1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25 
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34 
35 #define hns3_set_field(origin, shift, val)	((origin) |= (val) << (shift))
36 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37 
38 #define hns3_rl_err(fmt, ...)						\
39 	do {								\
40 		if (net_ratelimit())					\
41 			netdev_err(fmt, ##__VA_ARGS__);			\
42 	} while (0)
43 
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45 
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48 			"Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51 
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55 
56 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
57 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
58 
59 #define HNS3_INNER_VLAN_TAG	1
60 #define HNS3_OUTER_VLAN_TAG	2
61 
62 #define HNS3_MIN_TX_LEN		33U
63 
64 /* hns3_pci_tbl - PCI Device ID Table
65  *
66  * Last entry must be all 0s
67  *
68  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
69  *   Class, Class Mask, private data (not used) }
70  */
71 static const struct pci_device_id hns3_pci_tbl[] = {
72 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
73 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
74 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
75 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
77 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
79 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
81 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
83 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
84 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
85 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
87 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
88 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
89 	/* required last entry */
90 	{0, }
91 };
92 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
93 
94 static irqreturn_t hns3_irq_handle(int irq, void *vector)
95 {
96 	struct hns3_enet_tqp_vector *tqp_vector = vector;
97 
98 	napi_schedule_irqoff(&tqp_vector->napi);
99 
100 	return IRQ_HANDLED;
101 }
102 
103 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
104 {
105 	struct hns3_enet_tqp_vector *tqp_vectors;
106 	unsigned int i;
107 
108 	for (i = 0; i < priv->vector_num; i++) {
109 		tqp_vectors = &priv->tqp_vector[i];
110 
111 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
112 			continue;
113 
114 		/* clear the affinity mask */
115 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
116 
117 		/* release the irq resource */
118 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
119 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
120 	}
121 }
122 
123 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
124 {
125 	struct hns3_enet_tqp_vector *tqp_vectors;
126 	int txrx_int_idx = 0;
127 	int rx_int_idx = 0;
128 	int tx_int_idx = 0;
129 	unsigned int i;
130 	int ret;
131 
132 	for (i = 0; i < priv->vector_num; i++) {
133 		tqp_vectors = &priv->tqp_vector[i];
134 
135 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
136 			continue;
137 
138 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
139 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
140 				 "%s-%s-%s-%d", hns3_driver_name,
141 				 pci_name(priv->ae_handle->pdev),
142 				 "TxRx", txrx_int_idx++);
143 			txrx_int_idx++;
144 		} else if (tqp_vectors->rx_group.ring) {
145 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
146 				 "%s-%s-%s-%d", hns3_driver_name,
147 				 pci_name(priv->ae_handle->pdev),
148 				 "Rx", rx_int_idx++);
149 		} else if (tqp_vectors->tx_group.ring) {
150 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
151 				 "%s-%s-%s-%d", hns3_driver_name,
152 				 pci_name(priv->ae_handle->pdev),
153 				 "Tx", tx_int_idx++);
154 		} else {
155 			/* Skip this unused q_vector */
156 			continue;
157 		}
158 
159 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
160 
161 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
162 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
163 				  tqp_vectors->name, tqp_vectors);
164 		if (ret) {
165 			netdev_err(priv->netdev, "request irq(%d) fail\n",
166 				   tqp_vectors->vector_irq);
167 			hns3_nic_uninit_irq(priv);
168 			return ret;
169 		}
170 
171 		irq_set_affinity_hint(tqp_vectors->vector_irq,
172 				      &tqp_vectors->affinity_mask);
173 
174 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
175 	}
176 
177 	return 0;
178 }
179 
180 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
181 				 u32 mask_en)
182 {
183 	writel(mask_en, tqp_vector->mask_addr);
184 }
185 
186 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188 	napi_enable(&tqp_vector->napi);
189 	enable_irq(tqp_vector->vector_irq);
190 
191 	/* enable vector */
192 	hns3_mask_vector_irq(tqp_vector, 1);
193 }
194 
195 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
196 {
197 	/* disable vector */
198 	hns3_mask_vector_irq(tqp_vector, 0);
199 
200 	disable_irq(tqp_vector->vector_irq);
201 	napi_disable(&tqp_vector->napi);
202 }
203 
204 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
205 				 u32 rl_value)
206 {
207 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
208 
209 	/* this defines the configuration for RL (Interrupt Rate Limiter).
210 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
211 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
212 	 */
213 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
214 	    !tqp_vector->rx_group.coal.adapt_enable)
215 		/* According to the hardware, the range of rl_reg is
216 		 * 0-59 and the unit is 4.
217 		 */
218 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
219 
220 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
221 }
222 
223 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
224 				    u32 gl_value)
225 {
226 	u32 new_val;
227 
228 	if (tqp_vector->rx_group.coal.unit_1us)
229 		new_val = gl_value | HNS3_INT_GL_1US;
230 	else
231 		new_val = hns3_gl_usec_to_reg(gl_value);
232 
233 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
234 }
235 
236 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
237 				    u32 gl_value)
238 {
239 	u32 new_val;
240 
241 	if (tqp_vector->tx_group.coal.unit_1us)
242 		new_val = gl_value | HNS3_INT_GL_1US;
243 	else
244 		new_val = hns3_gl_usec_to_reg(gl_value);
245 
246 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
247 }
248 
249 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
250 				    u32 ql_value)
251 {
252 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
253 }
254 
255 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
256 				    u32 ql_value)
257 {
258 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
259 }
260 
261 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
262 				      struct hns3_nic_priv *priv)
263 {
264 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
265 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
266 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
267 	struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
268 	struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
269 
270 	tx_coal->adapt_enable = ptx_coal->adapt_enable;
271 	rx_coal->adapt_enable = prx_coal->adapt_enable;
272 
273 	tx_coal->int_gl = ptx_coal->int_gl;
274 	rx_coal->int_gl = prx_coal->int_gl;
275 
276 	rx_coal->flow_level = prx_coal->flow_level;
277 	tx_coal->flow_level = ptx_coal->flow_level;
278 
279 	/* device version above V3(include V3), GL can configure 1us
280 	 * unit, so uses 1us unit.
281 	 */
282 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
283 		tx_coal->unit_1us = 1;
284 		rx_coal->unit_1us = 1;
285 	}
286 
287 	if (ae_dev->dev_specs.int_ql_max) {
288 		tx_coal->ql_enable = 1;
289 		rx_coal->ql_enable = 1;
290 		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
291 		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
292 		tx_coal->int_ql = ptx_coal->int_ql;
293 		rx_coal->int_ql = prx_coal->int_ql;
294 	}
295 }
296 
297 static void
298 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
299 			     struct hns3_nic_priv *priv)
300 {
301 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
302 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
303 	struct hnae3_handle *h = priv->ae_handle;
304 
305 	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
306 	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
307 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
308 
309 	if (tx_coal->ql_enable)
310 		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
311 
312 	if (rx_coal->ql_enable)
313 		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
314 }
315 
316 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
317 {
318 	struct hnae3_handle *h = hns3_get_handle(netdev);
319 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
320 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
321 	unsigned int queue_size = kinfo->num_tqps;
322 	int i, ret;
323 
324 	if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
325 		netdev_reset_tc(netdev);
326 	} else {
327 		ret = netdev_set_num_tc(netdev, tc_info->num_tc);
328 		if (ret) {
329 			netdev_err(netdev,
330 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
331 			return ret;
332 		}
333 
334 		for (i = 0; i < HNAE3_MAX_TC; i++) {
335 			if (!test_bit(i, &tc_info->tc_en))
336 				continue;
337 
338 			netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
339 					    tc_info->tqp_offset[i]);
340 		}
341 	}
342 
343 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
344 	if (ret) {
345 		netdev_err(netdev,
346 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
347 		return ret;
348 	}
349 
350 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
351 	if (ret) {
352 		netdev_err(netdev,
353 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
354 		return ret;
355 	}
356 
357 	return 0;
358 }
359 
360 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
361 {
362 	u16 alloc_tqps, max_rss_size, rss_size;
363 
364 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
365 	rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
366 
367 	return min_t(u16, rss_size, max_rss_size);
368 }
369 
370 static void hns3_tqp_enable(struct hnae3_queue *tqp)
371 {
372 	u32 rcb_reg;
373 
374 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
375 	rcb_reg |= BIT(HNS3_RING_EN_B);
376 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
377 }
378 
379 static void hns3_tqp_disable(struct hnae3_queue *tqp)
380 {
381 	u32 rcb_reg;
382 
383 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
384 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
385 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
386 }
387 
388 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
389 {
390 #ifdef CONFIG_RFS_ACCEL
391 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
392 	netdev->rx_cpu_rmap = NULL;
393 #endif
394 }
395 
396 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
397 {
398 #ifdef CONFIG_RFS_ACCEL
399 	struct hns3_nic_priv *priv = netdev_priv(netdev);
400 	struct hns3_enet_tqp_vector *tqp_vector;
401 	int i, ret;
402 
403 	if (!netdev->rx_cpu_rmap) {
404 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
405 		if (!netdev->rx_cpu_rmap)
406 			return -ENOMEM;
407 	}
408 
409 	for (i = 0; i < priv->vector_num; i++) {
410 		tqp_vector = &priv->tqp_vector[i];
411 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
412 				       tqp_vector->vector_irq);
413 		if (ret) {
414 			hns3_free_rx_cpu_rmap(netdev);
415 			return ret;
416 		}
417 	}
418 #endif
419 	return 0;
420 }
421 
422 static int hns3_nic_net_up(struct net_device *netdev)
423 {
424 	struct hns3_nic_priv *priv = netdev_priv(netdev);
425 	struct hnae3_handle *h = priv->ae_handle;
426 	int i, j;
427 	int ret;
428 
429 	ret = hns3_nic_reset_all_ring(h);
430 	if (ret)
431 		return ret;
432 
433 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
434 
435 	/* enable the vectors */
436 	for (i = 0; i < priv->vector_num; i++)
437 		hns3_vector_enable(&priv->tqp_vector[i]);
438 
439 	/* enable rcb */
440 	for (j = 0; j < h->kinfo.num_tqps; j++)
441 		hns3_tqp_enable(h->kinfo.tqp[j]);
442 
443 	/* start the ae_dev */
444 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
445 	if (ret) {
446 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
447 		while (j--)
448 			hns3_tqp_disable(h->kinfo.tqp[j]);
449 
450 		for (j = i - 1; j >= 0; j--)
451 			hns3_vector_disable(&priv->tqp_vector[j]);
452 	}
453 
454 	return ret;
455 }
456 
457 static void hns3_config_xps(struct hns3_nic_priv *priv)
458 {
459 	int i;
460 
461 	for (i = 0; i < priv->vector_num; i++) {
462 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
463 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
464 
465 		while (ring) {
466 			int ret;
467 
468 			ret = netif_set_xps_queue(priv->netdev,
469 						  &tqp_vector->affinity_mask,
470 						  ring->tqp->tqp_index);
471 			if (ret)
472 				netdev_warn(priv->netdev,
473 					    "set xps queue failed: %d", ret);
474 
475 			ring = ring->next;
476 		}
477 	}
478 }
479 
480 static int hns3_nic_net_open(struct net_device *netdev)
481 {
482 	struct hns3_nic_priv *priv = netdev_priv(netdev);
483 	struct hnae3_handle *h = hns3_get_handle(netdev);
484 	struct hnae3_knic_private_info *kinfo;
485 	int i, ret;
486 
487 	if (hns3_nic_resetting(netdev))
488 		return -EBUSY;
489 
490 	netif_carrier_off(netdev);
491 
492 	ret = hns3_nic_set_real_num_queue(netdev);
493 	if (ret)
494 		return ret;
495 
496 	ret = hns3_nic_net_up(netdev);
497 	if (ret) {
498 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
499 		return ret;
500 	}
501 
502 	kinfo = &h->kinfo;
503 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
504 		netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
505 
506 	if (h->ae_algo->ops->set_timer_task)
507 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
508 
509 	hns3_config_xps(priv);
510 
511 	netif_dbg(h, drv, netdev, "net open\n");
512 
513 	return 0;
514 }
515 
516 static void hns3_reset_tx_queue(struct hnae3_handle *h)
517 {
518 	struct net_device *ndev = h->kinfo.netdev;
519 	struct hns3_nic_priv *priv = netdev_priv(ndev);
520 	struct netdev_queue *dev_queue;
521 	u32 i;
522 
523 	for (i = 0; i < h->kinfo.num_tqps; i++) {
524 		dev_queue = netdev_get_tx_queue(ndev,
525 						priv->ring[i].queue_index);
526 		netdev_tx_reset_queue(dev_queue);
527 	}
528 }
529 
530 static void hns3_nic_net_down(struct net_device *netdev)
531 {
532 	struct hns3_nic_priv *priv = netdev_priv(netdev);
533 	struct hnae3_handle *h = hns3_get_handle(netdev);
534 	const struct hnae3_ae_ops *ops;
535 	int i;
536 
537 	/* disable vectors */
538 	for (i = 0; i < priv->vector_num; i++)
539 		hns3_vector_disable(&priv->tqp_vector[i]);
540 
541 	/* disable rcb */
542 	for (i = 0; i < h->kinfo.num_tqps; i++)
543 		hns3_tqp_disable(h->kinfo.tqp[i]);
544 
545 	/* stop ae_dev */
546 	ops = priv->ae_handle->ae_algo->ops;
547 	if (ops->stop)
548 		ops->stop(priv->ae_handle);
549 
550 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
551 	 * during reset process, because driver may not be able
552 	 * to disable the ring through firmware when downing the netdev.
553 	 */
554 	if (!hns3_nic_resetting(netdev))
555 		hns3_clear_all_ring(priv->ae_handle, false);
556 
557 	hns3_reset_tx_queue(priv->ae_handle);
558 }
559 
560 static int hns3_nic_net_stop(struct net_device *netdev)
561 {
562 	struct hns3_nic_priv *priv = netdev_priv(netdev);
563 	struct hnae3_handle *h = hns3_get_handle(netdev);
564 
565 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
566 		return 0;
567 
568 	netif_dbg(h, drv, netdev, "net stop\n");
569 
570 	if (h->ae_algo->ops->set_timer_task)
571 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
572 
573 	netif_carrier_off(netdev);
574 	netif_tx_disable(netdev);
575 
576 	hns3_nic_net_down(netdev);
577 
578 	return 0;
579 }
580 
581 static int hns3_nic_uc_sync(struct net_device *netdev,
582 			    const unsigned char *addr)
583 {
584 	struct hnae3_handle *h = hns3_get_handle(netdev);
585 
586 	if (h->ae_algo->ops->add_uc_addr)
587 		return h->ae_algo->ops->add_uc_addr(h, addr);
588 
589 	return 0;
590 }
591 
592 static int hns3_nic_uc_unsync(struct net_device *netdev,
593 			      const unsigned char *addr)
594 {
595 	struct hnae3_handle *h = hns3_get_handle(netdev);
596 
597 	/* need ignore the request of removing device address, because
598 	 * we store the device address and other addresses of uc list
599 	 * in the function's mac filter list.
600 	 */
601 	if (ether_addr_equal(addr, netdev->dev_addr))
602 		return 0;
603 
604 	if (h->ae_algo->ops->rm_uc_addr)
605 		return h->ae_algo->ops->rm_uc_addr(h, addr);
606 
607 	return 0;
608 }
609 
610 static int hns3_nic_mc_sync(struct net_device *netdev,
611 			    const unsigned char *addr)
612 {
613 	struct hnae3_handle *h = hns3_get_handle(netdev);
614 
615 	if (h->ae_algo->ops->add_mc_addr)
616 		return h->ae_algo->ops->add_mc_addr(h, addr);
617 
618 	return 0;
619 }
620 
621 static int hns3_nic_mc_unsync(struct net_device *netdev,
622 			      const unsigned char *addr)
623 {
624 	struct hnae3_handle *h = hns3_get_handle(netdev);
625 
626 	if (h->ae_algo->ops->rm_mc_addr)
627 		return h->ae_algo->ops->rm_mc_addr(h, addr);
628 
629 	return 0;
630 }
631 
632 static u8 hns3_get_netdev_flags(struct net_device *netdev)
633 {
634 	u8 flags = 0;
635 
636 	if (netdev->flags & IFF_PROMISC) {
637 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
638 	} else {
639 		flags |= HNAE3_VLAN_FLTR;
640 		if (netdev->flags & IFF_ALLMULTI)
641 			flags |= HNAE3_USER_MPE;
642 	}
643 
644 	return flags;
645 }
646 
647 static void hns3_nic_set_rx_mode(struct net_device *netdev)
648 {
649 	struct hnae3_handle *h = hns3_get_handle(netdev);
650 	u8 new_flags;
651 
652 	new_flags = hns3_get_netdev_flags(netdev);
653 
654 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
655 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
656 
657 	/* User mode Promisc mode enable and vlan filtering is disabled to
658 	 * let all packets in.
659 	 */
660 	h->netdev_flags = new_flags;
661 	hns3_request_update_promisc_mode(h);
662 }
663 
664 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
665 {
666 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
667 
668 	if (ops->request_update_promisc_mode)
669 		ops->request_update_promisc_mode(handle);
670 }
671 
672 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
673 {
674 	struct hns3_nic_priv *priv = netdev_priv(netdev);
675 	struct hnae3_handle *h = priv->ae_handle;
676 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(h->pdev);
677 	bool last_state;
678 
679 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
680 	    h->ae_algo->ops->enable_vlan_filter) {
681 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
682 		if (enable != last_state) {
683 			netdev_info(netdev,
684 				    "%s vlan filter\n",
685 				    enable ? "enable" : "disable");
686 			h->ae_algo->ops->enable_vlan_filter(h, enable);
687 		}
688 	}
689 }
690 
691 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
692 			u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
693 {
694 	u32 l4_offset, hdr_len;
695 	union l3_hdr_info l3;
696 	union l4_hdr_info l4;
697 	u32 l4_paylen;
698 	int ret;
699 
700 	if (!skb_is_gso(skb))
701 		return 0;
702 
703 	ret = skb_cow_head(skb, 0);
704 	if (unlikely(ret < 0))
705 		return ret;
706 
707 	l3.hdr = skb_network_header(skb);
708 	l4.hdr = skb_transport_header(skb);
709 
710 	/* Software should clear the IPv4's checksum field when tso is
711 	 * needed.
