3874 }
3875 
3876 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3877 {
3878 	struct hnae3_handle *h = priv->ae_handle;
3879 	int i;
3880 
3881 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3882 		hns3_fini_ring(&priv->ring[i]);
3883 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
3884 	}
3885 	return 0;
3886 }
3887 
3888 /* Set mac addr if it is configured. or leave it to the AE driver */
3889 static int hns3_init_mac_addr(struct net_device *netdev)
3890 {
3891 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3892 	struct hnae3_handle *h = priv->ae_handle;
3893 	u8 mac_addr_temp[ETH_ALEN];
3894 	int ret = 0;
3895 
3896 	if (h->ae_algo->ops->get_mac_addr)
3897 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3898 
3899 	/* Check if the MAC address is valid, if not get a random one */
3900 	if (!is_valid_ether_addr(mac_addr_temp)) {
3901 		eth_hw_addr_random(netdev);
3902 		dev_warn(priv->dev, "using random MAC address %pM\n",
3903 			 netdev->dev_addr);
3904 	} else {
3905 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3906 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
3907 	}
3908 
3909 	if (h->ae_algo->ops->set_mac_addr)
3910 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3911 
3912 	return ret;
3913 }
3914 
3915 static int hns3_init_phy(struct net_device *netdev)
3916 {
3917 	struct hnae3_handle *h = hns3_get_handle(netdev);
3918 	int ret = 0;
3919 
3920 	if (h->ae_algo->ops->mac_connect_phy)
3921 		ret = h->ae_algo->ops->mac_connect_phy(h);
3922 
3923 	return ret;
3924 }
3925 
3926 static void hns3_uninit_phy(struct net_device *netdev)
3927 {
3928 	struct hnae3_handle *h = hns3_get_handle(netdev);
3929 
3930 	if (h->ae_algo->ops->mac_disconnect_phy)
3931 		h->ae_algo->ops->mac_disconnect_phy(h);
3932 }
3933 
3934 static int hns3_restore_fd_rules(struct net_device *netdev)
3935 {
3936 	struct hnae3_handle *h = hns3_get_handle(netdev);
3937 	int ret = 0;
3938 
3939 	if (h->ae_algo->ops->restore_fd_rules)
3940 		ret = h->ae_algo->ops->restore_fd_rules(h);
3941 
3942 	return ret;
3943 }
3944 
3945 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3946 {
3947 	struct hnae3_handle *h = hns3_get_handle(netdev);
3948 
3949 	if (h->ae_algo->ops->del_all_fd_entries)
3950 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3951 }
3952 
3953 static int hns3_client_start(struct hnae3_handle *handle)
3954 {
3955 	if (!handle->ae_algo->ops->client_start)
3956 		return 0;
3957 
3958 	return handle->ae_algo->ops->client_start(handle);
3959 }
3960 
3961 static void hns3_client_stop(struct hnae3_handle *handle)
3962 {
3963 	if (!handle->ae_algo->ops->client_stop)
3964 		return;
3965 
3966 	handle->ae_algo->ops->client_stop(handle);
3967 }
3968 
3969 static void hns3_info_show(struct hns3_nic_priv *priv)
3970 {
3971 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3972 
3973 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
3974 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
3975 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
3976 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
3977 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
3978 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
3979 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
3980 	dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
3981 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
3982 }
3983 
3984 static int hns3_client_init(struct hnae3_handle *handle)
3985 {
3986 	struct pci_dev *pdev = handle->pdev;
3987 	u16 alloc_tqps, max_rss_size;
3988 	struct hns3_nic_priv *priv;
3989 	struct net_device *netdev;
3990 	int ret;
3991 