712 	 */
713 	if (l3.v4->version == 4)
714 		l3.v4->check = 0;
715 
716 	/* tunnel packet */
717 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
718 					 SKB_GSO_GRE_CSUM |
719 					 SKB_GSO_UDP_TUNNEL |
720 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
721 		/* reset l3&l4 pointers from outer to inner headers */
722 		l3.hdr = skb_inner_network_header(skb);
723 		l4.hdr = skb_inner_transport_header(skb);
724 
725 		/* Software should clear the IPv4's checksum field when
726 		 * tso is needed.
727 		 */
728 		if (l3.v4->version == 4)
729 			l3.v4->check = 0;
730 	}
731 
732 	/* normal or tunnel packet */
733 	l4_offset = l4.hdr - skb->data;
734 
735 	/* remove payload length from inner pseudo checksum when tso */
736 	l4_paylen = skb->len - l4_offset;
737 
738 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
739 		hdr_len = sizeof(*l4.udp) + l4_offset;
740 		csum_replace_by_diff(&l4.udp->check,
741 				     (__force __wsum)htonl(l4_paylen));
742 	} else {
743 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
744 		csum_replace_by_diff(&l4.tcp->check,
745 				     (__force __wsum)htonl(l4_paylen));
746 	}
747 
748 	*send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
749 
750 	/* find the txbd field values */
751 	*paylen_fdop_ol4cs = skb->len - hdr_len;
752 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
753 
754 	/* offload outer UDP header checksum */
755 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
756 		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
757 
758 	/* get MSS for TSO */
759 	*mss = skb_shinfo(skb)->gso_size;
760 
761 	trace_hns3_tso(skb);
762 
763 	return 0;
764 }
765 
766 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
767 				u8 *il4_proto)
768 {
769 	union l3_hdr_info l3;
770 	unsigned char *l4_hdr;
771 	unsigned char *exthdr;
772 	u8 l4_proto_tmp;
773 	__be16 frag_off;
774 
775 	/* find outer header point */
776 	l3.hdr = skb_network_header(skb);
777 	l4_hdr = skb_transport_header(skb);
778 
779 	if (skb->protocol == htons(ETH_P_IPV6)) {
780 		exthdr = l3.hdr + sizeof(*l3.v6);
781 		l4_proto_tmp = l3.v6->nexthdr;
782 		if (l4_hdr != exthdr)
783 			ipv6_skip_exthdr(skb, exthdr - skb->data,
784 					 &l4_proto_tmp, &frag_off);
785 	} else if (skb->protocol == htons(ETH_P_IP)) {
786 		l4_proto_tmp = l3.v4->protocol;
787 	} else {
788 		return -EINVAL;
789 	}
790 
791 	*ol4_proto = l4_proto_tmp;
792 
793 	/* tunnel packet */
794 	if (!skb->encapsulation) {
795 		*il4_proto = 0;
796 		return 0;
797 	}
798 
799 	/* find inner header point */
800 	l3.hdr = skb_inner_network_header(skb);
801 	l4_hdr = skb_inner_transport_header(skb);
802 
803 	if (l3.v6->version == 6) {
804 		exthdr = l3.hdr + sizeof(*l3.v6);
805 		l4_proto_tmp = l3.v6->nexthdr;
806 		if (l4_hdr != exthdr)
807 			ipv6_skip_exthdr(skb, exthdr - skb->data,
808 					 &l4_proto_tmp, &frag_off);
809 	} else if (l3.v4->version == 4) {
810 		l4_proto_tmp = l3.v4->protocol;
811 	}
812 
813 	*il4_proto = l4_proto_tmp;
814 
815 	return 0;
816 }
817 
818 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
819  * and it is udp packet, which has a dest port as the IANA assigned.
820  * the hardware is expected to do the checksum offload, but the
821  * hardware will not do the checksum offload when udp dest port is
822  * 4789, 4790 or 6081.
823  */
824 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
825 {
826 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
827 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
828 	union l4_hdr_info l4;
829 
830 	/* device version above V3(include V3), the hardware can
831 	 * do this checksum offload.
832 	 */
833 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
834 		return false;
835 
836 	l4.hdr = skb_transport_header(skb);
837 
838 	if (!(!skb->encapsulation &&
839 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
840 	      l4.udp->dest == htons(GENEVE_UDP_PORT) ||
841 	      l4.udp->dest == htons(4790))))
842 		return false;
843 
844 	return true;
845 }
846 
847 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
848 				  u32 *ol_type_vlan_len_msec)
849 {
850 	u32 l2_len, l3_len, l4_len;
851 	unsigned char *il2_hdr;
852 	union l3_hdr_info l3;
853 	union l4_hdr_info l4;
854 
855 	l3.hdr = skb_network_header(skb);
856 	l4.hdr = skb_transport_header(skb);
857 
858 	/* compute OL2 header size, defined in 2 Bytes */
859 	l2_len = l3.hdr - skb->data;
860 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
861 
862 	/* compute OL3 header size, defined in 4 Bytes */
863 	l3_len = l4.hdr - l3.hdr;
864 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
865 
866 	il2_hdr = skb_inner_mac_header(skb);
867 	/* compute OL4 header size, defined in 4 Bytes */
868 	l4_len = il2_hdr - l4.hdr;
869 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
870 
871 	/* define outer network header type */
872 	if (skb->protocol == htons(ETH_P_IP)) {
873 		if (skb_is_gso(skb))
874 			hns3_set_field(*ol_type_vlan_len_msec,
875 				       HNS3_TXD_OL3T_S,
876 				       HNS3_OL3T_IPV4_CSUM);
877 		else
878 			hns3_set_field(*ol_type_vlan_len_msec,
879 				       HNS3_TXD_OL3T_S,
880 				       HNS3_OL3T_IPV4_NO_CSUM);
881 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
882 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
883 			       HNS3_OL3T_IPV6);
884 	}
885 
886 	if (ol4_proto == IPPROTO_UDP)
887 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
888 			       HNS3_TUN_MAC_IN_UDP);
889 	else if (ol4_proto == IPPROTO_GRE)
890 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
891 			       HNS3_TUN_NVGRE);
892 }
893 
894 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
895 			   u8 il4_proto, u32 *type_cs_vlan_tso,
896 			   u32 *ol_type_vlan_len_msec)
897 {
898 	unsigned char *l2_hdr = skb->data;
899 	u32 l4_proto = ol4_proto;
900 	union l4_hdr_info l4;
901 	union l3_hdr_info l3;
902 	u32 l2_len, l3_len;
903 
904 	l4.hdr = skb_transport_header(skb);
905 	l3.hdr = skb_network_header(skb);
906 
907 	/* handle encapsulation skb */
908 	if (skb->encapsulation) {
909 		/* If this is a not UDP/GRE encapsulation skb */
910 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
911 			/* drop the skb tunnel packet if hardware don't support,
912 			 * because hardware can't calculate csum when TSO.
913 			 */
914 			if (skb_is_gso(skb))
915 				return -EDOM;
916 
917 			/* the stack computes the IP header already,
918 			 * driver calculate l4 checksum when not TSO.
919 			 */
920 			return skb_checksum_help(skb);
921 		}
922 
923 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
924 
925 		/* switch to inner header */
926 		l2_hdr = skb_inner_mac_header(skb);
927 		l3.hdr = skb_inner_network_header(skb);
928 		l4.hdr = skb_inner_transport_header(skb);
929 		l4_proto = il4_proto;
930 	}
931 
932 	if (l3.v4->version == 4) {
933 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
934 			       HNS3_L3T_IPV4);
935 
936 		/* the stack computes the IP header already, the only time we
937 		 * need the hardware to recompute it is in the case of TSO.
938 		 */
939 		if (skb_is_gso(skb))
940 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
941 	} else if (l3.v6->version == 6) {
942 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
943 			       HNS3_L3T_IPV6);
944 	}
945 
946 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
947 	l2_len = l3.hdr - l2_hdr;
948 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
949 
950 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
951 	l3_len = l4.hdr - l3.hdr;
952 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
953 
954 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
955 	switch (l4_proto) {
956 	case IPPROTO_TCP:
957 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
958 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
959 			       HNS3_L4T_TCP);
960 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
961 			       l4.tcp->doff);
962 		break;
963 	case IPPROTO_UDP:
964 		if (hns3_tunnel_csum_bug(skb))
965 			return skb_checksum_help(skb);
966 
967 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
968 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
969 			       HNS3_L4T_UDP);
970 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
971 			       (sizeof(struct udphdr) >> 2));
972 		break;
973 	case IPPROTO_SCTP:
974 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
975 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
976 			       HNS3_L4T_SCTP);
977 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
978 			       (sizeof(struct sctphdr) >> 2));
979 		break;
980 	default:
981 		/* drop the skb tunnel packet if hardware don't support,
982 		 * because hardware can't calculate csum when TSO.
983 		 */
984 		if (skb_is_gso(skb))
985 			return -EDOM;
986 
987 		/* the stack computes the IP header already,
988 		 * driver calculate l4 checksum when not TSO.
989 		 */
990 		return skb_checksum_help(skb);
991 	}
992 
993 	return 0;
994 }
995 
996 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
997 			     struct sk_buff *skb)
998 {
999 	struct hnae3_handle *handle = tx_ring->tqp->handle;
1000 	struct hnae3_ae_dev *ae_dev;
1001 	struct vlan_ethhdr *vhdr;
1002 	int rc;
1003 
1004 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
1005 	      skb_vlan_tag_present(skb)))
1006 		return 0;
1007 
1008 	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1009 	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1010 	 * will cause RAS error.
1011 	 */
1012 	ae_dev = pci_get_drvdata(handle->pdev);
1013 	if (unlikely(skb_vlan_tagged_multi(skb) &&
1014 		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1015 		     handle->port_base_vlan_state ==
1016 		     HNAE3_PORT_BASE_VLAN_ENABLE))
1017 		return -EINVAL;
1018 
1019 	if (skb->protocol == htons(ETH_P_8021Q) &&
1020 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1021 		/* When HW VLAN acceleration is turned off, and the stack
1022 		 * sets the protocol to 802.1q, the driver just need to
1023 		 * set the protocol to the encapsulated ethertype.
1024 		 */
1025 		skb->protocol = vlan_get_protocol(skb);
1026 		return 0;
1027 	}
1028 
1029 	if (skb_vlan_tag_present(skb)) {
1030 		/* Based on hw strategy, use out_vtag in two layer tag case,
1031 		 * and use inner_vtag in one tag case.
1032 		 */
1033 		if (skb->protocol == htons(ETH_P_8021Q) &&
1034 		    handle->port_base_vlan_state ==
1035 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1036 			rc = HNS3_OUTER_VLAN_TAG;
1037 		else
1038 			rc = HNS3_INNER_VLAN_TAG;
1039 
1040 		skb->protocol = vlan_get_protocol(skb);
1041 		return rc;
1042 	}
1043 
1044 	rc = skb_cow_head(skb, 0);
1045 	if (unlikely(rc < 0))
1046 		return rc;
1047 
1048 	vhdr = (struct vlan_ethhdr *)skb->data;
1049 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1050 					 & VLAN_PRIO_MASK);
1051 
1052 	skb->protocol = vlan_get_protocol(skb);
1053 	return 0;
1054 }
1055 
1056 /* check if the hardware is capable of checksum offloading */
1057 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1058 {
1059 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1060 
1061 	/* Kindly note, due to backward compatibility of the TX descriptor,
1062 	 * HW checksum of the non-IP packets and GSO packets is handled at
1063 	 * different place in the following code
1064 	 */
1065 	if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1066 	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1067 		return false;
1068 
1069 	return true;
1070 }
1071 
1072 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1073 			      struct sk_buff *skb, struct hns3_desc *desc,
1074 			      struct hns3_desc_cb *desc_cb)
1075 {
1076 	u32 ol_type_vlan_len_msec = 0;
1077 	u32 paylen_ol4cs = skb->len;
1078 	u32 type_cs_vlan_tso = 0;
1079 	u16 mss_hw_csum = 0;
1080 	u16 inner_vtag = 0;
1081 	u16 out_vtag = 0;
1082 	int ret;
1083 
1084 	ret = hns3_handle_vtags(ring, skb);
1085 	if (unlikely(ret < 0)) {
1086 		u64_stats_update_begin(&ring->syncp);
1087 		ring->stats.tx_vlan_err++;
1088 		u64_stats_update_end(&ring->syncp);
1089 		return ret;
1090 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1091 		inner_vtag = skb_vlan_tag_get(skb);
1092 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1093 				VLAN_PRIO_MASK;
1094 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1095 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1096 		out_vtag = skb_vlan_tag_get(skb);
1097 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1098 				VLAN_PRIO_MASK;
1099 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1100 			       1);
1101 	}
1102 
1103 	desc_cb->send_bytes = skb->len;
1104 
1105 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1106 		u8 ol4_proto, il4_proto;
1107 
1108 		if (hns3_check_hw_tx_csum(skb)) {
1109 			/* set checksum start and offset, defined in 2 Bytes */
1110 			hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1111 				       skb_checksum_start_offset(skb) >> 1);
1112 			hns3_set_field(ol_type_vlan_len_msec,
1113 				       HNS3_TXD_CSUM_OFFSET_S,
1114 				       skb->csum_offset >> 1);
1115 			mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1116 			goto out_hw_tx_csum;
1117 		}
1118 
1119 		skb_reset_mac_len(skb);
1120 
1121 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1122 		if (unlikely(ret < 0)) {
1123 			u64_stats_update_begin(&ring->syncp);
1124 			ring->stats.tx_l4_proto_err++;
1125 			u64_stats_update_end(&ring->syncp);
1126 			return ret;
1127 		}
1128 
1129 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1130 				      &type_cs_vlan_tso,
1131 				      &ol_type_vlan_len_msec);
1132 		if (unlikely(ret < 0)) {
1133 			u64_stats_update_begin(&ring->syncp);
1134 			ring->stats.tx_l2l3l4_err++;
1135 			u64_stats_update_end(&ring->syncp);
1136 			return ret;
1137 		}
1138 
1139 		ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1140 				   &type_cs_vlan_tso, &desc_cb->send_bytes);
1141 		if (unlikely(ret < 0)) {
1142 			u64_stats_update_begin(&ring->syncp);
1143 			ring->stats.tx_tso_err++;
1144 			u64_stats_update_end(&ring->syncp);
1145 			return ret;
1146 		}
1147 	}
1148 
1149 out_hw_tx_csum:
1150 	/* Set txbd */
1151 	desc->tx.ol_type_vlan_len_msec =
1152 		cpu_to_le32(ol_type_vlan_len_msec);
1153 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1154 	desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1155 	desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1156 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1157 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1158 
1159 	return 0;
1160 }
1161 
1162 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1163 			  unsigned int size, enum hns_desc_type type)
1164 {
1165 #define HNS3_LIKELY_BD_NUM	1
1166 
1167 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1168 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1169 	struct device *dev = ring_to_dev(ring);
1170 	skb_frag_t *frag;
1171 	unsigned int frag_buf_num;
1172 	int k, sizeoflast;
1173 	dma_addr_t dma;
1174 
1175 	if (type == DESC_TYPE_FRAGLIST_SKB ||
1176 	    type == DESC_TYPE_SKB) {
1177 		struct sk_buff *skb = (struct sk_buff *)priv;
1178 
1179 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1180 	} else {
1181 		frag = (skb_frag_t *)priv;
1182 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1183 	}
1184 
1185 	if (unlikely(dma_mapping_error(dev, dma))) {
1186 		u64_stats_update_begin(&ring->syncp);
1187 		ring->stats.sw_err_cnt++;
1188 		u64_stats_update_end(&ring->syncp);
1189 		return -ENOMEM;
1190 	}
1191 
1192 	desc_cb->priv = priv;
1193 	desc_cb->length = size;
1194 	desc_cb->dma = dma;
1195 	desc_cb->type = type;
1196 
1197 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1198 		desc->addr = cpu_to_le64(dma);
1199 		desc->tx.send_size = cpu_to_le16(size);
1200 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1201 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1202 
1203 		trace_hns3_tx_desc(ring, ring->next_to_use);
1204 		ring_ptr_move_fw(ring, next_to_use);
1205 		return HNS3_LIKELY_BD_NUM;
1206 	}
1207 
1208 	frag_buf_num = hns3_tx_bd_count(size);
1209 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1210 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1211 
1212 	/* When frag size is bigger than hardware limit, split this frag */
1213 	for (k = 0; k < frag_buf_num; k++) {
1214 		/* now, fill the descriptor */
1215 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1216 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1217 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1218 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1219 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1220 
1221 		trace_hns3_tx_desc(ring, ring->next_to_use);
1222 		/* move ring pointer to next */
1223 		ring_ptr_move_fw(ring, next_to_use);
1224 
1225 		desc = &ring->desc[ring->next_to_use];
1226 	}
1227 
1228 	return frag_buf_num;
1229 }
1230 
1231 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1232 				    unsigned int bd_num)
1233 {
1234 	unsigned int size;
1235 	int i;
1236 
1237 	size = skb_headlen(skb);
1238 	while (size > HNS3_MAX_BD_SIZE) {
1239 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1240 		size -= HNS3_MAX_BD_SIZE;
1241 
1242 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1243 			return bd_num;
1244 	}
1245 
1246 	if (size) {
1247 		bd_size[bd_num++] = size;
1248 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1249 			return bd_num;
1250 	}
1251 
1252 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1253 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1254 		size = skb_frag_size(frag);
1255 		if (!size)
1256 			continue;
1257 
1258 		while (size > HNS3_MAX_BD_SIZE) {
1259 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1260 			size -= HNS3_MAX_BD_SIZE;
1261 
1262 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1263 				return bd_num;
1264 		}
1265 
1266 		bd_size[bd_num++] = size;
1267 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1268 			return bd_num;
1269 	}
1270 
1271 	return bd_num;
1272 }
1273 
1274 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1275 				   u8 max_non_tso_bd_num, unsigned int bd_num,
1276 				   unsigned int recursion_level)
1277 {
1278 #define HNS3_MAX_RECURSION_LEVEL	24
1279 
1280 	struct sk_buff *frag_skb;
1281 
1282 	/* If the total len is within the max bd limit */
1283 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1284 		   !skb_has_frag_list(skb) &&
1285 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1286 		return skb_shinfo(skb)->nr_frags + 1U;
1287 
1288 	if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1289 		return UINT_MAX;
1290 
1291 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1292 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1293 		return bd_num;
1294 
1295 	skb_walk_frags(skb, frag_skb) {
1296 		bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1297 					bd_num, recursion_level + 1);
1298 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1299 			return bd_num;
1300 	}
1301 
1302 	return bd_num;
1303 }
1304 
1305 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1306 {
1307 	if (!skb->encapsulation)
1308 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1309 
1310 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1311 }
1312 
1313 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1314  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1315  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1316  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1317  * than MSS except the last max_non_tso_bd_num - 1 frags.
1318  */
1319 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1320 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1321 {
1322 	unsigned int tot_len = 0;
1323 	int i;
1324 
1325 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1326 		tot_len += bd_size[i];
1327 
1328 	/* ensure the first max_non_tso_bd_num frags is greater than
1329 	 * mss + header
1330 	 */
1331 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1332 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1333 		return true;
1334 
1335 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1336 	 * than mss except the last one.
1337 	 */
1338 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1339 		tot_len -= bd_size[i];
1340 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1341 
1342 		if (tot_len < skb_shinfo(skb)->gso_size)
1343 			return true;
1344 	}
1345 
1346 	return false;
1347 }
1348 
1349 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1350 {
1351 	int i;
1352 
1353 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1354 		size[i] = skb_frag_size(&shinfo->frags[i]);
1355 }
1356 
1357 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1358 			      struct sk_buff *skb,
1359 			      u8 max_non_tso_bd_num,
1360 			      unsigned int bd_num)
1361 {
1362 	/* 'bd_num == UINT_MAX' means the skb' fraglist has a
1363 	 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1364 	 */
1365 	if (bd_num == UINT_MAX) {
1366 		u64_stats_update_begin(&ring->syncp);
1367 		ring->stats.over_max_recursion++;
1368 		u64_stats_update_end(&ring->syncp);
1369 		return -ENOMEM;
1370 	}
1371 
1372 	/* The skb->len has exceeded the hw limitation, linearization
1373 	 * will not help.
1374 	 */
1375 	if (skb->len > HNS3_MAX_TSO_SIZE ||
1376 	    (!skb_is_gso(skb) && skb->len >
1377 	     HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))) {
1378 		u64_stats_update_begin(&ring->syncp);
1379 		ring->stats.hw_limitation++;
1380 		u64_stats_update_end(&ring->syncp);
1381 		return -ENOMEM;
1382 	}
1383 
1384 	if (__skb_linearize(skb)) {
1385 		u64_stats_update_begin(&ring->syncp);
1386 		ring->stats.sw_err_cnt++;
1387 		u64_stats_update_end(&ring->syncp);
1388 		return -ENOMEM;
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1395 				  struct net_device *netdev,
1396 				  struct sk_buff *skb)
1397 {
1398 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1399 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1400 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1401 	unsigned int bd_num;
1402 
1403 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1404 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1405 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1406 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1407 					      max_non_tso_bd_num)) {
1408 			trace_hns3_over_max_bd(skb);
1409 			goto out;
1410 		}
1411 
1412 		if (hns3_skb_linearize(ring, skb, max_non_tso_bd_num,
1413 				       bd_num))
1414 			return -ENOMEM;
1415 
1416 		bd_num = hns3_tx_bd_count(skb->len);
1417 
1418 		u64_stats_update_begin(&ring->syncp);
1419 		ring->stats.tx_copy++;
1420 		u64_stats_update_end(&ring->syncp);
1421 	}
1422 
1423 out:
1424 	if (likely(ring_space(ring) >= bd_num))
1425 		return bd_num;
1426 
1427 	netif_stop_subqueue(netdev, ring->queue_index);
1428 	smp_mb(); /* Memory barrier before checking ring_space */
1429 
1430 	/* Start queue in case hns3_clean_tx_ring has just made room
1431 	 * available and has not seen the queue stopped state performed
1432 	 * by netif_stop_subqueue above.
1433 	 */
1434 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1435 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1436 		netif_start_subqueue(netdev, ring->queue_index);
1437 		return bd_num;
1438 	}
1439 
1440 	u64_stats_update_begin(&ring->syncp);
1441 	ring->stats.tx_busy++;
1442 	u64_stats_update_end(&ring->syncp);
1443 
1444 	return -EBUSY;
1445 }
1446 
1447 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1448 {
1449 	struct device *dev = ring_to_dev(ring);
1450 	unsigned int i;
1451 
1452 	for (i = 0; i < ring->desc_num; i++) {
1453 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1454 
1455 		memset(desc, 0, sizeof(*desc));
1456 
1457 		/* check if this is where we started */
1458 		if (ring->next_to_use == next_to_use_orig)
1459 			break;
1460 
1461 		/* rollback one */
1462 		ring_ptr_move_bw(ring, next_to_use);
1463 
1464 		if (!ring->desc_cb[ring->next_to_use].dma)
1465 			continue;
1466 
1467 		/* unmap the descriptor dma address */
1468 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1469 		    ring->desc_cb[ring->next_to_use].type ==
1470 		    DESC_TYPE_FRAGLIST_SKB)
1471 			dma_unmap_single(dev,
1472 					 ring->desc_cb[ring->next_to_use].dma,
1473 					ring->desc_cb[ring->next_to_use].length,
1474 					DMA_TO_DEVICE);
1475 		else if (ring->desc_cb[ring->next_to_use].length)
1476 			dma_unmap_page(dev,
1477 				       ring->desc_cb[ring->next_to_use].dma,
1478 				       ring->desc_cb[ring->next_to_use].length,
1479 				       DMA_TO_DEVICE);
1480 
1481 		ring->desc_cb[ring->next_to_use].length = 0;
1482 		ring->desc_cb[ring->next_to_use].dma = 0;
1483 		ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1484 	}
1485 }
1486 
1487 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1488 				 struct sk_buff *skb, enum hns_desc_type type)
1489 {
1490 	unsigned int size = skb_headlen(skb);
1491 	struct sk_buff *frag_skb;
1492 	int i, ret, bd_num = 0;
1493 
1494 	if (size) {
1495 		ret = hns3_fill_desc(ring, skb, size, type);
1496 		if (unlikely(ret < 0))
1497 			return ret;
1498 
1499 		bd_num += ret;
1500 	}
1501 
1502 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1503 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1504 
1505 		size = skb_frag_size(frag);
1506 		if (!size)
1507 			continue;
1508 
1509 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1510 		if (unlikely(ret < 0))
1511 			return ret;
1512 
1513 		bd_num += ret;
1514 	}
1515 
1516 	skb_walk_frags(skb, frag_skb) {
1517 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
1518 					    DESC_TYPE_FRAGLIST_SKB);
1519 		if (unlikely(ret < 0))
1520 			return ret;
1521 
1522 		bd_num += ret;
1523 	}
1524 
1525 	return bd_num;
1526 }
1527 
1528 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
1529 			     bool doorbell)
1530 {
1531 	ring->pending_buf += num;
1532 
1533 	if (!doorbell) {
1534 		u64_stats_update_begin(&ring->syncp);
1535 		ring->stats.tx_more++;
1536 		u64_stats_update_end(&ring->syncp);
1537 		return;
1538 	}
1539 
1540 	if (!ring->pending_buf)
1541 		return;
1542 
1543 	writel(ring->pending_buf,
1544 	       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
1545 	ring->pending_buf = 0;
1546 	WRITE_ONCE(ring->last_to_use, ring->next_to_use);
1547 }
1548 
1549 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1550 {
1551 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1552 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1553 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1554 	struct netdev_queue *dev_queue;
1555 	int pre_ntu, next_to_use_head;
1556 	bool doorbell;
1557 	int ret;
1558 
1559 	/* Hardware can only handle short frames above 32 bytes */
1560 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
1561 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1562 
1563 		u64_stats_update_begin(&ring->syncp);
1564 		ring->stats.sw_err_cnt++;
1565 		u64_stats_update_end(&ring->syncp);
1566 
1567 		return NETDEV_TX_OK;
1568 	}
1569 
1570 	/* Prefetch the data used later */
1571 	prefetch(skb->data);
1572 
1573 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1574 	if (unlikely(ret <= 0)) {
1575 		if (ret == -EBUSY) {
1576 			hns3_tx_doorbell(ring, 0, true);
1577 			return NETDEV_TX_BUSY;
1578 		}
1579 
1580 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1581 		goto out_err_tx_ok;
1582 	}
1583 
1584 	next_to_use_head = ring->next_to_use;
1585 
1586 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
1587 				 desc_cb);
1588 	if (unlikely(ret < 0))
1589 		goto fill_err;
1590 
1591 	/* 'ret < 0' means filling error, 'ret == 0' means skb->len is
1592 	 * zero, which is unlikely, and 'ret > 0' means how many tx desc
1593 	 * need to be notified to the hw.
1594 	 */
1595 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1596 	if (unlikely(ret <= 0))
1597 		goto fill_err;
1598 
1599 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1600 					(ring->desc_num - 1);
1601 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1602 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1603 	trace_hns3_tx_desc(ring, pre_ntu);
1604 
1605 	/* Complete translate all packets */
1606 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1607 	doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
1608 					  netdev_xmit_more());
1609 	hns3_tx_doorbell(ring, ret, doorbell);
1610 
1611 	return NETDEV_TX_OK;
1612 
1613 fill_err:
1614 	hns3_clear_desc(ring, next_to_use_head);
1615 
1616 out_err_tx_ok:
1617 	dev_kfree_skb_any(skb);
1618 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1619 	return NETDEV_TX_OK;
1620 }
1621 
1622 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1623 {
1624 	struct hnae3_handle *h = hns3_get_handle(netdev);
1625 	struct sockaddr *mac_addr = p;
1626 	int ret;
1627 
1628 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1629 		return -EADDRNOTAVAIL;
1630 
1631 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1632 		netdev_info(netdev, "already using mac address %pM\n",
1633 			    mac_addr->sa_data);
1634 		return 0;
1635 	}
1636 
1637 	/* For VF device, if there is a perm_addr, then the user will not
1638 	 * be allowed to change the address.
1639 	 */
1640 	if (!hns3_is_phys_func(h->pdev) &&
1641 	    !is_zero_ether_addr(netdev->perm_addr)) {
1642 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1643 			   netdev->perm_addr, mac_addr->sa_data);
1644 		return -EPERM;
1645 	}
1646 
1647 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1648 	if (ret) {
1649 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1650 		return ret;
1651 	}
1652 
1653 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1654 
1655 	return 0;
1656 }
1657 
1658 static int hns3_nic_do_ioctl(struct net_device *netdev,
1659 			     struct ifreq *ifr, int cmd)
1660 {
1661 	struct hnae3_handle *h = hns3_get_handle(netdev);
1662 
1663 	if (!netif_running(netdev))
1664 		return -EINVAL;
1665 
1666 	if (!h->ae_algo->ops->do_ioctl)
1667 		return -EOPNOTSUPP;
1668 
1669 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1670 }
1671 
1672 static int hns3_nic_set_features(struct net_device *netdev,
1673 				 netdev_features_t features)
1674 {
1675 	netdev_features_t changed = netdev->features ^ features;
1676 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1677 	struct hnae3_handle *h = priv->ae_handle;
1678 	bool enable;
1679 	int ret;
1680 
1681 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1682 		enable = !!(features & NETIF_F_GRO_HW);
1683 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1684 		if (ret)
1685 			return ret;
1686 	}
1687 
1688 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1689 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1690 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1691 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1692 		if (ret)
1693 			return ret;
1694 	}
1695 
1696 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1697 		enable = !!(features & NETIF_F_NTUPLE);
1698 		h->ae_algo->ops->enable_fd(h, enable);
1699 	}
1700 
1701 	if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
1702 	    h->ae_algo->ops->cls_flower_active(h)) {
1703 		netdev_err(netdev,
1704 			   "there are offloaded TC filters active, cannot disable HW TC offload");
1705 		return -EINVAL;
1706 	}
1707 
1708 	netdev->features = features;
1709 	return 0;
1710 }
1711 
1712 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1713 					     struct net_device *dev,
1714 					     netdev_features_t features)
1715 {
1716 #define HNS3_MAX_HDR_LEN	480U
1717 #define HNS3_MAX_L4_HDR_LEN	60U
1718 
1719 	size_t len;
1720 
1721 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1722 		return features;
1723 
1724 	if (skb->encapsulation)
1725 		len = skb_inner_transport_header(skb) - skb->data;
1726 	else
1727 		len = skb_transport_header(skb) - skb->data;
1728 
1729 	/* Assume L4 is 60 byte as TCP is the only protocol with a
1730 	 * a flexible value, and it's max len is 60 bytes.
1731 	 */
1732 	len += HNS3_MAX_L4_HDR_LEN;
1733 
1734 	/* Hardware only supports checksum on the skb with a max header
1735 	 * len of 480 bytes.
1736 	 */
1737 	if (len > HNS3_MAX_HDR_LEN)
1738 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1739 
1740 	return features;
1741 }
1742 
1743 static void hns3_nic_get_stats64(struct net_device *netdev,
1744 				 struct rtnl_link_stats64 *stats)
1745 {
1746 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1747 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1748 	struct hnae3_handle *handle = priv->ae_handle;
1749 	struct hns3_enet_ring *ring;
1750 	u64 rx_length_errors = 0;
1751 	u64 rx_crc_errors = 0;
1752 	u64 rx_multicast = 0;
1753 	unsigned int start;
1754 	u64 tx_errors = 0;
1755 	u64 rx_errors = 0;
1756 	unsigned int idx;
1757 	u64 tx_bytes = 0;
1758 	u64 rx_bytes = 0;
1759 	u64 tx_pkts = 0;
1760 	u64 rx_pkts = 0;
1761 	u64 tx_drop = 0;
1762 	u64 rx_drop = 0;
1763 
1764 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1765 		return;
1766 
1767 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1768 
1769 	for (idx = 0; idx < queue_num; idx++) {
1770 		/* fetch the tx stats */
1771 		ring = &priv->ring[idx];
1772 		do {
1773 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1774 			tx_bytes += ring->stats.tx_bytes;
1775 			tx_pkts += ring->stats.tx_pkts;
1776 			tx_drop += ring->stats.sw_err_cnt;
1777 			tx_drop += ring->stats.tx_vlan_err;
1778 			tx_drop += ring->stats.tx_l4_proto_err;
1779 			tx_drop += ring->stats.tx_l2l3l4_err;
1780 			tx_drop += ring->stats.tx_tso_err;
1781 			tx_drop += ring->stats.over_max_recursion;
1782 			tx_drop += ring->stats.hw_limitation;
1783 			tx_errors += ring->stats.sw_err_cnt;
1784 			tx_errors += ring->stats.tx_vlan_err;
1785 			tx_errors += ring->stats.tx_l4_proto_err;
1786 			tx_errors += ring->stats.tx_l2l3l4_err;
1787 			tx_errors += ring->stats.tx_tso_err;
1788 			tx_errors += ring->stats.over_max_recursion;
1789 			tx_errors += ring->stats.hw_limitation;
1790 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1791 
1792 		/* fetch the rx stats */
1793 		ring = &priv->ring[idx + queue_num];
1794 		do {
1795 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1796 			rx_bytes += ring->stats.rx_bytes;
1797 			rx_pkts += ring->stats.rx_pkts;
1798 			rx_drop += ring->stats.l2_err;
1799 			rx_errors += ring->stats.l2_err;
1800 			rx_errors += ring->stats.l3l4_csum_err;
1801 			rx_crc_errors += ring->stats.l2_err;
1802 			rx_multicast += ring->stats.rx_multicast;
1803 			rx_length_errors += ring->stats.err_pkt_len;
1804 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1805 	}
1806 
1807 	stats->tx_bytes = tx_bytes;
1808 	stats->tx_packets = tx_pkts;
1809 	stats->rx_bytes = rx_bytes;
1810 	stats->rx_packets = rx_pkts;
1811 
1812 	stats->rx_errors = rx_errors;
1813 	stats->multicast = rx_multicast;
1814 	stats->rx_length_errors = rx_length_errors;
1815 	stats->rx_crc_errors = rx_crc_errors;
1816 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1817 
1818 	stats->tx_errors = tx_errors;
1819 	stats->rx_dropped = rx_drop;
1820 	stats->tx_dropped = tx_drop;
1821 	stats->collisions = netdev->stats.collisions;
1822 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1823 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1824 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1825 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1826 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1827 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1828 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1829 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1830 	stats->rx_compressed = netdev->stats.rx_compressed;
1831 	stats->tx_compressed = netdev->stats.tx_compressed;
1832 }
1833 
1834 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1835 {
1836 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1837 	struct hnae3_knic_private_info *kinfo;
1838 	u8 tc = mqprio_qopt->qopt.num_tc;
1839 	u16 mode = mqprio_qopt->mode;
1840 	u8 hw = mqprio_qopt->qopt.hw;
1841 	struct hnae3_handle *h;
1842 
1843 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1844 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1845 		return -EOPNOTSUPP;
1846 
1847 	if (tc > HNAE3_MAX_TC)
1848 		return -EINVAL;
1849 
1850 	if (!netdev)
1851 		return -EINVAL;
1852 
1853 	h = hns3_get_handle(netdev);
1854 	kinfo = &h->kinfo;
1855 
1856 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1857 
1858 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1859 		kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
1860 }
1861 
1862 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
1863 				    struct flow_cls_offload *flow)
1864 {
1865 	int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
1866 	struct hnae3_handle *h = hns3_get_handle(priv->netdev);
1867 
1868 	switch (flow->command) {
1869 	case FLOW_CLS_REPLACE:
1870 		if (h->ae_algo->ops->add_cls_flower)
1871 			return h->ae_algo->ops->add_cls_flower(h, flow, tc);
1872 		break;
1873 	case FLOW_CLS_DESTROY:
1874 		if (h->ae_algo->ops->del_cls_flower)
1875 			return h->ae_algo->ops->del_cls_flower(h, flow);
1876 		break;
1877 	default:
1878 		break;
1879 	}
1880 
1881 	return -EOPNOTSUPP;
1882 }
1883 
1884 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
1885 				  void *cb_priv)
1886 {
1887 	struct hns3_nic_priv *priv = cb_priv;
1888 
1889 	if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
1890 		return -EOPNOTSUPP;
1891 
1892 	switch (type) {
1893 	case TC_SETUP_CLSFLOWER:
1894 		return hns3_setup_tc_cls_flower(priv, type_data);
1895 	default:
1896 		return -EOPNOTSUPP;
1897 	}
1898 }
1899 
1900 static LIST_HEAD(hns3_block_cb_list);
1901 
1902 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1903 			     void *type_data)
1904 {