3992 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3993 						    &max_rss_size);
3994 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3995 	if (!netdev)
3996 		return -ENOMEM;
3997 
3998 	priv = netdev_priv(netdev);
3999 	priv->dev = &pdev->dev;
4000 	priv->netdev = netdev;
4001 	priv->ae_handle = handle;
4002 	priv->tx_timeout_count = 0;
4003 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4004 
4005 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4006 
4007 	handle->kinfo.netdev = netdev;
4008 	handle->priv = (void *)priv;
4009 
4010 	hns3_init_mac_addr(netdev);
4011 
4012 	hns3_set_default_feature(netdev);
4013 
4014 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4015 	netdev->priv_flags |= IFF_UNICAST_FLT;
4016 	netdev->netdev_ops = &hns3_nic_netdev_ops;
4017 	SET_NETDEV_DEV(netdev, &pdev->dev);
4018 	hns3_ethtool_set_ops(netdev);
4019 
4020 	/* Carrier off reporting is important to ethtool even BEFORE open */
4021 	netif_carrier_off(netdev);
4022 
4023 	ret = hns3_get_ring_config(priv);
4024 	if (ret) {
4025 		ret = -ENOMEM;
4026 		goto out_get_ring_cfg;
4027 	}
4028 
4029 	ret = hns3_nic_alloc_vector_data(priv);
4030 	if (ret) {
4031 		ret = -ENOMEM;
4032 		goto out_alloc_vector_data;
4033 	}
4034 
4035 	ret = hns3_nic_init_vector_data(priv);
4036 	if (ret) {
4037 		ret = -ENOMEM;
4038 		goto out_init_vector_data;
4039 	}
4040 
4041 	ret = hns3_init_all_ring(priv);
4042 	if (ret) {
4043 		ret = -ENOMEM;
4044 		goto out_init_ring;
4045 	}
4046 
4047 	ret = hns3_init_phy(netdev);
4048 	if (ret)
4049 		goto out_init_phy;
4050 
4051 	ret = register_netdev(netdev);
4052 	if (ret) {
4053 		dev_err(priv->dev, "probe register netdev fail!\n");
4054 		goto out_reg_netdev_fail;
4055 	}
4056 
4057 	/* the device can work without cpu rmap, only aRFS needs it */
4058 	ret = hns3_set_rx_cpu_rmap(netdev);
4059 	if (ret)
4060 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4061 
4062 	ret = hns3_nic_init_irq(priv);
4063 	if (ret) {
4064 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4065 		hns3_free_rx_cpu_rmap(netdev);
4066 		goto out_init_irq_fail;
4067 	}
4068 
4069 	ret = hns3_client_start(handle);
4070 	if (ret) {
4071 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4072 		goto out_client_start;
4073 	}
4074 
4075 	hns3_dcbnl_setup(handle);
4076 
4077 	hns3_dbg_init(handle);
4078 
4079 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4080 	netdev->max_mtu = HNS3_MAX_MTU;
4081 
4082 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4083 
4084 	if (netif_msg_drv(handle))
4085 		hns3_info_show(priv);
4086 
4087 	return ret;
4088 
4089 out_client_start:
4090 	hns3_free_rx_cpu_rmap(netdev);
4091 	hns3_nic_uninit_irq(priv);
4092 out_init_irq_fail:
4093 	unregister_netdev(netdev);
4094 out_reg_netdev_fail:
4095 	hns3_uninit_phy(netdev);
4096 out_init_phy:
4097 	hns3_uninit_all_ring(priv);
4098 out_init_ring:
4099 	hns3_nic_uninit_vector_data(priv);
4100 out_init_vector_data:
4101 	hns3_nic_dealloc_vector_data(priv);
4102 out_alloc_vector_data:
4103 	priv->ring = NULL;
4104 out_get_ring_cfg:
4105 	priv->ae_handle = NULL;
4106 	free_netdev(netdev);
4107 	return ret;
4108 }
4109 
4110 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4111 {
4112 	struct net_device *netdev = handle->kinfo.netdev;
4113 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4114 	int ret;
4115 
4116 	hns3_remove_hw_addr(netdev);
4117 
4118 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4119 		unregister_netdev(netdev);
4120 
4121 	hns3_client_stop(handle);
4122 
4123 	hns3_uninit_phy(netdev);
4124 