1905 	struct hns3_nic_priv *priv = netdev_priv(dev);
1906 	int ret;
1907 
1908 	switch (type) {
1909 	case TC_SETUP_QDISC_MQPRIO:
1910 		ret = hns3_setup_tc(dev, type_data);
1911 		break;
1912 	case TC_SETUP_BLOCK:
1913 		ret = flow_block_cb_setup_simple(type_data,
1914 						 &hns3_block_cb_list,
1915 						 hns3_setup_tc_block_cb,
1916 						 priv, priv, true);
1917 		break;
1918 	default:
1919 		return -EOPNOTSUPP;
1920 	}
1921 
1922 	return ret;
1923 }
1924 
1925 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1926 				__be16 proto, u16 vid)
1927 {
1928 	struct hnae3_handle *h = hns3_get_handle(netdev);
1929 	int ret = -EIO;
1930 
1931 	if (h->ae_algo->ops->set_vlan_filter)
1932 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1933 
1934 	return ret;
1935 }
1936 
1937 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1938 				 __be16 proto, u16 vid)
1939 {
1940 	struct hnae3_handle *h = hns3_get_handle(netdev);
1941 	int ret = -EIO;
1942 
1943 	if (h->ae_algo->ops->set_vlan_filter)
1944 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1945 
1946 	return ret;
1947 }
1948 
1949 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1950 				u8 qos, __be16 vlan_proto)
1951 {
1952 	struct hnae3_handle *h = hns3_get_handle(netdev);
1953 	int ret = -EIO;
1954 
1955 	netif_dbg(h, drv, netdev,
1956 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1957 		  vf, vlan, qos, ntohs(vlan_proto));
1958 
1959 	if (h->ae_algo->ops->set_vf_vlan_filter)
1960 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1961 							  qos, vlan_proto);
1962 
1963 	return ret;
1964 }
1965 
1966 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1967 {
1968 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1969 
1970 	if (hns3_nic_resetting(netdev))
1971 		return -EBUSY;
1972 
1973 	if (!handle->ae_algo->ops->set_vf_spoofchk)
1974 		return -EOPNOTSUPP;
1975 
1976 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1977 }
1978 
1979 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1980 {
1981 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1982 
1983 	if (!handle->ae_algo->ops->set_vf_trust)
1984 		return -EOPNOTSUPP;
1985 
1986 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1987 }
1988 
1989 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1990 {
1991 	struct hnae3_handle *h = hns3_get_handle(netdev);
1992 	int ret;
1993 
1994 	if (hns3_nic_resetting(netdev))
1995 		return -EBUSY;
1996 
1997 	if (!h->ae_algo->ops->set_mtu)
1998 		return -EOPNOTSUPP;
1999 
2000 	netif_dbg(h, drv, netdev,
2001 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2002 
2003 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2004 	if (ret)
2005 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
2006 			   ret);
2007 	else
2008 		netdev->mtu = new_mtu;
2009 
2010 	return ret;
2011 }
2012 
2013 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2014 {
2015 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2016 	struct hnae3_handle *h = hns3_get_handle(ndev);
2017 	struct hns3_enet_ring *tx_ring;
2018 	struct napi_struct *napi;
2019 	int timeout_queue = 0;
2020 	int hw_head, hw_tail;
2021 	int fbd_num, fbd_oft;
2022 	int ebd_num, ebd_oft;
2023 	int bd_num, bd_err;
2024 	int ring_en, tc;
2025 	int i;
2026 
2027 	/* Find the stopped queue the same way the stack does */
2028 	for (i = 0; i < ndev->num_tx_queues; i++) {
2029 		struct netdev_queue *q;
2030 		unsigned long trans_start;
2031 
2032 		q = netdev_get_tx_queue(ndev, i);
2033 		trans_start = q->trans_start;
2034 		if (netif_xmit_stopped(q) &&
2035 		    time_after(jiffies,
2036 			       (trans_start + ndev->watchdog_timeo))) {
2037 			timeout_queue = i;
2038 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2039 				    q->state,
2040 				    jiffies_to_msecs(jiffies - trans_start));
2041 			break;
2042 		}
2043 	}
2044 
2045 	if (i == ndev->num_tx_queues) {
2046 		netdev_info(ndev,
2047 			    "no netdev TX timeout queue found, timeout count: %llu\n",
2048 			    priv->tx_timeout_count);
2049 		return false;
2050 	}
2051 
2052 	priv->tx_timeout_count++;
2053 
2054 	tx_ring = &priv->ring[timeout_queue];
2055 	napi = &tx_ring->tqp_vector->napi;
2056 
2057 	netdev_info(ndev,
2058 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2059 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2060 		    tx_ring->next_to_clean, napi->state);
2061 
2062 	netdev_info(ndev,
2063 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2064 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2065 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2066 
2067 	netdev_info(ndev,
2068 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2069 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2070 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2071 
2072 	/* When mac received many pause frames continuous, it's unable to send
2073 	 * packets, which may cause tx timeout
2074 	 */
2075 	if (h->ae_algo->ops->get_mac_stats) {
2076 		struct hns3_mac_stats mac_stats;
2077 
2078 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2079 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2080 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2081 	}
2082 
2083 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
2084 				HNS3_RING_TX_RING_HEAD_REG);
2085 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
2086 				HNS3_RING_TX_RING_TAIL_REG);
2087 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
2088 				HNS3_RING_TX_RING_FBDNUM_REG);
2089 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
2090 				HNS3_RING_TX_RING_OFFSET_REG);
2091 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
2092 				HNS3_RING_TX_RING_EBDNUM_REG);
2093 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
2094 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
2095 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
2096 			       HNS3_RING_TX_RING_BD_NUM_REG);
2097 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
2098 			       HNS3_RING_TX_RING_BD_ERR_REG);
2099 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
2100 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
2101 
2102 	netdev_info(ndev,
2103 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2104 		    bd_num, hw_head, hw_tail, bd_err,
2105 		    readl(tx_ring->tqp_vector->mask_addr));
2106 	netdev_info(ndev,
2107 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2108 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2109 
2110 	return true;
2111 }
2112 
2113 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2114 {
2115 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2116 	struct hnae3_handle *h = priv->ae_handle;
2117 
2118 	if (!hns3_get_tx_timeo_queue_info(ndev))
2119 		return;
2120 
2121 	/* request the reset, and let the hclge to determine
2122 	 * which reset level should be done
2123 	 */
2124 	if (h->ae_algo->ops->reset_event)
2125 		h->ae_algo->ops->reset_event(h->pdev, h);
2126 }
2127 
2128 #ifdef CONFIG_RFS_ACCEL
2129 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2130 			      u16 rxq_index, u32 flow_id)
2131 {
2132 	struct hnae3_handle *h = hns3_get_handle(dev);
2133 	struct flow_keys fkeys;
2134 
2135 	if (!h->ae_algo->ops->add_arfs_entry)
2136 		return -EOPNOTSUPP;
2137 
2138 	if (skb->encapsulation)
2139 		return -EPROTONOSUPPORT;
2140 
2141 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2142 		return -EPROTONOSUPPORT;
2143 
2144 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2145 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2146 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2147 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2148 		return -EPROTONOSUPPORT;
2149 
2150 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2151 }
2152 #endif
2153 
2154 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2155 				  struct ifla_vf_info *ivf)
2156 {
2157 	struct hnae3_handle *h = hns3_get_handle(ndev);
2158 
2159 	if (!h->ae_algo->ops->get_vf_config)
2160 		return -EOPNOTSUPP;
2161 
2162 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2163 }
2164 
2165 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2166 				      int link_state)
2167 {
2168 	struct hnae3_handle *h = hns3_get_handle(ndev);
2169 
2170 	if (!h->ae_algo->ops->set_vf_link_state)
2171 		return -EOPNOTSUPP;
2172 
2173 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2174 }
2175 
2176 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2177 				int min_tx_rate, int max_tx_rate)
2178 {
2179 	struct hnae3_handle *h = hns3_get_handle(ndev);
2180 
2181 	if (!h->ae_algo->ops->set_vf_rate)
2182 		return -EOPNOTSUPP;
2183 
2184 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2185 					    false);
2186 }
2187 
2188 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2189 {
2190 	struct hnae3_handle *h = hns3_get_handle(netdev);
2191 
2192 	if (!h->ae_algo->ops->set_vf_mac)
2193 		return -EOPNOTSUPP;
2194 
2195 	if (is_multicast_ether_addr(mac)) {
2196 		netdev_err(netdev,
2197 			   "Invalid MAC:%pM specified. Could not set MAC\n",
2198 			   mac);
2199 		return -EINVAL;
2200 	}
2201 
2202 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2203 }
2204 
2205 static const struct net_device_ops hns3_nic_netdev_ops = {
2206 	.ndo_open		= hns3_nic_net_open,
2207 	.ndo_stop		= hns3_nic_net_stop,
2208 	.ndo_start_xmit		= hns3_nic_net_xmit,
2209 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2210 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2211 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2212 	.ndo_change_mtu		= hns3_nic_change_mtu,
2213 	.ndo_set_features	= hns3_nic_set_features,
2214 	.ndo_features_check	= hns3_features_check,
2215 	.ndo_get_stats64	= hns3_nic_get_stats64,
2216 	.ndo_setup_tc		= hns3_nic_setup_tc,
2217 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2218 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2219 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2220 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2221 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2222 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2223 #ifdef CONFIG_RFS_ACCEL
2224 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2225 #endif
2226 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2227 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2228 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2229 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2230 };
2231 
2232 bool hns3_is_phys_func(struct pci_dev *pdev)
2233 {
2234 	u32 dev_id = pdev->device;
2235 
2236 	switch (dev_id) {
2237 	case HNAE3_DEV_ID_GE:
2238 	case HNAE3_DEV_ID_25GE:
2239 	case HNAE3_DEV_ID_25GE_RDMA:
2240 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2241 	case HNAE3_DEV_ID_50GE_RDMA:
2242 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2243 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2244 	case HNAE3_DEV_ID_200G_RDMA:
2245 		return true;
2246 	case HNAE3_DEV_ID_VF:
2247 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2248 		return false;
2249 	default:
2250 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2251 			 dev_id);
2252 	}
2253 
2254 	return false;
2255 }
2256 
2257 static void hns3_disable_sriov(struct pci_dev *pdev)
2258 {
2259 	/* If our VFs are assigned we cannot shut down SR-IOV
2260 	 * without causing issues, so just leave the hardware
2261 	 * available but disabled
2262 	 */
2263 	if (pci_vfs_assigned(pdev)) {
2264 		dev_warn(&pdev->dev,
2265 			 "disabling driver while VFs are assigned\n");
2266 		return;
2267 	}
2268 
2269 	pci_disable_sriov(pdev);
2270 }
2271 
2272 /* hns3_probe - Device initialization routine
2273  * @pdev: PCI device information struct
2274  * @ent: entry in hns3_pci_tbl
2275  *
2276  * hns3_probe initializes a PF identified by a pci_dev structure.
2277  * The OS initialization, configuring of the PF private structure,
2278  * and a hardware reset occur.
2279  *
2280  * Returns 0 on success, negative on failure
2281  */
2282 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2283 {
2284 	struct hnae3_ae_dev *ae_dev;
2285 	int ret;
2286 
2287 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2288 	if (!ae_dev)
2289 		return -ENOMEM;
2290 
2291 	ae_dev->pdev = pdev;
2292 	ae_dev->flag = ent->driver_data;
2293 	pci_set_drvdata(pdev, ae_dev);
2294 
2295 	ret = hnae3_register_ae_dev(ae_dev);
2296 	if (ret)
2297 		pci_set_drvdata(pdev, NULL);
2298 
2299 	return ret;
2300 }
2301 
2302 /* hns3_remove - Device removal routine
2303  * @pdev: PCI device information struct
2304  */
2305 static void hns3_remove(struct pci_dev *pdev)
2306 {
2307 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2308 
2309 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2310 		hns3_disable_sriov(pdev);
2311 
2312 	hnae3_unregister_ae_dev(ae_dev);
2313 	pci_set_drvdata(pdev, NULL);
2314 }
2315 
2316 /**
2317  * hns3_pci_sriov_configure
2318  * @pdev: pointer to a pci_dev structure
2319  * @num_vfs: number of VFs to allocate
2320  *
2321  * Enable or change the number of VFs. Called when the user updates the number
2322  * of VFs in sysfs.
2323  **/
2324 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2325 {
2326 	int ret;
2327 
2328 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2329 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2330 		return -EINVAL;
2331 	}
2332 
2333 	if (num_vfs) {
2334 		ret = pci_enable_sriov(pdev, num_vfs);
2335 		if (ret)
2336 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2337 		else
2338 			return num_vfs;
2339 	} else if (!pci_vfs_assigned(pdev)) {
2340 		pci_disable_sriov(pdev);
2341 	} else {
2342 		dev_warn(&pdev->dev,
2343 			 "Unable to free VFs because some are assigned to VMs.\n");
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 static void hns3_shutdown(struct pci_dev *pdev)
2350 {
2351 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2352 
2353 	hnae3_unregister_ae_dev(ae_dev);
2354 	pci_set_drvdata(pdev, NULL);
2355 
2356 	if (system_state == SYSTEM_POWER_OFF)
2357 		pci_set_power_state(pdev, PCI_D3hot);
2358 }
2359 
2360 static int __maybe_unused hns3_suspend(struct device *dev)
2361 {
2362 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
2363 
2364 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
2365 		dev_info(dev, "Begin to suspend.\n");
2366 		if (ae_dev->ops && ae_dev->ops->reset_prepare)
2367 			ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
2368 	}
2369 
2370 	return 0;
2371 }
2372 
2373 static int __maybe_unused hns3_resume(struct device *dev)
2374 {
2375 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
2376 
2377 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
2378 		dev_info(dev, "Begin to resume.\n");
2379 		if (ae_dev->ops && ae_dev->ops->reset_done)
2380 			ae_dev->ops->reset_done(ae_dev);
2381 	}
2382 
2383 	return 0;
2384 }
2385 
2386 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2387 					    pci_channel_state_t state)
2388 {
2389 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2390 	pci_ers_result_t ret;
2391 
2392 	dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
2393 
2394 	if (state == pci_channel_io_perm_failure)
2395 		return PCI_ERS_RESULT_DISCONNECT;
2396 
2397 	if (!ae_dev || !ae_dev->ops) {
2398 		dev_err(&pdev->dev,
2399 			"Can't recover - error happened before device initialized\n");
2400 		return PCI_ERS_RESULT_NONE;
2401 	}
2402 
2403 	if (ae_dev->ops->handle_hw_ras_error)
2404 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2405 	else
2406 		return PCI_ERS_RESULT_NONE;
2407 
2408 	return ret;
2409 }
2410 
2411 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2412 {
2413 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2414 	const struct hnae3_ae_ops *ops;
2415 	enum hnae3_reset_type reset_type;
2416 	struct device *dev = &pdev->dev;
2417 
2418 	if (!ae_dev || !ae_dev->ops)
2419 		return PCI_ERS_RESULT_NONE;
2420 
2421 	ops = ae_dev->ops;
2422 	/* request the reset */
2423 	if (ops->reset_event && ops->get_reset_level &&
2424 	    ops->set_default_reset_request) {
2425 		if (ae_dev->hw_err_reset_req) {
2426 			reset_type = ops->get_reset_level(ae_dev,
2427 						&ae_dev->hw_err_reset_req);
2428 			ops->set_default_reset_request(ae_dev, reset_type);
2429 			dev_info(dev, "requesting reset due to PCI error\n");
2430 			ops->reset_event(pdev, NULL);
2431 		}
2432 
2433 		return PCI_ERS_RESULT_RECOVERED;
2434 	}
2435 
2436 	return PCI_ERS_RESULT_DISCONNECT;
2437 }
2438 
2439 static void hns3_reset_prepare(struct pci_dev *pdev)
2440 {
2441 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2442 
2443 	dev_info(&pdev->dev, "FLR prepare\n");
2444 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
2445 		ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
2446 }
2447 
2448 static void hns3_reset_done(struct pci_dev *pdev)
2449 {
2450 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2451 
2452 	dev_info(&pdev->dev, "FLR done\n");
2453 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
2454 		ae_dev->ops->reset_done(ae_dev);
2455 }
2456 
2457 static const struct pci_error_handlers hns3_err_handler = {
2458 	.error_detected = hns3_error_detected,
2459 	.slot_reset     = hns3_slot_reset,
2460 	.reset_prepare	= hns3_reset_prepare,
2461 	.reset_done	= hns3_reset_done,
2462 };
2463 
2464 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
2465 
2466 static struct pci_driver hns3_driver = {
2467 	.name     = hns3_driver_name,
2468 	.id_table = hns3_pci_tbl,
2469 	.probe    = hns3_probe,
2470 	.remove   = hns3_remove,
2471 	.shutdown = hns3_shutdown,
2472 	.driver.pm  = &hns3_pm_ops,
2473 	.sriov_configure = hns3_pci_sriov_configure,
2474 	.err_handler    = &hns3_err_handler,
2475 };
2476 
2477 /* set default feature to hns3 */
2478 static void hns3_set_default_feature(struct net_device *netdev)
2479 {
2480 	struct hnae3_handle *h = hns3_get_handle(netdev);
2481 	struct pci_dev *pdev = h->pdev;
2482 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2483 
2484 	netdev->priv_flags |= IFF_UNICAST_FLT;
2485 
2486 	netdev->hw_enc_features |= NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2487 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2488 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2489 		NETIF_F_SCTP_CRC | NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2490 
2491 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2492 
2493 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2494 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2495 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2496 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2497 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2498 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2499 
2500 	netdev->vlan_features |= NETIF_F_RXCSUM |
2501 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2502 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2503 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2504 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2505 
2506 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
2507 		NETIF_F_HW_VLAN_CTAG_RX |
2508 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2509 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2510 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2511 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2512 
2513 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2514 		netdev->hw_features |= NETIF_F_GRO_HW;
2515 		netdev->features |= NETIF_F_GRO_HW;
2516 
2517 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2518 			netdev->hw_features |= NETIF_F_NTUPLE;
2519 			netdev->features |= NETIF_F_NTUPLE;
2520 		}
2521 	}
2522 
2523 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) {
2524 		netdev->hw_features |= NETIF_F_GSO_UDP_L4;
2525 		netdev->features |= NETIF_F_GSO_UDP_L4;
2526 		netdev->vlan_features |= NETIF_F_GSO_UDP_L4;
2527 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
2528 	}
2529 
2530 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) {
2531 		netdev->hw_features |= NETIF_F_HW_CSUM;
2532 		netdev->features |= NETIF_F_HW_CSUM;
2533 		netdev->vlan_features |= NETIF_F_HW_CSUM;
2534 		netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2535 	} else {
2536 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2537 		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2538 		netdev->vlan_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2539 		netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2540 	}
2541 
2542 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) {
2543 		netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2544 		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2545 		netdev->vlan_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2546 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2547 	}
2548 
2549 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) {
2550 		netdev->hw_features |= NETIF_F_HW_TC;
2551 		netdev->features |= NETIF_F_HW_TC;
2552 	}
2553 }
2554 
2555 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2556 			     struct hns3_desc_cb *cb)
2557 {
2558 	unsigned int order = hns3_page_order(ring);
2559 	struct page *p;
2560 
2561 	p = dev_alloc_pages(order);
2562 	if (!p)
2563 		return -ENOMEM;
2564 
2565 	cb->priv = p;
2566 	cb->page_offset = 0;
2567 	cb->reuse_flag = 0;
2568 	cb->buf  = page_address(p);
2569 	cb->length = hns3_page_size(ring);
2570 	cb->type = DESC_TYPE_PAGE;
2571 	page_ref_add(p, USHRT_MAX - 1);
2572 	cb->pagecnt_bias = USHRT_MAX;
2573 
2574 	return 0;
2575 }
2576 
2577 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2578 			     struct hns3_desc_cb *cb, int budget)
2579 {
2580 	if (cb->type == DESC_TYPE_SKB)
2581 		napi_consume_skb(cb->priv, budget);
2582 	else if (!HNAE3_IS_TX_RING(ring) && cb->pagecnt_bias)
2583 		__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
2584 	memset(cb, 0, sizeof(*cb));
2585 }
2586 
2587 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2588 {
2589 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2590 			       cb->length, ring_to_dma_dir(ring));
2591 
2592 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2593 		return -EIO;
2594 
2595 	return 0;
2596 }
2597 
2598 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2599 			      struct hns3_desc_cb *cb)
2600 {
2601 	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2602 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2603 				 ring_to_dma_dir(ring));
2604 	else if (cb->length)
2605 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2606 			       ring_to_dma_dir(ring));
2607 }
2608 
2609 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2610 {
2611 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2612 	ring->desc[i].addr = 0;
2613 }
2614 
2615 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
2616 				    int budget)
2617 {
2618 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2619 
2620 	if (!ring->desc_cb[i].dma)
2621 		return;
2622 
2623 	hns3_buffer_detach(ring, i);
2624 	hns3_free_buffer(ring, cb, budget);
2625 }
2626 
2627 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2628 {
2629 	int i;
2630 
2631 	for (i = 0; i < ring->desc_num; i++)
2632 		hns3_free_buffer_detach(ring, i, 0);
2633 }
2634 
2635 /* free desc along with its attached buffer */
2636 static void hns3_free_desc(struct hns3_enet_ring *ring)
2637 {
2638 	int size = ring->desc_num * sizeof(ring->desc[0]);
2639 
2640 	hns3_free_buffers(ring);
2641 
2642 	if (ring->desc) {
2643 		dma_free_coherent(ring_to_dev(ring), size,
2644 				  ring->desc, ring->desc_dma_addr);
2645 		ring->desc = NULL;
2646 	}
2647 }
2648 
2649 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2650 {
2651 	int size = ring->desc_num * sizeof(ring->desc[0]);
2652 
2653 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2654 					&ring->desc_dma_addr, GFP_KERNEL);
2655 	if (!ring->desc)
2656 		return -ENOMEM;
2657 
2658 	return 0;
2659 }
2660 
2661 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2662 				   struct hns3_desc_cb *cb)
2663 {
2664 	int ret;
2665 
2666 	ret = hns3_alloc_buffer(ring, cb);
2667 	if (ret)
2668 		goto out;
2669 
2670 	ret = hns3_map_buffer(ring, cb);
2671 	if (ret)
2672 		goto out_with_buf;
2673 
2674 	return 0;
2675 
2676 out_with_buf:
2677 	hns3_free_buffer(ring, cb, 0);
2678 out:
2679 	return ret;
2680 }
2681 
2682 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2683 {
2684 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2685 
2686 	if (ret)
2687 		return ret;
2688 
2689 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2690 
2691 	return 0;
2692 }
2693 
2694 /* Allocate memory for raw pkg, and map with dma */
2695 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2696 {
2697 	int i, j, ret;
2698 
2699 	for (i = 0; i < ring->desc_num; i++) {
2700 		ret = hns3_alloc_and_attach_buffer(ring, i);
2701 		if (ret)
2702 			goto out_buffer_fail;
2703 	}
2704 
2705 	return 0;
2706 
2707 out_buffer_fail:
2708 	for (j = i - 1; j >= 0; j--)
2709 		hns3_free_buffer_detach(ring, j, 0);
2710 	return ret;
2711 }
2712 
2713 /* detach a in-used buffer and replace with a reserved one */
2714 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2715 				struct hns3_desc_cb *res_cb)
2716 {
2717 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2718 	ring->desc_cb[i] = *res_cb;
2719 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2720 	ring->desc[i].rx.bd_base_info = 0;
2721 }
2722 
2723 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2724 {
2725 	ring->desc_cb[i].reuse_flag = 0;
2726 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2727 					 ring->desc_cb[i].page_offset);
2728 	ring->desc[i].rx.bd_base_info = 0;
2729 
2730 	dma_sync_single_for_device(ring_to_dev(ring),
2731 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2732 			hns3_buf_size(ring),
2733 			DMA_FROM_DEVICE);
2734 }
2735 
2736 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
2737 				  int *bytes, int *pkts, int budget)
2738 {
2739 	/* pair with ring->last_to_use update in hns3_tx_doorbell(),
2740 	 * smp_store_release() is not used in hns3_tx_doorbell() because
2741 	 * the doorbell operation already have the needed barrier operation.
2742 	 */
2743 	int ltu = smp_load_acquire(&ring->last_to_use);
2744 	int ntc = ring->next_to_clean;
2745 	struct hns3_desc_cb *desc_cb;
2746 	bool reclaimed = false;
2747 	struct hns3_desc *desc;
2748 
2749 	while (ltu != ntc) {
2750 		desc = &ring->desc[ntc];
2751 
2752 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
2753 				BIT(HNS3_TXD_VLD_B))
2754 			break;
2755 
2756 		desc_cb = &ring->desc_cb[ntc];
2757 
2758 		if (desc_cb->type == DESC_TYPE_SKB) {
2759 			(*pkts)++;
2760 			(*bytes) += desc_cb->send_bytes;
2761 		}
2762 
2763 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2764 		hns3_free_buffer_detach(ring, ntc, budget);
2765 
2766 		if (++ntc == ring->desc_num)
2767 			ntc = 0;
2768 
2769 		/* Issue prefetch for next Tx descriptor */
2770 		prefetch(&ring->desc_cb[ntc]);
2771 		reclaimed = true;
2772 	}
2773 
2774 	if (unlikely(!reclaimed))
2775 		return false;
2776 
2777 	/* This smp_store_release() pairs with smp_load_acquire() in
2778 	 * ring_space called by hns3_nic_net_xmit.
2779 	 */
2780 	smp_store_release(&ring->next_to_clean, ntc);
2781 	return true;
2782 }
2783 
2784 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
2785 {
2786 	struct net_device *netdev = ring_to_netdev(ring);
2787 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2788 	struct netdev_queue *dev_queue;
2789 	int bytes, pkts;
2790 
2791 	bytes = 0;
2792 	pkts = 0;
2793 
2794 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
2795 		return;
2796 
2797 	ring->tqp_vector->tx_group.total_bytes += bytes;
2798 	ring->tqp_vector->tx_group.total_packets += pkts;
2799 
2800 	u64_stats_update_begin(&ring->syncp);
2801 	ring->stats.tx_bytes += bytes;
2802 	ring->stats.tx_pkts += pkts;
2803 	u64_stats_update_end(&ring->syncp);
2804 
2805 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2806 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2807 
2808 	if (unlikely(netif_carrier_ok(netdev) &&
2809 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2810 		/* Make sure that anybody stopping the queue after this
2811 		 * sees the new next_to_clean.
2812 		 */
2813 		smp_mb();
2814 		if (netif_tx_queue_stopped(dev_queue) &&
2815 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2816 			netif_tx_wake_queue(dev_queue);
2817 			ring->stats.restart_queue++;
2818 		}
2819 	}
2820 }
2821 
2822 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2823 {
2824 	int ntc = ring->next_to_clean;
2825 	int ntu = ring->next_to_use;
2826 
2827 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2828 }
2829 
2830 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2831 				      int cleand_count)
2832 {
2833 	struct hns3_desc_cb *desc_cb;
2834 	struct hns3_desc_cb res_cbs;
2835 	int i, ret;
2836 
2837 	for (i = 0; i < cleand_count; i++) {
2838 		desc_cb = &ring->desc_cb[ring->next_to_use];
2839 		if (desc_cb->reuse_flag) {
2840 			u64_stats_update_begin(&ring->syncp);
2841 			ring->stats.reuse_pg_cnt++;
2842 			u64_stats_update_end(&ring->syncp);
2843 
2844 			hns3_reuse_buffer(ring, ring->next_to_use);
2845 		} else {
2846 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2847 			if (ret) {
2848 				u64_stats_update_begin(&ring->syncp);
2849 				ring->stats.sw_err_cnt++;
2850 				u64_stats_update_end(&ring->syncp);
2851 
2852 				hns3_rl_err(ring_to_netdev(ring),
2853 					    "alloc rx buffer failed: %d\n",
2854 					    ret);
2855 				break;
2856 			}
2857 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2858 
2859 			u64_stats_update_begin(&ring->syncp);
2860 			ring->stats.non_reuse_pg++;
2861 			u64_stats_update_end(&ring->syncp);
2862 		}
2863 
2864 		ring_ptr_move_fw(ring, next_to_use);
2865 	}
2866 
2867 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2868 }
2869 
2870 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
2871 {
2872 	return (page_count(cb->priv) - cb->pagecnt_bias) == 1;
2873 }
2874 
2875 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2876 				struct hns3_enet_ring *ring, int pull_len,
2877 				struct hns3_desc_cb *desc_cb)
2878 {
2879 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2880 	int size = le16_to_cpu(desc->rx.size);
2881 	u32 truesize = hns3_buf_size(ring);
2882 
2883 	desc_cb->pagecnt_bias--;
2884 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2885 			size - pull_len, truesize);
2886 
2887 	/* Avoid re-using remote and pfmemalloc pages, or the stack is still
2888 	 * using the page when page_offset rollback to zero, flag default
2889 	 * unreuse
2890 	 */
2891 	if (!dev_page_is_reusable(desc_cb->priv) ||
2892 	    (!desc_cb->page_offset && !hns3_can_reuse_page(desc_cb))) {
2893 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2894 		return;
2895 	}
2896 
2897 	/* Move offset up to the next cache line */
2898 	desc_cb->page_offset += truesize;
2899 
2900 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2901 		desc_cb->reuse_flag = 1;
2902 	} else if (hns3_can_reuse_page(desc_cb)) {
2903 		desc_cb->reuse_flag = 1;
2904 		desc_cb->page_offset = 0;
2905 	} else if (desc_cb->pagecnt_bias) {
2906 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2907 		return;
2908 	}
2909 
2910 	if (unlikely(!desc_cb->pagecnt_bias)) {
2911 		page_ref_add(desc_cb->priv, USHRT_MAX);
2912 		desc_cb->pagecnt_bias = USHRT_MAX;
2913 	}
2914 }
2915 
2916 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2917 {
2918 	__be16 type = skb->protocol;
2919 	struct tcphdr *th;
2920 	int depth = 0;
2921 
2922 	while (eth_type_vlan(type)) {
2923 		struct vlan_hdr *vh;
2924 
2925 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2926 			return -EFAULT;
2927 
2928 		vh = (struct vlan_hdr *)(skb->data + depth);
2929 		type = vh->h_vlan_encapsulated_proto;
2930 		depth += VLAN_HLEN;
2931 	}
2932 
2933 	skb_set_network_header(skb, depth);
2934 
2935 	if (type == htons(ETH_P_IP)) {
2936 		const struct iphdr *iph = ip_hdr(skb);
2937 
2938 		depth += sizeof(struct iphdr);
2939 		skb_set_transport_header(skb, depth);
2940 		th = tcp_hdr(skb);
2941 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2942 					  iph->daddr, 0);
2943 	} else if (type == htons(ETH_P_IPV6)) {
2944 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2945 
2946 		depth += sizeof(struct ipv6hdr);
2947 		skb_set_transport_header(skb, depth);
2948 		th = tcp_hdr(skb);
2949 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2950 					  &iph->daddr, 0);
2951 	} else {
2952 		hns3_rl_err(skb->dev,
2953 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2954 			    be16_to_cpu(type), depth);
2955 		return -EFAULT;
2956 	}
2957 
2958 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2959 	if (th->cwr)
2960 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2961 
2962 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2963 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2964 
2965 	skb->csum_start = (unsigned char *)th - skb->head;
2966 	skb->csum_offset = offsetof(struct tcphdr, check);
2967 	skb->ip_summed = CHECKSUM_PARTIAL;
2968 
2969 	trace_hns3_gro(skb);
2970 
2971 	return 0;
2972 }
2973 
2974 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
2975 				   struct sk_buff *skb, u32 l234info)
2976 {
2977 	u32 lo, hi;
2978 
2979 	u64_stats_update_begin(&ring->syncp);
2980 	ring->stats.csum_complete++;
2981 	u64_stats_update_end(&ring->syncp);
2982 	skb->ip_summed = CHECKSUM_COMPLETE;
2983 	lo = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_L_M,
2984 			     HNS3_RXD_L2_CSUM_L_S);
2985 	hi = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_H_M,
2986 			     HNS3_RXD_L2_CSUM_H_S);
2987 	skb->csum = csum_unfold((__force __sum16)(lo | hi << 8));
2988 }
2989 
2990 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2991 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2992 {
2993 	struct net_device *netdev = ring_to_netdev(ring);
2994 	int l3_type, l4_type;
2995 	int ol4_type;
2996 
2997 	skb->ip_summed = CHECKSUM_NONE;
2998 
2999 	skb_checksum_none_assert(skb);
3000 
3001 	if (!(netdev->features & NETIF_F_RXCSUM))
3002 		return;
3003 
3004 	if (l234info & BIT(HNS3_RXD_L2_CSUM_B)) {
3005 		hns3_checksum_complete(ring, skb, l234info);
3006 		return;
3007 	}
3008 
3009 	/* check if hardware has done checksum */
3010 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3011 		return;
3012 
3013 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3014 				 BIT(HNS3_RXD_OL3E_B) |
3015 				 BIT(HNS3_RXD_OL4E_B)))) {
3016 		u64_stats_update_begin(&ring->syncp);
3017 		ring->stats.l3l4_csum_err++;
3018 		u64_stats_update_end(&ring->syncp);
3019 
3020 		return;
3021 	}
3022 
3023 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3024 				   HNS3_RXD_OL4ID_S);
3025 	switch (ol4_type) {
3026 	case HNS3_OL4_TYPE_MAC_IN_UDP:
3027 	case HNS3_OL4_TYPE_NVGRE:
3028 		skb->csum_level = 1;
3029 		fallthrough;
3030 	case HNS3_OL4_TYPE_NO_TUN:
3031 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3032 					  HNS3_RXD_L3ID_S);
3033 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3034 					  HNS3_RXD_L4ID_S);
3035 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3036 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3037 		     l3_type == HNS3_L3_TYPE_IPV6) &&
3038 		    (l4_type == HNS3_L4_TYPE_UDP ||
3039 		     l4_type == HNS3_L4_TYPE_TCP ||
3040 		     l4_type == HNS3_L4_TYPE_SCTP))
3041 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3042 		break;
3043 	default:
3044 		break;
3045 	}
3046 }
3047 
3048 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3049 {
3050 	if (skb_has_frag_list(skb))
3051 		napi_gro_flush(&ring->tqp_vector->napi, false);
3052 
3053 	napi_gro_receive(&ring->tqp_vector->napi, skb);
3054 }
3055 
3056 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3057 				struct hns3_desc *desc, u32 l234info,
3058 				u16 *vlan_tag)
3059 {
3060 	struct hnae3_handle *handle = ring->tqp->handle;
3061 	struct pci_dev *pdev = ring->tqp->handle->pdev;
3062 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3063 
3064 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3065 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3066 		if (!(*vlan_tag & VLAN_VID_MASK))
3067 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3068 
3069 		return (*vlan_tag != 0);
3070 	}
3071 
3072 #define HNS3_STRP_OUTER_VLAN	0x1
3073 #define HNS3_STRP_INNER_VLAN	0x2
3074 #define HNS3_STRP_BOTH		0x3
3075 
3076 	/* Hardware always insert VLAN tag into RX descriptor when
3077 	 * remove the tag from packet, driver needs to determine
3078 	 * reporting which tag to stack.