4125 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4126 		netdev_warn(netdev, "already uninitialized\n");
4127 		goto out_netdev_free;
4128 	}
4129 
4130 	hns3_free_rx_cpu_rmap(netdev);
4131 
4132 	hns3_nic_uninit_irq(priv);
4133 
4134 	hns3_del_all_fd_rules(netdev, true);
4135 
4136 	hns3_clear_all_ring(handle, true);
4137 
4138 	hns3_nic_uninit_vector_data(priv);
4139 
4140 	hns3_nic_dealloc_vector_data(priv);
4141 
4142 	ret = hns3_uninit_all_ring(priv);
4143 	if (ret)
4144 		netdev_err(netdev, "uninit ring error\n");
4145 
4146 	hns3_put_ring_config(priv);
4147 
4148 	hns3_dbg_uninit(handle);
4149 
4150 out_netdev_free:
4151 	free_netdev(netdev);
4152 }
4153 
4154 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4155 {
4156 	struct net_device *netdev = handle->kinfo.netdev;
4157 
4158 	if (!netdev)
4159 		return;
4160 
4161 	if (linkup) {
4162 		netif_carrier_on(netdev);
4163 		netif_tx_wake_all_queues(netdev);
4164 		if (netif_msg_link(handle))
4165 			netdev_info(netdev, "link up\n");
4166 	} else {
4167 		netif_carrier_off(netdev);
4168 		netif_tx_stop_all_queues(netdev);
4169 		if (netif_msg_link(handle))
4170 			netdev_info(netdev, "link down\n");
4171 	}
4172 }
4173 
4174 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4175 {
4176 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4177 	struct net_device *ndev = kinfo->netdev;
4178 
4179 	if (tc > HNAE3_MAX_TC)
4180 		return -EINVAL;
4181 
4182 	if (!ndev)
4183 		return -ENODEV;
4184 
4185 	return hns3_nic_set_real_num_queue(ndev);
4186 }
4187 
4188 static int hns3_recover_hw_addr(struct net_device *ndev)
4189 {
4190 	struct netdev_hw_addr_list *list;
4191 	struct netdev_hw_addr *ha, *tmp;
4192 	int ret = 0;
4193 
4194 	netif_addr_lock_bh(ndev);
4195 	/* go through and sync uc_addr entries to the device */
4196 	list = &ndev->uc;
4197 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
4198 		ret = hns3_nic_uc_sync(ndev, ha->addr);
4199 		if (ret)
4200 			goto out;
4201 	}
4202 
4203 	/* go through and sync mc_addr entries to the device */
4204 	list = &ndev->mc;
4205 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
4206 		ret = hns3_nic_mc_sync(ndev, ha->addr);
4207 		if (ret)
4208 			goto out;
4209 	}
4210 
4211 out:
4212 	netif_addr_unlock_bh(ndev);
4213 	return ret;
4214 }
4215 
4216 static void hns3_remove_hw_addr(struct net_device *netdev)
4217 {
4218 	struct netdev_hw_addr_list *list;
4219 	struct netdev_hw_addr *ha, *tmp;
4220 
4221 	hns3_nic_uc_unsync(netdev, netdev->dev_addr);
4222 
4223 	netif_addr_lock_bh(netdev);
4224 	/* go through and unsync uc_addr entries to the device */
4225 	list = &netdev->uc;
4226 	list_for_each_entry_safe(ha, tmp, &list->list, list)
4227 		hns3_nic_uc_unsync(netdev, ha->addr);
4228 
4229 	/* go through and unsync mc_addr entries to the device */
4230 	list = &netdev->mc;
4231 	list_for_each_entry_safe(ha, tmp, &list->list, list)
4232 		if (ha->refcount > 1)
4233 			hns3_nic_mc_unsync(netdev, ha->addr);
4234 
4235 	netif_addr_unlock_bh(netdev);
4236 }
4237 
4238 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4239 {
4240 	while (ring->next_to_clean != ring->next_to_use) {
4241 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4242 		hns3_free_buffer_detach(ring, ring->next_to_clean);
4243 		ring_ptr_move_fw(ring, next_to_clean);
4244 	}
4245 }
4246 
4247 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4248 {
4249 	struct hns3_desc_cb res_cbs;
4250 	int ret;
4251 
4252 	while (ring->next_to_use != ring->next_to_clean) {
4253 		/* When a buffer is not reused, it's memory has been
4254 		 * freed in hns3_handle_rx_bd or will be freed by
4255 		 * stack, so we need to replace the buffer here.