3079 	 */
3080 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3081 				HNS3_RXD_STRP_TAGP_S)) {
3082 	case HNS3_STRP_OUTER_VLAN:
3083 		if (handle->port_base_vlan_state !=
3084 				HNAE3_PORT_BASE_VLAN_DISABLE)
3085 			return false;
3086 
3087 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3088 		return true;
3089 	case HNS3_STRP_INNER_VLAN:
3090 		if (handle->port_base_vlan_state !=
3091 				HNAE3_PORT_BASE_VLAN_DISABLE)
3092 			return false;
3093 
3094 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3095 		return true;
3096 	case HNS3_STRP_BOTH:
3097 		if (handle->port_base_vlan_state ==
3098 				HNAE3_PORT_BASE_VLAN_DISABLE)
3099 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3100 		else
3101 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3102 
3103 		return true;
3104 	default:
3105 		return false;
3106 	}
3107 }
3108 
3109 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
3110 {
3111 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
3112 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
3113 	ring->next_to_clean += 1;
3114 
3115 	if (unlikely(ring->next_to_clean == ring->desc_num))
3116 		ring->next_to_clean = 0;
3117 }
3118 
3119 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3120 			  unsigned char *va)
3121 {
3122 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3123 	struct net_device *netdev = ring_to_netdev(ring);
3124 	struct sk_buff *skb;
3125 
3126 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3127 	skb = ring->skb;
3128 	if (unlikely(!skb)) {
3129 		hns3_rl_err(netdev, "alloc rx skb fail\n");
3130 
3131 		u64_stats_update_begin(&ring->syncp);
3132 		ring->stats.sw_err_cnt++;
3133 		u64_stats_update_end(&ring->syncp);
3134 
3135 		return -ENOMEM;
3136 	}
3137 
3138 	trace_hns3_rx_desc(ring);
3139 	prefetchw(skb->data);
3140 
3141 	ring->pending_buf = 1;
3142 	ring->frag_num = 0;
3143 	ring->tail_skb = NULL;
3144 	if (length <= HNS3_RX_HEAD_SIZE) {
3145 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3146 
3147 		/* We can reuse buffer as-is, just make sure it is reusable */
3148 		if (dev_page_is_reusable(desc_cb->priv))
3149 			desc_cb->reuse_flag = 1;
3150 		else /* This page cannot be reused so discard it */
3151 			__page_frag_cache_drain(desc_cb->priv,
3152 						desc_cb->pagecnt_bias);
3153 
3154 		hns3_rx_ring_move_fw(ring);
3155 		return 0;
3156 	}
3157 	u64_stats_update_begin(&ring->syncp);
3158 	ring->stats.seg_pkt_cnt++;
3159 	u64_stats_update_end(&ring->syncp);
3160 
3161 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3162 	__skb_put(skb, ring->pull_len);
3163 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3164 			    desc_cb);
3165 	hns3_rx_ring_move_fw(ring);
3166 
3167 	return 0;
3168 }
3169 
3170 static int hns3_add_frag(struct hns3_enet_ring *ring)
3171 {
3172 	struct sk_buff *skb = ring->skb;
3173 	struct sk_buff *head_skb = skb;
3174 	struct sk_buff *new_skb;
3175 	struct hns3_desc_cb *desc_cb;
3176 	struct hns3_desc *desc;
3177 	u32 bd_base_info;
3178 
3179 	do {
3180 		desc = &ring->desc[ring->next_to_clean];
3181 		desc_cb = &ring->desc_cb[ring->next_to_clean];
3182 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3183 		/* make sure HW write desc complete */
3184 		dma_rmb();
3185 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3186 			return -ENXIO;
3187 
3188 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3189 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3190 			if (unlikely(!new_skb)) {
3191 				hns3_rl_err(ring_to_netdev(ring),
3192 					    "alloc rx fraglist skb fail\n");
3193 				return -ENXIO;
3194 			}
3195 			ring->frag_num = 0;
3196 
3197 			if (ring->tail_skb) {
3198 				ring->tail_skb->next = new_skb;
3199 				ring->tail_skb = new_skb;
3200 			} else {
3201 				skb_shinfo(skb)->frag_list = new_skb;
3202 				ring->tail_skb = new_skb;
3203 			}
3204 		}
3205 
3206 		if (ring->tail_skb) {
3207 			head_skb->truesize += hns3_buf_size(ring);
3208 			head_skb->data_len += le16_to_cpu(desc->rx.size);
3209 			head_skb->len += le16_to_cpu(desc->rx.size);
3210 			skb = ring->tail_skb;
3211 		}
3212 
3213 		dma_sync_single_for_cpu(ring_to_dev(ring),
3214 				desc_cb->dma + desc_cb->page_offset,
3215 				hns3_buf_size(ring),
3216 				DMA_FROM_DEVICE);
3217 
3218 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3219 		trace_hns3_rx_desc(ring);
3220 		hns3_rx_ring_move_fw(ring);
3221 		ring->pending_buf++;
3222 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3223 
3224 	return 0;
3225 }
3226 
3227 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3228 				     struct sk_buff *skb, u32 l234info,
3229 				     u32 bd_base_info, u32 ol_info)
3230 {
3231 	u32 l3_type;
3232 
3233 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3234 						    HNS3_RXD_GRO_SIZE_M,
3235 						    HNS3_RXD_GRO_SIZE_S);
3236 	/* if there is no HW GRO, do not set gro params */
3237 	if (!skb_shinfo(skb)->gso_size) {
3238 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
3239 		return 0;
3240 	}
3241 
3242 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3243 						  HNS3_RXD_GRO_COUNT_M,
3244 						  HNS3_RXD_GRO_COUNT_S);
3245 
3246 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
3247 	if (l3_type == HNS3_L3_TYPE_IPV4)
3248 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3249 	else if (l3_type == HNS3_L3_TYPE_IPV6)
3250 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3251 	else
3252 		return -EFAULT;
3253 
3254 	return  hns3_gro_complete(skb, l234info);
3255 }
3256 
3257 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3258 				     struct sk_buff *skb, u32 rss_hash)
3259 {
3260 	struct hnae3_handle *handle = ring->tqp->handle;
3261 	enum pkt_hash_types rss_type;
3262 
3263 	if (rss_hash)
3264 		rss_type = handle->kinfo.rss_type;
3265 	else
3266 		rss_type = PKT_HASH_TYPE_NONE;
3267 
3268 	skb_set_hash(skb, rss_hash, rss_type);
3269 }
3270 
3271 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
3272 {
3273 	struct net_device *netdev = ring_to_netdev(ring);
3274 	enum hns3_pkt_l2t_type l2_frame_type;
3275 	u32 bd_base_info, l234info, ol_info;
3276 	struct hns3_desc *desc;
3277 	unsigned int len;
3278 	int pre_ntc, ret;
3279 
3280 	/* bdinfo handled below is only valid on the last BD of the
3281 	 * current packet, and ring->next_to_clean indicates the first
3282 	 * descriptor of next packet, so need - 1 below.
3283 	 */
3284 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
3285 					(ring->desc_num - 1);
3286 	desc = &ring->desc[pre_ntc];
3287 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3288 	l234info = le32_to_cpu(desc->rx.l234_info);
3289 	ol_info = le32_to_cpu(desc->rx.ol_info);
3290 
3291 	/* Based on hw strategy, the tag offloaded will be stored at
3292 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3293 	 * in one layer tag case.
3294 	 */
3295 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3296 		u16 vlan_tag;
3297 
3298 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3299 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3300 					       vlan_tag);
3301 	}
3302 
3303 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3304 				  BIT(HNS3_RXD_L2E_B))))) {
3305 		u64_stats_update_begin(&ring->syncp);
3306 		if (l234info & BIT(HNS3_RXD_L2E_B))
3307 			ring->stats.l2_err++;
3308 		else
3309 			ring->stats.err_pkt_len++;
3310 		u64_stats_update_end(&ring->syncp);
3311 
3312 		return -EFAULT;
3313 	}
3314 
3315 	len = skb->len;
3316 
3317 	/* Do update ip stack process */
3318 	skb->protocol = eth_type_trans(skb, netdev);
3319 
3320 	/* This is needed in order to enable forwarding support */
3321 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3322 					bd_base_info, ol_info);
3323 	if (unlikely(ret)) {
3324 		u64_stats_update_begin(&ring->syncp);
3325 		ring->stats.rx_err_cnt++;
3326 		u64_stats_update_end(&ring->syncp);
3327 		return ret;
3328 	}
3329 
3330 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3331 					HNS3_RXD_DMAC_S);
3332 
3333 	u64_stats_update_begin(&ring->syncp);
3334 	ring->stats.rx_pkts++;
3335 	ring->stats.rx_bytes += len;
3336 
3337 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3338 		ring->stats.rx_multicast++;
3339 
3340 	u64_stats_update_end(&ring->syncp);
3341 
3342 	ring->tqp_vector->rx_group.total_bytes += len;
3343 
3344 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3345 	return 0;
3346 }
3347 
3348 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3349 {
3350 	struct sk_buff *skb = ring->skb;
3351 	struct hns3_desc_cb *desc_cb;
3352 	struct hns3_desc *desc;
3353 	unsigned int length;
3354 	u32 bd_base_info;
3355 	int ret;
3356 
3357 	desc = &ring->desc[ring->next_to_clean];
3358 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3359 
3360 	prefetch(desc);
3361 
3362 	if (!skb) {
3363 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3364 		/* Check valid BD */
3365 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3366 			return -ENXIO;
3367 
3368 		dma_rmb();
3369 		length = le16_to_cpu(desc->rx.size);
3370 
3371 		ring->va = desc_cb->buf + desc_cb->page_offset;
3372 
3373 		dma_sync_single_for_cpu(ring_to_dev(ring),
3374 				desc_cb->dma + desc_cb->page_offset,
3375 				hns3_buf_size(ring),
3376 				DMA_FROM_DEVICE);
3377 
3378 		/* Prefetch first cache line of first page.
3379 		 * Idea is to cache few bytes of the header of the packet.
3380 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
3381 		 * it 128B. But in actual we can have greater size of caches with
3382 		 * 128B Level 1 cache lines. In such a case, single fetch would
3383 		 * suffice to cache in the relevant part of the header.
3384 		 */
3385 		net_prefetch(ring->va);
3386 
3387 		ret = hns3_alloc_skb(ring, length, ring->va);
3388 		skb = ring->skb;
3389 
3390 		if (ret < 0) /* alloc buffer fail */
3391 			return ret;
3392 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3393 			ret = hns3_add_frag(ring);
3394 			if (ret)
3395 				return ret;
3396 		}
3397 	} else {
3398 		ret = hns3_add_frag(ring);
3399 		if (ret)
3400 			return ret;
3401 	}
3402 
3403 	/* As the head data may be changed when GRO enable, copy
3404 	 * the head data in after other data rx completed
3405 	 */
3406 	if (skb->len > HNS3_RX_HEAD_SIZE)
3407 		memcpy(skb->data, ring->va,
3408 		       ALIGN(ring->pull_len, sizeof(long)));
3409 
3410 	ret = hns3_handle_bdinfo(ring, skb);
3411 	if (unlikely(ret)) {
3412 		dev_kfree_skb_any(skb);
3413 		return ret;
3414 	}
3415 
3416 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3417 	return 0;
3418 }
3419 
3420 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3421 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3422 {
3423 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3424 	int unused_count = hns3_desc_unused(ring);
3425 	int recv_pkts = 0;
3426 	int err;
3427 
3428 	unused_count -= ring->pending_buf;
3429 
3430 	while (recv_pkts < budget) {
3431 		/* Reuse or realloc buffers */
3432 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3433 			hns3_nic_alloc_rx_buffers(ring, unused_count);
3434 			unused_count = hns3_desc_unused(ring) -
3435 					ring->pending_buf;
3436 		}
3437 
3438 		/* Poll one pkt */
3439 		err = hns3_handle_rx_bd(ring);
3440 		/* Do not get FE for the packet or failed to alloc skb */
3441 		if (unlikely(!ring->skb || err == -ENXIO)) {
3442 			goto out;
3443 		} else if (likely(!err)) {
3444 			rx_fn(ring, ring->skb);
3445 			recv_pkts++;
3446 		}
3447 
3448 		unused_count += ring->pending_buf;
3449 		ring->skb = NULL;
3450 		ring->pending_buf = 0;
3451 	}
3452 
3453 out:
3454 	/* Make all data has been write before submit */
3455 	if (unused_count > 0)
3456 		hns3_nic_alloc_rx_buffers(ring, unused_count);
3457 
3458 	return recv_pkts;
3459 }
3460 
3461 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3462 {
3463 #define HNS3_RX_LOW_BYTE_RATE 10000
3464 #define HNS3_RX_MID_BYTE_RATE 20000
3465 #define HNS3_RX_ULTRA_PACKET_RATE 40
3466 
3467 	enum hns3_flow_level_range new_flow_level;
3468 	struct hns3_enet_tqp_vector *tqp_vector;
3469 	int packets_per_msecs, bytes_per_msecs;
3470 	u32 time_passed_ms;
3471 
3472 	tqp_vector = ring_group->ring->tqp_vector;
3473 	time_passed_ms =
3474 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3475 	if (!time_passed_ms)
3476 		return false;
3477 
3478 	do_div(ring_group->total_packets, time_passed_ms);
3479 	packets_per_msecs = ring_group->total_packets;
3480 
3481 	do_div(ring_group->total_bytes, time_passed_ms);
3482 	bytes_per_msecs = ring_group->total_bytes;
3483 
3484 	new_flow_level = ring_group->coal.flow_level;
3485 
3486 	/* Simple throttlerate management
3487 	 * 0-10MB/s   lower     (50000 ints/s)
3488 	 * 10-20MB/s   middle    (20000 ints/s)
3489 	 * 20-1249MB/s high      (18000 ints/s)
3490 	 * > 40000pps  ultra     (8000 ints/s)
3491 	 */
3492 	switch (new_flow_level) {
3493 	case HNS3_FLOW_LOW:
3494 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3495 			new_flow_level = HNS3_FLOW_MID;
3496 		break;
3497 	case HNS3_FLOW_MID:
3498 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3499 			new_flow_level = HNS3_FLOW_HIGH;
3500 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3501 			new_flow_level = HNS3_FLOW_LOW;
3502 		break;
3503 	case HNS3_FLOW_HIGH:
3504 	case HNS3_FLOW_ULTRA:
3505 	default:
3506 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3507 			new_flow_level = HNS3_FLOW_MID;
3508 		break;
3509 	}
3510 
3511 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3512 	    &tqp_vector->rx_group == ring_group)
3513 		new_flow_level = HNS3_FLOW_ULTRA;
3514 
3515 	ring_group->total_bytes = 0;
3516 	ring_group->total_packets = 0;
3517 	ring_group->coal.flow_level = new_flow_level;
3518 
3519 	return true;
3520 }
3521 
3522 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3523 {
3524 	struct hns3_enet_tqp_vector *tqp_vector;
3525 	u16 new_int_gl;
3526 
3527 	if (!ring_group->ring)
3528 		return false;
3529 
3530 	tqp_vector = ring_group->ring->tqp_vector;
3531 	if (!tqp_vector->last_jiffies)
3532 		return false;
3533 
3534 	if (ring_group->total_packets == 0) {
3535 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3536 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3537 		return true;
3538 	}
3539 
3540 	if (!hns3_get_new_flow_lvl(ring_group))
3541 		return false;
3542 
3543 	new_int_gl = ring_group->coal.int_gl;
3544 	switch (ring_group->coal.flow_level) {
3545 	case HNS3_FLOW_LOW:
3546 		new_int_gl = HNS3_INT_GL_50K;
3547 		break;
3548 	case HNS3_FLOW_MID:
3549 		new_int_gl = HNS3_INT_GL_20K;
3550 		break;
3551 	case HNS3_FLOW_HIGH:
3552 		new_int_gl = HNS3_INT_GL_18K;
3553 		break;
3554 	case HNS3_FLOW_ULTRA:
3555 		new_int_gl = HNS3_INT_GL_8K;
3556 		break;
3557 	default:
3558 		break;
3559 	}
3560 
3561 	if (new_int_gl != ring_group->coal.int_gl) {
3562 		ring_group->coal.int_gl = new_int_gl;
3563 		return true;
3564 	}
3565 	return false;
3566 }
3567 
3568 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3569 {
3570 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3571 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3572 	bool rx_update, tx_update;
3573 
3574 	/* update param every 1000ms */
3575 	if (time_before(jiffies,
3576 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3577 		return;
3578 
3579 	if (rx_group->coal.adapt_enable) {
3580 		rx_update = hns3_get_new_int_gl(rx_group);
3581 		if (rx_update)
3582 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3583 						       rx_group->coal.int_gl);
3584 	}
3585 
3586 	if (tx_group->coal.adapt_enable) {
3587 		tx_update = hns3_get_new_int_gl(tx_group);
3588 		if (tx_update)
3589 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3590 						       tx_group->coal.int_gl);
3591 	}
3592 
3593 	tqp_vector->last_jiffies = jiffies;
3594 }
3595 
3596 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3597 {
3598 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3599 	struct hns3_enet_ring *ring;
3600 	int rx_pkt_total = 0;
3601 
3602 	struct hns3_enet_tqp_vector *tqp_vector =
3603 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3604 	bool clean_complete = true;
3605 	int rx_budget = budget;
3606 
3607 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3608 		napi_complete(napi);
3609 		return 0;
3610 	}
3611 
3612 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3613 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3614 	 */
3615 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3616 		hns3_clean_tx_ring(ring, budget);
3617 
3618 	/* make sure rx ring budget not smaller than 1 */
3619 	if (tqp_vector->num_tqps > 1)
3620 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3621 
3622 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3623 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3624 						    hns3_rx_skb);
3625 		if (rx_cleaned >= rx_budget)
3626 			clean_complete = false;
3627 
3628 		rx_pkt_total += rx_cleaned;
3629 	}
3630 
3631 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3632 
3633 	if (!clean_complete)
3634 		return budget;
3635 
3636 	if (napi_complete(napi) &&
3637 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3638 		hns3_update_new_int_gl(tqp_vector);
3639 		hns3_mask_vector_irq(tqp_vector, 1);
3640 	}
3641 
3642 	return rx_pkt_total;
3643 }
3644 
3645 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3646 				      struct hnae3_ring_chain_node *head)
3647 {
3648 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3649 	struct hnae3_ring_chain_node *cur_chain = head;
3650 	struct hnae3_ring_chain_node *chain;
3651 	struct hns3_enet_ring *tx_ring;
3652 	struct hns3_enet_ring *rx_ring;
3653 
3654 	tx_ring = tqp_vector->tx_group.ring;
3655 	if (tx_ring) {
3656 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3657 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3658 			      HNAE3_RING_TYPE_TX);
3659 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3660 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3661 
3662 		cur_chain->next = NULL;
3663 
3664 		while (tx_ring->next) {
3665 			tx_ring = tx_ring->next;
3666 
3667 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3668 					     GFP_KERNEL);
3669 			if (!chain)
3670 				goto err_free_chain;
3671 
3672 			cur_chain->next = chain;
3673 			chain->tqp_index = tx_ring->tqp->tqp_index;
3674 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3675 				      HNAE3_RING_TYPE_TX);
3676 			hnae3_set_field(chain->int_gl_idx,
3677 					HNAE3_RING_GL_IDX_M,
3678 					HNAE3_RING_GL_IDX_S,
3679 					HNAE3_RING_GL_TX);
3680 
3681 			cur_chain = chain;
3682 		}
3683 	}
3684 
3685 	rx_ring = tqp_vector->rx_group.ring;
3686 	if (!tx_ring && rx_ring) {
3687 		cur_chain->next = NULL;
3688 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3689 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3690 			      HNAE3_RING_TYPE_RX);
3691 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3692 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3693 
3694 		rx_ring = rx_ring->next;
3695 	}
3696 
3697 	while (rx_ring) {
3698 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3699 		if (!chain)
3700 			goto err_free_chain;
3701 
3702 		cur_chain->next = chain;
3703 		chain->tqp_index = rx_ring->tqp->tqp_index;
3704 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3705 			      HNAE3_RING_TYPE_RX);
3706 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3707 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3708 
3709 		cur_chain = chain;
3710 
3711 		rx_ring = rx_ring->next;
3712 	}
3713 
3714 	return 0;
3715 
3716 err_free_chain:
3717 	cur_chain = head->next;
3718 	while (cur_chain) {
3719 		chain = cur_chain->next;
3720 		devm_kfree(&pdev->dev, cur_chain);
3721 		cur_chain = chain;
3722 	}
3723 	head->next = NULL;
3724 
3725 	return -ENOMEM;
3726 }
3727 
3728 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3729 					struct hnae3_ring_chain_node *head)
3730 {
3731 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3732 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3733 
3734 	chain = head->next;
3735 
3736 	while (chain) {
3737 		chain_tmp = chain->next;
3738 		devm_kfree(&pdev->dev, chain);
3739 		chain = chain_tmp;
3740 	}
3741 }
3742 
3743 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3744 				   struct hns3_enet_ring *ring)
3745 {
3746 	ring->next = group->ring;
3747 	group->ring = ring;
3748 
3749 	group->count++;
3750 }
3751 
3752 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3753 {
3754 	struct pci_dev *pdev = priv->ae_handle->pdev;
3755 	struct hns3_enet_tqp_vector *tqp_vector;
3756 	int num_vectors = priv->vector_num;
3757 	int numa_node;
3758 	int vector_i;
3759 
3760 	numa_node = dev_to_node(&pdev->dev);
3761 
3762 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3763 		tqp_vector = &priv->tqp_vector[vector_i];
3764 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3765 				&tqp_vector->affinity_mask);
3766 	}
3767 }
3768 
3769 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3770 {
3771 	struct hnae3_handle *h = priv->ae_handle;
3772 	struct hns3_enet_tqp_vector *tqp_vector;
3773 	int ret;
3774 	int i;
3775 
3776 	hns3_nic_set_cpumask(priv);
3777 
3778 	for (i = 0; i < priv->vector_num; i++) {
3779 		tqp_vector = &priv->tqp_vector[i];
3780 		hns3_vector_coalesce_init_hw(tqp_vector, priv);
3781 		tqp_vector->num_tqps = 0;
3782 	}
3783 
3784 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3785 		u16 vector_i = i % priv->vector_num;
3786 		u16 tqp_num = h->kinfo.num_tqps;
3787 
3788 		tqp_vector = &priv->tqp_vector[vector_i];
3789 
3790 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3791 				       &priv->ring[i]);
3792 
3793 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3794 				       &priv->ring[i + tqp_num]);
3795 
3796 		priv->ring[i].tqp_vector = tqp_vector;
3797 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3798 		tqp_vector->num_tqps++;
3799 	}
3800 
3801 	for (i = 0; i < priv->vector_num; i++) {
3802 		struct hnae3_ring_chain_node vector_ring_chain;
3803 
3804 		tqp_vector = &priv->tqp_vector[i];
3805 
3806 		tqp_vector->rx_group.total_bytes = 0;
3807 		tqp_vector->rx_group.total_packets = 0;
3808 		tqp_vector->tx_group.total_bytes = 0;
3809 		tqp_vector->tx_group.total_packets = 0;
3810 		tqp_vector->handle = h;
3811 
3812 		ret = hns3_get_vector_ring_chain(tqp_vector,
3813 						 &vector_ring_chain);
3814 		if (ret)
3815 			goto map_ring_fail;
3816 
3817 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3818 			tqp_vector->vector_irq, &vector_ring_chain);
3819 
3820 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3821 
3822 		if (ret)
3823 			goto map_ring_fail;
3824 
3825 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3826 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3827 	}
3828 
3829 	return 0;
3830 
3831 map_ring_fail:
3832 	while (i--)
3833 		netif_napi_del(&priv->tqp_vector[i].napi);
3834 
3835 	return ret;
3836 }
3837 
3838 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
3839 {
3840 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
3841 	struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
3842 	struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
3843 
3844 	/* initialize the configuration for interrupt coalescing.