4256 		 */
4257 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4258 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
4259 			if (ret) {
4260 				u64_stats_update_begin(&ring->syncp);
4261 				ring->stats.sw_err_cnt++;
4262 				u64_stats_update_end(&ring->syncp);
4263 				/* if alloc new buffer fail, exit directly
4264 				 * and reclear in up flow.
4265 				 */
4266 				netdev_warn(ring_to_netdev(ring),
4267 					    "reserve buffer map failed, ret = %d\n",
4268 					    ret);
4269 				return ret;
4270 			}
4271 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4272 		}
4273 		ring_ptr_move_fw(ring, next_to_use);
4274 	}
4275 
4276 	/* Free the pending skb in rx ring */
4277 	if (ring->skb) {
4278 		dev_kfree_skb_any(ring->skb);
4279 		ring->skb = NULL;
4280 		ring->pending_buf = 0;
4281 	}
4282 
4283 	return 0;
4284 }
4285 
4286 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4287 {
4288 	while (ring->next_to_use != ring->next_to_clean) {
4289 		/* When a buffer is not reused, it's memory has been
4290 		 * freed in hns3_handle_rx_bd or will be freed by
4291 		 * stack, so only need to unmap the buffer here.
4292 		 */
4293 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4294 			hns3_unmap_buffer(ring,
4295 					  &ring->desc_cb[ring->next_to_use]);
4296 			ring->desc_cb[ring->next_to_use].dma = 0;
4297 		}
4298 
4299 		ring_ptr_move_fw(ring, next_to_use);
4300 	}
4301 }
4302 
4303 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4304 {
4305 	struct net_device *ndev = h->kinfo.netdev;
4306 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4307 	u32 i;
4308 
4309 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4310 		struct hns3_enet_ring *ring;
4311 
4312 		ring = &priv->ring[i];
4313 		hns3_clear_tx_ring(ring);
4314 
4315 		ring = &priv->ring[i + h->kinfo.num_tqps];
4316 		/* Continue to clear other rings even if clearing some
4317 		 * rings failed.
4318 		 */
4319 		if (force)
4320 			hns3_force_clear_rx_ring(ring);
4321 		else
4322 			hns3_clear_rx_ring(ring);
4323 	}
4324 }
4325 
4326 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4327 {
4328 	struct net_device *ndev = h->kinfo.netdev;
4329 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4330 	struct hns3_enet_ring *rx_ring;
4331 	int i, j;
4332 	int ret;
4333 
4334 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4335 		ret = h->ae_algo->ops->reset_queue(h, i);
4336 		if (ret)
4337 			return ret;
4338 
4339 		hns3_init_ring_hw(&priv->ring[i]);
4340 
4341 		/* We need to clear tx ring here because self test will
4342 		 * use the ring and will not run down before up
4343 		 */
4344 		hns3_clear_tx_ring(&priv->ring[i]);
4345 		priv->ring[i].next_to_clean = 0;
4346 		priv->ring[i].next_to_use = 0;
4347 
4348 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4349 		hns3_init_ring_hw(rx_ring);
4350 		ret = hns3_clear_rx_ring(rx_ring);
4351 		if (ret)
4352 			return ret;
4353 
4354 		/* We can not know the hardware head and tail when this
4355 		 * function is called in reset flow, so we reuse all desc.
4356 		 */
4357 		for (j = 0; j < rx_ring->desc_num; j++)
4358 			hns3_reuse_buffer(rx_ring, j);
4359 
4360 		rx_ring->next_to_clean = 0;
4361 		rx_ring->next_to_use = 0;
4362 	}
4363 
4364 	hns3_init_tx_ring_tc(priv);
4365 
4366 	return 0;
4367 }
4368 
4369 static void hns3_store_coal(struct hns3_nic_priv *priv)
4370 {
4371 	/* ethtool only support setting and querying one coal
4372 	 * configuration for now, so save the vector 0' coal
4373 	 * configuration here in order to restore it.