3845 	 * 1. GL (Interrupt Gap Limiter)
3846 	 * 2. RL (Interrupt Rate Limiter)
3847 	 * 3. QL (Interrupt Quantity Limiter)
3848 	 *
3849 	 * Default: enable interrupt coalescing self-adaptive and GL
3850 	 */
3851 	tx_coal->adapt_enable = 1;
3852 	rx_coal->adapt_enable = 1;
3853 
3854 	tx_coal->int_gl = HNS3_INT_GL_50K;
3855 	rx_coal->int_gl = HNS3_INT_GL_50K;
3856 
3857 	rx_coal->flow_level = HNS3_FLOW_LOW;
3858 	tx_coal->flow_level = HNS3_FLOW_LOW;
3859 
3860 	if (ae_dev->dev_specs.int_ql_max) {
3861 		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
3862 		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
3863 	}
3864 }
3865 
3866 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3867 {
3868 	struct hnae3_handle *h = priv->ae_handle;
3869 	struct hns3_enet_tqp_vector *tqp_vector;
3870 	struct hnae3_vector_info *vector;
3871 	struct pci_dev *pdev = h->pdev;
3872 	u16 tqp_num = h->kinfo.num_tqps;
3873 	u16 vector_num;
3874 	int ret = 0;
3875 	u16 i;
3876 
3877 	/* RSS size, cpu online and vector_num should be the same */
3878 	/* Should consider 2p/4p later */
3879 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3880 
3881 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3882 			      GFP_KERNEL);
3883 	if (!vector)
3884 		return -ENOMEM;
3885 
3886 	/* save the actual available vector number */
3887 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3888 
3889 	priv->vector_num = vector_num;
3890 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3891 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3892 			     GFP_KERNEL);
3893 	if (!priv->tqp_vector) {
3894 		ret = -ENOMEM;
3895 		goto out;
3896 	}
3897 
3898 	for (i = 0; i < priv->vector_num; i++) {
3899 		tqp_vector = &priv->tqp_vector[i];
3900 		tqp_vector->idx = i;
3901 		tqp_vector->mask_addr = vector[i].io_addr;
3902 		tqp_vector->vector_irq = vector[i].vector;
3903 		hns3_vector_coalesce_init(tqp_vector, priv);
3904 	}
3905 
3906 out:
3907 	devm_kfree(&pdev->dev, vector);
3908 	return ret;
3909 }
3910 
3911 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3912 {
3913 	group->ring = NULL;
3914 	group->count = 0;
3915 }
3916 
3917 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3918 {
3919 	struct hnae3_ring_chain_node vector_ring_chain;
3920 	struct hnae3_handle *h = priv->ae_handle;
3921 	struct hns3_enet_tqp_vector *tqp_vector;
3922 	int i;
3923 
3924 	for (i = 0; i < priv->vector_num; i++) {
3925 		tqp_vector = &priv->tqp_vector[i];
3926 
3927 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3928 			continue;
3929 
3930 		/* Since the mapping can be overwritten, when fail to get the
3931 		 * chain between vector and ring, we should go on to deal with
3932 		 * the remaining options.
3933 		 */
3934 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3935 			dev_warn(priv->dev, "failed to get ring chain\n");
3936 
3937 		h->ae_algo->ops->unmap_ring_from_vector(h,
3938 			tqp_vector->vector_irq, &vector_ring_chain);
3939 
3940 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3941 
3942 		hns3_clear_ring_group(&tqp_vector->rx_group);
3943 		hns3_clear_ring_group(&tqp_vector->tx_group);
3944 		netif_napi_del(&priv->tqp_vector[i].napi);
3945 	}
3946 }
3947 
3948 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3949 {
3950 	struct hnae3_handle *h = priv->ae_handle;
3951 	struct pci_dev *pdev = h->pdev;
3952 	int i, ret;
3953 
3954 	for (i = 0; i < priv->vector_num; i++) {
3955 		struct hns3_enet_tqp_vector *tqp_vector;
3956 
3957 		tqp_vector = &priv->tqp_vector[i];
3958 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3959 		if (ret)
3960 			return;
3961 	}
3962 
3963 	devm_kfree(&pdev->dev, priv->tqp_vector);
3964 }
3965 
3966 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3967 			      unsigned int ring_type)
3968 {
3969 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3970 	struct hns3_enet_ring *ring;
3971 	int desc_num;
3972 
3973 	if (ring_type == HNAE3_RING_TYPE_TX) {
3974 		ring = &priv->ring[q->tqp_index];
3975 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3976 		ring->queue_index = q->tqp_index;
3977 	} else {
3978 		ring = &priv->ring[q->tqp_index + queue_num];
3979 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3980 		ring->queue_index = q->tqp_index;
3981 	}
3982 
3983 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3984 
3985 	ring->tqp = q;
3986 	ring->desc = NULL;
3987 	ring->desc_cb = NULL;
3988 	ring->dev = priv->dev;
3989 	ring->desc_dma_addr = 0;
3990 	ring->buf_size = q->buf_size;
3991 	ring->desc_num = desc_num;
3992 	ring->next_to_use = 0;
3993 	ring->next_to_clean = 0;
3994 	ring->last_to_use = 0;
3995 }
3996 
3997 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3998 			       struct hns3_nic_priv *priv)
3999 {
4000 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4001 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4002 }
4003 
4004 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4005 {
4006 	struct hnae3_handle *h = priv->ae_handle;
4007 	struct pci_dev *pdev = h->pdev;
4008 	int i;
4009 
4010 	priv->ring = devm_kzalloc(&pdev->dev,
4011 				  array3_size(h->kinfo.num_tqps,
4012 					      sizeof(*priv->ring), 2),
4013 				  GFP_KERNEL);
4014 	if (!priv->ring)
4015 		return -ENOMEM;
4016 
4017 	for (i = 0; i < h->kinfo.num_tqps; i++)
4018 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4019 
4020 	return 0;
4021 }
4022 
4023 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4024 {
4025 	if (!priv->ring)
4026 		return;
4027 
4028 	devm_kfree(priv->dev, priv->ring);
4029 	priv->ring = NULL;
4030 }
4031 
4032 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4033 {
4034 	int ret;
4035 
4036 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
4037 		return -EINVAL;
4038 
4039 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4040 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
4041 	if (!ring->desc_cb) {
4042 		ret = -ENOMEM;
4043 		goto out;
4044 	}
4045 
4046 	ret = hns3_alloc_desc(ring);
4047 	if (ret)
4048 		goto out_with_desc_cb;
4049 
4050 	if (!HNAE3_IS_TX_RING(ring)) {
4051 		ret = hns3_alloc_ring_buffers(ring);
4052 		if (ret)
4053 			goto out_with_desc;
4054 	}
4055 
4056 	return 0;
4057 
4058 out_with_desc:
4059 	hns3_free_desc(ring);
4060 out_with_desc_cb:
4061 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4062 	ring->desc_cb = NULL;
4063 out:
4064 	return ret;
4065 }
4066 
4067 void hns3_fini_ring(struct hns3_enet_ring *ring)
4068 {
4069 	hns3_free_desc(ring);
4070 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4071 	ring->desc_cb = NULL;
4072 	ring->next_to_clean = 0;
4073 	ring->next_to_use = 0;
4074 	ring->last_to_use = 0;
4075 	ring->pending_buf = 0;
4076 	if (ring->skb) {
4077 		dev_kfree_skb_any(ring->skb);
4078 		ring->skb = NULL;
4079 	}
4080 }
4081 
4082 static int hns3_buf_size2type(u32 buf_size)
4083 {
4084 	int bd_size_type;
4085 
4086 	switch (buf_size) {
4087 	case 512:
4088 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
4089 		break;
4090 	case 1024:
4091 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
4092 		break;
4093 	case 2048:
4094 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4095 		break;
4096 	case 4096:
4097 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
4098 		break;
4099 	default:
4100 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4101 	}
4102 
4103 	return bd_size_type;
4104 }
4105 
4106 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
4107 {
4108 	dma_addr_t dma = ring->desc_dma_addr;
4109 	struct hnae3_queue *q = ring->tqp;
4110 
4111 	if (!HNAE3_IS_TX_RING(ring)) {
4112 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
4113 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
4114 			       (u32)((dma >> 31) >> 1));
4115 
4116 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
4117 			       hns3_buf_size2type(ring->buf_size));
4118 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
4119 			       ring->desc_num / 8 - 1);
4120 	} else {
4121 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
4122 			       (u32)dma);
4123 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
4124 			       (u32)((dma >> 31) >> 1));
4125 
4126 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
4127 			       ring->desc_num / 8 - 1);
4128 	}
4129 }
4130 
4131 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
4132 {
4133 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4134 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
4135 	int i;
4136 
4137 	for (i = 0; i < HNAE3_MAX_TC; i++) {
4138 		int j;
4139 
4140 		if (!test_bit(i, &tc_info->tc_en))
4141 			continue;
4142 
4143 		for (j = 0; j < tc_info->tqp_count[i]; j++) {
4144 			struct hnae3_queue *q;
4145 
4146 			q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
4147 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
4148 		}
4149 	}
4150 }
4151 
4152 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4153 {
4154 	struct hnae3_handle *h = priv->ae_handle;
4155 	int ring_num = h->kinfo.num_tqps * 2;
4156 	int i, j;
4157 	int ret;
4158 
4159 	for (i = 0; i < ring_num; i++) {
4160 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
4161 		if (ret) {
4162 			dev_err(priv->dev,
4163 				"Alloc ring memory fail! ret=%d\n", ret);
4164 			goto out_when_alloc_ring_memory;
4165 		}
4166 
4167 		u64_stats_init(&priv->ring[i].syncp);
4168 	}
4169 
4170 	return 0;
4171 
4172 out_when_alloc_ring_memory:
4173 	for (j = i - 1; j >= 0; j--)
4174 		hns3_fini_ring(&priv->ring[j]);
4175 
4176 	return -ENOMEM;
4177 }
4178 
4179 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4180 {
4181 	struct hnae3_handle *h = priv->ae_handle;
4182 	int i;
4183 
4184 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4185 		hns3_fini_ring(&priv->ring[i]);
4186 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4187 	}
4188 }
4189 
4190 /* Set mac addr if it is configured. or leave it to the AE driver */
4191 static int hns3_init_mac_addr(struct net_device *netdev)
4192 {
4193 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4194 	struct hnae3_handle *h = priv->ae_handle;
4195 	u8 mac_addr_temp[ETH_ALEN];
4196 	int ret = 0;
4197 
4198 	if (h->ae_algo->ops->get_mac_addr)
4199 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4200 
4201 	/* Check if the MAC address is valid, if not get a random one */
4202 	if (!is_valid_ether_addr(mac_addr_temp)) {
4203 		eth_hw_addr_random(netdev);
4204 		dev_warn(priv->dev, "using random MAC address %pM\n",
4205 			 netdev->dev_addr);
4206 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4207 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
4208 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4209 	} else {
4210 		return 0;
4211 	}
4212 
4213 	if (h->ae_algo->ops->set_mac_addr)
4214 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4215 
4216 	return ret;
4217 }
4218 
4219 static int hns3_init_phy(struct net_device *netdev)
4220 {
4221 	struct hnae3_handle *h = hns3_get_handle(netdev);
4222 	int ret = 0;
4223 
4224 	if (h->ae_algo->ops->mac_connect_phy)
4225 		ret = h->ae_algo->ops->mac_connect_phy(h);
4226 
4227 	return ret;
4228 }
4229 
4230 static void hns3_uninit_phy(struct net_device *netdev)
4231 {
4232 	struct hnae3_handle *h = hns3_get_handle(netdev);
4233 
4234 	if (h->ae_algo->ops->mac_disconnect_phy)
4235 		h->ae_algo->ops->mac_disconnect_phy(h);
4236 }
4237 
4238 static int hns3_client_start(struct hnae3_handle *handle)
4239 {
4240 	if (!handle->ae_algo->ops->client_start)
4241 		return 0;
4242 
4243 	return handle->ae_algo->ops->client_start(handle);
4244 }
4245 
4246 static void hns3_client_stop(struct hnae3_handle *handle)
4247 {
4248 	if (!handle->ae_algo->ops->client_stop)
4249 		return;
4250 
4251 	handle->ae_algo->ops->client_stop(handle);
4252 }
4253 
4254 static void hns3_info_show(struct hns3_nic_priv *priv)
4255 {
4256 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4257 
4258 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4259 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4260 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4261 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4262 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4263 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4264 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4265 	dev_info(priv->dev, "Total number of enabled TCs: %u\n",
4266 		 kinfo->tc_info.num_tc);
4267 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4268 }
4269 
4270 static int hns3_client_init(struct hnae3_handle *handle)
4271 {
4272 	struct pci_dev *pdev = handle->pdev;
4273 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4274 	u16 alloc_tqps, max_rss_size;
4275 	struct hns3_nic_priv *priv;
4276 	struct net_device *netdev;
4277 	int ret;
4278 
4279 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
4280 						    &max_rss_size);
4281 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
4282 	if (!netdev)
4283 		return -ENOMEM;
4284 
4285 	priv = netdev_priv(netdev);
4286 	priv->dev = &pdev->dev;
4287 	priv->netdev = netdev;
4288 	priv->ae_handle = handle;
4289 	priv->tx_timeout_count = 0;
4290 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
4291 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4292 
4293 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4294 
4295 	handle->kinfo.netdev = netdev;
4296 	handle->priv = (void *)priv;
4297 
4298 	hns3_init_mac_addr(netdev);
4299 
4300 	hns3_set_default_feature(netdev);
4301 
4302 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4303 	netdev->priv_flags |= IFF_UNICAST_FLT;
4304 	netdev->netdev_ops = &hns3_nic_netdev_ops;
4305 	SET_NETDEV_DEV(netdev, &pdev->dev);
4306 	hns3_ethtool_set_ops(netdev);
4307 
4308 	/* Carrier off reporting is important to ethtool even BEFORE open */
4309 	netif_carrier_off(netdev);
4310 
4311 	ret = hns3_get_ring_config(priv);
4312 	if (ret) {
4313 		ret = -ENOMEM;
4314 		goto out_get_ring_cfg;
4315 	}
4316 
4317 	hns3_nic_init_coal_cfg(priv);
4318 
4319 	ret = hns3_nic_alloc_vector_data(priv);
4320 	if (ret) {
4321 		ret = -ENOMEM;
4322 		goto out_alloc_vector_data;
4323 	}
4324 
4325 	ret = hns3_nic_init_vector_data(priv);
4326 	if (ret) {
4327 		ret = -ENOMEM;
4328 		goto out_init_vector_data;
4329 	}
4330 
4331 	ret = hns3_init_all_ring(priv);
4332 	if (ret) {
4333 		ret = -ENOMEM;
4334 		goto out_init_ring;
4335 	}
4336 
4337 	ret = hns3_init_phy(netdev);
4338 	if (ret)
4339 		goto out_init_phy;
4340 
4341 	/* the device can work without cpu rmap, only aRFS needs it */
4342 	ret = hns3_set_rx_cpu_rmap(netdev);
4343 	if (ret)
4344 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4345 
4346 	ret = hns3_nic_init_irq(priv);
4347 	if (ret) {
4348 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4349 		hns3_free_rx_cpu_rmap(netdev);
4350 		goto out_init_irq_fail;
4351 	}
4352 
4353 	ret = hns3_client_start(handle);
4354 	if (ret) {
4355 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4356 		goto out_client_start;
4357 	}
4358 
4359 	hns3_dcbnl_setup(handle);
4360 
4361 	hns3_dbg_init(handle);
4362 
4363 	netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
4364 
4365 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
4366 		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
4367 
4368 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4369 
4370 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
4371 		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
4372 
4373 	ret = register_netdev(netdev);
4374 	if (ret) {
4375 		dev_err(priv->dev, "probe register netdev fail!\n");
4376 		goto out_reg_netdev_fail;
4377 	}
4378 
4379 	if (netif_msg_drv(handle))
4380 		hns3_info_show(priv);
4381 
4382 	return ret;
4383 
4384 out_reg_netdev_fail:
4385 	hns3_dbg_uninit(handle);
4386 out_client_start:
4387 	hns3_free_rx_cpu_rmap(netdev);
4388 	hns3_nic_uninit_irq(priv);
4389 out_init_irq_fail:
4390 	hns3_uninit_phy(netdev);
4391 out_init_phy:
4392 	hns3_uninit_all_ring(priv);
4393 out_init_ring:
4394 	hns3_nic_uninit_vector_data(priv);
4395 out_init_vector_data:
4396 	hns3_nic_dealloc_vector_data(priv);
4397 out_alloc_vector_data:
4398 	priv->ring = NULL;
4399 out_get_ring_cfg:
4400 	priv->ae_handle = NULL;
4401 	free_netdev(netdev);
4402 	return ret;
4403 }
4404 
4405 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4406 {
4407 	struct net_device *netdev = handle->kinfo.netdev;
4408 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4409 
4410 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4411 		unregister_netdev(netdev);
4412 
4413 	hns3_client_stop(handle);
4414 
4415 	hns3_uninit_phy(netdev);
4416 
4417 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4418 		netdev_warn(netdev, "already uninitialized\n");
4419 		goto out_netdev_free;
4420 	}
4421 
4422 	hns3_free_rx_cpu_rmap(netdev);
4423 
4424 	hns3_nic_uninit_irq(priv);
4425 
4426 	hns3_clear_all_ring(handle, true);
4427 
4428 	hns3_nic_uninit_vector_data(priv);
4429 
4430 	hns3_nic_dealloc_vector_data(priv);
4431 
4432 	hns3_uninit_all_ring(priv);
4433 
4434 	hns3_put_ring_config(priv);
4435 
4436 out_netdev_free:
4437 	hns3_dbg_uninit(handle);
4438 	free_netdev(netdev);
4439 }
4440 
4441 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4442 {
4443 	struct net_device *netdev = handle->kinfo.netdev;
4444 
4445 	if (!netdev)
4446 		return;
4447 
4448 	if (linkup) {
4449 		netif_tx_wake_all_queues(netdev);
4450 		netif_carrier_on(netdev);
4451 		if (netif_msg_link(handle))
4452 			netdev_info(netdev, "link up\n");
4453 	} else {
4454 		netif_carrier_off(netdev);
4455 		netif_tx_stop_all_queues(netdev);
4456 		if (netif_msg_link(handle))
4457 			netdev_info(netdev, "link down\n");
4458 	}
4459 }
4460 
4461 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4462 {
4463 	while (ring->next_to_clean != ring->next_to_use) {
4464 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4465 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
4466 		ring_ptr_move_fw(ring, next_to_clean);
4467 	}
4468 
4469 	ring->pending_buf = 0;
4470 }
4471 
4472 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4473 {
4474 	struct hns3_desc_cb res_cbs;
4475 	int ret;
4476 
4477 	while (ring->next_to_use != ring->next_to_clean) {
4478 		/* When a buffer is not reused, it's memory has been
4479 		 * freed in hns3_handle_rx_bd or will be freed by
4480 		 * stack, so we need to replace the buffer here.