4374 	 */
4375 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4376 	       sizeof(struct hns3_enet_coalesce));
4377 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4378 	       sizeof(struct hns3_enet_coalesce));
4379 }
4380 
4381 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4382 {
4383 	u16 vector_num = priv->vector_num;
4384 	int i;
4385 
4386 	for (i = 0; i < vector_num; i++) {
4387 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4388 		       sizeof(struct hns3_enet_coalesce));
4389 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4390 		       sizeof(struct hns3_enet_coalesce));
4391 	}
4392 }
4393 
4394 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4395 {
4396 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4397 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4398 	struct net_device *ndev = kinfo->netdev;
4399 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4400 
4401 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4402 		return 0;
4403 
4404 	/* it is cumbersome for hardware to pick-and-choose entries for deletion
4405 	 * from table space. Hence, for function reset software intervention is
4406 	 * required to delete the entries
4407 	 */
4408 	if (hns3_dev_ongoing_func_reset(ae_dev)) {
4409 		hns3_remove_hw_addr(ndev);
4410 		hns3_del_all_fd_rules(ndev, false);
4411 	}
4412 
4413 	if (!netif_running(ndev))
4414 		return 0;
4415 
4416 	return hns3_nic_net_stop(ndev);
4417 }
4418 
4419 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4420 {
4421 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4422 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4423 	int ret = 0;
4424 
4425 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4426 
4427 	if (netif_running(kinfo->netdev)) {
4428 		ret = hns3_nic_net_open(kinfo->netdev);
4429 		if (ret) {
4430 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4431 			netdev_err(kinfo->netdev,
4432 				   "net up fail, ret=%d!\n", ret);
4433 			return ret;
4434 		}
4435 	}
4436 
4437 	return ret;
4438 }
4439 
4440 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4441 {
4442 	struct net_device *netdev = handle->kinfo.netdev;
4443 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4444 	int ret;
4445 
4446 	/* Carrier off reporting is important to ethtool even BEFORE open */
4447 	netif_carrier_off(netdev);
4448 
4449 	ret = hns3_get_ring_config(priv);
4450 	if (ret)
4451 		return ret;
4452 
4453 	ret = hns3_nic_alloc_vector_data(priv);
4454 	if (ret)
4455 		goto err_put_ring;
4456 
4457 	hns3_restore_coal(priv);
4458 
4459 	ret = hns3_nic_init_vector_data(priv);
4460 	if (ret)
4461 		goto err_dealloc_vector;
4462 
4463 	ret = hns3_init_all_ring(priv);
4464 	if (ret)
4465 		goto err_uninit_vector;
4466 
4467 	/* the device can work without cpu rmap, only aRFS needs it */
4468 	ret = hns3_set_rx_cpu_rmap(netdev);
4469 	if (ret)
4470 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4471 
4472 	ret = hns3_nic_init_irq(priv);
4473 	if (ret) {
4474 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4475 		hns3_free_rx_cpu_rmap(netdev);
4476 		goto err_init_irq_fail;
4477 	}
4478 
4479 	ret = hns3_client_start(handle);
4480 	if (ret) {
4481 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4482 		goto err_client_start_fail;
4483 	}
4484 
4485 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4486 
4487 	return ret;
4488 
4489 err_client_start_fail:
4490 	hns3_free_rx_cpu_rmap(netdev);
4491 	hns3_nic_uninit_irq(priv);
4492 err_init_irq_fail:
4493 	hns3_uninit_all_ring(priv);
4494 err_uninit_vector:
4495 	hns3_nic_uninit_vector_data(priv);
4496 err_dealloc_vector:
4497 	hns3_nic_dealloc_vector_data(priv);
4498 err_put_ring:
4499 	hns3_put_ring_config(priv);
4500 
4501 	return ret;
4502 }
4503 
4504 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4505 {
4506 	struct net_device *netdev = handle->kinfo.netdev;
4507 	bool vlan_filter_enable;
4508 	int ret;
4509 
4510 	ret = hns3_init_mac_addr(netdev);
4511 	if (ret)
4512 		return ret;
4513 
4514 	ret = hns3_recover_hw_addr(netdev);
4515 	if (ret)
4516 		return ret;
4517 
4518 	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4519 	if (ret)
4520 		return ret;
4521 
4522 	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4523 	hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4524 
4525 	if (handle->ae_algo->ops->restore_vlan_table)
4526 		handle->ae_algo->ops->restore_vlan_table(handle);
4527 
4528 	return hns3_restore_fd_rules(netdev);
4529 }
4530 
4531 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4532 {
4533 	struct net_device *netdev = handle->kinfo.netdev;
4534 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4535 	int ret;
4536 
4537 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4538 		netdev_warn(netdev, "already uninitialized\n");
4539 		return 0;
4540 	}
4541 
4542 	hns3_free_rx_cpu_rmap(netdev);
4543 	hns3_nic_uninit_irq(priv);
4544 	hns3_clear_all_ring(handle, true);
4545 	hns3_reset_tx_queue(priv->ae_handle);
4546 
4547 	hns3_nic_uninit_vector_data(priv);
4548 
4549 	hns3_store_coal(priv);
4550 
4551 	hns3_nic_dealloc_vector_data(priv);
4552 
4553 	ret = hns3_uninit_all_ring(priv);
4554 	if (ret)
4555 		netdev_err(netdev, "uninit ring error\n");
4556 
4557 	hns3_put_ring_config(priv);
4558 
4559 	return ret;
4560 }
4561 
4562 static int hns3_reset_notify(struct hnae3_handle *handle,
4563 			     enum hnae3_reset_notify_type type)
4564 {
4565 	int ret = 0;
4566 
4567 	switch (type) {
4568 	case HNAE3_UP_CLIENT:
4569 		ret = hns3_reset_notify_up_enet(handle);
4570 		break;
4571 	case HNAE3_DOWN_CLIENT:
4572 		ret = hns3_reset_notify_down_enet(handle);
4573 		break;
4574 	case HNAE3_INIT_CLIENT:
4575 		ret = hns3_reset_notify_init_enet(handle);
4576 		break;
4577 	case HNAE3_UNINIT_CLIENT:
4578 		ret = hns3_reset_notify_uninit_enet(handle);
4579 		break;
4580 	case HNAE3_RESTORE_CLIENT:
4581 		ret = hns3_reset_notify_restore_enet(handle);
4582 		break;
4583 	default:
4584 		break;
4585 	}
4586 
4587 	return ret;
4588 }
4589 
4590 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4591 				bool rxfh_configured)
4592 {
4593 	int ret;
4594 
4595 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4596 						 rxfh_configured);
4597 	if (ret) {
4598 		dev_err(&handle->pdev->dev,
4599 			"Change tqp num(%u) fail.\n", new_tqp_num);
4600 		return ret;
4601 	}
4602 
4603 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4604 	if (ret)
4605 		return ret;
4606 
4607 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4608 	if (ret)
4609 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4610 
4611 	return ret;
4612 }
4613 
4614 int hns3_set_channels(struct net_device *netdev,
4615 		      struct ethtool_channels *ch)
4616 {
4617 	struct hnae3_handle *h = hns3_get_handle(netdev);
4618 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4619 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4620 	u32 new_tqp_num = ch->combined_count;
4621 	u16 org_tqp_num;
4622 	int ret;
4623 
4624 	if (hns3_nic_resetting(netdev))
4625 		return -EBUSY;
4626 
4627 	if (ch->rx_count || ch->tx_count)
4628 		return -EINVAL;
4629 
4630 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4631 	    new_tqp_num < 1) {
4632 		dev_err(&netdev->dev,
4633 			"Change tqps fail, the tqp range is from 1 to %u",
4634 			hns3_get_max_available_channels(h));
4635 		return -EINVAL;
4636 	}
4637 
4638 	if (kinfo->rss_size == new_tqp_num)
4639 		return 0;
4640 
4641 	netif_dbg(h, drv, netdev,
4642 		  "set channels: tqp_num=%u, rxfh=%d\n",
4643 		  new_tqp_num, rxfh_configured);
4644 
4645 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4646 	if (ret)
4647 		return ret;
4648 
4649 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4650 	if (ret)
4651 		return ret;
4652 
4653 	org_tqp_num = h->kinfo.num_tqps;
4654 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4655 	if (ret) {
4656 		int ret1;
4657 
4658 		netdev_warn(netdev,
4659 			    "Change channels fail, revert to old value\n");
4660 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4661 		if (ret1) {
4662 			netdev_err(netdev,
4663 				   "revert to old channel fail\n");
4664 			return ret1;
4665 		}
4666 
4667 		return ret;
4668 	}
4669 
4670 	return 0;
4671 }
4672 
4673 static const struct hns3_hw_error_info hns3_hw_err[] = {
4674 	{ .type = HNAE3_PPU_POISON_ERROR,
4675 	  .msg = "PPU poison" },
4676 	{ .type = HNAE3_CMDQ_ECC_ERROR,
4677 	  .msg = "IMP CMDQ error" },
4678 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
4679 	  .msg = "IMP RD poison" },
4680 };
4681 
4682 static void hns3_process_hw_error(struct hnae3_handle *handle,
4683 				  enum hnae3_hw_error_type type)
4684 {
4685 	int i;
4686 
4687 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4688 		if (hns3_hw_err[i].type == type) {
4689 			dev_err(&handle->pdev->dev, "Detected %s!\n",
4690 				hns3_hw_err[i].msg);
4691 			break;
4692 		}
4693 	}
4694 }
4695 
4696 static const struct hnae3_client_ops client_ops = {
4697 	.init_instance = hns3_client_init,
4698 	.uninit_instance = hns3_client_uninit,
4699 	.link_status_change = hns3_link_status_change,
4700 	.setup_tc = hns3_client_setup_tc,
4701 	.reset_notify = hns3_reset_notify,
4702 	.process_hw_error = hns3_process_hw_error,
4703 };
4704 
4705 /* hns3_init_module - Driver registration routine
4706  * hns3_init_module is the first routine called when the driver is
4707  * loaded. All it does is register with the PCI subsystem.
4708  */
4709 static int __init hns3_init_module(void)
4710 {
4711 	int ret;
4712 
4713 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4714 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4715 
4716 	client.type = HNAE3_CLIENT_KNIC;
4717 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4718 		 hns3_driver_name);
4719 
4720 	client.ops = &client_ops;
4721 
4722 	INIT_LIST_HEAD(&client.node);
4723 
4724 	hns3_dbg_register_debugfs(hns3_driver_name);
4725 
4726 	ret = hnae3_register_client(&client);
4727 	if (ret)
4728 		goto err_reg_client;
4729 
4730 	ret = pci_register_driver(&hns3_driver);
4731 	if (ret)
4732 		goto err_reg_driver;
4733 
4734 	return ret;
4735 
4736 err_reg_driver:
4737 	hnae3_unregister_client(&client);
4738 err_reg_client:
4739 	hns3_dbg_unregister_debugfs();
4740 	return ret;
4741 }
4742 module_init(hns3_init_module);
4743 
4744 /* hns3_exit_module - Driver exit cleanup routine
4745  * hns3_exit_module is called just before the driver is removed
4746  * from memory.
4747  */
4748 static void __exit hns3_exit_module(void)
4749 {
4750 	pci_unregister_driver(&hns3_driver);
4751 	hnae3_unregister_client(&client);
4752 	hns3_dbg_unregister_debugfs();
4753 }
4754 module_exit(hns3_exit_module);
4755 
4756 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4757 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4758 MODULE_LICENSE("GPL");
4759 MODULE_ALIAS("pci:hns-nic");
4760 MODULE_VERSION(HNS3_MOD_VERSION);
4761