4481 		 */
4482 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4483 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4484 			if (ret) {
4485 				u64_stats_update_begin(&ring->syncp);
4486 				ring->stats.sw_err_cnt++;
4487 				u64_stats_update_end(&ring->syncp);
4488 				/* if alloc new buffer fail, exit directly
4489 				 * and reclear in up flow.
4490 				 */
4491 				netdev_warn(ring_to_netdev(ring),
4492 					    "reserve buffer map failed, ret = %d\n",
4493 					    ret);
4494 				return ret;
4495 			}
4496 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4497 		}
4498 		ring_ptr_move_fw(ring, next_to_use);
4499 	}
4500 
4501 	/* Free the pending skb in rx ring */
4502 	if (ring->skb) {
4503 		dev_kfree_skb_any(ring->skb);
4504 		ring->skb = NULL;
4505 		ring->pending_buf = 0;
4506 	}
4507 
4508 	return 0;
4509 }
4510 
4511 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4512 {
4513 	while (ring->next_to_use != ring->next_to_clean) {
4514 		/* When a buffer is not reused, it's memory has been
4515 		 * freed in hns3_handle_rx_bd or will be freed by
4516 		 * stack, so only need to unmap the buffer here.
4517 		 */
4518 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4519 			hns3_unmap_buffer(ring,
4520 					  &ring->desc_cb[ring->next_to_use]);
4521 			ring->desc_cb[ring->next_to_use].dma = 0;
4522 		}
4523 
4524 		ring_ptr_move_fw(ring, next_to_use);
4525 	}
4526 }
4527 
4528 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4529 {
4530 	struct net_device *ndev = h->kinfo.netdev;
4531 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4532 	u32 i;
4533 
4534 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4535 		struct hns3_enet_ring *ring;
4536 
4537 		ring = &priv->ring[i];
4538 		hns3_clear_tx_ring(ring);
4539 
4540 		ring = &priv->ring[i + h->kinfo.num_tqps];
4541 		/* Continue to clear other rings even if clearing some
4542 		 * rings failed.
4543 		 */
4544 		if (force)
4545 			hns3_force_clear_rx_ring(ring);
4546 		else
4547 			hns3_clear_rx_ring(ring);
4548 	}
4549 }
4550 
4551 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4552 {
4553 	struct net_device *ndev = h->kinfo.netdev;
4554 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4555 	struct hns3_enet_ring *rx_ring;
4556 	int i, j;
4557 	int ret;
4558 
4559 	ret = h->ae_algo->ops->reset_queue(h);
4560 	if (ret)
4561 		return ret;
4562 
4563 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4564 		hns3_init_ring_hw(&priv->ring[i]);
4565 
4566 		/* We need to clear tx ring here because self test will
4567 		 * use the ring and will not run down before up
4568 		 */
4569 		hns3_clear_tx_ring(&priv->ring[i]);
4570 		priv->ring[i].next_to_clean = 0;
4571 		priv->ring[i].next_to_use = 0;
4572 		priv->ring[i].last_to_use = 0;
4573 
4574 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4575 		hns3_init_ring_hw(rx_ring);
4576 		ret = hns3_clear_rx_ring(rx_ring);
4577 		if (ret)
4578 			return ret;
4579 
4580 		/* We can not know the hardware head and tail when this
4581 		 * function is called in reset flow, so we reuse all desc.
4582 		 */
4583 		for (j = 0; j < rx_ring->desc_num; j++)
4584 			hns3_reuse_buffer(rx_ring, j);
4585 
4586 		rx_ring->next_to_clean = 0;
4587 		rx_ring->next_to_use = 0;
4588 	}
4589 
4590 	hns3_init_tx_ring_tc(priv);
4591 
4592 	return 0;
4593 }
4594 
4595 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4596 {
4597 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4598 	struct net_device *ndev = kinfo->netdev;
4599 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4600 
4601 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4602 		return 0;
4603 
4604 	if (!netif_running(ndev))
4605 		return 0;
4606 
4607 	return hns3_nic_net_stop(ndev);
4608 }
4609 
4610 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4611 {
4612 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4613 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4614 	int ret = 0;
4615 
4616 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4617 		netdev_err(kinfo->netdev, "device is not initialized yet\n");
4618 		return -EFAULT;
4619 	}
4620 
4621 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4622 
4623 	if (netif_running(kinfo->netdev)) {
4624 		ret = hns3_nic_net_open(kinfo->netdev);
4625 		if (ret) {
4626 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4627 			netdev_err(kinfo->netdev,
4628 				   "net up fail, ret=%d!\n", ret);
4629 			return ret;
4630 		}
4631 	}
4632 
4633 	return ret;
4634 }
4635 
4636 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4637 {
4638 	struct net_device *netdev = handle->kinfo.netdev;
4639 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4640 	int ret;
4641 
4642 	/* Carrier off reporting is important to ethtool even BEFORE open */
4643 	netif_carrier_off(netdev);
4644 
4645 	ret = hns3_get_ring_config(priv);
4646 	if (ret)
4647 		return ret;
4648 
4649 	ret = hns3_nic_alloc_vector_data(priv);
4650 	if (ret)
4651 		goto err_put_ring;
4652 
4653 	ret = hns3_nic_init_vector_data(priv);
4654 	if (ret)
4655 		goto err_dealloc_vector;
4656 
4657 	ret = hns3_init_all_ring(priv);
4658 	if (ret)
4659 		goto err_uninit_vector;
4660 
4661 	/* the device can work without cpu rmap, only aRFS needs it */
4662 	ret = hns3_set_rx_cpu_rmap(netdev);
4663 	if (ret)
4664 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4665 
4666 	ret = hns3_nic_init_irq(priv);
4667 	if (ret) {
4668 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4669 		hns3_free_rx_cpu_rmap(netdev);
4670 		goto err_init_irq_fail;
4671 	}
4672 
4673 	if (!hns3_is_phys_func(handle->pdev))
4674 		hns3_init_mac_addr(netdev);
4675 
4676 	ret = hns3_client_start(handle);
4677 	if (ret) {
4678 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4679 		goto err_client_start_fail;
4680 	}
4681 
4682 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4683 
4684 	return ret;
4685 
4686 err_client_start_fail:
4687 	hns3_free_rx_cpu_rmap(netdev);
4688 	hns3_nic_uninit_irq(priv);
4689 err_init_irq_fail:
4690 	hns3_uninit_all_ring(priv);
4691 err_uninit_vector:
4692 	hns3_nic_uninit_vector_data(priv);
4693 err_dealloc_vector:
4694 	hns3_nic_dealloc_vector_data(priv);
4695 err_put_ring:
4696 	hns3_put_ring_config(priv);
4697 
4698 	return ret;
4699 }
4700 
4701 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4702 {
4703 	struct net_device *netdev = handle->kinfo.netdev;
4704 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4705 
4706 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4707 		netdev_warn(netdev, "already uninitialized\n");
4708 		return 0;
4709 	}
4710 
4711 	hns3_free_rx_cpu_rmap(netdev);
4712 	hns3_nic_uninit_irq(priv);
4713 	hns3_clear_all_ring(handle, true);
4714 	hns3_reset_tx_queue(priv->ae_handle);
4715 
4716 	hns3_nic_uninit_vector_data(priv);
4717 
4718 	hns3_nic_dealloc_vector_data(priv);
4719 
4720 	hns3_uninit_all_ring(priv);
4721 
4722 	hns3_put_ring_config(priv);
4723 
4724 	return 0;
4725 }
4726 
4727 static int hns3_reset_notify(struct hnae3_handle *handle,
4728 			     enum hnae3_reset_notify_type type)
4729 {
4730 	int ret = 0;
4731 
4732 	switch (type) {
4733 	case HNAE3_UP_CLIENT:
4734 		ret = hns3_reset_notify_up_enet(handle);
4735 		break;
4736 	case HNAE3_DOWN_CLIENT:
4737 		ret = hns3_reset_notify_down_enet(handle);
4738 		break;
4739 	case HNAE3_INIT_CLIENT:
4740 		ret = hns3_reset_notify_init_enet(handle);
4741 		break;
4742 	case HNAE3_UNINIT_CLIENT:
4743 		ret = hns3_reset_notify_uninit_enet(handle);
4744 		break;
4745 	default:
4746 		break;
4747 	}
4748 
4749 	return ret;
4750 }
4751 
4752 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4753 				bool rxfh_configured)
4754 {
4755 	int ret;
4756 
4757 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4758 						 rxfh_configured);
4759 	if (ret) {
4760 		dev_err(&handle->pdev->dev,
4761 			"Change tqp num(%u) fail.\n", new_tqp_num);
4762 		return ret;
4763 	}
4764 
4765 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4766 	if (ret)
4767 		return ret;
4768 
4769 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4770 	if (ret)
4771 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4772 
4773 	return ret;
4774 }
4775 
4776 int hns3_set_channels(struct net_device *netdev,
4777 		      struct ethtool_channels *ch)
4778 {
4779 	struct hnae3_handle *h = hns3_get_handle(netdev);
4780 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4781 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4782 	u32 new_tqp_num = ch->combined_count;
4783 	u16 org_tqp_num;
4784 	int ret;
4785 
4786 	if (hns3_nic_resetting(netdev))
4787 		return -EBUSY;
4788 
4789 	if (ch->rx_count || ch->tx_count)
4790 		return -EINVAL;
4791 
4792 	if (kinfo->tc_info.mqprio_active) {
4793 		dev_err(&netdev->dev,
4794 			"it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
4795 		return -EINVAL;
4796 	}
4797 
4798 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4799 	    new_tqp_num < 1) {
4800 		dev_err(&netdev->dev,
4801 			"Change tqps fail, the tqp range is from 1 to %u",
4802 			hns3_get_max_available_channels(h));
4803 		return -EINVAL;
4804 	}
4805 
4806 	if (kinfo->rss_size == new_tqp_num)
4807 		return 0;
4808 
4809 	netif_dbg(h, drv, netdev,
4810 		  "set channels: tqp_num=%u, rxfh=%d\n",
4811 		  new_tqp_num, rxfh_configured);
4812 
4813 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4814 	if (ret)
4815 		return ret;
4816 
4817 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4818 	if (ret)
4819 		return ret;
4820 
4821 	org_tqp_num = h->kinfo.num_tqps;
4822 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4823 	if (ret) {
4824 		int ret1;
4825 
4826 		netdev_warn(netdev,
4827 			    "Change channels fail, revert to old value\n");
4828 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4829 		if (ret1) {
4830 			netdev_err(netdev,
4831 				   "revert to old channel fail\n");
4832 			return ret1;
4833 		}
4834 
4835 		return ret;
4836 	}
4837 
4838 	return 0;
4839 }
4840 
4841 static const struct hns3_hw_error_info hns3_hw_err[] = {
4842 	{ .type = HNAE3_PPU_POISON_ERROR,
4843 	  .msg = "PPU poison" },
4844 	{ .type = HNAE3_CMDQ_ECC_ERROR,
4845 	  .msg = "IMP CMDQ error" },
4846 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
4847 	  .msg = "IMP RD poison" },
4848 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
4849 	  .msg = "ROCEE AXI RESP error" },
4850 };
4851 
4852 static void hns3_process_hw_error(struct hnae3_handle *handle,
4853 				  enum hnae3_hw_error_type type)
4854 {
4855 	int i;
4856 
4857 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4858 		if (hns3_hw_err[i].type == type) {
4859 			dev_err(&handle->pdev->dev, "Detected %s!\n",
4860 				hns3_hw_err[i].msg);
4861 			break;
4862 		}
4863 	}
4864 }
4865 
4866 static const struct hnae3_client_ops client_ops = {
4867 	.init_instance = hns3_client_init,
4868 	.uninit_instance = hns3_client_uninit,
4869 	.link_status_change = hns3_link_status_change,
4870 	.reset_notify = hns3_reset_notify,
4871 	.process_hw_error = hns3_process_hw_error,
4872 };
4873 
4874 /* hns3_init_module - Driver registration routine
4875  * hns3_init_module is the first routine called when the driver is
4876  * loaded. All it does is register with the PCI subsystem.
4877  */
4878 static int __init hns3_init_module(void)
4879 {
4880 	int ret;
4881 
4882 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4883 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4884 
4885 	client.type = HNAE3_CLIENT_KNIC;
4886 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4887 		 hns3_driver_name);
4888 
4889 	client.ops = &client_ops;
4890 
4891 	INIT_LIST_HEAD(&client.node);
4892 
4893 	hns3_dbg_register_debugfs(hns3_driver_name);
4894 
4895 	ret = hnae3_register_client(&client);
4896 	if (ret)
4897 		goto err_reg_client;
4898 
4899 	ret = pci_register_driver(&hns3_driver);
4900 	if (ret)
4901 		goto err_reg_driver;
4902 
4903 	return ret;
4904 
4905 err_reg_driver:
4906 	hnae3_unregister_client(&client);
4907 err_reg_client:
4908 	hns3_dbg_unregister_debugfs();
4909 	return ret;
4910 }
4911 module_init(hns3_init_module);
4912 
4913 /* hns3_exit_module - Driver exit cleanup routine
4914  * hns3_exit_module is called just before the driver is removed
4915  * from memory.
4916  */
4917 static void __exit hns3_exit_module(void)
4918 {
4919 	pci_unregister_driver(&hns3_driver);
4920 	hnae3_unregister_client(&client);
4921 	hns3_dbg_unregister_debugfs();
4922 }
4923 module_exit(hns3_exit_module);
4924 
4925 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4926 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4927 MODULE_LICENSE("GPL");
4928 MODULE_ALIAS("pci:hns-nic");
4929